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Abstract

This paper shows that the sufficient statistic approach to the welfare properties
of income (and other) taxes does not extend to tax systems with notches, because
with notches, changes in bunching induced by changes in tax rates have a first-order
effect on tax revenues. In an income tax setting, we show that the marginal excess
burden (MEB) and the welfare-maximizing top rate of tax are given by the relevant
formulae for a proportional tax as in Feldstein (1999) plus a correction factor. This
factor can can be computed empirically, using the estimate of excess mass at the
notch. The Feldstein formulae always underestimate the MEB and overestimate
the revenue and welfare-maximizing rate of tax. Quantitatively, these mis-estimates
can be very large; the MEB can be underestimated by an order of magnitude. An
application to VAT is discussed; with a calibration to UK data, the MEB of the
VAT is roughly three times what is would be if VAT was simply a proportional tax.
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1 Introduction

In a recent survey, Chetty (2009b) argues that an important new development in public
economics is the so-called sufficient statistic approach, which "derives formulas for the
welfare consequences of policies that are functions of high-level elasticities rather than
deep primitives" (Chetty (2009b), p 451). In turn, this means that to assess the welfare
properties of these policies, only these elasticities, rather than fully structural models,
need to be estimated.1

The sufficient statistic approach originated in a seminal paper by Feldstein (1999),
who showed that the marginal excess burden (MEB) of a proportional income tax only
depends on the behavioral responses to the tax via a sufficient statistic, the personal
elasticity of taxable income (ETI). Feldstein’s paper has given rise to a large literature
devoted to obtaining empirical estimates of the ETI (Gruber and Saez (2002), Saez et al.
(2012), Kleven and Schultz (2014), Weber (2014).

Subsequently, Saez (2001) and Saez et al. (2012) showed that the Feldstein formula for
the MEB could be extended to the top rate of tax in a progressive piece-wise linear income
tax system, and they also established formulae for the revenue and welfare-maximizing
rate of tax. These formulae also have the sufficient statistic feature; specifically, they
depend only on the elasticity of the ETI, a statistic of the income distribution, which
is constant if the top tail of the income distribution is Pareto2, and possibly a welfare
weight.

In this paper, we ask the question as to whether these sufficient statistic properties
of key formulae also extend to tax systems with notches. Generally, a tax notch occurs
when there is a discontinuous change in the tax liability as the tax base varies (Slemrod
(2013), Kleven (2016)).

In practice, we do see notches in several major kinds of taxes, and these are being
increasingly studied in the empirical literature. Significant notches in the personal income
tax system are quite rare, although they do exist; for example, in Pakistan, there are
notches where the tax on all income below the notch can rise by as much as 5% (Kleven
and Waseem (2013)), and in Ireland, an emergency income levy after the financial crisis
had a notch of up to 4% (Hargaden (2015))3. There are even small notches in the federal
income tax in the US, and larger notches induced by income-dependent entitlement to
tax credits (Slemrod (2013)).

Notches also exist in other major taxes. For example, notches are, or were until

1Chetty (2009a) also argues that this sufficient statistic approach is also valuable in several other
contexts, such as evaluating the welfare gain from social insurance programs, and the welfare effects of
changes in taxes with optimization frictions.

2The formula is that the marginal excess burden equals tea
1−t−te , where t is the rate of tax, e is the

personal elasticity of taxable income with respect to the net of tax rate 1−t, and a is the Pareto parameter.
3From Table 1 of Hargaden (2015), in 2010, earnings of above 26000 Euro incurred a charge of 1040

Euro.
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recently, present in housing transactions taxes in the UK and the US (Best and Kleven
(2013), Kopczuk and Munroe (2015)). They also arise in the corporate income tax in Costa
Rica (Bachas and Soto (2015)). Slemrod (2013) notes that there are many examples of
commodity tax notches, where a marginal change in some characteristic can change the
product classification so as to produce a discrete change in the tax liability.4 Finally, as
argued by Liu and Lockwood (2015a), a VAT threshold can be thought of as a tax notch;
a firm’s VAT liability changes discontinuously when its sales go over the registration
threshold. Indeed, given the importance and near-ubiquity of VAT, this is in fact the
most important example of a tax notch.

We first study notches in the income tax setting of Saez (2010) and others, where
households differ in ability or taste so that the disutility of generating taxable income
varies across households. For simplicity, we assume a two-bracket tax i.e. a tax with
a lower rate (which could be zero) below a threshold, and a higher rate above. In this
setting, our first contribution is to derive exact formulae for the marginal excess burden
of the higher rate of tax, and for the welfare-maximizing rate higher rate of tax. These
formulae are almost the same as in Feldstein (1999) for a proportional income tax, but
with a correction factor that captures the effect of the bunching response to an increase
in the top rate tax on tax revenue.

The bunching response measures the change in the number of households bunching at
the threshold to avoid paying the top rate of tax, and is thus distinct from the intensive
margin response of taxable income of given household to the tax rate; the latter has been
the focus of the ETI literature. With a notch, unlike the case of a kink, the bunching
response affects tax revenue because with a notch, the tax schedule is discontinuous at
the threshold.

Our second key finding is that the correction factor cannot be expressed as a simple
function of the usual sufficient statistics i.e. the intensive margin elasticity of the ETI
and the Pareto parameter. It does depend on these variables, but it also depends on the
lower rate of tax and a measure of the size of the bunching interval, which is the earnings
that the individual at the top of the interval (the top buncher) would choose if faced with
the higher rate of tax. So, the sufficient statistic approach seems to break down with tax
notches.

However, all is not lost; we show that the counterfactual earnings of the top buncher
can either be computed theoretically, using the indifference condition that the top buncher
is indifferent between bunching and being above the notch, or, in any empirical study of
bunching, it can be computed empirically, using the estimate of excess mass at the notch
(the parameter B in Kleven and Waseem (2013)). Thus, this paper is the first to show
how bunching estimates at notches can be used to make welfare calculations.

Of course, if the correction factor turns out to be small, the sufficient statistic approach

4For example, in the US, the Gas Guzzler Tax, under which high-performance cars are subject upon
initial sale to a per-vehicle tax that is higher, the lower is the fuel economy of the car.
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still provides a good approximation. Our third contribution is to investigate whether this
is the case. We show that qualitatively, ignoring the correction factor underestimates the
marginal excess burden and overestimates the welfare-maximizing rate of tax. Calibra-
tions show that the percentage error from using the Feldstein formulae can be very large.
At baseline values, the marginal excess burden is underestimated by a factor of six, and
the revenue-maximizing tax is overestimated by around half, and the errors can be much
larger for some parameter values. So, the conclusion is that at least in the income tax
setting, the sufficient statistic approach is not practical.

We then turn to apply our approach to the VAT, which is the most empirically im-
portant example of a tax notch. We present a simple model of small traders who differ
in productivity, and are subject to VAT at rate t above a threshold level of sales. We
show that this model is formally equivalent to our income tax model, in the sense that
registered firms above the threshold face an effective rate of VAT tR on value-added, and
firms below the threshold face a lower rate tN . It may seem counter-intuitive that non-
registered firms face a positive rate of effective VAT; this is because non-registered firms
cannot claim back VAT on inputs (so-called "embedded" VAT).

We then show that the MEB of an increase in the statutory rate of VAT is given by the
Feldstein formula for a proportional tax plus a correction factor as in the income tax case.
However, the details of the correction factor are more complex, because an increase in the
statutory rate t increases both the effective rates tR, tN . A calibration of the model shows
that the proportional tax formula for the MEB of the VAT underestimates the true MEB
by a factor of up to three. This framework also allows us to evaluate the effect of increased
compliance costs of VAT in the MEB via its impact on bunching; increased compliance
costs increase bunching and thus increase the MEB, but the effect is quantitatively small.

