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Abstract
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We begin by showing that the only existing point identification result for this model
is incorrect. We go on to derive the sharp identified set under mean independence
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identify the effect of interest. This motivates us to consider alternative and slightly
stronger assumptions: we show that adding second and third moment independence
assumptions suffices to identify the model. We then turn our attention to inference.
We show that both our model, and related models from the literature that assume
regressor exogeneity, suffer from weak identification when the effect of interest is small.
To address this difficulty, we exploit the inequality restrictions that emerge from our
derivation of the sharp identified set under mean independence only. These restrictions
remain informative irrespective of the strength of identification. Combining these with
the moment equalities that emerge from our identification result, we propose a robust
inference procedure using tools from the moment inequality literature. Our method
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1 Introduction

Measurement error and endogeneity are pervasive features of economic data. Conveniently,
a valid instrumental variable corrects for both problems when the measurement error is
classical, i.e. uncorrelated with the true value of the regressor. Many regressors of interest in
applied work, however, are binary and thus cannot be subject to classical measurement error.’
When faced with non-classical measurement error, the instrumental variables estimator can

be severely biased. In this paper, we study an additively separable model of the form
y=c(x)+B(x)T" +e¢ (1)

where € is a mean-zero error term, 7™ is a binary, potentially endogenous regressor of in-
terest, and x is a vector of exogenous controls.? Our question is whether, and if so under
what conditions, a discrete instrumental variable z suffices to non-parametrically identify
the causal effect 5(x) of T, when we observe not 7™ but a mis-classified binary surrogate
T.

We proceed under the assumption of non-differential measurement error. This condition
has been widely used in the existing literature and imposes that T provides no additional
information beyond that contained in (7, x). Even in this fairly standard setting, identifi-
cation remains an open question: we begin by showing that the only existing identification
result for this model is incorrect. We then go on to derive the sharp identified set under the
standard first-moment assumptions from the related literature. We show that regardless of
the number of values that z takes on, the model is not point identified. This motivates us to
consider alternative, and slightly stronger assumptions. We show that, given a binary instru-
ment, the addition of a second moment independence assumption suffices to identify a model
with one-sided mis-classification. Adding a second moment restriction on the measurement
error along with a third moment independence assumption for the instrument suffices to
identify the model in general. This result likewise requires only a binary z.

We then turn our attention to inference, showing that both our model and related mod-
els from the literature suffer from a weak identification problem. In essence, binary mis-
classification creates a mixture model and to correct the bias in the instrumental variables
estimator, we must estimate the mixing probabilities. But when (x) is small the “mixture

modes” are nearly indistinguishable, making it impossible to reliably estimate these proba-

!The only way to mis-classify a true one is downwards, as a zero, while the only way to mis-classify a
true zero is upwards, as a one. This creates negative dependence between the true value of the regressor and
the error.

2Because T* is binary, there is no loss of generality from writing the model in this form rather than the
more familiar y = h(T*,x) 4+ . Simply define f(x) = h(1,x) — h(0,x) and ¢(x) = h(0,x).



bilities. To address this difficulty, we exploit the inequality moment restrictions that emerge
from our derivation of the sharp identified set. These restrictions remain informative even
when [(x) is small or zero. Combining them with the moment equalities that emerge from
our identification result, we propose an identification robust procedure for uniformly valid
inference using tools from the moment inequality literature. Our procedure is computation-
ally attractive and performs well in simulations. Moreover, it can be used both in our model
and related models from the literature that assume an exogenous 7.

Our work relates to a large literature studying departures from the textbook linear, clas-
sical measurement error setting. One strand of this literature considers relaxing the assump-
tion of linearity while maintaining that of classical measurement error. ( ),
for example, uses repeated measures of each mis-measured regressor to obtain identification,
while ( ) uses an instrumental variable. More recently, ( ) rely
on a repeated measure of the mis-measured regressor and the existence of a set of additional
regressors, conditional upon which the regressor of interest is unrelated to the unobservables,
to obtain identification. For comprehensive reviews of the challenges of addressing measure-
ment error in non-linear models, see ( ) and ( ). Another
strand of the literature considers relaxing the assumption of classical measurement error, by
allowing the measurement error to be related to the true value of the unobserved regressor.

( ) obtain identification in a general class of moment condition models with

mis-measured data by relying on the existence of an auxiliary dataset from which they can

estimate the measurement error process. In contrast, ( ) and
( ) rely on an instrumental variable and an additional conditional location assumption
on the measurement error distribution. More recently, ( ) use a continuous

instrument to identify the ratio of partial effects of two continuous regressors, one measured
with error, in a linear single index model. Unfortunately, these approaches cannot be applied
to the case of a mis-measured binary regressor.

A number of papers have studied models with an exogenous binary regressor subject to
non-differential measurement error. One group of papers asks what can be learned without
recourse to an instrumental variable. An early contribution by ( ) characterizes
the asymptotic bias of OLS in this setting, and proposes a correction using outside infor-
mation on the mis-classification process. Related work by ( ) provides partial
identification bounds. More recently, ( ) use higher moment assumptions
to obtain identification in a linear model, and ( ) extend these results to
the non-parametric setting. ( ) and
( ) provide additional partial identification results. For results on the partial identifica-

tion of discrete probability distributions under mis-classification, see ( ).



Continuing under the assumption of exogeneity and non-differential measurement error,
another group of papers relies on the availability of either an instrumental variable or a
second measure of 7. ( ) and ( ) consider a linear model and
show that when two alternative measures 77 and 715 of T™ are available, a non-linear GMM
estimator can be used to recover the effect of interest. Subsequently,

( ) note that an instrumental variable can take the place of one of the measures.
( ) extends the results of ( ) and ( ) to a more general
setting using a binary instrument in place of one of the treatment measures, establishing non-

parametric identification of the conditional mean function. When T is in fact exogenous,

this coincides with the causal effect. ( ) derives related results when the mis-classified
discrete regressor may take on more than two values. ( ) provides an identification
result for the same model as ( ) under different assumptions. In particular, his

“instrument-like variable” need not satisfy the usual exclusion restriction so long as it does
not interact with 7™ and takes on three or more values.
Much less is known about the case in which a binary, or discrete, regressor is not only
mis-classified but endogenous. The first paper to provide a formal result for this case is
( ). He extends his main result to the case of an endogenous treatment, providing
an explicit proof of identification under the usual IV assumption in a model with additively
separable errors. As we show below, however, this result is false.® Several more recent pa-
pers also consider the case of a mis-classified, endogenous, binary regressor.
( ), partially identify the effects of food stamps on health outcomes of children under
weak measurement error assumptions by relying on auxiliary data. Similarly,
( ) study the returns to schooling in a setting with multiple mis-reported measures of
educational qualifications. Unlike these two papers, our approach does not depend on the
availability of auxiliary data. In a different vein, ( ) uses an exclusion restriction
for the participation equation and an additional valid instrument to identify the effect of a
discrete, mis-classified endogenous regressor in a semi-parametric selection model. Similarly,
( ) use exclusion restrictions for both the participation equation and
measurement error equation to identify a parametric model with endogenous participation
and one-sided endogenous mis-reporting. Unlike those of the preceding two papers, our re-
sults rely neither on parametric assumptions nor additional exclusion restrictions. Other
than ( ), the paper most closely related to our own is that of ( ), who
derives partial identification results for a local average treatment effect without assuming
non-differential measurement error. Unlike ( ) we study an additively separable

model under non-differential measurement error and derive both partial and point identifi-

3 Appendix B provides a detailed explanation of the error in ’s proof.



cation results.
Our work also relates to a large literature on inference using inequality moment condi-
tions. In particular, we adopt the generalized moment selection (GMS) approach of
( ) to construct a procedure for identification-robust inference that combines
the moment equalities from our point identification results with inequalities from our partial
identification results. Although the equalities alone globally identify our model, the inequal-
ities turn out to be extremely valuable in settings where §(x) may be small. Although our
specific approach differs from theirs, the idea of including moment inequalities in a model
that is already point identified by a collection of moment equalities relates to work by
( ). While the weak identification problem that we point out and ad-
dress here also emerges in several closely related models, e.g. ( , ) and
( ), we are unaware of any other work from the literature that acknowledges
or addresses it. As shown in Appendix C, our inference procedure can be applied to the case
of an exogenous regressor with only minor modifications.

The remainder of the paper is organized as follows. Section 2.1 describes our model and
assumptions, Section 2.2 relates our results to existing work, and Sections 2.3-2.4 present our
identification results. Section 3.1 points out the special inferential difficulties that arise in
models with mis-classification while Section 3.2 gives a high-level overview of our proposed
inference procedure. Full details of the procedure follow in Sections 3.3-3.5. Section 4
presents simulation results, and Section 5 concludes. Proofs appear in Appendix A, and we

give a detailed explanation of the error in ( ) in Appendix B.

2 Identification Results

2.1 Baseline Assumptions

As defined in the preceding section, our model is y = ¢(x) + 5(x)T™ + ¢, where ¢ is a mean-
zero error term, and the parameter of interest is §(x) — the effect of an unobserved, binary,
endogenous regressor 1. Suppose we observe a valid and relevant binary instrument z. In
the discussion following Corollary 2.3 below, we explain how these results generalize to the
case of an arbitrary discrete-valued instrument. We assume that the model and instrument

satisfy the following conditions:
Assumption 2.1.
(1) y = c(x) + B(x)T* + & where T* € {0,1} and E[e] = 0,
(i) z € {0,1}, where 0 <P(z =1|x) < 1, and P(T* = 1|x,2 = 1) # P(T* = 1|x,2 = 0);
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(111) Ele|x, z] = 0.

Assumptions 2.1(ii) and (iii) are the standard instrument relevance and mean indepen-
dence assumptions.® If T* were observed, Assumption 2.1 would suffice to identify 3(x).
Unfortunately we observe not T™* but a mis-classified binary surrogate T'. Define the follow-

ing mis-classification probabilities:
ap(x,2) =P(T=1T"=0,%x,2), oa(x,2)=P(T =0T"=1,x,2). (2)

Following the existing literature for the case of an exogenous regressor ( , ;
) ; Y ; ) ; ) )7 we lmpose

the following conditions on the mis-classification process.
Assumption 2.2.

(i) ap(x,2) = ap(x), ai(x,2) = ay(x)

(11) ap(x) +aq(x) <1

(111) Ele|x, z, T*,T] = Ele|x, z, T"]

Assumption 2.2 (i) states that the mis-classification probabilities do not depend on z. As
we maintain this assumption throughout, we drop the dependence of oy and a; on z and
write ap(x) and «a;(x). Assumption 2.2 (ii) restricts the extent of mis-classification and is
equivalent to requiring that 7" and T™* be positively correlated. Assumption 2.2 (iii) is often
referred to as “non-differential measurement error.” Intuitively, it maintains that T" provides

no additional information about €, and hence y, given knowledge of (7™, z, x).

2.2 Point Identification Results from the Literature

Existing results from the literature — see for example ( ) and
( ) — establish that §(x) is point identified if Assumptions 2.1-2.2 are augmented

to include the following condition:
Assumption 2.3 (Joint Exogeneity). E[e|x,z,T*] = 0.

Assumption 2.3 strengthens the mean independence condition from Assumption 2.1 (iii)

to hold jointly for T* and z. By iterated expectations, this implies that T™ is exogenous,

4Assumption 2.1 (ii) states that z is a relevant instrument for the unobserved regressor T*. Under
Assumption 2.2, however, this is equivalent to assuming that z is a relevant instrument for the observed
regressor 1" by Lemma 2.1 below.



ie. Ele|x,T*] = 0. If T* is endogenous, Assumption 2.3 clearly fails. ( )
argues, however, that the following restriction, along with our Assumptions 2.1-2.2, suffices

to identify 3(x) when 7" may be endogenous:
Assumption 2.4 ( ( ) Equation 11). Ele|x,z,T*,T| = E[e|x, T"].

Assumption 2.4 does not require E[e|x,T*| to be zero, but maintains that it does not
vary with z. We show in Appendix B, however, that under Assumptions 2.1-2.2, Assumption
2.4 can only hold if T* is exogenous. If z is a valid instrument and 7™ is endogenous, then
Assumption 2.4 implies that there is no first-stage relationship between z and T™. As such,

identification in the case where T™ is endogenous is an open question.

2.3 Partial Identification

In this section we derive the sharp identified set under Assumptions 2.1-2.2 and show that
B(x) is not point identified. To simplify the notation, define the following shorthand for the

unobserved and observed first stage probabilities

pe(x) =P(I" = 1|x, 2 = k) (3)
pr(x) =P(T = 1|x,z = k). (4)
We first state two lemmas that have appeared in various guises throughout the literature.

These will be used repeatedly below.

Lemma 2.1. Under Assumption 2.2 (i),
[1 = ao(x) — en(x)] pr(x) = pr(x) — ao(x)
[1—ao(x) —ar(x)] [1 = pr(¥)] = 1 = pi(x) — (%)

where the first-stage probabilities pi(x) and pr(x) are as defined in Equations 5—4.

Lemma 2.2. Under Assumptions 2.1 and 2.2 (i)-(ii),
B(x)Cov(z, T|x) = [1 — ap(x) — a1(x)] Cou(y, z|x)

Lemma 2.1 relates the observed first-stage probabilities pi(x) to their unobserved counter-
parts pj(x) in terms of the mis-classification probabilities ag(x) and «a;(x). By Assumption
2.2 (ii), 1 — ap(x) — ay(x) > 0 so that Lemma 2.1 provides non-trivial bounds for ag(x) and
a;1(x) in terms of the observed first-stage probabilities. Lemma 2.2 relates the instrumen-

tal variables (IV) estimand, Cov(y, z|x)/Cov(z, T|x), to the mis-classification probabilities.

7



Since 1 —ap(x) — a1 (x) > 0, IV is biased upwards in the presence of mis-classification. Com-
bining the two lemmas yields a well-known bound, namely that 5(x) lies between the reduced
form and IV estimators. Our first result shows that without Assumption 2.2 (non-differential

measurement error) these bounds are sharp.

Theorem 2.1. Under Assumptions 2.1 and 2.2 (i)-(ii), the sharp identified set is charac-
terized by

and ap(x) < pp(x) <1 —ay(x) for k= 0,1 where pi(x) is defined in Equation 4.

Corollary 2.1. Under the conditions of Theorem 2.1, the sharp identified set for B(x) is the
closed interval between the reduced form estimand Cou(y, z|x)/ Var(z|x) and the IV estimand
Cou(y, z|x)/Cov(z, T|x).

Corollary 2.1 follows by taking differences of the expression for E[y|x, z = k] across k =1
and k = 0, and substituting the maximum and minimum value for a(x) + a1(x) consistent
with the observed first-stage probabilities. When the mis-classification probabilities are
known a priori to satisfy additional restrictions, these bounds can be tightened.” The
following corollary collects results for two common cases: one-sided misclassification (either

ap(x) or a;(x) equals zero), and symmetric mis-classification (ag(x) = a1(x)).

Corollary 2.2. Under the conditions of Theorem 2.1, the following restrictions on the mais-
classification probabilities ag(x), a1(x) shrink the sharp identified set for 5(x) to the closed
interval between A x [Cou(y, z|x)/Cov(z, T|x)] and Cou(y, z|x)/Cov(z, T'|x).

(1) If ap(x) = 0 then A = maxy, pg(X).
(11) If an(x) =0 then A =1 — miny pg(X).
(111) If ap(x) = aq(x) then A =1 — 2min {ming pg(x), 1 — maxy p(x)}.

