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Abstract

Most research on labor market effects of the Mahatma Gandhi National Rural Employ-
ment Guarantee Scheme focuses on outcomes at the district level. This paper shows
that such a focus masks substantial spatial heterogeneity: treated villages located near
untreated areas see smaller increases in casual wages than treated villages located far-
ther from untreated areas. I argue that worker mobility, rather than spatial differences
in implementation or program leakages, drives this spatial heterogeneity. I also present
evidence that the effects of the program on private-sector employment display simi-
lar intra-district heterogeneity. Finally, by exploiting the difference in wage changes
over space, I show that a large portion of consumption increases are driven by wage
increases, not program employment. Overall, these results suggest that a district-level
focus underestimates the true effect of the program on wages and also support the ar-
gument that increasing rural wages is an effective poverty-fighting tool in developing
countries.
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1 Introduction

India’s Mahatma Gandhi National Rural Employment Guarantee Scheme (NREGS)1, which

was launched in 2006 and is now rolled out throughout the country, is the largest public

works program in the world. In fiscal year 2015/16, the program generated more than two

billion persondays of labor and amounted to more than two percent of the federal govern-

ment budget.2 Given the program’s size, it is perhaps unsurprising that it has spawned a

vast body of literature.

The program was phased in over three rounds, starting in 2006. However, this rollout was

not randomized; the poorest districts were generally the first to receive the program. As

such, while the phased rollout makes differences-in-differences attractive, the systematic

differences in district characteristics make the identification assumption of parallel trends

somewhat tenuous (Zimmermann, 2012; Sukhtankar, 2016). In addition, it is not clear what

treatment effect estimates averaged over the entire country measure, as implementation of

the program varies substantially from state to state and even from district to district (Liu

and Barrett, 2012; Ravallion et al., 2013; Dutta et al., 2014; Banerjee et al., 2015; Imbert

and Papp, 2015). In reality, these estimates are the net effect of the program, inclusive of

implementation efficacy (Sukhtankar, 2016).

Despite these difficulties, a growing body of literature has analyzed the performance

and far-reaching effects of the program. This includes education (Afridi et al., 2012; Li

and Sekhri, 2013; Shah and Steinberg, 2015), nutrition and consumption/income (Liu and

Deininger, 2010; Jha et al., 2011; Ravi and Engler, 2015), and corruption (Imbert and Papp,

2011; Niehaus and Sukhtankar, 2013; Banerjee et al., 2015; Muralidharan et al., 2016a).

1The program was originally passed as the National Rural Employment Guarantee Act in 2005 and imple-
mented as the scheme starting in 2006. The program was renamed in 2009, but I use the old acronym
throughout this paper.

2Figures are from http://nrega.nic.in/, the official program website.

2



Merfeld Spatially Heterogeneous Effects of a Public Works Program

However, given the aims and scope of the program, much of the literature has focused

on its labor market effects. While findings vary, there is broad agreement agreement with

one basic fact: the program led to a modest increase in prevailing casual wages in rural

India (Azam, 2012; Berg et al., 2014; Imbert and Papp, 2015; Muralidharan et al., 2016b;

Sukhtankar, 2016).3

In addition to a common finding, much of the literature examining the effects of the

program’s rollout on labor market outcomes shares another characteristic: it analyzes the

effects of the program at the district level (Azam, 2012; Zimmermann, 2012; Berg et al.,

2014; Imbert and Papp, 2015). This level of analysis is attractive for two reasons. First,

the program was rolled out at the district level. Second, given low levels of rural-to-rural

migration in India (Rosenzweig, 1988; Behrman, 1999; Anant et al., 2006; Munshi and

Rosenzweig, 2009), districts are often considered to be relatively distinct labor markets.

Empirical work in India has long focused on districts, especially for labor-market out-

comes; for non-NREGS examples, see, for example, Rosenzweig (1978, 1984), Jayachan-

dran (2006), Topalova (2010), Kaur (2014), and Shah and Steinberg (2017).

In this paper, I show that a district-level focus obscures substantial heterogeneity, with

important policy implications. I use the Additional Rural Incomes Survey/Rural Economic

Demographic Survey (ARIS/REDS), collected by the National Council of Applied Eco-

nomics Research, to show that wage changes due to the program are spatially heteroge-

neous. The first wave of the survey was collected prior to the implementation of NREGS

and the second wave was collected between the second and third phases on the rollout.

Importantly, unlike other datasets, I am able to identify the location of each village in the

survey using GPS data. For each district, I construct two geospatial variables: whether

phase one or phase two districts (“treated” districts) share a border with phase three dis-

3In this context, “casual wages” refer to wages in daily markets for labor. The duration of this type of contract
is generally only a day and the contract carries no expectation or promise of future work.
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tricts (“untreated” districts), and vice versa; and how long that border is. For districts that

border a district of the opposite treatment status (“border districts”), I construct a variable

for surveyed villages equal to their distance to the nearest district of the opposite treatment

status.

With these variables, I first document differences in households within districts. In line

with previous NREGS studies, phase one and two districts had much lower wage rates

prior to implementation of the program than phase three districts (Zimmermann, 2012;

Imbert and Papp, 2015). However, this difference attenuates within 9 kilometers of the

border between treated and untreated districts; in other words, districts on either side of

the border are more similar to one another than the average treated and untreated village. I

then estimate the effects of NREGS by slowly restricting estimation to villages closer and

closer to the border. While there are large effects on casual wages when all households

are included in the estimation, the estimated effect starts to attenuate around 15 kilometers

from the border between a treated and untreated district and the estimated effect completely

disappears when looking only at households located within six kilometers of the border. In

addition, this attenuation begins earlier and is stronger for male wages than for female

wages, consistent with a model in which women face higher travel costs—which may not

be strictly monetary—than men.

I then further explore whether this heterogeneity is due to failure of the identification as-

sumption of parallel pre-program trends, differences in NREGS implementation, or spillovers.

While data issues prevent me from explicitly testing the identification assumption using

the ARIS/REDS data, I present graphical evidence that pre-program trends, from 1982 to

1999, are unlikely to be responsible for the results. In addition, an analysis of aggregated

district-level data using the National Sample Survey shows that treated districts that share

a larger portion of their border with untreated districts see a smaller increase in the wage
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than treated districts that share a smaller portion of their border with treated districts, a

finding which supports results using the ARIS/REDS. Moreover, while this effect is seen

using the pre- and post-program data, there is no such effect when using two pre-program

waves, which supports the assumption of parallel trends in treated and untreated districts,

at least with regards to spatial heterogeneity.

I then offer several other pieces of evidence to explore the source of this heterogeneity.

First, NREGS implementation apparently does not differ by distance to border; a number

of NREGS variables from 2012-2013—including number of days of employment created

and total labor expenditures—are uncorrelated with the distance variable. Second, I show

that this pattern is only seen in border districts. If districts in different phases were on

different trends prior to the program or if households located in different locations within

a district were trending differentially—for example due to differences in implementation

due to geographic location—we should see an attenuation in the effect for non-border dis-

tricts, as well. However, there is no attenuation in the estimated impact of the program in

these districts. Then, I show that program leakages do not appear to explain the attenua-

tion.4 Finally, I show that untreated households living close to the border commute longer

distances to casual non-farm employment. I interpret this as evidence of a type of “wage

arbitrage”—workers moving to higher-wage opportunities—with the eventual result being

a smaller increase of the casual wage in border villages of treated districts. The spillover ef-

fect apparently operates in the direction of treated districts; laborers from untreated districts

travel into treated districts in response to the program.

