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Abstract

We estimate the first cross-sectional index of transaction-based land values for every U.S. metropoli-

tan area. The index accounts for geographic selection and incorporates novel shrinkage methods

using a prior belief based on urban economic theory. Land values at the city center increase with

city size, as do land-value gradients; both are highly variable across cities. Urban land values

are estimated at more than two times GDP in 2006. These estimates are higher and less volatile

than estimates from residual (total - structure) methods. Five urban agglomerations account for 48

percent of all urban land value in the United States.

JEL Codes: C43, R1, R3
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1 Introduction

We estimate the first index of land values across U.S. metropolitan areas that is based on directly-

observed market transactions and cross-sectionally comparable. Standard economic theory, e.g.

Roback (1982), Brueckner (1983), and Albouy (2016), suggests that this index captures differences

in the combined value of household amenities, employment, and building opportunities, ignoring

cross-metro externalities. Urban land values have been central to questions of wealth, income, and

taxation since the seminal works of Ricardo (1821) and George (1884).

Unfortunately, market data on land values have been notoriously piecemeal and subject to

numerous measurement challenges. Flow of Funds (FOF) accounts of the Federal Reserve stopped

publishing series for land value in 1995 because of accuracy concerns made plain by negative

values inferred for land. We aim to overcome these challenges using a large national data set of

market transactions of land from the CoStar COMPS database and an econometric model informed

by urban theory. Our estimates of urban land values prove to be higher and more stable than values

implied by the FOF.

Our indices of both central and average land values have intuitive properties. While they vary

considerably, the indices increase with city area, providing nuanced support for the monocentric

city model of Alonso (1964), Mills (1967), and Muth (1969). The highest central land values

are found in New York, Chicago, Washington, San Francisco, and Los Angeles. In these cities,

central values are 21 times higher than peripheral values 10 miles away, although across all cities

the (unweighted) average ratio of central to peripheral values is only 4. Over their entire urban

areas, New York, Jersey City, Honolulu, San Francisco, and Los Angeles-Long Beach have the

1



highest average values, which are 82 times higher than those in the lowest five cities. Values in

2009 averaged $373,000 per acre, down from $624,000 in 2006, as the total value of urban land

fell from $28 to $18 trillion, or from 2.2 to 1.3 times GDP.

2 Description of Transactions Data and Urban Land Area

Our primary data source is the CoStar COMPS database, with land transaction prices recorded

between 2005 and 2010.1 CoStar provides fields containing the price, lot size, address, and a

“proposed use” for each property. We exclude transactions CoStar has marked as non-arms length,

without complete information, that feature a structure, are over 60 miles from the city center, or

are less than $100 per acre. The remaining dataset contains 68,756 observed land sales.2

The “cities” we examine correspond to 1999 OMB definitions of Metropolitan Statistical Areas

(MSAs). Some MSAs, known as Consolidated MSAs (CMSAs) are divided into constituent “Pri-

mary” MSAs, which we treat as separate cities. In 2000, all MSAs accounted for 80 percent of the

U.S. population. Because MSAs consist of counties, which often contain a large amount of agri-

cultural land, we consider only land that is part of an urban area by 2000 Census definitions. The

main requirement is that the area consists of contiguous block groups with a population density of

1The CoStar Group claims to have the commercial real estate industry’s largest research orga-
nization. The COMPS database provided by CoStar University is not publicly available, but can
be accessed for free by academics. The data include transaction details for all types of commercial
real estate. We use every sale CoStar considers “land.” Recently, a small literature has used this
data for analyses within metro areas. Haughwout et al. (2008) demonstrate the data’s extensive
coverage and construct a land price index for 1999 to 2006 within the New York metro area. Kok
et al. (2014) document land sales within the San Francisco Bay Area, and relate sales prices to
topographical, demographic, and regulatory features. Nichols et al. (2013) construct a panel of
land-value indices for 23 metros from the 1990s to 2009. These indices are for use over time and
are not comparable across metros.

2The appendix provides information on the treatment of the data as well as some descriptive
statistics.
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over 1,000 residents per square mile (1.56 per acre), with a total population of over 2,500.

We take city centers to be the City Hall or Mayor’s office of each city. Many MSA names

contain multiple cities, e.g., Minneapolis-St. Paul. We address this by considering each named

city as having its own center. Land parcels within the MSA are assigned to the city center closest

in Euclidean distance. In such cases, our central values average the named centers.

Appendix Figure A.1 displays the geographic pattern of land sales for four CMSAs: New

York, Los Angeles, Chicago, and Houston. The figure shows that land sales are well-dispersed

throughout the metro areas, with sales activity more frequent near city centers.3

3 Econometric Methods

There are two major obstacles to constructing a cross-metropolitan land value index from observed

transactions data. First, observed transactions are not a random sample of all parcels in a city.

Second, we observe few sales in many smaller metro areas, reducing the reliability of the estimates.

Our econometric methods try to overcome both of these obstacles.

3Land transactions are not randomly distributed over space. Yet, as Haughwout et al. (2008)
comment on the New York data, “Overall, vacant land transactions occurred throughout the region,
with a heavy concentration in the most densely developed areas ...”. As Nichols et al. (2013) dis-
cuss, it is impossible to correct for all types of selection bias without observing transaction prices
for unsold lots, a logical contradiction. Fortunately, the literature has generally found selection bias
to be minor for land and commercial real estate prices. Colwell and Munneke (1997), studying land
prices in Cook County, IL, report, “The estimates with the selection variable and those without are
surprisingly consistent for each land use.” Studying the office market in Phoenix, Munneke and
Barrett (2000) find, “the price indices generated after correcting for sample-selection bias do not
appear significantly different from those that do not consider selectivity bias.” In their construc-
tion of metro price indices, Munneke and Barrett (2001) report, “Little selection bias is found in
the estimates.” Finally, Fisher et al. (2007), in their study of commercial real estate properties,
state “sample selection bias does not appear to be an issue with our annual model specification.”
Nevertheless, we correct for selection bias on observables below in section 3.
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3.1 Regression Model of Land Values over Space and Time

Following the monocentric city model, we take each city j as having a fixed center, with co-

ordinates zcj . Land values, r, vary according to a city-specific polynomial in the distance metric,

D(zij, z
c
j), between plot i’s coordinates zij and the center. City-center values αjt may vary by year,

t; coefficients δjk, which determine the shape of the value-distance gradient, are held constant over

time due to limited sample sizes:

ln rijt =
2010∑
t=2005

αjt +
K∑
k=1

δjk
[
D(zij, z

c
j)
]k

+Xijtβ + eijt, eijt ∼ i.i.d. N(0, σ2
e). (1)

Controls Xijt include proposed use and lot size. The idiosyncratic error term, eijt, follows an

independent and identically distributed normal distribution.4

Figure 1a shows estimated first-order and fourth-order polynomials for the Houston MSA,

along with the underlying transaction prices. Both polynomials slope downward with distance, but

the fourth-order polynomial reveals a subtler distance function.

3.2 Shrinkage Estimation and Its Target

To deal with limited sample sizes we develop a hierarchical model. It “shrinks” metro-level esti-

mates towards a national average function. This function target depends on each city’s urban area,

4We define D(zij, z
c
j) = ln

(
1 + ||zij − zcj||

)
, using Euclidean distances in miles. Adding one

in the logarithm argument creates two desirable features. First, it dampens the effect of small
changes in distance very close to the city center. Second, it makes D operate as a distance metric,
so that the αjt coefficients may be interpreted as (finite) log land values at the city center. Since
the true gradient may vary along rays with different angles from the center, this serves largely as
an averaging technique, used for comparisons across cities. Some cities have land rent gradients
that decline monotonically from the center all the way to their agricultural fringe. Others see a dip
in central-city values that rise again for the inner suburbs, before declining again at the fringe.
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Aj . We begin by decomposing the central value αjt into two components, αjt = αj + α?jt, where

α?j2005 is normalized to zero. The time-varying component follows the prior α?jt ∼ N(τt, σ
2
t ). Vec-

torizing the distance coefficients δj = [δj1 δj2 · · · δjK ]′, (time-invariant) cross-sectional priors are

modeled

 αj

δj

 =

a0 a1

d0 d1


 1

lnAj

+

 eα,j

eδ,j

 ,
 eα,j

eδ,j

 ∼ i.i.d. N


 0

0

 ,
Σαα Σαδ

Σδα Σδδ


 .

(2)

This technique essentially constructs a “metacity” described by the parameters a0, a1, δ0, and δ0.

The metacity provides the land rent gradient typical of a city with area Aj . This area adjustment

is important as larger cities typically have higher central land values. These land values descend

and dovetail with agricultural (or other non-urban) values at different rates from the center than in

smaller cities. The model allows for a full covariance matrix between the random components of

the intercept and distance coefficients, eα,j and eδ,j.

When all other parameters are known and α?jt = 0, the best linear unbiased predictor (BLUP)

for [αj, δ
′
j ]
′ is a weighted average between their prior mean and conventional metro-level (fixed

effect) estimates, [α̂j, δ̂j ]
′:

 α̃j

δ̃j

 = Wj

a0 a1

d0 d1


 1

lnAj

+ (I−Wj)

 α̂j

δ̂j

 (3)

where the weighting matrix Wj accounts for the amount of shrinkage in city j. This shrinkage

term falls with the number of observations in city j and rises with the uncertainty in the prior
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(Σαα,Σδα,Σδδ) and the idiosyncratic error term (σ2
e ).

The second component in the intercept, α∗jt, captures the city-specific time trend. By similar

logic, we shrink the MSA-level time trend toward the national level time trend, τt, where the degree

of the heterogeneity in MSA-level time trends is allowed to change over time through σ2
t .

Our empirical model is then completed by specifying the joint distribution of error terms, con-

trols, and the prior. We assume that observed control variables are random and strictly exogenous.

That is, for each city j, the error-term vector ej = {{eijt}
nj

i=1}2010t=2005 is uncorrelated with the con-

trol vector {{D(zij , z
c
j), ..., D(zij , z

c
j)
K , {X ′ijt}2010t=2005}

nj

i=1, lnAj} and the random component of

the coefficient vector {eα,j, e′δ,j , α?j2006, ..., α?j2010}. In addition, the random component of the co-

efficient vector is uncorrelated with the control vector a priori.