Theorem 2.1 and Corollaries 2.1-2.2 do not impose Assumption 2.2 (iii) — non-differential
measurement error. We now show that this assumption yields further restrictions on the mis-
classification probabilities ag(x) and «;(x). While these restrictions are more complicated to
describe than those from Theorem 2.1, they are straightforward to implement in practice and
can be extremely informative, as we will show in our simulation exercises below. To the best

of our knowledge, the sharp bounds that we derive by adding Assumption 2.2 (iii) are new to

5 ( ) consider a model in which ag and «; do not depend on the exogenous
covariates x. In this case ag < P(T = 1|x,2) < 1 — a3 and they suggest minimizing the bounds over x.



the literature. Our result uses two additional conditions to simplify the proof of sharpness.
First, we assume that y is continuously distributed. This is natural in an additively separable
model and holds in our simulation examples below. Without this assumption, the bounds
that we derive are still valid, but may not be sharp. Nevertheless, the reasoning from our
proof can be generalized to cases in which y does not have a continuous support set. We
also impose Ely|x,T = 0,z = k] # E[y|x,T = 1, z = k| for any k. This holds generically and

is not essential to the proof: it merely simplifies the description of the identified set.

Theorem 2.2. Suppose that the conditional distribution of y given (x,T,z) is continuous
for any values of the conditioning variables and E [y|x,T =0,z = k| #E[y|x,T =1,z = k|
for all k. Then, under Assumptions 2.1 and 2.2, the sharp identified set is characterized by
Equation 5 from Theorem 2.1 along with ap(x) < pr(x) < 1 — a1(x) for k =0,1 and

(0039, 019.0) %) < pu(30)5) < e (e ) 0.%) )

for all pairs (t, k) where

pyle.%) =Elyly<gxT=tz=k,  fu(ex)=Elyly>e¢xT=1tz=H
Lk (ao(x) x) _ pe(X)E[y|x, 2 =k, T = 1] — ap(x)E[y|x, 2 = K]
7 Pr(x) — ao(x)

and we define

gtk(ao(x),al(x),x) E! <rtk(ozo(x),oz1(x),x)

)

G (a0(x), 1 (x),x) = F,.' (1 — 7 (0 (x), o1 (x), x)

)

where F,'(-|x) is the conditional quantile function of y given (x,T =t,z = k),

ap(x) }

Tok (040 (X), (651 (X), X) (X) |: (X

)_
1 —ap(x) — ag(x)

— pi(x)
x), a1 (x),x) = Lol |_piG) —aolx)
"1k (05[)( )7 1( )’ ) X) |:1 — Oé()(x) al(X):|

and px(x) 1s defined in Equation /.

The intuition for Theorem 2.2 is as follows. For simplicity, suppress dependence on x.
Now, fix (" =t,z = k) and (agp, ). The observed distribution of y given (T' = ¢,z = k),
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call it Fy, is a mixture of two unobserved distributions: the distribution of y given (1" =
1,2 =k, T* = 1), call it F}}, and the distribution of y given (T =t,z = k, T* = 0), call it F}.
The mixing probabilities are ry, and 1 — 74, from the statement of Theorem 2.2 and are fully
determined by (a, 1) and pg. Assumptions 2.1 (i) and 2.2 (ii) imply that the unobserved
means E[y|T*, T, z] are fully determined by (ag, 1) given the observed means E[y|T, z]. The
question is whether it is possible, given the observed distribution Fy;, to construct Fj;, and
F), with the required values for E[y|T*, T, 2] such that Fy, = ryFp + (1 — ry)Fo, for all
combinations (¢, k). If not, then (ag, 1) does not belong to the identified set. Our proof
provides necessary and sufficient conditions for such a mixture to exist at a given point
(v, vp). We can then appeal to the reasoning from Theorem 2.1 to complete the argument.
By ruling out values for oy and ay, Theorem 2.2 restricts § via Lemma 2.2. While these

restrictions can be very informative in practice, they do not yield point identification.

Corollary 2.3. Under Assumptions 2.1 and 2.2 the identified set for (x) contains both the
IV estimand Cou(y, z|x)/Cov(z, T|x) and the true coefficient 5(x).

Corollary 2.3 follows by Lemma 2.2 because ap(x) = aq(x) = 0 always belongs to the
sharp identified set from Theorem 2.2. Non-differential measurement error cannot exclude
the possibility that there is no mis-classification because in this case it is trivial to construct
the required mixtures.

Although we focus throughout this paper on the case of a binary instrument, one might
wonder whether point identification can be achieved by increasing the support of z, perhaps
along the lines of ( ). The answer turns out to be no. Suppose that we were
to modify Assumptions 2.1 and 2.2 to hold for all values of z in some discrete support set.
By Lemma 2.2, a binary instrument identifies 5(x) up to knowledge of the mis-classification
probabilities ap(x) and «a;(x). It follows that any pair of values (k,¢) in the support set
of z identifies the same object. Accordingly, to identify 5(x) it is necessary and sufficient
to identify the mis-classification probabilities. A binary instrument fails to identify these
probabilities because we can never exclude the possibility of zero mis-classification. The
same is true of a discrete K-valued instrument. Increasing the support of z does, however,
shrink the identified set by increasing the number of restrictions available. If z takes on more
than two values, our results in Theorems 2.1-2.2 continue to apply if “k6 = 0,1” is replaced
by “for all £.”

2.4 Point Identification

The results of the preceding section establish that (x) is not point identified under As-

sumptions 2.1 and 2.2. In light of this, there are two possible ways to proceed: either one

10



can report partial identification bounds based on our characterization of the sharp identified
set from Theorem 2.2, or one can attempt to impose stronger assumptions to obtain point
identification. In this section we consider the second possibility. We begin by defining the

following functions of the model parameters:

B(x) [1 — ag(x) — an(x)] " (6)
x)]* [1 4 ao(x) — a1 (x)] (7)
x)]° [{1 = ao(x) — a1(x)}* + 6ag(x) {1 — a1 (x)}] (8)

01 (x)

>
[}
—~
»
~—
I
= =
il
—~~

Now consider the following additional assumption:
Assumption 2.5. E[e?|x, 2] = E[¢?|x]

Assumption 2.5 is a second moment version of the standard mean exclusion restriction
for the instrument z — Assumption 2.1 (iii). It requires that the conditional variance of the
error term given the covariates x does not depend on z. Notice that this assumption does
not require homoskedasticity with respect to x, 7™ or T. Assumption 2.5 allows us to derive

the following lemma:

Lemma 2.3. Under Assumptions 2.1, 2.2 and 2.5,
Cov(y?, z|x) = 2Cou(yT, z|x)01(x) — Cov(T, z|x)0(x)

where 01(x) and 05(x) are defined in Equations 6-7.

Lemma 2.2 identifies 0;(x). Since Cov(z,T|x) # 0 by Assumption 2.1 (ii), we can solve
for O5(x) in terms of observables only, using Lemma 2.3. Given knowledge of #;(x), we can

solve Equation 7 for the difference of mis-classification rates so long as 5(x) # 0.

Corollary 2.4. Under Assumptions 2.1-2.2 and 2.5, a1(x) — ap(x) is identified so long as
B(x) #0.

Corollary 2.4 identifies the difference of mis-classification error rates. Hence, under one-
sided mis-classification, ap(x) = 0 or a;(x) = 0, augmenting our baseline Assumptions
2.1-2.2 with Assumption 2.5 suffices to identify 5(x). Notice that S(x) = 0 if and only if
01(x) = 0. Thus, §(x) is still identified in the case where Corollary 2.4 fails to apply.

Assumption 2.5 does not suffice to identify f(x) without a priori restrictions on the
mis-classification error rates. To achieve identification in the general case, we impose the

following additional conditions:

11



Assumption 2.6.
(i) E[e?|x, 2, T*,T) = E[e?|x, 2, T"]
(ii) E[3|x, 2] = E[e3|x]

Assumption 2.6 (i) is a second moment version of the non-differential measurement error
assumption, Assumption 2.2 (iii). It requires that, given knowledge of (x,T*,z), T provides
no additional information about the variance of the error term. Note that Assumption 2.6
(i) does not require homoskedasticity of € with respect to x or T*. Assumption 2.6 (ii) is a
third moment version of Assumption 2.5. It requires that the conditional third moment of
the error term given x does not depend on z. This condition neither requires nor excludes
skewness in the error term conditional on covariates: it merely states that the skewness is
unaffected by the instrument.

While Assumptions 2.5 and 2.6 may appear unfamiliar, we consider them to be fairly
natural in the context of an additively separable model in which one has already assumed
that E[e|z] = 0 and E[e|x, 2z, T*,T| = E[x, z,T*] — Assumptions 2.1 (iii) and 2.2 (iii) from
above.® For example, if an applied researcher reports results both for an outcome in logs
and levels, she has implicitly assumed independence rather than first moment exclusion.
Assumptions 2.1 (iii), 2.5 and 2.6 (ii) are of course implied by ¢ L z|x while Assumptions
2.2 (iii) and 2.6 (i) are implied by ¢ L T|(x,T™*, z). Achieving identification via Assumptions
2.5-2.6 involves using information beyond first moments and as such does places higher
demands on the data. Assumption 2.6 allows us to derive the following Lemma which,

combined with Lemma 2.3, leads to point identification:

Lemma 2.4. Under Assumptions 2.1-2.2 and 2.5-2.0,
Cov(y?, z|x) = 3Cou(y*T, z|x)0 (x) — 3Cov(yT, z|x)03(x) + Cov(T, z|x)05(x)

where 01(x),02(x) and 03(x) are defined in Equations 6-7.
Theorem 2.3. Under Assumptions 2.1-2.2 and 2.5-2.6, B(x) is identified. If 5(x) # 0,

then ag(x) and a1(x) are likewise identified.

Lemmas 2.2-2.4 yield a linear system of three equations in 0 (x), f2(x) and 03(x). Under
Assumption 2.1 (ii), the system has a unique solution so 0;(x), f2(x) and 5(x) are identified.
The proof of Theorem 2.3 shows that, so long as 5(x) # 0, Equations 6-8 can be solved for
B(x), ap(x) and ay(x). If we relax Assumption 2.2 (ii) and assume ag(x) + a;(x) # 1 only,

B(x) is only identified up to sign.

SIf one wishes to weaken our Assumption 2.1 (i) to allow for some form of unobserved heterogeneity, our
higher moment assumptions may impose additional restrictions.
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3 Identification-Robust Inference

We now turn our attention to inference based on the identification results from above. We
begin by expressing Lemmas 2.2, 2.3 and 2.4 as unconditional equality moment conditions,
and describing the resulting just-identified GMM estimator. As we explain in Section 3.1,
inference under binary mis-classification is complicated by problems of weak identification
and parameters on the boundary. Section 3.2 provides an overview of our inference procedure.
Full details appear in Sections 3.3-3.5. For simplicity we fix the exogenous covariates at
some specified level and suppress dependence on x in the notation. This is appropriate if the
covariates have a discrete support. We discuss how to incorporate covariates more generally

in Section 3.6.

3.1 The Non-standard Inference Problem

Lemmas 2.2-2.4 yield the following system of linear moment equalities in the reduced form

parameters 6 = (61,05, 03) from Equations 6-8:

Cov(y, z) — Cov(T, 2)0; =0
Cov(y?, z) — 2Cov(yT, 2)6, + Cov(T, 2)0, = 0
Cov(y®, 2) — 3Cov(y*T, 2)0; + 3Cov(yT, 2)0, — Cov (T, 2)03 = 0

Non-linearity arises solely through the relationship between the reduced from parameters
0 and the structural parameters (ag,aq, ). To convert the preceding moment equations
into unconditional moment equalities, we define the additional reduced form parameters

K = (K1, K2, k3) as follows:

K1 =C— 06061
Ko = C2 + Oce + 060(92 — 2001)
R3 = C3 +3 (C - 610&0) Oce + E[€3] - 06093 - SCO[(] [81 (C + B) - 28%(1 — Oél)}

Building on this notation, let

17//1 - <_817 170707070)7 "7/),2 - (92707 _2017 1707 0)) ¢é = (_0370»392707 _3017 1) (9)
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and collect these in the matrix ¥ = [ P, Py Y3 } Defining the observed data vector

w! = (T}, yi, vi T}, y?, y?T;, y?) for observation ¢, we can re-write the moment equations as:

E

wom-syo( 1] -0 "

Equation 10 is a just-identified, linear system of moment equalities in the reduced form
parameters (0, k) and yields explicit GMM estimators (K, 5) From Theorem 2.3, knowledge
of 0 suffices to identify 8. From the definitions of K above and 6 in Equations 6—8, however,
the moment equalities from Equation 10 do not depend on (ag, aq) if § equals zero. By
continuity, they are mearly uninformative about the mis-classification probabilities if 5 is
small. But unless § = 0, knowledge of (ag, 1) is necessary to recover [, via Lemma 2.2.
Thus, we face a weak identification problem.” Indeed, the GMM estimator of B based on
Equation 10 may even fail to exist. Using arguments from the proof of Theorem 2.3, this

estimator is given by

5= sin(3) /3 (3/3) " —2 (/3

Under our assumptions, 3(62/60;)? > 2(65/6,) provided that 3 # 0, but this may not be true
of the sample analogue. Indeed, because 51 appears in the denominator, the terms within
the square root will be highly variable if £ is small. Even if the GMM estimator exists, it
may violate the partial identification bounds for (ag, ;) from Theorem 2.2, or imply that
(v, p) are not valid probabilities. Importantly, the partial identification bounds remain
informative even if § is small or zero: so long as Assumption 2.1 (ii) holds, the first-stage
probabilities bound o and a; from above.

Exactly the same inferential difficulties arise in the case where T and z are assumed to

be jointly exogenous, as in ( )i ( K
( ); ( ); ( ).% This issue, however, has received little attention
in the literature. ( ) ensure that (ap, ay) are valid probabilities by employing

a logit specification. Frazis and Loewenstein employ a pseudo-Bayesian approach to ensure
that ap and «a; are valid probabilities, and to impose partial identification bounds related
to those from our Theorem 2.1, i.e. without using the non-differential measurement error
restrictions. Because they provide neither simulation evidence nor a theoretical justification
for their procedure, however, it is unclear whether this method will yield valid Frequentist

coverage. We are unaware of any papers in the related literature that discuss the weak

"This is essentially equivalent to the problem of estimating mixture probabilities when the means of the
component distributions are very similar to each other.
8We provide details for ( ) and ( ) in Appendix C.
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identification problem arising when 3 is small.

3.2 Overview of the Inference Procedure

In the following sections we develop a procedure for uniformly valid inference in models with
a mis-classified binary regressor. Our purpose is to construct a confidence interval for 3 that
is robust to possible weak identification, respects the restricted parameter space for (ayg, o),
and incorporates both the information in the equality moment conditions from Equation 10
along with the partial identification bounds from Theorem 2.2.° As argued in the preceding
section, our partial identification bounds remain informative even when the equality moment
conditions contain essentially no information about (g, ay).
To carry out identification-robust inference combining equality and inequality moment
conditions, we adopt the generalized moment selection (GMS) approach of
( ). This procedure provides a uniformly valid test of a joint null hypothesis for
the full parameter vector. In our model, this includes the parameter of interest 5 along with
various nuisance parameters: the mis-classification probabilities oy and a4, the reduced form
parameters k, defined in Section 3.1, and a vector q of parameters that enter the moment

O Under a given joint null hypothesis for (3, ag, a;), however, k and q are

inequalities.’
strongly identified and lie on the interior their respective parameter spaces. Accordingly, in
Section 3.4 we explain how to concentrate these parameters out of the GMS procedure, by
deriving an appropriate correction to the asymptotic variance matrix for the test.!

This leaves us with a uniformly valid test of any joint null hypothesis for (3, ag, a1). To
construct a marginal confidence interval for 5 we proceed as follows. Suppose that z is a
strong instrument. Then the usual IV estimator provides a valid confidence interval for the
reduced from parameter ¢;. By Lemma 2.2, knowledge of (1 — g — 1) suffices to determine
B from 6;. Thus, a valid confidence interval for (1 — oy — 1) can be combined with the IV
interval for #; to yield a corresponding interval for 3, via a Bonferroni-type correction. To
construct the required interval for (1 — ag — ay), we note from Equations 6-8 that 8 only
enters the moment equality conditions in Equation 10 through ;. But, again, inference for
0, is standard provided that z is a strong instrument. We can thus pre-estimate #; along
with k and q, yielding a uniformly valid GMS test of any joint null hypothesis for (ag, o).

