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1 Introduction

A common practice in the academic finance literature has been to create factor-

portfolios by sorting on characteristics positively associated with expected returns.

The resulting set of zero-investment factor-portfolios, which go long a portfolio of

high-characteristic firms and short a portfolio of low-characteristic firms, then serve

as a model for returns in that asset space. Prominent examples of this are the three-

and five-factor models of Fama and French (1993, 2015), but there are numerous

others, developed both to explain the equity market anomalies, and also the cross-

section of returns in other asset classes.1

Consistent with this, Fama and French (2015, FF) argue that a standard dividend-

discount model implies that a combination of individual-firm metrics based on valua-

tion, profitability and investment should forecast these firms’ average returns. Based

on this they develop a five factor model—consisting of the Mkt-Rf, SMB, HML,

RMW, and CMA factor-portfolios—and argue that this model does a fairly good job

explaining the cross-section of average returns for a variety of test portfolios, based

on a set of time-series regressions like:

Rp,t−Rf,t = αp + βm · (Rm,t−Rf,t) + βHML ·HMLt + βSMB · SMBt

+βCMA · CMAt + βRMW ·RMWt + εp,t

where a set of portfolios is chosen for which the excess returns, Rp,t−Rf,t, exhibit a

considerable average spread.2

Standard projection theory shows that the αs from such regressions will all be zero

1Examples are: UMD (Carhart, 1997); LIQ (Pastor and Stambaugh, 2003); BAB (Frazzini
and Pedersen, 2014); QMJ (Asness, Frazzini, and Pedersen, 2013); and RX and HML-FX (Lustig,
Roussanov, and Verdelhan, 2011). We concentrate on the factors of Fama and French (2015).
However, the critique we develop in Section 2 applies to any factors constructed using this method.

2The Fama and French (2015) test portfolios SMB, HML, RMW, and CMA are formed by sorting
on various combinations of firm size, valuation ratios, profitability and investment respectively.
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for all assets if and only if the mean-variance efficient (MVE) portfolio is in the span

of the factor-portfolios, or equivalently if the maximum Sharpe ratio in the economy

is the maximum Sharpe-ratio achievable with the factor-portfolios alone. Despite

several critiques of this methodology it remains popular in the finance literature.3

The objective of this paper is to refine our understanding of the relationship between

firm characteristics and the risk and average returns of individual firms. Our argu-

ment is that, if characteristics are a good proxy for expected returns, then forming

factor-portfolios by sorting on characteristics will generally not explain the cross-

section of returns in the way proposed in the papers in this literature.

The argument is straightforward, and based on the early insights of Markowitz (1952)

and Roll (1977): suppose a set of characteristics are positively associated with average

returns, and a corresponding set of long-short factor-portfolios are constructed by

buying high-characteristic stocks and shorting low-characteristic stocks. This set of

portfolios will explain the returns of portfolios sorted on the same characteristics, but

are unlikely to span the MVE portfolio of all assets, because they do not take into

account the asset covariance structure. The intuition underlying this comes from a

stylized example: assume there is a single characteristic which is a perfect proxy for

expected returns, i.e., c = κµ, where c is the characteristic vector, µ is a vector

of expected returns and κ is a constant of proportionality. A portfolio formed with

weights proportional to firm-characteristics, i.e., with wc ∝ c = κµ, will be MVE

only if wc ∝ w∗ = Σ−1µ. In Section 2, we develop stylized model where we develop

this argument formally.

When will wc be proportional to w∗? That is, when will the characteristic sorted

3Daniel and Titman (1997) critique the original Fama and French (1993) technique. Our cri-
tique here is closely related to that paper. Also related to our discussion here are Lewellen, Nagel,
and Shanken (2010) and Daniel and Titman (2012) who argue that the space of test assets used
in numerous recent asset pricing tests is too low-dimensional to provide adequate statistical-power
against reasonable alternative hypotheses. Our focus in this paper is also expanding the dimen-
sionality of the asset return space, but we do so with a different set of techniques.
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portfolio be MVE? As we show in Section 2.2, this will be the case only in a few

selected settings. For example, it will always be true in a single factor world frame-

work in which the law of one price holds. However, it will not generally hold in

settings where the number of factors exceeds the number of characteristics. Specif-

ically, we show that any cross-sectional correlation between firm-characteristics and

firm exposures to unpriced factors will result in the factor-portfolio being inefficient.

Of course our theoretical argument does not address the magnitude of the inefficiency

of the characteristic-based factor-portfolios. Intuitively, our theoretical argument is

that forming factor-portfolios on the basis of characteristics alone leads to these

portfolios being exposed to unpriced factor risk, risk which is hedged-out in the

MVE portfolio. In the empirical part of the paper, we address the questions of how

large the loadings on unpriced factors are likely to be, and how much improvement

in the efficiency of the factor-portfolios can be obtained by hedging out the unpriced

factor risk.

We are agnostic as to what these unpriced factors represent. One example we con-

sider, is industry. Extant evidence on the value effect suggests that the industry

component of many characteristic measures, such as book-to-price, are not helpful

in forecasting average returns.4 This suggests that any exposure of HML to industry

factors is unpriced. Therefore, if this exposure were hedged out, it would result in

a factor-portfolio with lower risk, but the same expected return, i.e., with a higher

Sharpe ratio. Our analysis in Section 3 shows that the HML exposure on industry

factors varies dramatically over time, but that, at selected times, the exposure can

be very high. We highlight two episodes in particular in which the correlation be-

tween HML and industry factors exceeds 95%: in late-2000/early-2001 as the prices

of high-technology firms earned large negative returns and became highly volatile,

and 2008-2009 during the financial-crisis, a parallel episode for financial firms. In

4See, e.g., Asness, Porter, and Stevens (2000), Cohen and Polk (1995), Cohen, Polk, and
Vuolteenaho (2003), and, Lewellen (1999)
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both of these episodes the past return performance of the industry led to the vast

majority of the firms in the industry becoming either growth or value firms—that

is, there was a high cross-sectional correlation between valuation ratios and industry

membership—leading to HML becoming highly correlated with that industry factor.

However, the evidence that the FF factor-portfolios sometimes load heavily on pre-

sumably unpriced industry factors, while suggestive, does not establish that these

portfolios are inefficient. Therefore in Sections 4 and 5, we address the question of

what fraction of the risk of the FF factor-portfolios is unpriced and can therefore be

hedged out, and how much improvement in Sharpe-ratio results from doing so. The

method that we use for constructing our hedge portfolio builds on that developed

in Daniel and Titman (1997). However, through the use of higher frequency data,

industry adjustment and differential windows for calculating volatilities and correla-

tions we are able to construct hedge-portfolios that have both a higher loading on

the candidate factor-portfolios and lower idiosyncratic risk. That is, they are more

efficient hedge-portfolios.

Using this technique, we construct tradable hedge-portfolios for the five factor port-

folios of Fama and French (2015). We are conservative in the way that we construct

these portfolios; consistent with the methodology employed by Fama and French,

we form these portfolios once per-year, in July, and hold the composition of the

portfolios fixed for 12 months. The portfolios are tradable, i.e., they only use ex-

ante available information, value-weighted buy-and-hold portfolios. Except for the

size (SMB) hedge-portfolio, these all earn economically and statistically significant

five-factor alphas. Using the combined Market-, HML-, RMW-, CMA- and SMB-

hedge-portfolios, we construct a combination portfolio that has zero exposure to any

of the five FF factors, and yet earns an annualized Sharpe-ratio of 0.98, close to that

of the 1.14 Sharpe-ratio of the ex-post optimal combination of the five FF factor-

portfolios. Thus, by hedging out the unpriced factor risk in the FF factor portfolios,

we increase the squared-Sharpe ratio of this optimal combination from 1.31 to 2.29.
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This result is important for several reasons. First it increases the hurdle for standard

asset pricing models, in that pricing kernel variance that is required to explain the

returns of our hedged factor-portfolios is 75% higher than what is required to explain

the returns of the Fama and French (2015) five factor-portfolios.

Second, while the characteristics approach to measure managed portfolio perfor-

mance (see, e.g., Daniel, Grinblatt, Titman, and Wermers, 1997) has gained popu-

larity, the regression based approach initially employed by Jensen (1968) (and later

by Fama and French (2010) and numerous others) remains the more popular. A

good reason for this is that the characteristics approach can only be used to estimate

the alpha of a portfolio when the holdings of the managed portfolio are known, and

frequently sampled. In contrast, the Jensen-style regression approach can be used in

the absence of holdings data, as long as a time series of portfolio returns are available.

However, as pointed out originally by Roll (1977), to use the regression approach,

the multi-factor benchmark used in the regression test must be efficient, or the con-

clusions of the regression test will be invalid. What we show in this paper is that,

with the historical return data, efficiency of the proposed factor-portfolios can be re-

jected. However, the hedged versions of the factor-portfolios, that we construct here

and which incorporate the information both from the characteristics and from the

historical covariance structure, are more efficient with respect to both of these infor-

mation sources than their Fama and French benchmark. Thus, alphas equivalent to

what would be obtained with the DGTW characteristics-approach can be generated

with the regression approach, if the hedged factor-portfolios are used, without the

need for portfolio holdings data.

The layout of the remainder of the paper is as follows: In Section 2 we lay out

the underlying theory that motivates our analysis. Section 3 provides a descriptive

analysis of the industry loadings of the Fama and French factors. We describe the

construction of the hedge-portfolios in Section 4, and empirically test their efficiency
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to hedge out unpriced risk in 5 Section 6 concludes.

2 Theory

The usual procedure to construct factors involves two steps. The starting point is

the identification of a particular characteristic ci,t, where i ∈ I is the index denoting

a particular stock, I is the set of stocks, that correlates with average returns in the

cross section, and t is the time subscript. The stocks are then sorted according to

this characteristic. The second step involves building a portfolio that is long stocks,

say, with high values of the characteristic and short stocks with low value of the

characteristics. The claim is that the return of a factor so constructed is the pro-

jection on the space of returns R of a factor ft which drives the investors’ marginal

rate of substitution and that as a result is a source of premia. The projection should

result in a mean variance efficient portfolio. We argue instead that the usual proce-

dure to construct proxies for these true factors should not be expected to produce

mean-variance efficient portfolios. As a result the Sharpe ratios associated with those

factors produce too low a bound for the volatility of the stochastic discount factor,

which diminishes the power of asset pricing tests. This observation is not related to

whether characteristics or covariances are the drivers of average returns. To put it

simply, factors based on characteristics’ sorts are likely to pick up sources of common

variation that are not compensated with premia. To illustrate this point we start

with a simple example, then we generalize it in a formal model.