In practice, to estimate the BLUP for the random intercept and gradient parameters, the un-

known fixed parameters (β, a0, a1,d0,d1) and variance parameters (σ2,Σαα,Σαδ,Σδδ) must also

be estimated. To do this, we adopt an empirical Bayes-type approach in which these parameters are

found by maximizing the marginal likelihood with a flat improper prior. Then, we obtain estimates

for [αjt, δ
′
j ]
′ by substituting these estimates into the posterior mean formula as if the fixed and

variance parameters were known. Appendix B describes the shrinkage procedure in much greater

detail.
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Figure 1: Example of Land Value Gradient Estimates for the Houston, TX Metro Area

(a) Estimated Distance Polynomial with D = ln(1 + mileage)

(b) Estimated Land Value Surface with Census Tract Centroids

7



3.3 Integrating Land Values Over the Urban Area

We use the estimated land value functions to compute average land values over each city’s urban

area in each year. For each census tract l in city j in year t, we calculate the predicted land value r̂ljt

at the tract centroid. The predicted value is based on the expected characteristics X (planned use

and lot size) of the tract, conditional on the city, distance from the center and coast, and observed

transaction data. We then assign that average value to the entire tract.5 This value is then multiplied

by the area of each tract Ajl, excluding any non-urban block groups. The total value of land in city

j is then Rjt =
∑

lAjlr̂ljt, and the average value is rjt = Rjt/Aj . In other words, total land values

in city j are the volume of the estimated land value “cone,” while the average land value is the

cone’s average height. Figure 1b displays the estimated cone for the Houston MSA, with the small

dots representing Census tract centers. Very high land values at the city center are clearly visible

in the figure, which also shows slightly elevated values for the Census tracts near the coast.

The estimated “meta-city” allows us to impute land values for metros with no observations, in

which case Wj = I . Tract values are imputed based on typical intercepts and gradients for cities

of size Aj in year t, based on their position relative to the closest city center and coastlines.

3.4 Model Selection and Cross-Validation

The cross-validation exercise summarized in table 1 assesses the performance of several econo-

metric specifications, as detailed in appendix B. The exercise fixes a number of MSAs, and retains

5We include only tract centers within 60 miles of the city center. To obtain the predicted
characteristicsX we build and estimate a model for characteristicsX that is a similar but simplifed
version of the hierarchical model used for the land price. The procedure and required assumptions
for the land value prediction at the tract centroid is discussed at length in section B.3.
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Table 1: Econometric Model Cross-Validation Results

Model Specification

(1) (2) (3) (4) (5) (6) (7)

Panel A: 3 observations per city-year
Mean Squared Error 1.640 1.143 0.939 0.938 0.936 0.936 0.935
Bias -0.004 0.013 0.016 0.013 0.013 0.013 0.013
Variance 1.586 1.105 0.910 0.909 0.907 0.906 0.905

Panel B: 30 observations per city-year
Mean Squared Error 1.449 0.912 0.904 0.902 0.898 0.897 0.896
Bias -0.004 -0.003 0.001 0.000 0.001 0.001 0.000
Variance 1.441 0.907 0.899 0.898 0.893 0.892 0.891

Shrunken? No No Yes Yes Yes Yes Yes
Polynomial Order - Distance 0 1 1 2 3 4 4
Polynomial Order - Lot Size 0 1 1 1 1 1 3

Out-of-sample cross-validation exercise described in detail in the appendix. Column 1 shows results of a
naive model that is the simple average of values per acre. Columns 2 through 7 contain controls for all
covariates in Appendix Table A.1. Panel A shows results for exercise in which 3 observations per city-year
are combined with all out-of-city data to predict remaining land values in city. Panel B shows results for
exercise in which 30 observations per city-year are combined with all out-of-city data to predict remaining
land values in city. Out of sample predictions in both panels were conducted in 58 cities that had at least 50
observations per year for at least two years.

a few observations per year. It then uses those few observations and the model estimates from

other MSAs to predict the values of the non-retained observations. The mean squared error (MSE)

between the predicted price and the actual price of these non-retained observations is used to assess

the model. Results in Panel A retain 3 observations per city-year; panel B retains 30.

The first specification, in column 1, is of a “naive” model that takes the (geometric) average

value per acre of all sales by metro. It establishes a baseline for other models to improve upon. The

second column shows the results from a simple version of model (1), with only linear city-specific

terms in distance (K = 1), as well as city-time specific intercepts, measures of coastal proximity,

9



controls for proposed use, and a linear term in log lot size. This basic econometric model lowers

the mean squared error (MSE) over the naive model substantially by reducing the variance of the

estimates. The third specification applies the empirical Bayes shrinkage technique according to

the prior (2), allowing both intercepts and gradients to be random. As expected, this produces a

substantial improvement by further reducing the variance. Thus, both the monocentric regression

model and shrinkage help overcome the obstacles of small samples and non-random locations, as

seen by lower prediction errors.

The rest of the table considers what are minor improvements. The fourth through sixth columns

contain add additional distance polynomials to the model in 3. Allowing for a more flexible dis-

tance gradient reduces the MSE only moderately. The final column includes a cubic polynomial in

log lot size, which also slightly improves the prediction. As further terms produce no noticeable

improvement, we take the model with Bayesian shrinkage, a quartic polynomial in distance, and a

cubic polynomial in log lot size as our preferred specification.

4 Cross-Sectional Results

4.1 Patterns in the Data

Figures 2a-2c plot estimated central land values, the ratio of those values to values 10 miles from

downtown, and average land values, each against the urban area of the metro area.6 The grey dots

represent the unshrunken estimates; the dark dots, the shrunken estimates: the vertical distances

between the two display how much the Bayesian approach shrinks the estimates. Larger cities,

6We take land values one-half mile from the point defined at the center as our measure of central
land values.
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which feature more observations, experience less shrinkage, as the additional observations make

the prior less important.

The dashed upward-sloping line of best fit in Figure 2a reflects the tendency of larger cities to

have more expensive central land. A ten-percent increase in a city’s footprint implies an 8-percent

increase in the central land value. The upward-sloping fitted line in Figure 2b reveals that land

values in larger cities are much higher centrally than values 10 miles away. For the smallest cities

the gradient is typically nearly flat. In large cities, the ratio is much larger, but highly variable,

even after shrinkage. Together, these two patterns lead to the weaker, but still positive, correlation

between city size and average urban land values in Figure 2c. These empirical results are generally

supportive of a monocentric city with convex rent gradients. Theoretically, these gradients steepen

towards the center as firms and households sort according to how their bid per acre varies with

distance. Furthermore, agents substitute away from using land as it rises in price.7

7Combes et al. (2016) also find that land-rent gradients are steeper in large French cities than
in small ones.

11



Figure 2: Estimation Results - All Metro Areas

(a) Central Land Values

(b) Ratio of Central to 10-mile Distant Land Values

(c) Average Land Values
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While our main interest is estimating land values and their cross-sectional differences by MSA,

it is worth briefly describing the estimated coefficients on the model covariates, presented in ap-

pendix Table A.1. The most important predictor of log value per acre is log lot size, which enters

the regression model as a cubic polynomial. The estimates imply that price per acre is declining

in lot size over the size range. This is a standard result called the “plattage effect”, described by

Colwell and Sirmans (1993) in this Review as “a well-known empirical regularity.” It is often as-

cribed to costs of subdividing land parcels, arising both from infrastructure requirements and from

zoning.8

Most of the planned use regressors have statistically and economically significant associations

with land values. Retail, apartment, mixed use, and medical proposed uses have substantially

higher values, while commercial, industrial, and multifamily uses have lower values. Lots with no

planned use, or a planned use of “hold for development” or “hold for investment” also have lower

values. Not surprisingly, within-metro land values rise with coastal proximity.

8With such costs, large lots may contain more land than is optimal for their intended use. For
instance, a lot may have more land than is need to build an apartment building, but cannot be
subdivided into two lots on which to build two apartment buildings. In that case, the price per acre
of the large lot will be lower than if it contained the optimal amount of land for its intended use.

We have also computed our land value index using total parcel prices on the left-hand side
variable in order to circumvent possible problems with division bias. If lot size is measured with
error, then the coefficient estimates are subject to biases. In our log price per acre specification,
classical measurement error in log size bias the first coefficient toward minus one. To check on the
robustness of our fit, we re-compute the land value index based on the log of total prices instead.
The fitted land values are virtually identical , and the correlation between the two land indices is
essentially one. Essentially all that changes is the nature of the shrinkage estimation.
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4.2 A Cross-Metropolitan Land Value Index

Table 2 presents urban land value estimates for selected metro areas.9 The first two columns

show the name of each MSA, and its rank out of 324 according to the estimated land value in

our preferred model specification in column 7 of Table 1. Next are the urban (not total) areas of

each metro, and the number of observed land sales. The fifth column presents average values from

the naive model. Column 6 reports estimated central land values10 using the preferred model, and

column 7 presents estimated average values across the urban area. Column 8 reports the estimated

ratio of central values to those 10 miles away. The last column provides the total value of urban

land by metro, which is totalled at the bottom of the table.

The numbers in columns 5 and 7 contrast the role of the model-based estimator over the naive

one. While the two are positively correlated with a coefficient of 0.86, the standard deviation of the

naive estimates is 3.2 times higher than that of the model-based estimates. For instance, New York

has the highest naively estimated value per acre, $26 million. Pittsfield, MA has the lowest naively

estimated values, $17 thousand. In general, MSAs with high naively estimated values benefit from

favorable covariates, such as small lot sizes.

Overall, our estimates cover 76,581 square miles of urban land. The total estimated value of

this land is $25,025 billion on average over the sample period. The average value of urban land

was $511,000 per acre, with an unweighted standard deviation of $519K across metro areas. This

average implies a cost of roughly $100 K for a typical fifth-acre residential lot, or $2,000 for a

typical parking spot.

9Estimates for all MSAs in the sample are available in Table A.2 of the appendix.
10We take estimated values one-half miles from downtown as our estimate of city center land

values.
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Table 2: Selected Metropolitan Land Value Indices, 2005-2010

Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales

Naive
Model Central

Urban
Avg.