By inverting this test, we construct a joint confidence set for (ayg, ;) which we then project

9Note that 8 = 0 if and only if §; = 0. Thus, if one is merely interested in testing Hy: 8 = 0, one can
ignore the mis-classification error problem and test Hy: 7 = 0 using the standard IV estimator and standard
error, provided that z is a strong instrument.

0These are defined below in Section 3.3.

I Note that we cannot take the same approach to concentrate out oy and a; because the mis-classification
probabilities may be weakly identified or lie on the boundary of their parameter space.
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to obtain a confidence interval for (1 — oy — ;). Because the parameter space for (ag, ay)
is bounded and two-dimensional, the projection step is computationally trivial.'? If desired,
one could also carry out a valid test of the null hypothesis that there is no mis-classification,
ap = a1 = 0, using the joint test for (ag, ay). In the following sections we provide full details

of our Bonferroni-based confidence interval procedure for 3.

3.3 Moment Inequalities

As noted above, the partial identification bounds from Theorems 2.1 and 2.2 remain infor-
mative about (ap, 1) even when 3 is small. To incorporate them in our inference procedure,
we first express them as unconditional moment inequalities. The bounds from Theorem 2.1
are given by

pr — g > 0, 1l—pr—a; >0, forallk

where the first-stage probabilities p; are defined in Equation 4. We write these inequalities
as

(1= 2z)(Ti — )
(1=z)1-T— o)
zi(T — ap)

zi(1 =T, — ay)

E [mi(w;,9)] >0, m{(w;,9)

(11)

The bounds derived in Theorem 2.2 by imposing assumption 2.2 (iii) are

(o) = p,, (g, (a0, 1)) >0, Tir (T (0, 1)) — pun(ag) >0, for all ¢, k

12\We considered two alternatives to the Bonferroni-based inference procedure described here. The first
constructs a marginal confidence interval for 8 by projecting a joint confidence set for (8, a1, ag), i.e. without
preliminary estimation of #;. This method is more computationally demanding than our two-dimensional
projection and involves a parameter space that is unbounded along the g-dimension. From a practical per-
spective, the relevant question is whether the reduction in conservatism from projecting a lower dimensional
set is outweighed by the additional conservatism induced by the Bonferroni correction. In our experiments,
the full three-dimensional projection and Bonferroni procedure produced broadly similar results: neither
reliably dominated in terms of confidence interval width. Given its substantially lower computational bur-
den, we prefer the Bonferroni procedure. We also experimented with two recently proposed methods for
sub-vector inference: ( ) and ( ). In both cases we obtained significant size
distortions, suggesting that our model may not satisfy the regularity conditions required by these papers.
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where pig, p,  fars 4,,, and Gy, are defined in the statement of the Theorem. Expressing these

as unconditional moment inequalities, we have

(w,.9.q)
Efml(w,, 9, Q)] = 0, m}(w.,d,q) = mmﬁ""“ﬁ’qi (12)
(w,.9.q)

where q = (2007 Q00> 410> 9105 41> Do1> 447 @11) and we define

yil (2 = k) { (T — ao) — L(yi < q,, ) (1 — T;) (=22
—yil(z; = k) (T; = a0) — L(ys > Gou) (1 = T;) (F=22=

aq

mg,()k (Wia 7-97 q) =

—yil(z = k) (T — o) — L(ys > Gy) Ty (1525

1—an

Il
—~

—_

W
N—

mg,lk(wlﬁ "97 q)

Finally we define m! = ( {/, mé’)’ . Notice that the second set of inequalities, ml, depends

on the unknown parameter q which is in turn a function of (ag, aq). In the next section we

discuss how q can be estimated under a given null hypothesis for (ay, o).

3.4 Accounting for Preliminary Estimation

Let 9 = (o, 1) and v = (k,61) where 6, is defined in Equation 6 and & in Section 3.1.

Our moment conditions take the form
E[ml(wiaﬁoaq(])} > 07 E[mE(Wi7ﬁ0770)] =0 (15)
where m’ = (m!',mi)’, defined in Section 3.3, and

{1#'2(91, A, Oél)Wz' - /iz} Z;

F(
{4501, 0, 1) w; — K3} 2

Wi77~90770) = (16)

m
Notice that we now write ¥, and 15, defined in Equation 9, as explicit functions of (61, ag, aq),
using the definitions of (y,63) from Equations 7-8. To construct a GMS test of the null
hypothesis Hy: 9 = 99 based on Equation 15, we require preliminary estimators (1) and
d(y) that are consistent and asymptotically normal under the null. We now provide full

details of the construction and derive the associated adjustment to the asymptotic variance
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matrix.

Consider first the equality moment conditions m®. For these we require preliminary
estimators of 0y, ko, and k3. Recall that 6; is simply the IV estimand: it can be consis-
tently estimated directly from observations of (y, T, z) without knowledge of o or ;. Note,
moreover, from Equation 10 that & is simply a vector of intercepts. These can be directly
estimated from observations of w because W(0;, o, 1) is consistently estimable under the
null Hy: 9 = 9¢: the hypothesis specifies oy and a; and IV provides a consistent estimator

of 6;. Accordingly, define

\I’/(Ql, Q, Oél)WZ‘ — KR

hE iy /'97 =
% ,) {1 (01)w; — R} 2

(17)

Under Hy: 9 = 9y, the just-identified GMM-estimator based on E[h¥ (w;, 99, v,)] = O yields
a consistent and asymptotically normal estimator of v, under the usual regularity conditions.

I From Section 3.3 we see that m?

Now consider the inequality moment conditions m
depends on q, the vector of conditional quantiles g,;, and q,, defined in Theorem 2.2. Under
the assumption that y follows a continuous distribution, as maintained in Theorem 2.2, these

can be expressed as conditional moment equalities as follows:

E [1(31 <g )T =tz2= /{:} — ri (o, 1) =0 (18)
El(y <qu)|T =t,z=k] - (1 — Ttk(amal)) =0 (19)

where 1y, is defined in Theorem 2.2 and ¢,k = 0, 1. Under Hy: ¥ = 19, a consistent estimator
Tt of 741, can be obtained directly from py, the sample analogue of p, based on iid observations
of w;. In turn, the (73)™ and (1 — 74, )™ sample conditional quantiles of 3 provide consistent

estimates of ¢, and gy,."? Collecting these for all (¢, k) gives q(d). Now, define

hi(w, 9, q)

W (w, 9, q) (20)

hI(Wi,ﬁ,Q) = [

13Consistency of the sample quantiles requires 0 < 74 < 1. If 7y = 0 or 1 for some (¢, k), however, then
the associated moment inequality is trivially satisfied and we no longer require estimates of ¢ i Dtk
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where

1(y; < g, )1z = k)(1 - T) — (=2 ) 1z = k)(T — ao)
1y <Qu)l(z=k)(1-T) — (=2 ) 1(z =k)(1 - T — o
Wl (w;, 9, q) = (6 = Goe) i = B )1 e ) 1o = R % . (21)
Ly < q,) 1z = k)T, — (.25 ) 1z = k)(T; — ao)
Wy <)Lz = k)T — (=05 ) Lz = k) (1 = Ti — o)

Equation 21 gives the unconditional version of Equations 18-19. Now, under the null q()
converges in probability to qg, which satisfies the just-identified collection of moment equal-
ities E[h!(w;, 99, qo)] = 0. Although h! is a discontinuous function of q, it is bounded
for any fixed (o, @1). Moreover, since y|(T' = t,z = k) is a continuous random variable,
E[h!(w;, 9, q)] is continuously differentiable with respect to q. Hence, q is asymptotically
normal under mild regularity conditions.'* To account for the effect of preliminary estima-
tion of q and « on the asymptotic variance matrix used in the GMS test, we rely on the

following Lemma:

EhI hE

.y hy by analogously.

o)l < infg[lhy(Fo, @)l + 0p(1).

Lemma 3.1. Let m{,(9) = n~' 3" m{ (w;,9) and define mj,,m
Further let ¥(9y) = argmin, ||hE(9g,~)|| and ||hL (9o, d(D

Then, under standard reqularity conditions

mi , (9o)
mi , (Y ) I 00 0 0 mj,,, (9o, qo)
\/ﬁ mén( )) _>p 010 Bl(ﬂ(]?qo) 0 \/ﬁ mf (190770)
5(19 ) 0 0 I 0 BE(ﬁo,’YO) hi( anO)

L hf (’00770) A
where we define BL(9,q) = (1 — ag — ;) [diag(a)]fl q and B¥(9,v) = —MF(HE)™! with
a = (a,a1,l —ag, 1 —ag,aq,a1,1 —ag,1 —aq), and

_ ) -
“1 0 0 (%) Ew
0 —E[z] 0 (a&)/]E[Wz'] 0 -1 0 (%)'E[w]
e % w) Sl | e i) Ebv
0 0 —E[z (87) E[w,z] 0 0 -1 (67) Ew,]
!
Ez] 0 0 (%%) Efw,z]

Lemma 3.1 relates the sample analogues mé’n and mZ evaluated at the preliminary esti-

1For details, see

( ) and

( ) Section 7.
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mators q(y) and 4 () to their counterparts evaluated at the true parameter values qo and
~o- The estimator 4(d) exactly solves h (¢, v) = 0 while g(d), constructed as described
immediately before the statement of the Lemma, approzimately solves hf(9¢,q) = 0. A few
lines of matrix algebra show that the determinant of HE equals Cov(z,T). Hence, B is
well-defined if 2 is a relevant instrument. The matrix B’ is likewise well-defined provided
that a; # 0 and the elements of qg are computed for probabilities strictly between zero and
one. If either of these conditions fails, however, some of the moment inequalities in m? are
trivially satisfied and can be dropped (see Footnote 13). After removing the correspond-
ing elements of qo and a, B! becomes well-defined. The regularity conditions required for
Lemma 3.1 are mild. The result relies on a number of mean-value expansions: hZ (9, v,) and
mE(9y,7,) are expanded around v = () while E[h!(w;, 99, qo)] and E[mi(w;, 9o, qo)]
are expanded around q = (). These expansions, in turn, rely on the fact that q and - are
interior to their respective parameter spaces and the relevant functions are all continuously
differentiable in our example.

We now have all the ingredients required to construct an asymptotic variance matrix for
the GMS test that accounts for preliminary estimation of v and q. Let m’ = (m!,mi, m®"),
W = (h!',hF"), and define the shorthand 7 = (v), d) and 7, = (¥ (), @' (9)). Given a

collection of iid observations (wy,...,w,), we have

m(Wi, 1907 TO)

Vn

mn (190 ) TO)
B,

(o, T0) ] d N(O’V<0O’TO))> V(90,T9) = Var

(22)
h(wia 1907 TO)
under Hy: 9 = 9, by an appropriate central limit theorem. What we require for the test,
however, is the asymptotic variance matrix of \/n m, (9, To). Combining Equation 22 with

Lemma 3.1, we obtain

Avar (vnm, (9, To)) = E(Fo, T0) V(Yo, T0) Z' (¥, T0) (23)
with
0 0
=W.7)= |1 Bw,7) |, B@.7)=|B®a 0 (24)
0  Bf9,v)

where BI(-,-) and B¥(-,-) are defined in Lemma 3.1. Finally, we construct a consistent

estimator ﬁn(’ﬁo) of the asymptotic variance matrix of \/nm, (%, 7o) under the null:

S0 (90) = E(09, 7o) Va0, T) = (0, o) (25)
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where

~

Vo(9,7) = (26)

In the following section we provide a step-by-step description of our inference procedure.

3.5 Details of the Inference Procedure

In this section we provide full details of our Bonferroni-based inference procedure. We begin
by defining some notation. Let J denote the total number of inequality moment conditions,

K denote the total number of equality moment conditions, and define

@)= by || el | =2 | miwid.q) (27)
e mf('ﬁa 7) = mE(Wi> 197 7)

with m! as defined in Equation 11, m% in Equations 12-14 and m¥ in Equation 16."° Now
let S be the function

S(x,y) = Zmin {0,23} +y'y (28)

where x,y are two finite-dimensional real vectors and x; denotes the j*™ element of x. This
function will be used to calculate the modified method of moments (MMM) test statistic as
part of the GMS test below. The argument x stands in for the moment inequalities, which
only contribute to the test statistic when they are violated, i.e. take on a negative value.
Using this notation, we now detail the first step of our inference procedure: a GMS test for

Y = (ap, 1) with preliminary estimation of q and « under the null.

Algorithm 3.1 (GMS Test for oy and a; ).
Inputs: hypothesis 9; iid dataset {w;}"_,; simulations {¢"}E | ~ iid N, x(0,1).

r=1

1. Calculate the variance matrix estimator in(ﬂo).

(i) Calculate 7o = (q),7,)" where 7, = ¥(9%) and qy = () from Section 3.4.
(ii) Calculate Z(, 7o) using Equation 24.
(iii) Calculate V, (9o, 7o) using Equation 26.
(iv) Set £,(90) = Z(o, To) Va(0, 7) = (90, o).

15Tn our problem K = 2 and J is at most 12. Under certain nulls for (g, a1 ), however, we drop components
of mi as they are trivially satisfied. See footnote 13 and Section 3.4 for further discussion.
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2. Calculate the test statistic 7,,(9).

(i) Calculate v/nm, (9, To) using Equation 27.

)

. a —1/2 ~

(i) Set v, (90) = [diag { (o) }] " [y (90, 7o)

(iii) Let v!(99) denote the first J elements of v,, and vZ () the last K elements.
(iv) Set T,,(9o) = S(VL (), vE(¥)) using Equation 28.

3. Construct the moment selection matrix .

(i) For j =1,...,J set of = 1{v] (9y) < logn} and let J = ijl oF.
(ii

(iii

Forjzl,...,Ksetgole.

)
)
) Set @ = (1, @l 7, 9K)

(iv) Let @ be the (J + K) x (J 4+ K) of zeros and ones that selects those elements x;

of an arbitrary vector x that correspond to ¢; = 1.
4. Simulate the sampling distribution of 7,,(9¥) under the null.

(i) Let Q be the correlation matrix that corresponds to %, (d).

(iii) Let SY) denote the first J and Sg) the last K elements of &™)

)
1172
(ii) For each r =1,..., R set €7 = [CDQCD’} ¢,
)
)

(iv) Foreach r =1,..., R set 7" (%) = S(EY), 55;“)) using Equation 28.

5. Calculate the p-value of the test: p(9¥g) = Z {T(T) ) > T, (190)}

n

Algorithm 3.1 corresponds to the asymptotic version of the GMS test from

( ), based on the MMM test statistic — S} in ( )
— and the “BIC choice” k, = +/logn for the sequence of constants k, used for moment
selection. The procedure is as follows. In Step 1, we compute a consistent estimator of the
asymptotic variance matrix of the full set of moment conditions, under the null, accounting
for preliminary estimation of q and -« as explained in Section 3.4. In step 2, we calculate
the observed value of the MMM test statistic. Note that this test statistic uses only the
diagonal elements of f]n(ﬂo). Moreover, the moment inequalities only contribute to T, if
they are violated, i.e. if they take on a negative value. In step 3 we determine which moment
inequalities are “far from binding,” defined as having a t-ratio greater than /logn. These

moment inequalities will be excluded when approximating the large-sample distribution of
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the test statistic. The matrix ® encodes the results of the moment selection step. Pre—
multiplying a (J + K)-vector x by ® results in a (J x K)-vector X whose last K elements
match the last K elements of x but whose first .J elements contain the subset of (x1,...,27)
whose indices match those of the moment inequalities with t-ratios less than or equal to
\/@ i.e. those that are not far from binding.'® Step 4 uses a collection of iid normal draws,
{¢ () R |, to approximate the large-sample distribution of T}, under the null. The appropriate
multiplications by ® ensure that this approximation includes all moment equalities, but
excludes any moment inequality judged to be far from binding in step 3. Finally, step 5
computes the p-value of the test by comparing the actual test statistic T,,(9) to the collection
of simulated test statistics {T,Y)(ﬁo)}le from step 4. We now detail our Bonferroni-based

confidence interval for 3.'7

Algorithm 3.2 (Bonferroni-based Confidence Interval for f3).
Inputs: significance levels (dy, d;); iid dataset {w;}™_,; simulations {¢V}2, ~ iid N, x(0,T).