I find insignificant—though somewhat large and imprecisely estimated—overall effects

of the program on private-sector employment. The finding is consistent with other studies

that have found evidence NREGS crowds out some types of private employment (Zimmer-

4In this context, I define the possibility that untreated villages had access to NREGS as leakages.
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mann, 2012; Imbert and Papp, 2015; Merfeld, 2017).5 However, this finding again masks

substantial heterogeneity: the effects on private employment appear to mirror the effects on

wages, with interior areas seeing decreases in private employment relative to border areas.

Finally, I examine the effects of the program on household per capita income. Interest-

ingly, the effects again appear to be highly correlated with the wage increase: estimated

increases in household income towards the interior of treated districts almost completely

disappear at the border. While most previous research on the effects of NREGS on con-

sumption or income (Liu and Deininger, 2010; Jha et al., 2011; Ravi and Engler, 2015)

necessarily calculates the total effects of the program—that is, the net effect of both access

to employment and an increase in the prevailing wage rate—I am able to disentangle these

effects. Using the fact that wages are unchanged at the border, I assume that any effects

on income at the border are due to access to program employment—not a wage increase—

while effects in the interior of treated districts are due to both. While imprecision prevents

me from calculating the exact percent of the consumption increase that is due to the wage

increase, results suggest it is substantial. This estimate supports recent experimental esti-

mates that the majority of program effects operate through wage increases (Muralidharan

et al., 2016b).

This paper contributes to three separate bodies of literature. First, I provide further ev-

idence of the broad labor-market impacts of NREGS (Azam, 2012; Zimmermann, 2012;

Berg et al., 2014; Imbert and Papp, 2015; Muralidharan et al., 2016b) as well as pub-

lic works programs, more generally (see, e.g., Subbarao et al. (2003) and Beegle et al.

(2017)). However, unlike most previous studies, I am able to explore the spatially hetero-

geneous impacts of the rollout of the program. Consistent with the literature, I find overall

increases in the wage rate. However, I also find that the estimated increase disappears at

5While this result is expected in competitive markets, the theoretical result is ambiguous under non-
competitive markets (Basu et al., 2009).
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the border with untreated districts. In addition, increases in the prevailing wage apparently

explain a substantial portion of overall effects on household income. This finding suggests

that increasing the wage rate in rural areas may be an effective tool in the fight against

poverty. Finally, the importance of wage increases may help explain the results of recent

studies that find few effects of public works programs (Beegle et al., 2017), since many of

these programs may be too small to have appreciable effects on prevailing wages.

In addition, some previous research finds that NREGS had a larger impact on female

wages than male wages (Azam, 2012). This study presents evidence that men are more

mobile than women and that the effect on male wages attenuates sooner than the effect on

female wages. It true, district-level difference-in-differences estimates of the effect on male

wages may be underestimating the true impact of the program more than the estimates of

the effect on female wages, explaining part of the gender effects.

Second, this study sheds some light on the functioning of labor markets in India (Jay-

achandran, 2006; Kaur, 2014). While spot markets for casual labor in India are generally

assumed to work relatively well (Rosenzweig, 1980), it is unlikely that markets are com-

plete (Rosenzweig, 1988; Behrman, 1999). These results suggest that labor is somewhat

mobile, albeit within a relatively small radius of around 15 kilometers. In addition, while

the minimum wage is unlikely to bind or be enforced in many developing country contexts

(Behrman, 1999), NREGS appears to operate as a de facto minimum wage, increasing the

bargaining power of casual laborers (Basu et al., 2009).

Finally, I contribute to the literature on treatment effects and spillovers of public policy

interventions in developing countries (Duflo, 2000; Miguel and Kremer, 2004; Angelucci

and De Giorgi, 2009; Cunha et al., 2011). In particular, this study reinforces the impor-

tance of capturing general equilibrium effects when evaluating large public programs and

that failure to do so may result in biased estimates of the program’s impact (Muralidharan
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et al., 2016b). In addition, the focus on the district-level effects of NREGS theoretically

underestimates the true effect of the program in two ways: the wage in untreated districts

increases more in areas closer to treated districts than in areas farther from treated districts,

while the wage in treated districts increases less in areas closer to untreated districts than in

areas farther from untreated districts. The treatment effect we are interested in is the effect

of the program on wages absent spillovers since the program will be expanded throughout

the country. Yet, a district-level focus overestimates the counterfactual wage in untreated

districts and underestimates the wage in treated districts, although the latter effect appar-

ently dominates in the present study. These two facts lead to an underestimate of the true

wage effect of the program.6 With this in mind and insofar as increasing rural wages is

an explicit goal of policymakers, NREGS may have been more effective than previously

estimated.

The closest paper to this one is Muralidharan et al. (2016b), who study the randomized

rollout of an improvement in the implementation of NREGS. They find similar spatial ef-

fects and at similar distances. Their paper is different in two important respects. First, their

randomized intervention provides a cleaner identification strategy and cleaner estimates

of the intervention’s impacts. However, they randomize improvements only in Andhra

Pradesh. Since Andhra Pradesh consistently performs better than other states in implemen-

tation of NREGS (Banerjee et al., 2015; Imbert and Papp, 2015), it is not clear whether

their findings would translate to other Indian states. Second, they do not study the imple-

mentation of the program itself. Rather, they estimate the effects of a technological reform

that improved implementation of the program. This study, on the other hand, examines the

effects of the program when it is first rolled out. Given these differences, one might expect

6While I refer to the effect “disappearing” at the border, it is important to keep in mind that the program has
very real effects at the border. In particular, the wage in both treated and untreated districts increases. As
such, it is not so much that the effect disappears; rather, the identification strategy results in an underestimate
of the actual effect of the program.
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findings to differ. However, the results presented in this paper also suffer from one major

limitation: they are imprecisely estimated and much larger than previous estimates of the

program’s impacts. Nonetheless, the pattern is clear and the overall findings from both

studies are largely similar, suggesting that the effects found in both studies are driven by

mechanisms common to all of India and not specific to Andhra Pradesh. I argue that labor

mobility is one such mechanism.

The rest of the paper is organized as follows. In the next section, I describe the operation

of NREGS. Section 3 develops a simple model to explain possible heterogeneity in the

effect of NREGS on wages. I discuss the methods and data in Section 4 before moving to

results in Section 5. Section 6 concludes.

2 The Program

The Mahatma Gandhi National Rural Employment Guarantee Act was passed in 2005 after

“more than a decade of sustained high growth in GDP... was perceived not to have made a

sufficient dent in poverty in the rural India” (Azam, 2012, p. 1). The program guarantees up

to 100 days of employment to any rural household that requests it. Employment is varied,

but is generally focused on improving productivity in rural areas by building infrastructure,

including irrigation, roads, and land improvements (Liu and Deininger, 2010). Unlike

previous workfare programs, NREGS is explicitly designed as an employment guarantee;

a household has the right to demand—and receive—employment. However, in practice,

supply-side constraints are often binding, resulting in substantial unmet demand (Ravallion

et al., 2013; Dutta et al., 2014; Mukhopadhyay et al., 2015).

In order to demand employment, households must first apply for a job card. The house-

hold applies for the card at the local Gram Panchayat (GP)7 and the card includes a picture
7The Gram Panchayat is the lowest level of administration in the Indian federal structure and generally con-
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of every household member eligible for the program. With this card in hand, household

members can request employment. According to the design of the program, individuals re-

quest work from their local GP, and the legislation stipulates that work be assigned within

five kilometers of the individual’s place of residence, otherwise a travel stipend is to be

provided (Azam, 2012). If individuals do no receive employment within 15 days of re-

questing it, they are eligible for unemployment allowance. However, underreporting of

unemployment is common and unemployment compensation is rare (Sharma, 2009).

