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Abstract

The most critical issue in evaluating policies and projects that affect generations of

individuals is the choice of social discount rate. This paper shows that there exist social

discount rates such that the planner can simultaneously be (i) an exponential discount-

ing expected utility maximizer; (ii) intergenerationally Pareto– i.e., if all individuals

from all generations prefer one policy/project to another, the planner agrees; and (iii)

strongly non-dictatorial– i.e., no individual from any generation is ignored. Moreover,

to satisfy (i)—(iii), if the time horizon is long enough, it is generically suffi cient and

necessary for social discounting to be more patient than the most patient individual’s

long-run discounting, independent of the social risk attitude.

1 Introduction

Many economic decisions are inherently dynamic and affect multiple generations, such as

corporate and household long-term investment decisions, intertemporal taxation, durable
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public good provision, environmental policies, etc. These decisions crucially depend on one

parameter, the social discount rate, which encapsulates the trade-off between current benefit

and future benefit from the society’s point of view. Unfortunately, there is no consensus

on which social discount rate should be used. This disagreement has led to a debate, for

example, about the cost-benefit analysis of environmental projects that affect many, if not

all, future generations, and the evaluation of those projects is sensitive to the choice of

social discount rate. The famous Stern review uses a near-zero social discount rate (pure

rate of time preference), and suggests that we should take strong and immediate actions on

the climate change (see Stern (2007)).1 Nordhaus (2007) argues that Stern’s conclusion no

longer holds if a market rate is used instead. Many economists, however, believe that using

a high discount rate (such as the market rate) is ethically indefensible.

In the social discounting literature, some economists have argued that social discount-

ing should be more patient than individual discounting (for example, see Caplin and Leahy

(2004) and Farhi and Werning (2007)). The idea is that if social discounting takes into

account how future generations will feel about their consumption, then because future gen-

erations will value future consumption relatively more than the current generation values

future consumption, social discounting will also value future consumption more than the

current generation does.2 However, these studies usually assume that only one (representa-

tive) individual is in the society. How their insight carries over to a society with heterogeneous

individuals– and which individual’s discounting social discounting should be more patient

than– remains unanswered.

Let us explain what will go wrong with heterogeneous individuals. Note that what is

common among these dynamic economic decisions is that there is a benevolent planner who

needs to make choices for generations of individuals, and, as in environmental projects and

1The consumption discount rate derived from the Ramsey formula used in the Stern review depends on
the pure rate of time preference, the elasticity of the marginal utility of consumption, and the growth rate
of per-capita consumption.

2Some economists have also argued that individuals’altruistic discounting for future generations should
be excluded from the planner’s aggregation. See Hammond (1987), Mirrlees (2007), and Boadway (2012).
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many other examples, payoff uncertainty is usually involved. In such a setting, first, econo-

mists often assume that the planner’s objective is an exponential discounting expected utility

function. This assumption is widely used and is normatively appealing because it is equivalent

to assuming that the planner’s preference is time-consistent, time-invariant, and stationary.3

Second, it is often assumed that a benevolent planner respects individuals’preferences. In

other words, some notion of the Pareto property should hold: If “all”individuals agree that

one project is better than another, the planner should agree that the former is better.

Despite the fact that these two assumptions are fundamental to economics, economists

have established that these two assumptions cannot be satisfied simultaneously (see Gollier

and Zeckhauser (2005), Zuber (2011), and Jackson and Yariv (2015)). Even if every indi-

vidual has an exponential discounting utility function, a planner has to be dictatorial to

ensure that her exponential discounting utility function satisfies some Pareto property. The

negative result also raises a challenge to the conclusion that social discounting should be

more patient than individual discounting. In light of the negative result, with heterogeneous

individuals, perhaps we can only conclude that the planner is more patient than the only

individual (dictator) she cares about?

This paper addresses these issues using a classic approach. We introduce a new Pareto

property, and characterize the range of (pure-time-preference) social discount rates that are

compatible with the new Pareto property. In models that generate the negative result, there

is often only one generation of individuals. The Pareto property that they use, which we

call current-generation Pareto, is the key to the negative result. Current-generation Pareto

requires that whenever a consumption sequence p is preferred to another sequence q by every

current-generation individual, then the planner prefers p to q. In many problems that we

are interested in, especially the environmental projects, multiple generations of individuals

are involved. To determine the social discount rate, it seems natural that the planner should

3A version of the definition of time consistency, time invariance, and stationarity can be found in Halevy
(2015). Under the assumption that the utility function is a time-additively separable expected utility func-
tion, Halevy’s version of the three properties are equivalent to assuming an exponential discounting expected
utility function.
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not only respect how the current generation discounts the future, but also care about the

actual well-being of future generations; that is, how future generations will feel about their

consumption and how they will discount the future. The Pareto property that we introduce,

intergenerational Pareto, captures this. It requires that whenever a consumption sequence p

is preferred to q by every individual from every generation, then the planner prefers p to q.

Specifically, each generation-t individual i lives for one period, and has an arbitrary

discount function δi(τ − t) to discount the τ th period consumption.4 The planner is inter-

generationally Pareto and has an exponential discounting utility function. To contrast with

the negative result, we require the planner to be strongly non-dictatorial in the sense that

she never ignores the preference of any individual from any generation. Under these as-

sumptions, we show how the range of social discount rates depends on (a) individual relative

discounting, average discounting, and long-run discounting, and (b) the linear dependency

of individual instantaneous utility functions.

We first examine a benchmark case in which the time horizon is finite and individu-

als share the same instantaneous utility function. This allows us to focus on aggregat-

ing discount functions. We show that there exist two cutoffs for the social discount fac-

tor.5 One is the lowest (across individuals) maximal (across time) relative discount factor,

mini maxτ
δi(τ+1)
δi(τ)

, and the other is the lowest (across individuals) asymptotic average dis-

count factor, mini limτ→∞
τ
√
δi(τ). If the social discount factor is above the first cutoff,

we show that the planner must be intergenerationally Pareto and strongly non-dictatorial.

Thus, we can avoid the negative result even when individuals have arbitrary discount func-

tions. Moreover, checking whether a planner’s utility function is compatible with the Pareto

property is generally diffi cult, but this result provides an easy way to do it. Conversely, if

the social discount factor is below the second cutoff, we show that the planner must violate

intergenerational Pareto as long as the time horizon is long enough; that is, there exist two

4Each individual altruistically cares about the future generations’consumption, as is the case when we
think about environmental projects. Also note that individual discount functions in Zuber (2011) and
Jackson and Yariv (2014, 2015) are exponential. We do not make this assumption.

5The discount rate is equal to one minus the discount factor.
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consumption sequences such that every individual from every generation thinks that one is

better than the other but the planner disagrees. We provide examples to show that these

two cutoffs are tight.

The two cutoffs merge into one cutoff when individuals exhibit present bias. The unique

cutoff is equal to the least patient individual’s long-run discount factor, in which each indi-

vidual i’s long-run discount factor is defined to be the asymptotic relative discount factor

and the asymptotic average discount factor.

Since the least patient individual’s long-run discount factor could be quite low, the bench-

mark case does not say much about which social discount factor is reasonable. Our main

result (Theorem 2) shows that if we do not assume that individuals have identical instan-

taneous utility functions, the result will be rather different. Generically, individual instan-

taneous utility functions are linearly independent in the functional space. We show that if

individual instantaneous utility functions are linearly independent, the cutoff for the social

discount factor jumps to the most patient individual’s long-run discount factor, independent

of the planner’s choice of instantaneous utility function. This result thus supports the use

of a near-zero social discount rate.

We show how the cutoff for the social discount factor changes gradually from the least

patient individual’s long-run discount factor to the most patient, as the number of types of

individual instantaneous utility functions increases. If there is only one type, we are in the

benchmark case. As the number of types increases, the cutoff moves to the most patient

individual’s long-run discount factor.

Lastly, we show that our main result continues to hold if the time horizon is infinite.

1.1 Related Literature

This paper is not the first to aggregate preferences of multiple generations of individuals.

Indeed, there is a long debate on whether future generations should be aggregated. For

example, among others, Ramsey (1928), Pigou (1920), Sen (1961), Feldstein (1964), Solow
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(1974), Arrow (1999), Caplin and Leahy (2004), and Farhi and Werning (2007) are in favor.

On the other hand, among others, Eckstein (1957), Bain (1960), and Marglin (1963) believe

that the government’s or the policy maker’s decision should only reflect the preferences of

present individuals. Our approach is closer to Caplin and Leahy and Farhi and Werning,

both of whom show that assuming that there is only one individual in each generation,

social discounting should be more patient than the only individual’s discounting. Our results

show that having multiple heterogeneous individuals in each generation makes an important

difference.

Many papers have analyzed aggregation of one generation of heterogeneous individuals.

Weitzman (2001) conducts a survey on economists’discount rates to motivate a gamma dis-

counting model. Gollier and Zeckhauser (2005) study a dynamic effi cient allocation problem

with heterogeneous individuals and show that even when individuals have constant discount

rates, the representative agent has a decreasing discount rate. Zuber (2011) establishes that a

planner cannot have an exponential discounting utility function and be (current-generation)

Pareto when individuals have private consumption. Jackson and Yariv (2015) present a sim-

ilar negative result in which consumption is public. Millner and Heal (2017) show that the

negative result goes away if we only require the planner’s objective to be time-consistent. A

key difference between these papers and ours is that they aggregate only one generation of

individuals, whereas ours aggregates multiple generations. This distinction is important in

economic decisions that have long-term impact, such as environmental policies.

Most of the studies discussed above assume that individuals have exponential discounting

functions. It is well known that individuals are often time-inconsistent (see Strotz (1955),

Laibson (1997), and Frederick et al. (2002), among others). Hence, it is important to under-

stand whether the results continue to hold when we allow individuals to have more general

discount functions.

There are other approaches to study social discounting. Our paper emphasizes the rela-

tion between social discounting and individual discounting implied by the intergenerational
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Pareto property. Chambers and Echenique (2017) study three models on discount rates.

In the first, they characterize when a sequence of utility is always preferred to another se-

quence, for any discount rate between zero and one. The second model is similar to Weitzman

(2001), Zuber (2011), and Jackson and Yariv (2014, 2015): The aggregate discount function

is a weighted average of a set of exponential discount functions. In the last model, in order

to discount a sequence of utility, the aggregate preference selects from a set of discount rates

the most pessimistic one. Millner (2016) shows that if heterogeneous individuals are not

fully paternalistic, they will agree on parameters of the long-run social discount rate. Zuber

and Asheim (2012), Asheim and Zuber (2014), Fleurbaey and Zuber (2015), and Piacqua-

dio (2017) study models in which social discounting is due to intergenerational inequality

aversion. Those models do not use the information on how individuals discount the future.

Jonsson and Voorneveld (2017) study a welfare criterion for multiple generations. Each gen-

eration has one individual. In the limit of the criterion, different generations are treated

equally. In the first part of Drugeon and Wigniolle (2017), they characterize what exponen-

tial discounting utility functions can be written as weighted sums of the current self’s and

future selves’quasi-hyperbolic discounting utility functions, which is similar to a special case

of our Theorem 4 or Proposition 4 and to a related result in Galperti and Strulovici (2017).

Our paper is also related to Mongin (1998). Mongin establishes that under a standard

form of the Pareto property, as long as the individuals’subjective probabilities are linearly

independent or their instantaneous utility functions are affi nely independent, the planner has

to be dictatorial. Similar results can be found in Mongin (1995) and Chambers and Hayashi

(2006). In our model, if we view each period as a state, and discount factors as subjective

probabilities, then Mongin’s result seems to apply to our case. However, our planner is not

dictatorial. The technical reason why our Theorem 1 can bypass Mongin’s negative result

is the assumption that all individuals share the same instantaneous utility function. As for

Theorem 2, we first aggregate individual utility functions with identical instantaneous utility

functions into a utility function whose discount factor is equal to the social discount factor.
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Then, we aggregate utility functions with identical discount factors (subjective probabilities).

Both steps bypass Mongin’s negative result.

Lastly, related to the preference aggregation literature, our Lemma 2 extends Harsanyi’s

(1955) theorem and Zhou (1997) to the case with countably infinitely many individuals. Zhou

shows that Pareto and utilitarianism are equivalent when the set of individuals is compact.

The paper proceeds as follows. In Sections 2 and 3, we describe individuals’and the plan-

ner’s preferences. We then introduce a variant of the negative result and intergenerational

Pareto. Section 4 studies the benchmark case, in which we characterize the range of social

discount factors that are compatible with intergenerational Pareto. Our main results in Sec-

tion 5 shows how individual instantaneous utility functions interact with social discounting.

Section 6 studies the infinite-horizon case. Section 7 concludes.

2 Preferences

There are 2 < T ≤ +∞ generations/periods. In each generation, N < +∞ individuals live

for one period. With an abuse of notation, we use N := {1, . . . , N} and T := {1, . . . , T}

to denote the set of individuals and the set of time periods, respectively. The generation-t

individual i is the parent of the generation-(t + 1) individual i. In each period, there is a

public risky consumption good.6 The set of consumption goods is ∆(X), in which ∆(X) is

set of probability measures on a compact set X ⊂ Rm. A typical consumption sequence is

denoted by p = (p1, . . . , pT ) ∈ ∆(X)T .7

Each generation-t individual i has a preference%i,t over the consumption sequences (t ∈ T

and i ∈ N). As is the case when we think about environmental policies, each individual

altruistically cares about the future generations’consumption. We assume throughout the

6All results we derive apply to the case in which each individual has his own consumption. We only need
to view the public consumption as an N -tuple of individual consumption, and let each individual care only
about his own component.

7We discuss what may change if we allow uncertainty to resolve over time in Section B in the Supplemental
Material.
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paper that the generation-t individual i has the following discounting utility function,

Ui,t(p) =

T∑
τ=t

δi(τ − t)ui(pτ ), (1)

in which δi : {0, . . . , T − 1} → R++ with δi(0) = 1 is called the discount function, and

the instantaneous utility function ui : ∆(X) → R is a continuous expected utility function.

When T = +∞, we require (δi(τ))∞τ=0 to be an absolutely summable sequence (in `
1). The

well-known exponential, hyperbolic, and quasi-hyperbolic discounting utility functions are

special cases of (1).

It is common to assume that Ui,t(p) does not depend on past consumption. When a

generation-t individual comes into existence, the past is sunk; that is, comparing p and q

from his point of view is the same as comparing (pt, . . . , pT ) and (qt, . . . , qT ). This also means

that there is no revealed-preference foundation for utility over past consumption.8

We have also assumed that the generation-(t + 1) individual i inherits the generation-t

individual i’s discount function and instantaneous utility function. This assumption does not

imply that a parent and his offspring have the same preference, because the generation-(t+1)

individuals’discount functions are shifted one period forward. This assumption simplifies

our analysis and can be relaxed (see Section E.1 in the Supplemental Material).

In each period t ∈ T , the planner has a preference %t over the consumption sequences. As

in most dynamic models, we assume that the planner’s objective is an exponential discounting

expected utility function; that is, in each period t, the planner has a utility function of the

following form:

Ut(p) =

T∑
τ=t

δτ−tu(pτ ), (2)

in which δ > 0 is the social discount factor and u, a continuous expected utility function on

∆(X), is the planner’s instantaneous utility function. When T = +∞, we require δ < 1.

8However, see Caplin and Leahy (2004) and Ray et al. (2017) for models that allow for backward dis-
counting for past consumption. In the Supplemental Material, we show that our results continue to hold
when individuals have exponential forward and backward discounting.
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It is well known that if the planner’s objective is a discounting utility function Ut(p) =∑T
τ=t δ(τ−t)u(pτ ), the planner is time-consistent if and only if the planner’s discount function

is exponential.9 More generally, (2) holds if and only if the planner’s preference is time-

consistent, time-invariant, and stationary (see footnote 3). Note that the above equation

holds for every t ∈ T ; that is, the social discount factor and the planner’s instantaneous

utility function never change.

Lastly, to rule out uninteresting cases and simplify the statement of our results, we

assume that there are some fixed consequences x∗, x∗ ∈ X such that ui(x∗) = u(x∗) = 0

and ui(x∗) = u(x∗) = 1 for any i ∈ N throughout the paper. A similar assumption called

the minimum agreement condition also appears in De Meyer and Mongin (1995). Our main

findings do not rely on this assumption, and we provide a more detailed discussion below

Lemma 1.10 More generally, for any continuous expected utility function v defined on ∆(X),

we say that it is normalized if v(x∗) = 1 and v(x∗) = 0. One may think of x∗ as the best

consumption good and x∗ as the worst, or x∗ as one dollar and x∗ as zero dollars.

3 Intergenerational Pareto

We want to assume that the planner’s preference (%t)t∈T satisfies some Pareto property. In

a dynamic setting, however, there are multiple ways to define the Pareto property. Different

notions of Pareto lead to different results. For example, Zuber (2011) and Jackson and Yariv

(2015) show that if a planner has an exponential discounting utility function and follows their

Pareto property, the planner must be dictatorial. To motivate our new Pareto property, it is

useful to first understand the negative result. Below, we introduce a version of the negative

result.
9Since individuals only live for one period, time consistency may have a non-standard interpretation for

them. In contrast, the planner is a long-lived entity who tries to stick to an objective function that exhibits
nice properties. The interpretation of time consistency for the planner is similar to the standard one.
10In Section E.1 in the Supplemental Material, when we allow the the instantaneous utility function to

depend on time, the normalization assumption will play a more important role. In that case, because
expected utility functions are unique up to positive affi ne transformations, we cannot pin down the discount
function without some type of normalization assumption.
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3.1 A Variant of the Negative Result

Below is a variant of the Pareto property used by Zuber (2011) and Jackson and Yariv (2015)

that fits into our setting.

Definition 1 The planner’s preference (%t)t∈T is current-generation Pareto if for any con-

sumption sequences p,q ∈ ∆(X)T , in each period t ∈ T , p %i,t q for all i ∈ N implies

p %t q, and p �i,t q for all i ∈ N implies p �t q.

This notion of the Pareto property says that in any period t, if all current-generation

individuals agree that a consumption sequence p is preferred to another sequence q, then

the planner should agree that p %tq. The same applies when the preferences are all strict.

Consider a simple situation in which every generation-t individual i has an exponential

discounting utility function. The generation-t individual i has an exponential discounting

utility (EDU) function if δi(τ) = δτi for some discount factor δi > 0; that is,

Ui,t(p) =
T∑
τ=t

δτ−ti ui(pτ ).

When T = +∞, we require δi < 1. Let us present below a variant of the negative result.

Proposition 1 Suppose each generation-t individual i has an EDU function with discount

factor δi and instantaneous utility function ui. For a generic N-tuple of discount factors

(δi)i∈N , the planner is current-generation Pareto if and only if for each t ∈ T , there exists a

unique i ∈ N such that Ut = Ui,t.