Ratio of
Central to
10-Mile
Values

Total
Urban

Land Value
($ billions)

1 New York, NY 749 1,603 26,139 123,335 5,264 22.3 2,524.4
2 Jersey City, NJ 47 43 7,667 9,554 3,305 8.8 98.8
3 Honolulu, HI 198 56 4,357 16,256 3,290 7.0 416.3
4 San Francisco, CA 300 152 8,722 25,446 3,239 9.3 622.8
5 Los Angeles-Long Beach, CA 1,359 1,760 3,709 16,801 2,675 5.5 2,326.8
6 Orange County, CA 494 233 3,163 3,208 2,595 1.3 820.5
7 San Jose, CA 305 217 2,580 3,552 2,347 1.6 458.3
8 Miami, FL 372 1,233 3,052 4,478 1,794 3.2 427.5
9 Stamford-Norwalk, CT 179 19 2,753 2,740 1,505 3.2 172.4
10 Bergen-Passaic, NJ 316 79 1,957 4,145 1,423 3.7 287.7

16 Washington, DC-MD-VA-WV 1,458 1,840 3,548 36,913 1,214 32.6 1,133.0
22 Las Vegas, NV-AZ 317 2,553 1,193 1,841 849 2.4 172.4
26 Chicago, IL 2,035 3,511 1,455 37,632 663 35.1 863.3
27 Boston, MA-NH 1,295 122 1,243 8,457 600 9.8 497.5
32 Denver, CO 536 2,015 828 7,586 539 18.6 185.1
52 Phoenix-Mesa, AZ 897 5,946 370 3,529 452 8.4 259.4
99 Dallas, TX 1,057 811 454 2,774 305 10.1 206.4
118 Houston, TX 1,341 1,143 423 2,813 272 9.4 233.1
120 Detroit, MI 1,426 679 456 2,321 270 6.6 246.6
130 Atlanta, GA 2,105 5,229 402 1,750 251 5.5 338.6
227 Pittsburgh, PA 1,003 240 433 1,772 156 10.6 100.0

322 Glens Falls, NY 33 21 46 65 45 2.6 0.9
323 Jackson, MI 57 8 49 74 38 3.0 1.4
324 Jamestown, NY 46 10 43 63 30 2.1 0.9

Total U.S. 76,581 68,756 - - - - 25,024.8
Simple Average U.S. 235 212 591 1,672 344 3.7 76.8
Simple Std. Dev. across Metros 304 592 1,660 7,472 519 3.6 226.6
Weighted Average U.S. - 739 1,052 5,068 511 6.5 244
Wtd. Std. Dev. across Metros - 1,214 2,701 13,850 715 7.2 430.9

MSAs are ranked by average urban land values. Land-value data from CoStar COMPS database for years
2005 to 2010. Naive model is simple average of observed prices per acre. Estimated allows land values
to depend on quartic polynomial in log distance from city center plus one mile, with random coefficients.
City center land values are for one-half mile from downtown, and mile 10 land values are for 10 miles from
downtown. Weighted statistics for U.S. are weighted by total metropolitan urban area. Standard deviations
are unweighted. See appendix table A.2 for complete list of MSAs. Averages and standard deviations for
the U.S. do not include MSAs for which there were no observed land sales.
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The highest central land values are found in New York, at a whopping $123 million per acre.

The remaining top 5 are Chicago, Washington D.C., San Francisco, and Los Angeles-Long Beach,

with values between $17M and $38M. With the exception of tightly-regulated Washington, all of

these central areas are known for their towering skylines.

The New York PMSA has the highest average values as well, $5.3 million per acre, even after

averaging in several counties in addition to New York County (Manhattan). The next three highest

averages are found in quality locations with smaller land areas. For instance, Jersey City, a valuable

strip of 47 square miles with great views of Manhattan, is second with an average value of $3.3M

per acre. Honolulu takes third place, also at $3.3M per acre, and is loaded with a scenic views,

miles of coastline, and a desirable climate. San Francisco, which completes the almost three-way

tie for second, is famous for similar natural amenities, as well as a booming business environment.

In fifth place, Los Angeles-Long Beach has average values of $2.7M per acre over its extended

area of 1,359 square miles, which is unsurprising for the second most populous metro area.

The top ten cities in terms of average values are all on or near salt water coasts. Average

land values are more moderate in the Midwest and South: Chicago has an average value of $663

thousand per acre, while Pittsburgh has an average of $156K. Dallas, Houston, and Atlanta have

averages values roughly in the $250K-$300K per acre range. The lowest values are found in small

cities such as Glens Falls, NY, Jackson, MI, and Jamestown, NY, at less than $50K per acre.

Although the estimated rank correlation between central and average land values is 0.85, the

ratio of central values to those 10 miles away varies considerably. The weighted (unweighted)

average is 3.7 (6.5), with a standard deviation of 3.6 (7.2). Chicago, with its circumscribed Loop

District, has the highest ratio, 35.1, followed by Washington D.C., at 32.6. The tenth percentile

ratio of central to 10-miles distant values is 1.6. San Jose, CA and Orange County, CA are the most
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valuable and prominent cities beneath that threshold, reflecting their decentralized urban structures.

The New York PMSA has the greatest total land value of any metro, at roughly $2.5 trillion.11

The Los Angeles-Long Beach PMSA is not far behind, with a total value of $2.3T. When cities are

aggregated to the CMSA level, the top five for total urban land values are New York, Los Angeles,

San Francisco, Washington, and Chicago, which together account for 48 percent of the value of all

urban land in the United States.

4.3 Comparing Transaction- and Residual-based Estimates

A common approach to measure land values is to treat them as the residual difference between a

property’s entire value and the estimated value of its structure.12 A caveat of this method is that it

equates the market value of a structure with its replacement value, neglecting adjustment costs in

building and irreversibilities in investment (Glaeser and Gyourko, 2005). When the market value

of structures falls below replacement costs, the residual method assigns the entire decrease to land

values. The residual method can even infer negative value to land, as Davis and Heathcote (2007)

do for residential land in 1940; Larson et al. (2015) show that the Flow of Funds approach implied

the value of land in the corporate business sector in 2009 was worth negative $178 billion (Bureau

of Economic Analysis, 2013). It seems highly unlikely that there were no “buyers” in 2009 willing

to be paid less than $178 billion to receive all the corporate land in the U.S.

Davis and Palumbo (2008), or “DP,” use the residual method to estimate an index of land values

across 46 metros. Despite the differences in measurement and intended coverage, we attempt to

11Barr et al. (2016) estimates a geometric average value of $991 billion for the island of Man-
hattan alone (less than 23 square miles) during that time. Therefore, we consider our estimates of
New York land values, while high in absolute terms, to be within reason.

12Case (2007) explains how to use FOF data to impute land values in this way, using the re-
placement cost of housing structures.
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compare our index to their theirs.13 To compare acres and lots, we estimate average residential

lot acreage by metro, and divide the DP numbers by this acreage. To aggregate the DP values,

we multiply their estimated value per lot by the number of housing units in urbanized Census

block groups in the year 2000, counting rental units as having half the land as an owned unit,

which roughly reflects national averages. This aggregation method avoids estimating acreages, but

misses non-residential land.14 Appendix Table A.3 contains the estimates for the 45 MSAs in both

samples, which are plotted in Figure 3.

Our transactions-based estimates imply higher land values than the residual-based estimates,

$722K vs. $392K per acre. Across metros, the correlation coefficient between the two is 0.72. The

aggregated DP and transaction numbers are more strongly correlated, with a coefficient of 0.95.

Figure 3a contrasts the average values per acre, while Figure 3b contrasts the aggregate land values

for each city: recall these are for all urban land in our transaction index, and for residential land

only in the DP index. Our transaction index is higher than the DP index for nearly every city.

Looking at individual cities, both indices imply average land values over $3M per acre for San

Francisco, and values near $60K for Charlotte. But for New York our transaction index implies

urban land values of $5.3M per acre vs. $835K for the DP estimates. For Oklahoma City, our index

is $161K per acre, while the DP index implies $24K per acre. These differences may arise from

13Their index is purely residential, for owner-occupiers only, and is estimated by lot. Our trans-
action index is for all urban land (including commercial and industrial), is for owners and renters,
and is estimated by acre.

14We divide by average lot size, since DP report an arithmetic average of land value. This may
introduce significant measurement error in some numbers. Using medians or geometric averages
produces substantially higher average values per acre. The Davis and Palumbo (2008) index is
quarterly; we take geometric averages to arrive at annual and whole-sample values. Matching our
MSAs to their cities is typically straightforward using the name of the principal city. We do not
match their estimates for Santa Ana to the Orange County, CA MSA, because we lack lot size
information.
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the differences in the types of land considered: our index includes very high value central land.

Nevertheless, our data sources and estimation technique seem to play large roles. Furthermore,

the value of transactional land should reflect available building opportunities, good or bad, while

built-on land reflects the structure that is permitted de facto.15

Over time, our transaction index implies smaller price movements than the DP index within

cities over the boom and bust cycle in our data. This is seen in figure 3c, which plots the estimated

difference between the minimum and maximum annual estimated average land values within each

city, expressed as a percentage of the maximum value. The average coefficient of variation of

land values within the 45 cities according to our index was 0.24, versus 0.44 in the DP estimates.

The greater volatility of the residual method is also seen in the time series for aggregate U.S. land

values, which we consider below.

15As Davis and Heathcote (2007) note, the residual method attaches “the label ‘land’ to anything
that makes a house worth more than the cost of putting up a new structure of similar size and quality
on a vacant lot.” Thus, the residual method will attribute higher costs stemming from inefficiencies
in factor usage – e.g., geographic and regulatory constraints that hinder building – to higher land
values. In a follow-up paper, Albouy and Ehrlich (2016) use differences in the value of housing
prices from land and structure costs to measure the costs imposed by such constraints. See Glaeser
and Gyourko (2017) for a related, but more reduced-form approach that assumes land is a fixed
fraction of housing costs.
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Figure 3: Comparison of Transactions-Based Index to Residual-Based Index

(a) Estimated Average Land Values per Acre
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(c) Within-City Time Series Variation
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Table 3: Urban Land Values in the United States, 2005-2010

Year

Avg. Urban
Land Value per

Acre($)

Total Urban
Land Value
($ billions)

Avg. Urban
Land Value per

Acre (Index,
2005 = 100)

Nominal GDP
($ billions)

Ratio of Total
Urban Land

Value to GDP

S&P CoreLogic
Case-Shiller U.S.