2.1 A simple example

Consider a standard asset pricing model in a world where the Law of One Price

holds:
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Ri,t = βi,t−1 (ft + λt−1) + βui,t−1f
u
t + εi,t, (1)

with Et−1ft = Et−1fut = Et−1εi,t = 0 for all i ∈ I, var (ft) = σ2
f , var (εi,t) = σ2

ε ,

var (fut ) = σ2
fu , cov (ft, f

u
t ) = 0, and cov (εi,t, εj,t) = 0 for all i 6= j, i, j ∈ I.

In model (1), λfu = 0 and thus fut is an unpriced factor and βui is the corresponding

loading. As long as βui 6= 0 there are common sources of variation that do not

result in cross sectional dispersion in average returns. Many argue that the “return

covariance structure essentially dictates that the first few PC factors must explain

the cross-section of expected returns. Otherwise near-arbitrage opportunities would

exist” (Kozak, Nagel and Santosh, 2015). But this does not need to be the case. It

is natural to look for sources of premia amongst principal components but theory

does not dictate that these two things are the same.

Researchers typically use the characteristic ci,t to sort stocks and construct the proxy

for factor ft, which we denote by f
(1)
t . Even when the characteristic lines up perfectly

with average returns there is no guarantee that f
(1)
t will be mean variance-efficient.

To see this point consider a simple example: a stock market with only six stocks all

with equal market capitalization. The six stocks have characteristics and covariances

with the unpriced factor, fut , as in Figure 1. Notice that assets 1 and 2 have identical

loadings and characteristics, the same holds for assets 5 and 6. Suppose further that

it is a one period problem, so we can drop the t− 1 subscript. Furthermore, suppose

that the risk premium associated with factor ft is λ = 1.

Suppose that we do not observe ft, but there exists an observable characteristic ci

that lines up perfectly with expected returns:

E[ri,t] = κ · ci (2)
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Figure 1: Six assets in the space of loadings and characteristics

In order for equations (1) and (2) to hold at the same time, it must be the case that:

βi = κci
5 (3)

Substituting (3), we can rewrite model 1 as:

5An example may be helpful here. Consider the Gordon growth model in which

Ei
Pi

= ri − δi,

where Ei are the earnings of stock i, Pi the price, δi the rate of growth of earnings, ri = r + βiλf ,
the discount rate, and r is the risk free rate. Define a characteristic

ci ≡
Ei
Pi

+ δi − r ⇒ ci = βiλf .
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Ri,t = κc (ft + 1) + βui f
u
t + εi,t, (4)

The usual procedure to construct a proxy for factor ft involves forming a portfolio

that is long stocks with high characteristics and short stocks with low characteristics,6

that is:

f
(1)
t =

1

3
×

[
3∑
j=1

Rj,t −
6∑
j=4

Rj,t

]
= 2κ(ft + 1) +

2

3
fut +

1

3

[
3∑
j=1

εj,t −
6∑
j=4

εj,t

]
.

Factor portfolio f
(1)
t does indeed capture the common source of variation in expected

returns, since it loads on ft . Though, it also loads on the unpriced source of variation

fut . The factor-portfolio f
(1)
t loads on the factor ft with βf (1) = 2κ, loads on fut with

βu
f (1)

= 2
3

and its characteristic is cf (1) = 2. As a result, from equation (4), the

expected excess return of portfolio f
(1)
t is Ef (1)

t = 2κ and the variance is

var
(
f
(1)
t

)
= 4κ2σ2

f +
4

9
σ2
fu +

2

3
σ2
ε .

The Sharpe ratio is thus

SRf (1) =
2λ√

4κ2σ2
f + 4

9
σ2
fu + 2

3
σ2
ε

(5)

Factor-portfolio f
(1)
t is not mean variance efficient and thus cannot be the projection

of the stochastic discount factor on the space of returns. To see this, consider forming

the following hedge-portfolio

6Because in this simple example all stocks have equal weight there is no difference between equal
and value weighted. The usual Fama-French construction uses value weighted portfolios.
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ht =
1

2
[R3,t +R6,t]−

1

2
[R1,t +R4,t] = −2fut +

1

2
[ε3,t + ε6,t]−

1

2
[ε1,t + ε4,t] .

This portfolio thus goes long stocks with low loadings and short stocks with high

loadings on fut . Each leg of this portfolio is characteristics balanced. Thus ch = 0

and Eht = 0. The loading of this portfolio ht on fut is βuh = −2. We can use ht to

improve on f
(1)
t . Indeed consider next the following portfolio

f
(2)
t = f

(1)
t − γht. (6)

It is straightforward to show that setting γ = −1
3

results in a portfolio f
(2)
t that has

a zero loading on factor fut , βu
f (2)

= 0. Moreover

Ef (2)
t = 2κ and var

(
f
(2)
t

)
= 4κ2σ2

f +
7

9
σ2
ε

and thus the Sharpe ratio

SRf (2) =
2λ√

4κ2σ2
f + 7

9
σ2
ε

. (7)

Comparing the Sharpe ratios of f
(1)
t and f

(2)
t in equations (5) and (7), respectively,

one can immediately see that if σ2
ε is low compared to σ2

fu then SRf (1) << SRf (2) .

Notice that given that the number of assets is finite the investor cannot achieve an

infinite Sharpe ratio.7

7In the limit as the number of assets grows SRf(2) →∞.
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We have chosen γ to eliminate the exposure of f (2) to the unpriced factor fut . In

general though we will choose the parameter γ in order to minimize the variance of

the resulting factor, f
(2)
t :

min
γ

var
(
f
(2)
t

)
⇒ γ̂ = ρ1,h

σ
(
f
(1)
t

)
σ (ht)

, (8)

where σ
(
f
(1)
t

)
is the standard deviation of returns of the original factor-portfolio f

(1)
t

and σ (ht) is the standard deviation of the characteristics balanced hedge-portfolio.

Setting γ = γ̂ guarantees that, under the null of model (1), the Sharpe ratio of

f
(2)
t is maximized. In general then, if model (1) holds, it can be shown that the

improvement in the Sharpe ratio of the original factor-portfolio f
(1)
t is

SR(2)

SR(1)
=

1√
1− ρ21,h

. (9)

The question of whether one can improve on the Sharpe ratio associated with expo-

sure to factor ft is thus an empirical one. In Section 4 we construct hedge-portfolios

for each of the Fama and French (2015) five factors and show that “subtracting them”

as in (6) from each of the factors considerably improves the Sharpe ratio of each of

them.

We now formalize further these ideas. Specifically, the next section shows the relation

that exists between the cross sectional correlation of the characteristic used to effect

the sort and the loadings of unpriced factors, on the one hand, and the improvement

in the Sharpe ratio of the portfolio that is proposed as a projection of the priced

factor on the space of returns, on the other.
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2.2 General Case

2.2.1 Factor representations

Consider a single-period setting, with N risky assets and a risk-free asset whose

returns are generated according to a K factor structure:

Rt = βt−1 (ft + λt−1) + εt (10)

where Rt is N×1 vector of the period t realized excess returns of the N assets; ft is a

K×1 vector of the period t unanticipated factor returns, with Et−1[ft] = 0, and λt−1

is the K×1 vector of premia associated with these factors. βt−1 is the N ×K matrix

of factor loadings, and εt is the N×1 vector of (uncorrelated) residuals. We assume

that N � K, and that N is sufficiently large so that well diversified portfolios can

be constructed with any factor loadings.8

As it is well known, there is a degree of ambiguity in the choice of the factors. Specif-

ically, any set of the factors that span the K-dimensional space of non-diversifiable

risk can be chosen, and the factors can be arbitrarily scaled. Therefore, without loss

of generality, we rotate and scale the factors so that:9

λt−1 =


1

0
...

0

 and Ωt−1 = Et−1[ftf ′t] =


σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
K

 (11)

8We note that, in a finite economy, the breakdown of risk into systematic and idiosyncratic is
problematic. See Grinblatt and Titman (1983), Bray (1994) and others.

9The rotation is such that the first factor captures all of the premium. The scaling of the first
factor is such that its expected return is 1. The other factors form an orthogonal basis for the space
of non-diversifiable risk, but the scaling for all but the first factor is arbitrary
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We further define:

µt−1 = Et−1[Rt] Σε
t−1 = Et−1[εtεt′] and Σt−1 = Et−1[RtR

′
t] = βt−1Ωt−1β

′
t−1+Σε

t−1

where µt−1 and σ2
ε are N×1 vectors. Given we have chosen the K factors to sum-

marize the asset covariance structure, Σε
t−1 = Et−1[εtε′t] is a diagonal matrix, (i.e.,

with the residual variances on the diagonal, and zeros elsewhere).

2.2.2 Characteristic-based factor-portfolios

Over that last several decades, academic studies have documented that certain char-

acteristics (market capitalization, price-to-book values ratios, past returns, etc.) are

related to expected returns. In response to this evidence, Fama and French (1993;

2015), Carhart (1997), Pastor and Stambaugh (2003), Frazzini and Pedersen (2014)

and numerous other researchers have introduced “factors-portfolios” based on char-

acteristics. The literature has then tested whether these characteristic-weighted

factor-portfolios can explain the cross-section of returns, in the sense that some

linear combination of the factor-portfolios is mean-variance-efficient.

Assume that we can identify a vector of characteristics that perfectly captures ex-

pected returns, that is such that: ct−1 = κµt−1 (see (3) above). Moreover ct−1 is an

N×1 vector, that is, a single characteristic summarizes expected returns. Following

the usual procedure we assume that the factor-portfolio is formed based on our single

vector of characteristics ct−1 or to put it differently that the weights of the portfolio

are assumed to be proportional to the characteristic. We normalize this portfolio so
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as to guarantee that it has a unit expected return:10

wc,t−1 = κ

(
ct−1

c′t−1ct−1

)
=

µt−1
µ′t−1µt−1

(12)

Note that, given this normalization, w′c,t−1µt−1 = 1, as desired.

