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During the 2000s the most volatile housing markets in the United States were concen-
trated in Arizona, Florida, Nevada, and noncoastal California. These "Sand States" have
sprawling cities surrounded by ample supplies of flat, buildable land. This puzzling com-
bination of highly volatile housing prices and unlimited residential land is consistent with
the predictions from this cyclic model of vacant land as an option to build. In the model a
monocentric city has a negative rental gradient with development costs that do not depend
on the radial distance of its expanding outer edge. All agents are equally informed about the
uncertain, mean-reverting, future growth rates of housing demand. In equilibrium all devel-
opment of rural land occurs during booms at the outer edge. Procyclical changes in land
prices produce procyclical changes in housing price-rent ratios, which lead procyclical growth
rates of housing rents. Land prices are more volatile than housing prices, which are more
volatile than housing rents. During speculative booms housing prices can increase rapidly
and exceed construction costs even at the rapidly expanding outer edge. These properties
persist with a nearly flat housing price gradient.
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Cyclical Housing Prices in Flatland

"In Flatland, which occupies the middle of the country, it’s easy to build
houses. When the demand for houses rises, Flatland metropolitan areas, which
don’t really have traditional downtowns, just sprawl some more. As a result,
housing prices are basically determined by the cost of construction. In Flatland
a housing bubble can’t even get started." Krugman (2005).

1. Introduction

Paul Krugman’s provocative column highlights a question commonly posed by housing econo-
mists. How can sprawling cities with relatively few commuters to the core and ample supplies
of flat, buildable land on the periphery, have highly volatile housing prices across booms and
busts? In these markets the price gradient between the core and periphery is relatively flat
and land prices on the periphery are constrained by competition among landowners. In
this case, the procyclicality of housing prices is determined largely by the relatively small
procyclical volatility of construction costs on the periphery. By this argument sprawling
cities on flat land cannot have highly volatile prices over housing cycles.1

The above issues were further highlighted by the subsequent housing cycle of 2000-2011.
During those years the most volatile housing prices were concentrated in Arizona, Florida,
Nevada, and noncoastal California: Davidoff (2013). Housing markets in these four "Sand
States" are characterized by sprawling cities surrounded by ample supplies of flat developable
land. Early in the decade these metropolitan areas had rapid growth of both employment in
residential construction and population, substantial speculation by investors in single-family
homes, and ample use of affordable financing, such as hybrid, adjustable-rate mortgages.
Later, as housing prices collapsed, foreclosures rose rapidly, eventually exceeding two-thirds
of all residential resales in Las Vegas and Phoenix: Olesiuk and Kalser (2009). In a regression
across cities, this collapse in prices was increasing in both cumulative construction and price
appreciation during the previous boom: Nathanson and Zwick (2015). The procyclical
volatility of land prices was also greater than the procyclical volatility of construction costs:
Nathanson and Zwick (2015).

As shown in this paper, housing and land prices can be highly volatile across booms and
busts in sprawling cities surrounded by endless supplies of flat, buildable land. The basic
argument is simple. It starts with two observations. First, flat land located outside the city
is distinguished by its radial distance to the outer edge of existing development. Rural land
without streets and utilities is often more costly to develop than vacant land at the edge of
the city. The additional cost is the developer’s share of the total costs of extending streets
and utilities to the property from the suburban edge. This cost is increasing in the distance

1See, for example, the responses to Shiller (2003) in Himmelberg et al (2005).
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between the property and the outer edge. Second, cities generally have negative housing
price gradients from centers of employment.2 In a circular city the price of housing decreases
with increasing radial distance from the urban core reflecting the costs of commuting between
suburban homes and more centrally located jobs. That decreasing price function can be
extended outside the city to identify the implicit price of housing that could be built at the
current time, but is not in equilibrium. For the results of the model, it is suffi cient that
construction costs are nondecreasing in rural radial distance, housing prices are nonincreasing
in radial distance, and at least one is strictly monotonic.

Owners of raw, rural land at each radial distance outside the city can choose when to sell
their parcels to developers who then entitle the land, finish lots, and build houses. Thereby,
rural land comes with an option to build housing. Completed houses in subdivisions are
subsequently sold to the public at prices equal to the implicit price of housing at that radial
distance. If, as indicated above, the price of housing and its cost of development are weakly
monotonic in radial distance from the city’s outer edge and at least one is strictly so, then
options to build on rural land are exercised optimally only at the outer edge. Current
development of more remote rural land is precluded by landowners’ optimal reservation
prices. In the resulting equilibrium, the current supply of rural lots for new houses is
thereby restricted to the buildable share of land at the city’s outer edge.

Like any real option, the value of raw, rural land increases in the expected appreciation
rate of its underlying asset. In this case, the underlying asset can be viewed simply as a
completed house on a finished lot. Landowners optimally exercise their options to develop at
a percentage premium over the cost of development that increases in the expected growth rate
of housing demand. Suppose that the growth rate of housing demand suddenly increases
from one constant value to another. The underlying cause could be more employment
opportunities or new, more affordable financing. In this case, landowners rationally expect
that the future growth rate of housing prices has also increased. They then defer their
options to develop at the outer edge until the housing price at the edge increases to the new,
higher price at which they optimally exercise their options. Thereby, owners of land at the
outer edge immediately raise their reservation prices when housing demand starts growing
at a more rapid rate. Owners of other land also raise their reservation prices because they
expect the city will sprawl more rapidly to their more rural properties.

If the growth rate of housing demand can change, informed, rational landowners antici-
pate this possibility and value accordingly their options to develop. To simplify the problem
to its essentials, suppose that the housing market cycles at random times between two states:
hot markets with growing aggregate demand for housing and cold markets with constant de-
mand. These transitions are immediately observed by all agents. Also, no information
about the timing of the next transition arrives before that transition. Housing rents, by
contrast, are determined in a spot market by the current aggregate demand and supply of

2Elasticities of the housing price gradient are estimated for Chicago in McMillen (2003).
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housing services delivered at different distances from downtown. As a result, rents at each
location are continuous in time, changing only as aggregate demand and supply change over
time.

Under these conditions landowners’optimal reservation prices are higher in hot markets
than cold markets. Land prices and thereby housing prices jump up during transitions from
cold to hot markets and down during the reverse transitions back to cold markets. Because
rents do not change during instantaneous transitions between markets, procyclical price-rent
ratios respond like procyclical prices. Between transitions price-rent ratios remain constant
because no agent receives new information about future rents until the next transaction.
This separates the procyclical volatility of housing prices into two components: procyclical
changes in price-rent ratios followed by procyclical changes in rents. The former, which occur
only during transitions between markets, reflect the changing beliefs of both landowners and
homeowners about future growth rates of aggregate demand. As such, they anticipate the
subsequent differences across hot and cold markets in the realized growth rates of rents.
In this case, procyclical changes in price-rent ratios must lead procyclical changes in rents.
Also, the intertemporal volatility of housing prices must exceed the intertemporal volatility
of housing rents. In the numerical solutions of this paper, the differences are substantial.

This initial model has additional implications. Most importantly, the procyclical volatil-
ity of housing prices is less than procyclical volatility of land prices. Also, hot markets
must have more speculation in housing with more marginal occupants than cold markets.
Both properties reflect the dual value of housing as both a consumer durable and a spec-
ulative real asset. At all times investors in housing and land receive the same, perfectly
competitive, expected rate of return. For housing, but not land, that total rate of return
includes a percentage dividend of perishable housing services valued at the rent-price ratio.
With higher rent-price ratios, housing is valued more like a consumer durable and less like a
speculative asset. When housing is valued less like a speculative asset, relatively less of its
total return comes from changes in its price, including changes during transitions between
hot and cold markets. Thereby, housing has in equilibrium less procyclical volatility than
land. Because rent-price ratios are countercyclical, the difference can be substantial in cold
markets. Counter-cyclical rent-price ratios also require procyclical speculation. Additional
properties of equilibrium are identified in Section 3.

More results follow when cold markets have decreasing aggregate demand. With con-
tracting cold markets, also called busts, expanding hot markets have two phases: initial
recoveries without construction followed by booms with construction. In this case, land
is less valuable during expansions. It appreciates more rapidly during booms and exhibits
more procyclical volatility during transitions between contractions and expansions. Price-
rent ratios are again procyclical: higher during expansions than contractions. Contractions
or busts are more abrupt than booms because booms are followed by busts, whereas busts
are followed by recoveries before booms. Also, bigger average booms are associated with
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bigger average busts because both are dependent on the same parameters. Again, additional
results are identified in Section 3.

Other implications are specific to sprawling cities in flatland. With flatter rental gra-
dients from the core to the periphery, sprawling cities have less cyclical housing prices and
rents. Nevertheless, rents and especially housing prices can be highly procyclical even in
cities with relatively flat gradients. Both rents and prices can rise rapidly during booms
with rapid rates of construction, but only inside the city. At the city’s expanding outer
edge, the unit price of housing during booms always equals the unit cost of construction
plus the constant price of land. The unit price of land can be positive even in cities with
relatively flat rental gradients, more so in more rapidly sprawling cities.

Construction costs in flatland and elsewhere are also procyclical. During booms when
aggregate construction increases, legal entitlements and local factors of production become
either more diffi cult or more costly: Saks (2008) and Nathanson and Zwick (2015). In the
final version of the model, unit construction costs and aggregate construction are assumed
to grow at proportional rates. Not surprisingly, this retards the rate of suburban sprawl and
raises the appreciation rate of housing. In turn, this has multiple effects, including higher
and more volatile price-rent ratios, more speculation during booms, and higher unit prices
for both land and housing relative to construction costs at the city’s expanding outer edge.
As a result, housing prices exceed construction costs at the expanding outer edge even in
cities with nearly flat rental gradients.

With the latter costs numerical solutions from the model approximate the volatilities
observed in the Sand States during the boom and subsequent bust of 2000-2011. In the base
case with calibrated parameter values, the average annual growth rate of housing prices is
-15.1% during contractions or busts and 11.3% during expansions or, equivalently, recoveries
followed by booms, with the annual difference of 26.4%. Also, the expected cumulative
construction during booms is 27.5% of the housing stock at the beginning of booms. For
metropolitan areas in the Sand States during the 2000s, the corresponding median values
were 25.5% and 20%: Davidoff (2013). The elasticity of the rental gradient with respect to
commuting distance contributes very little to these results. By contrast, the results depend
very much on the relationship between the growth rates of construction costs and aggregate
construction.

This paper also makes two methodological contributions to the broader literature on
housing cycles. Low-frequency housing cycles are largely ignored in the theoretical literature
on real options despite their obvious potential for sharp empirical implications. One problem
is technical: generating relatively simple solutions to linked pairs of valuation equations for
both housing and land. These differential equations for each state of the market, hot and
cold, are linked by stochastic transitions between the two states. This problem is further
complicated by another important issue. Price-rent ratios cannot be constant with discrete
states distinguished only by the finite growth rates of state variables. In the equilibria of
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this paper, price-rent ratios must be higher in hot markets than cold markets because the
two states, contracting and expanding aggregate demand, are distinguished only by their
constant growth rates of demand. Here, the first problem is solved by exploiting a plausible
property of the model. Houses are constructed if and only if aggregate demand is greater
than their aggregate supply. The second is solved by valuing housing simultaneously as
both a consumer durable and a speculative real asset.

The paper is organized as follows. After a brief discussion of the literature in the
second section, the model is motivated in the third section. The formal analysis starts with
a relatively simple, special case: constant housing demand during cold markets combined
with growing demand during hot markets. This initial model is introduced in the fourth
section and its equilibrium is identified in the fifth. The main model appears in the sixth
section. It has contracting cold markets followed by expanding hot markets with two phases:
initial recoveries from the previous bust and subsequent booms. Construction occurs only
during booms. Construction costs that grow proportionally with aggregate construction are
introduced in the seventh section and incorporated into the numerical calculations of the
eighth section. Easy extensions and empirical implications are identified in the subsequent
two sections. The major results are summarized in the final section. All derivations appear
in the Appendix.