The result says that if we require the planner to be current-generation Pareto and have an

exponential discounting expected utility function, the planner’s preference has to be identical

to exactly one individual’s preference. Since the consumption is public, our setting is closer

to Jackson and Yariv (2015). However, Jackson and Yariv’s result is still different from

the above proposition; they require instantaneous utility functions to be defined on a one-
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dimensional space and be twice continuously differentiable. We only require the individual

discount factors to be generic.

The intuition is as follows. First of all, the planner is current-generation Pareto if and

only if her discounting utility function is equal to a weighted sum of the individuals’EDU

functions. This is an implication of Harsanyi (1955). Next, for simplicity, suppose there

are only two individuals with identical instantaneous utility functions u1 = u2. The planner

attaches a weight ω to the first individual and 1− ω to the second individual. Now, for the

planner to not be dictatorial, there must be some ω ∈ (0, 1) and δ > 0 such that

ωδ1 + (1− ω)δ2 = δ,

and

ωδ2
1 + (1− ω)δ2

2 = δ2.

However, one cannot find such a δ, unless ω = 0 or 1.

3.2 Intergenerational Pareto

The key feature of environmental projects and many other economic policies is that the

decisions affect multiple generations. Current-generation Pareto only takes into account

the preferences of the current generation. The current generation does altruistically care

about future consumption, and there are reasons why we want the planner to respect how

individuals discount the future. However, how the current generation thinks about the

future may well differ from how future generations will think. Since future generations will

be affected by the planner’s decision, the planner should take into account their actual well-

being, including how they will discount their future. The following Pareto property captures

these ideas.

Definition 2 The planner’s preference (%t)t∈T is intergenerationally Pareto if for any con-

sumption sequences p,q ∈ ∆(X)T , in each period t ∈ T , p %i,s q for all i ∈ N and all s ≥ t
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implies p %t q, and p �i,s q for all i ∈ N and all s ≥ t implies p �t q.

Intergenerational Pareto says that in any period t, if all current- and future-generation

individuals agree that a consumption sequence p is preferred to another sequence q, then the

planner should agree that p %tq. For example, suppose all current-generation individuals

are extremely selfish: They are willing to sacrifice the environment in order to increase their

own consumption. If the planner is current-generation Pareto, the planner must agree with

them, and let them destroy the environment. However, if the planner is intergenerationally

Pareto, the planner is allowed to disagree with them, because what they prefer hurts future

generations.

If the planner is current-generation Pareto, she is also intergenerationally Pareto. There-

fore, intergenerational Pareto is weaker than current-generation Pareto. The following lemma

characterizes the consequence of intergenerational Pareto. The lemma covers a more general

case than necessary for our main results. The more general case emphasizes that the follow-

ing observation has nothing to do with our assumptions that the planner’s discount function

is exponential, that instantaneous utility functions do not change over time, etc. The more

general case will also be useful in Section E in the Supplemental Material.

Lemma 1 (Harsanyi (1955)) Suppose T < +∞, and each generation-t individual i’s utility

function takes the following form:

Ui,t(p) =
T∑
τ=t

δi,t(τ − t)ui(pτ , τ),

and the planner’s utility function in period t takes the following form:

Ut(p) =
T∑
τ=t

δt(τ − t)ut(pτ , τ),

in which δi,t(·) and δt(·) are discount functions, and ui(·, τ) and ut(·, τ) are (normalized) in-

stantaneous utility functions. The planner’s preference (%t)t∈T is intergenerationally Pareto
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if and only if in each period t ∈ T , there exists a finite sequence of nonnegative numbers

(ωt(i, s))i∈N,s≥t such that

Ut =

N∑
i=1

T∑
s=t

ωt(i, s)Ui,s.

The lemma essentially follows from Harsanyi (1955) and Fishburn (1984) and shows that

intergenerational Pareto is equivalent to (intergenerational) utilitarianism in our setting;

that is, the planner is intergenerationally Pareto if and only if in each period, her utility

function is equal to a weighted sum of all the current- and future-generation individuals’

utility functions. We omit the proof.

This lemma depends on the assumption that Ui,t’s and Ut’s are expected utility functions.

When T = +∞, a countably infinite version of Harsanyi’s theorem is required, which, to the

best of our knowledge, has not been established in the literature.11 We present this result in

Section 6.

In the lemma, the instantaneous utility functions ui(·, τ) and ut(·, τ) are normalized. The

normalization assumption has two implications. First, without the normalization assump-

tion, it is possible that there do not exist two consumption sequences such that all individuals

strictly prefer one to the other. In that case, if the planner is indifferent to all consumption

sequences, the planner will be intergenerational Pareto trivially. When the planner is always

indifferent, she has a constant instantaneous utility function and her discount function can

be arbitrary. The normalization assumption rules out this uninteresting case. Second, in this

lemma, since instantaneous utility functions can depend on τ , without normalizing them in

some way, the discount functions will be undetermined. This will become useful in Section

E in the Supplemental Material.

11Zhou (1997) has shown how the equivalence between Pareto and utilitarianism can be generalized to the
case in which N is compact but not necessarily finite.
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4 Social Discounting and Individual Long-Run Discount-

ing: The Benchmark Case

There are two questions to be addressed. First, can we bypass the negative result and if yes,

which social discount factors are reasonable? In particular, which social discount factors,

under our assumptions, are compatible with intergenerational Pareto? Second, recall that

in the social discounting literature, economists have argued that the social discount factor

should be higher (more patient) than the individual discount factor. We want to understand

that with heterogeneous individuals, which individual’s discount factor the social discount

factor should be higher than.

To contrast with the negative results, we introduce a strong notion of the non-dictatorial

property.

Definition 3 We say that the planner is strongly non-dictatorial if for each t ∈ T ,

Ut(p) = ft (U1,t(p), . . . , U1,T (p), U2,t(p), . . . , U2,T (p), . . . , UN,T (p))

for some strictly increasing function ft.

We not only want to ensure that the planner is not dictatorial, but also that every

individual from every generation has a say. In light of Lemma 1, under intergenerational

Pareto, this means that the planner’s utility function can be written as a weighted sum of

individual utility functions with strictly positive weights.

Intergenerational Pareto is weaker than current-generation Pareto. However, when com-

bined with the strongly non-dictatorial property, the planner has more strictly positive

weights to assign, and hence a more complicated task to accomplish. An analogy of this

is the following. In Proposition 1, if we increase the number of individuals N , the planner

has more weights to assign. However, this does not make it easier for the planner to have an

exponential discounting expected utility function. If the planner is required to give strictly
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positive weights to the newly added individuals, that also brings in their new discount fac-

tors, which makes the aggregation problem more diffi cult. In fact, the easiest way for the

planner to have an exponential discounting expected utility function is when there is only

one individual and one strictly positive weight to be assigned.

Another obvious assumption that makes our problem more diffi cult is that, in our model,

individuals have general discount functions. Under this assumption, it is not even clear what

individual discount factors are; our results show how the social discount factor depends on

general individual discount functions.

4.1 The Benchmark Case

We first examine the simplest case to illustrate how social discounting is related to individual

discounting. To focus on discounting, we assume that all individual instantaneous utility

functions are identical; that is, there is some continuous expected utility function u : ∆(X)→

R such that each generation-t individual i’s utility function is

Ui,t(p) =
T∑
τ=t

δi(τ − t)u(pτ ). (3)

Our main result studies the case without this assumption in Section 5. An alternative inter-

pretation of this assumption is that the planner only wants to aggregate individual discount

functions. Therefore, it is without loss of generality to replace the (possibly heterogeneous)

individual instantaneous utility functions with the planner’s instantaneous utility function

u.12 When individuals share the same instantaneous utility function, it is straightforward to

verify that the planner also has to use the same instantaneous utility function in order to

satisfy Pareto properties.

The benchmark case also assumes that T is finite. Although T is finite, we may vary T in

12In this interpretation, however, each individual i’s preference in the definition of Pareto properties needs
to be replaced with another preference induced by a discounting utility function with a discount function δi
and an instantaneous utility function u chosen by the planner.
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part of the results below. Therefore, we assume that individual discount functions are well

defined for any natural number; that is, we start with a set of individual discount functions

δi’s defined over natural numbers N, and whenever we choose a finite T , we restrict the

domain of δi’s to T . For instance, suppose individuals have quasi-hyperbolic discounting

functions. We first define δi(τ) = βiδ
τ−1
i for any τ ≥ 0. Then, we choose T and focus on

δi(0), . . . , δi(T − 1).

For each individual discount function δi(τ), we call τ
√
δi(τ) his average discount function,

and δi(τ+1)
δi(τ)

his relative discount function.13 The average discount function measures the

equivalent exponential discount factor for τ -period-ahead consumption. The relative discount

function captures the additional instantaneous discounting for consumption that is τ + 1

periods ahead relative to consumption that is τ periods ahead.

We make two weak assumptions on the individual discount functions. The first assump-

tion says that the average discount function has a limit; that is,

lim
τ→∞

τ
√
δi(τ) exists. (4)

This assumption is weaker than assuming that the relative discount function has a limit.

The second assumption says that the relative discount function is bounded; that is,

there is some α > 0 such that
δi(τ + 1)

δi(τ)
< α for all τ ≥ 0. (5)

The following theorem characterizes the set of social discount factors that are compatible

with intergenerational Pareto under these assumptions.

Theorem 1 Suppose T < +∞, and each generation-t individual i’s discounting utility func-

tion has an instantaneous utility function u and a discount function δi such that (4) and (5)

hold. Then,

13When τ = 0, we set the average discount function’s value to be 1.
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1. if δ > min
i

max
τ∈{0,...,T−1}

δi(τ+1)
δi(τ)

, the planner is intergenerationally Pareto and strongly non-

dictatorial;

2. For each δ < mini limτ→∞
τ
√
δi(τ), there exists some T ∗ > 0 such that if T ≥ T ∗, the

planner is not intergenerationally Pareto.

The theorem shows how social discounting depends on individual discounting when there

are multiple individuals with general discount functions. We can find two cutoffs for the

social discount factor. If the social discount factor is above the least patient individual’s

maximal relative discount factor, the planner’s preference must be intergenerationally Pareto

and strongly non-dictatorial. If the social discount factor is below the least patient individ-

ual’s asymptotic average discount factor, the planner’s preference must have violated the

intergenerationally Pareto property as long as T is large enough. The planner has a utility

function in each period t, and the cutoffs apply in all periods.

In general, when we choose a social discount factor, it is not obvious whether the planner

is Pareto. The first part of the theorem allows us to check whether a social discount factor is

consistent with the intergenerationally Pareto property. Moreover, it shows that even if we

allow individuals to have arbitrary discount functions, and require the planner to have an

exponential discounting utility function, the planner can still be intergenerationally Pareto

without being dictatorial. In fact, the planner can even be strongly non-dictatorial.

Conversely, the second part of the theorem says that if the social discount factor is

too low, then there must be two consumption sequences such that all individuals from all

generations prefer one over the other, but the planner disagrees. We do not want to use a

social discount factor that allows this to happen.

Note that for any fixed T , max
τ∈{1,...,T}

δi(τ)
δi(τ−1)

≥ T
√
δi(T ), because

T
√
δi(T ) = T

√
δi(T )

δi(T − 1)
· · · · · δi(1)

δi(0)
;
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that is, T
√
δi(T ) is the geometric mean of δi(τ)

δi(τ−1)
’s. Therefore, max

τ∈{1,...,T}
δi(τ)
δi(τ−1)

will be weakly

higher than limτ→∞
τ
√
δi(τ) when T is large enough, and hence the first cutoffwill eventually

be higher than the second cutoff.

Although the first cutoff may be strictly higher than the second, the two cutoffs in the

theorem are “tight” in the following sense. If the social discount factor is below the first

cutoff, there exist some T and individual discount functions δi(τ)’s such that the planner is

not intergenerationally Pareto. Similarly, if the social discount factor is above the second

cutoff, we can find some individual discount functions δi(τ)’s such that for all finite T ,

the planner is intergenerationally Pareto and strongly non-dictatorial. To understand more

concretely the two cutoffs, we examine two popular special cases. We also use them to

illustrate why the cutoffs are tight.

The first part of the theorem can be proved in two steps. According to Lemma 1,

intergenerational Pareto is equivalent to (intergenerational) utilitarianism. First, focus on

one arbitrary individual i and his offspring. We show that there exist strictly positive

weights such that the weighted sum of their utility functions is an EDU function with any

discount factor that is strictly higher than max
τ∈{0,...,T−1}

δi(τ+1)
δi(τ)

. Thus, without loss of generality,

assume that every generation-t individual i has an EDU function with a discount factor that

is suffi ciently close to but strictly higher than max
τ∈{0,...,T−1}

δi(τ+1)
δi(τ)

. Next, let all individuals’

weights be equal to some small number ε > 0, except for the least patient individual and his

offspring. We show that we can find strictly positive weights for the least patient individual

and his offspring such that the weighted sum of all individuals’utility functions is an EDU

function with the social discount factor δ.

For the second part, suppose we are in the first period. The planner’s period-1 utility is

U1 =

T∑
t=1

N∑
i=1

ω(i, t)Ui,t,

in which ω(i, t) ≥ 0 is the weight that the planner assigns to generation-t individual i. Con-
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sider how the planner discounts period-τ consumption. Since instantaneous utility functions

are identical, the equation above implies

δτ−1 =
τ∑
t=1

N∑
i=1

ω(i, t)δi(τ − t).

By letting τ = 1,
∑N

i=1 ω(i, 1) = 1 and hence the sum of all weights is greater than 1. Now,

suppose individual 1’s asymptotic average discount factor is the lowest. When τ is large

enough (and hence T must be large enough), we know that δi(τ − s) ≥ δ1(τ − s). Hence,

δτ−1 =
τ∑
t=1

N∑
i=1

ω(i, t)δi(τ − t) ≥ δ1(τ − 1)
τ∑
t=1

N∑
i=1

ω(i, t) ≥ δ1(τ − 1).

Therefore, δ ≥ limτ→∞
τ
√
δ1(τ) when τ is large enough.

Although this theorem does tell us which individual the planner should be more patient

than, it is not very helpful in pinning down social discount factors, because the least patient

individual’s discount factors can be quite low. Thus, many social discount rates can satisfy

our requirements. However, as will be shown below, this is no longer the case once we relax

an unrealistic assumptions in the benchmark case.

4.2 Individual Quasi-Hyperbolic Discounting and Exponential Dis-

counting

We say that the generation-t individual i has a quasi-hyperbolic discounting utility (QHDU)

function if his discount function satisfies

δi(τ) =

 1, if τ = 0

βiδ
τ
i , if τ ∈ {1, . . . , T − 1}
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for some βi ∈ (0, 1] and δi > 0. It is immediate that if a generation-t individual i has a

QHDU function, then

max
τ∈{0,...,T−1}

δi(τ + 1)

δi(τ)
= lim

τ→∞
τ
√
δi(τ) = δi.

The following result is an application of Theorem 1.

Corollary 1 Suppose T < +∞, and each generation-t individual i has a QHDU function

with an instantaneous utility function u, βi ∈ (0, 1), and δi > 0. Then,

1. If δ > mini δi, the planner is intergenerationally Pareto and strongly non-dictatorial;

2. For each δ < mini δi, there exists some T ∗ > 0 such that if T ≥ T ∗, the planner is not

intergenerationally Pareto.

This corollary shows that the two cutoffs of Theorem 1 are identical. Moreover, the second

cutoff of Theorem 1 is tight, because mini limτ→∞
τ
√
δi(τ) = mini δi, and Corollary 1 shows

that for any social discount factor above mini δi, the planner must be intergenerationally

Pareto and strongly non-dictatorial.

In Section C in the Supplemental Material, we reinterpret the generation-(t+1) individual

i as a future self of the generation-t individual i, which also offers a reinterpretation of

intergenerational Pareto and allows us to discuss how our findings are related to the time

inconsistency literature. A stronger version of Corollary 1 can also be found.

Next, we present a result that is stronger than Theorem 1 under the assumption that all

individuals have EDU functions.

Proposition 2 Suppose T < +∞, and each generation-t individual i has an EDU function

with discount factor δi and instantaneous utility function u. Then, the planner is intergen-

erationally Pareto and strongly non-dictatorial if and only if δ > mini δi.
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This result is different from Theorem 1, because in Theorem 1, the second cutoff works

under the assumption that T is suffi ciently large. Proposition 2 does not require this. Similar

to Corollary 1, Proposition 2 only has one cutoff for the social discount factor.14

This proposition also shows that the first cutoff of Theorem 1 is tight. To see this, note

that min
i

max
τ∈{0,...,T−1}

δi(τ+1)
δi(τ)

= mini δi. From Proposition 2, we know that any social discout

factor below mini δi implies that the planner is not intergenerationally Pareto.

Because individuals have exponential discount functions and public consumption, Propo-

sition 2 can be directly compared to Jackson and Yariv (2014, 2015). Assuming that indi-

viduals have EDU functions, Proposition 2 shows that under intergenerational Pareto, the

planner can simultaneouly have an exponential discounting expected utility function and be

strongly non-dictatorial.

In Jackson and Yariv (2014, 2015), adding more current-generation exponential discount-

ing individuals to the aggregation cannot help eliminate the negative result. Compared to

Jackson and Yariv, we add future-generation exponential discounting individuals to the ag-

gregation and this helps. To see why, first recall that when ui = u, Jackson and Yariv

(2014) show that utilitarian aggregation of the current generation leads to a social discount

function that exhibits present bias. The fact that future generations will not care about past

consumption as much as the past generations did helps us remove the present bias.

In our model, past consumption does not enter future generations’utility functions; that

is, δi(τ) = 0 for any τ < 0.15 This implies that, for example, generation-t individual i’s rela-

tive discount factor applied to period-t consumption (relative to period-(t−1) consumption)

is equal to “δi(0)/δi(−1) = +∞.”Thus, generation-t is “infinitely patient”between period

t− 1 and period t. The infinite patience can be used in the aggregation to offset the present

bias generated by aggregating the current generation alone.

14Imagine that we write a corollary of Theorem 1 under the additional assumption that all individuals
have EDU functions, rather than the stronger proposition. The two cutoffs of this corollary will be identical
too.
15In Section D in the Supplemental Material, we show that when individuals use positive exponential

discount factors to backward discount past consumption, our results continue to hold.
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4.3 Individual Long-Run Discount Factors

In the two special cases above, the two cutoffs from Theorem 1 merge into one. This is not

a coincidence. Let us introduce the following assumption:

the relative discount function
δi(τ + 1)

δi(τ)
is increasing in τ . (6)

In the time inconsistency literature, when an individual has an increasing relative discount

function, the individual has present bias.