2.2.3 Relation between the characteristic-based factor-portfolio and the

MVE-portfolio

Assuming no arbitrage in the economy, there exists a stochastic discount factor that

prices all assets, and a corresponding mean-variance-efficient portfolio. In our setting

the weights of the MVE portfolio are:

wMVE,t−1 =
(
µ′t−1Σ

−1
t−1µt−1

)−1
Σ−1t−1µt−1, (13)

which have been scaled so as to give the portfolio a unit expected return. The

variance of the portfolio is σ2
MVE,t−1 =

(
µ′t−1Σ

−1
t−1µt−1

)−1
, so the Sharpe-ratio of the

portfolio is SRMVE =
√
µ′t−1Σ

−1
t−1µt−1.

Given our scaling of returns, the βs of the risky asset w.r.t the MVE portfolio are

equal to the assets’ expected excess returns:11

βMVE,t−1 =
covt−1 (Rt, RMVE,t)

vart−1 (RMVE,t)
=

Σt−1wMVE,t−1

wMVE,t−1Σt−1wMVE,t−1
= µt−1

10The typical normalization in building factor-portfolios is that they are “$1-long, $1 short”
zero investment portfolios. However since we are dealing with excess returns, this normalization
is arbitrary and has no effect on the ability of the factor-portfolios to explain the cross-section of
average returns.

11For the third equality, just substitute wMVE,t−1 from equation (13) into the second.
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We can then project each asset’s return onto the MVE portfolio:

Rt = βMVE,t−1RMVE,t + ut = µt−1RMVE,t + ut (14)

u is the component of each asset’s return that is uncorrelated with the return on the

MVE portfolio, which is therefore unpriced risk.

Given the structure of the economy laid out in equations (10) and (11),

RMVE,t = f1,t + 1

where f1 denotes the first element of f (and the only priced factor). This means that,

referencing equation (14),

βMVE,t−1 = µt−1 = β1,t−1 = κ−1ct−1 (15)

Finally, this means that we can write the residual from the regression in equation

(14) as:

ut = βut−1f
u
t + εt (16)

where βut−1 is the N×(K − 1) matrix which is βt−1 with the first column deleted (i.e.,

the loadings of the N assets on the K−1 unpriced factors), and fut is the (K − 1)×1

vector consisting of the 2nd through Kth elements of ft (i.e., the Unpriced factors).

We will use this projection to study the efficiency of the characteristic-weighted

factor-portfolio. Since both the characteristic-weighted and MVE portfolio have

unit expected returns, the increase in variance in moving from the MVE portfolio

to the characteristic portfolio can tell us how inefficient the characteristic-weighted
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portfolio is. From equations (12) and (14), we have:

Rc,t = w′t−1,cRt = RMVE,t + (µ′t−1µt−1)
−1µ′t−1ut ⇒

Rc,t −RMVE,t =
(
µ′t−1µt−1

)−1
µ′t−1

[
βut−1f

u
t + εt

]

Thus given (16)

vart−1(Rc,t −RMVE,t) =
K∑
k=2

[(c′t−1ct−1)
−1(c′t−1β

u
k,t−1)︸ ︷︷ ︸

≡γk,c

]2σ2
k,t−1 (17)

What is the interpretation of (17)? γk,c is the coefficient from a cross-sectional

regression of the kth (unpriced) factor loading on the characteristic.12 Even though

the K factors are uncorrelated, the loadings on the factors in the cross-section are

potentially correlated with each other, and this regression coefficient could potentially

be large for some factors. Indeed, the necessary and sufficient conditions for the

characteristic-sorted portfolio to price all assets are that

γk,c = 0 ∀ k ∈ {2, . . . , K}.

This condition is unlikely hold even approximately. For example, as we show later, in

the middle of the financial crisis, many firms in the financial sector had a high book-

to-market ratio. Thus, their expected return was high (high µ). However, these firms

also had a high loading on the finance industry factor (σ2
k,t−1 was high). Because

µt−1 (the expected return based on the characteristics) and βuk,t−1 (the loading on the

12Note that we get the same expression, up to a multiplicative constant, if we instead regress the
unpriced factor loadings on the the priced factor loadings, or on the expected returns, given the
equivalence in equation (15).
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unpriced finance industry factor) were highly correlated, the characteristics-sorted

portfolio had high industry factor risk, meaning that it had a lower Sharpe-ratio than

the MVE portfolio. Because σ2
k,t−1 was quite high in this period, the extra variance

of the characteristic-sorted portfolio was arguably also large. In Section 4, we show

how this extra variance can be diagnosed and taken into account.

Even though industries are a likely candidate for sources of common variation, the

procedure proposed in this paper has the considerable advantage of being able to

improve upon standard factors, without the need of identifying specifically what the

unpriced sources of common variation are.

2.2.4 An optimized characteristic-based portfolio

It follows from the previous discussion that the optimized characteristic-based port-

folio is

w∗c,t−1 = κ

(
Σ−1t−1ct−1

c′t−1Σ
−1
t−1ct−1

)
=

Σ−1t−1µt−1

µ′t−1Σ
−1
t−1µt−1

(18)

Clearly the challenge is the actual construction of such a portfolio. For instance, there

are well known issues associated with estimating Σt−1 and using it to do portfolio

formation. In the next subsection, we develop an alternative approach for testing

portfolio optimality.

Assuming the characteristics model is correct, and one observes the characteristics, it

is straightforward to test the optimality of the characteristics-sorted factor-portfolio.

All that is needed is some (ex-ante) instrument to forecast the component of the

covariances which is orthogonal to the characteristics. If the characteristic sorted

portfolio is optimal (i.e., MVE) then characteristics must line up with betas with the

characteristics sorted-portfolio perfectly. If they don’t (and the characteristics model
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holds) then the portfolio can’t be optimal.

Moreover, one can improve on the optimality of the portfolio by following the proce-

dure advocated in this paper, by, first, identifying assets with high (low) alphas rel-

ative to the characteristic-sorted portfolio (again based on the characteristic model)

and, second, building a portfolio with the highest possible expected alpha relative to

the characteristic sorted portfolio, under the characteristic hypothesis. If this port-

folio has a positive alpha then the optimality of the characteristics-sorted portfolio

is established. This is the empirical approach we take in this paper.

In sum, our point is that if a particular characteristic is used to construct a factor-

portfolio then whenever there is a correlation between the characteristic and the

loadings on unpriced sources of variation the factor-portfolio will fail to be main vari-

ance efficient. Thus the factor cannot be a proxy for the true, underlying, stochastic

discount factor. In this section and the next we show that the point is not just of

theoretical interest but that its quantitative importance is substantial. We do so in

two different ways. In the next section we focus in one particular factor, Fama and

French (1993) HML factor and show that it loads heavily on particular industries

at particular times. This source of variation is unpriced and thus one can improve

on this factor by removing its dependence of industry factors. In Section 4 we use

the more general procedure developed in this section to improve upon the standard

Fama and French (2015) five factors.

3 Sources of common variation: Industry Factors

Asness et al. (2000), Cohen and Polk (1995) and others13 have shown that if book-to-

price ratios are decomposed into an industry-component and a within-industry com-

ponent, then only the within-industry component— that is, the difference between

13See also Lewellen (1999) and Cohen et al. (2003).
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a firm’s book-to-price ratio and the book-to-price ratio of the industry portfolio—

forecasts future returns. This suggests that any exposure of HML to industry factors

is likely unpriced, and therefore that if this exposure were hedged out, it would result

in a factor-portfolio with lower risk, but the same expected return, that is, with a

higher Sharpe ratio. But, does HML load on industry factors?

Figure 2 plots the R2 from 126-day rolling regressions of daily HML returns on the

twelve daily Fama and French (1997) value-weighted industry excess returns. The

time period is January 1964 to June 2017.14The plot shows that, while there are

short periods where the realized R2 dips below 50%, there are also several periods

where it exceeds 90%. The R2 fluctuates considerably but the average is well above

70%. The upper Panel of Figure 3 plots, for the same set of daily, 126-day rolling

regressions, the regression coefficients for each of the 12 industries. As it is apparent

these coefficients display considerable variation: sometimes the HML portfolio loads

more heavily on some industries than on others.

To provide a little clarity let’s focus on two particular industries: ‘Business Equip-

ment’, which comprises many of the high technology firms, and ‘Money’ which in-

cludes banks and other financial firms. The two industries are selected because HML

had the lowest and highest exposure, respectively, to them in the post-1995 period.

Start with ‘Business Equipment’ and focus in the late 1990s and 2000. As one can

see the regression coefficient of HML on this particular industry started falling in

the mid to late 90s, as the “high-tech” sector started posting impressive returns.

These firms were, in addition, heavy on intangible capital which was not reflected

in book. As their book-to-market shrank these companies were classified into the

growth portfolio: The L in HML became a short on high tech companies, which be-

came to dominate the ‘Business Equipment’ industry. Simultaneously the volatility

of returns in this industry started increasing consistently around 1997, reaching a

14The industry classification follow Ken French’s data library at http://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/Data_Library.
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peak in early 2001, as illustrated in Figure 4, which plots the rolling-126 day volatil-

ity of returns.15 The annualized volatility of ‘Business Equipment’ returns hovered

below 20% for almost two decades but then shot up in the mid 90s to well above

60%, at the peak of the Nasdaq cycle. The increase in the absolute value of the

regression coefficient and the high volatility of returns result on the high R2 of the

regression of HML on industry factors.

The behavior of the ‘Money’ industry during and after the Great Recession of 2008

is an even more striking example of the large industry effect on HML. The regression

coefficient associated with ‘Money’ increased dramatically between 2007 and early

2009 as stock prices for firms in this segment collapsed and quickly became classified

as value. 16 As shown in Figure 4 the volatility of returns also increased dramat-

ically. As a result of these two effects ‘Money’ explained a substantial amount of

the variation of HML returns during those years. Indeed Figure 5 plots the R2 or a

regression of the return on HML on the ‘Money’ industry excess returns. Between

late 2008 and late 2010 the R2 was well above 60%. Why was it so high? As of

December 2007, the top 4 firms by market capitalization in the “Money” industry

were Bank of America, AIG, Citigroup and J.P. Morgan. Three of these four were in

the large value portfolio portfolio (Big/High-BM to use the standard terminology).

Interestingly, the one that wasn’t was AIG – it was in the middle portfolio. While

the market capitalization of these firms falls dramatically through 2008, they remain

large and, particularly as the volatility of the returns on the ‘Money’ industry in-

creases, these firms and others like them drive the returns both of the HML portfolio

and the ‘Money’ industry portfolio.

However, there are firms in the ‘Money’ industry that do not have high book-to-

15Note that for this plot, like the other “rolling” plots in this section, the x-axis label indicates
the date on which the 126-day interval ends.