2. Literature

Housing volatility, broadly interpreted to include bubble and cycles, has attracted consid-
erable academic attention. Recent models include Spiegel (2001), Nathanson and Zwick
(2015), and Burnside et al (2016). Before the housing boom and bust of the 2000s, that
volatility was linked largely to price-inelastic housing supply: Glaeser et al (2008). Inelastic
supply can reflect diffi cult topography, including steep slopes and water, regulatory restric-
tions on development, or land set aside for public uses: Saiz (2010) and Davidoff (2013).

Housing markets are dynamic. Prices change over time in response to demand and
supply that change over time. As a result, predictions about rates of housing appreciation
follow naturally from the comparative dynamics of proportional dynamic models. Also,
durable housing is developed at locations that change over time as the city expands outward.
Much of that construction occurs at or near the expanding outer edge of metropolitan areas:
Washington Post (2014) and Boglin, Doerner, and Lawson (2016). Finally, housing prices
at or near the outer edge of cities depend on both the cost of construction and the price of
land. The former is much less procyclical than the latter: Wheaton and Simonton (2007),
Nichols et al (2013), and Nathanson and Zwick (2015).

Housing markets can be volatile. That volatility affects the value of the option to develop
vacant land into housing and thereby the procyclical volatility of housing, both prices and
supply. Option-pricing models of housing development are largely limited to partial equilib-
rium with housing prices determined exogenously by geometric Brownian motion: Bulan et
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al (2009) and the citations therein. The major exception in urban economics is Capozza and
Helsley (1990). There, real options are embedded in a circular city with all development
at its expanding outer edge. Equilibrium introduces additional complications. Land as
an option to build must be priced together with housing at all times. This includes an en-
dogenous price for housing that reflects the differences between periods without construction
when housing has excess capacity and periods with construction and no excess capacity. It
precludes housing prices modeled as exogenous Brownian motion. Also, Brownian motion
is a poor fit for low-frequency housing cycles.

In this model vacant land is developed only at the city’s suburban edge, while all rural
land is priced as an option to build. Thereby, investors who wish to speculate on future
housing prices can purchase rural land beyond the outer edge without competition from
developers. This is a simple representation of sprawling metropolitan areas in Sand States.
It contrasts with Nathanson and Zwick (2015) where investors compete with developers for
a limited supply of rural land beyond the outer edge. As such the later model matches
more closely metropolitan areas with redevelopment of infill properties or restrictions on
rural development. In the western United States partial examples of the latter include
metropolitan areas with urban growth boundaries, like Portland, or Las Vegas with its highly
concentrated ownership of developable raw land. Both cities are discussed in Section 9.
With short-sale constraints and advantages to owner-occupied housing, optimistic investors
can then push up prices of raw land and thereby prices of new houses: Nathanson and Zwick
(2015).

[More references]

3. Preview

The model is motivated in this section. The motivation includes a discussion of the critical
assumptions, a description of the derivations, and an explanation of the main results.

This cyclic model is stripped to its barest bones. Uncertainty is limited to mean-
reverting, randomly timed transitions between two states: cold and hot markets. The
two variants of the model are distinguished only by the exogenous growth rate during cold
markets of aggregate demand for housing services. In its introductory version, the exogenous
component or driver of aggregate demand is constant. In the more realistic, main model,
exogenous demand contracts at a constant rate during cold markets. Construction occurs
only when aggregate demand expands and only then when the housing market has no excess
capacity remaining from the previous contraction. Endogenous housing prices can depend
on both the state of the market, hot or cold, the exogenous demand for housing, and the
radial distance of the house from the center of the circular city. These variables operate
through aggregate demand and supply as described below.
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All agents are always fully informed about the current state of the housing market. Per-
fectly competitive landlords exercise optimally their options to sell their unlimited supplies
of rural land to perfectly competitive developers of new homes. Each parcel of vacant land
is priced like an option to develop housing. Houses are real assets with rents from tenants or
implicit rents for homeowners. Real assets are priced at the expected present value of their
future rents or implicit rents of homeowners. Households are distinguished only by their
houses, which are distinguished only by their radial locations. Rents are current spot prices
at different radial distances for perishable housing services produced by houses functioning
as consumer durables. Spot prices for housing services at each radial distance depend the
current aggregate demand and supply for housing services at that distance, but not future
growth rates of either. At each radial distance throughout the city the resulting aggregate
demand for housing services must always equal its aggregate supply.

The model has no behavioral biases, informational asymmetries, capital constraints, or
urban growth boundaries. Instead, it relies largely on standard assumptions in the large
literature on real options. That includes rational, self-interested behavior by fully informed
investors. Novel results about state-dependent land prices follow from the removal of high-
frequency Brownian motion and its replacement by low-frequency Poisson shifts between
discrete states. Additional results about state-dependent housing prices follow from their
decomposition into two components: state-dependent price-rent ratios determined by in-
vestors’expectations about future rents versus short-term rents determined in a spot market
for perishable housing services.

This problem is unavoidably complex. With stochastic transitions between the two
states, hot and cold, housing and land must be valued simultaneously in both states distin-
guished in both variants of the model by their different growth rates of aggregate demand.
Nevertheless, each variant has an explicit, stationary equilibrium with clear empirical im-
plications. This follows from three sets of simplifying assumptions. The first is familiar
from the literature on real options. Aggregate demand is isoelastic and the growth rate of
its exogenous component is constant. This proportionality in the model makes possible its
relatively simple solution. The only equally tractable alternative is an additive model with
less realistic assumptions. For example, empirical housing price gradients or, more generally,
hedonic pricing functions are commonly specified as log-log or, equivalently, convex power
functions.

The second simplification is the sole source of uncertainty: Poisson transitions between
two fully observable states. With Poisson transitions, the time to the next transition has a
negative exponential distribution that does not depend on the time since the last transition.
In this case, investors learn nothing about the timing of the next transition until it occurs.
Instead, information arrives only during instantaneous transitions between states. That
information about discrete states is immediately observed by all investors and reflected fully
in discrete changes of both housing and land prices. By contrast, short-term rents remain
constant during instantaneous transitions because spot prices depend only on current demand
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and supply that can change only over time. This has the empirical implications identified
in the introduction. It also precludes inertia in the pricing of housing relative to land with
the implications identified in Section 9.

The third simplification is nonstochastic transitions from recoveries to booms. Booms
begin only when recoveries end. Recoveries end only when expanding aggregate demand
absorbs the excess supply of housing from the previous boom. This deterministic transition
during expanding hot markets differs from the stochastic transitions between contracting
cold markets and expanding hot markets—booms to busts to recoveries. It simplifies the
main model by restricting it to two states, contracting and expanding aggregate demand,
separated by Poisson transitions. Also, the combination of busts and recoveries not only has
no construction but also begins and ends with the same exogenous component of demand.
Because this matches the initial model with its two states, constant and expanding aggregate
demand, the solution to the main model can exploit the relatively simple solution to the initial
model.

This simple solution can be sketched as follows. With two states connected by Poisson
transitions, the value of either housing or land is determined by a pair of linked differential
equations, one each for cold and hot markets. Because these equations are first-order and
linear with constant coeffi cients, the pair can be solved explicitly, but the solution is complex.
That complex solution can be simplified significantly by exploiting the special properties of
the problem. With constant demand during cold markets, the differential equation for
cold markets simplifies to a proportional relationship between hot and cold markets. With
unchanging aggregate demand, that demand during cold markets begins and ends with the
same value and no construction occurs in the interim. Using this price for cold markets, the
remaining differential equation for hot markets is easily solved.

Contracting cold markets followed by deterministic recoveries are much the same. Ag-
gregate demand begins and ends with the same value because recoveries end when aggregate
demand returns to its last value during the previous boom. Also, no construction occurs
in the interim while the housing market has excess capacity. From the perspective of a
previous or subsequent housing boom, that combination of contraction and recovery is like a
constant or stagnant cold market with only one exception. The duration of the combination
also has a negative exponential distribution, but with a larger mean. Therefore, housing
and land have the same values during booms associated with either constant cold markets or
busts followed by recoveries, both with the same expected duration. With both housing and
land, this solution for booms generates one differential equation for recoveries conditional on
the initial price during booms. In turn, it generates another differential equation for busts
conditional on the initial price during recoveries. The latter equations also have relatively
simple, unique solutions.

With these simplifications the unique equilibria of the model’s two variants are identified
in two propositions. In the first proposition, the city stagnates during cold markets and
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sprawls during hot markets. Sprawl is measured by the radial distance at the city’s outer
edge: constant during cold markets and increasing at a constant rate during hot markets.
At all times only during hot markets, land is sold for immediate development only at the
expanding outer edge of the city. Both housing and land are priced in both markets at
all feasible radial distances for all feasible values of the exogenous component of aggregate
demand. Also, landlords’ optimal exercise policy of their effective option to develop is
identified.

This first equilibrium has the properties identified in the introduction and others. The
additional properties further distinguish housing from land. During hot markets housing
appreciates less rapidly than land. More rapidly growing demand is associated with not
only more rapid housing appreciation but also higher, constant, price-rent ratios in both
markets, relatively more so in hot markets. Hot markets with longer expected durations are
associated with higher price-rent ratios in both markets, relatively more so in hot markets.
Cold markets with longer average durations are associated with lower price-rent ratios in
both markets, more so in cold markets. With higher price-rent ratios, investors regard
housing less like a consumer durable and more like land, a speculative real asset without
perishable housing services. For this reason hot housing markets with their higher price-
rent ratios have more speculation and more marginal occupancy than cold markets. Both
markets have more speculation and more marginal occupancy with more rapid appreciation
during hot markets, longer hot markets, or shorter cold markets.

These results can be explained as follows. In equilibrium the essentially identical in-
vestors of the model must be indifferent at all times between buying housing or land at any
location inside the city. This requires that all land must always have in both states the same
expected appreciation rate equal to the common, constant discount rate of all investors in the
model. It also requires that all housing always has for homeowners a total expected rate of
return equal to the same discount rate. This total return is the sum of two components: the
expected appreciation rate of housing plus a percentage dividend in the form of perishable
housing services. That dividend is measured by the rent-price ratio.

Consider next the simple case of constant or stagnant cold markets. During these
cold markets homeowners receive perishable housing services, while neither homeowners
nor landowners realize any appreciation until the next transition from cold to hot markets.
To make investors indifferent between houses and land, landowners must then realize a
larger gain during that transition than homeowners. Because the price-multiple during
the transition is the reciprocal of the price-multiple during the reverse transition back to
cold markets, the price of land must be more volatile than the price of housing during
transitions between markets. A similar argument applies to transitions between contractions
and expansions, as does an analogous argument about housing appreciation during booms.
Therefore, land prices must be more volatile than housing prices.

The main model has additional properties. During contracting cold markets, aggregate
demand drops below its historic maximum. The resulting excess supply of housing must be
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then be absorbed during the subsequent recovery. Recoveries end and booms begin when
the excess housing disappears and construction starts again. This second equilibrium is
characterized in the second proposition. It has two significant differences from the previous
proposition. Housing and land are priced differently during the three phases: contractions
or busts, recoveries, and booms. During busts and recoveries, rent-price ratios are also
different from both each other and the previous, stagnant cold markets.

Contracting cold markets have additional implications. The combination of contractions
or busts followed by recoveries increases the average time between booms. This deepens the
crash of housing and land prices during transitions from boom to bust. Both prices decrease
by bigger percentages with more rapid contractions or less rapid expansions. Because
housing appreciates more rapidly during recoveries without construction than booms with
construction, recoveries also have a higher price-rent ratio than booms, which have a higher
price-rent ratio than busts. Thereby, buyers value housing most as a speculative investment
during recoveries, less in booms, and least in busts.