Now, since δi(τ+1)
δi(τ)

is increasing and bounded, we know that limτ→∞
δi(τ+1)
δi(τ)

exists, and is al-

ways above max
τ∈{0,...,T−1}

δi(τ+1)
δi(τ)

for any finite T . Moreover, it can be shown that if limτ→∞
δi(τ+1)
δi(τ)

exists, the average discount factor has a limit, and the asymptotic relative discount factor

and the asymptotic average discount factor coincide,

lim
τ→∞

δi(τ + 1)

δi(τ)
= lim

τ→∞
τ
√
δi(τ).

Therefore, assumptions (5) and (6) imply (4).

Definition 4 When limτ→∞
δi(τ+1)
δi(τ)

exists, we call δ∗i := limτ→∞
δi(τ+1)
δi(τ)

= limτ→∞
τ
√
δi(τ)

individual i’s long-run discount factor.

We immediately have the following corollary.

Corollary 2 Suppose T < +∞, and each generation-t individual i’s discounting utility

function has an instantaneous utility function u and a discount function δi such that (5) and

(6) hold. Then,

1. For each δ > mini δ
∗
i , the planner is intergenerationally Pareto and strongly non-

dictatorial;

2. For each δ < mini δ
∗
i , there exists some T

∗ > 0 such that if T ≥ T ∗, the planner is not

intergenerationally Pareto.
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From here on, to simplify the statement of our results, we focus on the case in which

each individual i’s long-run discount factor δ∗i is well defined.

5 Social Discounting and Individual Instantaneous Util-

ity Functions

Corollary 2 shows that if all individuals share the same instantaneous utility functions, the

social discount factor only has to be higher than the lowest individual long-run discount

factor. The assumption that all individuals share the same instantaneous utility function is

clearly unreasonable. In fact, as long as |X| ≥ N (the number of deterministic consump-

tion goods is higher than the number of individuals in each generation), generically, the

instantaneous utility functions should not only be different, but also linearly independent.

Definition 5 An N-tuple of continuous expected utility functions (ui)i∈N is linearly inde-

pendent if there are no constants α1, . . . , αN that are not all zero, and
∑

i∈N αiui(p) = 0 for

all p ∈ ∆(X).

It turns out that when individual instantaneous utility functions are linearly independent,

the cutoff for the social discount factor jumps from mini δ
∗
i to maxi δ

∗
i ; that is, generically,

social discounting has to be more patient than the most patient individual’s long-run dis-

counting. If the social discount factor is not higher than the highest individual long-run

discount factor, if the time horizon is long enough, there are two consumption sequences

that all individuals from all generations prefer one to the other, but the planner disagrees.

Theorem 2 Suppose T < +∞, and each generation-t individual i’s discounting utility func-

tion has an instantaneous utility function ui and a discount function δi such that (5) and

(6) hold and (ui)i∈N is linearly independent. Let the planner’s instantaneous utility function

u be an arbitrary strict convex combination of (ui)i∈N .16 Then,

16By a strict convex combination of (ui)i∈N , we mean that u is in the interior of the convex hull of
u1, . . . , uN .
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1. For each δ > maxi δ
∗
i , the planner is intergenerationally Pareto and strongly non-

dictatorial;

2. For each δ < maxi δ
∗
i , there exists some T

∗ > 0 such that if T ≥ T ∗, the planner is not

intergenerationally Pareto.

To see why we assume that the planner’s instantaneous utility function is a strict convex

combination of individual instantaneous utility functions, note that Lemma 1 implies that

the intergenerationally Pareto and strongly non-dictatorial planner’s utility function is equal

to a weighted sum of individual utility functions with positive weights. Thus, the planner’s

instantaneous utility function must also be a weighted sum of individual instantaneous utility

functions. Since instantaneous utility functions are normalized, the weights must sum up to

1.

Notice that the planner’s instantaneous utility function– in other words, her risk attitude–

is independent of the cutoff for the social discount factor. This is somewhat surprising.

Suppose there are two individuals, 1 and 2, and individual 2 is more patient. The above

theorem says that even if the social discount factor is close to individual 2’s discount factor,

it is not necessarily the case that the planner’s risk attitude is also close to individual 2’s

risk attitude. We can have a planner whose risk attitude is close to individual 1’s, but the

social discount factor is close to individual 2’s.

If there are many individuals with a wide range of long-run discount factors, this result

may imply that the planner has to be very patient in order to be intergenerationally Pareto.

If so, perhaps the near-zero social discount rate used by Stern (2007) can be justified. If one

thinks that a market rate is higher than the lowest individual discount rate, this result also

rules out the use of a market rate as the social discount rate.

The theorem also shows that the cutoff for the social discount factor in Theorem 1 is

not robust. When ui = uj for all i, j ∈ N , the cutoff is mini δ
∗
i . If we introduce a small

perturbation to ui’s, then generically the cutoff jumps discontinuously to maxi δ
∗
i .
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Theorem 2 assumes (5) and (6); that is, individual relative discount functions are in-

creasing and bounded. If we replace (6) with (4) as in Theorem 1, the only change in the

statement of Theorem 2 will be that instead of one cutoff, we will have two cutoffs similar

to Theorem 1.

To prove the first part of this theorem, again, we show that there are strictly positive

weights for each individual i and his offspring such that the weighted sum of their utility

functions is an EDU function with any new discount factor that is higher than that individ-

ual’s maximal relative discount factor. Let the new discount factor be equal to the social

discount factor δ >maxi δ
∗
i . Without loss of generality, assume that every individual i has an

EDU function with discount factor δ. The EDU functions only differ in ui’s, and hence can

be aggregated easily. The intuition behind the second part of this theorem will be discussed

following Proposition 3.

Similar to Theorem 1, the second part of Theorem 2 requires the time horizon to be long

enough. In Proposition 2, we show that when individual discount functions are exponential,

the second part of Theorem 1 will become independent of T . The same holds when (ui)i∈N

is linearly independent, as shown in the proposition below.

Proposition 3 Suppose T < +∞, and each generation-t individual i has an EDU function

with discount factor δi and instantaneous utility function ui such that (ui)i∈N is linearly

independent. Then, the planner is intergenerationally Pareto and strongly non-dictatorial if

and only if δ > maxi δi.

The if part follows from the first part of Theorem 2. We explain the proof of the only-

if part of Proposition 3 below, which will also explain the idea behind the second part

of Theorem 2. Note that when (ui)i∈N is linearly independent and u is in the interior of

co({ui}i∈N), there is a unique way to write u as a strict convex combination of (ui)i∈N .17

Suppose
∑

i∈N λiui = u, in which λi > 0 (because the planner is strongly non-dictatorial)

17We use co(·) to denote the convex hull.
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and
∑

i∈N λi = 1. Focus on the first period. The planner’s utility function is

U1(p) =
T∑
t=1

N∑
i=1

ω(i, t)Ui,t(p) =

T∑
t=1

N∑
i=1

ω(i, t)

T∑
τ=t

δτ−ti ui(pτ ),

in which ω(i, t) > 0 is the weight that the planner assigns to the generation-t individual i.

Clearly, the planner’s instantaneous utility function for period-1 consumption is

u(p1) =
N∑
i=1

ω(i, 1)ui(p1) (7)

for any p1. Since u can be written as a unique strict convex combination of (ui)i∈N , it must

be the case that

ω(i, 1) = λi (8)

for any i ∈ N . Similarly, the planner’s instantaneous utility function for period-2 consump-

tion satisfies

δu(p2) =
N∑
i=1

ω(i, 1)δiui(p2) +
N∑
i=1

ω(i, 2)ui(p2) (9)

for any p2. Then, equations (7), (8), and (9), together with the strongly non-dictatorial

property, imply that

λiδ = λiδi + ω(i, 2)⇒ δ > δi

for any i ∈ N , which means δ > maxi δi. We omit the proof of Proposition 3.

5.1 Gradual Transition of the Cutoff

Let us further illustrate how the cutoff changes “discountinuously” from the least patient

individual’s long-run discount factor to the most patient individual’s. An individual’s in-

stantaneous utility function describes his risk attitude. Let Θ be some positive integer.

Suppose there is a linearly independent Θ-tuple of instantaneous utility functions (uθ)Θ
θ=1

that represent Θ generic types of risk attitude. Assume that individual i’s instantaneous
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utility function ui ∈ {uθ}Θ
θ=1, and for each type u

θ, at least one individual’s instantaneous

utility function is equal to uθ. If Θ = 1, we are in the case of Theorem 1. When Θ = N , we

are in the case of Theorem 2. Define δ∗θ := min
k∈{i∈N :ui=uθ}

δ∗k; that is, for each θ, let δ
∗
θ be the

least patient individual’s long-run discount factor whose type is uθ. Define

δ∗maxmin := max
θ
δ∗θ.

Theorem 3 Suppose T < +∞, and for some linearly independent Θ-tuple of instantaneous

utility functions (uθ)Θ
θ=1 such that {ui}i∈N = {uθ}Θ

θ=1, each generation-t individual i’s dis-

counting utility function has an instantaneous utility function ui ∈ {uθ}Θ
θ=1 and a discount

function δi such that (5) and (6) hold. Let the planner’s instantaneous utility function u be

an arbitrary strict convex combination of (ui)i∈N . Then,

1. For each δ >δ∗maxmin, the planner is intergenerationally Pareto and strongly non-dictatorial;

2. For each δ <δ∗maxmin, there exists some T
∗ > 0 and some such that if T ≥ T ∗, the

planner is not intergenerationally Pareto.

Intuitively, for each type of risk attitude uθ, we can apply Theorem 1 to show that the

cutoff for the social discount factor implied by aggregating type-uθ individuals is δ∗θ. When

aggregating across types, we apply Theorem 2 to show that the maximal δ∗θ is the cutoff for

the social discount factor.

6 Social Discounting and the Time Horizon

In many economic models (and perhaps in reality), the time horizon is infinite. In this

section, we show that the finding in our main Theorem 2 with linearly independent (ui)i∈N

continues to hold when T = +∞. In Section A.9 in the Appendix, we present a related

result that does not assume that (ui)i∈N is linearly independent, and shows that even when
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ui’s are identical, the cutoff for the social discount factor will jump from mini δ
∗
i to maxi δ

∗
i

when T = +∞.

One of the main challenges in extending our main result to the infinite-horizon case is to

establish the equivalence between intergenerational Pareto and (intergenerational) utilitari-

anism. The lemma below establishes the equivalence under the setting of our main theorem

(Theorem 2).

Lemma 2 Suppose T = +∞, and each generation-t individual i’s discounting utility func-

tion has an instantaneous utility function ui such that (ui)i∈N is linearly independent. The

planner’s preference (%t)t∈T is intergenerationally Pareto if and only if in each period t ∈ T ,

there exists a sequence of nonnegative numbers (ωt(i, s))i∈N,s≥t such that 0 <
∑N

i=1

∑T
s=t ωt(i, s) <

∞, and

Ut =
N∑
i=1

T∑
s=t

ωt(i, s)Ui,s.

Note that the lemma above assumes that (ui)i∈N is linearly independent.18 This assump-

tion holds generically, is consistent with the assumption in our main theorem (Theorem 2),

and holds if we assume that (ui)i∈N satisfies the “independent prospects condition,”which

is a condition that is often imposed in the literature.19

If the set of individuals is compact, we can apply a result in Zhou (1997) to establish the

equivalence between intergenerational Pareto and (intergenerational) utilitarianism without

assuming linearly independent (ui)i∈N . When T = +∞, we have countably infinitely many

generations, and hence the set of individuals is not compact.

Theorem 4 Suppose T = +∞, and each generation-t individual i’s discounting utility func-

tion has an instantaneous utility function ui and a discount function δi such that (5) and

18If discount functions and instantaneous utility functions can depend on time as in Lemma 1, we may need
equicontinuity assumptions on the set of individual discount functions and instantaneous utility funcitons.
19See Fishburn (1984), Weymark (1994), and Börgers and Choo (2017). In Fishburn’s (1984) proof, there

are two cases to be analyzed. One is under the independent prospects condition, but Fishburn has not given
the condition a name.
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(6) hold and (ui)i∈N is linearly independent. Let the planner’s instantaneous utility function

u be an arbitrary strict convex combination of (ui)i∈N . Then,

1. For each maxi δ
∗
i < δ < 1, the planner is intergenerationally Pareto and strongly non-

dictatorial;

2. For each δ < maxi δ
∗
i , the planner is not intergenerationally Pareto.

An additional step in the first part of the result is to show that the weights that the

planner uses to aggregate individual utility functions are absolutely summable. The second

step is similar to Theorem 2.

7 Conclusion

The value of a policy or a public project that affects generations of individuals often cru-

cially depends on which social discount rate is used for the evaluation. However, there is

no consensus on which social discount rate is the right one to use. This paper considers a

few important and widely used assumptions in economics, and characterizes the set of social

discount rates that are compatible with those assumptions. The key assumptions are (i) in-

dividuals discount future consumption in a general and heterogeneous way, (ii) the planner

has an exponential discounting expected utility function, (iii) the planner takes into account

every individual’s preference from every generation strictly, and (iv) the planner is intergen-

erationally Pareto, which means that if all individuals from all generations agree that one

consumption sequence is better than another, then the planner must agree.

We show that for a generic set of individual instantaneous utility functions, the social

discount factor should be higher than the highest individual long-run discount factor, as

long as the time horizon is long enough. Therefore, using a near-zero social discount rate is

justifiable.
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A Appendix

A.1 Proof of Proposition 1

Proof. If Part If for all t ∈ T , there exists a unique i ∈ N such that Ut = Ui,t, then the

planner takes no one but individual i into account in period t. The corresponding weights

in period t are ωi = 1, and ωj = 0 for all j 6= i. According to Lemma 1, the planner’s

preference (%t)t∈T is current-generation Pareto.

Only-If Part Suppose the planner’s preference (%t)t∈T is current-generation Pareto.

Then, according to Lemma 1, there exists an N -tuple of nonnegative weights (ωi)i∈N , such

that
N∑
i=1

ωi

T∑
τ=1

δτ−1
i ui(pτ ) =

T∑
τ=1

δτ−1u(pτ );

that is, for τ = 1, . . . , T − 1,

N∑
i=1

ωiδ
τ−1
i ui(pτ ) = δτ−1u(pτ ).

Let τ = 1, 2, and 3. We have


∑N

i=1 ωiui(p) = u(p),∑N
i=1 ωiδiui(p) = δu(p),∑N
i=1 ωiδ

2
iui(p) = δ2u(p),

for any p ∈ ∆(X). Let p = x∗. The first equation shows that
∑

i∈N ωi = 1. Combining the

second and the third equations above,

(
N∑
i=1

ωiδi

)2

=
N∑
i=1

ωiδ
2. (10)

Since
∑

i∈N ωi = 1, by Jensen’s inequality, equation (10) holds if and only if δi’s are identical

or there exists one i ∈ N such that ωi = 1. With a generic N -tuple of discount factors
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(δi)i∈N , δi 6= δj for any i 6= j. Therefore, there exists a unique i ∈ N such that ωi = 1, and

ωj = 0 for any j 6= i, which means that Ut = Ui,t.

A.2 Proof of Proposition 2

Proof. The following lemma will be useful in proving Proposition 2.

Lemma 3 Given a positive N-tuple (δi)i∈N , if δ > mini δi, there exists a finite sequence of

strictly positive numbers (ωt(i, s))t∈T,i∈N,s≥t such that the following equation holds

N∑
i=1

τ∑
s=t

ωt(i, s)δ
τ−s
i = δτ−t (11)

for any t ∈ T and τ ≥ t.

Proof. Without loss of generality, we assume that δ1 = mini δi. First, we fix all the weights

other than individual 1’s. Let ωt(i, s) = εt(s) > 0 for any i ≥ 2, t ≥ 1, and s ≥ t. The

remaining part is to find (ωt(1, s))t∈T,s≥t such that

1. equation (11) holds;

2. ωt(1, s) > 0, for any t ≥ 1 and s ≥ t.

Construct (ωt(1, s))t∈T,s≥t by the following recursive formula:

ωt(1, s) =


1−

N∑
i=2

ωt(i, s), if s = t,

δs−t −
N∑
i=1

ωt(i, t)δ
s−t
i − · · · −

N∑
i=1

ωt(i, s− 1)δi −
N∑
i=2

ωt(i, s), if s > t.

(12)

It can be verified that (12) ensures that equation (11) holds for any t ∈ T and τ ≥ t. The

remaining part is to show that (ω1,t(s))t∈T,s≥t derived from (12) are strictly greater than

zero, if (εt(s))t∈T,s≥t are small enough. We prove it in two steps.
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Step 1 Setting εt(s) = 0, the recursive formula (12) becomes

ωt(1, s) =

 1, if s = t,

δs−t−1(δ − δ1), if s > t,

for each t ∈ T . This can be proved by induction. Since δ > δ1, we have ωt(1, s) > 0.

Step 2 Plugging εt(s) into formula (12), we have,

ωt(1, t) = 1− (N − 1)εt(t),

ωt(1, t+ 1) = δ − δ1 −
[
N∑
i=2

(δi − δ1)

]
εt(t)− (N − 1)εt(t+ 1),

ωt(1, t+ 2) = δ(δ − δ1)−
[
N∑
i=2

δi(δi − δ1)

]
εt(t)−

[
N∑
i=2

(δi − δ1)

]
εt(t+ 1)− (N − 1)εt(t+ 2),

...

Then, we know that ωt(1, s) = F
(s)
t (εt(t), . . . , εt(s)|δ, δ1, . . . , δn), in which F (s)

t is an affi ne

(and hence continuous) function of εt(t), . . . , εt(s). By continuity of F
(s)
t , the weights ωt(1, s)’s

are strictly greater than zero, if εt(s)’s are small enough.

Now we are able to prove Proposition 2.

If Part Since the planner’s instantaneous utility function u is identical to individual

instantaneous utility function u, the if part follows from lemma 3 immediately.

Only-If Part Suppose the planner’s preference is intergenerationally Pareto and strongly

non-dictatorial. For each t ∈ T , there exists a finite sequence of strictly positive numbers

(ωt(i, s))i∈N,s≥t such that

Ut(p) =

T∑
s=t

N∑
i=1

ωt(i, s)Ui,s(p) =

T∑
s=t

N∑
i=1

ωt(i, s)

T∑
τ=s

δτ−si u(pτ )

=
T∑
τ=t

τ∑
s=t

N∑
i=1

ωt(i, s)δ
τ−s
i u(pτ ).
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Then, for ∀t, ∀τ ≥ t, the following equality holds,

τ∑
s=t

N∑
i=1

ωt(i, s)δ
τ−s
i u(pτ ) = δτ−tu(pτ ). (13)

Let τ = t, t+ 1 in (13). We have


∑N

i=1 ωt(i, t)u(pt) = u(pt),∑N
i=1 ωt(i, t)δiu(pt+1) +

∑N
i=1 ωt(i, t+ 1)u(pt+1) = δu(pt+1).

Combining the above two equations,

N∑
i=1

ωt(i, t)δ =
N∑
i=1

ωt(i, t)δi +
N∑
i=1

ωt(i, t+ 1).