The remainder of the paper is arranged as follows. After the literature review in
Section 2, in Section 3, we set up the model. Section 4 has the main analytical results for
the income tax, and Section 5 the simulations. Section 6 deals with the extension to the
VAT, and Section 7 concludes.

2 Related Literature

This paper speaks to a number of related literatures. First, it is already known that due
to externalities of one kind or another, the sufficient statistic approach has its limitations.
Saez et al. (2012) give the examples of deductibility from income tax of charitable giving
and mortgage interest payments for residential housing. In these cases, an increase
in the marginal rate of tax will boost charity income and home ownership respectively,
which may be valuable objectives in themselves. Saez et al. (2012) call these classical
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externalities5.
Fiscal externalities, where the actions of the household generate additional revenue for

the government and thus benefits other households, can also cause the sufficient statistic
approach to fail, or at least require adjustment, but in these cases a simple change to the
formula is sometimes possible. The analysis of income tax evasion of Chetty (2009b) is a
case in point6. As Gillitzer and Slemrod (2016) show, in this case the standard formula for
the marginal efficiency cost of funds can be adjusted in the same way it must be adjusted
for any fiscal externality, i.e. whenever a change in tax rates induces taxpayers to shift
income to another tax. Our results are rather different to these cases of both classical
and fiscal externalities. In our setting, there is no fiscal or other externality- rather, the
sufficient statistic approach fails because the bunching response has a first-order effect on
tax revenue.

A second related literature is on VAT. Here, there are two distinct sets of related pa-
pers. First, there is a growing literature on the effect of VAT thresholds on firm behavior.
Theoretical contributions include Keen and Mintz (2004), Kanbur and Keen (2014) and
Liu and Lockwood (2015a), and empirical studies include Liu and Lockwood (2015a) and
Harju et al. (2016). The theoretical work of Kanbur, Keen and Mintz focusses on the
optimal threshold of the VAT, holding the rate of tax fixed, and is thus complementary to
this paper, which characterizes the MEB of an increase in the rate, holding the threshold
fixed. In fact, we effectively ask the question of whether it is legitimate to ignore the
threshold altogether when calculating the MEB of the VAT.

Therefore, our paper relates to a second literature on the marginal excess burden of
indirect taxes, including VAT (e.g. Ballard et al. (1985), Rutherford and Paltsev (1999)).
In these papers, when the marginal excess burden of VAT is calculated, it is always
assumed that the VAT is a proportional tax i.e. the VAT threshold is ignored. This paper
shows that this simplifying assumption yields seriously biased estimates.

A third related literature is that on the MEB and welfare-maximizing taxes with kinks
in the tax schedule. Here, we make a small contribution as a by-product of our main focus,
which is on notches. In the case of kinks, it generally understood that the marginal excess
burden of the top rate of income tax, and the welfare-maximizing top rate depends via
simple formulae, only on the elasticity of the ETI, and the Pareto statistic of the income
distribution. However, there seems to be some confusion about the conditions required
for this result. Saez et al. (2012) suggest that what is required is that assumption that
"behavioral responses take place only along the intensive margin", or more precisely that

5See Doerrenberg et al. (2015) for a more formal statement of this argument, and estimates of how
deductions respond to tax rate changes for the case of Germany.

6Chetty shows that when the household can evade the personal income tax at a cost, if that cost
is a pure transfer payment i.e. a fine times a probability of detection, there is effectively a positive
fiscal externality of evasion - it generates additional revenue for the government and thus benefit for all
households. In this case, as we might expect, we see that the elasticity of taxable income over-estimates
the excess burden of the tax.

5



the bunching response of an increase in the top rate of tax is of second order relative to
the extensive margin response.7 This assumption is very strong, as even with a kink, there
is always a bunching response. Our Proposition 4.1 below shows that this assumption is
not necessary, because no matter what the size of the bunching response, the response
has no effect on tax revenue, to first order, as the tax schedule is continuous. All that is
required is that the distribution of taxpayer types is continuous, a standard assumption.

A final related literature is the small one on the design of piece-wise linear income
taxes. In any early contribution Slemrod et al. (1994) consider the design of a two-
bracket income tax, and they explicitly take into account bunching responses in doing so.
They did not obtain analytical results but their numerical simulations suggest that the
tax schedule should be concave i.e. the higher tax should be below the lower tax. More
recently, Apps et al. (2014) have extended their work. This work is somewhat related to
our finding that the intensive margin response should be adjusted in the case of the VAT,
as explained below.

3 The Model and Preliminary Results

3.1 Set-Up

We follow Saez (2010) in our set-up. There are individual taxpayers indexed by a skill or
taste parameter n ∈ [n, n], assumed continuously distributed in the population distribu-
tion H(n) and density h(n). A type n individual has preferences over consumption c and
taxable income z of the form

u(c, z;n) = c− ψ(z;n)

where ψ(z;n) is the disutility of earning income z. So, in this specification of u(c, z;n),

we assume away income effects for convenience. We also assume:

A1. ψz, ψzz > 0, ψn, ψnz < 0.

So, A1 says that a higher n represents a higher skill level (i.e. higher wage), or a lower
taste for leisure. In particular, the higher n, the lower the total and marginal disutility
of generating a given amount of taxable income. Assumption A1 is satisfied for example,
by the iso-elastic specification of Saez (2010):

ψ(z;n) =
n

1 + 1
e

( z
n

)1+ 1
e (1)

7Specifically, they say the following. "The change dt could induce a small fraction dN of the N
taxpayers to leave (or join if dt < 0) the top bracket. As long as behavioral responses take place only
along the intensive margin, each individual response is proportional to dt so that the total revenue effect
of such responses is second order (dN.dt ) and hence can be ignored in our derivation."
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The budget constraint is c = z−T (z), where T (.) is the tax function. So, a household’s
utility over z is u(z;n) = z − T (z)− ψ(z;n).

Finally, for future reference, define the optimal taxable income at tax rate t for a type
n taxpayer to be;

z(1− t, n) ≡ arg max
z
{(1− t)z − ψ(z;n)}

Note from A1 that z1−t, zn > 0, where subscripts denote derivatives. So, z1−t is the
response of taxable income to the net-of-tax rate. Following Saez et al. (2012) we call this
the intensive margin response to the tax.

3.2 Kinks and Notches

For simplicity, we focus on a two-bracket tax, although our arguments apply straightfor-
wardly to the case of the highest tax in a piecewise-linear tax system with any number
of brackets. We will assume that the tax system is progressive; that is, the tax rate on
incomes in the higher income bracket is strictly greater than the tax on incomes in the
lower income bracket.

So, with a two-bracket tax, for a kink, the tax function is

TK(z) =

{
tLz, z ≤ z0

tLz0 + tH(z − z0), z > z0
(2)

for z0 > 0, tH > tL ≥ 0; that is, all income below the kink point z0 is taxed at the lower
rate tL, and all income in excess of the kink is taxed at the higher rate. For a notch, the
tax function is

TN(z) =

{
tLz, z ≤ z0

tHz, z > z0
(3)

with tH > tL ≥ 0. That is, when taxable income is below z0, a tax at rate tL is paid on
all income, but when tH is above z0, a tax at rate tH is paid on all income.