During periods without construction—busts and subsequent recoveries—housing prices
change at rates determined by the price-elasticity of aggregate demand and the growth
rates, negative and positive, of its exogenous component. Booms are very different. During
booms the rate of housing appreciation equals the city’s rate of sprawl multiplied by the
elasticity of its housing-price gradient. As this elasticity approaches to zero, the apprecia-
tion rate of housing converges to zero. However, that rate of convergence can be slow. It
is extremely slow if the total demand by all households for all housing in the city, not just
buyers and sellers, is roughly proportional to the city’s housing stock. This occurs when
existing housing supply or factors correlated with housing supply induce housing demand.
It could be associated with cities characterized by less turnover of homes, more established
neighborhoods with more mature households, or even more diversified employers in larger
cities with more housing.

The latter results are made much stronger by a minor modification of the main model.
In that modification the unit costs of construction and aggregate construction are assumed
to grow at proportional rates. This has the effects described in the introduction. Because
the city sprawls less rapidly and its housing appreciates more rapidly, the numerical solutions
in Section 7 match much more closely the data from the Sand States also described in the
introduction.

4. Initial Model

A circular city has a central business district with unit radius. All housing is distinguished
solely by its radial distance x from the urban center: 1 < x ≤ b. The outer edge b of
the city expands over time with the development of new housing. Housing is developed
at a constant density, conveniently normalized at one. Development is instantaneous once
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started. Once finished housing never depreciates or otherwise obsolesces. Also, existing
housing is never redeveloped at higher densities. Endogenous density at the edge, buildable
topography, and redevelopment inside the city are precluded in this model solely to simplify
the analysis. Time both to build and then to sell houses is also ignored for the same reason.

Beyond the outer edge of the city, all land is rural. Rural land can an alternative use
with a constant value conveniently normalized at zero. At each radial distance, houses can
be constructed only on an exogenous fraction of all land: 0 < λ ≤ 1. The remaining land is
either nonresidential or unbuildable. This circular city with constant density on residential
land inside the outer boundary b has the total housing stock:

h = λπ
(
b2 − 1

)
≈ λπb2. (1)

The error in (1), calculated as a fraction of the city’s total area πb2, disappears rapidly as
the city expands outward: b→∞. Henceforth, that error is ignored under the assumption
that the city is large relative to its urban core: b� 1.

The housing market has two completely observable states: cold and hot. The two states
are distinguished only by the growth rate of the exogenous component or driver q of the
aggregate demand for housing services. In each state i this exogenous quantity q changes
at a constant rate: q̇/q = ρi for i = 0, 1. In the introductory model, exogenous demand q
is constant during cold markets: ρ0 = 0. In the main model, exogenous demand decreases
at a constant rate, ρ0 < 0, during cold markets. In both variants of the model, demand
grows at a constant rate during hot markets: ρ1 > 0. The initial model has two benefits.
It simplifies both the analysis and exposition of the main model.

Over time the market switches randomly between the two states, hot and cold. During
the short interval of time ∆t, the market switches from state i to the alternative state, j 6= i,
with the probability: αi∆t + o(∆t) for i, j = 0, 1. The residual o(∆t) represents all terms
of smaller order than ∆t. With these Poisson shifts between states, the remaining time in
state i has at all times an independent negative exponential distribution with the mean 1/αi.
Consistent with empirical evidence on business cycles, cold markets are shorter on average
than hot markets: 0 < α1 < α0 < 1. All agents can always observe the current state. The
model has no other uncertainty.

Houses are both consumer durables and real assets. As consumer durables houses pro-
duce perishable housing services at a constant rate per unit of time for their occupants.
Occupants can be either tenants or homeowners. Because housing is distinguished only by
its radial distance, each otherwise identical unit of housing produces one unit of housing
services per unit of time. Thereby, the aggregate production or supply of housing services
equals the current housing stock, h in (1). Each unit of housing services has a market
price equal to the rental rate of one unit of the consumer durable, housing, all measured per
unit of time. For owner-occupied homes this rent can be interpreted as the implicit rent of
marginal homeowners.
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Housing services are priced in a spot market continuously through time. The current
spot price or rent at each radial distance, 1 < x ≤ b, depends only on the current aggregate
demand and supply of housing services at that radial distance. In turn, that demand and
supply depend on the three state variables: the current size of the city measured in (1) by
its outer boundary b, the current exogenous quantity q, and the property’s radial distance
q. This determines the spot rent: R(b, q, x) for 1 < x ≤ b. Because the current spot rent
does not depend on future values of the variables, b and q, it does not depend on the state
of the market i.

For reasons indicated in the previous section, the model is dynamic, proportional, and
stationary. In this case, the spot rent R must be isoelastic everywhere. In other words, the
inverse demand for housing services and thereby the aggregate demand for housing services
must be isoelastic at all radial distances. Without loss of additional generality, the isoelastic
inverse aggregate demand for housing services any radial distance R(b, q, x) can then be
decomposed into two components. The first is the isoelastic demand at the expositionally
convenient inner residential radius R(b, q, 1). The second is the isoelastic rental gradient
over all remaining radial distances: R(b, q, x)/R(b, q, 1) = x−ζ for all 1 < x ≤ b. With the
constant elasticity, −∞ < −ζ < 0, housing rents are decreasing and strictly convex in radial
distance x. The indicated independence of the rental gradient from the variables, b and q,
is an immediate property of the isoelastic rents R.

Homes and households are distinguished in this model only by their radial distance.
In this case, all households must be indifferent in equilibrium between purchasing the same
rental services at different radial distances. Their indifference has two effects. It determines
the elasticity −ζ of the radial gradient. It also allows households’ aggregate demand
for housing services to depend on the rental rate R(b, q, x) at any fixed radial distance,
1 ≤ x < b. Here, that notationally convenient but otherwise arbitrary radial distance is the
inner boundary, x = 1, with the rental rate R(b, q, 1). Stated alternatively, the aggregate
demand for housing services depends on the variables, b and q, only through the rental
rate R(b, q, 1) at the inner radial distance: R(b, q, x) = R(b, q, 1)x−ζ for all 1 ≤ x < b.
This generates the isoelastic aggregate demand for housing services: qR(b, q, 1)−ηhθwith the
housing stock h from (1).. It has the constant rent-elasticity, −∞ < −η < 0, and the
constant size-elasticity, 0 ≤ θ < 1. The quantity-elasticity is 1 without additional loss of
generality because the exogenous quantity q can be replaced by its power function without
altering the subsequent results. The size-elasticity θ is motivated below.

Households satisfy their demand for perishable housing services by buying or renting
housing. The resulting derived demand for housing as a consumer durable can depend on
the aggregate supply or stock of all homes for multiple reasons. In this parsimonious model,
the housing supply or stock h summarizes all effects on aggregate demand of population,
employment opportunities, net urban amenities, and other omitted factors related the size
of the city. It also reflects inertia in the housing market. Households who choose not to
move implicitly demand the housing services that their homes supply. In this proportional
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model the impact of housing supply on housing demand is restricted to the power function
hθ. Thereby, aggregate demand for housing services increases proportionally with the size
of the city at the constant rate θ. This fraction, 0 ≤ θ < 1, is closer to 1 if, for example,
movers are smaller fractions of the housing stock h. The elasticity θ has an important role
in both the numerical calculations and empirical implications.

Rental services are priced in a spot market by the intersection of aggregate demand and
supply. With the aggregate supply (1), the isoelastic aggregate demand, and the isoelastic
rental gradient, housing has the spot rents:

R(b, q, x) = x−ζ

[
q

(λπb2)1−θ

]1/η

, (2)

for 0 < q < ∞, and 1 < x ≤ b. As indicated, current rents depend only on current
aggregate demand and supply—not future demands or supplies. For this reason spot rents
are independent of the state i. When the market switches between its states, the growth
rate of rents ρi/η changes but the current level of rents R remains unchanged. This rental
function can be extended to all rural land beyond the outer boundary of the city: b < x <∞.
As such it can be interpreted as the implicit rental rate of rural housing that could be built,
but is not in the subsequent equilibrium.

Homes have prices in the market that depend on the aggregate demand and supply of
homes and thereby the values of all state variables. In market i each unit of housing has
the price P i(b, q, x). This price is calculated in the subsequent equilibria of both models.
Each price has an associated rent-price ratio:

ri =
R(b, q, x)

P i(b, q, x)
, (3)

for 0 < q < ∞, and 1 < x ≤ b. In the equilibrium of each model, the rent-price ratio ri
depends only on the state of the market i. More precisely, the restricted rent-price ratio (3)
is subsequently shown to be suffi cient for a unique equilibrium with weakly contracting cold
markets, ρ0 ≤ 0.

Housing is also a real asset with net cash inflows in the form of rents or implicit rents.
Rents are received by landlords with tenants. Implicit rents that are reflected in prices of
owner-occupied housing are received by homeowners. In this minimalist model, all expenses
of ownership, mainly maintenance, repairs, and property taxes, are ignored. At all times
the price of each home must then equal the expected present value of its future rents:

P i(b, q, r) = b−δ∆t
{
R(b, q, r) ∆t+ P i(b, q+∆q, r) + (4)

αi∆t
[
P j(b, q+∆q, r)− P i(b, q+∆q, r)

]}
+ o(∆t),

for i 6= j ∈ {0, 1}, r̄ ≤ r <∞ and 0 < q <∞. The present value at time t is calculated by
discounting the expected future value at time t+ ∆t at the constant rate δ per unit of time.
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The first component of this future value is the rent R(b, q, r) ∆t over the short interval of
time ∆t. The second is the future price conditional on the future quantity q + ∆q at the
future time t + ∆t. The remaining terms in the brackets are the expected change in price
of switching from state i to the other state j within the same interval of time ∆t. This
expectation reflects the sole source of uncertainty in the model: the approximate probability
αi∆t of switching during time ∆t.

The price of housing appears twice in the model. In (3) it capitalizes implicit rents
that clear the spot market for housing services. In (4) it must satisfy the pricing equation
conditional on the rents (2). Because the market can have only one price for each combination
of state variables, these two prices must be equal. This equality determines the endogenous
rent-price ratios ri in cold and hot markets, i = 0, 1. The properties of these ratios have
multiple empirical implications.

Perfectly competitive developers buy raw land from landowners, immediately finish lots,
build houses, and then sell new homes to owner-occupiers. Thereby, each identical developer
incurs with each property at each radial distance, x > 1, the constant construction costs
in cold and hot markets: 0 < γ0 ≤ γ1. These procyclical constants cover all costs of
development measured per property. Constant unit costs at all radial distances simplify
the subsequent exposition. Constant costs are suffi cient for almost all subsequent results
because housing prices are assumed to be decreasing in radial distance x. Higher unit costs
beyond the outer boundary are discussed in Section 8.

Perfectly competitive landowners exercise their options to develop by selling their land to
developers. With instantaneous development and sale, each identical developer always pays
per property the perfectly competitive price: P i(b, q, x) − γi. Landowners anticipate this
price and always time their sales to maximize the market values of their properties. Under
this optimal exercise policy, each parcel of rural land on which developers can construct one
house has the current market value V i(b, q, x). This valuation function is derived in the
subsequent equilibrium. Like the pricing function, it depends on both aggregate demand
and supply, which depend, in turn, on the same four variables: i, q, x, and b.

As specified above, each landowner solves the problem:

V i(b, q, x) = max
{
P i(b, q, x)− γi, b−δ∆t[V i(b, q+∆q, x) + (5)

αi∆t
[
V j(b, q+∆q, x)− V i(b, q+∆q, x)

]
]
}

+ o(∆t),

for i 6= j ∈ {0, 1}, b ≤ x <∞ and 0 < q <∞. In (5) the owner chooses the more valuable
of two alternatives: exercising the option immediately by selling the land it to a developer or
retaining the option for a short interval of time ∆t. The latter alternative has the expected
present value on the right side of (5). The present value matches the corresponding present
value of homes in (4) with one important exception: no rents on land. This expositional
simplification focuses attention on the critical distinction here between land as a real asset
versus housing as both a real asset and a consumer durable with perishable housing services.
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The solution to the above problem determines each landlord’s optimal exercise policy.
That policy is a stopping rule: the critical exogenous demand D(x) at which the option
to develop is exercised by owners of land at radius x. With lesser quantities, q < D(x),
properties at radius x are not sold to developers. As indicated, it depends on both the
current exogenous demand q and the property’s radial distance x. It does not depend on
the outer boundary b because unit construction costs γ1 are constant everywhere. Higher
unit costs beyond the outer edge are an easy extension identified in Section 8. The option
is always exercised only at the outer boundary if the critical demand D has two properties:
D(b) = q < D(x) for all radial distances, x > b, and all feasible values, b and q. The
equality and inequality respectively insure that development occurs on buildable land at the
outer edge and not more remote rural land. These two properties are part of the subsequent
equilibrium.