Rearranging the above equation, we have

δ =

N∑
i=1

ωt(i, t)δi +
N∑
i=1

ωt(i, t+ 1)

N∑
i=1

ωt(i, t)

>

N∑
i=1

ωt(i, t)δi

N∑
i=1

ωt(i, t)

>

N∑
i=1

ωt(i, t) mini δi

N∑
i=1

ωt(i, t)

= min
i∈N

δi

(13)
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A.3 Proof of Theorem 1

Proof. Part IWe prove part I in two steps. First, we prove a lemma for the one-individual

case. Then, we apply Proposition 2 to complete the proof.

Lemma 4 Assume that N = {i}. Suppose T < +∞, and each generation-t individual

i’s discounting utility function has an instantaneous utility function u and a discount func-

tion δi(τ) such that (4) and (5) hold. For any δ > δ̂i := max
τ∈{0,...,T−1}

δi(τ+1)
δi(τ)

, the planner is

intergenerationally Pareto and strongly non-dictatorial.

Proof. We want to show that for any δ > δ̂i and each t ∈ T , there exists a finite sequence

of strictly positive numbers (ωt(i, s))t∈T,s≥t such that

Ut(p) =
T∑
τ=t

δτ−tu(pτ ) =
T∑
s=t

ωt(i, s)Ui,s(p).

Given any δ > δ̂i, for each t ∈ T , we can construct (ωt(i, s))s≥t according to the following

formula:

ωt(i, s) =


1, if s = t,

δs−t−1
(
δ − δ̂i

)
+

s−1∑
τ=t

[
δ̂iδi(s− 1− τ)− δi(s− τ)

]
ωt(i, τ), if s > t.

(14)

Note that by assuming δ > δ̂i, for s > t, the first term of ωt(i, s) is strictly greater than

0. According to the definition of δ̂i, the second term of ωt(i, s) is greater than 0. Hence,

ωt(i, s) > 0 for any s ≥ t. Then,

Ut(p) =

T∑
s=t

ωt(i, s)Ui,s(p) =

T∑
s=t

ωt(i, s)

[
T∑
τ=s

δi(τ − s)u(pτ )

]
=

T∑
τ=t

[
τ∑
s=t

δi(τ − s)ωt(i, s)
]
u(pτ ).

We want to prove that Ut(p) =
∑T

τ=t δ
τ−tu(pτ ) by induction. Consider

∑τ
s=t δi(τ −

s)ωt(i, s). When τ = t,
∑τ

s=t δi(τ − s)ωt(i, s) = ωt(i, t) = 1 = δ0. Suppose for some τ ≥ t,
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we have proven that
∑τ

s=t δi(τ − s)ωt(i, s) = δτ−t. We want to prove that for τ + 1,

τ+1∑
s=t

δi(τ + 1− s)ωt(i, s) = δτ−t+1. (15)

To prove (15), we only need to notice that according to (14),

τ+1∑
s=t

δi(τ + 1− s)ωt(i, s) = ωt(i, τ + 1) +
τ∑
s=t

δi(τ + 1− s)ωt(i, s)

= ωt(i, τ + 1) + δ̂i

[
δτ−t +

τ∑
s=t

δi(τ + 1− s)
δ̂i

ωt(i, s)− δτ−t
]

= ωt(i, τ + 1) + δ̂i

[
δτ−t +

τ∑
s=t

δi(τ + 1− s)
δ̂i

ωt(i, s)−
τ∑
s=t

δi(τ − s)ωt(i, s)
]

= ωt(i, τ + 1) + δ̂iδ
τ−t +

τ∑
s=t

[
δi(τ + 1− s)− δ̂iδi(τ − s)

]
ωt(i, s) = δτ−t+1.

By induction, we know that
∑τ

s=t δi(τ − s)ωt(i, s) = δτ−t for any τ ≥ t. Now, we know

that Ut(p) =
∑T

τ=t δ
τ−tui(pτ ).

Lemma 4 states that in each period t, the planner can aggregate individual i’s utility

functions from the tth generation to the T th generation to derive an EDU function with any

discount factor greater than δ̂i. Then, by Proposition 2, in each period t, the planner can

aggregateN exponential discounting individuals from the tth generation to the T th generation

one more time, and obtain an EDU function with any social discount factor greater than

mini δ̂i.

Part II Define δ̃i := limτ→∞
τ
√
δi(τ). Without loss of generality, we assume that δ̃1 is the

unique minimum of δ̃1, . . . , δ̃N . The proof can easily be extended to the case with multiple

minima. We prove it by contradiction. Suppose the planner is intergenerationally Pareto.

For each t ∈ T , there exists a finite sequence of nonnegative numbers (ωt(i, s))i∈N,s≥t such
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that the following equality holds:

τ∑
s=t

N∑
i=1

ωt(i, s)δi(τ − s)u(pτ ) = δτ−tu(pτ ) (16)

for any t ∈ T and τ ≥ t.

By letting τ = t, equation (16) shows that
∑

i∈N ωt(i, t) = 1 for any t ∈ T . Then,

δτ−t =

τ∑
s=t

N∑
i=1

ωt(i, s)δi(τ − s)

N∑
i=1

ωt(i, t)

≥

N∑
i=1

ωt(i, t)δi(τ − t)

N∑
i=1

ωt(i, t)

. (17)

Since δ̃1 = mini δ̃i, there exists T1 > 0 such that for ∀τ > T1, δ1(τ − t) = mini δi(τ − t).

Hence, (17) becomes

δτ−t ≥

N∑
i=1

ωi,t(t)δ1(τ − t)

N∑
i=1

ωi,t(t)

= δ1(τ − t). (18)

According to our assumptions, δ < δ̃1. Then, there exists T2 > 0 such that for ∀τ > T2,

δτ−t < δ1(τ − t). (19)

Let T ∗ = max{T1, T2}. Then, (18) and (19) contradict each other.

A.4 Proof of Theorem 2

Proof. Part I We prove this theorem in two steps. First, again we consider the special

case in which there is only one individual i to be aggregated across generations. Since the

individual relative discount factor is increasing, δ∗i ≥ δ̂i := max
τ∈{0,...,T−1}

δi(τ+1)
δi(τ)

. By Lemma 4,

because the social discount factor δ > maxi δ
∗
i ≥ δ∗i , for any i ∈ N and t ∈ T , we can find
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some positive (ωt(i, s))s≥t such that

T∑
s=t

ωt(i, s)Ui,s(p) =
T∑
τ=t

δτ−tui(pτ );

that is, we can aggregate each individual’s utility functions across generations into an EDU

function with discount factor δ.

Consider any N -tuple of strictly positive numbers (λi)i∈N such that
∑

i∈N λi = 1. To-

gether with the weights (ωt(i, s))i∈N,s≥t we have found above, let the planner’s utility function

satisfy

Ut(p) =
N∑
i=1

T∑
s=t

λiωt(i, s)Ui,s(p) =
N∑
i=1

T∑
τ=t

δτ−tλiui(pτ )

=
T∑
τ=t

δτ−t
N∑
i=1

λiui(pτ ) =
T∑
τ=t

δτ−tu(pτ ),

in which u =
∑

i∈N λiui is an arbitrary strict convex combination of (ui)i∈N .

Part IIWe prove it by contradiction. Suppose there exists an intergenerationally Pareto

planner with the social discount factor δ < maxi δ
∗
i . By intergenerational Pareto, for each

t ∈ T , there exists nonnegative numbers (ωt(i, s))i∈N,s≥t such that the following equality

holds for each t ∈ T :

T∑
τ=t

δτ−tu(pτ ) =

T∑
τ=t

N∑
i=1

τ∑
s=t

ωt(i, s)δi(τ − s)ui(pτ ).

Since pτ’s are arbitrary, the equation above implies that
∑N

i=1 ω0(i, 0)ui(p0) = u(p0),∑τ
s=0

∑N
i=1 ω0(i, s)δi(τ − s)ui(pτ ) = δτu(pτ ).

(20)

Recall that u is a strict convex combination of (ui)i∈N and (ui)i∈N is linearly independent.

There is a unique way to write u as a convex combination of (ui)i∈N . Thus, the first equation
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of (20) implies that ω0(i, 0) > 0 for each i. Combining the two equations of (20), we have

N∑
i=1

ω0(i, 0)δτui =

N∑
i=1

τ∑
s=0

ω0(i, s)δi(τ − s)ui.

Since (ui)i∈N is linearly independent, the above equation is equivalent to

ω0(i, 0)δτui =

τ∑
s=0

ω0(i, s)δi(τ − s)ui.

for ∀i ∈ N .

Rearrange the above equation. We have

δτ =

∑τ
s=0 ω0(i, s)δi(τ − s)

ω0(i, 0)
=
ω0(i, 0)δi(τ) +

∑τ
s=1 ω0(i, s)δi(τ − s)

ω0(i, 0)
≥ ω0(i, 0)δi(τ)

ω0(i, 0)
= δi(τ)

for ∀i ∈ N . Hence, for any i ∈ N and τ ≤ T − 1,

δ ≥ τ
√
δi(τ). (21)

Without loss of generality, we assume δ∗N is a maximum of {δ∗i }i∈N . Since δ < δ∗N =

limτ→∞
τ
√
δN(τ), there exists T ∗ such that for any τ ≥ T ∗, δ < τ

√
δN(τ), which contradicts

(21).

A.5 Proof of Theorem 3

Proof. Part IWe prove part I in two steps. First, we aggregate individuals who share the

same uθ. For each θ ∈ Θ, Iθ := {i ∈ N : ui = uθ} is called a “family,”which is the set of i’s

whose instantaneous utility functions are uθ. By Corollary 2, we know that for each θ and

42



each δ > mini∈Iθ δ
∗
i , there exists a sequence of weights (ωt(i, s))t∈T,i∈Iθ,s≥t such that

U θ
t (p) =

T∑
τ=t

δτ−tuθ(pτ ) =

T∑
s=t

∑
i∈Iθ

ωt(i, s)Ui,s(p).

for each t ∈ T . Now, we have |Θ| exponential discounting expected utility functions U θ
t ’s

with linearly independent instantaneous utility functions uθ’s.

Next, we apply Proposition 3 to aggregate U θ
t ’s. It follows immediately that if δ >

maxθ∈Θ mini∈Iθ δ
∗
i , the planner is intergenerationally Pareto and strongly non-dictatorial.

Part II We prove its contrapositive. Suppose there exists an intergenerationally Pareto

planner with the social discount factor δ < δ∗maxmin. By intergenerational Pareto, for each t ∈

T , there exists a finite sequence of positive numbers (ωt(i, s))i∈N,s≥t such that the following

equality holds:

δτ−tu(pτ ) =
∑
θ∈Θ

∑
i∈Iθ

τ∑
s=t

ωt(i, s)δi(τ − s)uθ(pτ ). (22)

for each t ∈ T and τ ≥ t.

By letting τ = t in equation (22), we have

u(pt) =
∑
θ∈Θ

∑
i∈Iθ

ωt(i, t)u
θ(pt). (23)

Recall that u is a strict convex combination of (ui)i∈N . Equation (23) shows that
∑

θ∈Iθ ωt(i, t) >

0 for each θ. Combining equations (22) and (23), we have

∑
θ∈Θ

∑
i∈Iθ

δτ−tωt(i, t)u
θ(pτ ) =

∑
θ∈Θ

∑
i∈Iθ

τ∑
s=t

ωt(i, s)δi(τ − s)uθ(pτ ).

Since (uθ)Θ
i=1 is linearly independent, the above equation is equivalent to

∑
i∈Iθ

δτ−tωt(i, t) =
∑
i∈Iθ

τ∑
s=t

ωt(i, s)δi(τ − s)
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for ∀θ ∈ Θ. Rearranging the above equation, we obtain

δτ−t =

∑
i∈Iθ
∑τ

s=t ωt(i, s)δi(τ − s)∑
i∈Iθ ωt(i, t)

>

∑
i∈Iθ ωt(i, t)δi(τ − t)∑

i∈Iθ ωt(i, t)
. (24)

Letting τ go to infinity, it is easy to see that (24) becomes δ ≥ mini∈Iθ δ
∗
i for ∀θ ∈ Θ.

Hence, δ ≥ maxθ∈Θ mini∈Iθ δ
∗
i = δ∗maxmin.

A.6 Preliminaries of Lemma 2

The proof of Lemma 2 uses a generalization of Farkas’lemma for dual pairs due to Craven and

Koliha (1977). To state the generalized Farkas’lemma, we first introduce some definitions.

A dual pair is 3-tuple (A,A′, φ) consisting of two vector spaces A and A′ and a function

φ : A × A′ → R such that (i) φ is bilinear, (ii) if φ(a, a′) = 0 for any a ∈ A, then a′ = 0,

and (iii) if φ(a, a′) = 0 for any a′ ∈ A, then a = 0. Properties (ii) and (iii) are called the

separation properties. The weak topology of A is characterized by the following: A sequence

(an)∞n=1 of A converges to a ∈ A if and only if φ(an, a
′) converges to φ(a, a′) for any a′ ∈ A′.

The weak topology of A′ is similarly defined. A nonempty subset S ⊂ A is a convex cone if

αa + βb ∈ S for any α, β ≥ 0 and a, b ∈ S. We use S ′ to denote the anticone of the convex

cone, in which S ′ := {a′ ∈ A′ : φ(a, a′) ≥ 0 for any a ∈ S}.

Suppose (A,A′, φ) and (B,B′, ϕ) are dual pairs and ψ : A → B is a continuous linear

map. Then, ψ′ : B′ → A′ is the topological adjoint of ψ if

φ(a, ψ′(b′)) = ϕ(ψ(a), b′)

for any a ∈ A and b′ ∈ B′. Below we state Craven and Koliha’s Theorem 2.

Theorem 5 (Craven and Koliha (1977)) Let (A,A′, φ) and (B,B′, ϕ) be dual pairs, let S

be a convex cone in A, and let ψ : A → B be a continuous linear map. If ψ(S) is closed in

the weak topology and b ∈ B, the following statements are equivalent:
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1. The equation ψ(a) = b has a solution a ∈ S;

2. ψ′(b′) ∈ S ′ ⇒ ϕ(b, b′) ≥ 0.

A.7 Proof of Lemma 2

Proof. The if part is straightforward to verify.

Only-If Part Suppose the generation-t individual i’s utility function is Ui,t(p) =
∑∞

τ=t δi(τ−

t)ui(pτ ), the planner’s utility function is Ut(p) =
∑∞

τ=t δt(τ − t)ut(pτ , τ), and intergener-

ational Pareto holds. To apply Theorem 5, let A = `1, A′ = `∞, B = Cb(X
∞), and

B′ = ca(X∞), in which `1 is the set of absolutely summable sequences, `∞ is the set of

bounded sequences, Cb(X∞) is the set of continuous and bounded functions on X∞, and

ca(X∞) is the set of countably additive signed measures on X∞. Note that since X is com-

pact, X∞ is also compact in the product topology. The norm of A′ and B is the sup norm,

and the norm of B′ is the total variation. By defining

φ(a, a′) =
∞∑
n=1

ana
′
n

and

ϕ(b, b′) =

∫
X∞

b db′

for any a ∈ A, a′ ∈ A′, b ∈ B, and b′ ∈ B′, (A,A′, φ) and (B,B′, ϕ) are dual pairs (page 211

of Aliprantis and Border (2006)).

For any sequence ~ωt = (ωt(1, t), . . . , ωt(N, t), ωt(1, t+1), . . . , ωt(N, t+1), . . . ) ∈ `1, define

a function ψ : A→ B such that

ψ(~ωt)(x) =
∞∑
s=t

N∑
i=1

ωt(i, s)Ui,s(x) (25)

for any x = (x1, x2, . . . ) ∈ X∞. In the main text, Ui,s is defined on ∆(X)∞ when T = ∞.

Here, we restrict attention to degenerate lotteries of∆(X)∞. We claim that (Ui,s(x))i∈N,s≥t ∈
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`∞ and hence ψ(~ωt)(x) is well defined. We prove this claim when we prove that ψ is a

continuous function later.

We want to verify that ψ is continuous and maps from A to B. Then, let S = {a ∈ A :

a ≥ 0}. We want to verify that ψ(S) is closed in weak topology. After verifying them, we

apply Theorem 5.

Step 1 First, we show that ψ(~ωt) is a continuous function on X∞. The product topology

of X∞ is metrizable. For any x,y ∈ X∞,

π(x,y) := sup
τ

{
min{‖xτ − yτ‖ , 1}

τ

}

induces the product topology on X∞, in which X ⊂ Rm and ‖·‖ is the Euclidean metric of

Rm (page 125 of Munkres (2000)). Intuitively, when x and y are close, xτ and yτ are close

when τ is small, but xτ and yτ can be far apart when τ is large. We need to show that when

γ is small enough, if π(x,y) < γ, then |ψ(~ωt)(x)− ψ(~ωt)(y)| is small enough. Without loss

of generality, let γ < 1. Then, π(x,y) < γ implies that ‖xτ − yτ‖ < τγ for τ ≤ 1/γ. For

τ > 1/γ, xτ and yτ can be far apart.

Pick some ε(1), ε(2), ε(3) > 0 that can be arbitrarily small. Since ~ωt ∈ `1, (δi(τ))∞τ=0 ∈

`1, and N is finite, there exists some ς(1), ς(2) such that
∑∞

s=ς(1)

∑N
i=1 ωt(i, s) < ε(1) and∑∞

τ=ς(2) δi(τ − s) < ε(2) for each i ∈ N . Now, let γ be chosen so that

‖xς − yς‖ < max{ς(1), ς(2)} · γ < ε(3). (26)

Note that ς(1) depends on ε(1), but not on ε(2) and ε(3). Similarly, ς(2) depends on ε(2), but
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not on ε(1) and ε(3). Then,

|ψ(~ωt)(x)− ψ(~ωt)(y)| =

∣∣∣∣∣
∞∑
s=t

N∑
i=1

ωt(i, s)Ui,s(x)−
∞∑
s=t

N∑
i=1

ωt(i, s)Ui,s(y)

∣∣∣∣∣
≤

∞∑
s=t

N∑
i=1

ωt(i, s) · |Ui,s(x)− Ui,s(y)|

≤
∞∑
s=t

N∑
i=1

ωt(i, s)

[ ∞∑
τ=s

δi(τ − s) · |ui(xτ )− ui(yτ )|
]

≤
ς(1)∑
s=t

N∑
i=1

ωt(i, s)

[ ∞∑
τ=s

δi(τ − s) · |ui(xτ )− ui(yτ )|
]

+

∞∑
s=ς(1)

N∑
i=1

ωt(i, s)

[ ∞∑
τ=s

δi(τ − s) · |ui(xτ )− ui(yτ )|
]
.