1. Construct a (1 — d7) x 100% joint confidence set C(d;) for ¥ = (ag, aq)’.

(i) Let Ay ={0,+,%,..., 52, Y11 where N > 1 is a natural number.
(ii

(iii

Set Ay = {(()40,041) € (AN X AN>I ag +ap < 1}

)

)

) For each ¥ € Ay calculate p(19) using Algorithm 3.1, holding {¢VE | fized.
(iv) Set C(01) = {9 € An: p(¥) > 6}

2. Construct a (1 — ;1) x 100% confidence interval [s(d;),5(d1)] for s = (1 — g — o).

(i) Set s(07) =min{(1 — g — a1): (g, 1) € C(01)}.
(i) Set 5(01) = max{(1 —ap — a1): (ap, 1) € C(01)}.

3. Construct a (1 — d5) x 100% confidence interval [6,(d5), 61(02)] for 6;.
(i) Use the standard IV interval from a regression of y on 7" with instrument z.

4. Construct the (1 — &) x 100% Bonferroni-based confidence interval [3(6), 3(5)] for .

16 Although this does not affect the results of the procedure, notice that Algorithm 3.1 carries out moment

selection in a slightly different way from the steps given by ( ). In particular, before
carrying out any further calculations, we subset the correlation matrix Q and normal vectors ¢ ) to remove
elements corresponding to moment inequalities deemed far from binding. In contrast,
( ) carry along the full set of inequalities throughout, but add +oo to the appropriate elements when
computing T,(LT) to ensure that only the moment inequalities that are not far from binding affect the results.
Although it requires more notation to describe, sub-setting is substantially faster, as it avoids carrying out
computations for inequalities that cannot affect the result.

17Code implementing this procedure is available at https://github.com/fditraglia/mbereg.
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(1) Let § = 51 + 52.
(i) Set 5(6) = min {s(d1) x €,(d2), 5(01) x 0,(d2)}-
(iii) Set 3(6) = max {§(51) X 01(d2), 5(01) x 51(52)}-

Step 1 of Algorithm 3.2 constructs a (1 — d1) x 100% joint confidence set C(6;) for
¥ = (ap, 1) by inverting the GMS test from Algorithm 3.1 over a discretized parameter
space Ay. Because the parameter space for (g, ;) is bounded, this is computationally
straightforward. Note that the same normal draws {C(T)}le are used to test each null
hypothesis contained in Ay. Step 2 projects C(d;) to yield a (1 — d;) x 100% confidence
interval for s = (1 — ag — 1), simply taking the maximum and minimum values of s in the
discrete set C(d1). Step 3 constructs the usual IV confidence interval for the reduced form
parameter ¢, and step 4 combines the results of steps 2-3 with Bonferroni’s inequality to
yield a (1 — 07 — d2) x 100% confidence interval for 8. For some discussion of alternatives
to Algorithm 3.2, see Footnote 12. Notice that, by construction, the Bonferroni interval for
[ excludes zero if and only if the confidence interval for 6; from step 3 of Algorithm 3.2
excludes zero. Under mild regularity conditions, the confidence interval from Algorithm 3.2

is uniformly asymptotically valid.

Theorem 3.1. Let wyq,...,w, be an iid collection of observations satisfying the conditions
of Theorems 2.2 and 2.3, and let z be a strong instrument. Then, under standard requ-
larity conditions, the confidence interval for B from Algorithm 3.2 has asymptotic coverage

probability no less than 1 — (61 + 62) as R, N,n — oo uniformly over the parameter space.

Theorem 3.1 is effectively a corollary of Theorem 1 from ( ),
which establishes the uniform asymptotic validity of the GMS test, and Lemma 3.1, which
accounts for preliminary estimation of 7 and q. Given iid observations w;, the only substan-
tive condition required for Theorem 3.1 is the joint asymptotic normality of \/n m, (%, 7o)
and \/ﬁl_zn('ﬂo, 7o), where h,, denotes the sample analogues for the full set of auxiliary mo-
ment conditions (h!, h¥) defined in Section 3.4. For further discussion of the regularity
conditions required for the GMS procedure, see Appendix A3 of ( ).
For some discussion of the regularity conditions required for Lemma 3.1, see Section 3.4.

Theorem 3.1 invokes the higher-moment assumptions (Assumptions 2.5-2.6) under which
we establish global identification of 8 in Theorem 2.3, and Algorithm 3.1 likewise incorporates
the higher-moment equality conditions that arise from this result. To proceed without these
conditions, simply remove m® from the set of moment conditions used in the algorithm
and leave the steps unchanged. In this case § is no longer point identified but the inference

procedure provides valid inference for the points in the sharp identified set from Theorem 2.2.
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Algorithm 3.2 can likewise be used in the case of an exogenous 7™, as in ( ) and

( ). As mentioned above in Section 3.1, the exogenous regressor
case is subject to the same inferential difficulties as the endogenous case on which we focus
in this paper. To accommodate an exogenous regressor, simply replace m¥ with the moment

equalities described in Appendix C.

3.6 Further Details Regarding Covariates

The inference procedure described in the preceding sections holds x fixed, and is thus ap-
propriate for examples with discrete covariates. To accommodate covariates more generally,
there are several possible approaches. At one extreme, suppose one were willing to assume
that (ag, ap) did not vary with x and that y = ¢+ 7" +x'¢p+¢, as in

( ). In this case, the standard IV estimator identifies ¢ and one could simply augment
the moment equalities m* from Equation 16 above to provide a preliminary estimator of
¢ in Algorithm 3.1. At the other extreme, if one wished to remain fully non-parametric,
one could adopt the approach of ( ), based on kernel averaging near
a fixed covariate value x = x3. As a compromise between these two extremes, one could
alternatively specify a semi-parametric model, perhaps along the lines of Section 4 of

( ), and follow the approach of ( ). Both of these latter possibilities

could be an interesting extension of the method described above.

4 Simulation Study

In this section we present results from a simulation study using the inference procedure
described in Section 3.5 above. Unless otherwise specified, all calculations are based on 2000
simulation replications with n = 1000 using Algorithm 3.2 with R = 5000 simulation draws.

Supplementary simulation results appear in Appendix D.

4.1 Simulation DGP

Our simulation design generates n iid draws of the observables (y;, T}, z;) as follows:
1. Generate the instrumental variable z.

(i) For each 1 <i <n/2set z; = 0.

(ii) For each n/2 <1i < n, set z; = 1.
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2. Generate the error terms:

()

3. Generate the unobserved regressor: 7" = 1{dy + dy2z; +1n; > 0}.

4. Generate the outcome: y; = c+ ST +¢;.
5. Generate the observed, mis-classified regressor 7'

(i) For all ¢ with T} = 0 draw T} ~ iid Bernoulli(ay).
(ii) For all ¢+ with T = 1 draw T; ~ iid Bernoulli(1 — ay).

This DGP generates random variables that satisfy the conditions of Theorems 2.2 and 2.3.
Thus S is point identified, and all moment equalities and inequalities from Section 3 hold at
the true parameter values of the DGP. Note from step 1 that we condition on the instrument
z, holding it fixed in repeated samples. Our simulation varies the parameters (ag, aq, 5, n)
over a grid. Because € has unit variance, values for § are measured in standard deviations of
the error. For simplicity we present results for ¢ = 0,dy = ®71(0.15), and d; = ®71(0.85) —
®1(0.15), where ®~!(-) denotes the quantile function of a standard normal random variable.
Using these values for (dy, d;) holds the unobserved first stage probabilities fixed: p§ = 0.15
and p; = 0.85. In contrast the observed first-stage probabilities py and p; vary with (ag, aq)

according to Lemma 2.1.

4.2 Simulation Results

As explained in Section 3.1 above, the just-identified, unconstrained GMM estimator based
on Equation 10 suffers from weak identification and boundary value problems. Moreover,
the estimator may not even exist in finite samples. Even when the GMM estimator exists,
its asymptotic variance matrix could be numerically singular, so that the standard GMM
confidence interval is undefined. Table 1 reports the percentage of simulation draws for
which the standard GMM confidence interval is undefined, while Table 2 reports the coverage
probability of a nominal 95% GMM confidence interval, conditional on its existence.

We see from Table 1 that when § is small compared to the error variance, the GMM
confidence interval fails to exist with high probability. When g = 0.5, for example, the
interval is undefined approximately 30% of the time. As f increases, however, it becomes less
likely that the GMM interval is undefined. All else equal, larger amounts of mis-classification,

i.e. higher values for (ag, ay), increase the probability that the GMM interval fails to exist.
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B
a ap| 0 025 05 075 1 15 2 3
0.0 0.0]27 33 30 14 1 0 0 0
0.1 | 27 32 29 13 2 0 0 0
0.2 |26 33 32 15 4 0 0 0
0.3 |26 34 30 17 5 0 0 0
0.1 0.0 26 32 31 14 2 0 0 0
0.1 26 36 32 16 4 0 0 0
0.2 |27 35 31 18 8 0 0 0
03|25 35 32 21 11 1 0 0
0.2 0.0] 26 33 30 15 3 0 0 0
0.1|26 33 30 19 6 0 0 0
0.2 |26 35 33 22 12 1 0 0
0.3 |26 35 33 26 15 3 0 0
0.3 0.0 26 32 32 16 6 0 0 0
0124 35 33 21 11 1 0 0
0.2 |26 32 35 27 15 4 0 0
0.3 |26 35 35 28 21 7 2 0

Table 1: Percentage of replications for which the standard GMM confidence interval based on
Equation 10 fails to exist, either because the point estimate is NaN or the asymptotic covariance
matrix is numerically singular. Calculations are based on 2000 replications of the DGP from 4.1
with n = 1000.

s
ag a;| 0 025 05 075 1 15 2 3

0.0 0.0 72 62 62 80 92 95 94 95
0.1 72 62 63 79 92 95 96 95
02173 61 61 7790 96 96 96
0.3 |73 59 62 76 88 95 96 95

0.1 00173 63 60 78 91 95 96 96
0.11]73 98 59 790 95 95 94
02173 59 61 7 8 95 95 94
0.3 | 74 99 58 71 82 94 96 96

0.2 00|74 62 60 78 91 95 96 96
0.11]73 60 61 74 87 95 96 94
0273 58 57 70 81 93 95 95
0.3 |73 58 56 66 78 92 95 96

0.3 0.0] 74 62 60 76 89 95 96 96
0175 99 58 71 82 93 96 95
0.2 |74 61 56 65 78 90 96 96
03173 58 55 64 71 88 93 96

Table 2: Coverage (%) of the standard nominal 95% GMM confidence interval for § based on
Equation 10. Coverage is calculated only for those simulation draws for which the interval exists.
(See Table 1.) Calculations are based on 2000 replications of the DGP from 4.1 with n = 1000.
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oy o1 0 025 0.5 0.75 1 1.5 2 3
0.0 0.0]19.07 344 18 132 087 0.47 0.37 0.35
0.1 | 17.52 347 192 141 1 0.61 0.51 0.46
0.2]1741 351 19 145 11 0.76 0.65 0.58
0.3 ] 1823 334 192 148 1.24 091 0.79 0.7
0.1 0.0 1713 3.51 186 1.38 0.97 0.61 0.51 0.46
0.1 1788 333 185 145 1.13 0.78 0.67 0.6
021737 336 195 154 1.24 097 085 0.7
0.3 | 18.07r 333 198 1.63 141 1.17 1.04 0.92
0.2 0011779 339 192 145 1.11 0.75 0.65 0.58
0.1 1898 343 196 1.54 1.26 097 0.84 0.75
0.2 1825 326 192 164 145 1.2 1.06 0.95
0.3 ]19.03 331 202 1.75 166 149 133 1.19
0.3 001827 348 187 15 125 09 079 0.7
01| 194 341 196 163 143 1.18 1.04 0.92
0.2 1822 356 196 1.74 1.67 149 135 1.19
0.3 1756 3.55 213 196 1.86 186 1.74 1.55

Table 3: Median width of the standard nominal 95% GMM confidence interval for 3 based on
Equation 10. Coverage is calculated only for those simulation draws for which the interval exists.
Calculations are based on 2000 replications of the DGP from 4.1 with n = 1000.

Turning our attention to the simulation draws for which it is well-defined, we see from
Tables 2 and 3 that the GMM confidence interval performs extremely poorly when § is
small. Substantial size distortions persist until 5 is 1.5 or larger. All else equal, the size
distortions are more severe the larger the amount of mis-classification error. For sufficiently
large 3, however, standard GMM inference performs well. As g grows, the weak identification
problem vanishes. For large enough [ the inference problem in effect becomes standard.

We now examine the performance of the Bonferroni-based confidence interval from Al-
gorithm 3.2, beginning with its first step: a joint GMS confidence set for (ag,aq). Table
4 presents coverage probabilities for a nominal 97.5% GMS confidence set for (ag, ;). Be-
cause these results are extremely fast to compute, Table 4 is based on 10,000 simulation
replications. Aside from some slight under-coverage at intermediate values of (ag, a;) when
£ = 3, the GMS interval makes good on its promise of uniformly valid inference. As shown
in Appendix D, the under-coverage problem appears to be a finite-sample artifact: if we
increase n to 2000, the maximum size distortion becomes negligible. The GMS test tends,
however, to be fairly conservative, particularly for larger values of (v, ;). When there is no
mis-classification error, the GMS confidence sets are very nearly exact. Results for nominal
95% and 90% intervals are qualitatively similar: see Appendix D.

We now present results for the Bonferroni interval from Algorithm 3.2, setting d; = d, =
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oy a1 0 025 05 0.75 1 1.5 2 3
0.0 00| 977 977 976 97.7 98.0 98.0 974 979
0.1 ] 98.0 987 988 99.1 988 984 97.1 964
0.2 ] 984 985 989 989 988 98.6 98.0 97.0
0.3 ] 985 988 988 99.0 987 984 97.8 975
0.1 00| 981 985 983 98.8 988 984 96.8 95.7
0.1 ] 986 99.1 995 996 99.6 98.8 97.7 952
021 99.0 99.3 99.7 99.8 99.7 989 975 95.7
03] 994 99.7 99.8 998 99.6 99.0 98.2 96.7
02 00| 98.6 985 986 989 987 982 97.7 97.0
0.1 ] 99.0 99.5 99.7 99.7 994 99.0 981 96.5
021 99.5 99.7 99.8 99.7 994 99.0 97.8 96.8
03] 99.7 99.8 99.8 99.8 99.5 99.0 98.7 97.7
0.3 00| 98.7 987 988 98.7 987 982 981 97.6
0.1] 994 99.6 99.6 99.7 994 989 983 96.8
021 99.8 99.8 99.7 99.8 99.5 99.1 985 978
0.3 1 100.0 99.9 99.9 99.8 99.6 99.5 99.1 98.8

Table 4: Coverage probability (1 - size) in percentage points of a 97.5% GMS joint test for oy and
a1 using Algorithm 3.1 with n = 1000. Calculations are based on 10,000 replications of the DGP
from Section 4.1.

0.025 to yield an interval with asymptotic coverage no less that 95%.'® Table 5 presents
coverage probabilities in percentage points and Table 5 presents median widths.

The Bonferroni interval achieves its stated minimum coverage uniformly over the param-
eter space. When there is no mis-classification, ag = vy, its actual coverage is close or equal
to 95%. In the presence of mis-classification, however, the interval can be quite conservative,
particularly for larger values of 5. For smaller but nonzero values of 3, this conservatism
reflects the fact that the model is effectively partially identified: although Theorem 2.3 shows
that (ap,aq) are point identified for any § # 0, the amount of data required to distinguish
one pair of alphas from another when f§ is small would be astronomical.