Equilibrium in the housing market has the following components. The rental rate,
R(b, q, x) in (2), clears the spot market for perishable housing services. The price of housing
P i(b, q, x) equals its expected present value in (4), conditional on the rental rate (2). The
value of land V i(b, q, x) equals its expected present value in (5), conditional on the optimal
development point, D(x) from (5). Finally, development occurs only at the expanding outer
edge of the city:

5. Initial Equilibrium

The above equilibrium is characterized in this section. Again, this initial solution has
constant aggregate demand during cold markets: ρ0 = 0. As such, it is an introduction to
the more complicated, more realistic solution with contracting cold markets in the subsequent
section. To simplify the subsequent notation, the dependence of the housing price P i and
land value V i on the outer boundary b are suppressed henceforth.

First, the previous problem is rewritten as follows. Expand the expected present value
on the right side of (4) in ∆t; ignore all terms of order o(∆t); subtract P i from both sides of
(4); divide by ∆t; and let ∆t→ 0. This generates the two differential equations that price
housing as a real asset:

0 = ρiqP
i
q(q, x)− (αi+δ−ri)P i(q, x) + αiP

j(q, x), (6)

for i 6= j = 0, 1. The expected return on the right side reflects the growth rate of housing
demand ρi in the current state i, the possible transition at rate αi from state i, the rent-price
ratio ri, and the discounting of those future events at the rate δ. Thereby, investments in
housing always have the expected rate of return δ. This total return has two components:
an effective dividend at the rate ri and expected appreciation at the rate δ−ri.

The valuation equations for land are similar. The above calculation for housing applied to
land produces the same differential equations, but without the percentage rents ri for housing
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services. Subtracting V i from both sides of the equation also generates the landlord’s gain
from trade on the left side of the maximand. Thereby, each landlord solves the problem:

0 = max
{
P i(q, x)−γi − V i(q, x), ρiqV

i
q(q, x)− (αi+δ)V

i(q, x) + αiV
j(q, x)

}
, (7)

or i 6= j = 0, 1. As indicated, each owner either exercises the option to sell his property to
a developer with the resulting gain on the left side of the maximand or defers that exercise
and then expects the return on the right side. As a result, optimized investments in raw
land must always have in both states i an expected rate of return equal to the discount rate
δ.

The valuation equations in (7) have three boundary conditions. Exogenous aggregate
demand q grows continuously during a hot market and never during a cold market. In this
case, each landlord’s optimal exercise policy for developing its land is a stopping rule. At
each rural radius x ≥ b, the landlord sells to developers only during hot markets and only
then when the exogenous quantity q first reaches the development point D(x). At this
quantity the value of land must equal the price of housing minus the cost of construction in
hot markets, i = 1, and exceed or equal the corresponding difference in cold markets:

V 0[D(x), x] ≥ P 0[D(x), x]−γ0, V 1[D(x), x] = P 1[D(x), x]−γ1, (8)

at all feasible radial distances x > 1. In hot markets the optimal quantity D(x) must also
satisfy the smooth-pasting condition:

V 1
q [D(x), x] = P 1

q [D(x), x] , (9)

for all x > 1.

The pairs of differential equations in (6) and (7) are solved as follows. Focus first on
housing. Because cold markets have constant aggregate demand, ρ0 = 0, the differential
equation for housing in cold markets, (6) with i = 0, disappears. It is replaced by a simple
proportionality between housing prices in hot and cold markets: (A.1) in the Appendix.
With (A.1) the differential equation (6) for hot markets, i = 1, does not depend on the
corresponding price in cold markets P 0. This single equation has the general solution (A.3).
That solution must match the pricing function for housing as capitalized rents below (2).
This equality determines the rent-price ratios, r0 and r1. Land has the same general solution
as housing, but without rents: r0 = r1 = 0. It, combined with the continuity and smooth-
pasting conditions in (8) and (9), generates the value of land in (15) with (16).

In the subsequent equilibrium development occurs only during hot markets and then
only at the outer edge of the city. During hot markets development never stops. Because
exogenous demand never contracts and housing never depreciates, the city then has an outer
radius or boundary B(q) for all feasible exogenous demands q. The outer boundary is
constant during cold markets and increasing continuously with q during hot markets. At all
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times during hot markets, landlords exercise their options to develop at the expanding outer
edge of the city. In this stationary equilibrium landlords’optimal quantity D(x) at the
expanding outer edge must always equal the current exogenous demand q: D[B(q)] = q for
all feasible q. In this case, development is restricted to the outer edge if the optimal quantity
D is greater beyond the boundary: D(x) > q for all x > B(q). Both these conditions are
satisfied in the subsequent equilibrium.

All properties of the first proposition follow from the above argument. Details appear
in the Appendix.

Proposition 1: With constant cold markets, ρ0 = 0 < ρ1, the unique housing equilibrium
satisfying (1), (2), and (6) through (9) has the following properties. All development occurs
at the outer boundary:

B(q) =

[
q

(λπ)1−θ (r1p1)η

]s/ρ1
, (10)

with the associated housing supply from (1). Housing has the unit prices:

P i(q, x) = pi

[
B(q)

x

]ζ
, (11)

for i = 0, 1, with the values at the outer boundary,

p0 = p1
α0

α0+δ−r0

, p1 =
γ1gL
gL−gH

. (12)

These results hold for all radial distances, 0 < x ≤ B(q). Housing also has the rent-price
ratios:

r0 = δ − α0gH
α0+α1+δ−gH

, r1 =
α0r0

α0+δ−r0

. (13)

During hot markets, i = 1, the prices housing and land grow at the respective rates, gH and
gL, while the city sprawls at the rate s:

gH = ζs, gL = δ

(
1 +

α1

α0+δ

)
, s =

ρ1

ζη + 2(1−θ) . (14)

Rural land has the unit values:

V i(q, x) = vi

[
q

D(x)

]gL/ρ1
, (15)

for i = 0, 1, with the values at the outer boundary,

v0 = v1
α0

α0+δ
, v1 =

γ1gH
gL−gH

. (16)
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Land located at radius x is developed when exogenous aggregate demand q reaches the value:

D(x) = (λπ)1−θ (r1p1)η xρ1/s, (17)

for B(q) ≤ x <∞.

The discussion starts with cold markets. During cold markets, i = 0, exogenous demand
q is constant; no land is bought by builders; and no new homes are sold to owner-occupiers.
In this situation all agents—homeowners, landowners, and developers—effectively wait for the
next hot market. That wait has an independent negative exponential distribution with the
mean 1/α0. Thereby, the wait is independent of both calendar time and all previous history.
With the proportionality in the model—constant elasticities and constant growth rates—the
equilibrium must then be stationary. At all times during cold markets, each unit of land
is then priced in (15) and (16) at the constant expected present value of its future value
at the start of the next hot market. These future values are discounted by landowners at
the constant rate δ. As a result, landowners always expect in both hot and cold markets a
return on land at the constant rate δ.

Rent-price ratios are countercyclical: 0 < r1 < r0 < δ in (13). As shown in the
Appendix, both ratios, r0 and r1, decrease with two parameters: the rate of expansion of
aggregate demand during hot markets ρ1 and the expected duration of hot markets 1/α1.
Both reductions are more rapid in hot markets. By contrast, the same rent-price ratios
increase with the expected duration of cold markets 1/α0, less rapidly so for hot markets.
Increments in either parameter, ρ1 or 1/α1, increase the procyclical volatility of housing
prices, but do not alter the corresponding volatility of land values. In contrast, increments
in the remaining parameter 1/α0 increase the volatility of land values more than the volatility
of housing prices. These volatilities are measured by the respective multiples, P 1/P 0, V 1/V 0,
and their reciprocals.

During transitions between cold and hot markets, both housing and land change abruptly
in value. When the market switches from cold to hot, houses jump in value less than land:
1 < P 1/P 0 < V 1/V 0. When the market switches back to cold, houses drop in value less
than land: V 0/V 1 < P 0/P 1 < 1. Thereby, housing has less procyclical volatility than land.
This result follows from (11), (12), (15), and (16). There, it holds because only housing has
implicit rents during cold markets: r0 > 0. In other words, housing is valued partly as a
consumer durable, whereas vacant land is purely a speculative asset. This result can also be
seen from another perspective. If housing had the same or more volatility than land, then
landlords could earn strictly higher expected returns in cold markets by selling their land to
other investors, buying empty houses, and then renting those houses to tenants.

With minimal restrictions on the parameters, housing prices must be less volatile than
land values and more volatile than construction costs during transitions between markets:

1 < γ1/γ0 < P 1/P 0 < V 1/V 0. (18)
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This result requires only that construction costs have less procyclical volatility than the land
values in (16). The latter inequality is satisfied with plausible parameters—e.g., 1/α0 = 3
years, γ0 = .85γ1, and δ ≥ .06 per year. Details appear in the Appendix.

Other properties of volatility follow immediately. Big increases in prices during transi-
tions from cold to hot markets are associated with big decreases in prices during transitions
back to cold markets. This is necessary because the ratios of housing and land prices during
transitions to cold markets are reciprocals of the corresponding ratios during transitions to
hot markets. The symmetry is specific to constant demand during cold markets, ρ0 = 0. It
does not hold with contracting cold markets, ρ0 < 0.

During hot markets the city sprawls on buildable land. Its outer boundary (10) and
thereby its area is decreasing in both the constant fraction of buildable land λ at each radial
distance x and the unit price of housing at the outer boundary, p1 in (12). By contrast, its
rate of sprawl, s in (14), depends on neither constant. Instead, cities sprawl more rapidly
with more rapid growth of demand ρ1 or less negative rental gradients, ζ from (11). As
indicated, this sprawl also depends on the remaining two elasticities in the model: one each
with respect housing rent and city size. This is not surprising. In this dynamic, proportional
model, as in others, levels depend on other levels, while rates of change depend elasticities
and other rates of change.

Housing appreciation has similar properties during hot markets. Most notably, the price
of housing (2) is decreasing in the fraction of buildable land λ through its affect on the outer
edge (10), while its growth rate, gH in (14), is independent of λ. Also, cities with flatter price
gradients in (11) and thereby smaller constants ζ have, other things equal, more rapid sprawl
in (10) and less rapid housing appreciation in (14). Both housing and land then have lower
prices at the outer boundary B(q). As the elasticity of the pricing gradient ζ converges to
zero, the appreciation rate of housing, gH in (14), converges to zero. At the outer boundary,
the price of housing, p1 in (12), then converges to the unit cost of construction γ1, while
the unit value of land, V 1[q, B(q)] in (15), converges to zero. However, this convergence is
extremely slow when the aggregate demand for housing is nearly proportional to its supply:
θ ≈ 1. As a result, cities with relatively flat price gradients can have housing that appreciates
rapidly during hot markets with prices at their outer edges that exceed costs of construction.
Examples of this slow convergence appear in the numerical calculations.