Since ui is continuous on a compact set, ui is uniformly continuous and ui is bounded by

1
2
υ > 0 for any i ∈ N for some υ > 0. Thus,

∞∑
s=ς(1)

N∑
i=1

ωt(i, s)

[ ∞∑
τ=s

δi(τ − s) · |ui(xτ )− ui(yτ )|
]
< υε(1) ·

( ∞∑
τ=0

δi(τ)

)
.

Then,

ς(1)∑
s=t

N∑
i=1

ωt(i, s)

[ ∞∑
τ=s

δi(τ − s) · |ui(xτ )− ui(yτ )|
]

=
ς(1)∑
s=t

N∑
i=1

ωt(i, s)

 ∑ς(2)

τ=s δi(τ − s) · |ui(xτ )− ui(yτ )|

+
∑∞

τ=ς(2) δi(τ − s) · |ui(xτ )− ui(yτ )|

 .
We know that

∞∑
τ=ς(2)

δi(τ − s) · |ui(xτ )− ui(yτ )| < ε(2)υ

and hence

ς(1)∑
s=t

N∑
i=1

ωt(i, s)

[ ∞∑
τ=ς

δi(τ − s) · |ui(xτ )− ui(yτ )|
]
< ε(2)υ

ς(1)∑
s=t

N∑
i=1

ωt(i, s).
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Since ui is uniformly continuous on X, if ‖xτ − yτ‖ < ε(3), |ui(xτ )− ui(yτ )| < ε(3), in which

ε(3) can be arbitrarily small as ε(3) gets arbitrarily small. Then,

ς(1)∑
s=t

N∑
i=1

ωt(i, s)

 ς(2)∑
τ=s

δi(τ − s) · |ui(xτ )− ui(yτ )|


≤ ε(3) ·

ς(1)∑
s=t

N∑
i=1

ωt(i, s) ·
ς(2)∑
τ=s

δi(τ − s).

Thus,

|ψ(~ωt)(x)− ψ(~ωt)(y)| < υε(1) ·
( ∞∑
τ=0

δi(τ)

)
+ ε(2)υ

ς(1)∑
s=t

N∑
i=1

ωt(i, s) (27)

+ε(3) ·
ς(1)∑
s=t

N∑
i=1

ωt(i, s) ·
ς(2)∑
τ=s

δi(τ − s).

We first pick a small ε(1), which guarantee the first term of the right-hand side of (27) is

arbitrarily small. By picking ε(1), ς(1) is determined. Then, we choose a small ε(2) to make

the second term of the right-hand side of (27) to be small. This step does not affect the first

term of the right-hand side of (27). By choosing a small ε(3), we make sure that the last

term of the right-hand side of (27) is also arbitrarily small. This step does not affect the

first two terms of the right-hand side of (27), and γ is pinned down by ε(1), ε(2), and ε(3) via

equation (26). Thus, we know that ψ(~ωt) : X∞ → R is a continuous function.

Step 2 Next, we show that ψ : A→ B is continuous. Let ψ# : B# → A# be the algebraic

dual of ψ such that φ(a, ψ#(b#)) = ϕ(ψ(a), b#) for any a ∈ A and b# ∈ B#, in which A#

and B# are the algebraic duals of A and B respectively, and φ and ϕ are similarly defined

for A,A# and B,B# respectively. It is known that ψ′ is identical to the restriction of ψ# to

B′, and that to show that ψ : A → B is continuous, it suffi ces to show that ψ#(B′) ⊂ A′,
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that is, ψ#(ca(X∞)) ⊂ `∞. For any µ ∈ B′ and ~ωt ∈ A,

φ(~ωt, ψ
#(µ)) = ϕ(ψ(~ωt), µ)

=

∫
X∞

ψ(~ωt) dµ

=

∫
X∞

( ∞∑
s=t

N∑
i=1

ωt(i, s)Ui,s(x)

)
dµ

=

∞∑
s=t

N∑
i=1

ωt(i, s)

[∫
X∞

Ui,s(x) dµ

]

The last equality is by the Fubini—Tonelli theorem. By applying the Fubini—Tonelli

theorem again,

∫
X∞

Ui,s(x) dµ =

∫
X∞

∞∑
τ=s

δi(τ − s)ui(xτ ) dµ (28)

=
∞∑
τ=s

[
δi(τ − s)

∫
X∞

ui(xτ ) dµ

]
.

To understand
∫
X∞ ui(xτ ) dµ, think of ui(xτ ) as a function defined on X

∞ that only depends

on the τ th component of x, xτ . Then,
∫
X∞ ui(xτ ) dµ =

∫
X
ui(xτ ) dpτ in which pτ is µ’s

marginal distribution on xτ . Since ui is continuous on a compact set,
∫
X∞ ui(xτ ) dµ is

bounded above by maxx∈X ui(x) and below by minx∈X ui(x). Therefore,
∫
X∞ Ui,s(x) dµ is

bounded above by
∞∑
τ=s

δi(τ − s) max
x∈X

ui(x) = max
x∈X

ui(x)
∞∑
τ=0

δi(τ)

and below by
∞∑
τ=s

δi(τ − s) min
x∈X

ui(x) = min
x∈X

ui(x)
∞∑
τ=0

δi(τ),

because (δi(τ))∞τ=0 ∈ `1. Both bounds only depend on i. Therefore,

φ(~ωt, ψ
#(µ)) = φ(~ωt, a

′),
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in which

a′ =


∫
X∞ U1,t(x) dµ,

∫
X∞ U2,t(x) dµ, . . . ,

∫
X∞ UN,t(x) dµ,∫

X∞ U1,t+1(x) dµ,
∫
X∞ U2,t+1(x) dµ, . . . ,

∫
X∞ UN,t+1(x) dµ,

. . .

 ∈ `∞.

Hence, ψ is continuous. Note that the two bounds above also show that (Ui,s(x))i∈N,s≥t ∈ `∞

for each x ∈ X∞, which proves our claim that ψ(~ωt)(x) is well defined.

Step 3 We show that ψ(S) is closed in weak topology (induced by ca(X∞)). Since S

is convex and ψ is linear, ψ(S) ⊂ Cb(X) is convex. When X∞ is compact, the topological

dual of Cb(X∞) is ca(X∞). It is known that a convex set of a normed space (Cb(X∞) with

the sup norm) is closed in the norm topology if and only if it is closed in the weak topology

induced by the topological dual. Therefore, we only need to show that ψ(S) is closed in

the norm topology. Take a sequence (f (n))∞n=1 of ψ(S) such that f (n) ∈ ψ(S) converges to

f ∈ Cb(X∞) in sup norm. Convergence in sup norm implies pointwise convergence; that is,

for any x ∈ X∞, f (n)(x) converges to f(x). Since f (n)’s are functions on a compact set X∞,

by the Arzelà—Ascoli theorem, sup norm convergence implies that (f (n))∞n=1 is equicontinuous.

Below, we want to show that f ∈ ψ(S); that is, there exists some ~ωt ∈ S such that

f = ψ(~ωt). Since f (n) ∈ ψ(S), there exists an ~ω(n)
t ∈ S such that

f (n) =
∞∑
s=t

N∑
i=1

ω
(n)
t (i, s)Ui,s.

Step 3-1 We first show that such an ~ω
(n)
t ∈ S is unique. Suppose there exists another

~$
(n)
t ∈ S such that

f (n) =

∞∑
s=t

N∑
i=1

$
(n)
t (i, s)Ui,s.

Suppose the smallest s ≥ t such that ~ω(n)
t and ~$(n)

t differ is ŝ. Consider the following element
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of X∞,

x(y,ŝ) = (x∗, . . . , x∗︸ ︷︷ ︸
(ŝ−1) times

, y, x∗, x∗, . . . ),

for any y ∈ ∆(X). Note that Ui,s(x) depends on xτ only if τ ≥ s. Because ui(x∗) = 0,

f (n)(x(y,ŝ)) =
ŝ∑
s=t

N∑
i=1

ω
(n)
t (i, s)Ui,s(x

(y,ŝ))

=

ŝ∑
s=t

N∑
i=1

$
(n)
t (i, s)Ui,s(x

(y,ŝ)).

Since ~ω(n)
t (i, s) and ~$(n)

t (i, s) coincide for any s < ŝ, we know that

N∑
i=1

ω
(n)
t (i, ŝ)Ui,ŝ(x

(y,ŝ)) =
N∑
i=1

$
(n)
t (i, ŝ)Ui,ŝ(x

(y,ŝ))

N∑
i=1

ω
(n)
t (i, ŝ)ui(y) =

N∑
i=1

$
(n)
t (i, ŝ)ui(y)

for any y ∈ ∆(X). Since (ui)i∈N is linearly independent, the equality above holds for any

y ∈ ∆(X) if and only if ω(n)
t (i, ŝ) = $

(n)
t (i, ŝ) for every i ∈ N , which is a contradiction.

Therefore, we have a sequence
(
~ω

(n)
t

)∞
n=1

of S such that ψ
(
~ω

(n)
t

)
= f (n). We want to

find some ~ωt in `1 such that ψ(~ωt) = f .

Step 3-2We construct each ~ω(n)
t from f (n). First, we claim that there exists an N -tuple

(yi)
N
i=1 in X such that rank(B) = N , in which B is an N ×N matrix



u1(y1) u2(y1) . . . uN(y1)

u1(y2) u2(y2) . . . uN(y2)

...
...

. . .
...

u1(yN) u2(yN) . . . uN(yN)


.

Note that B does not depend on time or n.

To find y1, let y1 = x∗. Let B1 denote a 1 × N matrix that consists of the first row of
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B with y1 = x∗. Clearly, B1 has rank 1. Suppose we have found y1, . . . , yk−1 ∈ X such

that Bk−1 is a (k − 1)×N matrix that consists of the first (k − 1) rows of B and has rank

1 ≤ k − 1 < N . We claim that we can find yk ∈ X such that the matrix Bk is a k × N

matrix that consists of the first k rows of B and has rank k. Suppose not; that is, for any

yk ∈ X, rank(Bk) =rank(Bk−1) = k − 1. This implies that for any yk ∈ X, there exists

λ1(yk), . . . , λk−1(yk) ∈ R such that

(u1(yk), . . . , uN(yk)) =
k−1∑
j=1

λj(yk) · (u1(yj), . . . , uN(yj));

that is, the kth row of Bk can be written as a linear combination of the first (k − 1) rows of

Bk.

Consider the homogeneous system of linear equations,
∑N

i=1 λ̃iui(yj) = 0, j = 1, . . . , k−1.

Since there are N unknown variables (λ̃i’s) but only k − 1 equations and k − 1 < N , the

system always has some nontrivial solution (λ̃i)
N
i=1. Therefore,

N∑
i=1

λ̃iui(yk) =
N∑
i=1

[
λ̃i

k−1∑
j=1

λj(yk)ui(yj)

]

=
k−1∑
j=1

λj(yk)
N∑
i=1

λ̃iui(yj) = 0

for any yk ∈ X, which contradicts the assumption that (ui)i∈N is linearly independent.

Therefore, we can find an N -tuple (yi)
N
i=1 in X such that the N ×N matrix B has full rank.

Step 3-3 We first construct each ~ω(n)
t from f (n) via the matrix B constructed above.

Note that

f (n)(x(yk,t)) =

N∑
i=1

∞∑
τ=t

ω
(n)
t (i, τ)Ui,s(x

(yk,t))

=

N∑
i=1

ω
(n)
t (i, t)ui(yk),
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in which x(yk,s) = (x∗, . . . , x∗︸ ︷︷ ︸
(s−1) times

, yk, x∗, x∗, . . . ) as defined previously, and yk’s are the elements

of X that we find when constructing B. Therefore,


u1(y1) . . . uN(y1)

...
. . .

...

u1(yN) . . . uN(yN)




ω
(n)
t (1, t)

...

ω
(n)
t (N, t)

 =


f (n)(x(y1,t))

...

f (n)(x(yN ,t))

 ,

in which the first matrix of the left-hand side is B. Hence,


ω

(n)
t (1, t)

...

ω
(n)
t (N, t)

 = B−1


f (n)(x(y1,t))

...

f (n)(x(yN ,t))

 . (29)

Since f (n) converges, by letting n go to infinity, we define ωt(i, t) as the limit of ω
(n)
t (i, t).

From (29), we know that ω(n)
t (i, t) is a linear combination of (f (n)(x(yk,t)))k∈N that takes the

following form:

ω
(n)
t (i, t) =

N∑
k=1

t∑
τ=t

ζ
(i,t)
t (k, τ) · f (n)(x(yk,τ)).

It is important to note that for any i ∈ N ,
(
ζ

(i,t)
t (k, τ)

)
k∈N,τ=t

is independent of n. The

reason why there is a redundant summation (τ from t to t) will become clear once we move

on to ω(n)
t (i, s).

Next, because

f (n)(x(yk,s)) =

N∑
i=1

∞∑
τ=t

ω
(n)
t (i, τ)Ui,s(x

(yk,s))

=

N∑
i=1

s∑
τ=t

ω
(n)
t (i, τ)δi(s− τ)ui(yk).
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Therefore,


ω

(n)
t (1, s)

...

ω
(n)
t (N, s)

 = B−1


f (n)(x(y1,s))−

∑
i∈N
∑s−1

τ=t ω
(n)
t (i, τ)δi(s− τ)ui(y1)

...

f (n)(x(yN ,s))−
∑

i∈N
∑s−1

τ=t ω
(n)
t (i, τ)δi(s− τ)ui(yN)



= B−1


f (n)(x(y1,s))

...

f (n)(x(yN ,s))

−B−1


∑

i∈N
∑s−1

τ=t ω
(n)
t (i, τ)δi(s− τ)ui(y1)

...∑
i∈N
∑s−1

τ=t ω
(n)
t (i, τ)δi(s− τ)ui(yN)


Again, since f (n) converges, by letting n go to infinity, we define ωt(i, s) as the limit of

ω
(n)
t (i, s). Recursively, we also know that ω(n)

t (i, s) is a linear combination of (f (n)(x(yk,τ)))k∈N,t≤τ≤s

that takes the following form:

ω
(n)
t (i, s) =

N∑
k=1

s∑
τ=t

ζ
(i,s)
t (k, τ) · f (n)(x(yk,τ)).

It is important to note that for any i ∈ N and s ≥ t,
(
ζ

(i,s)
t (k, τ)

)
k∈N,t≤τ≤s

is independent

of n.

We have found the ~ωt such that ωt(i, s) = limn→∞ ω
(n)
t (i, s); that is, ω(n)

t converges to ωt

“pointwisely.”We can show that ~ωt = (ωt(i, s))i∈N,s≥t ∈ `1. Consider x∗ = (x∗, x∗, . . . ) ∈

X∞. Since ui(x∗) = 1,

f (n)(x∗) =

∞∑
s=t

N∑
i=1

ω
(n)
t (i, s) ·

∞∑
τ=0

δi(τ).

Since f (n)(x∗) converges to f(x∗), we know that there exists some ρ > 0 such that f (n)(x∗) ≤

ρ for any n ∈ N. Because
∑∞

τ=0 δi(τ) > 1,

∞∑
s=t

N∑
i=1

ω
(n)
t (i, s) ≤ ρ

54



for any n ∈ N. Thus, for any fixed n′ ∈ N,
∑n′

s=t

∑
i∈N ω

(n)
t (i, s) ≤ ρ. Let n go to infinity, we

know that
∑n′

s=t

∑
i∈N ωt(i, s) ≤ ρ. Since

∑n′

s=t

∑
i∈N ωt(i, s) ≤ ρ for any n′ ∈ N, we know

that
∑∞

s=t

∑
i∈N ωt(i, s) ≤ ρ, which means ~ωt ∈ `1.

Step 3-4 We want to show that ~ω(n)
t converges in `1. If we can show this, ~ω(n)

t ’s limit

must be ~ωt. Then, because ψ is continuous, ψ
(
~ω

(n)
t

)
= f (n), and f (n) converges to f , we

know that ψ (~ωt) = f , which completes the proof of Step 3. Because `1 is complete, to show

that ~ω(n)
t converges in `1, we only need to show that

(
~ω

(n)
t

)∞
n=1

is a Cauchy sequence; that

is, for any ε > 0, there exists some κ > 0 such that for any n, ñ ≥ κ,

N∑
i=1

∞∑
s=t

∣∣∣ω(n)
t (i, s)− ω(ñ)

t (i, s)
∣∣∣ < ε. (30)

Let x(∗,s) = (x∗, . . . , x∗︸ ︷︷ ︸
s times

, x∗, x∗, . . . ). Recall that for any x,y ∈ X∞, the metric of X∞ is

π(x,y) := sup
τ

{
min{‖xτ − yτ‖ , 1}

τ

}
.

Therefore, when s is large, x∗ and x(∗,s) are close.

Note that for any ε′ > 0, there exists some κ′ > 0 such that for any κ̃′ ≥ κ′,

|f (n′)(x∗)− f (n′)(x(∗,κ̃′))| < ε′

for any n′, because (f (n))∞n=1 is equicontinuous. Then,

ε′ > |f (n′)(x∗)− f (n′)(x(∗,κ̃′))|

=

∣∣∣∣∣
N∑
i=1

∞∑
s=t

ω
(n′)
t (i, s)U(x∗)−

N∑
i=1

∞∑
s=t

ω
(n′)
t (i, s)U(x(∗,κ̃′))

∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

∞∑
s=t

[
ω

(n′)
t (i, s)

∞∑
τ=0

δi(τ)

]
−

N∑
i=1

κ̃′∑
s=t

[
ω

(n′)
t (i, s)

κ̃′−s∑
τ=0

δi(τ)

]∣∣∣∣∣
≥

N∑
i=1

∞∑
s=κ̃′

ω
(n′)
t (i, s).
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This shows that for any ε′ > 0, there exists κ′ > 0 such that for any κ̃′ ≥ κ′ and any n′,

N∑
i=1

∞∑
s=κ̃′

ω
(n′)
t (i, s) < ε′. (31)

Back to equation (30). Note that

N∑
i=1

∞∑
s=t

∣∣∣ω(n)
t (i, s)− ω(ñ)

t (i, s)
∣∣∣ ≤ N∑

i=1

κ′∑
s=t

∣∣∣ω(n)
t (i, s)− ω(ñ)

t (i, s)
∣∣∣ (32)

+

N∑
i=1

∞∑
s=κ′

ω
(n)
t (i, s) +

N∑
i=1

∞∑
s=κ′

ω
(ñ)
t (i, s).

The second and the third terms of the right-hand side are both less than ε′ due to equation

(31).