The program’s design begets a relatively complicated funding structure. The federal

government is responsible for all unskilled wages and 75% of skilled wages and materials,

while states are responsible for the remaining 25% (Azam, 2012). As such, funding flows

from the federal government to the state before being dispersed through lower administra-

tive levels and eventually to the GP’s account, while funding requests from GPs to the state

also flow through two separate administrative levels (Banerjee et al., 2015).8

Several specific features of the program are worth noting. First, the minimum wages set

by the program9 are self-targeting and are relatively low (and the labor relatively difficult)

so that only needy households will apply for employment. Nonetheless, program wages

vary from state to state, and some wages were set above prevailing wage rates at the start of

the program. In some cases, program wages were more than double the prevailing wage rate

at the time, especially for women.10 Second, the program guarantees equal wages to both

men and women and also mandates that a certain number of beneficiaries be women.11 In

sists of several villages.
8GPs request funding from the block, which is one administrative level above the GP. Subsequently, the
block forwards requests to the district, which then requests funding from the state pool. Banerjee et al.
(2015) provide an excellent overview of this process.

9The original legislation allows the states to define the program wage, as long as it is above the legislated
minimum.

10http://www.levyinstitute.org/pubs/EFFE/Mehrotra_Rio_May9_08.pdf
11The legislation state that “priority shall be given to women in such a way that at least one-third of the

beneficiaries shall be women who have registered and requested for work under this Act” (Ministry of Law
and Justice, 2005, p. 14).
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addition, childcare at worksites is required so that mothers with young children can partic-

ipate in the program. However, many worksites do not adhere to this childcare requirement

(Khawlneikim and Mital, 2016; Khera and Nayak, 2009; Reddy and Upendranadh, 2010;

Sharma, 2009).

Given the demand-driven nature of the program, implementation is relatively decentral-

ized, with employment and worksites started and administered by the GP. While the GP

is the basis for employment generation, the program was rolled out at the district level,

in three phases. Districts in the first phase received the program in 2006, districts in the

second phase received the program in 2007, and districts in the third phase received the

program in 2008. Given the phased rollout, the majority of research on the labor-market

effects of NREGS utilize differences-in-differences. However, the rollout was not random-

ized. Rather, the Indian government assigned districts to phases based on a government-

constructed rating, which resulted in the poorest districts generally receiving the program

first (Zimmermann, 2012). While the rating used to assign districts to phases is not publicly

available, underlying data used in the construction of this rating are available in the 2003

report from the Planning Commission (Planning Commission, 2003; cited in Zimmerman,

2012). These ratings show that earlier phase districts tended to be poorer and have more

scheduled castes/tribes, lower agricultural productivity, and lower wages. As such, there are

concerns regarding the identification assumption of differences-in-differences, that treated

districts and untreated districts had identical labor-market trends prior to implementation

of the program.

3 Model

Before discussing the data and methods, I present a simple model of the program’s effects.

Much of the model below is borrowed from Imbert and Papp (2015), but with the addition
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of household types and travel costs. There are two types of households, denoted by super-

scripts j = 1, 0, where 1 denotes a household with access to NREGS (“treated” household)

and 0 denotes a household without access to NREGS (“untreated” household). For treated

and untreated households, the total labor endowment, T̄ , consists of leisure and total labor

supplied. For treated households, total labor supplied includes labor supplied to the mar-

ket, L1,T
i ; labor supplied to household production, L1,f

i ; NREGS labor, L̄1,N ; and leisure,

l1i . Thus, the total labor endowment is given by T = L1,T
i + L1,f

i + L̄1,N + l1i , and labor

allocation is allowed to vary by households i.

Treated and untreated households are assumed to reside in separate locations, and, as

such, can face separate equilibrium wages, denoted wj . However, in this model, I assume

wages are the same in the pre-program period12 and both treated and untreated house-

holds in the pre-program period resemble untreated households in the post-program period.

Treated households have access to rationed NREGS labor, L̄1,N , and treated households al-

locate labor up to the rationed level. I model NREGS labor this way since actual labor is

supplied well below the program maximum of 100 days due to rationing, which is common

(Ravallion et al., 2013; Dutta et al., 2014; Mukhopadhyay et al., 2015). Treated households

also engage in home production, with total labor demanded including both household la-

bor, L1,f
i and hired labor, L1,h

i . Households are assumed to maximize a utility function with

respect to both consumption, x1i , and leisure. The problem for treated households is thus

max
x1
i ,L

1,f
i ,L1,T

i ,L1,h
i

u
(
x1i , l

1
i

)
(1)

12This is an assumption which greatly simplifies the model. Since I empirically estimate effects using
differences-in-differences estimates, allowing the wage to differ in the pre-program period has no effect
on the hypothesized change in wages.
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subject to

x1i ≤ Aif(L1,f
i + L1,h

i ) − wTL1,h
i + wTL1,T

i + w1L̄1,N

T = L1,T
i + L1,f

i + L̄1,N + l1i ,

where w1 is the NREGS wage rate, exogenously fixed by the state government. Finally,

f(·) is the household production function, which satisfies the usual assumptions—f ′(·) > 0

and f ′′(·) < 0—household and hired labor are assumed to be perfectly substitutable, and

Ai is a productivity factor, which differs by household. Without the addition of untreated

households and as shown by Imbert and Papp (2015), households with high Ai will be net

demanders of labor and households with low Ai will be net suppliers of labor. In addition,

an increase of NREGS employment, L1,N , increases the prevailing wage rate, wT , and

decreases private-sector employment.

Let us now consider the addition of untreated households, which do not have access

to NREGS labor. However, untreated households are able to travel to the treated area

to engage in casual work. Travel is costly, with costs ci(di), where di is distance. In

addition, costs are increasing in distance: c′i(·) > 0. Without loss of generality, assume

all untreated households reside in the same location and face the same travel costs, so that

ci(di) = c(d). Thus, the total labor endowment for untreated households includes labor

supplied to the market in untreated areas, L0,U
i ; labor supplied to the market in treated

areas, L0,T
i ; labor supplied to household production, L0,f

i ; and leisure, l0i . The problem for

untreated households is

max
x0
i ,L

0,f
i ,L0,U

i ,L0,T
i ,L0,h

i

u
(
x0i , l

0
i

)
(2)
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subject to

x0i = Aif(L0,f
i + L0,h

i ) − w0L0,h
i + w0L0,U

i +
(
w1 − c(d)

)
L0,T
i

T = L0,T
i + L0,U

i + L0,f
i + l0i .

Note that the wage an untreated household receives for casual labor in the treated area is

given by the net of actual wage minus travel costs, or wT1c(d).

To solve this problem, it is sufficient to examine the first-order conditions of untreated

households. In the model above, the wage will be strictly higher in treated districts with

no travel. As such, even if I allowed for the allocation of labor by treated households in

untreated districts, no households would allocate positive amounts of labor. As such, any

equilibrium will be driven only by movements of untreated households.13

Intuitively, untreated households will allocate labor to casual labor in treated areas such

that the wage rate in treated areas is higher than the wage rate in untreated areas by exactly

the travel cost, c(d). In other words, with no labor market frictions other than travel costs,

labor is allocated to the point that w1 = w0 + c(d). To see this, first note that untreated

households will equate their marginal utility of working in untreated and treated areas.

For example, suppose the equality does not hold, and w1 > w0 + c(d). Then, untreated

households will reallocate labor from the untreated area to the treated area in order to equate

marginal utilities across labor types. This reallocation increases labor supply in treated

areas, decreasing the wage, and decreases labor supply in untreated areas, increasing the

wage. This continues untilw1 = w0+c(d). On the other hand, suppose thatw1 < w0+c(d)

and that untreated households are allocating at least some labor to casual work in the treated

area. Then, untreated households can reallocate labor from the treated area to the untreated
13This is another simplifying assumption. Given that the empirical strategy relies on an examination of

changes over time, this assumption does not affect the direction of the change; the hypothesized direction
of the change is unaffected even if we assume there is travel in the pre-program equilibrium.
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area. This reallocation will cease only when w1 = w0 + c(d).