16As shown in Huizinga and Laeven (2009) banks during the crisis used accounting discretion
to avoid writing down the value of distressed assets. As a result the value of bank equity was
overstated. The market knew better and as a result the book-to-market of bank stocks shot up
during the crisis.
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market ratios, even in the depths of the financial crisis. For example, in 2008 US

Bancorp (USB) and American Express (AXP) were both “L” (low book-to-market)

firms. Yet both USB and AXP have large positive loadings on HML at this point

in time (see Table 1). The reason is that both USB and AXP covary strongly with

the returns on the ‘Money’ industry, as does HML at this point in time. We use this

variation within the ‘Money’ Industry to construct hedge-portfolios for each of the

Fama and French (2015) factors, as illustrated in the the example previous section. In

particular we construct a characteristics balanced hedge-portfolio, h. The short side

of the characteristics balanced portfolio features firms with high loadings on HML

and low and high book-to-market, such as American Express and Citi, respectively.

In the example in Figure 1 American Express would be asset A4 and Citi would be

A1. The long side of the characteristics balanced portfolio is comprised of stocks with

low loadings on HML. Then we combine a long position in the HML portfolio with

an appropriately sized position on the characteristics balanced portfolio to hedge the

exposure of the HML portfolio to the ‘Money’ industry, as in expression (6). This

procedure thus succeeds in creating a more efficient “hedged” HML portfolio, on

that has the same expected return, but lower return variance and therefore a higher

Sharpe-ratio, than the original Fama and French (1993) HML portfolio.

4 Hedge Portfolios

4.1 Construction

The empirical goal is to construct the best possible hedge-portfolios, as introduced

in model (1). To achieve this, if f
(1)
t is a well diversified portfolio, we only need to

maximize the hedge-portfolio loading on the unpriced source of common variation,

fut . However, empirically, this is not observable. What we can observe ex-ante,

though, is the loading on a candidate factor-portfolio that captures any type of
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common variation, e.g., f
(1)
t . This captures common variation through fut as well

as through ft. To disentangle the two from each other, we use a procedure first

introduced by Daniel and Titman (1997). The idea is to use the ex-ante loading

of each stock i on the candidate factor-portfolio f
(1)
t and construct portfolios that

maximize the loading on f
(1)
t . At the same time, these portfolios are constructed in

such a way that they have zero exposure to characteristics, and consequently zero

expected return. Effectively, this shuts out the component of the loading that is

linked to the potentially priced factor and thereby only hedges out unpriced risk.

In our empirical exercise, we focus on the five factor Fama and French (2015) model

and we follow these authors in the construction of their factor-portfolios. In the

following, we will explain the procedure based on the example of HML. We first

rank NYSE firms by their, in this case, book-to-market (BM) ratios at the end of

December of a given year and their market capitalization (ME) at the end of June of

the following year. Break points are selected at the 33.3% and 66.7% marks for both

the book-to-market and market capitalization sorts. Then in June of a given year all

NYSE/Amex and Nasdaq stocks are placed into one of the nine resulting bins. There

is an important difference though in the way the sorting procedure is implemented

relative to Fama and French (1992, 1993 and 2015) or Daniel and Titman (1997) and

it is that our characteristics sorted portfolios are industry adjusted. That is, whether

a stock has, for example, a high or low book-to-market ratio depends on whether it is

above or below the corresponding value-weighted industry average.17Our industries

are the 49 industries of Fama and French (1997).

Next, each of the stocks in one of these nine bins is sorted into one of three additional

bins formed based on the stocks’ expected future loading on the HML factor-portfolio.

The firms remain in those portfolios between July and June of next year. Sorting

on the characteristic and the expected loading itself identifies to what extent the

17The reason we use industry adjusted characteristics is because they have been shown to be
better proxies of expected returns (see Cohen et al. (2003)).
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variation in returns is driven by the characteristic or the loading. This last sort results

in portfolios of stocks with similar characteristics (BEME and ME) but different

loadings on HML.

Finally, we construct our hedge-portfolio for the HML factor-portfolio, as in the ex-

ample in section 2, by going long an equal-weight combination of all low-loading port-

folios and short an equal-weight combination of all high-loading portfolios. Thereby,

the long and short sides of this portfolio have zero exposure to the characteristic

and we maximize the spread in expected loading on the unpriced sources of common

variation.

The hedge-portfolios for RMW and CMA are constructed in exactly the same way.

For SMB, we follow Fama and French (2015) and construct three different hedge-

portfolios: One where the first sorts are based on BEME and ME, and then within

these 3x3 bins, we conditionally sort on the loading on SMB. The second and third

versions use OP and INV instead of BEME in the first sort. Then, an equal weighted

portfolio of the three different SMB hedge-portfolios is used as the hedge-portfolio

for SMB. We do exactly the same for the hedge-portfolio for the market.

Clearly a key ingredient of the last step of the sorting procedure is the estimation of

the expected loading on the corresponding factor. Our purpose is to obtain estimates

of the future loadings in the five factor model of Fama and French (2015):

Ri,t −RF,t = ai,t−1 + βMkt−RF,i,t−1(RMkt,t −RF,t) + βSMB,i,t−1RSMBt

+βHML,i,t−1HMLt + βRMW,i,t−1RMWt + βCMA,i,t−1CMAt + ei,t
(19)

We instrument future expected loadings with pre-formation loadings of each stock

with the candidate factor-portfolios. The resulting estimation method is intuitive

and is close to the method proposed by Frazzini and Pedersen (2014). These au-

thors build on the observation that correlations are more persistent than variances
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(see, among others, de Santis and Gerard (1997)) and propose estimating covari-

ances and variances separately and then combine these estimates to produce the

pre-formation loadings. Specifically, covariances are estimated using a five-year win-

dow with overlapping log-return observations aggregated over three trading days, to

account for non-synchronicity of trading. Variances of factor-portfolios and stocks

are estimated on daily log-returns over a one-year horizon. In addition, we intro-

duce an additional intercept in the pre-formation regressions for returns in the six

months preceding portfolio formation, i.e., from January to June of the rank-year

(see Figure 1 in Daniel and Titman (1997) for an illustration). We refer to this

estimation methodology as the ‘high power’ methodology. Intuitively, if our fore-

casts of future loadings are very noisy, then sorting on the basis of forecast-loading

will produce no variation in the actual ex-post loadings of the sorted portfolios. In

contrast, if the forecasts are accurate, then our hedge-portfolio—which goes long the

low-forecast-loading portfolio- and short the high-forecast-loading portfolio—will in-

deed be strongly correlated with the corresponding FF portfolio. Also, since this

portfolio is “characteristic-balanced,” meaning the long and short-sides of the port-

folio have equal characteristics and, if the characteristic model is correct, will have

zero expected excess return. Such a portfolio would be an optimal hedge-portfolio, in

that it maximizes the correlation with the FF portfolio subject to the constraint that

it is characteristic neutral. Also, such a portfolio would have the highest possible

likelihood of rejecting the FF model, under the hypothesis that the characteristic

model is correct.

This estimation method contrasts with the traditional approach of simply using as

instruments for future factor loadings the result of regressing stock excess returns on

factor-portfolios over a moving fixed-sized window based on, e.g., 36 or 60 monthly

observations, skipping the most recent 6 months, i.e., those that already fall in

the rank-year (see, e.g., Daniel and Titman (1997) or Davis, Fama, and French

(2000)).18 We refer to this method, which is effectively the one used by Daniel and

18Notice that in contrast, the high power method avoids discarding the most recent data.
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Titman (1997), as the ‘low power’ method and use it to construct an alternative set

of hedge-portfolios. In addition, this set of hedge-portfolios is not industry adjusted.

In sum, the high and low power sets of hedge-portfolios differ in two dimensions:

the estimation method for the expected loading and whether the characteristics are

industry adjusted or not. In what follows, we examine to what extent these portfolios

differ and whether we succeed in maximizing our ability to hedge out unpriced sources

of common variation.

4.2 Average returns and characteristics of triple-sorted port-

folios

Table 2 presents average monthly excess returns for the portfolios that we combine to

form our hedge-portfolios. Each panel presents a set of sorts with respect to size and

to one characteristic—either value (Panel A), profitability (Panel B) or investment

(Panel C)—and the corresponding loading.

For example, to form the 27 portfolios in Panel A, we first perform independent sorts

of all firms in our universe into three portfolios based on book-to-market (BEME)

and based on size (ME). We then sort each of these nine portfolios into three sub-

portfolios, each with an equal number of firms, based on the ex-ante forecast loading

on HML for each firm. In the upper subpanels, the loading sorts are done using the

low-power methodology; and in the lower panels use the high-power methodology.

For each of the 27 portfolios in each subpanel, we report average monthly excess

returns. The column labeled “Avg.” gives the average across the 9 portfolios for a

given characteristic.

First, note that the average returns in the “Avg.” column are consistent with empir-

ical regularities well known in the literature: The average return of value portfolios
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are higher than those of growth, historically profitable firms beat unprofitable, and

historically low investment firms beat high investment firms. We will present the ex-

post loadings in a moment (in Table 4), but we will see that there are large differences

between the ex-post betas of the low-forecast-loading (“1”) and high-forecast-loading

(“3”) portfolios in for every size-characteristic portfolio, particularly when these sorts

are done using the high-power-methodology. For the value, profitability, and invest-

ment sorts, the ex-post differences in loading of the “3” and “1” portfolios are 0.93,

0.76, and 1.09 respectively. Given these large differences in loadings for the high-

power sorts, it is remarkable that the difference in the average monthly returns for

the high- and low-loading portfolios are portfolios are 6, 14, and 2 bp/month for the

value, profitability and investment-loading sorts, respectively.19 This is consistent

with the Daniel and Titman (1997) conjecture that average returns are a function of

characteristics, and are unrelated to the FF factor loadings after controlling for the

characteristics.

Moreover, these small observed return differences may be related to the fact that, in

sorting on factor loadings, we are picking up variation in characteristics within each

of the nine size-characteristic-sorted portfolios. For example, among the firms in the

small-cap, high book-to-price portfolios in Panel A, there is considerable variation in

book-to-market ratios. In sorting into sub-portfolios on the basis of forecast HML-

factor loading, we are undoubtedly picking up variation in the characteristic of the

individual firms, since characteristics and factor-loadings are highly correlated (i.e,

value firms typically have high HML factor loadings).