3.3 Bunching

With either a kink or a notch, all types in an interval n ∈ [nL, nH ] will bunch at taxable
income z0. In both cases, the lowest type who bunches is the one who is just willing to
earn taxable income z0 at the lower tax rate i.e. the critical nL is defined by the condition

z(nL, 1− tL) = z0 (4)

With a kink, the highest type who bunches, nH , is defined by the condition that the
optimal choice of taxable income at tax tH is just z0 i.e.

z(1− tH ;nH) = z0 (5)
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With a notch, nH is defined by the condition that the nH type must be indifferent
between staying at the notch and paying tax tL, and choosing z optimally, and paying
tH on all income (Kleven and Waseem (2013), Kleven (2016)). To write this indifference
condition, we first define the indirect utility function

v(t;n) ≡ max
z
{(1− t)z − ψ(z;n)}

Then, the condition defining nH can be written:

(1− tL)z0 − ψ(z0;nH) = v(tH ;nH) (6)

The left-hand side of (6) is utility when taxable income is constrained to be at the notch
value z0. Note that this indifference condition implies z(1 − tH , nH) > z0; because if
z(1 − tH , nH) < z0, the nH−type could choose z optimally and stay below the notch.
Note the difference between indifference condition (6) and the condition (5).

3.4 The Bunching Response

Here, we study the effect of a change in tH on the mass of individuals who bunch i.e. on
the size of the interval [nL, nH ]. Note first from (4) that nL is unaffected by tH for both
a kink and a notch. Next, in the kink case, we can calcualte from (5) note that

∂nH
∂tH

=
z1−tH
zn

> 0 (7)

So, we have a bunching response to tH : i.e. an increase in the tax rate above the kink
makes going above the kink less attractive, and so more people bunch below the kink.

In the notch case, note that vt = −z, where vt is the derivative of v with respect to
t. Then, we can calculate from (6) that

∂nH
∂tH

=
z(1− tH , nH)

ψn(z0;nH)− ψn(z(1− tH , nH);nH)
(8)

Also, as ψnz(z;n) < 0 and z(1 − tH , nH) > z0, we see that the denominator of (8) is
positive, and consequently from (8):

∂nH
∂tH

> 0 (9)

So, again we see that the bunching response to a change in tH is intuitive; an increase in
the tax rate above the notch makes going above the notch less attractive, and so more
people bunch at the notch.
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4 Main Results

4.1 The Effect of the Bunching Response on Tax Revenue

Here, establish a key result that the effect of the bunching response on tax revenue with
a kink and a notch are qualitatively different, being zero and negative respectively. With
a kink, revenue can be written

R = tL

(ˆ nL

n

z(1− tL;n)h(n)dn+

ˆ n

nL

z0h(n)dn

)
+ tH

(ˆ n

nH

(z(1− tH ;n)− z0)h(n)dn

)
(10)

Note that all households with n ≥ nL pay tax at the lower rate on the first z0 of earnings.
In the kink case, the bunching effect on tax revenue i.e. the effect of a change in tH on

R via a change in nH in tH is, from (10):

∂R

∂nH
= −tH(z(1− tH ;nH)− z0)h(nH) = 0 (11)

So, overall, with a kink, the effect of the bunching response on tax revenue is zero.
With a notch, revenue is

R = tL

(ˆ nL

n

z(1− tL;n)h(n)dn+

ˆ nH

nL

z0h(n)dn

)
+tH

(ˆ n

nH

z(1− tH ;n)h(n)dn

)
(12)

Comparing this to (10), we see a key difference. Because the higher rate applies to all
income for those earning above z0, the threshold z0 no longer enters into the the tax base
for tH , and so the upper limit of integration on z0 in the tax base for tL falls from n to
nH , reflecting the fact that now only individuals below nH pay any tax at the lower rate.

Note from (12) that;

∂R

∂nH
= (tLz0 − tHz(1− tH ;nH))h(nH) < 0 (13)

This is strictly negative as tH > tL, z(1−tH ;nH) > z0. So, in contrast to the kink case, the
bunching effect on tax revenue R from an increase in tH is negative, as ∂nH

∂tH
> 0 from (9).

This is because a small increase in nH has two effects on revenue that are both negative.
First, there is a discontinuity in the tax base; the earnings of these who now locate at the
notch fall discontinuously from z(1− tH ;nH) to z0. Second, there is a discontinuity in the
tax rate applying to that base; all these earnings are taxed at a lower rate, tL rather than
tH .

So, we conclude:

Proposition 1. The effect of the bunching response on tax revenue is zero for a kink,
but strictly negative for a notch.
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This result is the key one that drives the rest of the paper. So, to fully appreciate
the intuition, we consider the two following figures. Each Figure shows how tax revenue
varies with the skill level n. It is assumed that tax remitted is linear in n, as in the
iso-elastic utility case (1). In both Figures 1 and 2, the original revenue as a function of n
are shown as the red line. Note that for n between nL and nH , households are bunching
and so revenue is constant.

In Figure 1, the green line shows the hypothetical revenue paid by households above
nH following an increase in the marginal rate tH if there were no household response; all
households above nH pay more, proportionally to n. The green arrow shows the bunching
response; some households move from above the threshold to just below. From this figure,
it is clear that this has only a second-order effect on tax revenue; the government loses
just the small triangle shown.

Figure 1: The Effect of the Bunching Response on Tax Revenue with A Kink

n

Tax revenue

nL nH

Figure 2 shows the same change in the top rate of tax, but for a notched tax. With
a notch, there is a discrete increase in the tax liability above the notch. When the top
rate of tax tH increases, as before, the green arrow shows the bunching response; some
households move from above the threshold to just below. But now, it is clear that this
change causes a first-order drop in tax revenue, as shown by the grey square; this is
because tax revenue as a function of n is discontinuous at this point.
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Figure 2: The Effect of the Bunching Response on Tax Revenue with A Notch

n

Tax revenue

nL nH

Finally, the result that the bunching response on tax revenue is zero for a kink also
helps to clarify some confusion in the literature. As already noted, Saez et al. (2012)
argue that for sufficient statistic formulae to apply in the kink case, what is required is
that assumption that "behavioral responses take place only along the intensive margin",
or more precisely that the bunching response of an increase in the top rate of tax is of
second order relative to the extensive margin response. Proposition 4.1 shows that this
assumption is not required, because no matter how large is ∂nH

∂tH
, ∂R
∂nH

= 0 in the kink case.

4.2 The Marginal Excess Burden

Here, we derive a formula for the marginal excess burden (MEB) of tH when there is a
notch and show that it can be written as the MEB of a proportional tax plus a correction
factor. To define the MEB, note that due to quasi-linearity, the natural measure of
welfare is the integral of indirect utilities, say W, plus revenue R, which is assumed to be
redistributed as a lump-sum back to households when calculating the MEB. So,

MEB = −d(W +R)/dtH
dR/dtH

(14)

The minus sign ensures that the marginal excess burden is measured as a positive number.
From (12), we see that the effect of an increase in tH on tax revenue is:

dR

dtH
= BH +

tH
∂BH

∂tH

∣∣∣∣
nH const︸ ︷︷ ︸+

∂R

∂nH

∂nH
∂tH︸ ︷︷ ︸

intensive-margin bunching

(15)
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Here

BH =

ˆ n

nH

z(1− tH ;n)h(n)dn (16)

is the base in which the higher rate of tax is levied.
So, (15) is composed of three terms, the mechanical effect BH , and two behavioral

effects on tax revenue, the intensive-margin and bunching effects. The intensive-margin
effect on tax revenue is standard; it describes how tax revenue changes because of changes
in earnings, conditional on the taxpayer staying the same tax bracket. The bunching
effect on tax revenue and its impact on the marginal excess burden is the focus of our
investigation.