Finally, owners of rural land beyond the outer edge do not exercise their options to build
until the edge expands to their radial distance. At the outer boundary B(q), the exercise
quantity (16) at which landowners sell their properties to developers during hot markets
always equals the current exogenous aggregate demand: D[B(q)] = q for all q > 0. This
equality holds because the outer boundary (10) clears the housing market at each radial
distance: B[D(x)] = x for all feasible x. Thereby, landowners’optimal exercise quantity D
has a simple characterization: D = B−1 for all q > 0. Beyond the outer boundary B(q),
no housing is developed in (16) because the exercise quantity is too large: D(x) > q for all

19



x > B(q). This inequality holds because the outer boundary (10) always expands with the
exogenous demand q: B′ > 0 for all feasible q. The optimality of no exercise beyond the
outer boundary is evidenced by the higher value of rural land during booms (15) than its
current value for housing: V 1(q, x) > v1 for q > D(x).

6. Contracting Cold Markets

The previous model with stagnant cold markets is extended in this section to cold markets
with contracting demand: ρ0 < 0 < ρ1. As before, construction occurs only during hot
markets. Here, however, construction occurs only when housing also has no excess supply.
Housing has no excess supply when and only when the exogenous aggregate demand for
housing q equals its historical high or running maximum:

q̄t = max {qτ : 0 ≤ τ ≤ t} .

With excess supply, q̄t− qt > 0, no new housing is built even during hot markets. Construc-
tion restarts only when exogenous demand qt returns to its historical high q̄t. The subscript
t is omitted below.

This modification of the previous model motivates the following recharacterization of
housing markets. In this section stagnant cold markets, i = 0, are replaced by contracting
cold markets, i = 0.1, called contractions or busts. Also, expanding hot markets, i = 1,
are split into two phases: an initial recovery, i = 1.0, when housing still has some excess
supply from the previous bust, q̄ − q > 0, and the subsequent expansion or boom, i = 1.1,
when housing has no excess supply, q̄ = q. Busts become recoveries with the approximate
probability, α0.1 = α0, measured per unit of time, while booms become busts with the corre-
sponding constant probability, α1.1 = α1. By contrast, recoveries never switch stochastically
to busts: α1.0 = 0. Instead, recoveries become booms when exogenous demand q first re-
turns to its historical high q̄. This deviation from the previous model greatly simplifies the
subsequent analysis.

With this modification the main model is solved much like the initial model. Previously,
markets switched from cold to hot with no intermediate period of recovery. No recovery was
required because demand was constant during cold markets: ρ0 = 0. During cold markets no
land was sold to developers and no new homes were built. In this case, land at the beginning
of cold markets was priced at its expected present value at the end of the cold markets. The
same properties hold for contracting cold markets, ρ0 < 0, combined with their subsequent
recoveries. When the recovery ends and the new boom begins, exogenous aggregate demand
q again equals its last value during the previous boom q̄. Also, no land is sold to developers
during the bust and subsequent recovery. Therefore, land at the beginning of busts is priced
at the expected present value of its future value at the end of recoveries. The two problems
differ in only one detail: their expected durations.
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The above correspondence greatly simplifies the valuation of both housing and land as
real assets. Focus first on housing. By the above argument It has the same price at the
beginning of busts when q = q̄ as it does during cold markets with the same expected
duration. Previously, each cold market had the expected duration 1/α0 at all times during
a cold market. At the beginning of a bust, the bust and its subsequent recovery have the
longer expected duration 1/́α0 with the new parameter:

ά0 ≡
α0

1−ρ0/ρ1

< α0. (19)

This new duration is derived in the Appendix and discussed below the second proposition.
Therefore, the housing price at the beginning of busts is its previous price at the start of
cold markets in (12) with one substitution: the transition rate from cold to hot markets α0

is replaced by ά0 in (19). The same argument also applies to land.

With these valuations at the beginning of busts, the valuation equations for housing and
land in (6) and (6) are solved as follows. Again focus on housing. Represent by P 0.1(q, q̄, x),
P 1.0(q, q̄, x), and P 1.1(q̄, x) the respective prices of housing during contractions, recoveries,
and booms, for 1 < q ≤ q̄ and 1 < x ≤ B(q̄). The price of housing at the beginning of
busts P 0.1(q̄, q̄, x) is the previous price at the start of cold markets with the substitution
(19). Insert this price into the differential equation into the pricing equation (6) for housing
during expansions, i = 1, to calculate the price of housing during booms P 1.1. This is the
previous price during hot markets with the same substitution (19). Given P 1.1, calculate
next the price of housing during recoveries P 1.0 from (6) for hot markets, i = 1, with the
substitution: α1.0 = 0 for α1 > 0. The solution is the expected present value of housing
during recoveries with known duration. Finally, calculate conditional on P 1.0 the price of
housing during busts P 0 from (6) for cold markets, i = 0, with another substitution: ρ0 < 0
for ρ0 = 0. Again, the same calculations apply to land. Details appear in the Appendix.

The unique stationary equilibrium with contracting cold markets is identified below. All
references in Proposition 2 to results in the previous proposition include the substitution:
α0 replaced by ά0. In other words, the parameter α0 now has its new value ά0. In turn,
this new value affects the values of the rent-price ratios, r0 and r1 in (13), and the growth
rate of land prices during hot markets, gL in (14). As before, all results are derived in the
Appendix.

Proposition 2: With contracting cold markets, ρ0 < 0 < ρ1, and no stochastic transi-
tions from recoveries, α1.0 = 0, the unique equilibrium satisfying (1), (2), and (6) through (9)
has the following properties. All development occurs at the city’s outer boundary, B(q̄) from
(10). Housing has the unit prices (11) with 0 < q ≤ q̄ during contractions and recoveries,
i = 0.1, 1.0, and q = q̄ during booms, i = 1.1. During all states, i = 0.1, 1.0, 1.1, housing has
at the outer boundary B(q̄) the respective unit prices:

P 0.1[q,B(q̄)] =
ά0p1.1

ά0+δ−r0

(
q

q̄

)1/η

, (20)
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P 1.0[q,B(q̄)] = p1.1

(
q

q̄

)1/η

, (21)

for 1 < q ≤ q̄, and
p1.1 = P 1.1[q̄,B(q̄)] =

γ1gL
gL −gH

. (22)

Housing also has the rent-price ratios:

r0.1 = α0+δ − ρ0/η, r1.0 = δ − ρ1/η, r1.1 = r1. (23)

These results hold for all radial distances, 0 < x ≤ B(q̄). Housing prices change at the
constant rates: ρi/η during contractions and recoveries, i = 0.1, 1.0, and gH in (14) dur-
ing booms. During contractions, recoveries, and booms, i = 0, 1.0, 1.1, rural land has the
respective unit values:

V 0.1(q, q̄, x) =
ά0

ά0+δ
V 1.1(q̄, x)

(
q

q̄

)(ά0+δ)/ρ0

, (24)

V 1.0(q, q̄, x) = V 1.1(q̄, x)

(
q

q̄

)δ/ρ1
, (25)

and

V 1.1(q, x) =
γ1gH
gL −gH

[
q

D(x)

]gL/ρ1
, (26)

with the exercise quantity (17).

The second equilibrium is similar to the first with some significant differences . Again,
housing is less volatile than land during transitions between markets. Again, this is due to
housing’s dual role as a consumer durable and a real asset with rents. Here, however, land is
more volatile during transitions between markets than in the previous model with stagnant
cold markets. Land also has less value during expansions with more rapid appreciation
during booms. These results follow from (14) and (16) with the longer expected duration of
busts plus recoveries 1/́α0 than the previous cold markets with constant demand 1/́α0. For
housing the longer duration 1/́α0 also raises the rent-price ratio during booms r1.1 relative
to its previous value r1 in the initial model

With contracting cold markets and subsequent recoveries, decreases in value during tran-
sitions from boom to bust are also greater in magnitude than the increases during transitions
from bust to recovery. For land the respective relative values are V 0.1(q̄, x)/V 1.1(q̄, x) and
V 1.0(q, x)/V 0.1(q, x). The first ratio is less than the reciprocal of the second ratio because
land is less valuable in (25) during recoveries than booms. Nearly identical results for hous-
ing follow from (10) and (18) through (20). This contrasts with the symmetric ratios in the
previous model without recoveries. Therefore, transitions to busts affect prices more than
transitions to recoveries because demand contracts during cold markets.
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7. Increasing Costs

In both models construction costs depend only on the state of the market. In fact, construc-
tion costs can also depend on aggregate local construction. As local construction expands,
more local, progessively less skilled workers must be hired and trained. Other local inputs,
like concrete, must be purchased in greater volume. Legal entitlements for lots also be-
come increasingly costly during booms when developers must wait for longer for regulatory
approvals. These realistic costs are shown in this section to alter somewhat the previous re-
sults. In the next section this change is shown to improve the match between the numerical
calcuations and the data on Sand States cited in the introduction.

The main model in previous section has the following properties. New homes n are built
only during booms, at which time the growth rate of aggregate demand is constant. When
the housing stock h grows, it always grows at a constant rate: n = ḣ ∝ h. With (1) new and
existing homes must then grow at the rate: ṅ/n = ḣ/h = 2ḃ/b = 2s > 0. The new constant
rate of suburban sprawl s is determined below. It can differ from the previous rate, s in
(10), derived with the constant unit cost of construction γ1.

Suppose that unit construction costs and aggregate construction grow at proportional
rates: ċ/c = νṅ/n. The constant of proportionality, ν > 0, is exogenous. During booms
unit construction costs must then grow at a constant rate: ċ/c = 2νs. This generates the
isoelastic unit costs during booms.

C1(q̄) = γ1q̄
2νs/ρ1, (27)

with the endogenous constant, s > 0. With constant unit costs, ν = 0, the isoelastic cost
function (27) simplifies to the constant unit cost γ1 in the main model.

This simple convex cost function has direct and indirect effects on the previous equilib-
rium. The direct effects are derived in the Appendix and presented below in the third and
final proposition. The indirect effects are identified below the proposition.

Proposition 3: With the isoelastic unit costs, ν > 0 in (27), Proposition 2 is modified
as follows. The unit price, p1.1 in (22), is replaced by the unit price p1.1q̄

2νs/ρ1. Also, the
rates of housing appreciation gH and suburban sprawl s in (14) have during booms the new
constant values:

gH = (ζ + 2ν)s, s =
ρ1

ζη + 2(1− θ + ην)
. (28)

Otherwise, Proposition 2 is unchanged.

The increasing, convex unit costs of construction (27) have two direct effects on housing
markets. During booms housing appreciates more rapidly and the city sprawls less rapidly,
both in (28) relative to (14). In (28) larger constants of proportionality ν increase the
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growth rate of housing prices gH and reduce the rate of sprawl s. The indirect effects are
more subtle. More rapid housing appreciation gH makes land more valuable at the outer
edge of the city in (26), which raises the price of housing at the outer edge relative to the
cost of construction in (22). More rapid housing appreciation also reduces both rent-price
ratios, r0 and r1 in (13). This raises the volatility of housing prices and price-rent ratios
in (20) and (21) during transitions between states and makes housing more valuable as a
speculative asset during booms. Moreover, none of these results disappear as the elasticity
of the rental gradient −ζ approaches zero.

8. Numerical Results

In this section additional implications of the main model with contracting cold markets are
presented and used to calculate numerical results. Those results are then matched to housing
prices in the Sand States during the decade 2000-09.

Focus first on the transition from peak to trough. The transition has two compo-
nents. The market switches from boom to bust. This produces the price multiple:
P 0.1[q̄, B(q̄)]/P 1.1[q̄, B(q̄)] from (20) and (22). Next, housing prices decrease at the con-
stant rate ρ0/η until the market switches back from bust to recovery. That bust has a
negative exponential distribution with the mean 1/́α0. Thereby, housing markets have from
peak to trough the expected multiple:

ά0

ά0 + δ− r0

α0

α0−ρ0/η
. (29)

The multiple (29) is the product of two price ratios. The first, calculated from (20) with
q = q̄ and (22), is realized instantaneously during the transition from boom to bust. The
second, calculated in (A.16), is realized over time during the subsequent bust. Because both
ratios are less than one, the expected percentage change from peak to trough can be very
negative. In the subsequent numerical solutions, the first ratio is much more smaller than
the second.