National HPI
(Normalized to

2005=100)

Total Urban
Land Value
- Residual
Method

($ billions)

2005 577,336 28,117 100.0 13,094 2.15 100.0 16,758
2006 623,950 30,387 108.1 13,856 2.19 106.8 16,931
2007 584,682 28,475 101.3 14,478 1.97 104.8 16,001
2008 513,413 25,004 88.9 14,719 1.70 95.5 9,569
2009 372,819 18,157 64.6 14,419 1.26 86.5 5,767
2010 392,683 19,124 68.0 14,964 1.28 84.2 6,234

Land-value data from CoStar COMPS database for years 2005 to 2010. Residual method calculates total
real estate holdings at market value of nonfinancial businesses, households, and nonprofit organizations from
Financial Accounts of the United States (formerly known as the Flow of Funds) and subtracts current-cost
net stock of private structures from National Income and Product Accounts.

5 Aggregate Urban Land Values over Time

In this section, we sum our urban land values across metros to calculate annual aggregate urban

land values for the United States.16 Table 3 presents these totals.

Over our sample period, average values peaked in 2006 at $624K per acre, an increase of 8%

from 2005. Average values then fell to near their 2005 levels in 2007, before declining precipi-

tously. By 2009 the average value was roughly $373K per acre, 65% of its 2005 level. The ratio

of aggregate urban land values to gross domestic product declined considerably as well. The ratio

was 2.1–2.2 in 2005 and 2006 before declining to reach a value 1.28 by 2010.

For comparison, we construct a series for aggregate U.S. land values using the residual method

16Our sample includes observations from 324 out of the 331 MSAs and PMSAs in the 1999
OMB definitions. The combined imputed land value for the seven metros with no data is $61
billion, less than one-quarter a percent of our aggregate number.
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based on FOF data (now the Financial Accounts of the U.S.). We sum the total value of real estate

at market value held by non-financial non-corporate businesses, non-financial corporate businesses,

and households and nonprofit organizations to arrive at the total market value of privately held real

estate. We then subtract the current-cost net stock of private structures to arrive at a residual-based

value for land. In 2006, the estimated value of real estate was $43.3 trillion, while structures were

valued at $26.3T, implying that the total value of land was $16.9T. Our transactions-based estimate,

in contrast, is $30.4T, nearly 80% higher, signifying that urban land is an even more important asset

in the U.S. economy.

In addition to the methodological differences, the totals may differ because they cover different

land. Our estimates are based on total metro urban areas, including public lands for roads, parks,

and civic buildings. Assuming that the public owns urban land worth 40% of the total value, only

$18.2T of land would be owned privately, which is much closer to the FOF numbers. On the other

hand, the FOF numbers include land outside of metro-urban areas, which we exclude.

Land values calculated from the FOF fell even more dramatically than our series, down to only

$5.8T in 2009, as opposed $14.4T. The peak-to-trough decline in the transactions-based index was

40%, substantially less than the 66% decline in the FOF.

Last, we consider how land values compare with housing prices. The final column of table 3 re-

ports the S&P CoreLogic Case-Shiller U.S. National House Price Index, normalized to have value

100 in 2005. Overall, land values appear to have led house prices slightly, and were substantially

more volatile than house prices over the sample period. This result is consistent with the Bostic

et al. (2007) land leverage hypothesis that housing should have less volatile values than land.

22



6 Conclusion

Our analysis combines insights from the monocentric city model with empirical Bayesian methods

to produce novel and plausible estimates of land values, even in metros with relatively thin data.

These methods might easily be applied to estimate other city-wide measures, such as wages or

property prices. Relative to residual approaches, our method suggests that urban land values may

be higher, less volatile, and less likely to be negative. Furthermore, the model sheds light on

the enormous differences in land values both across and within cities, with high central values

providing indirect support for monocentric cities, albeit with heterogeneous value gradients.

We hope that the measures we provide may form the basis of reliable estimates of aggregate

land wealth. With additional data, future modeling could be enriched to incorporate greater spatial

structure and modifications for observed land uses. The cross-sectional index we provide should

also prove useful to researchers examining differences in amenities and costs across metro areas.
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Appendix to “Metropolitan Land Values”

A Additional Data Notes

When a CMSA contains multiple PMSAs, we treat each PMSA as its own MSA for purposes of

estimation and reporting. For instance, we treat the Washington, DC-MD-VA-WV and Baltimore,

MD PMSAs as separate MSAs, although they are both parts of the Washington-Baltimore DC-

MD-VA-WV CMSA. For New York City we use the Empire State Building as the city center

rather than City Hall, following Haughwout et al. (2008). We treat each named city in an MSA

with a hyphenated city name as having its own city center. For instance, we treat Minneapolis-St.

Paul, MN-WI as containing two distinct cities, Minneapolis, MN, and St. Paul, MN. However, we

treat such cities as belonging to one MSA for purposes of aggregating and reporting.

In the CoStar data, we consider 12 of the most common proposed uses, which are neither

mutually exclusive nor collectively exhaustive. We consider an observation to feature a structure

when the transaction record includes the fields for “ Bldg Type”, “ Year Built”, “ Age”, or the

phrase “ Business Value Included” in the field “ Sale Conditions.” We geocoded the lot sales using

the Stata “geocode” module of Ozimek et al. (2011). In addition to the exclusions discussed in the

main text, we also exclude outlier observations with a listed price of less than $100 per acre or a

lot size over 5,000 acres, or further than 60 miles away from the city center. We also exclude lots

we could not geocode successfully.

Median lot size is 3.5 acres versus a mean of 26 acres. Land sales occur more frequently in

the beginning of our sample period, with 21.7% of our sample from 2005 and 11.4% from 2010.

Residential uses are common but by no means predominant in the sample: 17.6% of properties have
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a proposed use of single-family, multifamily, or apartments. 23.4% is being held for development

or investment, and 16% of the sample had no listed proposed use.

B Computation

B.1 Estimation of Land Value Gradients: αjt and δj

For notational convenience we rewrite the model in (1) as

ln rijt = Z ′ijtγj +Xijtβ + eijt, eijt ∼ N(0, σ2
e), (A.1)

where Z ′ijt =
[
1, Dij, D

2
ij, D

3
ij, D

4
ij, 1

2006
ijt , 1

2007
ijt , 1

2008
ijt , 1

2009
ijt , 1

2010
ijt

]
, with Dij = D(zij, z

c
j), and

where 1sijt is an indicator variable that takes value 1 if s = t and 0 otherwise. The parameter vector

γj collects city and time specific parameters with a multivariate normal prior distribution

γj = [αj, δj1, δj2, δj3, δj4, αj,2006, αj,2007, αj,2008, αj,2009, αj,2010]
′ ∼ N(mγ,j, Vγ,0) (A.2)

where

mγ,j =


a0 + a1Aj

b0 + b1Aj

τ

 and Vγ,0 =


Σαα Σαδ 0(1×5)

Σδα Σδδ 0(4×5)

0(5×1) 0(5×4) Σττ

 (A.3)

with τ = [τ2006, τ2007, τ2008, τ2009, τ2010]
′ and Σττ = diag([σ2

2005, σ
2
2006, σ

2
2007, σ

2
2008, σ

2
2009, σ

2
2010]

′).

Conditional on fixed and variance parameters (θ = [β, a0, a1,b0,b1, τ, σ
2
e ,Σαα,Σδα,Σττ ]) and
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observed data for city j, the posterior distribution of γj follows the multivariate normal distribution

γj|θ,Data ∼ N
(
m̃γ,j(θ), Ṽγ,j(θ)

)
(A.4)

with a posterior mean as the weighted average between the prior mean (mγ,0) and the fixed effect

estimate γ̂j = (Z ′jZj)
−1 [Z ′j (ln rj −Xjβ)

]
:

m̃γ,j(θ) = Wj(θ)mγ,j + [I −Wj(θ)] γ̂j(θ) where Wj(θ) =
[
V −10 + σ−2e (Z ′jZj)

]−1
V −10 . (A.5)

Here we write Zj , ln rj , and Xj as matrices that stack elements only relevant for the city j. The

weighting matrix depends on the number of observations in the city j (nj), the relative size of the

prior variance (Vj), and the idiosyncratic error variance (σ2
e ). The posterior variance is

Ṽγ,j(θ) =
[
V −10 + σ−2e (Z ′jZj)

]−1
. (A.6)

It is well known that the posterior mean m̃γ,j(θ) is the best linear unbiased predictor for γj given

θ and the observed data. In our application, we do not know θ. Instead of taking a full Bayesian

approach and putting a prior on θ, we take the empirical Bayesian approach in which θ is calibrated

by maximizing the following marginal likelihood (Laird and Louis, 1989):

θ̂ ∈ argminθ L(data|θ) =

∫
p(ln rijt|Z,X, θ, γ)dγ (A.7)

where the γ is integrated out from the conditional posterior distribution an improper prior, p(γ) ∝

1, viz. Harville (1977). Then, we treat θ̂ as a known and fixed quantity and use the following
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posterior distribution for the computation of land values and the prediction,

γj|Data ∼ N
(
m̃γ,j(θ̂), Ṽγ,j(θ̂)

)
. (A.8)

One of the potential shortcomings of this approach is that it neglects uncertainty coming from the

estimation of θ, and the resulting posterior distribution for γj underestimates uncertainty. For-

tunately, we have a relatively large amount of data about θ (about 67,000 observations in total).

Second, the practicality of our shrinkage estimator is evaluated by the out-of-sample forecasting

evaluation. However, we note that a full Bayesian approach is possible (Zeger and Karim, 1991) at

the cost of even longer computation time. We choose to take the empirical Bayes approach because

of the out-of-sample evaluation of our shrinkage procedure.

B.2 Point Predictions for Land Values

Once we obtain the posterior distribution of γj , we can generate land value predictions. For the

cross-validation exercise, we generate and evaluate point predictions for the log-price of the land

parcels in the city j at time twith characteristicX∗ijt and Z∗ijt as the mean of the posterior predictive

distribution. In the standard case when we observe at least some data in city j, the point prediction

for the value of a land parcel is

l̂n rijt =

∫
ln rijtp(ln rijt|data,X∗ijt, Z∗ijt)d ln rijt

=

∫ ∫
ln rijtp(ln rijt|data,X∗ijt, Z∗ijt, γj)p(γj|data)dγjd ln rijt

= Z∗
′

ijtm̃γ,j(θ̂) +X∗
′

ijtβ̂.

(A.9)
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We can also generate predictions for the land in cities where we do not have observed transaction

prices. This is based on our “metacity” for a city with area Aj , using the prior with estimated

hyperparameters, θ̂. . In this case, our prediction is just

l̂n rijt = Z∗
′

ijtmγ,j(θ̂) +X∗
′

ijtβ̂. (A.10)

B.3 Computation of Land Values

For each census tract l in city j in year t, we calculate the predicted land value rljt at the tract

centroid and assign that average value to the entire tract.