Since f (n) converges to f in sup norm. For any ε′′ > 0, there exists κ′′ such that if n and

ñ are greater than κ′′, |f (n)(x) − f (ñ)(x)| < ε′′ for any x ∈X∞. Now, recall that from Step

3-3, we know that

ω
(n)
t (i, s) =

N∑
k=1

s∑
τ=t

ζ
(i,s)
t (k, τ) · f (n)(x(yk,τ)),

in which for any i ∈ N and s ≥ t,
(
ζ

(i,s)
t (k, τ)

)
k∈N,t≤τ≤s

is independent of n. Therefore, the

first term of the right-hand side of (32) becomes

N∑
i=1

κ′∑
s=t

∣∣∣∣∣
N∑
k=1

s∑
τ=t

ζ
(i,s)
t (k, τ)

[
f (n)(x(yk,τ))− f (ñ)(x(yk,τ))

]∣∣∣∣∣
≤ ε′′

N∑
i=1

κ′∑
s=t

N∑
k=1

s∑
τ=t

∣∣∣ζ(i,s)
t (k, τ)

∣∣∣ ,
as long as n and ñ are greater than κ′′. The inequality above shows that the first term of

the right-hand side of (32) can also be arbitrarily small.
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Step 4 Finally, we want to show that the following equation

Ut =

∞∑
s=t

N∑
i=1

ωt(i, s)Ui,s = ψ(~ωt) (33)

has a nonnegative solution; that is, there exists some ~ωt ∈ S that solves (33). If we can find

such an ~ωt, it must be the case that
∑N

i=1

∑∞
s=t ωt(i, s) > 0, because of the normalization

assumption on expected utility functions. Applying Theorem 5, we know that we can find a

nonnegative solution ~ωt to (33) if and only if for any µ ∈ B′,

∫
X∞

Ui,s dµ ≥ 0 (34)

for any i ∈ N and s ≥ t implies
∫
X∞ Ut dµ ≥ 0.

To see this, first note that by the Hahn—Jordan decomposition theorem, µ can be uniquely

decomposed into αµ+ − βµ− in which α, β ≥ 0 and µ+ and µ− are probability measures on

X∞. Thus, (34) becomes

α

∫
X∞

Ui,s dµ+ ≥ β

∫
X∞

Ui,s dµ−

for any i ∈ N and s ≥ t. Notice that Ui,s’s are time-additively separable. Again, as in

equation (28), probability measures µ+ and µ− can be identified with p ∈ ∆(X)∞ and q ∈

∆(X)∞, in which pτ and qτ are the marginal distributions of µ+ and µ− on xτ , respectively.

Hence, (34) becomes

αUi,s(p) ≥ βUi,s(q)

for any i ∈ N and s ≥ t.

Suppose α ≥ β. The other case can be proved in a similar way. Let us use x∗ to

denote the sequence (x∗, x∗, . . . ). Since instantaneous utility functions are all normalized,
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Ui,s(x∗) = 0 for any i ∈ N and s ≥ t. Then, (34) becomes

Ui,s(p) ≥ β

α
Ui,s(q) +

(
1− β

α

)
Ui,s(x∗)

for any i ∈ N and s ≥ t. Since Ui,s’s are time-additively separable, we know that for

every i ∈ N and s ≥ t, the generation-s individual i prefers p to β
α
q+
(
1− β

α

)
x∗, in which

β
α
q+
(
1− β

α

)
x∗ ∈ ∆(X)∞ is the period-by-period mixture between q and x∗. By intergen-

erational Pareto, this means that

Ut(p) ≥ β

α
Ut(q) +

(
1− β

α

)
Ut(x∗)

αUt(p) ≥ βUt(q)∫
X∞

Ut dµ ≥ 0.

Therefore, we know that (33) has a nonnegative solution.

A.8 Proof of Theorem 4

Proof. Part I Since u is a strict convex combination of (ui)i∈N , suppose u =
∑

i λiui for

some λ1, . . . , λN > 0 such that
∑

i λi = 1. For each i ∈ N and each t ∈ T , we want to

construct a sequence of strictly positive and absolutely summable numbers (ωt(i, s))
∞
s=t such

that
∞∑
s=t

ωt(i, s)Ui,s(p) =

∞∑
τ=t

δτ−tui(pτ ).

If this can be done, then in period t, let λiωt(i, s) be the planner’s utilitarian weight for the

generation-s individual i, in which case

N∑
i=1

∞∑
s=t

λiωt(i, s)Ui,s(p) =
∞∑
τ=t

δτ−tu(pτ ) = Ut(p),

which means that the planner is intergerationally Pareto and strongly non-dictatorial.
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Next, we show that the following recursive definition of (ωt(i, s))
∞
s=t works: for each s ≥ t,

ωt(i, s) =

 1, if s = t,∑s−1
σ=t[δ · δi(s− σ)− δi(s− σ + 1)]ωt(i, σ), if s > t.

(35)

First, it can be verified that each ωt(i, s) is strictly positive, because δ > maxi δ
∗
i and the

individual relative discount factor is increasing. Second, it can be verified inductively that

for any finite τ ,
τ∑
s=t

N∑
i=1

ωt(i, s)δi(τ − s)ui(pτ ) = δτ−tu(pτ )

for any pτ ∈ ∆(X). These two steps are similar to the steps in the proof of Lemma 4. Thus,

we only have to show that (ωt(i, s))
∞
s=t is summable. Clearly,

∑n
s=t ωt(i, s) is increasing in n.

If we can show that
∑n

s=t ωt(i, s) is bounded above and the bound is a constant, this part

of the theorem is proven.

Sum up both sides of equation (35) from s = t to n. We can obtain that

1 =
n−1∑
s=t

(
(1− δ)

n−1−s∑
τ=0

δi(τ) + δi(n− s)
)
ωt(i, s) + ωt(i, n).

Because
∑n−1−s

τ=0 δi(τ) > 1 and δi(n− s) > 0, (1− δ)
∑n−1−s

τ=0 δi(τ) + δi(n− s) > 1− δ, which

implies that

1 >
n−1∑
s=t

(1− δ)ωt(i, s) + ωt(i, n)

> (1− δ)
n−1∑
s=t

ωt(i, s).

Therefore,
∑n−1

s=t ωt(i, s) is bounded above by 1/(1− δ) for any n.

Part IIWithout loss of generality, we assume that δ∗N is the unique maximal of {δ∗i }i∈N .

The proof can easily be extended to the case with multiple maxima. We prove the con-

trapositive of this part. Suppose the planner is intergenerationally Pareto and strongly
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non-dictatorial. According to Lemma 1, for each t ∈ T , there exists a sequence of nonneg-

ative numbers (ωt(i, s))i∈N,s≥t such that Ut =
∑

i,s ωt(i, s)Ui,s. Hence, equality (16) holds;

that is, for and t and τ ≥ t,

τ∑
s=t

N∑
i=1

ωt(i, s)δi(τ − s)ui(pτ ) = δτ−tu(pτ ).

Consider a consumption sequence that yields x∗ in every period, (x∗, x∗, . . . ). Then, the

equation above becomes
τ∑
s=t

N∑
i=1

ωt(i, s)δi(τ − s) = δτ−t.

Since ui’s and u are normalized, we know that for each t,
∑

i∈N ωt(i, t) = 1. Due to the

strongly non-dictatorial property, in particular, ωt(N, t) ∈ (0, 1). Then,

δτ−t =
τ∑
s=t

N∑
i=1

ωt(i, s)δi(τ − s)

> ωt(N, t)δN(τ − t).

Therefore, δ > τ−t
√
ωt(N, t)δN(τ − t) for every τ implies that δ ≥ δ∗N .

A.9 Utilitarianism with Infinite Time Horizon

Theorem 4 in Section 6 requires (ui)i∈N to be linearly independent. Below, we state a result

related to Theorem 4 without assuming that (ui)i∈N is linearly independent. This result will

show that even when ui’s are identical, the cutoff for the social discount factor will jump

from mini δ
∗
i to maxi δ

∗
i when T = +∞. To state it, we first define utilitarianism.

Definition 6 The planner is intergenerationally utilitarian if in each period t ∈ T , there

exists a sequence of nonnegative numbers (ωt(i, s))i∈N,s≥t such that 0 <
∑N

i=1

∑T
s=t ωt(i, s) <

∞, and

Ut =
N∑
i=1

T∑
s=t

ωt(i, s)Ui,s.
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The result below shows that if we assume intergenerational utilitarianism rather than

intergenerational Pareto, we can extend Theorem 4 to the case without linear-independence

assumptions on ui’s. The reason why we assume intergenerational utilitarianism rather than

intergenerational Pareto is that the equivalence between intergenerational utilitarianism and

intergenerational Pareto is not yet established.

Proposition 4 Suppose T = +∞, and each generation-t individual i’s discounting utility

function has an instantaneous utility function ui and a discount function δi such that (5)

and (6) hold. Let the planner’s instantaneous utility function u be an arbitrary strict convex

combination of (ui)i∈N . Then,

1. For each maxi δ
∗
i < δ < 1, the planner is intergenerationally utilitarian and strongly

non-dictatorial;

2. For each δ < maxi δ
∗
i , the planner is not simultaneously intergenerationally utilitarian

and strongly non-dictatorial.

The proof of this proposition turns out to be identical to the proof ot Theorem 4, except

that Lemma 2 is not needed here.

Proposition 4 covers the case in which ui’s are identical. Thus, Proposition 4 says that

if T = +∞, the cutoff for the social discount factor again jumps from mini δ
∗
i to maxi δ

∗
i ,

compared to Theorem 1/Corollary 2.

Note that the second part of Proposition 4 is weaker than our previous results. In

Proposition 4, if the social discount factor is lower than the highest individual long-run

discount factor, then either intergenerationally utilitarian is violated or the planner has

ignored some individual from some generation.

However, there is still some discontinuity between Proposition 4 and Theorem 1/Corollary

2. In Theorem 1/Corollary 2, if the social discount factor is lower than the lowest individual

long-run discount factor, we know that intergenerational Pareto is violated, which implies
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that at least one of the two conditions, intergenerational utilitarianism and the strongly

non-dictatorial property, is violated as in Proposition 4.

The intuition for this discontinuity in the second part of the result is the following. For

simplicity, suppose ui’s are the same. Fixing an arbitrarily large but finite T , the planner

can always attach small enough utilitarian weights to individuals with high δ∗i . This way,

the planner can keep her social discount factor low. However, if T is infinite, fixing any

strictly positive weights, as τ increases to infinity, δi(τ) of the individual with the highest δ∗i

dominates all the other individuals’discount factors no matter what his weight is. Therefore,

the social discount factor cannot be strictly less than maxi δ
∗
i .
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Supplement to “Social Discounting and Intergenerational Pareto”

This supplement consists of four parts: (i) a discussion about the choice domain of the

main paper, (ii) an alternative interpretation of intergenerational Pareto and its implication

on quasi-hyperbolic discounting, (iii) a result with forward and backward individual expo-

nential discounting, and (iv) the robustness of findings in the main paper with respect to

several main assumptions. The supplement uses definitions and notations from the main

paper.

B Risk Resolution

The main model’s choice domain is∆(X)T ; that is, in each period, there is a lottery/probability

measure over X. In many dynamic economic models with uncertainty, uncertainty resolves

over time.20 Below we discuss what may change if we let uncertainty resolve over time,

maintaining our assumptions on individuals’and the planner’s utility functions.

For simplicity, assume that T = 2 and N = 1. In period 2, the choice object is again a

lottery over X. To make a distinction between choice objects in the main paper and in this

section, here we call X outcomes and period-1 choice objects dynamic lotteries. A dynamic

lottery is a lottery over X ×∆(X). For example, with probability 1/2, a dynamic lottery p̃1

yields a period-1 outcome x ∈ X and a period-2 lottery q2 ∈ ∆(X); with probability 1/2, p̃1

yields a period-1 outcome x′ and a period-2 lottery r2 ∈ ∆(X).

Now, the set of dynamic lotteries is ∆(X × ∆(X)), rather than ∆(X)2.21 However,

∆(X)2 can be viewed as a subset of ∆(X × ∆(X)) that consists of all dynamic lotteries

whose period-2 outcomes are independent of period-1 outcomes.

The following simple example shows in what sense in period 1, the planner’s aggregation

problem under ∆(X×∆(X)) is the same as under ∆(X)2. Continue our example of p̃1, q2, r2

20A recent paper by Piacquadio (2017) has studied social discounting and intergenerational inequality in
an environment in which uncertainty resolves over time.
21We endow ∆(X) with the Prohorov metric and X ×∆(X) with the product topology. For any metric

space Y , let ∆(Y ) denote the set of Borel probability measures on Y .
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above. Let q2 be a lottery that yields y, y′ ∈ X with equal probability. Let r2 be a degenerate

lottery that yields z ∈ X.

Consider the generation-1 individual. A natural way to extend our period-1 individual

utility function on ∆(X)2 to the new domain ∆(X ×∆(X)) is as follows:

V1(p̃1) =
1

2
(v(x, 1) + δv(q2, 2)) +

1

2
(v(x′, 1) + δv(r2, 2))

=
1

2

(
v(x, 1) + δ

(
1

2
v(y, 2) +

1

2
v(y′, 2)

))
+

1

2
(v(x′, 1) + δv(z, 2)),

in which δ is the individual discount factor and v(·, τ) is the period-τ individual instantaneous

utility function. Note that the above equation can be rewritten as

V1(p̃1) =

(
1

2
v(x, 1) +

1

2
v(x′, 1)

)
+ δ

(
1

4
v(y, 2) +

1

4
v(y′, 2) +

1

2
v(z, 2)

)
;

that is, the utility of p̃1 ∈ ∆(X×∆(X)) is equal to the following dynamic lottery: In period

1, the individual consumes a 50-50 lottery between x and x′, and in period 2, he consumes

a lottery that yields y with probability 1/4, y′ with probability 1/4, and z with probability

1/2.

It is not diffi cult to see the logic behind this observation. In general, given any p̃1 ∈

∆(X ×∆(X)), we compute the marginal probability distribution of period-1 outcomes and

call it p1 ∈ ∆(X), and compute the marginal probability distribution of period-2 outcomes

and call it p2 ∈ ∆(X). Then, (p1, p2) is a dynamic lottery whose period-2 outcomes are

independent of period-1 outcomes. It must be the case that V1(p̃1) = V1((p1, p2)), because

V1 is a time-additively separable expected utility function.

Consider the generation-2 individual. Before the dynamic lottery’s risk resolves, how

does one evaluate the second generation’s utility of p̃1? Arguably,

V2(p̃1) =
1

2

(
1

2
v(y, 2) +

1

2
v(y′, 2)

)
+

1

2
v(z, 2) (S1)
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seems to be a reasonable evaluation– with probability 1/2, the second generation’s utility

will be 1
2
v(y, 2) + 1

2
v(y′, 2), and with probability 1/2, the second generation’s utility will be

v(z, 2). Now, again,

V2(p̃1) = V2((p1, p2)) =
1

4
v(y, 2) +

1

4
v(y′, 2) +

1

2
v(z, 2).

Therefore, p̃1 and (p1, p2) are equivalent for the planner in period 1. The planner’s period-

1 aggregation problem under ∆(X×∆(X)) is the same as under ∆(X)2– there is a bijection

between time-addtively separable expected utility function defined on the domain with and

without correlation. As long as the period-1 planner uses the same utilitarian weights to

aggregate individual utility functions, the planner’s preference will be the same in both cases.

Move on to period 2. Continue our previous example of p̃1 and (p1, p2). With p̃1, the

period-2 lottery is either q2 or r2. With (p1, p2), no matter what the first generation consumes,

the period-2 lottery is p2. Suppose p̃1’s realization of period-2 lottery is q2. Apparently, now

there is a difference between p̃1 and (p1, p2). However, this difference should not affect the

period-2 planner’s aggregation problem. Although the second generation’s (ex post) utility

will be different in the two cases (the utility of q2 versus the utility of p2), in either case,

effectively the second generation’s utility function is defined on ∆(X), because individuals

do not care about past consumption. Therefore, there is again a (trivial) bijection between

generation-2 individual utility functions defined on the domain with and without correlation.

The planner’s period-2 preference will be identical in both cases as long as she uses the same

utilitarian weights for individuals. In this sense, focusing on consumption sequences ∆(X)T

without modeling how uncertainty resolves over time is without loss of generality. The

analysis above can be extended to the case with more periods and more individuals.

One last thing to be noted is that in either the case with correlation or the case without,

we only study what the planner’s objective should be if she aggregates individuals’prefer-

ences. This exercise does not require us to consider, for example, feasibility constraints. If
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the planner’s problem is to maximize some objective under certain constraints, correlation

may be important in the feasibility constraints. For example, if there is a technological ad-

vancement in the first period, we can anticipate a larger feasible set of consumption in the

future. This requires correlation in the constraints.

C An Alternative Interpretation of Intergenerational

Pareto and a Result with Quasi-Hyperbolic Discount-

ing

In the literature studying quasi-hyperbolic discounting, economists sometimes ignore the βi

parameter, and use an EDU function with a discount factor δi as the welfare criterion of

individual i who has a QHDU function. The argument is that because βi is the cause of

time inconsistency, βi should not enter the welfare criterion. However, there is not much

foundation for this practice.

Now, if we interpret the generation-(t+ 1) individual i in our model as the future self of

the generation-t individual i, Corollary 1 provides some foundation for the use of this welfare

criterion.22 Assume that the individual i is the only individual (N = 1) and apply Corollary

1. We immediately know that any EDU function with a discount factor that is greater than

δi is a criterion that is consistent with intergenerational Pareto; that is, if the individual

i in every period t agrees that one consumption sequence is better than another, then the

(welfare) criterion says that the utility of the former is greater than the latter.

The following result is stronger than Corollary 1. It shows that δi is indeed the smallest

discount factor such that the corresponding EDU function is consistent with the intergener-

ationally Pareto property.

22Recent papers by Drugeon and Wigniolle (2017) and Galperti and Strulovici (2017) introduce similar
results as the one we present below.
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Proposition 5 Suppose T < +∞, and each generation-t individual i has a QHDU function

with an instantaneous utility function u, βi ∈ (0, 1), and δi ∈ (0, 1). Then,

1. If δ ≥ mini δi, the planner is intergenerationally Pareto and strongly non-dictatorial;

2. For each δ < mini δi, there exists some T ∗ > 0 such that if T ≥ T ∗, the planner is not

intergenerationally Pareto.

Proof. The only-if part follows from Theorem 1. We prove the if part only.

Lemma 5 Assume that N = {i}. Suppose T < +∞, and individual i has a QHDU function

with parameters βi ∈ (0, 1), δi ∈ (0, 1), and u. Then, there exists a cutoff δ(T ) for each T

such that the planner is intergenerationally Pareto and strongly non-dictatorial if and only

if δ > δ(T ). In addition, (δ(T ))+∞
T=3 is a strictly increasing sequence with a limit δi.