We explore this possibility in Table 3 where we show the average of the relevant

characteristic for each of the portfolios. Consistent with our hypothesis, there is

generally a relation between factor loadings and characteristics within each of the

nine portfolios.

19For comparison, the average excess returns of the HML, RMW, and CMA portfolios over the
same period are 34, 28, and 23 bp/month, respectively.
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4.3 Postformation loadings

Each June, we estimate the post-formation loadings by running a time series re-

gression of the monthly excess returns for each of the portfolios on the Fama and

French (2015) five factors (see equation (19)). To compare whether our high power

methodology results in larger dispersion of the post-formation loadings when com-

pared to the low power methodology, Figure 6 shows the postformation loadings for

each of the 27 portfolios. Panels A and B correspond to the low and high power

methodology, respectively.

Consider for example the top panels in Figure 6, which focus on the loadings on HML

for each of the two estimation methodologies. There are 3× 3 groups of estimates—

connected by lines—each corresponding to a particular book-to-market × size bin.

Each of those lines have three points corresponding to the three portfolios from the

conditional sort on ex-ante betas. The plot thus reports book-to-market on the y-

axis for each of the 27 portfolios and the post-formation loading on the x-axis. The

actual point estimates for the loadings on HML, together with the corresponding

t-statistics, are reported in Table 4 Panel A. To illustrate the point further focus

on the loadings on HML for the large value portfolios (portfolio (3,3)). The low

power methodology generates post-formation loadings on HML, βHML, for each of

the three portfolios of .41, .72 and 1.07, respectively. The high power methodology

instead generates post-formation HML loadings of .06, .46 and .91, respectively. The

last column of the panel reports the post-formation loading on HML of the portfolio

that goes long the low loading portfolio and short the high loading portfolio amongst

the large value firms, portfolio. The loading is −.67 for the low power methodology

with a t−statistic of−9.24. For the high power methodology the same post-formation

loading is −.85 with a t−statistic of −12.30.

Notice that, reassuringly, both methodologies generate a positive correlation between

pre- and post-formation loadings for each of the book-to-market and size groupings.
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This positive correlation between pre- and post extents to the case of CMA. But

in the case of the loadings on RMW, the low power methodology does not produce

a consistent positive association between pre- and post-formation loadings, whereas

the high power methodology does. Indeed turn to Table 4 Panel B, which reports

the post-formation loadings20 on the profitability factor, RMW, and focus on the

portfolios (3,1), that is small firms with high operating profitability. The low power

methodology generates loadings of .34, .38 and .32, a non monotone relation. Instead

the post-formation loadings for the same set of portfolios as estimated by the high-

power methodology are −.04, .34 and .36.

As it is readily apparent from Figure 6, the high power methodology generates sub-

stantially more cross sectional dispersion in post-formation loadings than the low

power methodology, which is key to generating hedge-portfolios that are maximally

correlated with the candidate factor. Each of the panels of Table 4 reports the dif-

ference in the post-formation loadings between the low and and high pre-formation

loading sorted portfolio for each of the characteristic-size bin. Consistently, this dif-

ference is much larger with the high power methodology than the low. In sum then

our high power methodology forecasts future loadings better than the one used by

Daniel and Titman (1997) or Davis et al. (2000) and, as a result, they translate into

more efficient hedge-portfolios as well as asset pricing tests with higher power.

5 Empirical Results

In this section we describe the two main empirical results of this paper. First we

show how the use of the high power methodology advanced in this paper to fore-

cast loadings increases the power of standard asset pricing tests. We illustrate how

standard methodologies used to estimate the loadings lead to a failure to reject asset

20The alphas of these regressions are also reported in Table 4. We will turn to the asset pricing
implications in Section 5.1.
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pricing models and thus impose too low a bound on the volatility of the stochastic

discount factor. We do so by constructing characteristics balanced portfolios and

showing that the ability of standard asset pricing models to properly account for

their average returns depends critically on whether one uses the low or high power

methodology.

Our second contribution is to show how to improve the Sharpe ratios of factor-

portfolios by combining them optimally with the hedge-portfolios. We argue that

these hedged factor-portfolios have a better chance of spanning the mean variance

frontier than the standard factor models proposed in the literature.

5.1 Pricing the characteristics balanced hedge-portfolios

We turn now to the characteristics balanced hedge-portfolios. We construct them as

follows. For each of the five factors in the Fama and French (2015) model we form a

portfolio that goes long the portfolios with low loading forecast on the corresponding

factor, averaging across the corresponding characteristic and size, and short the high

loading forecast portfolios. For instance consider the line labeled HML in Table 5.

There, we take a long position in the low loading portfolios, weighting the corre-

sponding nine book-to-market size sorted portfolios equally, and a short position in

the nine high loading portfolios in the same manner.

We then run a single time series regression of the returns of these hedge-portfolios

hk,t on the five Fama and French (2015) factor-portfolios. Table 5 reports the al-

phas and loadings as well as the corresponding t−statistics. Panel A focuses on

the set of hedge-portfolios where pre-formation loadings are estimated with the low

power methodology and Panel B focuses on the high power one. We first assess the

hedge-portfolios’ ability to hedge out unpriced risk by looking at their post-formation

loading on the corresponding factor. As expected, each hedge-portfolio exhibits a
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strong negatively significant loading on their corresponding factor. For example, the

hedge-portfolio for HML has a loading on HML of −0.5 with a t−statistic of −17.05,

for the low power methodology. All of these numbers are larger in magnitude for

the high power methodology - in the case of HML, the loading is −0.94 now, with a

t−statistic of −36.15. To check whether these are unpriced, as was intended by con-

structing the portfolios to be characteristic-neutral, we turn to the average realized

excess-return of the test-portfolios. It is statistically indistinguishable from zero for

all hedge-portfolios.

This directly translates into pricing implications, as indicated by the alphas. Whereas,

when using the low-power methodology, the five Fama and French factors price all

hedge-portfolios correctly, the model fails to price four out of five of the high-power

long-short hedge-portfolios. 21 The last line of each of the panels constructs equal

weighted combinations of these portfolios. The alphas for all of them are strongly

statistically significant in the high power test whereas this is not the case for the low

power methodology. For instance, when we consider the equal-weight combination

of four factors (HML,RMW, CMA and the market), the monthly alpha is 0.19 with

a t-statistic of 6.34.

5.2 Ex-ante determination of the optimal hedge-ratio

Now that the hedge-portfolios’ effectiveness to hedge out unpriced risk is established,

the next step is to construct improved or hedged factors, i.e.,

f
(2)
k,t = f

(1)
k,t − γ̂

′
k,t−1ht

where k ∈ {HML,RMW,CMA,SMB,MktRF}.
21The only one for which the Fama and French model cannot be rejected is the “SMB” portfolio.

The fact that Fama and French model succeeds in pricing hSMB is consistent with the notion that
there is little to price there, as we know that the size premium is relatively weak.
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The optimal hedge ratio γ̂k,t−1 is determined ex-ante, in the spirit of equation (8).

We employ the same loading forecast techniques as described before to forecast

γ̂k,t−1, i.e., we first calculate five years of constant weight and constant allocation

pre-formation returns of f
(1)
k,t and ht. We then calculate correlations over the whole

five years of 3-day overlapping return observations and variances by utilizing only the

most recent 12 months of daily observations. Note that this is done in a multi-variate

framework, i.e., we consider the covariance of each candidate factor-portfolio with

all five hedge-portfolios, to account for the correlation structure among the hedge-

portfolios. Consequently, both γ̂k,t−1 and ht are length-K vectors, where K=5 in

the case of the Fama and French model examined here. Note further, that the

factor-portfolios f
(2)
k,t are (approximately) orthogonal to the hedged portfolios hk,t.

The reason why they are only approximately orthogonal is because the γ̂k,t−1 is

estimated ex-ante, i.e., up to t− 1.

5.3 Hedged Fama and French Factor Portfolios

Table 6 reports the main result of the paper. For each of the five Fama and French

(2015) factors we report the annualized average returns in percentages, the annual-

ized volatility of returns and the Sharpe ratio. The next column reports the same

magnitudes for the hedge-portfolios constructed in subsection 5.1 orthogonalized

with respect to the five Fama and French factors. Consequently, the mean here can

be interpreted as the alpha of the hedge-portfolio, the volatility is the volatility of

the residuals and SR can alternatively be interpreted as the information ratio of the

hedge-portfolio with respect to the five Fama and French factors. The last column

reports the same three quantities for the improved factor-portfolios, f
(2)
t . These

portfolios are constructed exactly as in expression (6).22

22We calculate the Sharpe ratio of the factor-portfolio f
(2)
t using the usual procedure rather than

using expression (9), which only holds under the null of model (1).
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When we move from f
(1)
k,t to f

(2)
k,t , we see that the mean return of all factors decreases,

but the volatility also decreases considerably more. This leads to an increase in

the Sharpe ratio for each of the individual Fama and French factor-portfolios. For

example, the squared Sharpe ratio of the improved version of HML is 0.32, where

the original HML factor’s squared Sharpe ratio is 0.17.

While the result that we improve on each factor-portfolio individually is promising,

the ultimate goal of the exercise was to move the candidate factor representation of

the stochastic discount factor closer to being mean-variance efficient. Hence, in the

bottom panel of Table 6, we compute the in-sample optimal combination of both

the original Fama and French factors (column f
(1)
k,t ) and the improved versions (f

(2)
k,t ).

The maximum achievable squared Sharpe ratio with the original Fama and French

factors in the sample period covered in this paper (1963/07 - 2017/06) turns out

to be 1.31. The squared Sharpe ratio of the optimal combination of the improved

versions of these five factors is 2.29.

Notice that each individual improved factor-portfolio f
(2)
k,t is perfectly tradable, as all

information used to construct them is known to an investor ex-ante. Only the weights

of optimal combinations of the five (traditional as well as improved) factor-portfolios,

as reported in the bottom panel of Table 6, are calculated in-sample. Additionally,

we want to emphasize that the way we construct our portfolios is very conservative,

in that we only rebalance once every year—in order to be consistent with the rules

of the game set by Fama and French.

6 Conclusions

A set of factor-portfolios can only explain the cross-section of average returns if

the mean-variance efficient portfolio is in the span of these factor-portfolios. There

are numerous sources of information from which to construct such a set of factors.
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In the cross-sectional asset pricing literature, the most widely utilized source of

information used to form factor-portfolios have been observable firm characteristics

such as the ones we examine here: firm size, book-to-market ratio, and accounting-

based measures of profitability and investment. Portfolios formed going long high-

characteristic firms and short low-characteristic firms ignore the forecastable part of

the covariance structure, and thus cannot explain the returns of portfolios formed

using the characteristics and past-returns. Factor-portfolios formed in this way are

therefore inefficient with respect to this information set.