Rjt =
L∑
l=1

r̂ljtAl (A.11)

where Al is the tract area we use the mean of the predictive distribution for rljt as the predicted

land value. That is,

r̂ljt =

∫
exp(rljt)p(rljt|data,X∗∗ljt, Z∗∗ljt)drljt

=

∫ ∫
exp(rljt)p(rljt|data,X∗∗ljt, Z∗∗ljt, γj)p(γj|data)drljtdγj

= exp
(
Z∗∗

′

ljtmγ,j(θ̂) +X∗∗
′

ljt β̂ + 1/2σ̂2
e + 1/2Z∗∗

′

ljt Vγ,j(θ̂)Z
∗∗′
ljt

)
(A.12)

where the last two terms are due to the log-normal correction. We can also estimate values for

cities with no observed land sales using only the prior.

Since our land data is incomplete, some land characteristics such as lot sizes and planned uses

(a subvector of X∗∗ljt) are unknown at the tract centroid. Therefore, we predict these characteristics
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based on what we do know of the land, namely its location. To do this, we decompose the predicted

land value in the following manner:

r̂ljt =

∫
exp(rljt)p(rljt|data,X∗∗ljt, Z∗∗ljt)drljt

=

∫ ∫
exp(rljt)p(rljt|data,X∗∗ljt, Z∗∗ljt, γj)p(γj, X∗∗ljt|data, Z∗∗ljt)drljtdγjdX∗∗ljt

=

∫ ∫
exp(rljt)p(rljt|data,X∗∗ljt, Z∗∗ljt, γj)p(γj|data)p(X∗∗ljt|data, Z∗∗ljt)drljtdγjdX∗∗ljt

= exp
(
Z∗∗

′

ljtmγ,j(θ̂) + 1/2σ̂2
e + 1/2Z∗∗

′

ljt Vγ,j(θ̂)Z
∗∗′
ljt

)∫
exp

(
X∗∗

′

ljt β̂
)
p(X∗∗ljt|data, Z∗∗ljt)dX∗∗ljt

(A.13)

where the uncertainty about the unobserved land characteristic at the tract centroid is captured

by the predictive distribution function of X∗∗ljt in the last integral. We construct a model for each

unobserved element in X∗∗ljt using observed characteristics of the tract l in city j. More specifically,

s-th element in X∗∗s,ljt is modeled as

X∗∗s,ljt = αxs,j + δxs,jDlj + γsClj + es,ljt, es,ljt ∼ i.i.d.N(0, σ2
s) (A.14)

whereDlj is the distance metric based on the distance between the tract centroid and the city center,

and Clj is log distance to coast from the tract centroid. Then, we replace unobserved elements in

X∗∗ljt in equation A.13 with their predicted values.

This technique is based on a similar but simpler version of the hierarchical model used for land

prices. The intercept and coefficient on the distance to the city center are allowed to vary across

MSAs, but using only an affine function, as opposed to a quartic polynomial. The coefficient on

the distance to the coast is fixed.
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Because these coefficients are not known, we estimate them using the observed transaction

data with the similar prior specification and assumption employed for the estimation of model for

the land price. More specifically, the prior distribution for city-specific parameters αxs,j and δxs,j

follow a multivariate normal distribution. The mean vector is an affine function of each city’s

urban area and the variance-covariance matrix is allowed to have non-zero off-diagonal elements.

We impose similar exogeneity assumptions for αxs,j , δ
x
s,j , and es,ljt. Lastly, we assume that each

element in X∗∗ljt are correlated only through observed tract characteristics Dlj and Clj (equation

A.14). Because estimation and prediction for the land price and land characteristics are performed

conditional on distance variables, we do not assume any specific distributional form for observed

distance variables Dij and Cij . However, we assume that the marginal density of Dij puts non-

zero positive value on the entire MSA area. This last assumption implies that if we do not have

a transaction observation at a specific census tract, this missingness is completely random and we

would eventually collect observations from this tract as the sample size goes to infinity.

B.4 Cross-validation

Cross-validation techniques help to determine the most appropriate econometric specification and

evaluate the effectiveness of the shrinkage model. We design a pseudo out-of-sample prediction

exercise that quantifies the potential gains or losses from different models. For this exercise we

take cities that have at least 50 observations per year for at least two years This leads to 58 cities

with 55,155 total observations. Then, for each city j,

1. Randomly choose nhold observations out of njt observations for each time t = 2005, 2006, ..., 2010

in city j. We keep those 6 ∗ nhold observations as well as the remaining sample of data from
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other cities.

2. Estimate each of models using the method described in subsection B.1

3. Generate predictions for sample held out in step 1 for city j based on the method in subsec-

tion B.2

4. Compute and store the prediction error for this hold-out samples. {ej,r,1, ej,r,2, ..., ej,r,(njt−nhold)}

(forecast errors are defined as predicted minus actual).

5. Repeat Step 1 – Step 4 for r = 1, 2, ..., R.

6. Repeat Step 1 – Step 5 for each city j = 1, , J .

7. Compute aggregated out-of-sample prediction evaluation statistics. For example, the MSE

for the city j is computed as

MSE(j) =
1

R× (nj,t − nhold)

R∑
r=1

(njt−nhold)∑
i=1

e2r,j,i (A.15)

where we set R = 30. We perform for nhold = 3 (small sample size) and nhold = 30 (moderate

sample size) for each city. About 35% of MSAs in our sample have observations less than equal to

18 observations (which is approximately 3 per year in our data set) and about 81% of MSAs in our

sample have observations less than equal to 180 (which is approximately 30 per year in our data

set). We report average MSE(j) over j = 1, 2, ...58.

Unshrunken Estimator The unshrunken estimates are based on the fixed effect estimation. The

estimator is defined as γ̂j = (Z ′jZj)
−1(Z ′j(ln rj −Xjβ) and used in Equation A.5.
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Table A.1: Estimated Coefficients on Covariates in Preferred Specification

Covariate
Estimated
Coefficient

Standard
Error t-statistic p-value

Log Lot Size -0.543 0.0037 -146.134 0.000
(Log Lot Size Squared)/100 -3.053 0.1592 -19.176 0.000
(Log Lot Size Cubed)/1000 3.601 0.2498 14.415 0.000
Log Distance to Coast -0.052 0.0043 -12.196 0.000

Planned Use:
None Listed -0.182 0.0112 -16.193 0.000
Commercial -0.380 0.0599 -6.354 0.000
Industrial -0.346 0.0141 -24.578 0.000
Retail 0.255 0.0134 18.963 0.000
Single Family 0.003 0.0133 0.202 0.840
Multifamily -0.139 0.0198 -7.055 0.000
Office 0.046 0.0148 3.129 0.002
Apartment 0.288 0.0196 14.713 0.000
Hold for Development -0.073 0.0118 -6.171 0.000
Hold for Investment -0.283 0.0195 -14.523 0.000
Mixed Use 0.250 0.0265 9.438 0.000
Medical 0.171 0.0355 4.810 0.000
Parking 0.076 0.0373 2.044 0.041

This table reports the coefficients on the covariates from the preferred specification in table 1 from the main
body of the text, which applies shrinkage to a model with a quartic polynomial in log distance to the city
center plus one mile.
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Table A.2: Metropolitan Land Value Indices Ranked by Average Urban Land Value per Acre, 2005-2010

Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales

Naive
Model Central

Urban
Avg.

Ratio of
Central to
10-Mile
Values

Total Est.
Urban

Land Value
($ billions)

1 New York, NY 749 1,603 26,139 123,335 5,264 22.3 2,524.4
2 Jersey City, NJ 47 43 7,667 9,554 3,305 8.8 98.8
3 Honolulu, HI 198 56 4,357 16,256 3,290 7.0 416.3
4 San Francisco, CA 300 152 8,722 25,446 3,239 9.3 622.8
5 Los Angeles-Long Beach, CA 1,359 1,760 3,709 16,801 2,675 5.5 2,326.8
6 Orange County, CA 494 233 3,163 3,208 2,595 1.3 820.5
7 San Jose, CA 305 217 2,580 3,552 2,347 1.6 458.3
8 Miami, FL 372 1,233 3,052 4,478 1,794 3.2 427.5
9 Stamford-Norwalk, CT 179 19 2,753 2,740 1,505 3.2 172.4
10 Bergen-Passaic, NJ 316 79 1,957 4,145 1,423 3.7 287.7
11 Oakland, CA 495 132 2,648 5,447 1,412 3.3 447.1
12 Fort Lauderdale, FL 372 741 2,417 3,572 1,336 3.1 318.0
13 Seattle-Bellevue-Everett, WA 782 1,626 2,741 9,930 1,317 10.1 658.6
14 West Palm Beach-Boca Raton, FL 398 321 2,188 5,990 1,305 5.3 332.8
15 Santa Barbara-Santa Maria-Lompoc, CA 159 29 2,345 2,511 1,237 2.8 126.2
16 Washington, DC-MD-VA-WV 1,458 1,840 3,548 36,913 1,214 32.6 1,133.0
17 San Luis Obispo-Atascadero-Paso Robles, CA 91 43 1,416 1,563 1,174 1.6 68.4
18 Santa Cruz-Watsonville, CA 72 12 2,007 2,279 1,163 4.3 53.3
19 San Diego, CA 803 957 2,488 10,081 1,073 8.7 551.0
20 Nassau-Suffolk, NY 850 396 1,540 800 931 0.8 506.4
21 Newark, NJ 567 142 2,059 5,436 872 5.0 316.7
22 Las Vegas, NV-AZ 317 2,553 1,193 1,841 849 2.4 172.4
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Table A.2: Metropolitan Land Value Indices Ranked by Average Urban Land Value per Acre, 2005-2010

Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales

Naive
Model Central

Urban
Avg.