Proof. The planner is intergenerationally Pareto and strongly non-dictatorial if and only

if there exists a finite sequence of strictly positive weights (ωt(i, s))t∈T,s≥t such that the

following equation holds:

ωt(i, τ)u(pτ ) +
τ−1∑
s=t

ωi,t(s)βiδ
τ−s
i u(pτ ) = δτ−tu(pτ ). (S2)

for any t ∈ T and τ ≥ t. We can solve (ωt(i, s))t∈T,s≥t from (S2) as follows:

ωt(i, t+m) =


1, if m = 0,

δm − βi
1− βi

m∑
h=1

(1− βi)hδhi δm−h. if 1 ≤ m ≤ T − t.
(S3)

Note that ωt(i, t) = 1 > 0. The planner is intergenerationally Pareto and strongly non-

dictatorial if and only if all numbers in (ωt(i, t+m))t∈T,1≤m≤T−t are strictly positive.

We can rewrite the second equation of (S3) as ωt(i, t + m) = Fm(δ|βi, δi), in which F is

a degree-m polynomial of a single indeterminate δ with parameters βi, δi. Define the set of
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social discount factors that are consistent with intergenerational Pareto by

S(βi, δi, T ) := {δ ∈ R+ : Fm(δ|βi, δi) > 0 for any 1 ≤ m ≤ T − 1}.

Therefore, the planner’s preference is intergenerationally Pareto and strongly non-dictatorial

if and only if δ ∈ S(βi, δi, T ).

We want to show that S(βi, δi, T ) is an interval that (strictly) decreases to [δi,+∞) as

T goes to infinity.

First, we prove that there exists a unique root/cutoff xm ∈ (0, δi] for Fm(δ|βi, δi) such

that Fm(xm|βi, δi) = 0, Fm(δ|βi, δi) < 0 for δ < xm, and Fm(δ|βi, δi) > 0 for δ > xm. We

know that Fm(0|βi, δi) = −(1 − βi)m−1δmi < 0, Fm(δi|βi, δi) = (1 − βi)mδmi > 0, and Fm is

continuous. Therefore, the existence of xm is guaranteed by Bolzano’s theorem.

Also note that the functionGm(δ|βi, δi) := δ−mFm(δ|βi, δi) has the same root as Fm(δ|βi, δi),

and Gm(δ|βi, δi) is strictly increasing in δ because
dGm(δ)
dδ

= βi
1−βi

∑m
k=1 k

(1−βiδi)k
δk+1

> 0. By

Rolle’s theorem, there cannot be more than one root. Hence, the uniqueness is proved.

Second, we prove that the cutoff sequence (xm)m is increasing and converges to δi. Not-

ing that Gm+1(δ|βi, δi) − Gm(δ|βi, δi) = − βi
1−βi

[ (1−βi)δi
δ

]m+1 < 0, we have Gm+1(xm|βi, δi) −

Gm(xm|βi, δi) < 0. By the definition of (xm)m, Gm(xm|βi, δi) = Gm+1(xm+1|βi, δi) =

0. Therefore, Gm+1(xm|βi, δi) < Gm(xm|βi, δi) = Gm+1(xm+1|βi, δi). We also know that

Gm(δ|βi, δi) is increasing. Hence, xm+1 > xm. Now that (xm)m is bounded and increasing,

the convergence follows from the monotone convergence theorem.

The only remaining part is to prove that the limit of cutoff sequence is δi. Suppose
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lim
m→∞

xm = x. Then xm < x for all m > 1. Since Gm(δ|βi, δi) is strictly increasing, we have

Gm(xm|βi, δi) < Gm(x|βi, δi)

⇔ 0 < 1− βi
1− βi

m∑
h=1

(1− βi)hδhi x−h

⇔ βi
1− βi

m∑
h=1

(1− βi)hδhi x−h < 1

⇔
m∑
h=1

[
(1− βi)δi

x

]h
<

1− βi
βi

(S4)

for any m > 1.

Since (1−βi)δi
x

> 0, (1−βi)δi
x

< 1; otherwise,
m∑
h=1

[
(1−βi)δi

x

]h
diverges as m increases. Now,

let m in (S4) go to infinity. We have

+∞∑
h=1

[(1− βi)δi
x

]h
≤ 1− βi

βi

⇔ (1− βi)δi
x

1

1− (1−βi)δi
x

≤ 1− βi
βi

⇔ δi ≤ x.

(S5)

In addition, since xm < δi for all m, we have x ≤ δi. Therefore, x = δi.

Lemma 5 states that for any finite T , in each period t, the planner can aggregate each

individual i from the tth generation to the T th generation so that the aggregated utility

function is an EDU function with a discount factor that is slightly below δi. Then, we can

apply the if part of Proposition 2 for N exponential discounting individuals, and obtain a

social discount factor δ ≥ mini δi.

When T = +∞, we can assume in Theorem 4 that individuals have QHDU functions

and obtain a similar result.

7



D The Case with Backward Discounting

Suppose there are T < +∞ generations. The result we introduce below shows that if

individuals exponentially forward and backward discount consumption, our main results

continue to hold.

Before proceeding, let us note that although backward discounting has appeared in Strotz

(1955), Caplin and Leahy (2004), and Ray et al. (2017), one important drawback of back-

ward discounting is that it has no revealed-preference foundation. Whenever we observe an

individual choosing, the past is sunk. There are no choices (yet) that allow the individual

to alter the past. Therefore, we do not know how individuals think about the past from

actual choice data. Because the past cannot be changed, individuals make choices only

based on what may still be changed; that is, current and future consumption. Moreover,

in many widely used models that are not exponential discounting, such as hyperbolic and

quasi-hyperbolic discounting models, it is not clear how they should be extended to include

backward discounting.

However, in this part, we analyze our aggregation problem with exponential discounting

individuals who backward discount. Instead of assuming that Ui,t(p) does not depend on

past consumption, we assume that the generation-t individual i discounts both past and

future by the same discounting factor δi.

Definition 7 The generation-t individual i has an exponential forward and backward dis-

counting utility function if his utility function has the following form:

Ui,t(p) =
T∑
τ=1

δ
|τ−t|
i ui(pτ ), (S6)

in which the discount factor δi ∈ (0, 1), and ui is the individual i’s instantaneous utility

function.

Note that the negative result obviously would continue to hold if we had assumed that
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each generation-t individual i’s utility function was

Ui,t(p) =

T∑
τ=1

δτ−ti ui(pτ ).

In that case, the individual i’s offspring has exactly the same preference as the indivdual i.

This is problematic because the generation-2 individual i will value period-1 consumption

even more than his own period-2 consumption.

The result below demonstrates that the assumption that the planner has an exponential

discounting utility funciton and intergenerational Pareto are compatible when individuals

exponentially forward and backward discount consumption. The typical negative result in

the literature only considers the planner’s aggregation problem in period 1. The following

result also focus the period-1 aggregation problem to highlight the difference.

Proposition 6 Suppose T < +∞, and each generation-t individual i has an exponential

forward and backward discounting utility function with discount factor δi and instantaneous

utility function ui such that δ̄ := maxi δi < 1. Let the planner’s instantaneous utility function

u be an arbitrary strict convex combination of (ui)i∈N . Then, for each δ ∈
(
δ̄, δ̄
−1
)
, the

planner in period 1 is intergenerationally Pareto and strongly non-dictatorial.

In particular, if we require the social discount factor δ to be less than 1, then this result

has the same implication as our main results.

Proof. To prove the proposition, we consider the one-individual case first.

Lemma 6 Assume that N = {i}. Suppose T < +∞, and each generation-t individual i

has an exponential forward and backward discounting utility function with discount factor

δi ∈ (0, 1) and instantaneous utility function u. Then, for each δ ∈ (δi, δi
−1), the planner in

period 1 is intergenerationally Pareto and strongly non-dictatorial.

Proof. We want to show that for any δ ∈ (δi, δi
−1), there exists a vector of strictly positive
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weights ~ω = (ω(i, 1), ω(i, 2), · · · , ω(i, T )) such that the following equation holds:

U1(p) =
T∑
τ=1

δτ−1u(pτ ) =

T∑
s=1

ω(i, s)Ui,s(p). (S7)

Plugging in U1(p) and Ui,s(p), equation (S7) becomes

T∑
τ=1

δτ−1u(pτ ) =
T∑
s=1

ω(i, s)
T∑
τ=1

δ
|τ−s|
i u(pτ ) =

T∑
τ=1

T∑
s=1

ω(i, s)δ
|s−τ |
i u(pτ ); (S8)

that is, for each τ ≥ 1,

δτ−1 =
T∑
s=1

ω(i, s)δ
|s−τ |
i . (S9)

We can rewrite equation (S9) as follows:

A · ~ω = ~δ, (S10)

in which ~δ = (1, δ, δ2, · · · , δT−1) and

A =



1 δi δ2
i . . . δT−1

i

δi 1 δi . . . δT−2
i

...
...

...
. . .

...

δT−1
i δT−2

i δT−3
i . . . 1


.
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Note that since A is invertible. In particular,

A−1 =
1

1− δi2



1 −δi 0 · · · · · · · · · · · · 0

−δi 1 + δ2
i −δi 0

...

0 −δi 1 + δ2
i −δi

. . .
...

... 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

...
. . . −δi 1 + δ2

i −δi 0

... 0 −δi 1 + δ2
i −δi

0 · · · · · · · · · · · · 0 −δi 1



.

We have ~ω = A−1 · ~δ. If we can show that ~ω � 0, the lemma is proved. Showing ~ω � 0 is

equivalent to showing that ω(i, 1) = 1− δiδ > 0, ω(i, s) = δs−2[−δi + (1 + δ2
i )δ− δiδ2] > 0 for

2 ≤ s ≤ T−1, and ω(i, T ) = −δiδT−2+δT−1 > 0, which can be verified because δ ∈ (δi, δi
−1).

Lemma 6 shows that we can aggregate each individual i from the tth generation to the

T th generation into an EDU function with any discount factor δ within (δi, δi
−1).

Now we can prove Proposition 6. For any social discount factor δ ∈ (δ̄, δ̄
−1

), we can find

(ω(i, s))i∈N,s≥1 such that

T∑
s=1

ω(i, s)Ui,s(p) =

T∑
τ=1

δτ−1ui(pτ )

for each i ∈ N . Consider any strictly positive numbers (λi)i∈N such that
∑

i∈N λi = 1.

Together with the weights (ω(i, s))i∈N,s≥1 we have found above, the planner’s utility function
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becomes

U1(p) =
N∑
i=1

T∑
s=1

λiω1(i, s)Ui,s(p) =
N∑
i=1

T∑
τ=1

δτ−1λiui(pτ )

=
T∑
τ=t

δτ−1
N∑
i=1

λiui(pτ ) =

T∑
τ=t

δτ−1u(pτ ),

in which u(pτ ) =
∑

i∈N λiui(pτ ) is an arbitrary strict convex combination of (ui)i∈N .

E Discussion of the Main Assumptions

Our main findings are built upon three assumptions: (i) the assumption on individual pref-

erences, (ii) intergenerational Pareto and the strongly non-dictatorial property, and (iii) the

assumption on the planner’s preference. In the first assumption, we have assumed that a

parent’s discount function and instantaenous utility function are inherited by his offspring.

This assumption may and may not be realistic. It is helpful to understand how our results

depend on it. In the second assumption, intergenerational Pareto only has bite when all

individuals from the current and future generations agree. It is useful to understand to

what extent intergenerational Pareto can be strengthened. Lastly, in the third assumption,

we have required the planner to have an exponential discounting utility function. This as-

sumption imposes restrictions on how the planner can aggregate individual preferences. We

examine what results still hold if we drop that assumption.

E.1 Inheriting Discount Functions and Instantaneous Utility Func-

tions from Parents

One maintained assumption on individual preferences is that each generation-t individual

i’s discount function δi and instantaneous utilty function ui are independent of t. We show

in this subsection that this assumption can be removed without changing our main findings.

We analyze two cases below. In the first case, for any i ∈ N and finite t, suppose generation-t
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individual i’s discount function is δi,t and instantaneous utility function is ui; that is, we still

assume that individuals’instantaneous utility functions do not depend on time. Fixing each

generation-t individual i’s discounting utility function for any i ∈ N and any natural number

t, our result may require us to vary the time horizon T . The result below shows that the we

can establish a positive result that is similar to Theorem 2.

Theorem 6 Suppose T < +∞, and each generation-t individual i’s discounting utility func-

tion has an instantaneous utility function ui and a discount function δi,t such that (5) and

(6) hold and (ui)i∈N is linearly independent. Let the planner’s instantaneous utility function

u be an arbitrary strict convex combination of (ui)i∈N . Then,

1. For each δ > maxi,t δ
∗
i,t, the planner is intergenerationally Pareto and strongly non-

dictatorial;

2. For each δ such that for some i, t, δ< δ∗i,t, there exists some T
∗ > 0 such that if T ≥ T ∗,

the planner is not intergenerationally Pareto.

We prove this theorem as a special case of Theorem 7 below. Theorem 6 shows that social

discounting should still be more patient than the most patient individual’s long-run discount-

ing when individual discount functions may change across generations. Since generation-t

individual i’s discount function is δi,t rather than δi now, the cutoff for the social discount

factor becomes maxi,t δ
∗
i,t. The way to understand the second part of the theorem is as

follows. Regardless of T , suppose the social discount factor δ is below some generation-t

individual i’s long-run discount factor. Then, as we increase T , this planner with social

discount factor δ will eventually violate intergenerational Pareto.

One may wonder why we still assume that generation-t individual i’s instantaneous utility

function does not depend on t. Let us assume that generation-t individual i’s instantaneous

utility function is ui,t. The example below shows that this assumption will lead to a trivial

negative result that has nothing to do with discounting.
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Example 1 Suppose N = 1. Let generation-1 individual’s instantaneous utility function be

u1 that is linearly independent of generation-2 individual’s instantaneous utility function u2.

Since the planner has an exponential discounting utility function, her instantaneous utility

function should never change. In the first period, the planner’s instantaneous utility function

for period-1 consumption can only be u1, because only the generation-1 individual cares about

period-1 consumption. The planner’s instantaneous utility function for period-2 consumption,

however, must depend on both u1 and u2 due to the strongly non-dictatorial property, which

means that the planner’s instantaneous utility function for period-2 consumption must differ

from u1. Therefore, it is impossible to require the planner to be intergenerationally Pareto

and strongly non-dictatorial.

As can be seen in the example above, it seems inevitable that the planner’s instantaneous

utility function should depend on time; that is, the planner’s instantaneous utility function

for period-τ consumption should depend on τ . Indeed, one way to restore the positive result

is to allow the planner’s instantaneous utility function to be u(·, τ).

However, there is another way to restore the positive result, which is the second case that

we want to analyze. For any i ∈ N and finite t, suppose generation-t individual i’s discount

function is δi,t and instantaneous utility function for period-τ consumption is ui(·, τ); that

is, if the planner’s instantaneous utility function for period-τ consumption has to depend on

τ , let us make the same assumption for individuals. Note that the individual’s instantaneous

utility function depends on time now, but in a way that is different from Example 1. The

planner’s discount function is again exponential.

These assumptions are particularly suitable in our setting. Recall that each individual

only lives for one period and he cares about future consumption because of altruism. Imagine

that ui(·, τ) is generation-τ individual i’s actual consumption utility– that is, the utility that

generation-τ individual i derives by consuming rather than from altruism. Now, generation-t
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individual i’s utility function is

Ui,t(p) =

T∑
τ=t

δi(τ − t)ui(pτ , τ),

which means that when the generation-t individual i altruistically cares about generation-

τ individual i’s consumption, he values the consumption exactly in the same way that

generation-τ individual i will value for himself.

Theorem 7 Suppose T < +∞, and each generation-t individual i’s discounting utility func-

tion has instantaneous utility functions ui(·, τ)’s and a discount function δi,t such that (5)

and (6) hold and (ui(·, τ))i∈N is linearly independent for each τ ∈ T . Let the planner’s

instantaneous utility function u be an arbitrary strict convex combination of (ui)i∈N . Then,

1. For each δ > maxi,t δ
∗
i,t, the planner is intergenerationally Pareto and strongly non-

dictatorial;

2. For each δ such that for some i, t, δ< δ∗i,t, there exists some T
∗ > 0 such that if T ≥ T ∗,

the planner is not intergenerationally Pareto.

Proof. Part I This part is quite similar to part I of Theorem 6. Firstly, we prove a lemma

for one-household aggregation.

Lemma 7 Fix any i ∈ N . Suppose T < +∞, and each generation-t individual i’s dis-

counting utility function has instantaneous utility functions ui(·, τ) and a discount function

δi,t such that (5) and (6) hold. Let the planner’s instantaneous utility function (u(·, τ))τ

be (ui(·, τ))τ . For any δ > maxt δ
∗
i,t, the planner is intergenerationally Pareto and strongly

non-dictatorial.

Proof. We want to show that for any δ > maxi,t δ
∗
i,t , there exists a finite sequence of strictly

positive numbers (ωt(i, s))t∈T,s≥t such that

Ut(p) =

T∑
τ=t

δτ−tu(pτ , τ) =

T∑
s=t

ωt(i, s)Ui,s(p).
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for each t ∈ T . Given any δ > maxt δ
∗
i,t, we can construct (ωt(i, s))t∈T,s≥t according to the

following formula recursively:

ωt(i, s) =


1, if s = t,
s−1∑
τ=t

[δ · δi,τ (s− 1− τ)− δi,τ (s− τ)]ωt(i, τ), if s > t.
(S11)

Note that by assuming δ > maxt δ
∗
i,t, ωt(i, s) > 0 for any s ≥ t and t ∈ T . Then,

Ut(p) =
T∑
s=t

ωt(i, s)Ui,s(p) =
T∑
s=t

ωt(i, s)
T∑
τ=s

δi,s(τ − s)u(pτ , τ)

=
T∑
τ=t

(
τ∑
s=t

δi,s(τ − s)ωt(i, s)
)
u(pτ , τ).

We want to prove that Ut(p) =
∑T

τ=t δ
τ−tu(pτ , τ). Clearly for τ = t,

∑τ
s=t δi,s(τ−s)ωt(i, s) =

ωt(i, t) = 1 = δ0. Suppose for some τ ≥ t, we have proven that
∑τ

s=t δi,s(τ−s)ωt(i, s) = δτ−t.

We want to prove that for τ + 1,

τ+1∑
s=t

δi,s(τ + 1− s)ωt(i, s) = δτ−t+1. (S12)

To prove (S12), we only need to notice that according to (S11),

τ+1∑
s=t

δi,s(τ + 1− s)ωt(i, s) = δτ−t+1. (S13)

To prove (S13), we only need to notice that according to (S11),

τ+1∑
s=t

δi,s(τ + 1− s)ωt(i, s) = ωt(i, τ + 1) +
τ∑
s=t

δi,s(τ + 1− s)ωt(i, s)

=
τ∑
s=t

[δδi,s(τ − s)− δi,s(τ + 1− s)]ωt(i, s) +
τ∑
s=t

δi,s(τ + 1− s)ωt(i, s)

= δ ·
τ∑
s=t

δi,s(τ − s)ωt(i, s) = δτ−t+1.