To compute dW/dtH , note first that the integral of indirect utilities is

W =

ˆ nL

n

v(1− tL;n)h(n)dn+

ˆ nH

nL

(z0(1− tL)−ψ(z0;n))h(n)dn+

ˆ n

nH

v(1− tH ;n)h(n)dn

(17)
By definition, a small change in nH has no effect on welfare, because nH is defined by (6)
above. So, using vt = −z, we see that

dW

dtH
= −
ˆ n

nH

z(1− tH ;n)h(n)dn = −BH (18)

So, plugging (15), (18) back into (14), dividing through by BH , and multiplying by
1− tH , and noting that holding nH constant, ∂BH

∂(1−tH)
= −∂BH

∂tH
, we see that

MEB =
tHe+ C

1− tH − tHe+ C
, C = −1− tH

BH

∂R

∂nH

∂nH
∂tH

(19)

Here,

e =
1− tH
BH

∂BH

∂(1− tH)

∣∣∣∣
nH const

=
1− tH
BH

ˆ n

nH

∂z(1− tH ;n)

∂(1− tH)
h(n)dn (20)

is the intensive-margin elasticity of the tax base BH with respect to the net of tax rate 1−
tH , and C is a correction factor, which captures the effect of a changing nH , the bunching
response, on the MEB, via its effect on revenue. Of course, given the specification (1), e
is a constant independent of nH .

We then have;

Proposition 2. Assume iso-elastic uility (1), and that the distribution of n is Pareto,
with shape and scale parameters a, n. Then, the MEB with a notch is

MEB =
tHe+ C

1− tH − tHe− C
, (21)
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where
C =

(tH − tLz0/z̃H)(a− 1)(1 + e)

1−
(
z0
z̃H

)(1+e)/e > 0. (22)

Moreover, in (22), and z̃H = nH(1− tH)e and nH is defined by (6).

Some comments are appropriate at this point. First, the MEB (21) is the formula for
the marginal excess burden of a proportional income tax, as shown by Feldstein (1999),
plus the correction factor C. This is intuitive; all households above nH are paying tax at
rate tH on all their income, so for these housholds, tH is indeed a proportional tax. So, as
already remarked, the correction factor C just captures the effect of a changing nH , the
bunching response, on the MEB, via its effect on revenue.

Second, we can ask how the MEB compares to the MEB in a kinked tax system. As
shown for example, by Saez (2001), the latter is

MEBK =
tHea

1− tH − tHea

Clearly, MEBK depends only on simple sufficient statistics; other than the tax rate tH ,
it depends only on e, the intensive-margin elasticity of taxable income, and a, the shape
parameter of the income distribution.

By contrast, from (22), it is clear that C is a more complex object. It depends not
only on sufficient statistics e, a, and the top rate of tax, tH , but also on other parameters
of the tax system tL, z0, and on z̃H , which is the unconstrained earnings of the type nH ,
given that they face the higher rate of tax.

So, there are two ways of solving for C. One is simply to use the formulae (22), (6), and
that is what we do in this paper. Alternatively, as shown by Kleven and Waseem (2013),
in any empirical study of a notch, the earnings nH(1− tL)e can be estimated. Specifically,
nH(1 − tL)e is simply z∗ + ∆z∗ in the notation of their paper, where z∗ is the earnings
notch and as explained there, ∆z∗/z∗ can be estimated from excess bunching at the notch.
Given this, z̃H can be recovered simply by multiplying z∗ + ∆z∗ by (1− tH)e/(1− tL)e.

Given a solution for C, the key question is whether we can get a good approximation
to MEB by setting C = 0 i.e. treating tH as a proportional tax. This is a question
addressed in Section 5 below, where we will see that the approximation is generally very
inaccurate.

4.3 The Welfare-Maximizing Rate of Tax

In his well-known article, Saez (2001) derived a formula for the welfare-maximizing rate
of tax for a one-bracket tax system, where a tax is levied at rate t above some income z0.8

He showed that this tax depended only on e and a, plus a parameter he called g, which is

8This is given in equation (9) of Saez (2001).
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the "ratio of of social marginal utility for top bracket taxpayers to the marginal value of
public funds for the government." In the special case where g = 0, his formula gives the
revenue-maximizing rate of tax.

Here, we develop a similar formula for the optimal tH . We will show that it is equal
to the formula for the welfare-maximizing proportional tax, plus a term in the correc-
tion factor C above. To do this, we assume now, following Saez, that the government’s
objective is not the integral of indirect utilities as in (17), but the integral of a strictly in-
creasing, concave transformation G(.) of utilities. The function G captures social aversion
to inequality in the usual way. Also, we suppose that the government has a fixed revenue
requirement E. Also, we assume, following Saez, that the welfare weight g = G′ is con-
stant above nH at some g; if this is not the case, the optimal tax has an additional term in
the covariance of g and z. Finally, normalize the Lagrange multiplier on the government
revenue constraint R ≤ E to unity. Then we can show:

Proposition 3. The welfare-maximizing level of tH is;

t∗ =
1− g − C
1− g + e

(23)

with C defined in (22) above.

To interpret this, note first that there is a direct connection of (23) to the formula
derived by Saez (2001) for the optimal linear tax on top earners, which is equation (9) in
his paper. He allowed for an income effect in labour supply in his setting, so setting this
equal to zero, his equation, in our notation, reduces to

t∗ =
1− g

1− g + ea
(24)

Moreover, it is easily checked that if there is no exempt income in the one-bracket tax
system, so it becomes a proportional tax, a = 1 in the above formula, so

t∗ =
1− g

1− g + e
(25)

Comparing (23) to (25), we see that the former is equal to the optimal proportional tax
minus a correction factor C

1−g+e . This factor reflects the fact that with a notch, there is
an additional cost to taxation because of the bunching response.

5 Simulations

We have seen that the MEB of an increase in tH and the optimal tH are given by the
corresponding formulae for a proportional tax tH plus a correction factor, C. Moreover,
the formulae for a proportional tax are very simple, depending only on the intensive-
margin elasticity e, and thus can easily be calculated. In this section, via calibrating the
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Figure 3: The Marginal Excess Burden

Note:

model, we investigate whether the MEB and optimal tax, calculated assuming that tH is
a proportional tax, are good approximations to the true MEB and optimal tax.

First, we will assume that e is constant. So, we require values for e, a, tH , tL, and z0.
Our baseline parameter values are chosen as follows. Following Piketty and Saez (2013),
we set a = 1.5, and following Saez et al. (2012) and Kleven and Schultz (2014), we set
e = 0.25. Regarding the tax rates, we first set tL = 0.2, which is broadly in line with
the average income and payroll tax paid by US households9. It is also the basic rate of
income tax in the UK. For the notch, we use the fact that notches in personal income tax,
where they exist, are small. For example, Kleven and Waseem (2013) show that in the
Pakistani income tax, the notch ranges between 2 and 5 percentage points. So, we will
take our baseline notch tH − tL = ∆t = 0.03.

To choose n, z0 we assume that only the top 20% of the population pay a higher rate of
income tax, roughly the proportion in the UK. Define n0 to be the skill level corresponding
to taxable income just at the notch i.e. n0(1 − tL)e = z0. This requires that 80% of the
population have skills below n0 i.e. H (n0) = 1−

(
n
n0

)α
= 0.8, or n

n0
= (0.2)1/1.5 = 0.342.

Given that only the ratio n
n0

is determined, we set n = 1, so n0 = 2.924. But then
z0 = 2.924(0.8)0.25 = 2.168.