In the empirical part of this paper, we have examined one particular model in this

literature: the five-factor model of Fama and French (2015). Our empirical find-

ings show that the factor-portfolios that underlie this model contain large unpriced

components, which we show are at least correlated with unpriced factors such as

industry risk. When we add information from the historical covariance structure

of returns we can vastly improve the efficiency of these factor-portfolios, generating

a portfolio that is orthogonal to the original five factors and has a Sharpe-ratio of

2.29 − 1.31 = 0.98. It is important to note that we are extremely conservative in

the way in which we construct these hedged-portfolios: following Fama and French

(1993), we form portfolios annually, and value-weight these portfolios. By hedging

out the ex-ante identifiable, unpriced risk in the five-factors, we increase the annu-

alized squared-Sharpe ratio achievable with these factors.

Hedged factor-portfolios like those we construct here raise the bar for standard asset

pricing tests. By the logic of Hansen and Jagannathan (1991), a pricing kernel

variance of at least 2.29 (annualized) is required to explain the returns of the hedged-

factor-portfolios. Also, because the hedged factor-portfolios are far less correlated

with industry factors, etc., they are also far less likely to be correlated with variables

that might serve as plausible proxies for marginal utility.

In addition, the hedged factor-portfolios we generate can serve as an efficient set
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of benchmark portfolios for doing performance measurement using Jensen (1968)

style time-series regressions. Such an approach will deliver the same conclusions as

the characteristics approach (Daniel, Grinblatt, Titman, and Wermers, 1997), while

maintaining the convenience of the factor regression approach.
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Figure 2: Rolling regression R2s – HML returns on industry returns This
figure plots the adjusted R2 from 126-day rolling regressions of daily HML returns on
the twelve daily Fama and French (1997) industry excess returns. The time period
is January 1981-December 2015.
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Figure 3: HML loadings on industry factors. The upper panel of this figure
plots the betas from rolling 126-day regressions of the daily returns to the HML-
factor portfolio on the twelve daily Fama and French (1997) industry excess returns
over the January 1964-June 2017 time period. The lower panel plots only the betas
for the Money and Business Equipment industry portfolios, and excludes the other
10 industry factors.
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Figure 4: Volatility of the money and business equipment factors. This figure

plots 126-day volatility of the daily returns to the Money and the Business Equipment factors over

the January 1964-June 2017 time period.
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Figure 5: Rolling regression R2s – HML returns on Money industry re-
turns. This figure plots the adjusted R2 from 126-day rolling regressions of daily HML returns

on the daily Money industry returns from the 12 Fama and French (1997) industry returns. The

time period is January 2000-December 2015.
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Figure 6: Ex-post loading vs. characteristic. This figure shows the time series

average of post-formation factor-loading on the x-axis and the time series average of the respective

characteristic on the y-axis of each of the 27 portfolios formed on size, characteristic and factor-

loading. Panels A uses the low power methodology and B uses the high power methodology. The

first row uses sorts on book-to-market and HML-loading, the second one operating profitability and

RMW-loading and the last one investment and CMA-loading.
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Figure 7: Portfolio Cumulative Returns. This figure plots the cumulative
returns of of the five FF(2015) portfolios, and the residual portfolio. The residual
portfolio is the equal-weighted combination of the HML, RMW, and CMA hedge
portfolios, orthogonalized to the five-factors. Each portfolio assumes an investment
of $1 at close on the last trading day of June 1963, and earns a return of (1+rLS,t+rf,t)
in each month t, where rLS,t is the long-short portfolio return, and rf,t is the one
month risk free rate.
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Tables

Table 1: Low book-to-market stocks in the Money industry as of June
2008. The first column reports the largest fifteen stocks in the Money industry in the low book-

to-market bin by market capitalization. The second column reports the book-to-market and the

third reports the HML loading portfolio to which the stock belongs as of June 30th, 2008.

Firm BE/ME βHML-portfolio

US Bancorp 0.39 3

American Express 0.19 3

United Health 0.27 2

Aflac 0.36 2

State Street 0.36 2

Charles Schwab 0.13 1

Franklin Resources 0.27 3

Aetna 0.36 1

American Tower 0.18 3

Northern Trust 0.30 3

Price T. Rowe 0.17 2

Progressive 0.38 3

Crown Castle 0.29 3

TD Ameritrade 0.21 2

Cigna 0.34 1
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Table 2: Average monthly excess returns for the test portfolios.
The sample period is 1963/07 - 2017/06. Stocks are sorted into 3 portfolios based on the respective characteristic - book-
to-market (BEME), operating profitability (OP) or investment (INV) and independently into 3 size (ME) groups. These are
depicted row-wise and indicated in the first two columns. Last, portfolios are sorted into 3 further porfolios based on the loadings
forecast, conditional on the first two sorts. These portfolios are displayed column-wise. The last column shows average returns
of all 9 respective characteristic portfolios. The last row shows averages of all 9 respective loadings portfolios. In the top panels
we use the low power and in the bottom panels we use the high power methodology.
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Panel A: HML

Char-Portfolio β̂HML-Portfolio

BEME ME 1 2 3 Avg.

1 1 0.47 0.58 0.53 0.54

2 0.48 0.63 0.65

3 0.57 0.38 0.56

2 1 0.87 0.86 0.93 0.73

2 0.8 0.71 0.77

3 0.55 0.44 0.61

3 1 1.06 1.01 1 0.87

2 0.94 0.9 0.98

3 0.73 0.6 0.66

Avg. 0.72 0.68 0.74

Panel B: RMW

Char-Portfolio β̂RMW -Portfolio

OP ME 1 2 3 Avg.

1 1 0.63 0.8 0.67 0.57

2 0.64 0.62 0.66

3 0.21 0.42 0.47

2 1 0.87 0.86 0.82 0.69

2 0.76 0.71 0.78

3 0.49 0.37 0.59

3 1 0.92 1.01 0.96 0.78

2 0.74 0.77 0.94

3 0.59 0.45 0.62

Avg. 0.65 0.67 0.72

Panel C: CMA

Char-Portfolio β̂CMA-Portfolio

INV ME 1 2 3 Avg.

1 1 0.89 0.97 0.93 0.79

2 0.76 0.85 0.8

3 0.55 0.71 0.66

2 1 0.97 0.88 0.97 0.76

2 0.83 0.79 0.88

3 0.52 0.42 0.6

3 1 0.57 0.68 0.58 0.58

2 0.5 0.68 0.77

3 0.46 0.41 0.59

Avg. 0.67 0.71 0.75
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Char-Portfolio β̂HML-Portfolio

BEME ME 1 2 3 Avg.

1 1 0.37 0.57 0.68 0.53

2 0.49 0.62 0.72

3 0.41 0.5 0.41

2 1 0.78 0.84 0.91 0.72

2 0.64 0.8 0.8

3 0.55 0.6 0.55

3 1 1.05 0.98 1.02 0.88

2 0.98 0.83 1.07

3 0.81 0.64 0.57

Avg. 0.68 0.71 0.75

Char-Portfolio β̂RMW -Portfolio

OP ME 1 2 3 Avg.

1 1 0.57 0.83 0.82 0.65

2 0.61 0.67 0.83

3 0.28 0.55 0.65

2 1 0.86 0.95 0.88 0.7

2 0.69 0.7 0.84

3 0.4 0.48 0.54

3 1 0.91 0.92 0.99 0.74

2 0.78 0.74 0.85

3 0.51 0.47 0.49

Avg. 0.62 0.7 0.76

Char-Portfolio β̂CMA-Portfolio

INV ME 1 2 3 Avg.

1 1 0.83 0.93 0.95 0.76

2 0.82 0.92 0.73

3 0.55 0.52 0.55

2 1 0.95 0.97 0.93 0.75

2 0.84 0.85 0.75

3 0.42 0.44 0.58

3 1 0.57 0.73 0.63 0.62

2 0.6 0.71 0.68

3 0.53 0.52 0.62

Avg. 0.68 0.73 0.71
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Table 3: Average monthly characteristics for the test portfolios.
Stocks are sorted into 3 portfolios based on the respective characteristic - book-to-market (BEME), operating profitability (OP)
or investment (INV) and independently into 3 size (ME) groups. These are depicted row-wise and indicated in the first two
columns. Last, portfolios are sorted into 3 further porfolios based on the loadings forecast, conditional on the first two sorts.
These portfolios are displayed column-wise. At each yearly formation date, the average respective characteristic (BEME, OP,
or INV) for each portfolio is calculated, using value weighting. At each point, the characteristic is divided by the NYSE median
at that point in time. The time series from 1963 - 2016 is then averaged to get the numbers that are presented in the table
below. Note that the characteristics reported in the high power panels are industry-adjusted, i.e., for each firm we first subtract
the value-weighted average characteristic of its corresponding industry. The last column shows average characteristics of all 9
respective characteristic portfolios. The last row shows averages of all 9 respective loadings portfolios. In the top panels we use
the low power and in the bottom panels we use the high power methodology.
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Panel A: HML

Char-Portfolio β̂HML-Portfolio

BEME ME 1 2 3 Avg.

1 1 0.43 0.49 0.48 0.46

2 0.44 0.49 0.49

3 0.39 0.42 0.47

2 1 1 1.02 1.02 1

2 0.98 1.01 1.01

3 0.97 0.99 1.01

3 1 1.99 1.97 2.25 1.89

2 1.82 1.82 1.99

3 1.68 1.7 1.84

Avg. 1.08 1.1 1.17

Panel B: RMW

Char-Portfolio β̂RMW -Portfolio

OP ME 1 2 3 Avg.

1 1 -0.95 -0.21 -0.45 0.04

2 -0.22 0.34 0.32

3 0.43 0.53 0.54

2 1 1 1 1.01 1.01

2 1 1.01 1.01

3 1.01 1.02 1.02

3 1 2.36 2.3 3.36 2.27

2 2.13 2.33 2.09

3 1.9 1.9 2.03

Avg. 0.96 1.13 1.21

Panel C: CMA

Char-Portfolio β̂CMA-Portfolio

INV ME 1 2 3 Avg.