In spite of its conservatism, the Bonferroni interval is informative, as we see from the
median widths in Table 6. Because median widths provide only a limited picture of the
behavior of a confidence interval, Figures 1-3 present further evidence in the form of coverage
functions (1 - power) for 8 = 0.5, 1, 3. Coverage curves for additional values of § and n appear
in Appendix D. Each figure holds the true value of g fixed and varies (ag, ;) over the grid
{0,0.1,0.2} x {0,0.2,0.2}. The plots within each Figure give coverage in percentage points

as a function of the specified alternative for 5. Solid curves are computed using the full

18In principle, one could optimize the choice of §; subject to the constraint d; + d2 = 0.95 to reduce the
width of the resulting interval. In our experiments, there was no choice of d; that uniformly dominated for
all values of («g, a1, ) so we report only results for §; = d5 here.
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B
o o1 | 0 025 05 075 1 15 2 3

0.0 0.0 96 97 97 9 97 97 95 96
0.1 |97 99 99 99 99 100 100 99
0.2 98 99 99 100 100 100 100 100
0.3 |97 100 100 100 100 100 100 100

0.1 0.0]97 99 99 99 100 100 100 98
0.1 198 100 100 100 100 100 100 100
0.2 198 100 100 100 100 100 100 100
0.3 97 100 100 100 100 100 100 100

0.2 0.0]97 99 99 100 100 100 100 100
0.1 198 100 100 100 100 100 100 100
0.2 198 100 100 100 100 100 100 100
0.3 198 100 100 100 100 100 100 100

0.3 0.0]97 99 100 100 100 100 100 100
0.1 97 100 100 100 100 100 100 100
0.2 198 100 100 100 100 100 100 100
0.3 198 100 100 100 100 100 100 100

Table 5: Coverage probability in percentage points of a nominal > 95% Bonferroni confidence
interval for 8 using Algorithm 3.2 with n = 1000, R = 5000 and §; = d2 = 0.025. Calculations are
based on 2000 replications of the DGP from Section 4.1.

ap o1 0 025 05 0.75 1 1.5 2 3
0.0 00| 04 041 043 043 043 042 041 041
01045 047 054 059 063 0.7 0.75 0.86
021051 054 065 0.7 085 095 1.01 1.17
0.3 ]0.58 062 0.79 0.95 1.07 1.17 1.24 1.48
0.1 0.0]045 047 054 059 063 0.7 076 0.88
0.1 051 054 066 0.77 086 1.03 1.18 1.46
0.2 058 063 08 098 112 138 1.55 1.88
0.3 | 0.67 0.75 1 125 146 174 194 24
0.2 0.0]051 054 065 076 0.8 096 1.02 1.19
0.1 ]0.58 063 081 099 1.14 142 1.64 2.08
0.2 1067 075 1.01 1.29 154 197 233 29
031]081 091 1.3 1.7 209 273 313 39
03 00]058 062 08 095 1.09 1.18 1.25 1.5
0.1]068 074 101 1.26 149 1.84 213 2.78
021081 091 13 1.7 211 28 34 448
03101 116 174 235 293 417 52 6.85

Table 6: Median width of a nominal > 95% Bonferroni confidence interval for 8 using Algorithm
3.2 with n = 1000, R = 5000 and §; = do = 0.025. Calculations are based on 2000 replications of
the DGP from Section 4.1.
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set of inequality moment conditions from Section 3.3, while dashed curves use only m!, i.e.
they do not impose the restrictions implied by non-differential measurement error. In each
figure, the dashed horizontal line gives the nominal coverage probability, 95%, while the
dashed vertical lines are the reduced from and instrumental variables estimands: for 5 > 0
the reduced form is always smaller than the IV.

As seen from Figures 1-3, and their counterparts in Appendix D, the Bonferroni proce-
dure has power against the alternative 5 = 0, even when the true value of 5 is small. As
described in Section 3.5, the Bonferroni interval excludes zero if and only if the confidence
interval for 6; from which it is constructed also excludes zero. These figures also indicate the
gains from including mi, the moment inequalities that emerge from assuming non-differential
measurement error: substantial increases in power against alternatives between the true pa-
rameter value and zero, particularly for larger values of 5. Note moreover that the excellent
performance of Bonferroni in the zero mis-classification case (g, 1) depends crucially on
imposing the assumption of non-differential measurement error. As the true value of 3 in-
creases, the Bonferroni interval begins to have power against both the reduced form and IV
estimands.

A drawback of the identification-robust inference procedure from Algorithm 3.2 becomes
apparent when both # and the mis-classification probabilities are large. In this case the
confidence interval for 3 is excessively wide, as we see from Table 6 and Figure 3. Note
from Tables 1 and 2, that this is a region of the parameter space in which the plain-vanilla
GMM confidence interval yields valid inference. Moreover, we see from Table 3 that the
median width of the GMM interval is far more reasonable when [ is large, even in the
presence of large amounts of mis-classification. It is important to stress that the source of
this excess width is not the Bonferroni correction: the same behavior emerges if one projects
a joint GMS confidence set for (ag,aq, ) to yield marginal inference for §. Rather, it is
the inevitable cost of applying a robust inference procedure in a region of the parameter
space where standard inference performs well. While a detailed theoretical investigation of
this problem is beyond the scope of the present paper, we now explore the performance of
a “hybrid” confidence interval that uses a simple heuristic to transition between robust and
standard inference.?’ The procedure for constructing the hybrid interval is as follows. First
compute the robust confidence interval based on Algorithm 3.2. Next, determine whether
the GMM interval is well-defined: if so, determine whether it is contained within the robust
interval. If the GMM interval exists and lies within the robust interval, report GMM;

otherwise report the robust interval. Table 7 presents coverage probabilities (in percentage

19 As expected, median widths decrease with sample size: see the results for n = 2000 in Appendix D.
20This idea is related to ( ), although somewhat different in its details.
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a a1 | 0 025 05 0.75 1 15 2 3
0.0 0.0 96 97 97 9 97 97 95 93
0.1 |97 99 99 99 99 98 96 95
0.2 |98 99 99 100 100 97 96 96
0.3 |97 100 100 100 99 96 96 96
0.1 0.0]97 99 99 99 100 98 97 95
0.1 98 100 100 100 100 96 96 96
0.2 198 100 100 100 99 96 96 95
0.3 |97 100 100 100 97 95 96 96
0.2 0.0]97 99 99 100 100 96 96 96
0.1 98 100 100 100 99 96 96 96
02198 100 100 100 96 95 95 96
0.3 98 100 100 98 95 95 95 96
0.3 0.0]97 99 100 100 100 95 96 97
0.1 |97 100 100 100 97 94 96 96
0.2 |98 100 100 98 94 94 96 96
03198 100 99 9 92 94 95 96

Table 7: Coverage probabilities (%) of a hybrid confidence interval constructed from the nominal
95% standard GMM interval and the > 95% Bonferroni confidence interval for 3 using Algorithm
3.2 with n = 1000, R = 5000 and d; = d9 = 0.025. The hybrid interval reports Bonferroni unless
the GMM interval exists and is contained within the Bonferroni interval. Calculations are based
on 2000 replications of the DGP from Section 4.1.

points) and Table 8 median widths for the resulting hybrid confidence interval. Coverage
plots for 5 = 1,2,3 appear in Figures 4-6. Plots for additional values of g and n appear in
Appendix D. The conventions of these figures are identical to those of Figures 1-3 with one
exception: in Figures 4-6 the dashed curves correspond to the hybrid confidence interval.
The hybrid interval performs extremely well: with the exception of a slight size distortion
at (g = a; = 0.3, =1) and (ap = a; = 0,8 = 3), it is effectively a free lunch.?! Note in
particular that the coverage curves for the hybrid interval from Figures 4-6 (dashed curves)
lie uniformly below those of the Bonferroni interval (solid curves) while still maintaining
correct coverage at the true value of 8. It could be interesting to investigate this idea further

in future work.

21The distortion at (ag = a; = 0.3, 3 = 1) disappears when n increases to 2000: see Appendix D.
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ag o 0 025 05 0.75 1 15 2 3
0.0 00| 04 041 043 043 043 042 04 0.35
0.1 045 047 054 059 0.63 0.67 0.52 0.46
021051 054 065 0.7 084 0.82 0.65 0.58
0.3 1058 062 079 095 105 096 0.79 0.7
0.1 0.0]045 047 0.54 0.59 0.63 0.67 0.51 0.46
0.1 051 054 066 077 086 0.92 0.69 0.61
021058 063 08 097 1.11 1.17 0.87 0.75
0.3 |0.67 0.75 1 125 14 14 106 0.92
0.2 0.0]051 054 065 076 0.8 083 0.65 0.58
0.1 058 063 081 099 1.12 1.18 0.86 0.75
02067 075 1.01 129 148 1.56 1.08 0.95
031081 091 13 1.67 195 1.77 135 1.2
0.3 00]058 062 08 095 1.07r 095 0.8 0.7
0.1]068 074 101 1.26 143 148 1.06 0.93
021081 091 13 1.66 198 194 1.37 1.19
03]1.01 116 1.73 224 271 233 178 1.55

Table 8: Median width of a hybrid confidence interval constructed from the nominal 95% standard
GMM interval and the > 95% Bonferroni confidence interval for S using Algorithm 3.2 with n =
1000, R = 5000 and 61 = 92 = 0.025. The hybrid interval reports Bonferroni unless the GMM
interval exists and is contained within the Bonferroni interval. Calculations are based on 2000
replications of the DGP from Section 4.1.
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Figure 1: Coverage curves (1 - power) for  when the truth is f = 0.5, from a nominal > 95%
Bonferroni confidence interval using Algorithm 3.2, with n = 1000 and R = 5000. The solid curve
uses all moment inequalities from Section 3.3 in the GMS step, while the dashed curve excludes
mg, those implied by non-differential measurement error. The dashed horizontal line gives the
nominal coverage (95%), while dashed vertical lines are the reduced form estimand (left) and the
IV estimand (right). Calculations are based on 2000 replications of the DGP from Section 4.1.
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Figure 2: Coverage curves (1 - power) for § when the truth is 5 = 1, from a nominal > 95%
Bonferroni confidence interval using Algorithm 3.2, with n = 1000 and R = 5000. The solid curve
uses all moment inequalities from Section 3.3 in the GMS step, while the dashed curve excludes
mg, those implied by non-differential measurement error. The dashed horizontal line gives the
nominal coverage (95%), while dashed vertical lines are the reduced form estimand (left) and the
IV estimand (right). Calculations are based on 2000 replications of the DGP from Section 4.1.
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Figure 3: Coverage curves (1 - power) for § when the truth is 5 = 3, from a nominal > 95%
Bonferroni confidence interval using Algorithm 3.2, with n = 1000 and R = 5000. The solid curve
uses all moment inequalities from Section 3.3 in the GMS step, while the dashed curve excludes
mg, those implied by non-differential measurement error. The dashed horizontal line gives the
nominal coverage (95%), while dashed vertical lines are the reduced form estimand (left) and the
IV estimand (right). Calculations are based on 2000 replications of the DGP from Section 4.1.
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Figure 4: Comparison of Coverage curves (1 - power) for 5 when the truth is 8 = 1: the solid curve
corresponds the Bonferroni nominal > 95% interval from Algorithm 3.2 and the dashed curve to the
hybrid interval from Tables 7-8. The dashed horizontal line gives the nominal coverage (95%), while
dashed vertical lines are the reduced form estimand (left) and the IV estimand (right). Results are
based on 2000 simulation replications from the DGP in Section 4.1 with n = 1000.
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Figure 5: Comparison of Coverage curves (1 - power) for 5 when the truth is 8 = 2: the solid curve
corresponds the Bonferroni nominal > 95% interval from Algorithm 3.2 and the dashed curve to the
hybrid interval from Tables 7-8. The dashed horizontal line gives the nominal coverage (95%), while
dashed vertical lines are the reduced form estimand (left) and the IV estimand (right). Results are
based on 2000 simulation replications from the DGP in Section 4.1 with n = 1000.
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Figure 6: Comparison of Coverage curves (1 - power) for 5 when the truth is 8 = 3: the solid curve
corresponds the Bonferroni nominal > 95% interval from Algorithm 3.2 and the dashed curve to the
hybrid interval from Tables 7-8. The dashed horizontal line gives the nominal coverage (95%), while
dashed vertical lines are the reduced form estimand (left) and the IV estimand (right). Results are
based on 2000 simulation replications from the DGP in Section 4.1 with n = 1000.
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5 Conclusion

This paper has studied identification and inference for a mis-classified, binary, endogenous
regressor in an additively separable model using a discrete instrumental variable. We have
shown that the only existing identification result for this model is incorrect, and gone on to
derive the sharp identified set under standard first-moment assumptions from the literature.
Strengthening these assumptions to hold for second and third moments, we have established
point identification for the effect of interest. Inference in models with mis-classification er-
ror is complicated by problems of weak identification and parameters on the boundary. To
address these challenges, we have proposed a Bonferroni-based procedure for identification
robust inference, using both the moment equalities from our identification results and mo-
ment inequalities from our partial identification results. This procedure is computationally
attractive and performs well in simulations. An interesting extension of the results presented
here would be to explore the more general case of a discrete endogenous regressor subject
to mis-classification error, possibly by combining our approach with the matrix factorization
techniques from ( ). Another interesting extension, inspired by our hybrid confidence
interval heuristic from Section 4, would be to study the transition between robust and stan-
dard inference in moment condition models. It may be possible, for example, to adapt the

techniques of ( ) in this direction to provide similar theoretical guarantees.

A  Proofs

Throughout the following arguments, we suppress dependence on x for simplicity.

A.1 Partial Identification Results

Proof of Lemma 2.1. Follows from a simple calculation using the law of total probability. [
Proof of Lemma 2.2. Immediate since Cov(z,T) = (1 — ap — a1)Cov(z,T*) by Lemma 2.1. [

Proof of Theorem 2.1. We first show that so long as ay < pr < 1 — a1 then we can construct
a valid joint probability distribution for (7,7, z) that satisfies our assumptions. First decompose
the joint probability mass function as

p(T", T, z) = p(T|T", z)p(T"|2)p(2)-

By Assumption 2.2 (ii), p(T|T*, z) = p(T|T*) and thus g and «; fully determine p(T'|T*, z). Under
the proposed bounds, ag and «; are clearly valid probabilities. Since p(z) is observed, it thus suffices
to ensure that p(7™|z) is a valid probability mass function. By Lemma 2.1, p; = (pr, —a0)/(1—ap—
a1) and hence 0 < p; < 1if and only if ag < pp <1 — . Since (pr —pe) = (P} — ;) (1 — p — 1),
we have p; # p; provided that p, —py # 0
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We now show how to construct a valid conditional distribution for y given (7, T, z) that satisfies
our assumptions if S(pr — ap) = (1 — ag — a1)[E(y|z = k) — ] for all k. Define

r =P(T" =1T =t,2=k) F(r) =Py <7|lz=k)
Fu(r) =Py <7|T =t,z=k) FL(r)=Py<7|T*=t"T=tz=k)
Gr(T) =P(e < 7|2 = k) Gh(r)=Ple<7|T*=t"T=t2=k).

Assumption 2.1 (i) implies a relationship between G%, and F}, for each t*, namely
Gi(r) = Fi(m + ), Gy(r) = Fp(r + ¢+ B) (A1)
and thus we see that
Gr(T) = riupe Fi (7 + ¢+ B) + rox(1 — pi) Foy (T + ¢ + B)
+ (1 = 1) pe (T 4+ ¢) + (1 = o) (1 — pr) Eo (T + ¢) (A.2)

applying the law of total probability and Bayes’ rule. Moreover, again applying the law of total
probability,
Fy(7) = rF (1) + (1= 1) Fp (7) (A.3)

for all t,k € {0,1}, and by Bayes’ rule,
(1 —o)py a1py,

k= —""""">5 Tok= .
Dk 1 —pi

(A.4)
There are four cases, corresponding to different possibilities for the ry.