Ratio of
Central to
10-Mile
Values

Total Est.
Urban

Land Value
($ billions)

23 Naples, FL 145 78 791 1,081 738 1.5 68.5
24 Ventura, CA 202 131 1,048 1,537 692 2.4 89.7
25 Portland-Vancouver, OR-WA 527 1,191 777 6,063 679 11.5 228.9
26 Chicago, IL 2,035 3,511 1,455 37,632 663 35.1 863.3
27 Boston, MA-NH 1,295 122 1,243 8,457 600 9.8 497.5
28 Santa Rosa, CA 144 153 1,034 956 590 2.2 54.3
29 Anchorage, AK 94 21 851 490 572 1.3 34.4
30 Provo-Orem, UT 105 47 499 963 568 2.1 38.2
31 Salt Lake City-Ogden, UT 411 145 482 1,228 557 2.2 146.3
32 Denver, CO 536 2,015 828 7,586 539 18.6 185.1
33 Vallejo-Fairfield-Napa, CA 129 146 786 984 539 2.4 44.3
34 Tacoma, WA 308 539 570 2,427 530 5.6 104.4
35 Sarasota-Bradenton, FL 260 601 893 975 514 2.1 85.6
36 Providence-Fall River-Warwick, RI-MA 439 62 1,194 2,139 508 7.4 142.7
37 Panama City, FL 101 41 815 385 502 0.7 32.6
38 Baltimore, MD 858 802 969 2,281 501 4.1 275.2
39 Bridgeport, CT 200 26 837 1,581 500 3.5 63.9
40 Salinas, CA 101 12 814 1,023 490 2.6 31.6
41 Minneapolis-St. Paul, MN-WI 1,026 846 613 3,323 486 6.4 318.8
42 Middlesex-Somerset-Hunterdon, NJ 424 101 828 1,302 482 3.1 130.9
43 Fort Walton Beach, FL 86 14 300 930 478 2.4 26.3
44 Reno, NV 125 57 530 1,150 472 4.1 37.9
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Table A.2: Metropolitan Land Value Indices Ranked by Average Urban Land Value per Acre, 2005-2010

Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales

Naive
Model Central

Urban
Avg.

Ratio of
Central to
10-Mile
Values

Total Est.
Urban

Land Value
($ billions)

45 Yolo, CA 34 50 624 640 468 1.5 10.1
46 Barnstable-Yarmouth, MA 188 3 387 1,090 466 3.0 56.0
47 Fort Myers-Cape Coral, FL 240 294 593 345 465 0.7 71.4
48 Gary, IN 285 111 468 2,428 463 8.4 84.5
49 Fort Pierce-Port St. Lucie, FL 180 71 475 657 463 1.9 53.4
50 Tampa-St. Petersburg-Clearwater, FL 957 1,220 1,144 3,037 454 7.5 278.1
51 Lowell, MA-NH 161 12 544 1,056 453 3.1 46.6
52 Phoenix-Mesa, AZ 897 5,946 370 3,529 452 8.4 259.4
53 Charleston-North Charleston, SC 238 214 498 2,569 446 11.0 67.8
54 Sacramento, CA 412 448 602 2,121 442 4.7 116.7
55 Orlando, FL 666 1,612 739 3,191 431 6.9 183.9
56 Monmouth-Ocean, NJ 524 124 642 2,044 425 5.4 142.5
57 Albuquerque, NM 281 114 413 635 418 1.5 75.0
58 Charlottesville, VA 47 4 728 589 415 2.2 12.4
59 Punta Gorda, FL 98 63 648 963 406 2.6 25.4
60 Atlantic-Cape May, NJ 174 37 538 1,298 406 4.1 45.2
61 Wilmington, NC 139 50 420 830 402 2.2 35.8
62 Stockton-Lodi, CA 130 163 531 423 399 1.0 33.1
63 Colorado Springs, CO 199 892 409 830 396 2.4 50.5
64 New Haven-Meriden, CT 270 43 658 1,745 396 6.1 68.4
65 Modesto, CA 120 142 407 707 388 2.3 29.9
66 Boulder-Longmont, CO 91 183 758 462 387 1.9 22.5
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Table A.2: Metropolitan Land Value Indices Ranked by Average Urban Land Value per Acre, 2005-2010

Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales

Naive
Model Central

Urban
Avg.

Ratio of
Central to
10-Mile
Values

Total Est.
Urban

Land Value
($ billions)

67 Danbury, CT 160 23 426 1,003 368 4.3 37.8
68 Bremerton, WA 130 18 465 856 367 2.7 30.5
69 Madison, WI 130 239 468 2,815 365 13.9 30.4
70 Philadelphia, PA-NJ 1,725 859 939 13,254 362 29.4 400.1
71 Myrtle Beach, SC 97 84 507 1,000 360 4.1 22.4
72 Burlington, VT 68 5 790 773 358 3.7 15.7
73 Trenton, NJ 127 35 432 800 354 2.7 28.9
74 Boise City, ID 158 106 294 601 349 1.9 35.3
75 Lawrence, MA-NH 236 29 410 1,178 344 5.1 51.9
76 Reading, PA 124 36 324 529 342 2.0 27.1
77 Visalia-Tulare-Porterville, CA 104 32 614 557 340 3.7 22.7
78 La Crosse, WI-MN 44 21 295 488 339 2.5 9.6
79 Norfolk-Virginia Beach-Newport News, VA-NC 554 392 377 1,375 337 5.0 119.4
80 Monroe, LA 78 7 360 605 336 3.3 16.8
81 Tallahassee, FL 125 52 474 1,001 335 5.6 26.9
82 Iowa City, IA 36 9 423 428 334 2.5 7.6
83 Salem, OR 109 54 356 868 334 3.4 23.2
84 Olympia, WA 105 250 455 543 333 2.5 22.5
85 New Orleans, LA 364 66 672 1,690 332 5.9 77.5
86 Bellingham, WA 57 19 286 514 331 2.4 12.2
87 Springfield, MA 252 28 523 1,336 328 5.4 52.9
88 New Bedford, MA 72 14 503 597 326 3.1 15.1
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Table A.2: Metropolitan Land Value Indices Ranked by Average Urban Land Value per Acre, 2005-2010

Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales

Naive
Model Central

Urban
Avg.

Ratio of
Central to
10-Mile
Values

Total Est.
Urban

Land Value
($ billions)

89 Lexington, KY 138 29 345 564 320 1.9 28.2
90 Spokane, WA 160 55 603 1,389 318 6.4 32.6
91 Jacksonville, FL 497 793 559 776 316 2.3 100.6
92 Riverside-San Bernardino, CA 971 2,452 433 637 315 1.5 195.5
93 El Paso, TX 206 94 321 399 313 1.2 41.3
94 Daytona Beach, FL 225 93 539 368 312 1.2 45.0
95 Portsmouth-Rochester, NH-ME 133 13 291 581 310 2.6 26.4
96 Portland, ME 120 25 1,399 869 309 3.6 23.8
97 Grand Junction, CO 60 21 343 565 307 2.8 11.8
98 Nashville, TN 580 455 499 1,499 306 4.7 113.6
99 Dallas, TX 1,057 811 454 2,774 305 10.1 206.4
100 Richland-Kennewick-Pasco, WA 95 27 273 357 300 1.7 18.3
101 Wilmington-Newark, DE-MD 215 107 445 607 298 3.1 40.9
102 Tucson, AZ 325 1,749 320 914 296 3.3 61.5
103 Columbus, GA-AL 114 11 250 620 294 3.3 21.5
104 Medford-Ashland, OR 66 12 379 465 293 2.5 12.4
105 Austin-San Marcos, TX 423 384 434 3,054 293 12.8 79.3
106 Melbourne-Titusville-Palm Bay, FL 255 420 688 353 293 1.3 47.8
107 Gainesville, FL 79 34 384 527 292 3.8 14.8
108 Merced, CA 61 64 319 455 288 2.1 11.2
109 Chattanooga, TN-GA 303 51 387 1,367 283 5.8 54.8
110 Sioux Falls, SD 49 17 306 372 283 2.5 8.9

40



Table A.2: Metropolitan Land Value Indices Ranked by Average Urban Land Value per Acre, 2005-2010

Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales

Naive
Model Central

Urban
Avg.

Ratio of
Central to
10-Mile
Values

Total Est.
Urban

Land Value
($ billions)

111 Santa Fe, NM 78 7 335 539 282 2.2 14.1
112 Green Bay, WI 83 49 289 340 282 2.3 15.1
113 Greenville, NC 47 9 259 460 279 3.5 8.4
114 Yuba City, CA 42 13 890 625 278 6.6 7.4
115 Raleigh-Durham-Chapel Hill, NC 532 782 497 627 276 2.5 94.2
116 Waterbury, CT 125 9 243 437 275 2.2 21.9
117 Bakersfield, CA 161 64 250 625 272 2.0 28.0
118 Houston, TX 1,341 1,143 423 2,813 272 9.4 233.1
119 Joplin, MO 72 8 255 450 271 2.7 12.5
120 Detroit, MI 1,426 679 456 2,321 270 6.6 246.6
121 Las Cruces, NM 88 18 240 430 270 2.3 15.2
122 Fort Collins-Loveland, CO 91 344 417 348 270 1.4 15.7
123 Fresno, CA 215 137 247 453 266 1.8 36.7
124 Cincinnati, OH-KY-IN 645 637 441 1,656 266 6.7 109.8
125 Abilene, TX 49 3 356 337 266 2.5 8.4
126 Fayetteville-Springdale-Rogers, AR 135 43 356 293 263 1.7 22.7
127 Eugene-Springfield, OR 92 36 413 598 262 4.1 15.4
128 Worcester, MA-CT 248 56 454 1,918 261 11.2 41.3
129 Lawrence, KS 26 6 266 293 252 2.1 4.3
130 Atlanta, GA 2,105 5,229 402 1,750 251 5.5 338.6
131 Fargo-Moorhead, ND-MN 46 13 470 274 251 1.7 7.4
132 Omaha, NE-IA 237 118 633 1,147 251 4.7 38.0
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Table A.2: Metropolitan Land Value Indices Ranked by Average Urban Land Value per Acre, 2005-2010

Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales

Naive
Model Central

Urban
Avg.