From this equality follow four predictions. First, ∂w1

∂d
> 0. In other words, the closer the

treated area is to an untreated area, the lower the wage in the treated area will be. Similarly,

the farther the treated area is from an untreated area, the higher the wage will be. Second,

∂w0

∂d
< 0: the wage in untreated areas will be higher the closer the untreated area is to the

treated area, as more untreated labor flows out of the untreated area, raising wages. From

these facts, it follows that treated villages close to the border with untreated districts will

have lower wage increases than treated villages farther from the border. Similarly, the wage

will increase relatively more in untreated areas closer to the border with treated districts

than in untreated areas farther from the border. Third, note that this equality no longer

holds in treated areas far enough from untreated areas. In particular, if w1 < w0 + c(d)

when
∫
i
L0,T
i di = 0—that is, when no untreated households are allocating labor to work

in treated households—then no travel takes place and w1 is permanently higher than w0.

This implies that ∂w1

∂d
= 0 for d sufficiently large. Finally, it is easy to see that decreasing

(increasing) travel costs will close (widen) the wage gap between treated and untreated

areas. While the model assumes travel costs are monetary, this does not need to be the

case. For example, women are assumed to be less mobile than men in India (Khera and

Nayak, 2009). One possible reason is that women are responsible for childcare. As such,

travel may impose non-monetary costs on women, leading to an increase in the wage gap

between treated and untreated areas for women relative to men, holding distance constant.

4 Data and Methods

To analyze the effects of NREGS, I mainly use the Additional Rural Incomes Survey/Rural

Economic Demographic Survey (ARIS/REDS), collected by the National Council of Ap-

plied Economic Research. The ARIS/REDS is a panel survey that has been conducted peri-
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odically since 1969.14 When first collected, the data was nationally representative, although

it oversampled high-income households and areas suitable to green-revolution crops. How-

ever, with recent changes in demographics and administration, the data are no longer rep-

resentative of the entire country (Foster and Rosenzweig, 2010). As such, I interpret the

results as representative of overall spatial patterns—including ratios of magnitudes—but

not as representative of the actual magnitude of effects. I use the fifth and sixth rounds of

the survey—collected in 1999 and 2008, respectively—for my main analyses. I also use

the 1982 round to explore pre-NREGS trends in the spatial heterogeneity of wages.

Since the second wave of data I use (2008) was collected after implementation of the first

two NREGS phases but before implementation of the third phase, I refer to phase one and

phase two districts as “treated” districts and phase three districts as “untreated” districts.

Figure 1 provides an overview of the phased rollout of NREGS along with the location of

ARIS/REDS villages. There is a lot of geographic variation in the location of surveyed

villages, with all of the major Indian states covered except Jammu and Kashmir. Since

the main strategy of this paper is to compare villages near borders of treated and untreated

districts, it is instructive to look at the geographic variation in this specific characteristic.

In particular, there appears to be a relatively dense concentration of villages near treated

and untreated districts and the southern and central regions. On the other hand, treated

villages far from untreated districts tend to be located in the eastern half of the country,

while untreated villages far from treated districts tend to be in the northwestern region of

the country.

14In all analyses in this paper, I do not use the panel nature of the data. Rather, I treat both waves as repeated
cross-sections.

16



Merfeld Spatially Heterogeneous Effects of a Public Works Program

4.1 Methods

I estimate regressions of the form

yidt = α0 + α1NREGSd + α2Postt + α3NREGSd × Postt

+ δXidt + φHidt + γDd + βZidt + εidt,

(3)

where yidt is the outcome of interest for individual (or household)15 i in district d in wave

t; NREGSd is an indicator variable equal to one if the district is a treated (phase-one

or phase-two) district; Postt is an indicator variable for observations in the second wave,

2008; Xidt is a vector of time-variant individual controls; Hidt is a vector of time-variant

household controls; Ddt is a vector of district controls; Zidt is rainfall in each year, mea-

sured in standard deviations from the mean (z-score), calculated separately for each house-

hold; and εidt is a conditional mean-zero error term. Much of the previous literature has

employed district-level fixed effects in estimation. Unfortunately, due to sample sizes—

especially after restricting estimation to those living only a certain distance from borders—

using district fixed effects results in overly sensitive estimates and even more imprecisely

estimated effects than without their inclusion. As such, I am unable to implement the above

strategy with district fixed effects. This may explain part of the difference in magnitudes

between the present results and previous literature.

An alternative strategy would be to estimate the effects of the program using different

windows of distances from the border. For example, comparing households between 40

and 50 kilometers of the border, then households between 35 and 45 kilometers of the

border, etc., all the way down to within six kilometers of the border. However, this strategy

suffers from the same limitation as district fixed effects: the sample size is not large enough

15The main analyses around wages and private-sector employment use the individual as the unit of analysis
but the regressions focusing on household consumption use the household as the relevant unit of analysis.
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and the resulting estimates are imprecise and sensitive.

The coefficient of interest is α3, which gives the difference-in-differences estimate of the

effect of NREGS on outcomes. This coefficient captures the difference, across treatment

status, in changes of each outcome at the district level. This implies a very specific as-

sumption required for unbiased estimates of the effect of NREGS: the trends, across time,

of outcomes in treated and untreated districts are identical in the absence of the program.

In other words, if treated districts had not received the program, then treated and untreated

districts would have had the same change, from 1999 to 2008, in each of the outcomes. I

discuss possible failure of this assumption of difference-in-differences in the results sec-

tion. Finally, given that outcomes are likely serially correlated over time, I cluster standard

errors at the district level to allow for arbitrary correlation across both waves of the survey

(Bertrand et al., 2004).

The second prediction from the model in Section 3 is that wages in untreated areas near

the border with treated areas will increase more than wages in untreated areas farther from

border. Unfortunately, there is no clear comparison group for estimating differences-in-

differences. As such, I also estimate an alternative specification. I drop the interaction

between post and NREGS and include instead an interaction between post and distance to

border as well as between post and an indicator variable for whether the observation is more

than six kilometers to the border. I estimate this separately for NREGS and non-NREGS

districts. In essence, this specification is comparing the change in wages within NREGS

districts and within non-NREGS districts (last two columns) separately. This specification

is
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yidt = α0 + α1disti + α2Postt + α3disti × Postt

+ δXidt + φHidt + γDd + βZidt + εidt,

(4)

where disti is the distance variable, either distance to border or an indicator variable

equal to one if the observation resides more than six kilometers from the border, and the

other variables are defined as in (3).

Unfortunately, I am not able to empirically estimate pre-program trends with the ARIS/REDS

data. In order to explore pre-program trends, I turn instead to data from the National Sam-

ple Survey (NSS), which is a nationally representative survey conducted by the Ministry

of Statistics and Programme Implementation.16 Since these data are only aggregated to the

district level, I am unable to measure distances to border for each village. Instead, I con-

struct a variable defined as the percentage of each district’s border shared with a district of

the opposite treatment status. In other words, for treated districts, I measure the total bor-

der shared with untreated districts, while for untreated districts, I measure the total border

shared with treated districts. I then implement a triple-difference specification:

yidt = α0 + α1NREGSi + α2Postt + α3Percentd + α4NREGSi × Postt

+ α5NREGSi × Percentd + α6Postt × Percentd

+ α7Postt ×NREGSi × Percentd + Controls+ εidt,

(5)

where Percentd is the border percent variable and Controls are all of the district,

household-, and individual-level controls used above. The coefficient of interest is now

α7, which essentially represents whether the effect of NREGS (Postt ×NREGSd) differs

16See http://mospi.nic.in/national-sample-survey-office-nsso.
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by percentage of border shared with a district of the opposite treatment status. I estimate

this specification using 2004/05 and 2007/08 data (with the latter being the post wave),

which analyzes the effect of NREGS at the same point in time as the ARIS/REDS data. I

also estimate this specification using 1999/2000 and 2004/05 data (with the latter being the

post wave) in order to determine whether pre-program trends appear to be correlated with

one type of geographic variable (percent of border).