Case I: 1, = 0,79 # 0 By Equation A.4, this requires oy = 1 which is ruled out by Assumption
2.2 (ii).

Case II: 7o, = ri;; = 0 By Equation A.4, this requires pj = 0 which in turn requires p; = ay.
Moreover, by Equation A.3 we have Fg€ = F}j, while Ftlk is undefined. Substituting into Equation
A2,

G(1) = peF1(T + ¢) + (1 — pr) For(7 + ¢) = Fi(7 +¢)

Now, since Fj(7 + ¢) is the conditional CDF of y — ¢ given that z = k, and G, is the conditional
CDF of € given z = k, we see that Assumption 2.1 (i) is satisfied if and only if E(y|z = k) = c¢. But
since py = o in this case, ¢ = ¢+ S(pr — o) /(1 — ap — ).

Case III: 75, # 0,70, = 0 By Equation A.4 this requires oy = 0 and pj # 0. By Equation A.3
we have ng = Fy, and since rq; # 1, we can solve to obtain

Fl(r) = rllk [Fi(T) = (1 = 1) Fi(7)]

Substituting into Equation A.2, we obtain

Gk(T) = [(1 —pk)Fok(T—i- C) +ka1k(T +c+5)]
+ (1 — 71z) [Ff)k(T +o)— F(t+c+ 3)]
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Now, Fyi(7 + ¢) is the conditional CDF of (y — ¢) given (T' = 0,z = k) while Fix(7 +c+ ) is
the conditional CDF of (y — ¢ — ) given (T' = 1,z = k). Similarly, F{, (7 + ¢) is the conditional
CDF of ¢ given (T* = 0,T = 1,z = k) while F(7 + ¢ + ) is the conditional CDF of (¢ — )
given (I = 0,7 = 1,z = k). Since Gi(7) is the conditional CDF of ¢ given z = k, we see that
Assumption 2.1 (iii) is satisfied if and only if
0=1—-p)E(y—c|T=0,z2=k)+pE(y—c— BT =1,2=k)
+ (1 —ri) [E€|T*=0,T=1,2=k) —E(e—-B|T"=0,T =1,z = k)]

Rearranging, this is equivalent to

E(ylz=k)=c+ (1 —a1)p (pk_ao) =c+5<pk_a0)

1—040—041 1—a0—a1

since a; = 0 in this case. As explained above, ng = Fp; in the present case while Folk is undefined.
We are free to choose any distributions for Flok and Fllk that satisfy Equation A.3, for example
F) = Fl = Fy.
Case IV: ri; # 0,70 # 0 In this case, we can solve Equation A.3 to obtain
1
1 0
Fyp(7) = o~ [Fue(T) = (1 = 1) Fp (7))

Substituting this into Equation A.2, we have
Gi(7T) = Fi(t + ¢+ B) + pi(l = 1) [Fii(T + ¢) = Fip(7 + ¢ + B)]
+ (1= pi) (X = ror) [Fop(T + ¢) — For(m + ¢+ B)]

using the fact that Fj(7) = ppFir(7) + (1 — pr) For (7). Now, Fi (T + ¢+ f3) is the conditional CDF
of (y — ¢ — fB) given z = k, while Fo,(7 + ¢) is the conditional CDF of ¢ given (T' = ¢,z = k) and
FY (T +c+ ) is the conditional CDF of (¢ — ) given (T =t,z = k). Since Gy () is the conditional
CDF of ¢ given z = k, we see that Assumption 2.1 (iii) is satisfied if and only if

OZE[y_C_/B‘Z:k]—i_pk(l_rlk) [E(€|T* :OvT:LZ:k)_E(‘S_ﬂu—‘* :OaT:LZ:k)]
+(1_pk)(1_rﬂk) [E(&‘T* :OvTZOaZ:k) _E(g_B’T* :OaTZOaZ:k)]
0=Ely—c—Blz =k +Bpx(1 —rix) + (1 — pi)(L = ro)]

But since [pr(1 —r1x) + (1 — pr)(1 — ror)] = (1—p;) and pj = (pr — o)/ (1 —ap—aq), this becomes
Elylz = k] = ¢+ B[(px — a0)(1 — ap — a1)] .

Thus, in this case we are free to choose any distributions for Fj), and F}; that satisfy Equation A.3.
For example we could take Fgc = Ftlk = Fi. O

Proof of Corollary 2.1. Follows by plugging in the largest and smallest possible values for ag+a;
and taking the difference of the expressions for E[y|z = k] O

Proof of Theorem 2.2. Under Assumption 2.1 (i) and Assumption 2.2 (iii), we obtain E(y|T*, T, z) =
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E(y|T*, z). Hence, by iterated expectations

EWT=0,z=k)= (1 —rop) E(y|T* =0,z =k) + ros E(y|T* =1,z = k)
EylT=1,z=k)= (1 —rp)Ey|/T*=0,z=k) + rxE@y|T* =1,z = k)

where 14, is defined as in the proof of Theorem 2.1. This is system of two linear equations in two
unknowns: E(y|T* = 0,z = k) and E(y|T* = 1,z = k). After some algebra, we find that the

determinant is
Pk — Qo ] [1 — Dk —061]
l—ag—ar] | pr(1—px)
and thus a unique solution exists provided that ay # pr and a1 # 1 — p. By our assumption that

Ely|T =0,z = k| # E[y|T = 1, z = k], the system has no solution when the determinant condition
fails. Thus, Assumption 2.2 (iii) rules out oy = pg, and a3 = 1 — pg. Solving,

Tk —Tok = [

1

0 — *
u, =Ey|T*=0,z=k)= | ————

>mewWMT=Qz=@—aE@v=kﬂ

k=BT =12 =) = () PUEGIT = 12 = ) - auB(ylz = )

Pk — @

Given (ap, 1), we see that 7y, ,ug, and ,u,lC are fixed. The question is whether, for a given pair
(g, 1) and observed CDF's Fyj, we can construct valid CDFs Fgw Ftlk such that

/ TF(dT) = 1}, / TEg(d7) = g, Fu(r) = ra (1) + (1= 7o) Fip (1)
R R

where Fy. and Ftt,: are as defined in the proof of Theorem 2.2. For a given pair (¢, k), there are two
cases: 0 < 1y < 1 and ry € {0,1}.

Case I: ry, € {0,1} Suppose that ryp = 1. Then, uj = E[y|T = t,z = k] so we can simply set
F} = Fy. In this case F, is undefined. If instead ry = 0, then uf = E[y|T = t,z = k] so we can
simply set Fgc = F}j.. In this case Ftlk is undefined.

Case II: 0 < ry, <1 Define

Htk(é) = E[y‘y € Itk:(g)vT =t,z= k]
Itk(&) = [Ftil(l —&— Ttk)thil(l - 5)]

for t,k = 0,1 where 0 < £ <1 —ry and thl is the quantile function of y given (T' = t,z = k).
We see that py is a decreasing function of £ that attains its maximum at £ = 0 and minimum at
§ =1—ry. Define these extrema as p,, = tek (1 — ) and iy, = per(0).

Suppose first that ,u]lg does not lie in the interval [Htk’ﬁtk]' We show that it is impossible to
construct valid CDFs F), and F}, that satisfy Fy(7) = ryF(7) + (1 — rg) F.(7) where Fyy, and
Ftt,: are as defined in the proof of Theorem 2.2. Since ry # 1, we can solve the expression for
Fyy, to yield FtOk(T) = [Ftk(T) - Tthtlk(T)] /(1 — ry). Hence, since ry # 0, the requirement that
0 < Fj).(7) <1 implies

Fy (1) — (1 — 1) < Ftlk(T) < Fy.(7)

A5
Ttk Ttk ( )
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Now define

E%k(T) = min{l, Ftk(T)/Ttk}
Fyp(7) = max {0, Fy(7)/rox — (1 — rox) /ree}

Combining Equation A.5 with the requirement that 0 < F} (1) < 1, we see that

Fyp(1) < Fi(7) < Fly(7)

Hence Fik first-order stochastically dominates F} which in turn first-order stochastically dominates
E%k It follows that

/ TEy(dr) < / TFy,(dr) < / 7Fy(dr)

But notice that
_ —1
P = /TF%k(dT)v ﬂllc = /TFtlk(dT)7 P = /TFtk(dT)

so we have p,, < 4 < iy, which contradicts py. ¢ (1,0 Fiye] -

Now suppose that u}c € [Htk’ﬁtk}' Since y is assumed to follow a continuous distribution

conditional on (7T, z), p is continuous on its domain and takes on all values in [Htk’ﬁtk} by the

intermediate value theorem. Thus, there exists a &* such that u(¢*) = pb. Now let fy (1) =
dFy,(7)/dr which is non-negative by the assumption that y is continuously distributed. Define the

densities
ftlk(T) _ fue(m) x 1{7 € Itk(g*)}’ f?k(T) _ fue(T) x 1{7 € Itk(ﬁ’*)}.

Ttk 1 —ry

Clearly ftlk >0 and ffk > 0. Integrating,

1
/ ftlk(r) dr = — fe(r)dr =1
R Ttk J I (¢%)

1
/ ftok(r) dr = 1 / fae(r)dr =1
R — Ttk JIS (%)

where Igg is the complement of I;;. And, by construction

o [ At dr+ (=) [ g dr = [ galr) dr

for any set A. Finally,

/RTftlk(T) dr = * 7o (7) dT = per (&%) = pip.

Ttk J Iy, (¢)

The result now follows by appealing to the proof of Theorem 2.1.
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A.2 Point Identification Results
In the proofs of Lemma 2.3, Lemma 2.4, and Theorem 2.3, we use the shorthand
7= Cov(T,z2), mn;=Cov(y’,2), 7;=Cov(Ty,2)

for 5 = 1,2,3. Using this notation, Lemma 2.2 becomes 77 = w#;, while Lemma 2.3 becomes
N = 2101 — whs, and Lemma 2.4 becomes 13 = 31201 — 31102 + wh3.

Proof of Lemma 2.3. By Assumption 2.1 (i) and the basic properties of covariance,

no = B2Cov(T™, z) + 26 [c Cov(T*, 2) + Cov(T™e, z)] + 2¢ Cov(e, z) + Cov(e?, 2)

71 = cm + Cov(Te, z) + SCov(TT™, z)
using the fact that T* is binary. Now, by Assumptions 2.1 (iii) and 2.5 we have Cov(e,z) =
Cov(e?,z) = 0. And, using Assumptions 2.2 (i) and (ii), one can show that Cov(TT*,z2) = (1 —
a1)Cov(T™*, z) and Cov(T*,2) = 7/(1 — ap — a1). Hence,

ne = 01 (B + 2¢) m + 26Cov(T™e, z)
21101 — why = [2910 + 29%(1 —a) — 92] 7+ 201Cov(Te, 2)

but since O = 62 [(1 — a1) + )], we see that [203(1 — a1) — 0] = 018. Thus, it suffices to show
that SCov(T™*e,z) = 01Cov(Te,z). This equality is trivially satisfied when 8 = 0, so suppose
that 8 # 0. In this case it suffices to show that (1 — ag — ay)Cov(T™e,z) = Cov(Te, z). Define

my, = E[e|T* =t, 2= k| and p; = P(T* = 1|z = k). Then, by iterated expectations, Bayes’ rule,
and Assumption 2.2 (iii)

Cov(T™e, z) = q(1 — q) (pTmi; — pymiy)
Cov(Te,z) = q(1 — q) {(1 — a1) [pimi1 — pymio] + o [(1 — pI)mg — (1 — pg)mge]

But by Assumption 2.1 (iii), E[e|z = k] = m],p; +m{;,(1—p;) = 0 and thus we obtain mf, (1-pj) =
—mjpy- Therefore (1 —ag — a1)Cov(T™e, z) = Cov(T, z) as required. O

Proof of Lemma 2.4. Since T™* is binary, if follows from the basic properties of covariance that,

n3 = Cov [(c+¢)?, 2] 4+ 38Cov|(c+ €)*T*, 2] + 38°Cov[(c + &)T™, z] + B*Cov(T*, 2)
5 = Cov [(c+ )T, z] 4+ 2B8Cov [(c+ e)TT*, 2] + B2Cov(TT*, 2)

By Assumptions 2.1 (iii), 2.5, and 2.6 (ii) , Cov [(c + )3, z] = 0. Expanding,

n3 = 36Cov(T*e?, 2) + (3&2 + 60ﬁ) Cov(T* e, z) + (53 +3cp% + 362,8) Cov(T™, z)
5 = 2Cov(T, 2) + B(B + 2¢)Cov(TT*, z) + Cov(Te?, z) + 2cCov(Te, z) + 28 Cov(TT e, z)

Now, define s}, = E[e|T* = t,z = k] and pj = P(T* = 1|z = k). By iterated expectations, Bayes’
rule, and Assumption 2.6 (i),

Cov(T*e%, 2) = q(1 — q)(pist1 — psto)
Cov(Te?, z) = q(1 — q) {(1 — o) [pisT1 — Phsto) + o [(1 = p})sgr — (1 — p5)sool}
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By Assumption 2.5, E[¢?|z = 1] = E[¢%|z = 0] and thus, by iterated expectations we have pisi; —
p5sio = — [(1 —p7)s§ — (1 — p)sge] which implies

Cov(T<?,2) = (1 — ap — a1)Cov(T*e%, 2). (A.6)
Similarly by iterated expectations and Assumptions 2.2 (i)—(ii)
Cov(TTe,2z) = q(1 — q)(1 — o) (pimi, — pimiy) = (1 — a1)Cov(T™e, 2) (A.7)
where my, is defined as in the proof of Lemma 2.3. As shown in the proof of Lemma 2.3,

Cov(TT*,z) = (1 — a1)Cov(T™, 2)
Cov(T*,z) =7/(1 — g — 1)
Cov(Te,z) = Cov(Te, z) /(1 — ap — 1)

and combining these equalities with Equations A.6 and A.7, it follows that
T =2[(1 —ai)(c+ B) — cap) Cov(T*e, 2) + [(1 — a1)(c + B)? — c2oz0] Cov(T™, z)

+ (1 — ag — a1)Cov(T*e?, 2)
71 =(1—-0ap—a1)Cov(T™e, 2) + [(1 — o) (c+ B) — cap] Cov(T™, 2)

using 71 = e + Cov(Te, z) + BCov(TT™*, z) as shown in the proof of Lemma 2.3. Thus,
31901 — 31105 + w3 = KlCov(T*52, z) + KoCov(T" e, z) + K3Cov(T™, 2)
where K1 =3601(1 — ap — 1) = 3 and
Ky =601 [(1—ag)(c+ B) — cap] — 302(1 — ap — )
K3 =301 [(1—a1)(c+ B)> = Pag] — 302 [(1 — ar)(c+ B) — cag) + 05(1 — g — 1)

Substituting the definitions of 81, 85, and 63 from Equations 6-8, tedious but straightforward algebra
shows that Ky = 3%+ 6¢3 and K3 = 32+ 3¢8? + 3¢?3. Therefore the coefficients of 13 equal those
of 319 — 3711605 + mh3 and the result follows. O

Proof of Theorem 2.3. Collecting the results of Lemmas 2.2-2.4, we have

m =mt, mn2=2m01 —7why, n3 =310 — 31102+ O3

which is a linear system in 6,62, #3 with determinant —73. Since m # 0 by assumption 2.1 (ii),

01,05 and 05 are identified. Now, so long as 5 # 0, we can rearrange Equations 7 and 8 to obtain

A=92/9%=1+(a0—a1> (AS)
B:03/0? = (1—ao—a1)2+6a0(1—a1) (AQ)
Equation A.8 gives (1—«a1) = A—ap. Hence (1 —ap—ay) = A—2ap and ap(1—a1) = ag(A—ayp).