1 1 -2.36 -1.89 -2.49 -1.66

2 -1.58 -1.46 -1.78

3 -1.08 -0.89 -1.42

2 1 1.06 1.03 1.02 1.05

2 1.06 1.05 0.98

3 1.09 1.12 1.02

3 1 10.27 7.21 9.89 7.71

2 8.73 6.7 6.97

3 7.81 5.91 5.88

Avg. 2.78 2.09 2.23
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Char-Portfolio β̂HML-Portfolio

BEME ME 1 2 3 Avg.

1 1 -4.68 -4.68 -4.84 -4.42

2 -4.62 -4.76 -4.72

3 -3.58 -3.9 -3.98

2 1 1.01 1.23 1.26 0.98

2 0.87 1.05 1.07

3 0.31 0.86 1.18

3 1 10.52 10.81 13.59 9.59

2 8.14 9.25 11.15

3 7.02 7.4 8.46

Avg. 1.67 1.92 2.57

Char-Portfolio β̂RMW -Portfolio

OP ME 1 2 3 Avg.

1 1 16.8 8.89 8.17 8

2 9.49 6.3 5.85

3 5.52 5.31 5.71

2 1 1.14 1.08 1.04 1

2 1.09 0.97 0.96

3 1.03 0.89 0.8

3 1 -6.88 -6.71 -10.21 -5.79

2 -6.92 -4.73 -5.54

3 -3.6 -4.07 -3.44

Avg. 1.96 0.88 0.37

Char-Portfolio β̂CMA-Portfolio

INV ME 1 2 3 Avg.

1 1 5.12 4.91 5.53 4.59

2 4.48 4.34 4.71

3 4.02 4.15 4.07

2 1 1 1.05 1.11 1

2 1 1.02 1.07

3 0.85 0.93 0.94

3 1 -8.73 -5.74 -6.78 -5.13

2 -6.66 -4.6 -4.32

3 -4.41 -3 -1.97

Avg. -0.37 0.34 0.49
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Table 4: Sorting-factor exposures and five-factor alphas.
The last column shows the return of long low-loading short high-loading hedge-portfolios. The last
row shows averages of all 9 loadings portfolios. In the top panels we use the low power and in the
bottom panels we use the high power methodology. Alphas and ex-post loadings on the relevant
factor are obtained from a regression of monthly excess returns of the test-portfolios on the 5 Fama
and French factors from 1963/07 - 2017/06.

Panel A: HML

L
ow

p
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er

Char-Portfolio pre-formation β̂HML-sorted portfolios

BE/ME ME 1 2 3 1-3 1 2 3 1-3

α t(α)

1 1 0.01 -0.06 -0.22 0.23 0.12 -0.93 -2.95 2.04

2 0.03 -0.08 -0.07 0.10 0.38 -1.25 -0.96 0.99

3 0.10 -0.09 0.12 -0.03 1.46 -1.64 1.87 -0.24

2 1 0.05 -0.00 0.06 -0.01 0.82 -0.02 1.05 -0.07

2 -0.01 -0.13 -0.09 0.08 -0.20 -1.98 -1.25 0.83

3 -0.06 -0.19 -0.06 -0.00 -0.73 -2.41 -0.64 -0.03

3 1 0.18 0.10 -0.05 0.23 2.74 2.02 -0.83 2.55

2 0.06 0.03 0.01 0.06 0.80 0.47 0.06 0.44

3 -0.02 -0.18 -0.04 0.02 -0.25 -2.20 -0.40 0.12

Avg. Portfolio 0.04 -0.07 -0.04 0.07 0.97 -2.17 -0.95 1.19

post-formation βHML t(βHML)

1 1 -0.57 -0.28 -0.20 -0.37 -13.45 -9.24 -5.72 -6.99

2 -0.57 -0.11 -0.06 -0.51 -15.65 -3.78 -1.81 -11.30

3 -0.45 -0.24 -0.03 -0.42 -14.43 -9.20 -1.02 -8.12

2 1 -0.02 0.22 0.38 -0.40 -0.64 8.78 14.42 -10.09

2 0.10 0.33 0.56 -0.46 3.19 10.85 16.43 -10.54

3 0.01 0.26 0.58 -0.56 0.31 7.15 13.82 -9.52

3 1 0.22 0.49 0.75 -0.53 7.36 21.27 25.23 -12.42

2 0.34 0.56 0.88 -0.54 9.51 17.37 21.16 -9.19

3 0.41 0.72 1.07 -0.67 9.60 19.04 22.78 -9.24

Avg. Portfolio -0.06 0.22 0.44 -0.50 -3.30 15.21 23.75 -16.86

H
ig

h
p

ow
er

Char-Portfolio pre-formation β̂HML-sorted portfolios

BE/ME ME 1 2 3 1-3 1 2 3 1-3

α t(α)

1 1 -0.10 -0.18 -0.21 0.11 -1.00 -2.65 -2.99 0.91

2 0.08 -0.17 -0.15 0.22 0.95 -2.43 -2.01 2.02

3 0.02 -0.09 -0.14 0.16 0.36 -1.57 -1.97 1.47

2 1 0.20 0.05 0.03 0.17 2.65 0.87 0.54 1.75

2 0.07 -0.01 -0.01 0.08 0.94 -0.23 -0.17 0.85

3 0.15 0.03 -0.07 0.23 2.25 0.41 -0.96 1.98

3 1 0.26 0.07 -0.10 0.35 3.56 1.41 -1.59 3.73

2 0.15 -0.08 0.04 0.11 1.78 -1.10 0.46 0.91

3 0.15 -0.19 -0.19 0.34 1.58 -2.19 -1.80 2.26

Avg. Portfolio 0.11 -0.06 -0.09 0.20 2.96 -1.82 -2.38 3.48

post-formation βHML t(βHML)

1 1 -0.57 0.09 0.37 -0.94 -12.23 2.79 11.58 -17.08

2 -0.65 0.12 0.54 -1.18 -16.91 3.88 15.78 -22.86

3 -0.48 -0.05 0.40 -0.88 -16.58 -1.95 12.46 -17.52

2 1 -0.47 0.08 0.47 -0.94 -13.30 3.14 16.92 -21.01

2 -0.43 0.23 0.64 -1.07 -11.87 7.72 20.04 -23.11

3 -0.31 0.09 0.62 -0.93 -9.62 2.74 17.65 -17.42

3 1 -0.11 0.37 0.74 -0.85 -3.17 14.90 25.99 -19.19

2 0.06 0.39 0.81 -0.75 1.59 11.12 19.93 -12.85

3 0.06 0.46 0.91 -0.85 1.31 11.31 18.57 -12.30

Avg. Portfolio -0.32 0.20 0.61 -0.93 -18.58 12.06 35.68 -35.37
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Panel B: RMW

L
ow
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er

Char-Portfolio pre-formation β̂HML-sorted portfolios

OP ME 1 2 3 1-3 1 2 3 1-3

α t(α)

1 1 -0.02 0.07 -0.07 0.05 -0.27 1.22 -1.11 0.58

2 0.22 -0.02 0.00 0.22 2.30 -0.31 0.03 1.87

3 0.04 -0.02 -0.05 0.09 0.45 -0.34 -0.61 0.70

2 1 0.01 -0.01 -0.09 0.10 0.18 -0.12 -1.50 1.22

2 0.02 -0.07 0.01 0.01 0.31 -1.05 0.14 0.14

3 0.12 -0.24 -0.00 0.12 1.41 -3.51 -0.02 0.98

3 1 -0.03 0.06 0.01 -0.05 -0.42 1.05 0.22 -0.46

2 -0.14 -0.13 -0.00 -0.14 -2.03 -2.06 -0.04 -1.46

3 0.16 -0.07 0.07 0.08 2.34 -1.30 1.06 0.73

Avg. Portfolio 0.04 -0.05 -0.01 0.05 1.13 -1.72 -0.38 1.00

post-formation βRMW t(βRMW )

1 1 -0.61 -0.29 -0.31 -0.30 -15.43 -10.27 -9.11 -6.62

2 -0.77 -0.17 -0.24 -0.53 -15.42 -4.90 -6.42 -8.68

3 -0.99 -0.35 -0.25 -0.73 -21.73 -9.42 -6.13 -11.10

2 1 0.16 0.26 0.29 -0.14 4.56 8.75 9.53 -3.18

2 0.12 0.26 0.18 -0.06 3.44 7.97 5.28 -1.23

3 -0.29 0.12 0.10 -0.39 -6.70 3.47 2.65 -6.24

3 1 0.34 0.38 0.32 0.02 8.86 12.12 8.85 0.47

2 0.45 0.52 0.56 -0.11 12.10 15.83 14.29 -2.21

3 0.08 0.36 0.38 -0.31 2.20 12.05 10.68 -5.20

Avg. Portfolio -0.17 0.12 0.11 -0.28 -8.80 8.31 6.63 -10.03

H
ig

h
p

ow
er

Char-Portfolio pre-formation β̂HML-sorted portfolios

OP ME 1 2 3 1-3 1 2 3 1-3

α t(α)

1 1 0.02 0.02 -0.15 0.17 0.25 0.30 -2.55 1.71

2 0.31 -0.09 -0.08 0.39 3.16 -1.29 -1.07 3.19

3 0.10 -0.03 -0.04 0.14 1.18 -0.40 -0.42 1.08

2 1 0.07 0.12 -0.10 0.17 0.95 1.86 -1.46 1.76

2 0.05 -0.05 -0.06 0.11 0.66 -0.79 -0.87 1.15

3 0.06 -0.05 -0.14 0.20 0.91 -0.81 -2.15 1.91

3 1 0.12 0.01 0.01 0.11 1.49 0.17 0.13 0.98

2 0.03 -0.08 -0.18 0.21 0.35 -1.21 -2.26 1.92

3 0.13 0.01 -0.03 0.16 1.83 0.18 -0.49 1.44

Avg. Portfolio 0.10 -0.02 -0.08 0.18 2.57 -0.49 -2.59 3.30

post-formation βRMW t(βRMW )

1 1 -0.82 -0.08 0.12 -0.94 -18.54 -2.76 3.90 -18.39

2 -0.93 0.07 0.32 -1.25 -18.29 1.82 8.21 -19.70

3 -0.92 0.13 0.42 -1.34 -20.22 3.14 9.04 -19.79

2 1 -0.08 0.26 0.38 -0.46 -2.11 7.85 11.03 -9.44

2 -0.13 0.23 0.39 -0.52 -3.49 7.13 11.36 -10.89

3 -0.52 0.13 0.46 -0.98 -14.03 4.16 13.94 -17.93

3 1 -0.04 0.34 0.36 -0.40 -0.93 9.59 9.17 -6.62

2 0.19 0.43 0.62 -0.44 4.66 12.65 15.11 -7.80

3 -0.18 0.13 0.34 -0.52 -4.70 4.32 10.35 -8.72

Avg. Portfolio -0.38 0.18 0.38 -0.76 -18.90 10.90 22.42 -26.22
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Panel C: CMA