16



By induction, we know that
∑τ

s=t δi,s(τ − s)ωt(i, s) = δτ−t for all τ ≥ t. Now, we know that

Ut(p) =
∑T

τ=t δ
τ−tui(pτ , τ).

Next, for any social discount factor δ > maxi maxt δ
∗
i,t, we can find (ωi,t(s))t∈T,i∈N,s≥t such

that
T∑
s=t

ωi,t(s)Ui,s(p) =

T∑
τ=t

δτ−tui(pτ , τ)

for each i ∈ N . Consider any strictly positive numbers (λi)i∈N such that
∑

i∈N λi = 1.

Together with the weights (ωt(i, s))t∈T,i∈N,s≥t we have found above, the planner’s utility

function becomes

Ut(p) =
N∑
i=1

T∑
s=t

λiωt(i, s)Ui,s(p) =
N∑
i=1

T∑
τ=t

δτ−tλiui(pτ )

=
T∑
τ=t

δτ−t
N∑
i=1

λiui(pτ , τ) =
T∑
τ=t

δτ−tu(pτ , τ),

in which u(pτ , τ) =
∑

i∈N λiui(pτ , τ) can be any strictly convex combination of (ui(pτ , τ))i∈N .

Part II We prove by contradiction. Suppose there exists an intergenerationally Pareto

planner with social discount factor δ< δ∗i,t for some i = i∗ and t = t∗. By intergenerational

Pareto, for each t ∈ T , there exists a finite sequence of positive numbers (ωt(i, s))i∈N,s≥t such

that the following equality holds

δτ−tu(pτ , τ) =
N∑
i=1

τ∑
s=t

ωt(i, s)δi,s(τ − s)ui(pτ , τ). (S14)

for any τ ≥ t. When τ = t, the above equation reduces to

u(pτ , τ) =
N∑
i=1

ωτ (i, τ)ui(pτ , τ) (S15)

for any τ ∈ T .

We also know that the planner’s instantaneous utility function u(·, τ) is a strict convex

combination of (ui(·, τ))i∈N ; that is, there exist strictly positive numbers (λi)i∈N such that
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u(·, τ) =
∑

i λiui(·, τ) for any τ ∈ T . Since (ui(·, τ))i∈N is linearly independent, ωt(i, t) =

λi > 0, for any i and t. Multiply δτ−t to both sides of equation (S15) and combine it with

equation (S14). We obtain

N∑
i=1

ωτ (i, τ)δτ−tui(pτ , τ) =
N∑
i=1

τ∑
s=t

ωt(i, s)δi,s(τ − s)ui(pτ , τ).

Since (ui(·, τ))Ni=1 is linearly independent, the above equation is equivalent to

ωτ (i, τ)δτ−tui(pτ , τ) =

τ∑
s=t

ωt(i, s)δi,s(τ − s)ui(pτ , τ)

for any i ∈ N , t ∈ T , and τ ≥ t.

Let i = i∗ and t = t∗, and rearrange the above equations. We have

δτ−t
∗

=

∑τ
s=t∗ ωt∗(i

∗, s)δi∗,s(τ − s)
ωτ (i∗, τ)

=
ωt∗(i

∗, t∗)δi∗,t∗(τ − t∗) +
∑τ

s=t∗+1 ωt∗(i
∗, s)δi∗,s(τ − s)

ωτ (i∗, τ)

≥ λ∗i · δi∗,t∗(τ − t∗)
λ∗i

= δi∗,t∗(τ − t∗)

(S16)

for ∀τ > t∗. However, we also know that δ < lim
τ→∞

τ
√
δi∗,t∗(τ), there exists T ∗ such that for

any τ ≥ T ∗, δ < τ
√
δi∗,t∗(τ), which contradicts (S16).

E.2 Strengthening Intergenerational Pareto

The premise of intergenerational Pareto requires the current generation and future genera-

tions to reach a consensus. A natural way to strengthen intergenerational Pareto may be to

require the planner to prefer one consumption sequence over another if more than a certain

fraction of current- and future-generation individuals agree.23 However, in this case, the way

that the planner aggregates individual preferences may be rather different from utilitarian

23This strengthening can certainly be applied to current-generation Pareto as well.
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aggregation.

Therefore, we strengthen intergenerational Pareto in the following simple way without

deviating from standard utilitarianism. Suppose T < +∞. Let I ⊂ N × T be an arbitrary

subset of individuals across generations. Let us weaken the premise of intergenerational

Pareto by requiring the planner to prefer a consumption sequence p to q whenever individuals

in I agree. Intergenerational Pareto and the strongly non-dictatorial property are adapted

as follows.

Definition 8 The planner’s preference (%t)t∈T is I-intergenerationally Pareto if for any

consumption sequences p,q ∈ ∆(X)T , in each period t ∈ T , p %i,s q for all (i, s) ∈ I with

s ≥ t implies p %t q, and p �i,s q for all (i, s) ∈ I with s ≥ t implies p �t q.

Definition 9 We say that the planner is I-strongly non-dictatorial if for each t ∈ T ,

Ut(p) = ft (U1,t(p), . . . , U1,T (p), U2,t(p), . . . , U2,T (p), . . . , UN,T (p))

for some function ft that is strictly increasing in Ui,s for any (i, s) ∈ I.

It is straightforward to show that under I-intergenerational Pareto, the planner’s utility

function can be written as a weighted sum of the utility functions of individuals in I. Below,

we show that under some assumption on I, positive results can still be established after

strengthening intergenerational Pareto.

The following example shows why we need the additional assumption. Suppose N = 2.

Individuals’ instantaneous utility functions, u1 and u2, are linearly independent. Suppose

I = {(2, 1), (1, 2)}; that is, the planner will give generation-1 individual 1 and the genertion-2

individual 2 zero weights. Then, the somewhat trivial negative result as in Example 1 appears

again. To see this, note that in period 1, the planner’s instantaneous utility function for

period-1 consumption has to be equal to u2, because only generation-1 individuals care about

period-1 consumption and the generation-1 individual 1 has been ignored. We have assumed
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that the planner has an exponential discounting utility function, in which her instantaneous

utility function never changes. Now, first, in period 1, the planner’s instantaneous utility

function for period-2 consumption is a strict convex combination of u1 and u2, which must

differ from u1; second, in period 2, following the same logic, the planner’s instantaneous

utility function for period-2 consumption has to be equal to u1, which is again different from

u1. Therefore, it is hopeless to derive any positive result.

The theorem below imposes a simple assumption to avoid the example above that leads

to the negative result, which turns out to be strong enough for us to establish a positive

result. For each t ∈ T , let It := {i ∈ N : (i, t) ∈ I} be the set of generation-t individuals

who may not be ignored by the planner, and let I :=
⋃
t∈T It.

Theorem 8 Suppose T < +∞, I ⊂ N ×T , and each generation-t individual i’s discounting

utility function has an instantaneous utility function ui ∈ {uθ}Θ
θ=1 for some linearly indepen-

dent Θ-tuple of instantaneous utility functions (uθ)Θ
θ=1, and has a discount function δi such

that (5) and (6) hold. Assume that co({ui}i∈It) remains constant across t. Let the planner’s

instantaneous utility function u be a strict convex combination of (ui)i∈It. Then,

1. For each δ > maxI δ
∗
i , the planner is I-intergenerationally Pareto and I-strongly non-

dictatorial;

2. For each δ < minI δ
∗
i , there exists some T

∗ > 0 such that if T ≥ T ∗, the planner is not

I-intergenerationally Pareto.

Proof. Part I For each θ ∈ Θ, let Iθ := {i ∈ N : ui = uθ} be a family, which is a set of

i’s whose instantaneous utility function is uθ. For each i ∈ N , let θ(i) be the number that

satisfies uθ(i) = ui. For each θ ∈ Θ and t ∈ T , let Iθt := {i ∈ Iθ : (i, t) ∈ I} be the set of

generation-t individuals who may not be ignored by the planner and have the instantaneous

utility function uθ, and let Iθ :=
⋃
t∈T I

θ
t .

We prove this part in four steps. First, we aggregate individuals in each Iθt into a new

“mega-family”θ. Each generation-t mega-family θ has instantaneous utility function uθ(·)
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and the following discount function

δθt (τ) =
1

|Iθt |
∑
i∈Iθt

δi(τ);

that is, if a generation-t individual i may not be ignored by the planner, then her discount

function δi(·) enters the mega-family θ’s generation-t discount function δθt (·) with an equal

weight as other generation-t individual(s) in Iθt . Note that the generation-t mega-family’s

discount function may change as t changes.

Next, we prove a lemma on single mega-family aggregation which is similar to Lemma 7.

Lemma 8 Fix a θ ∈ Θ and assume that individuals whose instantaneous utility function is

not uθ do not exist. Suppose T < +∞, and each generation-t mega-family θ’s discounting

utility function has an instantaneous utility function uθ(·) and a discount function δθt (·). Let

the planner’s instantaneous utility function be uθ(·). For any δ > maxi∈Iθ δ
∗
i , the planner is

intergenerationally Pareto and strongly non-dictatorial.

Proof. We want to show that for any δ > maxi∈Iθ δ
∗
i , there exists a finite sequence of

strictly positive numbers (ωθt (s))t∈T,s≥t such that

Ut(p) =
T∑
τ=t

δτ−tuθ(pτ ) =
T∑
s=t

ωθt (s)U
θ
s (p).

for each t ∈ T . Given any δ > maxi∈Iθ δ
∗
i , we can construct (ωθt (s))t∈T,s≥t according to the

following formula recursively:

ωθt (s) =


1, if s = t,
s−1∑
τ=t

[δ · δθτ (s− 1− τ)− δθτ (s− τ)]ωθt (τ), if s > t.
(S17)

Note that if δ > maxt maxτ
δθt (τ+1)

δθt (τ)
, then ωθt (s) > 0 for any s ≥ t and t ∈ T . We also
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know that

δθt (τ + 1)

δθt (τ)
=

∑
i∈Iθt

δi(τ + 1)∑
i∈Iθt

δi(τ)
=

∑
i∈Iθt

δi(τ) δi(τ+1)
δi(τ)∑

i∈Iθt
δi(τ)

≤
∑

i∈Iθt
δi(τ) maxi∈Iθt

δi(τ+1)
δi(τ)∑

i∈Iθt
δi(τ)

≤ max
i∈Iθt

δi(τ + 1)

δi(τ)
≤ max

i∈Iθt
δ∗i ≤ max

i∈Iθ
δ∗i .

Therefore, maxt maxτ
δθt (τ+1)

δθt (τ)
≤ maxi∈Iθ δ

∗
i . Hence, by assuming δ > maxi∈Iθ δ

∗
i , ω

θ
t (s) > 0

for any s ≥ t and t ∈ T . The rest of the proof is the same as in Lemma 7.

Thus, for any social discount factor δ > maxθ∈Θ maxi∈Iθ δ
∗
i , we can find (ωθt (s))t∈T,θ∈Θ,s≥t

such that
T∑
s=t

ωθt (s)U
θ
s (p) =

T∑
τ=t

δτ−tuθ(pτ )

for each θ ∈ Θ. Consider any strictly positive numbers (λθ)Θ
θ=1 such that

∑Θ
θ=1 λ

θ = 1. To-

gether with the weights (ωθt (s))t∈T,θ∈Θ,s≥t we have found above, the planner’s utility function

becomes

Ut(p) =
∑
θ∈Θ

T∑
s=t

λθωθt (s)U
θ
s (p) =

∑
θ∈Θ

T∑
τ=t

λθδτ−tuθ(pτ )

=
T∑
τ=t

δτ−t
∑
θ∈Θ

λθuθ(pτ ) =
T∑
τ=t

δτ−tu(pτ ),

(S18)

in which u(pτ ) =
∑

θ∈Θ λ
θuθ(pτ ) can be any strictly convex combination of (uθ)θ∈Θ.

Lastly, we back out the set of weights (ωt(i, s))t∈T,i∈N,s≥t and show that the planner has

an exponential discounting expected utility function, is I-intergenerationally Pareto, and is

I-strongly non-dictatorial under these weights. We construct (ωt(i, s))t∈T,i∈N,s≥t according

to the following formula:

ωt(i, s) =

 0, if (i, s) /∈ I,

λθ 1
|Iθs |
ωθt (s) > 0, if (i, s) ∈ I.
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Then,

T∑
s=t

N∑
i=1

ωt(i, s)Ui,s(p) =

T∑
s=t

N∑
i=1

ωt(i, s)

T∑
τ=s

δi(τ − s)ui(pτ )

=
T∑
s=t

∑
θ∈Θ

∑
i∈Iθs

λθ
1

|Iθs |
ωθt (s)

T∑
τ=s

δi(τ − s)ui(pτ )

=

T∑
s=t

∑
θ∈Θ

λθωθt (s)

T∑
τ=s

∑
i∈Iθs

1

|Iθs |
δi(τ − s)ui(pτ )

=
T∑
s=t

∑
θ∈Θ

λθωθt (s)

T∑
τ=s

δθs(τ − s)uθ(pτ )

=
T∑
s=t

∑
θ∈Θ

λθωθt (s)U
θ
s (p) = Ut(p) =

T∑
τ=t

δτ−tu(pτ ).

The first equality follows from the definition of Ui,s. The second equality follows the con-

struction of (ωt(i, s))t∈T,i∈N,s≥t. The fourth equality follows the construction of δ
θ
s(·), The

fifth equality follows from the definition of U θ
s . The last two equalities follow equation (S18).

Part IIWe prove by contradiction. Suppose there exists an I-intergenerationally Pareto

planner with social discount factor δ < mini∈I δ
∗
i . By I-intergenerationally Pareto, there

exists a finite sequence of positive weights (ωt(i, s))t∈T,i∈N,s≥t such that the following equality

holds:

δτ−tu(pτ ) =
τ∑
s=t

∑
i∈Is

ωt(i, s)δi(τ − s)ui(pτ ) (S19)

for each t ∈ T and τ ≥ t. Combining equation (S19) with the normalization assumption,

δτ−t =

τ∑
s=t

∑
i∈Is

ωt(i, s)δi(τ − s) ≥
∑
i∈It

ωt(i, s)δi(τ − s) (S20)

for each t ∈ T and τ ≥ t.

Without loss of generality, we assume δ∗i∗ = mini∈I δ
∗. The following two claims must

hold:

1. i∗ ∈ I; that is, there exists t∗ ∈ T such that i∗ ∈ It∗;
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2. there exists T1 such that for any τ ≥ max{T1, t
∗}, δi∗(τ − t∗) ≤ δi(τ − t∗) for any i ∈ I.

Consider the period-t∗ planner. Let t = t∗ in equation (S20), and suppose τ ≥ max{T1, t
∗}.

We have

δτ−t
∗

=
τ∑

s=t∗

∑
i∈Is

ωt∗(i, s)δi(τ − s) ≥
∑
i∈I∗t

ωt∗(i, t
∗)δi(τ − t∗)

≥
∑
i∈I∗t

ωt∗(i, t
∗)δi∗(τ − t∗) ≥ δi∗(τ − t∗)

However, we know that δ < δ∗i∗. Then, there exists T2 such that for any τ ≥ T2, δ < τ
√
δ∗i∗.

Therefore, if T ≥ max{T1, T2, t
∗}, there must be a contradiction.

This theorem seems different from our previous results that only have one cutoff for the

social discount factor, but in fact it has a one-cutoff version that is similar to our previous

positive results. However, the expression of the cutoffwill become rather complicated.24 The

current version is easier to understand, and clearly shows that if the social discount factor

is higher than the highest long-run discount factor among individuals who are not ignored

in some generation, then again we know that the planner is intergenerationally Pareto and

strongly non-dictatorial. Again, this is not the only way to establish positive results. If the

planner’s instantaneous utility function is allowed to vary in a general way by taking the

form of ut(·, τ), then the additional assumption we need can be weaker.

E.3 Utilitarianism and Long-Run Social Discounting

The main question of this paper is that if a planner has an exponential discounting util-

ity function, under what conditions she is intergenerationally Pareto and strongly non-

dictatorial. The fact that an intergenerationally Pareto planner has an exponential dis-

counting utility function certainly imposes restrictions on how the planner may aggregate

individual preferences. On the one hand, economists often assume that a planner has an

exponential discounting utility function, and there are many reasons to believe why this is
24The cutoff for the social discount factor in the one-cutoff version should take the maxmimum across

types and periods, and then for each type in each period, take the minimum individual long-run discount
factor across all individuals who have the desired type and are not ignored in that period.
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normatively appealing. Therefore, understanding the answer to our main question is impor-

tant.

On the other hand, there are other ways to examine the planner’s aggregation problem.

For example, sometimes economists may believe that the planner’s utility function should

be equal to the simple average of individuals’discounting utility functions. Because it is

unlikely that the planner’s discount function is exponential in this case, a choice on what

to assume for the planner has to be made. A natural question is that if now we want to

allow the planner to aggregate individual preferences in a flexible way– we only require the

planner to be intergenerationally Pareto and strongly non-dictatorial and do not require her

utility function to be an exponential discounting utility function– what insight from our main

findings remains true? The following result shows that under this different requirement, the

planner’s “discount factor”should still be higher than the most patient individual’s long-run

discount factor.

Theorem 9 Suppose T = +∞, and each generation-t individual i’s discounting utility func-

tion has an instantaneous utility function ui and a discount function δi such that (5) and (6)

hold. Let (ωt(i, s))i∈N,s≥t be a sequence of absolutely summable real numbers for each t ∈ T

such that in each period t, (i) the planner’s utility function is Ut =
∑N

i=1

∑∞
s=t ωt(i, s)Ui,s =∑∞

τ=t δt(τ − t)ut(pτ , τ) for some discount functions δt and (normalized) instantaneous util-

ity functions ut(·, τ)’s and (ii) the planner’s long-run discount factor δ∗t = lim
τ→∞

δt(τ+1)
δt(τ)

=

lim
τ→∞

τ
√
δt(τ) exists. If the planner is intergenerationally Pareto and strongly non-dictatorial,

then δ∗t ≥ maxi δ
∗
i .

Proof. Since Ut =
∑N

i=1

∑∞
s=t ωt(i, s)Ui,s, we know that

δt(τ − t)ut(pτ , τ) =
N∑
i=1

τ∑
s=t

ωt(i, s)δi(τ − s)ui(pτ ) (S21)
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for any t ∈ T and τ ≥ t. Let pτ = x∗ in equation (S21). We have

δt(τ − t) =
N∑
i=1

τ∑
s=t

ωt(i, s)δi(τ − s) ≥
∑

ωt(i, t)δi(τ − t) ≥ ωt(i
∗, t)δi∗(τ − t), (S22)

in which i∗ := arg maxi δ
∗
i . Let τ in (S22) go to infinity. We have δ

∗
t ≥ maxi δ

∗
i .

Thus, if the planner is intergenerationally Pareto and strongly non-dictatorial, then her

long-run discount factor should again be higher than the most patient individual’s long-run

discount factor.
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