Substituting into Equation A.9 and simplifying, (4% — B) + 24 — 203 = 0. Substituting for aq
analogously yields a quadratic in (1 — ) with identical coefficients. It follows that one root of
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(A% — B) + 2Ar — 2r2 = 0 is ag and the other is 1 — ;. Solving,

r= g + V342 — 2B = % <92 + /3603 — 29193> (A.10)

By Equations 7 and 8,
392 — 20105 =3 [01 1 + ap — 041 ]2 — 204 {9% [(1 — Qg — 041)2 + 6040(1 — 041)]}
_94{3 1+Oé(] —a1)2—2 [(1 —ao—a1)2—|—6a0(1—a1)]}.
Expanding the first term we find that

31+ap—a1)? =3 [1+2(a — a1) + (ap — a1)?]
=3+ GOZO - 60&1 + 30(3 + 30&% - 60&00&1

and expanding the second

2 [(1 — Qg — a1)2 + 6040(1 — Ckl)] =2 [1 — 2(@0 + 041) + (Cm + 041)2 + 6ag — 6&00&1}
=2+ 8ay — 4aq + 204(2) + 204% — 8agag.

Therefore

303 — 20103 = 07 {1 — 200 — 201 + o2 — af + 2apa1 }
= 911L [(1 — Qp — 041)2]

which is strictly greater than zero since 61 # 0 and a9 + a1 # 0. It follows that both roots of the
quadratic are real. Moreover, 303 /01 — 205/63 identifies (1 — g — a1)?. Substituting into Equation
6, it follows that § is identified up to sign. If ag+ oy < 1 then sign(f) = sign(f;) so that both the
sign and magnitude of § are identified. If g + @1 < 1 then 1 —a; > ag so (1 — 1) is the larger

root of (A% — B) + 2Ar — 2r? = 0 and «y is the smaller root. O
B Comment on ( ) A.2
Expanding on our discussion from Section 2.2 above, we now show that 's iden-

tification argument for an endogenous regressor in an additively separable model (A.2) is
incorrect. Unless otherwise indicated, all notation used below is as defined in Section 2.

The first step of ( ) A.2 argues (correctly) that under Assumptions 2.1 and
2.2 (1)—(ii), knowledge of ap(x) and «v (x) is sufficient to identify 5(x). This step is equivalent
to our Lemma 2.2 above. The second step appeals to ( ) Theorem 1 to argue
that op(x) and «;(x) are indeed point identified. To understand the logic of this second
step, we first re-state ( ) Theorem 1 in our notation. As in Section 2 above,
T* denotes an unobserved binary random variable, z is a instrument, 7" an observed binary
surrogate for 7™, y an outcome of interest, and x a vector covariates.

Assumption B.1 ( ( ) Theorem 1). Define g(T*,x) = Ely|x,T*] and v =
y — g(T™,x). Suppose that knowledge of (y, T*,x) is sufficient to identify g and that:

(i) P(T* =1|x,2=0) #P(T* = 1|x,z = 1).
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(ii) T is conditionally independent of z given (x,T*).
(117) ap(x) + aq(x) < 1

() Elv|x, z, T*,T| =0

(v) 9(1,x) # (0, %)

Theorem B.1 ( ( ) Theorem 1). Under Assumption B.1, ap(x) and aq(x) are
point identified, as is g(T*,x).

Assumption B.1 (i) is equivalent to our Assumption 2.1 (ii), while Assumptions B.1
(ii)—(iii) are equivalent to our Assumptions 2.2 (i)—(ii). Assumption B.1 (v) serves the same
purpose as 3(x) # 0 in our Theorem 2.3: unless T* affects y, we cannot identify the mis-
classification probabilities. The key difference between Theorem B.1 and the setting we
consider in Section 2 comes from Assumption B.1 (iv). This is essentially a stronger version
of our Assumptions 2.1 (iii) and 2.2 (iii) but applies to the projection error v, defined in As-
sumption B.1 rather than the structural error e, defined in Assumption 2.1 (i). Accordingly,
Theorem B.1 identifies the conditional mean function g rather than the causal effect 5(x).

Although the meaning of the error term changes when we move from a structural to a
reduced form model, the meaning of the mis-classification error rates does not: «g(x) and
aq(x) are simply conditional probabilities for 7" given (7™, x). Step 2 of ( ) A2
relies on this insight. The idea is to find a way to satisfy Assumption B.1 (iv) simultaneously
with Assumptions 2.1 (iii) and 2.2 (iii), while allowing 7™ to be endogenous. If this can be
achieved, ag(x),a1(x) will be identified via Theorem B.1, and identification of £(x) will

follow from step 1 of A.2 (our Lemma 2.2). To this end, ( ) invokes the
condition

E(y|x, 2, T*,T) = E(y|x,T"). (B.1)
Because ( ) A.2 assumes an additively separable model — our Assumption 2.1

(i) — we see that
E(ylx, 2, T, T) = c(x) + B)T* + E(elx, z, ", T)

so Equation B.1 is equivalent to E(e|x, z, T*,T) = E(e|x,T™*). Note that this allows 7% to
be endogenous, as it does not require E(e|x,7*) = 0. Now, applying Equation B.1 to the
definition of v from Assumption B.1, we have

E(v|x,z,T*,T) =Ely — E(y|x,T") | x,2, 7", 7] =0

which satisfies Assumption B.1 (iv) as required. Based on this reasoning, ( )
claims that Equation B.1 along with Assumptions B.1 (iv), 2.1, and 2.2 (i)-(ii) suffice to
identify the effect §(x) of an endogenous T*, so long as g(1,x) # ¢g(0,x). As we now show,
however, these Assumptions are contradictory unless T* is exogenous.

By Equation B.1 and Assumption 2.1 (i), E(e|x,z,7*,T) = E(e|x,T*) and thus by
iterated expectations, we obtain

E(elx,T", z) = Epxre - [E(e|x, T, T, 2)] = Eppr+ - [E(e|x, T7)] = E(e|x, T). (B.2)
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Now, let m}, (x) = E(e|x, T* = t,z = k). Using this notation, Equation B.2 is equivalent to
t = 0,1. Combining iterated expectations with Assumption 2.1 (iii),

E(elx, z = k) = [1 = pp(x)Img (%) + pr(x)miy(x) = 0 (B.3)

for k = 0,1 where p(x) = P(T* = 1|x,z = k). But substituting mj,(x) = m},(x) into
Equation B.3 for £ = 0, 1, we obtain

[1 = po(x)Imgo(x) + po(x)mio(x)

0
[1 = pi(x)]mgo(x) 4 pi(x)mip(x) = 0

The preceding two equalities are convex combinations of mg, and mj,. The only way that
both can equal zero simultaneously is if either p§(x) = pj(x), contradicting Assumption 2.1
(i), or if my,(x) = 0 for all (¢, k), which implies that 7™ is exogenous. Hence ( )
A .2 fails: given the assumption that z is a valid instrument for e, Equation B.1 implies that
either there is no first-stage relationship between z and 7™ or that 7™ is exogenous.

The root of the problem with A.2 is the attempt to use one instrument to satisfy both the
assumptions of Theorem B.1 and Lemma 2.2. If one had access to a second instrument w,
or equivalently a second mis-measured surrogate for 7™, that satisfied Assumptions B.1, one
could use w to recover (x) and a;(x) via Theorem B.1 and z to recover the IV estimand
B(x)/[1 — ap(x) — ay(x)] via Lemma 2.2. This is effectively the approach used by

( ) to evaluate the returns to schooling in a setting with multiple misreported
measures of educational qualifications.

C Moment Equalities Under Joint Exogeneity

In this Section we discuss the moment equalities that replace Equation 10 under joint exo-
geneity: Assumption 2.3. Because the moment inequalities from Section 3.3 are unchanged
under this assumption, we do not discuss them further here. Define 6, as in Equation 6, x; as
in Section 3.1, and let p = —610p(1 — ay) and 7 = 61 (1 + ap — 7). Now, under Assumptions

2.1, 2.2, and 2.3:
y—/ﬁ—QlT 1
E = 0. C.1
{[(y—m)T—p—nT}(@{Z}} (€.1)

where the equalities involving p and 7 follow from an argument similar to one of the steps
from the proof of Lemma 2.3 — see, e.g., ( ) and ( ).
The moment equalities from C.1 point identify the reduced form parameters (6, k1, p, ) and
lead to a just-identified method of moments estimator of the same. To see why knowledge
of (01, k1, p,m) suffices to identify (5, ap, 1), define

AEn/@lzl—FOéo—Oél, E—p/@lzao(l—al)
Eliminating (1 — ;) and ay, respectively, we obtain:

oy — Aag + B =0, (1—a)*—A(1l—a;)+B=0
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These are exactly the same quadratic, namely 2°> — Az + B = 0. Hence one root is oy while
the other is (1 — ;). The discriminant is

A? 4B =[(1—on) + ag)’ — 4[ao(l — )] = (1 — ag — 1)

so that both roots are real as long as ag+a; # 0. To solve for oy and 1 we need to calculate
the roots of z* — Az + B = 0, namely z = 1 (A4 /A2 —4B). One of these roots is aqg
and the other is 1 — ;. By assumption, however, oy + a; < 1 and thus ag < 1 — ay. It
follows that the smaller of the two roots is ap and the larger is 1 — ay. Given that (g, 1)
are identified, identification of S follows by Lemma 2.2.

Inference based on the moment equalities from Equation C.1 suffers from the same diffi-
culties as that based on Equation 10 above. First, note that, while A? > 4B in population
since agp + a1 < 1 by assumption, the same may not hold in sample. In this case the GMM
estimator of § will fail to exist. Second, notice that the moment equalities from Equation
C.1 only depend on f through #; and are completely uninformative about («y, o) if g = 0.

Substituting Equation C.1 for Equation 10 in Algorithm 3.1 requires some small changes.
First, m¥ and h¥ from Equations 16-17 are replaced by

LR P B i v

where in this case we require preliminary estimators of x; and ;. Accordingly, H* and M*
from Lemma 3.1 become

po ] gl DY e[ 0]

_E(z) —E(T= —E[T%] 0
and thus [ 1 ~E(T)E(Tz)  E(T)?
=-M"(H")" = Cov(T, 2) { —-E(T2)> E(Tz)E(T) }

which is well-defined as long as T is correlated with z.
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D Supplementary Simulation Results: Online Only

In this section we provide additional simulation results to supplement those from Section 4
above. For details of the simulation DGP, etc. see the discussion above.

B
ap o | 0 025 05 075 1 15 2 3

0.0 0.0 90 90 90 91 90 91 90 90
0.1]91 93 94 94 94 94 90 &9
0.2 |92 93 94 94 94 94 92 90
0.3 1]93 93 94 94 94 93 92 91

0.1 0.0 92 93 93 94 94 93 90 87
0.11]93 95 96 97 97 96 92 87
0.2 |95 96 97 98 97 96 92 87
0.3 |96 98 98 98 98 95 92 88

0.2 0.0]93 93 93 93 93 93 92 &9
0.1 95 96 98 98 97 95 93 &9
0.2 197 97 98 98 97 95 92 8§89
0.3 |98 98 98 98 97 95 93 91

0.3 0.0]93 94 94 94 94 93 92 91
0.1 197 97 98 98 97 95 93 89
0.2 |98 98 98 98 97 94 93 91
0.3 199 99 99 98 98 96 95 94

Table D.1: Coverage (1 - size) of 90% GMS joint test for ap and ay: n = 1000.
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p
ap o | 0 025 05 075 1 15 2 3

0.0 0.0 90 91 91 90 90 90 90 90
0.1]091 92 92 93 94 94 92 90
0.21]91 92 93 93 93 94 93 91
0.3 |92 93 93 93 94 93 93 91

0.1 0.0 90 92 93 94 93 94 92 &9
0.1 192 93 95 96 97 97 94 90
0.2 |92 94 96 97 97 96 95 89
0.3 | 94 95 97 98 98 96 94 90

0.2 00|91 93 93 93 93 94 92 90
0.1192 95 96 97 97 96 94 90
0.2 ] 94 9 97 97 97 95 93 90
0.3 | 96 97 98 98 97 95 93 90

0.3 0.0 92 92 93 93 93 93 92 91
0.1 193 96 97 97 97 96 93 90
0.2 | 96 97 97 97 96 95 93 90
0.3 | 98 98 98 98 97 95 94 92

Table D.2: Coverage (1 - size) of 90% GMS joint test for o and a;: n = 2000

B
o o | 0 025 05 075 1 15 2 3

0.0 00| 95 95 95 96 96 96 95 95
01| 96 97 97 97 97 97 95 94
0.2 ] 96 97 98 98 97 97 96 95
03] 97 97 97 98 97 97 96 95

0.1 0.0] 96 97 97 97 97 97 95 93
01| 97 98 99 99 99 98 96 92
0.2 ] 98 99 99 99 99 98 96 93
03] 99 99 99 99 99 98 96 94

02 0.0} 97 97 97 97 97 96 96 94
0.1] 98 99 99 99 99 98 96 94
0.2 ] 99 99 99 99 99 98 96 94
03] 99 100 100 99 99 98 97 95

0.3 0.0}] 97 97 97 97 97 96 96 95
0.1} 99 99 99 99 99 98 97 94
0.2 99 99 99 99 99 98 97 96
0.3 | 100 100 100 99 99 98 98 97

Table D.3: Coverage (1 - size) of 95% GMS joint test for o and aq: n = 1000
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p
ap o | 0 025 05 075 1 15 2 3

0.0 0.0195 95 96 95 95 95 95 95
0.1 196 96 96 97 97 97 96 95
0.2 | 96 9 97 97 97 97 96 95
0.3 | 96 97 97 97 97 97 97 95

0.1 0.0]95 96 97 97 97 97 96 94
0.1 |96 97 98 98 99 99 97 94
0.2 | 96 98 98 99 99 98 97 94
0.3 |97 98 99 99 99 98 97 95

0.2 0.0 96 9% 97 97 97 97 96 95
0.1 196 98 98 99 99 98 97 94
0.2 |97 98 99 99 99 98 97 95
0.3 | 98 99 99 99 99 98 97 94

0.3 0.0 96 96 97 97 97 97 96 95
0.1 197 98 99 99 99 98 96 94
0.2 | 98 99 99 99 98 98 96 95
0.3 199 99 99 99 99 98 97 96

Table D.4: Coverage (1 - size) of 95% GMS joint test for o and a;: n = 2000

o o 0 025 05 075 1 15 2 3
0.0 00| 977 977 976 97.7 98.0 98.0 974 979
0.1 ] 98.0 987 988 99.1 988 984 97.1 964
0.2] 984 985 989 989 988 98.6 98.0 97.0
0.3 ] 985 988 98.8 99.0 98.7 984 978 97.5
0.1 00| 981 985 983 98.8 988 984 96.8 95.7
0.1 ] 986 99.1 995 996 99.6 98.8 97.7 952
0.2] 99.0 99.3 99.7 998 99.7 98.9 975 95.7
03] 994 99.7 99.8 99.8 99.6 99.0 98.2 96.7
0.2 00| 98.6 985 986 989 987 982 97.7 97.0
0.1] 99.0 995 99.7 99.7 994 99.0 981 96.5
021 99.5 99.7 99.8 99.7 994 99.0 97.8 96.8
0.3 ] 99.7 998 99.8 99.8 995 99.0 987 97.7
0.3 00| 98.7 987 988 98.7 987 982 981 97.6
0.1] 994 99.6 99.6 99.7 994 989 983 96.8
0.2] 998 99.8 99.7 99.8 995 99.1 985 97.8
0.3 | 100.0 999 99.9 99.8 99.6 99.5 99.1 98.8

Table D.5: Coverage (1 - size) of 97.5% GMS joint test for ap and aq: n = 1000
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oy o 0 025 05 075 1 15 2 3
0.0 0.0]977 97.7 976 976 97.6 975 974 97.5
0.1 98.0 981 984 983 988 986 97.8 97.0
021981 982 988 98.6 989 986 983 97.3
0.3 1982 985 986 98.6 98.8 984 982 974
0.1 0.0]974 98.1 983 988 985 985 979 96.9
0.1 198.0 986 99.1 994 995 993 984 96.8
021982 989 994 996 99.7 99.3 98.8 96.8
031986 991 99.6 99.8 99.6 99.2 984 97.0
0.2 0.01]978 981 985 986 985 984 980 97.6
011983 989 99.2 996 995 99.1 986 97.0
0.2 987 994 99.7 99.6 995 99.0 984 96.9
031991 99.6 99.7 99.7 995 99.0 982 97.0
0.3 0.0]982 983 987 985 986 985 98.0 97.7
011986 993 994 99.6 995 99.2 981 97.0
021992 99.7 99.7 99.6 994 988 984 974
031996 998 99.8 99.7 994 99.1 988 98.2