Finally, from (22), we need a value for nH . Under the assumption (1), the indifference
condition (6) reduces to

e(nH)−1/e (z0)
1+ 1

e + nH(1− tH)1+e − (1− tL)z0(1 + e) = 0 (26)

Equation (26) has two roots, and we take the larger root to ensure that nH(1 − tL)e >

z0. Finally, parameter values are chosen so that the denominator in (21) is positive, which
is equivalent to dR/dtH > 0 i.e. that the tax rate is on the right side of the Laffer curve.
This requires simply that the notch is greater than 0.0015.10

Figures 1(a)-(c) show both the true MEB, as given by (21), and the approximation,
treating tH as a proportional tax i.e. setting C = 0 in (21). The former is denoted by
MEB in the Figures, and the latter by MEBA.

The error in using MEBA at the baseline values can be read off from Figure 1(a),
setting e = 0.25. It can be seen that true MEB is about 0.6, whereas the approximation is
about 0.1. So, the error in using the proportional formula is about a factor of six. Figure
1(a) also shows thatMEB is increasing in e, at a faster rate thanMEBA, so when e = 0.4

for example, the error in using MEBA is almost an order of magnitude.

9"Overview Of The Federal Tax System As In Effect For 2015", Joint Committe on Taxation, Congress
of the United States.

10For the denominator in (21) to be positive, we require 1 − tH(1 + e) > C, which is satisfied for
tH − tL > 0.0015.
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Figure 1 (b) shows thatMEB is also increasing in a, the Pareto parameter which mea-
sures (inversely) the size of the tail of the income distribution. As MEBA is independent
of a, this means that the the error in using MEBA is increasing in a.

Finally, Figure 1(c) shows MEB, MEBA as the size of the tax notch varies. We
can see that as the notch becomes very small, the true MEB becomes very large. This
is because C → ∞ as tH → tL. While this cannot be proved analytically, the intuition
is clear from (22). As tH → tL, then z̃H = nH(1 − tH)e → z0. So, both numerator and
denominator in (22) tends to zero, but the denominator does so faster.

Figures 2 and 3 show the optimal tax t∗ for the cases where first g = 0 (revenue-
maximization), and g = 0.25 (welfare-maximization). Again, we show t∗ as defined in
(23), along with the approximation setting C = 0, which we denote by t∗A. In each figure,
we show both t∗, t∗A as both e and a vary.

- Figures 2 and 3 in here -

Both of these taxes are decreasing in e, as we might expect. Also, both taxes are
decreasing in a. The error in using t∗A as an approximation for t∗ is generally smaller than
for the MEB. For example, at baseline parameter values, the true revenue-maximizing tax
is about 0.55, whereas the approximation is 0.8.

6 An Application to VAT

6.1 The Set-Up

As remarked in the introduction, perhaps the most important example of a tax notch
is the value-added tax. In this section, we present a simple model of value-added tax,
based on Liu and Lockwood (2015a), which is mathematically equivalent to the model
developed above. We then calibrate the model using UK data from Liu and Lockwood
(2015a), to estimate the MEB from the VAT, taking into account the welfare effects of
bunching at the threshold.

Consider a single industry with a fixed, large number of small traders producing a
homogenous good. Each small trader combines his own labor input l with an intermediate
input x to produce output y via a fixed coefficients technology

y = min

{
l,
x

γ

}
, (27)

where γ measures the the input requirement per unit of output. In particular, for all
traders, to produce one unit of output requires γ units of input.

Individual traders are indexed by a skill or taste parameter m ∈ [m,m], assumed
continuously distributed in the population with distribution H(m) and density h(m). A
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trader of type m has an overall payoff of

u(l;m) = π − ψ(l;m), ψ(l;m) =
Am

1 + 1
e

(
l

m

)1+ 1
e

(28)

where π is profit and ψ(l;m) is the disutility of labour. So, traders are differentiated
by disutility of labor. This assumption is not essential, but facilitates comparison to the
income tax case.11

For simplicity, it is assumed that traders only sell to final consumers, who have per-
fectly elastic demand for the good at price p = 1. This is analogous to the assumption
made in the taxable income literature that the wage is fixed, i.e. labor demand is per-
fectly elastic at a fixed wage. Finally, the intermediate input is produced only from labour
supplied by non-trader households via a fixed-coefficients technology where one unit of
labour are needed to produce one unit of the intermediate input. So, the tax-exclusive
price of the output is w, the wage, which we also assume to be 1.

The traders and the producers of the intermediate inputs face a VAT system. If the
trader is registered, he must charge VAT on sales y at rate t, but can claim back any
VAT paid on inputs. The trader must register for VAT if the value of sales y exceeds the
threshold y0, but can register voluntarily even if y < y0.

Note that when not registered, the price of the input is 1 + t. So, the profit for the
non-registered trader is

πN = (1− γ(1 + t))y. (29)

where γ is the cost of inputs relative to revenue per unit sold. For the registered trader,
we reason as follows. This trader must charge VAT on his output. None of the output
VAT can be passed on to the buyer, as he has perfectly elastic demand. So, revenue per
unit sold is p/(1 + t). But, if the trader is registered, he can claim back VAT on the input
use x, so the price of the input is w. So, overall, the profit for the registered trader is

πR =

(
1

1 + t
− γ
)
y. (30)

We now assume, to make the analysis interesting, that 1 > γ(1 + t). From (29), this
ensures that non-registered firms make a positive profit. Also, it ensures that for a given
value of sales y, πN > πR, so there is no voluntary registration. This is important because
then the VAT threshold functions exactly like a tax notch.

6.2 Effective VAT Rates

Now define n ≡ m(1 − γ). Then, substituting (29), (30) into (28), after some rearrange-
ment, we can show that the payoff of trader n can be written as a function of value-added

11For example, a could enter into the production function, (27) instead.

17



z = y(1− γ) and the VAT system as follows;

u(z;n) = z − T (z)− A

(1− γ)

n

1 + 1
e

( z
n

)1+ 1
e (31)

where

T (z) =

{
tNz, z ≤ z0

tRz, z > z0
, tR =

t

(1 + t)(1− γ)
, tN =

γt

1− γ
. (32)

As A is a free parameter, we set it equal to 1 − γ. Then, (31), (32) are mathemat-
ically equivalent to the income tax model. Here, tN , tR are the effective tax rates faced
by nonregistered and registered traders respectively on the value-added they generate.
Obviously, both effective rates are increasing in the statutory rate, t. Also, note that both
rates are increasing in input intensity γ. Moreover, from our assumption 1 > (1 + t)γ,
tR > tN .

So, faced with the tax schedule (32), all traders in the interval n ∈ [nL, nR] will bunch
at the VAT threshold z0. Moreover, nL = z0/(1 − tN)e, and nR solves (26) with tH , tL

replaced by tR, tN .
Finally, letting z(1− t;n) be the value-added chosen by an unconstrained firm facing

tax t, it can be shown that the revenue from the VAT is as in (12), with tH , tL replaced
by tR, tN i.e.

R = tN

(ˆ nN

n

z(1− tN ;n)h(n)dn+

ˆ nR

nN

z0h(n)dn

)
+tR

(ˆ n

nR

z(1− tR;n)h(n)dn

)
(33)

In (33), the base on which tN is levied is the value-added of non-registered traders, and
the base of tR is the value-added of registered traders.