The transition from trough to peak is similar. During transitions between bust and
recovery, housing prices jump by the multiple: P 1.0[q, B(q̄)]/P 0.1[q̄, B(q̄)] from (20) and (21).
During the subsequent recoveries and booms, housing prices always increase at the respective
rates: ρ1/η and gH . The latter growth rate comes from (28). Also, future recoveries
and booms have independent negative exponential distributions with the respective means:
−ρ0/α0ρ1 and 1/α1. As a result, recoveries and booms have the analogous expected multiples:

ά0+δ−r0

ά0

α0

α0+ρ0/η
and

α1

α1−gH
. (30)

The first ratio on the left side of (30) is the multiple of prices during the transition from
bust to recovery. It is calculated from (20) and (21). The second ratio on the left side is
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the multiple of prices at any fixed radial distance that is expected during the recovery. The
ratio on the right side of (30) is the multiple expected during the subsequent boom. The
latter two ratios are (A.15) and (A16), respectively. All ratios are greater than one: finite
if gH < α1 and infinite otherwise. Thereby, the expected percentage change from trough to
peak is also positive and potentially large.

The remaining multiple measures the development of housing during booms. The housing
stock (1) grows with the outer edge (10) only during booms and then at the constant rate
2s from the previous section. Thereby, the housing stock grows from trough to peak by the
expected multiple:

α1

α1−2s
. (31)

This multiple also exceeds one, infinitely so if 2s ≥ α1.

Using the above results from this and the previous section, housing prices are calculated
for booms and busts and displayed in Table 2. The parameters for these calculations are
constrained as follows. Consistent with empirical evidence on business cycles, contractions
are shorter and sharper on average than expansions: α0 > α1 > 0 and ρ0 < 0 < ρ1 <
|ρ0|. During the 2000s the bust lasted three years, while the previous recovery and boom
lasted about 7.5 years: Davidoff (2013). This matches the base case in Table 2. In
metropolitan Chicago the housing price gradient had estimated elasticities −ζ between 0 and
−.08: McMillen (2003). Finally, the long-run price-elasticity for owner-occupied housing
−η has been reported as −1.2: Anderson et al (1997).

The base case with the above parameter values appears in the first row of Table 2. There,
the expected annual growth rate of housing prices for the base case is 11.3% during expansion
and -15.1% during contraction. The difference between these two returns of 26.4% matches
the median value of 25.5% for metropolitan areas in the Sand States during the 2000s. The
cumulative growth of the housing stock expected during booms of 27.5% also approximates
the corresponding median value of 20% for the Sand States. Again, the medians are reported
in Davidoff (2013). These results require unit construction costs that increase in (27) with
aggregate construction: ν = 1 in the base case. With smaller values ν, the suburbs sprawl
more rapidly and housing appreciates less rapidly.

The base case also illustrates the greater volatility of housing prices than housing rents.
The difference, column two minus column one, is the total appreciation from trough to peak
in housing prices that is attributable to changes in the price-rent ratio during transitions
between hot and cold markets. That total growth in the price-rent ratio from trough to
peak is 31%. The corresponding growth in housing prices between transitions is calculated
from columns four through six as 183%. Because rents do not change during transitions
between markets and price-rent ratios remain constant between transitions, rents also grow
from trough to peak by 183%. This is smaller than the total growth of prices from trough
to peak of 272%.
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The remaining rows of Table 2 are comparative statics. As indicated, the rate of sprawl
s is infinite with a constant unit cost of construction, ν = 0. Also, the elasticity of the
rental gradient −ζ has very little impact on suburban sprawl and almost none on housing
appreciation. Housing appreciation is affected much more by absorption of excess housing
during recoveries and increasing costs of construction during booms. With larger constants
ν, the volatility of price-rent ratios during transitions between expansions and contractions
is also important. For these reasons cities with flat housing price gradients that sprawl on
flat land can have highly cyclic rates of housing appreciation.

9. Easy Extensions

Four easy extensions are identified in this section: more costly rural development, more com-
plicated topography, heterogeneous housing and land, imperfectly competitive landowners,
and limited land. Each extension has additional implications.

Rural Development: In the model the unit costs of development are constant beyond
the outer edge of the city: 0 < γ0 ≤ γ1. More realistically, the unit costs increase with rural
radial distance r−b. Suppose also that the unit cost is homothetic in the outer boundary b:
γiC(x/b) for i = 0, 1 and x ≥ b. In this case, the unit values of land, vi in (16), are replaced
by the corresponding values: viC[x/B(q)]. This adds a second source of value for rural land
in (15), greater for more remote rural land, that precludes its development beyond the outer
edge of the city. Thereby, development is restricted to the outer boundary B(q), even in
cities with flat rental gradients.

Heterogeneity: In the model households and their housing are distinguished only by
radial distance from the urban core. All houses have rents or implicit rents depend only on
radial distance. In fact, households and housing are heterogenous. Different homeowners in
the same category of homes can have different implicit rents. In this case, the implicit rent of
all households in the previous analysis is replaced by the implicit rent of marginal households
in the category. Different categories of homes can then be distinguished by their different
implicit rents of marginal homeowners. Because buyers search for housing matches much
more intensively than renters, owner-occupied homes should have higher implicit rents than
otherwise equivalent rental homes. Among owner-occupied homes, distressed properties
should have the lowest implicit rents, while custom homes should have the highest implicit
rents.

Differences in rent-price ratios or, equivalently, price-rent ratios across categories of hous-
ing have multiple implications. From the model housing with higher price-rent ratios has
more procyclical volatility during transitions between markets. Thereby, prices should have
more procyclical volatility for rental homes than owner-occupied homes. Among owner-
occupied homes procyclical volatility should be greatest for distressed homes and least for
new homes with customized features, less so for more customized homes.
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Land is also homogeneous in the model and heterogeneous in practice. In the model land
has no net cash inflows. In practice, net cash inflows can be positive or negative. Parcels
with agricultural leases and zoning generally have small, positive cash flows, while parcels
without leases have negative cash inflows mostly from property taxes. Cash inflows can
be significantly positive for land with leased underground mineral rights and significantly
negative for bankrupted building lots with bonded improvements. By the above argument,
land with more negative cash inflows has more procyclical volatility in prices.

Landowners: The model is developed for sprawling cities surrounded by flat land with
perfectly competitive owners. It is easily extended to the same cities with imperfectly
competitive or monopolistic landowners. A monopolistic owner sells its land at the outer
edge of the city during booms to perfectly competitive developers at a price that maximizes
the expected present value of both its sold land and its remaining land. An imperfectly
competitive landowner does the same subject to its correct conjectures about the behavior
of its competitors. In a symmetric equilibrium all landowners do the same subject to their
correct conjectures that all other landowners behave identically. Otherwise, the previous
problem is unchanged.

Not surprisingly, a monopolistic owner sells its land for development at a slower rate
and a higher price than perfectly competitive owners. In a symmetric Nash equilibrium,
sales are slower and the price is higher with fewer identical landowners. With slower sales
and higher prices at the outer edge, housing has higher prices everywhere inside the edge.
Also, sprawl is reduced and the remaining rural land is more valuable everywhere beyond
the edge. These results are altered if problematic properties can be developed at higher unit
costs inside the city or the density of development is endogenous. Depending on details,
rates of housing appreciation and sprawl may be reduced during periods with construction.

The extension to a monopolistic owner of peripheral land has an important application
in the Sand States: metropolitan Las Vegas. The United States Department of the Interior,
Bureau of Land Management (BLM) controls almost all peripheral land around metropol-
itan Las Vegas not previously sold the public.3 Under the Southern Nevada Public Land
Management Act, which became public law in October 1988, the BLM established a disposal
boundary surrounding 67,920 acres of vacant peripheral land adjacent to Las Vegas. Be-
tween October 1988 and September 2015, the BLM exchanged or sold 30.8% of that vacant
land and reserved or otherwise conveyed another 21.4%. As a result, land inside the disposal
boundary was sold to the public at a very slow rate: 0.78% per year. A substantial share of
that land is still undeveloped. The public can also nominate for sale land controlled by the
BLM outside the disposal boundary. By these metrics Las Vegas effectively has no urban
growth boundary. Instead, it is distinguished by its monopolistic ownership of peripheral
land suitable for large masterplans.

3In 2005 the BLM controlled 90% of all developable land in Clark County, Nevada: Snyder (2000).
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Limited Land: The supply of rural land available for residential development can be
limited by both topography and legal restrictions on the uses of land. In the model the
fraction of buildable at each radial distance from the urban core is an exogenous constant:
0 < λ ≤ 1. That constant fraction of radial distance can be generalized to any feasible
isoelastic function of radial distance, in which case the stationarity of the previous equilibria
are preserved. If the fraction of buildable land decreases more rapidly with radial distance,
then suburbs sprawl and housing appreciates more rapidly during booms: Williams et al
(2017). In turn, this raises the price-rent ratio during booms.

A different legal restriction on the use of rural land is an urban growth boundary. Formal
urban growth boundaries exist in Oregon and elsewhere. Portland’s strong boundary, en-
acted in 1979, has been widely studied: Myung-Jin (2006) and references therein. Farmland
in Oregon just outside the edge is priced on average much lower—more than 90% less—than
comparable land just inside the edge. Nevertheless, Portland’s edge has neither slowed
local sprawl nor altered the appreciation rate of its housing. Instead, suburbanization has
been pushed north into Clark County, Washington. Investors who wish to speculate on raw
residential land around Portland can do so in both Clark County and adjacent counties of
Washington.

As illustrated by Portland, even formal urban growth boundaries do not necessarily
preclude the behavior predicted by this model and its extension immediately above. With
suburban sprawl outside of urban Portland restricted toWashington, the fraction of buildable
rural land is smaller. If that fraction is independent of radial distance, then it is represented
in the model by a smaller value of the constant, 0 < λ ≤ 1. This smaller value expands
the outer edge of the urban area in (11). Otherwise, the fraction λ appears nowhere in
the previous results. In other words, metropolitan Portland sprawls farther north into
Washington and much less everywhere else.

Other rural land in Oregon surrounding Portland’s urban growth boundary is much less
valuable than adjacent land inWashington but more valuable than more rural land in Oregon.
These properties and others are predicted by an easy extension of the model. Rural land
located just outside urban Portland is much like more remote rural land without an urban
growth boundary. In both cases, the land is not developed until it is approached by urban
sprawl and entitled for development. In other words, an urban growth boundary effectively
lengthens rural radial distance outside the boundary by a metric that depends on details of
the entitlement process. This additional distance reduces the value of the option to develop
at each rural radial distance, but little else.

10. Empirical Implications

In this section the empirical implications of the model are summarized in three categories:
cyclical prices in flatland, price-rent ratios, and limited buildable land. Additional empirical
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implications appear in Table 3. The model’s major limitations and their empirical implica-
tions are identified in the fourth subsection. Existing empirical evidence appears in the last
subsection.

Cyclical Prices: Housing prices can be highly procyclical even in sprawling cities sur-
rounded by vast supplies of flat buildable land. Most of that volatility is driven by the even
more volatile procyclical pricing of undeveloped land around such cities. This procyclical
pricing of land persists even with perfectly competitive landowners who sell their raw land to
perfectly competitive developers that subsequently sell finished lots to perfectly competitive
home builders. Developers buy raw land located near the suburban edge of the city during
periods with growing aggregate demand for housing. Other investors who wish to speculate
on raw land, and thereby housing, can purchase more remote rural parcels farther from the
urban core.

Housing prices have less procyclical volatility than land prices and more procyclical
volatility than either construction costs or rents. The latter difference can be substan-
tial. Rents rise during expansions when the aggregate demand for housing services increases
and fall during contractions when demand decreases. During expansions rents rise more
rapidly before construction begins. Once construction resumes suburbs sprawl more rapidly
in cities on flat land with flatter rental gradients from the core to the periphery. In the same
cities rents and thereby housing prices also rise less rapidly. At the expanding outer edge of
the city, the constant unit price of housing equals the constant unit cost of construction plus
the constant unit price of land. Even in cities with nearly flat rental gradients, the constant
unit price of land is positive. Thereby, housing at the expanding outer edge is always priced
at a positive premium over its construction costs during periods with rapid construction.