Table D.6: Coverage (1 - size) of 97.5% GMS joint test for ap and aq: n = 2000

&)
a a1 | 0 025 05 07 1 15 2 3
0.0 0.0 27 33 30 14 1 0 0 0
0.1 27 32 29 13 2 0 0 0
0.2 | 26 33 32 15 4 0 0 0
0.3 |26 34 30 17 5 0 0 0
0.1 0.0 26 32 31 14 2 0 0 0
0.1 ] 26 36 32 16 4 0 0 O
0.2 ] 27 35 31 18 8 0 0 0
0.3 ] 25 35 32 21 11 1 0 0
0.2 0.0 26 33 30 15 3 0 0 0
01|26 33 30 19 6 0 0 0
0.2 |26 35 33 22 12 1 0 0
0.3 |26 35 33 26 15 3 0 0
0.3 0.0] 26 32 32 16 6 0 0 0
0.1 24 35 33 21 11 1 0 0
0.2 ] 26 32 35 27 15 4 0 0
0.3 | 26 35 35 28 21 7T 2 0

Table D.7: Percentage of simulation replications for which the standard GMM confidence interval
fails to exist, either becuase the point estimate is NaN or the asymptotic covariance matrix is
numerically singular (n = 1000)
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a0 ai| 0 025 05 0.75
00 0025 36 29 7
01|28 36 29 7
0228 37 28 10
03|27 36 28 12
01 00|27 36 27 10
01126 36 29 9
0228 38 29 13
0324 36 31 15
02 00|26 36 30 9
0125 37 20 12
0227 38 32 17
0325 39 34 20
03 00|26 37 30 10
0125 38 31 16
0227 38 34 19
03|27 36 36 23
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Table D.8: Percentage of simulation replications for which the standard GMM confidence interval
fails to exist, either becuase the point estimate is NaN or the asymptotic covariance matrix is
numerically singular (n = 2000)

p
ap o | 0 025 05 075 1 15 2 3

0.0 0.0 72 62 62 80 92 95 94 95
0.1 72 62 63 79 92 95 96 95
02173 61 61 7790 96 96 96
03173 99 62 76 88 95 96 95

0.1 00173 63 60 78 91 95 96 96
0.1 73 58 59 7790 95 95 94
0273 99 61 7 8 95 95 94
0.3 | 74 59 58 71 82 94 96 96

0.2 00174 62 60 78 91 95 96 96
0.1]73 60 61 74 87 95 96 94
02173 58 57 70 81 93 95 95
03173 98 56 66 78 92 95 96

0.3 0.0 74 62 60 76 89 95 96 96
0.1 75 59 58 71 82 93 96 95
0.2 |74 61 56 65 78 90 96 96
03173 58 55 64 71 88 93 96

Table D.9: Coverage of nominal 95% GMM Intervals with n = 1000
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oy o 0 025 05 0.75 1 1.5 2 3
0.0 0.0 19.07r 344 186 1.32 0.87 047 0.37 0.35
0.1 | 1752 347 192 141 1 0.61 0.51 0.46
0.2 ] 1741 351 19 145 11 0.76 0.65 0.58
03] 1823 334 192 148 1.24 091 0.79 0.7
0.1 0.0 1713 3.51 186 1.38 0.97 0.61 0.51 0.46
0.1]17.88 333 18 145 1.13 0.78 0.67 0.6
0.2|1737 336 195 154 124 097 0.85 0.75
0.3 | 18.07r 3.33 198 1.63 141 1.17 1.04 0.92
0.2 0.0|17.79 339 192 145 1.11 0.75 0.65 0.58
0.1 1898 343 196 154 1.26 097 0.84 0.75
0.2 1825 326 192 164 145 1.2 1.06 0.95
0.3 ]19.03 331 202 175 166 149 133 1.19
0.3 0011827 348 187 15 1.25 09 079 0.7
0.1] 194 341 196 1.63 143 1.18 1.04 0.92
0.2]18.22 356 196 1.74 1.67 149 135 1.19
0.3 | 1756 3.55 213 196 1.86 186 1.74 1.55

Table D.10: Median Width of nominal 95% GMM Intervals with n = 1000

B
ap o | 0 025 05 075 1 15 2 3

0.0 0.0] 74 54 63 87 95 94 96 95
0.1 72 o4 62 8 94 95 95 96
0.2 |72 53 64 8 94 95 95 94
0.3 |73 54 64 81 94 95 95 94

0.1 00173 94 65 83 94 95 94 96
0.1 74 55 64 84 93 9 95 95
0.2 |72 52 63 80 93 96 95 95
0.3 |75 53 89 7790 95 95 95

0.2 0.0 74 54 61 84 93 96 95 94
0.1 |74 54 63 81 92 96 95 96
02173 52 60 7 90 96 96 95
0.3 | 74 50 97 72 8 95 96 96

0.3 00|74 93 61 8 92 97 95 95
0.1]75 92 60 78 90 95 96 96
02173 92 97 73 8 95 96 96
0.3 1] 73 53 54 69 80 93 96 96

Table D.11: Coverage of nominal 95% GMM Intervals with n = 2000
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oy o 0 025 05 0.75 1 1.5 2 3
0.0 00| 174 242 1.47 1 062 033 027 024
0.1 ]16.56 251 149 106 0.7 043 0.36 0.33
0211633 24 153 1.13 081 0.53 0.46 0.41
0.3 | 17.06 252 157 119 091 0.65 0.56 0.5
0.1 00| 172 25 153 105 0.71 043 0.36 0.33
0.1]1748 25 153 1.15 0.83 0.56 0.48 0.43
0.2]16.32 245 157 1.2 097 069 06 0.53
03] 1837 243 151 13 11 084 0.73 0.65
0.2 0011764 25 149 113 08 0.54 046 0.41
0.1 1825 247 158 122 096 069 06 0.54
0.2 1702 24 157 131 1.13 086 0.76 0.67
0.3 ]18.06 239 161 143 133 1.09 095 0.85
0.3 0.0 1772 243 153 119 091 065 0.56 0.5
0.1] 188 246 155 1.32 1.11 084 0.74 0.65
0.2]1824 245 161 145 1.3 1.08 0.96 0.85
0.3 | 1743 255 167 1.62 157 14 124 1.1

Table D.12: Median Width of nominal 95% GMM Intervals with n = 2000

ap a1 | 0O 025 05 0.75 1 15 2 3
0.0 0.0 | 96 97 97 9 97 97 95 96
0.1 197 99 99 99 99 100 100 99
0.2 | 98 99 99 100 100 100 100 100
0.3 |97 100 100 100 100 100 100 100
0.1 0.0]97 99 99 99 100 100 100 98
0.1]98 100 100 100 100 100 100 100
0.2]98 100 100 100 100 100 100 100
0.3 97 100 100 100 100 100 100 100
0.2 0.0]97 99 99 100 100 100 100 100
0.1]98 100 100 100 100 100 100 100
0.2 98 100 100 100 100 100 100 100
0.3 98 100 100 100 100 100 100 100
0.3 0.0 97 99 100 100 100 100 100 100
0.1 |97 100 100 100 100 100 100 100
0.2]98 100 100 100 100 100 100 100
0.3]98 100 100 100 100 100 100 100

Table D.13: Coverage of nominal > 95% Bonferroni Intervals with n = 1000
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g a1 | 0 025 0.5 0.7 1 15 2 3
0.0 0.0 |96 97 96 97 96 96 95 95
0.1 197 98 99 100 100 100 100 99
0.2 |97 99 99 100 100 100 100 100
0.3 | 97 99 100 100 100 100 100 100
0.1 0.0]97 99 99 99 100 100 100 99
0.1 198 100 100 100 100 100 100 100
0.2 198 100 100 100 100 100 100 100
0.3 198 100 100 100 100 100 100 100
0.2 0.0]97 99 99 100 100 100 100 99
0.1 198 100 100 100 100 100 100 100
0.2 198 100 100 100 100 100 100 100
0.3 198 100 100 100 100 100 100 100
0.3 00|97 100 100 100 100 100 100 100
0.1 |97 100 100 100 100 100 100 100
0.2 197 100 100 100 100 100 100 100
0.3 97 100 100 100 100 100 100 100

Table D.14: Coverage of nominal > 95% Bonferroni Intervals with n = 2000

ap o 0 025 05 0.7 1 1.5 2 3
0.0 00| 04 041 043 043 043 042 041 041
01045 047 054 059 063 0.7 0.75 0.86
0.2 1051 054 065 0.76 085 095 1.01 1.17
0.3 058 062 0.79 095 1.07 1.17 1.24 1.48
0.1 0.0]045 047 054 059 063 0.7 0.76 0.88
0.1 ]0.51 054 0.66 0.77 086 1.03 1.18 1.46
0.2 1058 063 08 098 1.12 138 1.55 1.88
0.3 |0.67 0.75 1 125 146 174 194 24
0.2 0.0]051 054 065 0.76 086 0.96 1.02 1.19
0.1]058 063 081 099 1.14 142 1.64 2.08
0.2 ]0.67 075 1.01 1.29 154 197 233 29
03081 091 13 1.7 209 273 313 39
0.3 00]058 062 08 095 1.09 1.18 125 1.5
0.1 068 074 101 1.26 149 1.84 2.13 2.78
02081 091 13 1.7 211 28 34 448
031]1.01 116 1.74 235 293 417 52 6.85

Table D.15: Median Width of nominal > 95% Bonferroni Intervals with n = 1000
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ap o 0 025 05 075 1 15 2 3
0.0 00]029 03 031 031 031 03 029 0.29
011032 035 04 044 048 0.53 0.55 0.61
021036 041 0.51 059 0.65 0.67 0.69 0.81
031041 048 0.64 076 081 08 0.85 1.01
01 00]032 035 04 044 048 053 0.56 0.62
01036 041 051 0.6 0.69 0.82 0.88 1.02
021041 048 064 0.79 091 1.04 1.08 1.27
0.3]048 059 0.82 1.02 116 1.25 1.33 1.61
02 00]036 041 051 059 0.65 0.67 0.7 0.82
0.1]041 048 0.65 0.79 092 1.09 1.21 1.52
0.2 048 059 083 1.05 124 149 1.61 1.96
031057 073 1.09 143 169 19 208 2.6
0.3 00]041 048 064 0.77 0.82 0.78 0.84 1.02
01048 059 0.83 1.03 118 136 1.57 2.06
021057 073 1.1 143 171 211 245 3.18
031072 09 1.5 203 253 3.15 3.56 4.56

Table D.16: Median Width of nominal > 95% Bonferroni Intervals with n = 2000

ap a1 | 0 025 05 0.75 1 15 2 3
0.0 0.0 96 97 97 9 97 97 95 93
0.1 |97 99 99 99 99 98 96 95
0.2 |98 99 99 100 100 97 96 96
0.3 |97 100 100 100 99 96 96 96
0.1 0.0]97 99 99 99 100 98 97 95
0.1 |98 100 100 100 100 96 96 96
0.2 198 100 100 100 99 96 96 95
0.3 |97 100 100 100 97 95 96 96
0.2 0.0]97 99 99 100 100 96 96 96
0.1 98 100 100 100 99 96 96 96
02|98 100 100 100 96 95 95 96
0.3 98 100 100 98 95 95 95 96
0.3 0.0]97 99 100 100 100 95 96 97
0.1 |97 100 100 100 97 94 96 96
0.2 |98 100 100 98 94 94 96 96
03198 100 99 9 92 94 95 96

Table D.17: Coverage of hybrid CI constructed from nominal 95% GMM and nominal > 95%
Bonferroni intervals: n = 1000
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a a1 | 0 025 05 0.75 1 15 2 3
0.0 0.0 | 96 97 96 97 96 96 95 93
0.1 97 98 99 100 100 98 97 96
0.2 | 97 99 99 100 100 97 96 95
0.3 |97 99 100 100 99 96 96 96
0.1 0.0]97 99 99 99 100 98 96 95
0.1 |98 100 100 100 100 96 96 97
02198 100 100 100 99 96 96 97
0.3 198 100 100 99 97 95 96 96
0.2 0.0]97 99 99 100 100 97 96 95
0.1 98 100 100 100 98 96 96 97
02198 100 100 100 96 96 96 96
0.3 198 100 100 97 95 95 96 96
0.3 0.0]97 100 100 100 99 98 97 96
0.1 |97 100 100 100 96 95 96 97
0.2 |97 100 100 97 94 96 96 97
0.3 |97 100 100 94 94 95 96 96

Table D.18: Coverage of hybrig CI constructed from nominal 95% GMM and nominal > 95%
Bonferroni intervals: n = 2000

oy o 0 025 05 0.75 1 15 2 3
0.0 00| 04 041 043 043 043 042 04 0.35
0.1 045 047 0.54 059 0.63 0.67 0.52 0.46
021051 054 065 0.7 084 0.82 0.65 0.58
0.3 1058 062 079 095 105 096 0.79 0.7
0.1 0.0]045 047 054 0.59 063 0.67 0.51 0.46
0.1 051 054 066 077 086 0.92 0.69 0.61
021058 063 08 097 1.11 1.17 0.87 0.75
0.3 |0.67 0.75 1 125 14 14 106 0.92
0.2 0.0]051 054 065 076 0.8 083 0.65 0.58
0.1]058 063 081 099 112 1.18 0.86 0.75
0.2 067 075 1.01 1.29 148 1.56 1.08 0.95
031081 091 13 1.67 195 1.77 135 1.2
03 0.0]058 062 08 095 1.07r 095 0.8 0.7
0.1]068 074 101 1.26 143 148 1.06 0.93
021081 091 13 166 198 194 1.37 1.19
031]1.01 116 1.73 224 271 233 178 1.55

Table D.19: Median width of hybrid CI constructed from nominal 95% GMM and nominal > 95%
Bonferroni intervals: n = 1000
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Figure D.21: Coverage Curves for Bonferroni versus Hybrid Cls: 8 = 1.5,n = 1000
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Figure D.22: Coverage Curves for Bonferroni versus Hybrid Cls: 8 = 1.5,n = 2000
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Figure D.23: Coverage Curves for Bonferroni versus Hybrid Cls: g = 2,n = 1000
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Figure D.24: Coverage Curves for Bonferroni versus Hybrid Cls: g = 2,n = 2000
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Figure D.26: Coverage Curves for Bonferroni versus Hybrid Cls: g = 3,n = 2000
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ap o 0 025 05 0.75 1 15 2 3
0.0 00]029 03 031 031 031 03 029 0.25
011032 035 04 044 048 048 0.36 0.33
021036 041 0.51 0.59 065 0.57 046 041
031041 048 0.64 0.76 079 0.68 0.56 0.5
01 00]032 035 04 044 048 048 037 0.33
01]036 041 051 06 068 0.65 048 0.43
02041 048 0.64 0.78 089 0.83 0.61 0.54
031048 059 0.82 1.02 1.09 098 0.75 0.65
0.2 0.01]036 041 051 059 065 058 046 041
01041 048 065 079 0.9 089 0.61 0.54
0.2 1048 059 083 105 1.2 1.22 0.77 0.67
031057 073 1.09 14 158 1.53 097 0.85
03 00]041 048 064 077 0.8 069 056 0.5
0.1 048 059 0.83 102 113 119 0.75 0.65
021057 073 11 14 162 1.79 097 0.85
0.31]0.72 095 149 193 236 1.58 1.25 1.1

Table D.20: Median width of hybrid CI constructed from nominal 95% GMM and nominal > 95%
Bonferroni intervals: n = 2000
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