6.3 The Marginal Excess Burden of the VAT

With the VAT, a change in the statutory rate t of VAT will change both effective tax
rates tN , tR unless γ = 0 i.e. no intermediate inputs are used. This is of course, analogous
to a reform that changes both tH and tL in the income tax model. So, for the VAT,
the formula for the MEB becomes somewhat more complex. To present the formula
for the MEB in this case, we need a few more definitions. First, note from (33), using
z(1− t);n) = (1− t)en, the effective bases of tN and tR are

BN =

ˆ nN

n

(1− tN)enh(n)dn+ z0(H(nR)−H(nN)), BR =

ˆ n

nR

(1− tR)enh(n)dn (34)

Then, from (34), the intensive-margin elasticities of BR, BN with respect to the net-of-tax
rate are

1− tR
BR

∂BR

∂tR

∣∣∣∣
nR const

= e,
1− tN
BN

∂BN

∂(1− tN)

∣∣∣∣
nN const

= eφ, (35)
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where

φ =

´ nN

n
z(1− tN ;n)h(n)dn

BN

< 1 (36)

The term φ captures a new effect of bunching; with bunching, a mass H(nR) − H(nN)

of the non-registered firms that are bunching are unresponsive to a change in the rate
of VAT, which lowers the aggregate intensive-margin elasticity of the tax base BN with
respect to tN .12

Moreover, recall that an increase in t causes both tN and tR to increase, so

θ =

BR

1−tR
∂tR
∂t

BR

1−tR
∂tR
∂t

+ BN

1−tN
∂tN
∂t

(37)

measures the importance of a change in tR on revenue relative to tN . Armed with these
new definitions, we can state our result.

Proposition 4. Assume that the distribution of sales (and pretax-income) is Pareto, with
shape and scale parameters a, n. Then, the MEB of the VAT is

MEB =
τε+ C

1− τ(1 + ε)− C
(38)

where
τ = (1− θ)tN + θtR, ε =

(1− θ)tNφ+ θtR
(1− θ)tN + θtR

e (39)

and finally the correction factor is

C = −
∂R
∂nR

(
∂nR

∂tN

∂tN
∂t

+ ∂nR

∂tR

∂tR
∂t

)
BR

1−tR
∂tR
∂t

+ BN

1−tN
∂tN
∂t

(40)

So, we note now that bunching impacts the calculation of the MEB in two ways. First,
as before, there is a correction factor C in (38). The correction factor is more complex
than in the income tax case. The reason for the additional complexity is clear from (40);
an increase in t now increases both tR, tN and in turn, both of these effective taxes affect
nR, the top of the bunching interval, and thus revenue. An explicit formula for C in terms
of parameters can be derived as in (22) above; this is done in the Appendix.

In addition, there is a second, new effect of bunching in (39). Bunching dampens the
intensive-margin response to a change in t, because at a fixed nN , nR, firms in this interval
will not adjust their sales in response to a change in t. This is captured by the term φ > 0,

which lowers the intensive margin response from e to ε.

12A similar point has been noted before by Slemrod et al. (1994) and Apps et al. (2014) who consider the
design of a two-bracket income tax. Because the tax system studied is kinked, not notched, the formula
for the optimal lower rate of tax depends only on the intensive margin elasticity, but this elasticity is
dampened by the fact that taxpayers at the kink do not adjust their behavior in response to the tax.
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An interesting special case is where the small traders do not use any intermediate
input, so i.e. γ = 0. Then from (32), tN = 0, tR = t

1+t
= τ, so (38) simplifies to

MEB =
t

1+t
e+ C

1− t
1+t

(1 + e)− C
(41)

It can be checked that in this case, C is given by the explicit formula (22), replacing
tH , tL by tR, 0 respectively.13

Finally, how realistic is it that the distribution of sales y (or value-added z) is Pareto?
As already remarked, in the US, there is evidence that the size distribution of firms as
measured by sales is Pareto (Luttmer (2007)). TO BE COMPLETED

6.4 Simulations

Here calibrate the VAT model, and plot the true MEB in (38) and an approximation to
the MEB as parameters vary. The approximation is the one treating VAT as a proportional
tax i.e. setting C = 0 in (41), which gives

MEBA =
t

1+t
e

1− t
1+t

(1 + e)

The parameters are calibrated as follows. In the UK, the statutory rate of VAT is
20%, so t = 0.2. Liu and Lockwood (2016) calculate that for the universe of firms in the
UK that file a corporate tax return, γ = 0.45. This gives tN = 0.16, tR = 0.30. As already
remarked, there is evidence that the size distribution of firms as measured by sales is
Pareto; Luttmer (2007) has a value for the US of a = 1.06. [TO BE UPDATED].

Next, define n0 to be the productivity level corresponding to turnover just at the
threshold i.e. n0(1− tL)e = z0. From Liu and Lockwood (2015a), 62.5% of firms are below

the threshold. So, n
n0

must satisfy H (n0) = 1−
(
n
n0

)1.06
= 0.625, or n

n0
= (0.375)1/1.06 =

0.396. Given that only the ratio n
n0

is determined, we set n = 1, so n0 = 2.53. But then
z0 = 2.53(0.84)0.25 = 2.422.

Our results are given in Figures 4 and 5. Figure 4 shows the simpler case with no
intermediate inputs i.e. γ = 0, in which case we know that formula (38) reduces to the
formula with a notched income tax.

- Figure 4 in here -

We can see that at the baseline figures for the parameters e.g. e = 0.25 in Figure
4(a), the true MEB is about 50% higher than the approximation. This difference is much

13If there is no bunching i.e. if tN = tR, then φ = 1, C = 0, so MEB = τe
1−τ(1+e) . But this requires

that τ = 1, so in this case, z → 0. Also, before this point, 1− τ(1+ e) < 0, so this case is not interesting.
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smaller than in the income tax case, and is driven partly by the lower value of a in the VAT
case. Indeed, we can see in Figure 4(b) that the accuracy of the approximation MEBA

falls rapidly as a rises, because MEB is increasing in a whereas MEBA is independent
of a.

Figure 5 shows the more realistic case with γ = 0.45. Here, we see that the difference
between the true MEB and the approximation is somewhat higher; the true MEB is about
3 times higher than the approximation. As in the case with no inputs, the true MEB is
increasing in both e and a.

- Figure 5 in here -

6.5 The Marginal Excess Burden and the Cost of VAT Compli-
ance

In practice, there are significant compliance costs to being VAT-registered i.e. preparing
and filing a tax return, and paying any tax owed. In the UK, these costs are relatively
low as a proportion of turnover, even for firms at the threshold. For example, a recent
literature review found that for the UK, at the registration threshold, these costs were
around 1.5% of turnover, declining to 0.1% or less for large companies (Federation of Small
Businesses (2010)). However, compliance costs can be much higher in other countries.
For example, a report by PwC found that for a fictional small firm, the hours taken for
compliance with VAT vary by region from an average 73 hours within the EU to 192 for
Latin America, and even within the EU, there are substantial differences, with 22 hours
in required in Finland to 288 in Bulgaria (PwC (2009)). So, it is definitely of interest to
ask how the marginal excess burden varies with compliance costs.

We can model compliance costs as follows. Let k be the cost of compliance as a fraction
of sales at the threshold. We assume a fixed cost ky0, or k

1−γ z0, z0 = y0
1−γ of compliance

if registered, so that net utility of the trader with registration is uR(z;n)− k
1−γ z0.

The MEB can then be calculated exactly as before, except that nR now solves

(1− tN)z0(1 + e)− e(nR)−1/e (z0)
1+ 1

e − nR(1− tR)1+e +
(1 + e)k

1− γ
z0 = 0

The results of variation in registration costs k on the MEB are shown in Figure 6. We
allow k to vary between 0% and 5% of sales. All other parameters are at their baseline
values, with γ = 0.45. We expect that an increase in k will increase bunching and thus
increase the correction factor and the MEB, and this is exactly what happens.