In another set of results, I examine the effect of distance to border on NREGS implemen-

tation. I use the Indian government’s NREGS website17 to acquire data related to quality of

NREGS implementation. These variables include number of rolls filled, number of individ-

uals worked, number of person-days created, number of households that reached the limit

of 100 days, total labor expenditure, percent labor expenditure (of total labor and materials

expenditure), and total number of works. I include the value of these variables from 2013.

In these regressions I include only NREGS districts in the ARIS/REDS. I then estimate

regressions of the form

yd = α0 + α1distd + φDd + εd, (6)

where Dd is a vector of district-level controls and εd is a conditional mean-zero error

term. In these regressions, α1 is the coefficient of interest and represents differences in the

implementation of NREGS by distance to the border.

I construct several geovariables for use in this analysis. For each district in the country, I

first assign it a value of treated (if in the first or second phase) or untreated (if in the third

phase). I then construct a variable, which I call border district, that equals one if a treated

district borders an untreated district or if an untreated district borders a treated district and

zero otherwise. In other words, border district identifies borders across which there is a
17http://www.nrega.nic.in/netnrega/home.aspx
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difference in treatment status in 2008. I then calculate the total distance of such borders for

each district in the country.

In order to estimate treatment heterogeneity, I estimate a series of differences-in-differences

by restricting estimation based on distance to the nearest border. I begin by estimating re-

gressions using all individuals. Then, I restrict estimation to only individuals living within

a certain distance of the border (e.g. 30, 15, 9, etc.).

I define this distance variable as follow: For all villages in treated border districts, I con-

struct another variable equal to the distance from each village to the closest border with

an untreated district. Similarly, for villages in untreated border districts, I construct this

variable as the distance from each village to the closest border with a treated district. To

analyze spatial heterogeneity in effects of the program, I will essentially be comparing

differences-in-differences estimates of all villages compared to villages close to borders.

Figure 2 presents a histogram of this variable across treated (NREGS) and untreated (non-

NREGS) districts. Mass is highest between zero and ten kilometers to the border, although

there are still thousands of observations outside of 30 kilometers. The clustering of obser-

vations at certain distances suggests that there could be large variations in estimated effect

sizes as the distance is restricted. For this reason, the closest distance to the border I use is

six kilometers, as a relatively higher percentage of observations is dropped as estimation is

restricted to distances closer to the border.

In one set of estimates below, I use non-border districts. These are defined as treated

districts that do not border an untreated district and untreated districts that do not border a

treated district. For villages in these districts, I calculate another distance variable, equal

to the distance from each village to the nearest border shared with a district of the same

treatment status. In other words, I calculate the distance from treated villages to the nearest

border with a treated district and the distance from untreated villages to the nearest border
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with an untreated district.

Figure 3 presents a graphical example of the creation of these two distance variables using

actual districts from the ARIS/REDS. The triangles represent surveyed villages while the

dark-gray districts—Chikballapura and Kolar—are untreated districts and the light-gray

district—Chittoor—is a treated district. The blue lines represent the construction of the

main distance variable used in the analyses below: distance to the closest district of the

opposite treatment status. On the other hand, the red lines show construction of a distance

variable that represents the distance from each surveyed village to the nearest district of the

same treatment status. Throughout this paper, “distance to border” refers to the blue line

distances unless otherwise noted.

In individual-level regressions, I include age, age squared, education, and gender. In

both individual- and household-level regressions, I also include household characteristics,

including its size and demographic make-up. I also include three village-level characteris-

tics: (log of) population density, (log of) distance to the nearest town, and (log of) distance

to the district headquarters. Additionally, I include a number of district-level variables.

Using the 2001 census,18 I include a number of district-level characteristics: population

(log), percent rural population, percent scheduled castes, percent scheduled tribes, literacy

rate, labor force participation rate, the makeup of the rural labor force, and district area

(log of square kilometers), the last of which was calculated using GIS software. Since

the differences-in-differences estimator is measuring change and these variables could ar-

guably affect the rating used to assign districts to phases—and thus a district’s treatment

status—I allow the effect of each of these variables to affect the trend across waves, by

including these variables as an interaction between each variable and Postdt (Imbert and

Papp, 2015). Finally, I compute the district-level wage using the 1999 ARIS/REDS, which

18These variables technically come from after the 1999 wave. However, I prefer to use the 2001 census over
the previous census, conducted ten years prior.
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I again only include as an interaction with Postdt.

In all regressions, I also include village population (log), distance to the nearest town (log

of kilometers), and distance to the district headquarters (log of kilometers). In addition, I

calculate a rainfall variable for each village, equal to the yearly deviation from the mean

measured in standard deviations. Finally, I allow the effects rainfall to vary by NREGS

status, with the former included to control for possible differences in the cyclicality of

wages driven by rainfall (Jayachandran, 2006; Imbert and Papp, 2015).

I use two main variables to measure labor-market outcomes. The first is the wage. I con-

struct this variable by including both casual agricultural and casual non-agricultural wages

at the individual level. For individuals that worked more than one type of job, I sum hours

worked and total remuneration (cash and in-kind) to create the wage variable. The other

main labor-market outcome I use is private-sector employment. I construct this variable

by including all days worked in casual labor, own-account agricultural labor, own-account

non-farm labor, own-account livestock labor, construction/maintenance labor, household

(non-leisure) labor, and other economic activities, which includes the collection of fire-

wood, water, etc.

4.2 Summary Statistics

I present summary statistics from 1999, prior to the program, for the sample in Table 1.

In all columns, the level of observation is the individual, although they are referred to as

households in the table due to the construction of the location variable. The first group

of households, “All Households”, includes all households in border districts, regardless

of distance to the border. This sample is similar to samples used by previous studies to

estimate the impact of NREGS. As previously noted, others have shown that the differ-

ences in labor-market outcomes between treated (NREGS) individuals and untreated (non-
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NREGS) individuals are quite large. To explore this in the ARIS/REDS data, the third

column (“p-value”) presents the results from a test of means across treated and untreated

districts. These results suggest large differences across treatment status. For example, the

casual wage in treated districts—recall that the first districts to receive the program tended

to be worse off (according to a government index) than districts that received the program

in later phases—is substantially lower than in untreated districts. The same is true if we

disaggregate the overall wage into male and female wages. In addition, in both treated

and untreated districts, male wages are significantly—40-50 percent—higher than female

wages. Another important outcome, household (food) consumption, is likewise much lower

in treated districts.19

However, this difference in outcomes is much smaller when we focus only on individ-

uals that live within 9 kilometers of borders between treated and untreated districts. For

example, the difference in wages falls from almost 25 cents for all households to just 4

cents within 9 kilometers of the border. Interestingly, this difference is driven by com-

peting forces: the male wage is still slightly higher in treated districts (around 10 cents)

but the female wage is lower in treated districts by around 14 cents. The difference in

monthly food expenditure at the household level likewise falls by almost half. Insofar as

trends in labor-market outcomes are correlated with the starting values of these outcomes,

the differences documented in Table 1 suggest that heterogeneous effects may be driven by

differences in households, not the program itself.

19The wage and consumption variables are represented as levels in US dollars in the table for ease of inter-
pretation. Throughout the analyses below, I take the log of rupees for wage and consumption variables.
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5 Results

I begin with a graphical representation of wage changes from 1999 to 2008 in Figure 4.