Ratio of
Central to
10-Mile
Values

Total Est.
Urban

Land Value
($ billions)

133 Cleveland-Lorain-Elyria, OH 745 416 545 713 251 2.4 119.7
134 Greeley, CO 48 320 302 359 246 2.1 7.5
135 Huntsville, AL 179 29 190 519 244 2.3 28.0
136 Lincoln, NE 78 24 258 430 243 3.5 12.1
137 Billings, MT 53 25 297 319 243 2.5 8.2
138 Harrisburg-Lebanon-Carlisle, PA 243 89 334 1,084 242 7.7 37.7
139 Manchester, NH 97 23 230 559 240 3.9 14.9
140 Fort Worth-Arlington, TX 693 506 313 566 239 2.3 105.8
141 Louisville, KY-IN 413 126 279 650 233 2.7 61.6
142 Baton Rouge, LA 292 99 308 907 228 3.6 42.7
143 Janesville-Beloit, WI 56 15 277 301 226 3.1 8.1
144 McAllen-Edinburg-Mission, TX 318 61 400 398 226 2.6 45.9
145 Asheville, NC 126 41 318 499 226 3.0 18.1
146 Columbus, OH 512 671 614 1,238 222 5.5 72.8
147 Tulsa, OK 332 245 323 744 222 3.0 47.1
148 Bloomington-Normal, IL 39 10 193 264 220 2.8 5.5
149 Milwaukee-Waukesha, WI 542 399 313 821 219 3.8 76.0
150 Dubuque, IA 31 4 210 266 219 2.3 4.4
151 Anniston, AL 77 4 214 397 218 2.8 10.8
152 Waterloo-Cedar Falls, IA 53 12 229 298 215 2.5 7.3
153 Rocky Mount, NC 52 12 292 299 215 1.9 7.1
154 Roanoke, VA 111 23 208 442 214 2.9 15.2
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Table A.2: Metropolitan Land Value Indices Ranked by Average Urban Land Value per Acre, 2005-2010

Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales

Naive
Model Central

Urban
Avg.

Ratio of
Central to
10-Mile
Values

Total Est.
Urban

Land Value
($ billions)

155 Nashua, NH 96 3 147 426 212 3.1 13.0
156 Columbia, MO 54 3 206 333 212 2.8 7.3
157 Hagerstown, MD 49 28 348 518 212 9.5 6.6
158 Richmond-Petersburg, VA 441 399 293 1,509 212 8.4 59.7
159 Brockton, MA 148 22 362 528 212 3.3 20.1
160 Galveston-Texas City, TX 116 39 267 445 211 2.1 15.7
161 Allentown-Bethlehem-Easton, PA 264 85 281 348 211 2.3 35.6
162 Missoula, MT 36 4 374 311 210 2.6 4.9
163 Lake Charles, LA 99 14 206 441 209 3.4 13.3
164 Decatur, IL 50 2 239 331 209 3.4 6.7
165 Champaign-Urbana, IL 58 22 262 338 207 4.1 7.6
166 Savannah, GA 128 64 337 370 204 1.9 16.7
167 Kansas City, MO-KS 698 477 342 565 202 2.4 90.4
168 St. Louis, MO-IL 979 364 337 700 200 3.1 125.5
169 Little Rock-North Little Rock, AR 244 110 305 528 200 3.0 31.2
170 Decatur, AL 39 5 533 402 196 4.3 5.0
171 Birmingham, AL 421 148 238 298 196 1.4 52.9
172 Rochester, MN 43 7 189 253 196 3.1 5.4
173 Steubenville-Weirton, OH-WV 54 1 122 268 195 2.3 6.7
174 Indianapolis, IN 649 193 274 858 195 3.8 80.9
175 Hamilton-Middletown, OH 124 151 372 96 195 0.3 15.4
176 Auburn-Opelika, AL 62 5 233 267 195 1.8 7.8
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Table A.2: Metropolitan Land Value Indices Ranked by Average Urban Land Value per Acre, 2005-2010

Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales

Naive
Model Central

Urban
Avg.

Ratio of
Central to
10-Mile
Values

Total Est.
Urban

Land Value
($ billions)

177 York, PA 180 47 176 460 194 2.5 22.4
178 Laredo, TX 47 2 255 300 194 2.5 5.9
179 Dayton-Springfield, OH 382 116 317 777 194 5.1 47.4
180 Flagstaff, AZ-UT 35 7 294 230 194 1.9 4.4
181 Springfield, MO 124 43 261 487 194 4.0 15.3
182 San Antonio, TX 468 348 224 710 192 3.7 57.6
183 Pensacola, FL 246 102 317 669 192 3.6 30.3
184 Columbia, SC 270 139 237 871 190 6.5 32.8
185 Redding, CA 78 8 150 289 189 2.0 9.4
186 Hartford, CT 616 101 672 1,139 188 6.3 74.1
187 Lancaster, PA 229 57 176 597 188 4.7 27.5
188 Fayetteville, NC 156 25 476 253 184 1.7 18.4
189 Greensboro–Winston Salem–High Point, NC 602 438 297 274 183 1.6 70.4
190 Knoxville, TN 400 193 265 496 181 2.5 46.3
191 Houma, LA 93 4 102 474 180 3.1 10.7
192 Jacksonville, NC 94 6 134 368 180 2.4 10.8
193 St. Cloud, MN 45 17 331 252 179 2.3 5.1
194 Newburgh, NY-PA 169 54 206 504 178 3.1 19.2
195 Yakima, WA 74 15 182 289 178 1.9 8.4
196 Tuscaloosa, AL 76 16 252 349 177 3.3 8.6
197 Bangor, ME 38 5 339 347 176 3.4 4.3
198 Biloxi-Gulfport-Pascagoula, MS 172 30 163 424 173 3.6 19.0
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Table A.2: Metropolitan Land Value Indices Ranked by Average Urban Land Value per Acre, 2005-2010

Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales

Naive
Model Central

Urban
Avg.

Ratio of
Central to
10-Mile
Values

Total Est.
Urban

Land Value
($ billions)

199 Kenosha, WI 64 58 604 161 173 1.2 7.1
200 Lakeland-Winter Haven, FL 247 561 324 283 172 2.0 27.2
201 Duluth-Superior, MN-WI 81 22 344 133 172 1.7 8.9
202 Ann Arbor, MI 231 136 293 1,227 172 12.3 25.4
203 New London-Norwich, CT-RI 166 31 299 296 171 1.7 18.2
204 Clarksville-Hopkinsville, TN-KY 96 60 213 274 171 2.4 10.5
205 Dutchess County, NY 158 33 588 804 170 6.6 17.2
206 Pine Bluff, AR 35 2 232 215 167 2.2 3.8
207 Springfield, IL 94 11 430 335 166 4.3 10.0
208 Cumberland, MD-WV 41 6 145 283 166 2.5 4.3
209 Grand Rapids-Muskegon-Holland, MI 435 121 243 537 166 4.9 46.2
210 Vineland-Millville-Bridgeton, NJ 72 11 410 261 166 3.7 7.6
211 Lafayette, IN 61 13 190 192 164 1.5 6.4
212 Jackson, MS 192 43 191 753 164 6.1 20.2
213 Eau Claire, WI 63 30 123 225 164 1.7 6.6
214 Buffalo-Niagara Falls, NY 395 104 616 1,157 162 8.6 41.1
215 Memphis, TN-AR-MS 423 173 328 572 162 4.1 43.9
216 Waco, TX 73 14 185 227 161 2.2 7.6
217 Oklahoma City, OK 391 395 285 280 161 1.5 40.3
218 Bismarck, ND 34 22 155 153 161 1.5 3.5
219 Johnson City-Kingsport-Bristol, TN-VA 273 28 169 284 160 2.2 28.0
220 Brownsville-Harlingen-San Benito, TX 125 52 263 159 159 0.8 12.8
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Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales
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Model Central

Urban
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10-Mile
Values

Total Est.
Urban
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221 Canton-Massillon, OH 189 40 220 264 159 2.3 19.2
222 Des Moines, IA 158 99 238 776 158 5.5 16.1
223 Augusta-Aiken, GA-SC 243 66 228 250 158 1.6 24.6
224 South Bend, IN 126 12 118 335 157 3.3 12.7
225 Dover, DE 54 7 151 253 157 2.5 5.4
226 Yuma, AZ 54 12 215 355 156 3.2 5.4
227 Pittsburgh, PA 1,003 240 433 1,772 156 10.6 100.0
228 Amarillo, TX 85 27 173 215 155 2.2 8.4
229 Terre Haute, IN 54 4 200 237 151 2.1 5.2
230 Akron, OH 337 169 349 446 150 2.9 32.4
231 Texarkana, TX-Texarkana, AR 70 5 118 225 150 2.6 6.7
232 Montgomery, AL 133 33 252 487 148 4.0 12.6
233 Cedar Rapids, IA 62 33 151 216 148 2.0 5.9
234 Jonesboro, AR 41 8 194 252 148 3.1 3.9
235 Lynchburg, VA 87 13 152 258 147 1.8 8.2
236 Wichita, KS 205 54 229 298 147 2.1 19.2
237 Corpus Christi, TX 139 74 179 236 146 1.6 13.1
238 Ocala, FL 145 38 265 338 142 3.2 13.2
239 Lawton, OK 55 20 177 164 139 2.3 4.9
240 Corvallis, OR 33 3 436 226 135 3.3 2.8
241 Elmira, NY 35 9 240 147 135 1.2 3.0
242 Owensboro, KY 39 1 41 174 135 2.3 3.3
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Land Values - $000s/Acre
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Urban Area
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243 Goldsboro, NC 47 6 156 196 135 2.2 4.1
244 Racine, WI 73 80 166 197 134 1.6 6.2
245 Davenport-Moline-Rock Island, IA-IL 136 28 178 196 134 2.2 11.6
246 Mobile, AL 273 135 167 658 133 5.2 23.2
247 Greenville-Spartanburg-Anderson, SC 542 507 294 199 133 1.8 46.1
248 Sheboygan, WI 33 15 112 194 133 2.2 2.8
249 Pocatello, ID 30 7 208 122 133 1.7 2.5
250 San Angelo, TX 46 2 109 169 131 2.0 3.8
251 Lafayette, LA 165 15 118 287 130 3.0 13.8
252 Albany-Schenectady-Troy, NY 355 120 158 421 130 6.5 29.5
253 Athens, GA 79 15 189 226 129 2.6 6.6
254 Hattiesburg, MS 39 5 143 172 129 2.1 3.2
255 State College, PA 29 12 136 176 128 2.7 2.4
256 Pittsfield, MA 49 3 17 195 128 2.6 4.0
257 Evansville-Henderson, IN-KY 113 33 74 253 126 3.2 9.1
258 Brazoria, TX 110 62 225 111 125 1.4 8.7
259 Beaumont-Port Arthur, TX 165 60 140 231 124 2.2 13.1
260 Hickory-Morganton-Lenoir, NC 217 88 184 239 124 3.0 17.3
261 Topeka, KS 70 7 212 146 124 1.4 5.6
262 Syracuse, NY 236 65 221 689 124 10.4 18.6
263 Tyler, TX 64 13 162 246 123 3.7 5.1
264 Kalamazoo-Battle Creek, MI 191 31 144 275 123 3.0 15.1
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Table A.2: Metropolitan Land Value Indices Ranked by Average Urban Land Value per Acre, 2005-2010

Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales

Naive
Model Central

Urban
Avg.