L
ow

p
ow

er

Char-Portfolio pre-formation β̂HML-sorted portfolios

INV ME 1 2 3 1-3 1 2 3 1-3

α t(α)

1 1 0.04 0.09 0.11 -0.07 0.63 1.87 1.51 -0.73

2 -0.04 0.03 -0.08 0.04 -0.54 0.45 -1.01 0.37

3 -0.07 0.01 -0.12 0.05 -0.84 0.08 -1.52 0.40

2 1 0.11 0.03 0.17 -0.06 1.70 0.43 2.50 -0.65

2 0.07 0.02 0.11 -0.04 1.07 0.29 1.68 -0.46

3 0.03 -0.10 -0.04 0.07 0.43 -1.67 -0.59 0.65

3 1 -0.18 -0.15 -0.13 -0.05 -2.54 -2.78 -2.08 -0.57

2 -0.13 -0.07 0.12 -0.24 -1.49 -1.07 1.63 -2.17

3 0.28 -0.10 0.08 0.21 3.21 -1.49 1.12 1.54

Avg. Portfolio 0.01 -0.03 0.02 -0.01 0.35 -0.93 0.70 -0.18

post-formation βCMA t(βCMA)

1 1 0.18 0.28 0.57 -0.40 3.31 7.30 10.46 -5.89

2 0.18 0.44 0.71 -0.53 3.19 8.94 11.91 -6.62

3 0.22 0.61 1.19 -0.98 3.54 11.67 20.60 -10.45

2 1 -0.06 0.14 0.30 -0.36 -1.24 3.02 5.84 -5.18

2 -0.07 0.02 0.22 -0.29 -1.47 0.31 4.34 -4.41

3 -0.13 0.09 0.47 -0.60 -2.27 1.97 9.66 -7.37

3 1 -0.54 -0.18 0.01 -0.55 -9.88 -4.18 0.17 -7.74

2 -0.76 -0.17 0.06 -0.83 -12.03 -3.68 1.19 -9.87

3 -0.91 -0.25 0.06 -0.96 -13.66 -4.84 1.14 -9.58

Avg. Portfolio -0.21 0.11 0.40 -0.61 -7.35 4.74 15.32 -13.59

H
ig

h
p

ow
er

Char-Portfolio pre-formation β̂HML-sorted portfolios

INV ME 1 2 3 1-3 1 2 3 1-3

α t(α)

1 1 0.04 0.13 0.14 -0.10 0.64 2.46 1.72 -0.92

2 0.20 0.08 -0.10 0.31 2.63 1.10 -1.24 2.79

3 0.31 -0.02 -0.09 0.40 2.99 -0.25 -1.20 2.87

2 1 0.09 0.12 0.03 0.06 1.35 1.74 0.46 0.57

2 0.15 0.03 -0.11 0.26 2.02 0.48 -1.41 2.47

3 0.12 -0.12 -0.12 0.25 1.60 -1.74 -1.92 2.15

3 1 -0.24 -0.09 -0.14 -0.09 -3.06 -1.59 -2.05 -0.85

2 -0.04 -0.08 -0.05 0.01 -0.52 -1.01 -0.64 0.05

3 0.36 -0.10 -0.13 0.49 4.34 -1.46 -1.65 3.69

Avg. Portfolio 0.11 -0.01 -0.06 0.17 2.73 -0.16 -1.71 2.67

post-formation βCMA t(βCMA)

1 1 -0.15 0.07 0.55 -0.70 -2.86 1.70 8.77 -8.65

2 -0.49 0.24 0.58 -1.07 -8.36 4.50 9.38 -12.93

3 -0.68 0.02 0.70 -1.38 -8.79 0.33 12.05 -13.17

2 1 -0.20 0.18 0.39 -0.59 -4.06 3.61 7.21 -7.89

2 -0.38 0.17 0.70 -1.08 -7.00 3.57 11.96 -13.82

3 -0.66 0.18 0.86 -1.53 -11.36 3.49 18.13 -17.77

3 1 -0.45 0.01 0.19 -0.64 -7.72 0.15 3.54 -7.79

2 -0.80 -0.04 0.39 -1.19 -12.62 -0.62 6.75 -13.66

3 -1.01 0.15 0.60 -1.61 -15.94 2.93 10.24 -16.01

Avg. Portfolio -0.54 0.11 0.55 -1.09 -17.48 4.11 19.64 -22.03
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Table 5: Results of time-series regressions on characteristics-balanced
hedge-portfolios.
Stocks are first sorted based on size and one of book-to-market, profitability or investment into 3x3
portfolios. Conditional on those sorts, they are subsequently sorted into 3 portfolios based on the
respective loading, i.e., on HML, RMW or CMA. For Mkt-RF and SMB we use the prior sort on
size and book-to-market. The ”hedge-portfolio” then goes long the low loading and short the high
loading portfolios. On the bottom, we form combination-portfolios that put equal weight on three
(HML, RMW, CMA), four (HML, RMW, CMA, Mkt-RF) or five (HML, RMW, CMA, Mkt-RF,
SMB) hedge-portfolios portfolios. Monthly returns of these portfolios are then regressed on the 5
Fama and French factors in the sample period from 1963/07 - 2017/06. In Panel A we use the low
power and in Panel B we use the high power methodology.

Panel A: Low power

Hedge-Portfolio Avg. α βMkt−RF βSMB βHML βRMW βCMA R2

hMktRF -0.07 0.09 -0.27 -0.17 0.07 0.08 -0.07 0.5

(-0.8) (1.38) (-17.35) (-7.77) (2.44) (2.36) (-1.38)

hSMB -0.1 -0.02 -0.12 -0.34 0.06 0.05 0.13 0.56

(-1.34) (-0.28) (-9.36) (-18.39) (2.44) (1.93) (3.29)

hHML -0.02 0.08 -0.02 -0.02 -0.5 -0.04 0.42 0.35

(-0.23) (1.33) (-1.61) (-0.74) (-17.05) (-1.16) (8.94)

hRMW -0.07 0.05 0.05 -0.06 -0.14 -0.28 -0.01 0.29

(-1.19) (0.95) (3.6) (-3.22) (-5.76) (-10.02) (-0.29)

hCMA -0.08 -0.01 -0.01 -0.01 0.27 -0.04 -0.61 0.26

(-1.26) (-0.24) (-0.78) (-0.37) (9.89) (-1.15) (-13.8)

EW3 -0.06 0.04 0 -0.03 -0.12 -0.12 -0.07 0.37

(-1.69) (1.43) (0.55) (-2.86) (-9.44) (-8.04) (-3.2)

EW4 -0.06 0.05 -0.06 -0.06 -0.07 -0.07 -0.07 0.25

(-1.9) (1.81) (-9.14) (-6.38) (-5.63) (-4.64) (-3.12)

EW5 -0.06 0.04 -0.06 -0.1 -0.06 -0.06 -0.04 0.29

(-2.07) (1.45) (-9.14) (-10.12) (-4.77) (-3.99) (-1.82)

Panel B: High power

Hedge-Portfolio Avg. α βMkt−RF βSMB βHML βRMW βCMA R2

hMktRF -0.07 0.22 -0.42 -0.38 -0.04 0.13 0.05 0.65

(-0.57) (2.81) (-21.97) (-14.31) (-1.09) (3.10) (0.81)

hSMB -0.18 -0.02 -0.18 -0.56 0.03 0.15 0.13 0.73

(-1.72) (-0.41) (-12.49) (-28.34) (1.15) (5.00) (3.12)

hHML -0.07 0.20 -0.01 0.08 -0.94 -0.24 0.45 0.77

(-0.66) (3.57) (-0.96) (4.34) (-36.15) (-8.35) (10.57)

hRMW -0.14 0.18 0.04 -0.06 -0.27 -0.76 -0.05 0.67

(-1.50) (3.25) (2.67) (-3.32) (-10.55) (-26.26) (-1.10)

hCMA -0.03 0.17 -0.02 -0.03 0.30 -0.11 -1.09 0.49

(-0.29) (2.67) (-1.26) (-1.51) (10.09) (-3.11) (-22.29)

EW3 -0.08 0.18 0.00 -0.00 -0.30 -0.37 -0.23 0.78

(-1.21) (5.79) (0.13) (-0.40) (-20.48) (-22.22) (-9.56)

EW4 -0.08 0.19 -0.10 -0.10 -0.24 -0.25 -0.16 0.65

(-1.58) (6.34) (-13.90) (-9.43) (-16.81) (-15.50) (-7.00)

EW5 -0.09 0.16 -0.10 -0.15 -0.21 -0.21 -0.13 0.61

(-2.00) (5.36) (-13.44) (-14.60) (-14.96) (-13.22) (-5.67)
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Table 6: Sharpe Ratio improvement.
For each of the five Fama and French (2015) factor portfolios, its corresponding hedge portfolio
portfolio (orthogonalized with respect to the five original factors), and the resulting improved
factor portfolio, we report the annualized average return in percentages, annualized volatility of
returns and the corresponding squared Sharpe ratio. The bottom panel reports the statistics for
the in-sample optimal combination of the original and the improved five factors. The sample period
is 1963/07 - 2017/06.

f
(1)
k h

(1)
k − βTf (1) f

(2)
k

HML

Mean 4.09 2.39 2.62

Vol 9.93 4.65 4.60

SR2 0.17 0.26 0.32

RMW

Mean 3.40 2.15 2.31

Vol 7.48 4.59 4.45

SR2 0.21 0.22 0.27

CMA

Mean 2.77 2.06 2.27

Vol 6.50 5.38 3.83

SR2 0.18 0.15 0.35

SMB

Mean 3.14 -0.28 2.50

Vol 10.38 4.74 6.56

SR2 0.09 0.00 0.15

MktRF

Mean 6.22 2.60 5.79

Vol 15.07 6.43 10.13

SR2 0.17 0.16 0.33

In-sample optimal combination

Mean 3.52 2.74

Vol 3.08 1.81

SR2 1.31 2.29
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