Only individuals located in border districts are included in the figure (and only these in-

dividuals are included in regressions in this section, unless otherwise noted). The x-axis

denotes the distance to the border between treated and untreated districts, with negative

values indicating movements towards the interior of untreated districts and positive values

indicating movements towards the interior of treated districts. A value of zero indicates

the location of the border. As expected after an examination of the summary statistics in

Table 1, the wage in 1999 is monotonically decreasing as we move from the interior of

untreated districts—presumably the location of better-off households—towards the border

and then towards the interior of of treated districts. In 2008, we see a similar pattern in

untreated districts; the wage is decreasing as we move towards the border. However, there

is a clear difference in the pattern as we move towards the interior of treated districts; the

wage seems to be increasing relative to 1999.

Table 2 presents regression estimates of this effect. The first column estimates the effect

of NREGS when using all individuals with a wage observation. The estimate indicates that

NREGS increased the wage in treated districts by around 22 percent relative to untreated

districts, an effect larger than previous estimates using other datasets, which may be due to

the exclusion of fixed effects in estimation. Each subsequent column restricts the sample to

individuals located closer and closer to the border. The second column restricts estimation

to only individuals located within 30 kilometers of the border. The effect is just as large as

the effect when using all households. The effect is relatively stable until restricting estima-

tion to households within 9-12 kilometers, at which point the estimated effect of NREGS

begins to quickly attenuate until it almost completely disappears within six kilometers of

the border.
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Figure 5 presents this change graphically. I compute these effects as follows: First, I

estimate a sequence of separate regressions, restricting the sample to individuals living

within some distance, k, of the border. I estimate regressions for all values of k from 9 to

40 and then plot the effect of each separate regression in Figure 5. The x-axis represents

these values of k. For example, at x = 25 in the graph, the point estimate is for the

regression restricting the sample to only individuals within 25 kilometers of the border.

Figure 5 confirms the effects found in Table 2; the effect is relatively flat for all values of

x greater than 20 but then drops precipitously. Apparently, the attenuation starts at around

14 kilometers. The flat section of the graph—as well as the empirical findings in Table 2—

supports the prediction of the theoretical model that the change in wage rate will be constant

for sufficiently large distances from the border. This result suggests that labor is mobile in

a radius of around 10-15 kilometers. Since the distance is defined using the border, the true

radius may be slightly larger than 10-15 kilometers unless untreated households are located

right at the border. A slightly larger radius comports with the findings in Muralidharan et al.

(2016b), who found spillover effects in a radius of around 20 kilometers.

The second prediction from the model in Section 3 is that wages in untreated areas near

the border with treated areas will increase more than wages in untreated areas farther from

border. To test this, I present an alternative specification in Table 3. The first two columns

explore wage changes only within treated districts while the last two columns explore these

changes within untreated districts. While the coefficients in the first and second columns

are strongly significant (p<0.01 and p<0.05, respectively), neither of the coefficients for

untreated districts is significant at conventional levels. In treated districts, households lo-

cated more than six kilometers from the border see an average increase in the wage that is

approximately 10.2 percent larger than the effect for the households within six kilometers

of the border. Overall, these findings support the theoretical model, although the effect is

only significant within treated districts.
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Finally, the model predicts that increases in travel costs will result in a larger wage gap

between treated and untreated districts. Empirically, this will show up as a larger effect of

NREGS on wages and this effect will not begin to attenuate until closer to the border. The

difference in wages by gender is an ideal test for this prediction. For a number of reasons,

women in India tend to be less mobile than men (Khera and Nayak, 2009). As such, we

might assume women face higher travels costs than men and thus that we will see less of

a decrease in the female wage rate closer to the border. Table 4 presents estimates of the

effects of NREGS by gender. There are relatively few observations for women. Since I am

interested in comparing the same distance to border across gender, I therefore only look at

all individuals within 9 kilometers of the border for both genders. The first three columns

in Table 4 present results for male wages. The change in wages within 9 kilometers of the

border (9.8 percent) is less than half as large as the change in all wages (20.2 percent). For

female wages, on the other hand, there is no difference in the change in wages within 9

kilometers relative to the change in all wages. In addition, the difference between the effect

on male wages and female wages within 9 kilometers of the border is significant (p=0.018).

Insofar as women face higher travel costs than men, the results in Table 4 again support the

theoretical model. However, caution must be taken in interpreting the magnitude of these

effects; while the overall pattern is clear, a lack of power precludes accurate estimates of

the true magnitude, especially as the sample size gets smaller closer to the border.

5.1 Causes of Heterogeneity

Given how different households near the border are from households towards the interior

of districts, there is a concern that the identifying assumption of parallel trends does not

hold. In particular, maybe poorer households—those that are more likely to live towards

the interior of treated districts—had wages trending upwards relative to other households.
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In this case, the estimates presented above may be driven by underlying trends, not the

program itself.20 Although the gender effects in Table 4 are suggestive evidence that this is

not the case, I present further evidence that this is not true in Figure 6.

The previous wave of the ARIS/REDS was collected in 1982. While 17 years is a long

time, trends from 1982 to 1999 may nonetheless provide some evidence that the assumption

of (spatially) parallel trends is plausible. In Figure 6, I present a graph of nominal wages in

1982 and 1999 by distance to border. Not surprisingly, there is a large overall increase in

wages over the time period. However, the spatial pattern is almost identical in both years; if

anything, it appears that wages in the interior of untreated districts may have been trending

slightly upwards. It does not appear that wages were trending in the same direction as the

results presented above. While this is not definitive evidence, it nonetheless suggests the

parallel trends assumption is plausible.21

I present additional evidence of spatially similar pre-program trends using NSS data. The

NSS data do not allow any disaggregation below the district level. However, if the spatial

heterogeneity identified above is a true representation of the effect of NREGS, we might

expect to see similar heterogeneity based on a district’s neighbors. In other words, treated

districts that share a longer border with untreated districts presumably will see a smaller

wage increase than treated districts that share a shorter border with untreated districts. The

first column in Table 5 presents these results. The data come from 2004/05 and 2007/08,

and thus identify the effect at the same time as the ARIS/REDS data. In line with expec-

tations, we see that a longer border does indeed appear to decrease the effects of NREGS.

While this finding supports the previous results, the real benefit of using the NSS data is
20There is some evidence that this is unlikely. For example, Azam (2012) argues that NREGS was imple-

mented due to the perception that decades of sustained economic growth had not had a sufficient impact on
poverty. This would seem to suggest that wages were not trending upwards for the poorest households.

21Due to data limitations from the 1982 wave, all data is collapsed to the household level. This results in
substantially fewer overall observations and precludes estimating effects empirically; the resulting estimates
are too imprecise to be informative and the smaller sample size, especially in regressions restricted by
distance, results in very sensitive estimates.
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that it allows for an empirical exploration of pre-program trends. Using the 1999/2000

and 2004/05 waves of the NSS, column two presents results of a placebo test. If wages

were trending differentially based on this border percent variable, then a differences-in-

differences estimate using two pre-program trends will find similar results. However, this

is not what we find; the results using the 1999/2000 and 2004/05 waves of the NSS present

no evidence of such a trend. Overall, these results suggest the (conditional) parallel trends

assumption is plausible in this case.

If household wages were trending differently due to specific characteristics—like wage

levels prior to the program—we would also expect phase three districts to have different

trends from phase one and two districts. In the previous subsection, I showed that the effects

of NREGS were spatially heterogeneous within treated (untreated) districts that bordered

untreated (treated) districts. Instead of labor mobility, it may be that NREGS districts

implement the program differently near borders compared to the interior. For example,

if district capitals or towns tend to be located in the interior of treated districts, then the

program may be relatively better implemented in the interior. In Table 6, I explore this

possibility by estimating the effect of distance to border on several characteristics related

to implementation of the program. Importantly, the coefficients on distance are very small

and never significant. The percent of agricultural labor (out of total labor force) in the

district prior to implementation of NREGS has a consistently positive effect on NREGS

implementation, with more individuals receiving work and more money spent on works.22

If households near the border were trending differentially from households towards the

interior, then we will see a similar attenuation if we estimate the effect at the border of two

treated districts relative to the border of two untreated districts. Table 7 presents additional
22The coefficient on agricultural labor is very large for a number of estimates. However, it is important to note

that this is not the true effect seen in the data. For example, almost 60 percent of districts in the regressions
have a value of agricultural labor between 0.3 and 0.4. As such, while the coefficients are very large, the
largest possible effect seen in the data is much smaller. Standardizing the variables results in more intuitive
values. Results available upon request.
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evidence that this is not the case. The first column presents results for all households.