Prices inside the city also depend on the procyclical price of buildable land at the outer
edge. In addition, those prices decrease during busts when the aggregate demand for housing
decreases and increase during the subsequent recoveries when aggregate demand increases
but construction has not yet resumed. Big busts are followed by big recoveries. Both are
bigger with more price-elastic demand for housing. Booms begin when construction resumes.
During booms housing appreciation does not depend on the price-elasticity of demand. It
also depends very little on the elasticity of the rental gradient with respect to commuting
distance in sprawling cities with relatively flat rental gradients. Instead, it depends mostly
on the elasticity of unit construction costs with respect to aggregate construction. Even
in cities with nearly flat rental gradients, housing prices exceed construction costs at the
expanding outer edge the suburbs.

Price-Rent Ratios: Price-rent ratios are procyclical: lower during contractions and
higher during expansions. Procyclical changes in price-rent ratios lead procyclical growth
rates of rents, increasing during transitions from contractions to expansions and decreasing
during the reverse transitions from expansions to contractions. During expansions price-
rent ratios are higher during initial recoveries and lower during later booms. Recoveries
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are characterized by excess housing from the previous contraction, little or no construction,
and relatively rapid appreciation of housing. The subsequent booms are characterized by
no excess housing, rapid construction, and much less rapid appreciation of housing.

Housing prices have the least procyclical volatility in new neighborhoods with construc-
tion at the expanding outer edge of the city. There, house prices are driven largely by the
procyclical prices of buildable land at the outer edge. This procyclicality determines the
procyclicality of price-rent ratios at the outer edge and thereby elsewhere inside the city.
That procyclical volatility is largely independent of the elasticity of the rent gradient from
the core to the periphery.

Rent-price ratios are countercyclical. With lower rent-price ratios, housing has relatively
less value as a consumer durable and relatively more value as a speculative real asset. As
a result, speculation in housing must be procyclical. More properties are purchased by
investors and rented to tenants in expanding hot markets than contracting cold markets. Hot
markets have more speculation when rents grow more rapidly or hot markets last longer on
average. Hotter markets are also characterized by lower rent-price ratios and more marginal
tenants. In the hottest housing markets, homes held for speculation may not be rented to
tenants.

Limited Buildable Land: Constraints on the supply of buildable land come in several
forms. If the fraction of buildable land is an exogenous constant, as in the model, then the
extent of suburban sprawl and the level of prices are smaller in cities with more buildable
land. Neither the rates of suburban sprawl and housing appreciation during booms nor the
volatility of housing prices during transitions between contracting and expanding markets
can be attributed directly to cross-sectional differences in the constant fractions of buildable
land. Instead, any such effects must be attributed to a more subtle source, such as demand-
side factors.

Urban growth boundaries with limited coverage, like Portland, induce additional subur-
ban sprawl in adjacent, unrestricted areas, like adjacent counties in Washington, and reduce
land prices in restricted areas, like adjacent counties in Oregon. The latter land is priced
like more remote rural land surrounding cities without urban growth boundaries. Other-
wise, the pricing of land and housing is similar. So too is the behavior by developers and
landowners.

Limitations: In the model the housing market cycles between contractions and expan-
sions. The Poisson transitions between these two states are observed immediately by all
owners of housing and land. This precludes prior information about the timing of the next
transition and asymmetric information both before and after the transition. Together with
other assumptions of the model, it eliminates inertia in housing prices. These assumptions
are inconsistent with common behavior. For example, buyers’demand for homes depends
on financing supported by appraisals based largely on historical comparables.
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Inertia in housing prices has multiple implications, some more subtle than others. If
professional developers and landowners anticipate expansions before homeowners, then land
prices rise rapidly relative to housing prices during transitions from contraction to expan-
sion. This puts considerable stress on home builders—a complaint commonly expressed by
their principals and land buyers—and retards their construction of new homes. If the same
professionals anticipate contractions before homeowners, land prices fall rapidly relative to
housing prices during the reverse transitions from expansion to contraction. As a result,
homes are built and sold during the early stages of contractions. If housing prices have
suffi cient inertia, investors in housing can mimic this behavior by builders. They buy early
during expansions and sell early during contractions. The latter can include homeowners
who sell and rent early during contractions, thereby inducing inertia in rents.

Evidence: These results are consistent with existing empirical evidence. The evidence
of cyclic housing prices in the Sand States is cited in the introduction. Housing prices
are less volatile than land prices: Nichols et al (2013) and Nathanson and Zwick (2015).
Housing rents have very little volatility: Genesove (2003) and Shimizu et al (2010). Large,
luxury homes arguably have lower price-elasticites of demand, higher rent-price ratios, and
thereby less procyclical price-volatility than smaller homes, consistent with recent evidence:
Liu et al (2016). Finally, more volatile housing prices are associated with more housing
speculation in hot housing markets by both homeowners and investors with more marginal
tenants. In a recent survey owners who expect to sell within three years attach relatively
less value to their house as a consumer durable than owners who expect longer tenancy:
Zillow (2016). Marginal home buyers financed by subprime loans and speculative purchases
of single-family homes were observed concurrently with highly volatile housing prices in the
Sand States during 2001-2013: Mian and Sufi (2009) and Olesiuk and Kalser (2009).

11. Conclusion

During the 2000s metropolitan areas in the United States with the most volatile procyclical
housing prices were concentrated in the Sand States: Arizona, Florida, Nevada, and non-
coastal California. This is puzzling. In the Sand States many cities have relatively flat
housing price gradients with high fractions of flat buildable land beyond their outer bound-
aries. Such cities should have highly elastic housing supplies and thereby minimal housing
cycles.

Surprisingly, this puzzle has an easy resolution. In metropolitan areas the housing
rental gradient is decreasing from the urban core to its outer edge. Also, the unit cost of
developing rural land is increasing in its distance from the outer edge. In the main model
the market cycles randomly between busts or contracting cold markets when demand for
housing decreases and expanding hot markets when demand increases. Hot markets are
separated into two phases: recoveries until the excess supply of housing from the previous
bust is absorbed and booms during which additional demand is supplied by new construction.
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Under these circumstances rural land is developed only at the city’s expanding outer edge.
That development occurs when perfectly competitive landowners exercise their options to
sell their land to perfectly competitive developers who immediately finish lots, construct
houses, and sell properties to the public.

In the resulting equilibrium land prices are procyclical at the expanding outer edge of
the city, increasing during randomly timed transitions from contraction to expansion and
decreasing during reverse transitions. Concurrent changes in housing prices and thereby
price-rent ratios are also procyclical because all transitions are observed simultaneously by
all agents. Between transitions no new information about future rents arrives in the market.
As a result, price-rent ratios remain constant while rents change, increasing during expansions
and decreasing during contractions. Thereby, changes in price-rent ratios lead changes in
rents. Also, prices are more volatile than rents. Finally, prices are less volatile for housing
than land because only housing is both a consumer durable and a speculative real asset.

In calibrated numerical solutions, the procyclical volatility of housing prices and con-
struction can match housing statistics for the Sand States during the decade 2000-2011 if
unit construction costs and aggregate construction increase at proportional rates. In this
case, housing prices exceed construction costs during booms at the expanding outer edge of
cities. These results are nearly independent of the rental gradient between the city’s core
and its periphery.

c©2017 by Joseph T. Williams. All right reserved.
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Table 1: Notation

Functions and variables:

b Radial distance from city center to outer boundary.
h Housing stock or aggregate supply.
i State of housing market.

Introductory model: cold market, i = 0, or hot market, i = 1.
Main model: contraction, i = 0, recovery, i = 1.0, or boom, i = 1.1.

P i Pricing function for housing in market i.
pi Price of housing at outer edge of city in market i.
q Exogenous component of aggregate demand for housing services.
q̄ Historic high of exogenous aggregate demand.
R Rental function for housing services.
ri Rent-price ratio in market i.
V i Valuation function for rural land in market i.
x Radial distance from city center to property.

Parameters and endogenous constants:

αi Transition probability per unit of time from state i to state j.
ά0 Transformed transition probability (19).
γi Construction cost of one house and finished lot.
δ Discount rate per unit of time.
−ζ Elasticity of housing rent with respect to radial distance r.
−η Elasticity of aggregate demand for housing services wrt rent.
gH Growth rate of housing prices in (14) and (28).
gL Growth rate of land value in (14).
θ Elasticity of aggregate demand with respect to housing stock.
λ Fraction of buildable land at each radial distance.
ν Growth rate of unit costs relative to aggregate construction.
ρi Growth rate of exogenous component q of aggregate demand:

Initial model, ρ0 = 0 < ρ1; main model, ρ0.1 = ρ0 < 0 < ρ1 = ρ1.0 = ρ1.1.
s Rate of suburban sprawl in (14) and (28).
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Table 2: Housing appreciation and supply

-

Total housing appreciation Annualized Growth
Transitions Between housing house
boom bust transitions appreciation supply
to to appreciation during during during
bust recov bust recov boom bust r&b boom

Base Case -.127 .146 -.275 .610 .276 -.151 .113 .275

1/α0 Expected length of bust
2.5 -.121 .138 -.288 .455 .276 -.160 .110 .275
3.5 -.131 .151 -.304 .776 .276 -.144 .116 .275

1/α1 Expected length of boom
2.5 -.113 .127 -.275 .610 .218 -.146 .113 .216
3.5 -.138 .160 -.275 .610 .333 -.155 .113 .331
−ζ Elasticity of rent gradient with respect to radial distance
-.080 -.128 .147 -.275 .610 .278 -.151 .113 .265
-.001 -.127 .146 -.275 .610 .276 -.151 .113 .276
ν Proportional factor in elasticity of unit construction cost
0.0 -.0043 .0043 -.275 .610 .0074 -.107 .064 ∞
2.0 -.137 .159 -.275 .610 .304 -.155 .117 .132
ρ0 Growth rate of exogenous housing demand during bust
-.20 -.132 .153 -.336 1.02 .276 -.182 .120 .275
-.10 -.120 ,137 -.202 .338 .276 -.116 .109 .275
ρ1 Growth rate of demand during recovery and boom
.05 -.070 .075 -.275 .610 .121 -.130 .055 .121
.10 -.180 .220 -.275 .610 .481 -.172 .176 .478

Notes: The percentage growth of housing prices, negative and positive, during transitions from boom

to bust and bust to recovery, as calculated in Proposition 2, appear in the first two columns of Table 2.