Ratio of
Central to
10-Mile
Values

Total Est.
Urban

Land Value
($ billions)

265 Lansing-East Lansing, MI 156 40 138 353 122 5.0 12.2
266 Gadsden, AL 61 6 71 206 120 2.3 4.7
267 Williamsport, PA 39 9 49 163 120 2.0 3.0
268 Johnstown, PA 77 5 469 352 119 5.1 5.9
269 Wichita Falls, TX 65 8 133 187 116 2.7 4.8
270 Flint, MI 230 85 245 338 115 4.0 17.0
271 Bryan-College Station, TX 49 34 165 133 114 3.2 3.6
272 Killeen-Temple, TX 111 32 140 130 113 1.5 8.0
273 Fort Wayne, IN 182 39 269 309 113 2.9 13.1
274 Erie, PA 97 29 104 217 112 2.8 7.0
275 Elkhart-Goshen, IN 86 14 328 126 110 1.8 6.0
276 Macon, GA 172 20 174 262 110 2.1 12.1
277 Binghamton, NY 81 16 188 236 108 3.7 5.6
278 Benton Harbor, MI 91 12 110 200 108 1.8 6.3
279 Scranton–Wilkes-Barre–Hazleton, PA 208 27 194 243 107 3.7 14.2
280 Florence, SC 66 12 171 211 106 3.1 4.5
281 Great Falls, MT 29 1 134 114 105 1.7 1.9
282 Rockford, IL 166 104 147 272 104 3.2 11.1
283 St. Joseph, MO 40 12 191 82 103 1.2 2.7
284 Wausau, WI 38 16 104 87 103 1.2 2.5
285 Sioux City, IA-NE 50 17 162 141 102 2.6 3.3
286 Bloomington, IN 43 3 54 128 101 2.0 2.8
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Table A.2: Metropolitan Land Value Indices Ranked by Average Urban Land Value per Acre, 2005-2010

Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales

Naive
Model Central

Urban
Avg.

Ratio of
Central to
10-Mile
Values

Total Est.
Urban

Land Value
($ billions)

287 Alexandria, LA 58 4 55 138 97 1.9 3.6
288 Odessa-Midland, TX 99 39 129 156 95 2.2 6.0
289 Victoria, TX 51 7 70 148 95 2.1 3.1
290 Sumter, SC 45 10 99 123 94 1.7 2.7
291 Toledo, OH 203 107 172 226 93 2.3 12.1
292 Rochester, NY 388 110 632 747 93 11.8 23.1
293 Lubbock, TX 82 45 142 209 93 2.8 4.9
294 Shreveport-Bossier City, LA 179 50 88 218 91 3.1 10.4
295 Grand Forks, ND-MN 29 3 63 164 89 2.7 1.7
296 Fort Smith, AR-OK 71 18 88 152 89 2.2 4.0
297 Rapid City, SD 33 7 79 130 88 3.0 1.9
298 Appleton-Oshkosh-Neenah, WI 109 79 105 85 88 1.2 6.2
299 Mansfield, OH 74 3 125 130 87 1.9 4.1
300 Kankakee, IL 35 9 144 134 86 3.7 1.9
301 Peoria-Pekin, IL 144 25 94 195 84 3.6 7.7
302 Florence, AL 52 4 102 130 79 3.2 2.6
303 Pueblo, CO 54 18 71 116 77 3.2 2.7
304 Dothan, AL 93 14 133 150 77 2.1 4.6
305 Lewiston-Auburn, ME 28 3 46 103 76 2.4 1.3
306 Lima, OH 63 8 43 133 75 2.7 3.0
307 Parkersburg-Marietta, WV-OH 51 3 65 77 73 1.7 2.4
308 Wheeling, WV-OH 58 4 27 130 73 2.7 2.7

49



Table A.2: Metropolitan Land Value Indices Ranked by Average Urban Land Value per Acre, 2005-2010

Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales

Naive
Model Central

Urban
Avg.

Ratio of
Central to
10-Mile
Values

Total Est.
Urban

Land Value
($ billions)

309 Jackson, TN 44 4 40 99 73 1.9 2.0
310 Sharon, PA 33 9 45 111 67 2.4 1.4
311 Youngstown-Warren, OH 258 49 94 144 63 2.3 10.4
312 Enid, OK 24 2 75 75 62 1.8 1.0
313 Muncie, IN 44 5 26 87 60 1.8 1.7
314 Altoona, PA 45 8 76 95 58 2.8 1.7
315 Charlotte-Gastonia-Rock Hill, NC-SC 791 10 29 300 55 6.2 28.0
316 Danville, VA 34 5 46 67 55 1.4 1.2
317 Fitchburg-Leominster, MA 61 8 44 85 55 2.4 2.1
318 Utica-Rome, NY 89 15 103 81 55 2.2 3.1
319 Sherman-Denison, TX 34 19 40 55 54 1.6 1.2
320 Longview-Marshall, TX 84 14 289 129 52 3.8 2.8
321 Saginaw-Bay City-Midland, MI 146 41 92 103 51 2.5 4.8
322 Glens Falls, NY 33 21 46 65 45 2.6 0.9
323 Jackson, MI 57 8 49 74 38 3.0 1.4
324 Jamestown, NY 46 10 43 63 30 2.1 0.9
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Table A.2: Metropolitan Land Value Indices Ranked by Average Urban Land Value per Acre, 2005-2010

Land Values - $000s/Acre

Rank Metropolitan Area Name

Total
Urban Area
(Sq. Miles)

No. of
Land
Sales

Naive
Model Central

Urban
Avg.

Ratio of
Central to
10-Mile
Values

Total Est.
Urban

Land Value
($ billions)

Metropolitan Areas with no land sale observations:
N/A Albany, GA 66 0 - 310 200 2.6 8.4
N/A Casper, WY 26 0 - 119 110 1.9 1.8
N/A Charleston, WV 115 0 - 445 191 3.0 14.0
N/A Cheyenne, WY 34 0 - 145 126 2.1 2.7
N/A Chico-Paradise, CA 89 0 - 437 230 2.8 13.1
N/A Huntington-Ashland, WV-KY-OH 115 0 - 448 221 3.0 16.3
N/A Kokomo, IN 41 0 - 212 162 2.2 4.2
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Table A.3: Comparison of Transaction-Based and Residual-Based Estimates of Land Values,
2005-2010

Value ($000s) Total Value - $ billions

Metropolitan Area Name

Davis and
Palumbo
(2008)

Estimate for
Typical Lot

Davis and
Palumbo

Estimate per
Estimated

Acre

Our COMPS
Transaction-
Based (AES)

Estimate
per Acre

Davis and
Palumbo

Estimate for
Residential

Land

Our (AES)
Estimate for
All Urban

Land

New York NY 345 835 5,264 890 2,524
San Francisco CA 844 3,591 3,239 464 623
Los Angeles-Long Beach CA 438 1,094 2,675 1,077 2,327
San Jose CA 666 1,681 2,347 306 458
Miami FL 241 1,103 1,794 165 428
Oakland CA 475 1,189 1,412 347 447
Seattle-Bellevue-Everett WA 251 913 1,317 197 659
Washington DC-MD-VA-WV 312 918 1,214 460 1,133
San Diego CA 414 708 1,073 319 551
Portland-Vancouver OR-WA 183 160 679 111 229
Chicago IL 108 387 663 273 863
Boston MA-NH 340 499 600 392 498
Salt Lake City-Ogden UT 87 194 557 35 146
Denver CO 91 160 539 64 185
Baltimore MD 176 210 508 69 143
Providence-Fall River-Warwick RI-MA 241 415 501 195 275
Minneapolis-St. Paul MN-WI 57 101 486 52 319
Phoenix-Mesa AZ 68 305 454 64 278
Tampa-St. Petersburg-Clearwater FL 100 284 452 109 259
Sacramento CA 160 219 442 76 117
Philadelphia PA-NJ 123 292 362 208 400
New Orleans LA 155 293 337 74 119
Norfolk-Virginia Beach-Newport News VA- 72 192 332 32 77
Riverside-San Bernardino CA 132 281 315 118 196
Dallas TX 56 90 305 58 206
Houston TX 31 136 272 38 233
Detroit MI 15 30 270 22 247
Cincinnati OH-KY-IN 30 26 266 16 110
Atlanta GA 26 25 251 31 339
Cleveland-Lorain-Elyria OH 33 46 251 25 120
Fort Worth-Arlington TX 26 41 239 14 106
Columbus OH 44 47 222 21 73
Milwaukee-Waukesha WI 69 80 219 34 76
Kansas City MO-KS 18 16 202 10 90
St. Louis MO-IL 20 19 200 17 125
Indianapolis IN 36 26 196 10 53
Birmingham AL 11 11 195 5 81
San Antonio TX 18 67 192 8 58
Hartford CT 121 429 188 34 74
Buffalo-Niagara Falls NY 25 24 162 10 41
Memphis TN-AR-MS 14 16 162 5 44
Oklahoma City OK 12 24 161 4 40
Pittsburgh PA 11 9 156 8 100
Rochester NY 17 50 93 5 23
Charlotte-Gastonia-Rock Hill NC-SC 88 61 55 38 28
Average 152 392 722 147 352
Standard Deviation 183 626 983 224 511

Davis and Palumbo (2008) estimates are geometric means of quarterly values from 2005q1 to 2010q4.
Per-acre values calculated by dividing by an estimated average lot size, for owner-occupied units with
positive reported acreage from 2011 American Housing Survey data, which were unavailable for Orange
County. Total values for DP taking these times number of housing units in urbanized area as of 2000
Census, counting rented units as one half a regular unit. Davis and Palumbo estimates were downloaded
from the Lincoln Land Institute website February 2017 at http://datatoolkits.lincolninst.edu/subcenters/land-
values/metro-area-land-prices.asp.

52



Figure A.1: Geographical Distribution of Land Sales in Four Consolidated MSAs

(a) New York Northern New Jersey, Long
Island, NY-NJ-CT-PA (b) Los Angeles-Riverside-Orange County CA

(c) Chicago-Gary-Kenosha IL-IN-WI (d) Houston-Galveston-Brazoria TX

The gray dots represent land sales. The black stars represent city centers.
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