The change in wages in treated districts is approximately 19.9 log-points larger than the

change in untreated districts. Importantly, as we restrict the sample to households closer

to the border with a district of the same treatment status, the effect stays stable; in the

last column, the effect of NREGS on wages at the border between two treated districts

relative to the border between two untreated districts is slightly larger than the effect if

we use all households in treated districts and untreated districts and is still significant.

In conjunction with Table 6, this is suggestive evidence that intra-district differences in

program implementation are not driving the effects nor that differences in trends for border

households relative to interior households are responsible.

Another possible explanation for these effects is program leakage. In other words, we

may see no effect at the border because untreated households are somehow accessing

NREGS even though their district does not yet have the program. Figure 7 presents sugges-

tive evidence that this is not the case. In 2008, relatively few households in non-NREGS

districts had access to the program. On the other hand, relatively many households in

NREGS districts had access. Moreover, the difference manifests itself right where we

would expect: at the border.

Finally, I present one piece of evidence that labor market spillovers—through movement

of labor—are the mechanism. Ideally, the survey would ask how far each individual trav-

els to work on a daily basis for each type of labor. While the ARIS/REDS does not have

this specific question for all labor, it does ask a similar question for non-farm casual labor.

Unfortunately, this question is only asked in 2008, which precludes an estimate of relative

changes in travel time. However, if labor mobility is causing the heterogeneity, we should

see workers near the border in untreated districts traveling longer, while we would expect

relatively consistent travel times through treated districts. Figure 8 presents graphical evi-
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dence that this is indeed the case. In particular, we see that travel time to non-farm casual

employment is longest right near the border in untreated districts and then decreases as we

move towards the interior.23 In addition, travel time is almost constant throughout treated

districts. Overall, Figure 8—in addition to the differential effects by gender—supports the

hypothesis that individuals in untreated districts are traveling to treated districts to engage

in casual labor.

5.2 Private-Sector Employment and Income

Much of the previous NREGS literature has examined the program’s effect on rural wages.

However, two other outcomes are also commonly studied: private-sector employment and

income. I first look at private-sector employment. Many economic models predict de-

creases in private-sector employment after the implementation of a large public works pro-

gram like NREGS. Intuitively, if NREGS drives up wages, we would expect a lower level

of private-sector employment in equilibrium (Imbert and Papp, 2015). Figure 9 presents

a graph of private sector employment (days - log) across both survey waves. Private

employment is defined as total time spent in casual labor, salary labor, agricultural self-

employment, and non-agricultural self-employment. This includes “productive” household

activities—including the collection of firewood, water, etc.—but does not include leisure.

Consistent with the theory, there appears to be a large decrease in private-sector employ-

ment when comparing NREGS districts from 1999 to 2008. In addition, the graph appears

relatively flat at the border in treated districts, which is consistent with a negligible wage

change in that region.

The dependent variable is now (log of days of) total employment, so I no longer restrict

23We would not expect longer travel times in the interior of untreated districts because these households are
located far enough from the border that traveling for casual labor is not undertaken, as suggested by the
model.
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estimation to only individuals with observed wages. As such, this greatly increases the

number of observations. Table 8 presents these results. In the first column, the estimation

includes all households in border districts. The overall estimate is quite imprecise and

insignificant. However, this again conceals a more complex picture. The results in the

second column include only households within 9 kilometers of the border, while the results

in the third column include only households outside 30 kilometers from the border. The

estimates are very imprecise so it is difficult to pinpoint the true effect; nonetheless, a

formal test for equality of the coefficients in columns (2) and (3) rejects equality (p=0.023).

These results are as we would expect given the wage patterns documented above: in the

ARIS/REDS data, private-sector employment decreases statistically significantly more in

areas farther from the border—where the wage increase was highest—relative to areas near

the border.

Finally, I explore the effect of NREGS on household per capita income. While an in-

crease in wages might be assumed to be a de facto increase in the welfare of poor rural

households, it is nonetheless an imperfect proxy. As such, studying the effects of NREGS

on income offers a more direct measure of the welfare effects of the program. I begin with

a graphical representation of per capita income in the data in Figure 10. The pattern in

Figure 10 is similar to the wage and private employment changes shown in Figure 4 and

Figure 9, as there again appears to be a relative increase in the outcome as we move to-

wards the interior of NREGS districts. Table 9 presents these results in regression form.

These results confirm the basic pattern in the figure: the effect of NREGS on income is

smaller near the border. Despite the imprecision in the estimates, the effect outside of 30

kilometers is significantly larger than the effect within 9 kilometers (p=0.054). While the

point estimates suggest the entirety of the consumption increase is due to the wage increase,

the large standard errors suggest caution in interpreting the coefficients. Nonetheless, the

overall pattern clearly indicates that wage changes are an important drive of consumption
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changes in rural India.

6 Conclusion

In this paper, I document the effects of the Mahatma Gandhi National Rural Employment

Guarantee Scheme (NREGS) in India. In particular, I show that the effects of the program

are spatially heterogeneous: treated areas located near untreated areas see smaller wages

increases than treated areas located farther from untreated areas. In addition This hetero-

geneity does not appear to be driven by pre-program trends or program leakage. Rather,

evidence indicates that labor mobility is driving these effects; the effect is more concen-

trated among male wages and workers living in untreated areas located near treated areas

are more likely to travel longer distances to work than other untreated workers. However,

while the pattern is clear across all of the results presents, a small sample size and de-

manding empirical strategy suggest caution in interpreting the magnitude of the estimated

effects.

The results in this paper have several implications. First, these results suggest that pre-

vious studies of the effect of the program on wages underestimate the true effect of the

program. This bias theoretically operates through two separate channels: an overestimate

of the counterfactual wage in untreated districts and an underestimate of the counterfactual

wage in treated districts, although the present results suggest the former is more important.

In addition, when the program is implemented in phase three districts, wages in phase one

and two districts may increase. Second, this paper presents suggestive evidence that the

wage increases due to the program had an appreciable effect on household incomes, which

supports recent experimental evidence (Muralidharan et al., 2016b). This result suggests

raising rural wages is an effective poverty-fighting tool. This may help explain studies

which find smaller welfare effects of public works programs in other countries (e.g. Beegle
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et al., 2017), especially if the program is not at a large enough scale to have appreciable

impacts on prevailing wages.
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Figure 1: NREGS Districts and ARIS/REDS Villages
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Figure 2: Village Distance to Border with Other Phase District
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The figure shows the histogram of distance to border for NREGS and non-NREGS villages. For villages
in NREGS districts (phase one and two districts), the distance is calculated as the shortest distance to a
non-NREGS district (phase three districts). For villages in non-NREGS districts, the distance is calculated
as the shortest distance to a NREGS district. Distance is top-coded at 100 in the figure, but not in analyses
in the paper. Only districts that border a district from the other type of district are included.