This growth comes entirely from changes in the price-rent ratio. The corresponding growth in columns

three through five comes entirely from changes in rents. At any fixed radial distance inside the city, the

total percentage appreciation of housing expected during busts comes from columns one and three. During

recoveries the corresponding expected return comes from columns two and four. During booms the same

total is column five. The corresponding total annual returns anywhere inside the city are column six for

busts and column seven for recoveries and booms. The first row is the base case with the parameter values:

1/α0 = 3, 1/α1 = 3, γ = 1.0, δ = .08, ζ = .01, η = 1.2, θ = .8, ν = 1.0, ρ0 = −.15, and ρ1 = .10.
In the remaining rows, only the value of the indicated parameter is altered from the base case.
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Table 3: Comparative statics for booms
with contracting cold markets, ρ0 < 0

Appreciation Housing Rent-
rate of price at price

homes land edge ratio
Increase in gH gL p1.1 r1.1

Expected length of
contraction 1/α0 0 + − +
expansion 1/α1 0 − + −

Elasticities of
price wrt radial distance −ζ − 0 − +
aggregate demand wrt price −η + 0 + 0

Proportional cost ν + 0 + −
Growth rate of exogenous aggregate demand during
contraction ρ0 0 + − +
expansion ρ1 + − + −

Notes: Comparative statics are calculated from Proposition 2 with contracting cold markets or busts:

ρ0 < 0. The first two column headings are the growth rates per unit of time of prices for homes and land
during booms, gH and gL from (14). The third column heading is the price of housing during booms at

the expanding outer edge of the city, p1.1 from (22). The fourth and final column heading is the rent-price

ratio during booms, r1.1 from (23). The first two rows are the expected times to the end of the current

contraction and expansion, 1/α0 and 1/α1, calculated from the corresponding probabilities per unit of time

of switching from contraction to expansion α0 and expansion to contraction α1. The middle two rows are

the elasticities of housing price with respect to radial distance −ζ and aggregate demand with respect to
housing price −η, both above the pricing function for housing (2). The final two rows are the growth rates
per unit of time for the exogenous component of aggregate demand during expansions and contractions, ρ0

and ρ1.
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Appendix

Proof of Proposition 1: Focus first on housing. With ρ0 = 0, the valuation equation
(6) for state, i = 0, satisfies

P 0(q, x) =
α0

α0+δ−r0

P 1(q, x). (A.1)

This generates the left side of (12). Insert (A.1) into the corresponding differential equation
for state, i = 1, with ρ1 > 0. This yields the differential equation:

0 = ρ1qP
1
q − gHP 1,

with the composite constant,

gH ≡ α1+δ− r1−
α0α1

α0+δ− r0

. (A.2)

This differential equation has the general solution:

P 1(q, x) = F(x)qgH/ρ1 , (A.3)

with the undetermined factor of proportionality F(x). This factor must make (2) and (A.3)
equivalent: F(x) ∝ x−ζ.

Because rents (2) do not change during transitions between hot and cold markets, the
rent-price ratios, r0 and r1, must satisfy the first equality below:

r1

r0

=
P 0(q, x)

P 1(q, x)
=

α0

α0+δ−r0

. (A.4)

The second equality follows from (A.1). Also, the growth rates of housing prices during hot
markets, gH in (14) and (A.2), must be equal:

α1+δ− r1−
α0α1

α0+δ− r0

= gH =
ζρ1

ζη + 2 (1−θ) . (A.5)

Together, (A.4) and (A.5) determine the ratios, r0 and r1 in (13).

The valuation of land is similar. The equation for i = 0 in (6) satisfies (A.1) with r0 = 0
and P i replaced by V i for i = 0, 1. This generates the left side of (16). Inserting the same
substitution for (A.1) into the corresponding differential equation for i = 1 in (6) yields the
general solution (A.3) with P 1 replaced by V 1 and gH replaced by gL in (14). The latter
constant is (A.2) without rents: r0 = r1 = 0.
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The above general solution for the value of land must satisfy the continuity condition in
(8) and the smooth-pasting condition (9). At the outer boundary b, these two conditions,

P 1(q1, b) = gH + V 1(q1, b) and gHP
1(q1, b) = gLV

1(q1, b),

have the solution:

P 1(q1, b) =
γ1gL
gL−gH

and V 1(q1, b) =
γ1gH
gL−gH

. (A.6)

The housing price, P 1(b, q, b) from (2) and (3), must equal in equilibrium, b = B(q), the
unit price p1 in (11). This equality generates the outer boundary (10). The price (11)
then follows from the rental gradient with the constant elasticity −ζ. The unit price, p1

in (12), comes from in (A.4). The growth rates, gH and gL in (14), follow from (10) and
(11) for housing and the above general solution for the value of land. The value of land,
(15) with (16), comes from the general solution for the value of land and the boundary
conditions (A.14). The development point (17) follows from (10) and the argument above
(10): D = B−1.

Properties below Proposition 1: The rent-price ratios, r0 and r1 in (13) and (A.4),
have the properties:

p0

p1

=
r1

r0

=
α0+α1+δ−gH
α0+α1+δ

.

From (13) and this result , it follows that

∂ri
∂α0

< 0,
∂ri
∂α1

> 0,
∂ri
∂ρ1

< 0,

for i = 0, 1, and
∂

∂α0

(
r1

r0

)
> 0,

∂

∂α1

(
r1

r0

)
> 0,

∂

∂ρ1

(
r1

r0

)
< 0.

The two inequalities, v0/v1 < γ0/γ1, p0/p1, insure that

0 <
p0

p1

− v0

v1

≤ γ0 + v0

γ1 + v1

− v0

v1

=
γ1

γ1 + v1

(
γ0

γ1

− v0

v1

)
,

and thereby p0/p1 < γ0/γ1. This completes the derivation of the volatilities in (18).

Proof of Proposition 2: Focus first on booms. By the argument above Proposition
2, booms replace hot markets, while the combination of busts and recoveries replace cold
markets. Booms must then satisfy the valuation equations, (6) and (6) for hot markets,
i = 1, with the expected duration of cold markets 1/α0 replaced by the expected durations
of busts combined with subsequent recoveries 1/́α0. This new mean is calculated below.
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Suppose that exogenous demand has the value, q ≤ q, at some time during a bust.
If the the remainder of the bust has the duration y0, exogenous demand then decreases
from its current value q to its trough, q = q exp(ρ0y0) . During the initial phase of the
subsequent recovery with the duration y1, exogenous demand returns to its previous value,
q = q exp(ρ1y1). These two durations must satisfy the constraint: 0 = ρ0y0 +ρ1y1. Thereby,
the remaining bust and subsequent partial recovery must have the random duration or length:
y0 + y1 = (1−ρ0/ρ1)y0. The duration y0 has a negative exponential distribution with the
mean 1/α0. Hence, the remaining bust and partial recovery must have a negative exponential
distribution with the mean: 1/́α0 = (1−ρ0/ρ1)/α0. This mean also applies at the beginning
of the bust to the entire bust and complete recovery.

With the above substitutions, housing and land must have at the beginning of a bust the
prices:

P 0.1(q̄, q̄, x) =
ά0

ά0+δ−r0

P 1.1(q̄, x), V 0(q̄, q̄, x) =
ά0

ά0+δ
V 1.1(q̄, x). (A.7)

This is (A.1) with q = q̄ and α0 replaced by ά0 in (19). Also, replace α0 by ά0 in both
(A.2) and the right side of (14). By the argument below (A.1), the differential equation for
housing prices during booms and its analogue for land then have the general solutions:

P 1.1(q̄, x) = FH(x)q̄gH/ρ1 , V 1.1(q̄, x) = FL(x)q̄gL/ρ1 , (A.8)

with the undetermined factors of proportionality FH and FL. Because the two prices of
housing, (2) and (A.8), must be equal at all times during booms, their exponents must be
equal, as indicated. This determines the rent-price ratios in (A.4) and (A.5). The value of
land during booms (26) follows from (A.8).

Consider next housing and land during recoveries. By the argument above the proposi-
tion, the valuation equations during recoveries are (6) and the right side (7), both with i = 1
and α1 = 0. These differential equations have the unique solutions:

P 1.0(q, q̄, x) = P 1.0(q̄, q̄, x)

(
q

q̄

)(δ−r1.0)/ρ1

, V 1.0(q, q̄, x) = V 1.0(q̄, q̄, x)

(
q

q̄

)δ/ρ1
. (A.9)

The appreciation rates of housing in (2) and (A.9) must be equal at all times during recover-
ies: ρ1/η = δ − r1.0. This determines the rent-price ratio during recoveries: r1.0 = δ − ρ1/η.
The value of land (25) is the right side of (A.9) since V 1.0(q̄, q̄, x) = V 1.1(q̄, q̄, x).

Finally, focus on housing during busts. For busts the valuation equation is (6) with i = 0
and the substitutions: ρ0 = 0 replaced by ρ0 < 0 and P 1 replaced by P 1.0. Suppose that
ρ1(α0+δ−r0.1) 6= ρ0(δ−r1.0). This differential equation has the unique solution:

P 0.1(q, q̄, x) = P 1.0(q̄, q̄, x)

[(
ά0

ά0+δ−r0.1

−χ
)(

q

q̄

)(α0+δ−r0)/ρ0

+χ

(
q

q̄

)(δ−r1.0)/ρ1
]
, (A.10)
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with the constant,
χ ≡ α0ρ1

ρ1(α0+δ−r0.1)− ρ0(δ−r1.0)
.

The two prices, (2) and (A.10), must be equal at all times during busts. With r1.0 =
δ − ρ1/η from above, this requires the relationship: q(α0+δ−r0.1)/ρ0 ∝ q(δ−r1)/ρ1.0 and thereby
ρ1(α0+δ−r0.1) = ρ0(δ−r1.0). This contradiction precludes the solution (A.10) and thereby
the inequality above (A.10).

With the equality, ρ1(α0+δ−r0.1) = ρ0(δ−r1.0), the above valuation equation in (6) has
the unique solution:

P 0.1(q, q̄, x) =
ά0

ά0+δ−r0.1

P 1.0(q, q̄, x)

(
q

q̄

)(α0+δ−r0.1)/ρ0

. (A.11)

With q = q̄ and the notational simplification, P 1.0(q̄, q̄, x) = P 1.0(q̄, x), this matches (22)
and (A.8). Land has the corresponding value with r0.1 = 0:

V 0.1(q, q̄, x) =
ά0

ά0+δ
V 1.0(q, q̄, x)

(
q

q̄

)(α0+δ)/ρ0

. (A.12)

This value is (24). The two prices of housing, (2) and (A.11), must be equal at all times
during busts. This requires the rent-price ratio: r0.1 = α0+δ − ρ0/η in (23).

The remaining results follow from analogous arguments in the proof of Proposition 1.

Properties below Proposition 2: Both housing and land are more volatile during
transitions between markets than in the initial model with contracting cold markets than
constant cold markets. For land this follows from two sets of ratios:

0 <
V 0.1(q, x)

V 1.1(q, x)
=

ά0

ά0+δ
<

α0

α0+δ
=
V 0(q, x)

V 1(q, x)
< 1,

for transitions from booms to contractions versus hot to cold markets, and

V 1.0(q, x)

V 0.1(q, x)
>
α0+δ

α0

=
V 1(q, x)

V 0(q, x)
> 1,

for contractions to recoveries versus cold to hot. These ratios are calculated from (24)
through (26). Similar ratios for housing follow from (10) and (20) through (22).

Proof of Proposition 3: Given the unit cost (27), replace the unit price, p1.1 in (22)
by p1.1q

2νs/ρ1 with the undetermined rate of sprawl s. This new price must equal the price,
P 1.1(b, q̄, b) from (2) and (3) with b = B(q̄). This equality generates the outer boundary:

B(q̄) =

[
q̄1−2ηνs/ρ1

(λπ)1−θ (r1.1p1.1)η

]1/[ζη+2(1−θ)]

.
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During booms the outer boundary B(q) then grows at the rate:

s =
ḃ

b
=

ρ1 − 2ηνs

ζη + 2(1−θ) .

This equality determines the constant rate of sprawl, s in (28).

With the above outer boundary, B(q̄) ∝ q̄s/ρ1, the new price from (2) and (3) has the
property:

P 1.1(b, q̄, b) ∝ x−ζ q̄(ζ+2η)s/ρ1.

This generates the new growth rate, gH in (28). The remainder of the derivation matches
the corresponding parts of the proofs to Propositions 1 and 2.

Derivation of (29) through (31): With Poisson switching between hot and cold
markets, interarrival times are negative exponential. In this case, the additional expected
price multiples inside the city are

α0

∫ ∞
0

exp [(ρ0/η−α0) y0] dy0 =
α0

α0−ρ0/η
, (A.13)

during busts,

−α0
ρ1

ρ0

∫ ∞
0

exp

[(
ρ1/η + α0

ρ1

ρ0

)
y0

]
dy0 =

α0

α0+ρ0/η
, (A.14)

during recoveries, and

α1

∫ ∞
0

exp[(ǵH−α1) y1] dy1 =
α1

α1−ǵH
, (A.15)

during booms. The total expected multiple of housing during booms (31) is the last result
with ǵH replaced by 2β́ρ1.
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