- Figure 6 in here -

Figure 6 shows that the MEB of the VAT does increase with k, but the effect is very
small. An increase of compliance costs of zero to 5% of turnover at the threshold only
increases the MEB from 0.334 to 0.341, an increase of about 2%.
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7 Conclusions

This paper has shown that the sufficient statistic approach to the welfare properties of
income (and other) taxes does not extend to tax systems with notches, because with
notches, changes in bunching induced by changes in tax rates have a first-order effect
on tax revenues. In an income tax setting, we showed that the marginal excess burden
(MEB) and the welfare-maximizing top rate of tax are given by the relevant formulae for
a proportional tax as in Feldstein (1999) plus a correction factor. The Feldstein formulae
always underestimate the MEB and overestimate the revenue and welfare-maximizing rate
of tax. Quantitatively, these mis-estimates can be very large; the MEB can be underes-
timated by an order of magnitude, but the errors in calculating the welfare-maximizing
tax are somewhat smaller.

An application to VAT was also studied. A simple model of small traders who differ in
productivity, and are subject to VAT at rate t above a threshold level of sales was shown
to be formally equivalent to the income tax model. We then show that the MEB of an
increase in the statutory rate of VAT is given by the Feldstein formula for a proportional
tax plus a correction factor as in the income tax case. A calibration of the model shows
that the proportional tax formula for the MEB of the VAT underestimates the true MEB
by a factor of up to three. This framework also allows us to evaluate the effect of increased
compliance costs of VAT in the MEB via its impact on bunching; increased compliance
costs increase bunching and thus increase the MEB, but the effect is quantitatively small.
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A Appendix
Proof of Proposition 1. It remains to derive a formula for C. From (8), noting that

ψn = −1

e

n−(1+1/e)

1 + 1
e

(z)1+
1
e = − 1

1 + e

( z
n

)1+1/e

. (A.1)

and z(1− t;n) = (1− t)en, we have

∂nH
∂tH

=
(1− tH)enH(1 + e)

(1− tH)1+e −
(
z0
nH

)1+1/e
(A.2)

Next, from (13) and (16), using the fact that z(1− t;n) = (1− t)en, we have

1

BH

∂R

∂nH
=

(tLz0 − tHz(1− tH ;nH))h(nH)´ n
nH
z(1− tH ;n)h(n)dn

(A.3)

=
(tLz0 − tH(1− tH)enH)h(nH)

(1− tH)e
´ n
nH
nh(n)dn

So, plugging (A.2),(A.3) into (N.6), we have:

C =
(1− tH)(tH(1− tH)enH − tLz0)h(nH)

(1− tH)e
´ n
nH
nh(n)dn

(1− tH)enH(1 + e)

(1− tH)1+e −
(
z0
nH

)1+1/e
(A.4)

=
(1− tH)(tH(1− tH)enH − tLz0)

(1− tH)eE[n |n ≥ nH ]

h(nH)

(1−H(nH))

nH(1 + e)

(1− tH)1+e −
(
z0
nH

)1+1/e

where in the second line we have used
´ n
nH
nh(n)dn = E[n |n ≥ nH ] (1−H(nH)) .

Now, given that n follows a Pareto distribution with shape and scale parameters a, n,
we also know that

E[n |n ≥ nH ] =
anH
a− 1

,
h(n)

1−H(n)
=
a

n
(A.5)

Plugging (A.5) into (A.4), we get:

C =
(1− tH)(tH(1− tH)e − tLz0/nH)(a− 1)(1 + e)(

(1− tH)1+e −
(
z0
nH

)1+1/e
) (A.6)

Then, using the definition z̃H = nH(1 − tH)e in (A.6), and rearranging, we get (22) as
required. �
Proof of Proposition 4.3. The government objective, written as a Lagrangean including
the constraint R = E, is

W =

ˆ nL

n

G(v(1− tL;n))h(n)dn+

ˆ nH

nL

G((z0(1− tL)− ψ(z0;n)))h(n)dn

+

ˆ n

nH

G(v(1− tH ;n))h(n)dn+ λ(R− E)
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So, the welfare-maximizing top rate of tax is defined by

∂W

∂tH
= −
ˆ n

nH

g(n)z(1− tH ;n)h(n)dn+ λ
∂R

∂tH
= 0 (A.7)

where g = G′. So, plugging (15), in (A.7), and rearranging, we get;

− cov(g, z)(1−H(nH))− gBH + λ

[
BH + tH

∂BH

∂tH

∣∣∣∣
nH const

+
∂R

∂nH

∂nH
∂tH

]
= 0 (A.8)

where

cov(g, z) =

ˆ n

nH

(g − g)zh∗(n)dn, h∗ = h/(1−H(nH), g =

ˆ n

nH

gh∗(n)dn.

Dividing though (A.8) by BH and λ, and using (??), we get

− θ + 1− tHe

1− tH
+

1

BH

∂R

∂nH

∂nH
∂tH

= 0 (A.9)

with
θ =

cov(g, z)(1−H(nH))

BHλ
+
g

λ

Multiplying (A.9) through by 1− tH and using the definition of C in (19), we get

(1− tH)(1− θ)− tHe− C = 0

Rearranging this last expression, assuming cov(g, z) = 0 and normalizing λ to 1 gives
(23). �
Derivation of (31), (32), (33). We first derive (31), (32). Trader utility is profit minus
the disutility of labour. So, combining (A.1), (29), (30) and using n = m(1 − γ), l = y,
get:

uN = (1− γ(1 + t))y − A

1− γ
n

1 + 1
e

(
y(1− γ)

n

)1+ 1
e

(A.10)

uR =

(
1

1 + t
− γ
)
y − A

1− γ
n

1 + 1
e

(
y(1− γ)

n

)1+ 1
e

Now, using z = y(1− γ) in (A.10), we get

uN =
1− γ(1 + t)

1− γ
z − A

1− γ
n

1 + 1
e

( z
n

)1+ 1
e (A.11)

uR =

(
1

(1 + t)(1− γ)
− γ

1− γ

)
z − A

1− γ
n

1 + 1
e

( z
n

)1+ 1
e

Finally, we note that for (A.11) to imply (32), we require

1− tN =
1− γ(1 + t)

1− γ
, 1− tR =

1

(1 + t)(1− γ)
− γ

1− γ
(A.12)
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But, solving (A.12) for tN , tR, we get (32) as required.
Now we derive (33). Let y(n) be the sales of an n-type trader. Then, revenue from

the from the VAT is

R =
t

1 + t

ˆ n

nR

y(n)h(n)dn+ t

ˆ nR

n

γy(n)h(n)dn (A.13)

The first term is revenue from VAT levied on the value of sales of registered firms, because
the sale price is 1/(1 + t), and the second term is revenue from inputs sold by the inter-
mediate input producer to firms that do not register for VAT. Using z(n) = y(n)(1− γ),
we can write this as

R =
t

(1 + t)(1− γ)

ˆ n

nR

z(n)h(n)dn+
tγ

1− γ

ˆ nR

n

z(n)h(n)dn (A.14)

Finally, replacing z(n) by z(1− tN ;n), z0, or z(1− tR;n) where appropriate, we get (33)
as required. �
Proof of Proposition 6.3. Let BN , BR be the bases of the effective taxes tN , tR defined
in (34). Then from (17),(33), and remembering that a change in the statutory rate of VAT
t changes tN , tR via (32), we have:

dW

dt
= −

(
∂tN
∂t

BN +
∂tR
∂t

BR

)
(A.15)

dR

dt
=
∂tN
∂t

(
BN + tN

∂BN

∂tN

∣∣∣∣
nR const

)
+
∂tR
∂t

(
BR + tR

∂BR

∂tR

∣∣∣∣
nR const

)
− C ′ (A.16)

where
C ′ = − ∂R

∂nR

(
∂tN
∂t

∂nR
∂tN

+
∂tR
∂t

∂nR
∂tR

)
(A.17)