Figure 3: Creation of Distance Variables
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The dark gray districts—Chikballapura and Kolar—are untreated (phase three) districts. The light gray district—Chittoor—is a
treated (phase one or two) district. The triangles represent actual villages in the dataset. Blue lines indicate the distance to the nearest
district of the opposite treatment status while red lines indicate the distance to the nearest district of the same treatment type.
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Figure 4: Distance to Border and WagesBorderNon-NREGS Districts NREGS Districts
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The figure shows a lowess curve of the relationship between distance to border and the wage rate for NREGS and non-NREGS
households before (1999) and after (2008) implementation of the program. For households in NREGS districts (phase one and two
districts), the distance is calculated as the shortest distance to a non-NREGS district (phase three districts). For households in non-
NREGS districts, the distance is calculated as the shortest distance to a NREGS district. The figure is restricted to households within
100 km of the nearest district in the figure, but not in analyses in the paper.
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Figure 5: Effect by Distance to Border

Total
Effect

0
.0

5
.1

.1
5

.2
.2

5
Ef

fe
ct

 S
iz

e

10 20 30 40
Distance to Border

Point Estimate Point Estimate (Lowess)

To create the figure, the sample is varied by using different cut-offs at different distances to the border, from 9 to 40. For example,
for a distance of 25, the plotted point represents the ceofficient estimate from a difference-in-differences specification including only
households within 25 kilometers of a NREGS/non-NREGS border.
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Table 3: Effects by District Type

NREGS Districts Non-NREGS Districts
(1) (2) (3) (4)

All Villages All Villages All Villages All Villages
Post times (log) Distance to Border 0.053*** 0.002

(0.017) (0.018)
Post times Distance> 6 0.102** −0.047

(0.048) (0.062)
District Controls Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes
Rainfall Yes Yes Yes Yes
Observations 4109 4109 3605 3605

Standard errors are in parentheses. Standard errors are clustered at the district level. Wage (log) is the dependent variable in all
columns. The first two columns include only individuals in NREGS districts. The last two columns include only individuals in
non-NREGS districts. The coefficient in the first row is an interaction between Post and Distance to Border; as such, the coefficient
represents the change in wages within treated districts (first two columns) or within untreated districts (last two columns) based on
the distance to the nearest border with an untreated or treated district. The coefficient in the second row is an interaction between
Post and an indicator variable indicating whether the observation is located outside of 6 kilometers of the border.

* p<0.1 ** p<0.05 *** p<0.01

Table 4: Effects of NREGS on Wages by Gender

Male wages (log) Female wages (log)
(1) (2) (3) (4) (5) (6)
All 15 km 9 km All 15 km 9 km

Post times NREGS 0.202*** 0.188** 0.098 0.278*** 0.227** 0.363**
(0.057) (0.078) (0.088) (0.078) (0.108) (0.136)

District Controls Yes Yes Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
Rainfall Yes Yes Yes Yes Yes Yes
Observations 5395 2382 1641 2319 1082 688

Standard errors are in parentheses. Standard errors are clustered at the district level. Wage (log) is the dependent variable in all
columns. All columns include only households in “border” districts, which consist of NREGS districts that border non-NREGS
districts and non-NREGS districts that border NREGS districts. The first column for each gender includes all observations in these
border districts. The second column includes only individuals that reside within 15 kilometers of the border. The third column
includes only individuals that reside within 9 kilometers of the border between these districts. The level of analysis in all columns is
the individual.

* p<0.1 ** p<0.05 *** p<0.01



Figure 6: Distance to Border and Wages - Pre-Program Trends
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Due to data limitations, the unit of analysis is the household. The figure shows a lowess curve of the relationship between distance
to border and the wage rate for NREGS and non-NREGS households before implementation of the program. For households in
NREGS districts (phase one and two districts), the distance is calculated as the shortest distance to a non-NREGS district (phase
three districts). For households in non-NREGS districts, the distance is calculated as the shortest distance to a NREGS district. The
figure is restricted to households within 75 km of the nearest district in the figure.
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Table 5: Effects and District Border Percentage

(1) (2)
Wage (log) - Effect Wage (log) - Placebo

Post times NREGS times Border Percent −0.281***
(0.090)

Post (placebo) times NREGS times Border Percent −0.033
(0.155)

Observations 49686 44407

Standard errors are in parentheses. Standard errors are clustered at the district level. Wage (log) is the dependent variable in both
columns. Data comes from the National Sample Survey (NSS). In the first column, the coefficient is a triple interaction between
post and NREGS (the difference-in-differences estimator at the district level) and a variable equal to the percentage of each district’s
borders that is shared with a district of the opposite treatment status. In other words, larger values for “Border Percent” indicates the
district shares a longer border (as a percentage of own border) with a district of the opposite treatment status. The first column uses
2004/05 and 2007/08 waves, the same years in the ARIS/REDS data. The second column uses data from 1999/2000 and 2004/05 to
estimate a placebo test for pre-program trends at the district level.

* p<0.1 ** p<0.05 *** p<0.01
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Table 7: Wages and Distance to Same Border

(1) (2) (3) (4)
All Villages Within 15 km Within 12 km Within 9 km

Post times NREGS 0.199*** 0.226*** 0.230*** 0.229**
(0.065) (0.074) (0.082) (0.097)

District Controls Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes
Rainfall Yes Yes Yes Yes
Observations 7286 4286 3688 3310

Standard errors are in parentheses. Standard errors are clustered at the district level. Wage (log) is the dependent variable in all
columns. In columns (2) through (4), distance is defined as the distance from treated areas to the nearest border with a treated district
and as the distance from untreated areas to the nearest border with untreated districts. In other words, the relevant comparison is the
change in wages closer to the border between two treated districts relative to the change in wages closer to the border between two
untreated districts.

* p<0.1 ** p<0.05 *** p<0.01

Figure 7: Public Works in 2008
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Figure 8: Travel Time to Non-Farm Employment (2008)
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The y-axis is travel time to non-farm employment (minutes) in 2008. The x-axis is distance to border between NREGS and non-
NREGS districts.



Figure 9: Private-Sector Labor by Wave

Non-NREGS District NREGS District2
2.

5
3

3.
5

4
4.

5
D

ay
s 

of
 P

riv
at

e-
Se

ct
or

 E
m

pl
oy

m
en

t (
lo

g)

-100 -50 0 50 100
Distance to Border (km)

1999 2008

The y-axis is (log of) days of private-sector employment. The x-axis is distance to border between NREGS and non-NREGS districts.

Table 8: Effects of NREGS on Private-Sector Employment

(1) (2) (3)
All Villages Within 9 km Outside 30 km

Post times NREGS −0.120 0.173 −0.341**
(0.118) (0.175) (0.165)

District Controls Yes Yes Yes
Individual Controls Yes Yes Yes
Household Controls Yes Yes Yes
Rainfall Yes Yes Yes
Observations 52289 16369 14948

Standard errors are in parentheses. Standard errors are clustered at the district level. Days of private-sector employment (log) is
the dependent variable in all columns. All columns include only households in “border” districts, which consist of NREGS districts
that border non-NREGS districts and non-NREGS districts that border NREGS districts. The first column includes all households in
these border districts. The second column includes only households within 9 kilometers of the border between these districts, while
the third column includes only households outside 30 kilometers of the border. The level of analysis in all columns is the individual.

* p<0.1 ** p<0.05 *** p<0.01



Figure 10: Household Income (2006)
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The y-axis is (log of) per capita income at the household level. The x-axis is distance to border between NREGS and non-NREGS
districts.

Table 9: Effects of NREGS on Household Income

(1) (2)
Outside 30 km Within 9 km

Post times NREGA 0.439** 0.002
(0.189) (0.132)

District Controls Yes Yes
Household Controls Yes Yes
Rainfall Yes Yes
Observations 2649 3099

Standard errors are in parentheses. Standard errors are clustered at the district level. Household per capita income (log) is the
dependent variable in all columns. Both columns include only border districts. The first column includes all households more than
30 kilometers from the border, while the second column includes only households within 9 kilometers of the border. The level of
analysis in all columns is the household.
* p<0.1 ** p<0.05 *** p<0.01
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