So, plugging (A.15),(A.16) into (14), we have, after rearrangement

MEB = −d(W +R)/dt

dR/dt
(A.18)

=

BN

1−tN
∂tN
∂t
tN

(
1−tN
BN

∂BN

∂(1−tN )

∣∣∣
nR const

)
+ BR

1−tR
∂tR
∂t
tR

(
1−tR
BR

∂BR

∂(1−tR)

∣∣∣
nR const

)
+ C ′

BN

1−tN
∂tN
∂t

(
1− tN − tN 1−tN

BN

∂BN

∂tN

∣∣∣
nR const

)
+ BR

1−tR
∂tR
∂t

(
1− tR − tR 1−tR

BR

∂BR

∂tR

∣∣∣
nR const

)
− C ′

=

BN

1−tN
∂tN
∂t
eφ+ BR

1−tR
∂tR
∂t
tRe+ C ′

BN

1−tN
∂tN
∂t

(1− tN(1 + eφ)) + BR

1−tR
∂tR
∂t

(1− tR(1 + e))− C ′

where in the last line, we have used (35).So, dividing top and bottom of (A.18) by BR

1−tR
∂tR
∂t

+
BN

1−tN
∂tN
∂t

and using the definition of θ from (37), and the definition of C from (40), we get

MEB =
(1− θ)tNeφ+ θtRe+ C

1− (1− θ)tN(1 + eφ)− θtR(1 + e)− C
(A.19)

Finally, using the definitions of τ = (1 − θ)tN + θtR, ε = (1−θ)tNφ+θtR
(1−θ)tN+θtR

e, (A.19) can be
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rearranged to (39), as required. �
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Not-For-Publication Appendix

Details of MEB Simulation for the VAT Case. We need to express all the relevant
elements of the MEB in terms of the parameters, t, γ, z0,and nR, nN . In turn, we know
that nN = z0/(1− tN)e and that nR is determined by

(1− tN)z0(1 + e)− e(nR)−1/e (z0)
1+ 1

e − nR(1− tR)1+e = 0 (N.1)

Assume that the distribution of firms is Pareto with shape and scale parameters a, n.
Without loss of generality, we assume n = 1; so, the distribution and density of n isH(n) =
1 − n−a, h(n) = a

na+1 . So, using these formulae and z(1 − t;n) = (1 − t)en, we have by
routine calculation;

BR = (1− tR)e
ˆ n

nR

nh(n)dn = (1− tR)e
a

a− 1
(nR)1−a (N.2)

BN = (1− tN)e
ˆ nN

1

nh(n)dn+ z0(H(nR)−H(nN))

= (1− tN)e
a

a− 1
(1− (nN)1−a) + z0

(
(nN)−a − (nR)−a

)
Moreover, from the formulae for tN , tR in the paper, we have:

∂tR
∂t

=
1

(1− γ)(1 + t)2
,
∂tR
∂t

=
γ

(1− γ)
(N.3)

So, plugging (N.3) into the formula for θ in the paper, we can write

θ =

BR

1−tR
BR

1−tR
+ BN

1−tN
γ(1 + t)2

(N.4)

Plugging (N.2) into (N.5) allows us to compute θ as a function of t, γ, z0,and nN , nR.
Next, using z(1 − t;n) = (1 − t)en, and the properties of the Pareto distribution, we

have;

φ =

´ nN

n
z(1− tN ;n)h(n)dn

BN

=
(1− tN)e a

a−1(1− (nN)1−a)

BN

(N.5)

So, using (N.2), (N.5), φ can be computed as a function of t, γ, z0,and nN , nR.
Finally, recalling the definition of C in the paper, we have:

C = −
∂R
∂nR

(
∂tN
∂t

∂nR

∂tN
+ ∂tR

∂t
∂nR

∂tR

)
BN

1−tN
∂tN
∂t

+ BR

1−tR
∂tR
∂t

(N.6)

= −
∂R
∂nR

(
γ ∂nR

∂tN
+ 1

(1+t)2
∂nR

∂tR

)
BN

1−tN
γ + BR

1−tR
1

(1+t)2

where in the second line, we use (N.3).
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It remains to calculate ∂nR

∂tN
, ∂nR

∂tR
, ∂R
∂nR

. From (N.1), we have:

∂nR
∂tR

=
(1− tR)enR(1 + e)

(1− tR)1+e −
(
z0
nR

)1+1/e
(N.7)

∂nR
∂tN

=
−z0(1 + e)

(1− tR)1+e −
(
z0
nR

)1+1/e

Moreover, from the formula for ∂R
∂nR

in the paper, and the iso-elastic form of z(1 − t, n),
we get

∂R

∂nR
= (tNz0 − tR(1− tR)enR)h(nR) (N.8)

Plugging (N.7),(N.8) into (N.6), and using the formula for the density of the Pareto
density to substitute out h(nR), we eventually get:

C =
(tR(1− tR)enR − tNz0)

(
(1− tR)enR

1
(1+t)2

− z0γ
)

(1 + e)(
(1− tR)1+e −

(
z0
nR

)1+1/e
)(

BR

1−tR
1

(1+t)2
+ BN

1−tN
γ
) a

(nR)a+1

This expression for C is computable knowing t, γ, z0,and nR, nL. Thus, all the components
of MEB in the paper can be calculated. �

Calculation of the Pareto Parameter for UK firms. We use the method of Luttmer
(2007) and others to estimate the distribution of of firm size for the UK, Firm size y is
measured by sales. If the distribution of firm size is Pareto, the log of the size of the
upper tail of the distribution of firm size is linear in y, with the coefficient on y being a.

We briefly describe the the data here: a fuller description is given in Liu and Lockwood
(2015b). In that paper, we have annual sales of firms both above and below the VAT
threshold for the UK, with the sales variable being from the the universe of corporation
tax records (CT600). The data is then refined by eliminating companies which are part
of a larger VAT group i.e. using only standard-alone independent companies. We also
drop all observations with partial-year corporation tax records. In addition, we eliminate
companies that mainly engage in overseas activities. This yields a data-set with 731,706
observations for 435,688 companies between April 1, 2004 and March 30, 2010.

A visual inspection of the data indicates that log of the size of the upper tail of the
distribution of firm size is near to linear in y, (do squared regression!!!!)
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Table 1: Regression of Upper Tail of the Size Distribution on Firm Size

Dependent Variable: log of 1-F
2004-05 2005-06 2006-07 2007-08 2008-09 2009-10

y -1.324*** -1.288*** -1.288*** -1.319*** -1.307*** -1.283***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

constant 4.249*** 3.978*** 4.085*** 4.288*** 4.203*** 3.890***
(0.022) (0.02) (0.025) (0.022) (0.019) (0.022)

R-squared 0.992 0.991 0.988 0.985 0.988 0.991
N 1971 2037 2188 2201 2273 2186

Notes: This table presents results from regressing turnover growth rate for ....Bin size
is??. Observations were truncated at ??? Standard errors are clustered at firm level.
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Figure 1: The Marginal Excess Burden
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Figure 2: The Revenue-Maximising Top Rate of Tax
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Figure 3: The Wefare-Maximising Top Rate of Tax
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Figure 4: The Marginal Excess Burden of the VAT
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Figure 5: The Marginal Excess Burden of the VAT
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Figure 6: The Marginal Excess Burden of the VAT and Registration Costs
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