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1 Introduction

Asymmetric information can make agents worse off by disrupting efficient trade (e.g., Akerlof 1970,

Myerson and Satterthwaite 1983, Glosten and Milgrom 1985). But why would an agent allow his

private information to be an impediment to trade in the first place? In this paper, we study the

incentives of a privately informed agent to share his information with a counterparty endowed with

market power prior to a bilateral transaction.

We examine an environment with both private- and common-value uncertainty and consider

voluntary disclosures that are ex post verifiable, as in Grossman (1981), Milgrom (1981), and Shin

(2003). Ex post verifiability is a common restriction in the literature that is imposed to ensure that

disclosures are not subject to commitment and incentive problems, even in one-shot interactions.1 If

erroneous disclosures can be verified with probability one and are penalized — perhaps by regula-

tors or courts — the sender optimally designs signals that are always truthful. Moreover, the sharing

of verifiable information is relevant in many important economic contexts with hard information,

such as the trading of financial securities, corporate takeovers, and supply chain transactions.2

In this environment, we obtain a set of sharp predictions. First, the informed agent always finds

it privately optimal to design a partial disclosure plan that yields socially efficient trade in equilib-

rium. Whereas possessing superior information allows the informed agent to extract information

rents, sharing information reduces the extent to which the agent is being inefficiently screened by

his counterparty. We show that the agent is always willing and able to design ex post verifiable

signals such that he privately benefits from giving up part of his private information in order to pre-

empt inefficient screening. Yet, he finds it privately suboptimal to disclose all information as doing

so completely eliminates his information rents. Compared to a no-disclosure policy, the optimal
1The early literature analyzing these types of “persuasion games” is surveyed by Milgrom (2008). Since these games

focus on ex post verifiable disclosures, they significantly differ from “cheap talk games” popularized by Crawford and
Sobel (1982).

2See Boyarchenko, Lucca, and Veldkamp (2016) and Di Maggio, Franzoni, Kermani, and Sommavilla (2016) for
empirical evidence consistent with broker-dealers sharing private (deal-flow) information among themselves and with
clients, Hong, Kubik, and Stein (2005) and Pool, Stoffman, and Yonkers (2015) for empirical evidence consistent with
information sharing among socially connected portfolio managers, Heimer and Simon (2012) for empirical evidence
of information sharing among foreign exchange traders, Eckbo and Langohr (1989) and Brennan (1999) for empirical
evidence of information sharing among bidders and target companies in corporate takeovers, and Zhou and Benton (2007)
for empirical evidence of information sharing among firms part of the same supply chain.
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disclosure plan improves both the informed agent’s surplus and that of his counterparty with market

power.

We characterize general properties of privately optimal disclosure plan(s) and analyze the trade-

offs the informed agent faces. Moreover, we derive solutions for the shapes of optimal disclosure

plans when disclosure functions are restricted to be monotone, an assumption that is related to a

commonly imposed restriction in the security design literature. While we initially consider an envi-

ronment where the disclosure plan is designed before any uncertainty is realized — as is common

in models of information design (e.g., Rayo and Segal 2010, Kamenica and Gentzkow 2011, Gold-

stein and Leitner 2015, Ely 2017) — we also consider the case where disclosure is chosen after the

agent obtains private information (as in, e.g., Grossman 1981, Milgrom 1981, Verrecchia 1983, Shin

2003). We show that, in line with our earlier analysis, partial disclosure leading to socially efficient

trade also characterizes all equilibria satisfying two standard refinements of this interim disclosure

game.

Our results have relevant implications from both a positive and a normative perspective. First,

the economic mechanisms underlying optimal disclosure plans in our model shed light on exist-

ing disclosure practices in financial markets, in particular on variation in disclosures’ coarseness.

For example, the mechanisms may contribute to the intriguing fact that credit rating agencies like

Moody’s Analytics publish ratings on a discrete scale when they are solicited and paid for by is-

suers, but at the same time provide continuous credit scores when investors subscribe and pay for

credit information. Second, given the standard set of assumptions we consider and the strong pre-

dictions we obtain — in particular, trade is always efficient in equilibrium — our paper also sheds

light on the economically relevant conditions that must be violated for asymmetric information and

market power to impede the efficiency of trade. Our paper thus speaks to the regulation of infor-

mation disclosure in bilateral transactions with imperfect competition and asymmetric information

problems, such as corporate takeovers, real estate transactions, and over-the-counter trading.3 In
3For empirical evidence that these types of bilateral transactions often feature imperfect competition, see Ambrose,

Highfield, and Linneman (2005), Glaeser, Gyourko, and Saks (2005), Boone and Mulherin (2007), King, Osler, and
Rime (2012), Atkeson, Eisfeldt, and Weill (2013), Li and Schürhoff (2014), Begenau, Piazzesi, and Schneider (2015),
Hendershott et al. (2015), Di Maggio, Kermani, and Song (2016), Li, Taylor, and Wang (2016), and Siriwardane (2016).
For empirical evidence that these types of bilateral transactions often involve heterogeneously informed traders, see
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an environment like ours, a regulator does not need to mandate what information agents should

disclose nor does he need to produce additional information for uninformed market participants.

All the regulator needs to do is to enforce the truthfulness of verifiable disclosures by disciplining

agents who send signals that ex post prove to violate their own disclosure standards.

Related Literature. Our paper contributes to the theoretical literature that studies optimal informa-

tion sharing among traders. An important result in this literature goes back to Grossman (1981) and

Milgrom (1981) who show that, when disclosures are restricted to be ex post verifiable, an agent may

find it optimal to fully reveal his private information to his counterparties. However, unlike in our

model, the agent making the disclosure decision in these papers is not being screened by counterpar-

ties with market power — either all traders take the price as given (as in Milgrom 1981) or it is the

informed agent who sets the price (as in Grossman 1981). The lack of counterparties’ market power

implies that the agent who discloses information is concerned with his counterparties’ conditional

beliefs about the mean asset payoff. The agent then optimally discloses all his private information,

since any information he withholds is interpreted to be unfavorable, lowering his expected payoff

(a result commonly referred to as “unraveling”; see also Grossman and Hart 1980, Milgrom and

Roberts 1986). In contrast, in our environment, the disclosing agent is concerned with the full con-

ditional distributions of payoffs resulting from disclosures (rather than just the mean payoff), since

his counterparty has market power and decides to screen the agent based on the shapes of these

conditional distributions.

Verrecchia (1983) modifies a setting akin to Grossman (1981) and Milgrom (1981) by adding

disclosure costs whereas Fishman and Hagherty (1990) assume that a subset of private information

cannot be disclosed. In both cases, maximal disclosure may not be optimal for the informed party.

Admati and Pfleiderer (2000), however, show that a firm may pick a socially optimal disclosure plan

despite disclosure costs if that firm is a monopolist that captures all gains to trade. Matthews and

Postlewaite (1985), Okuno-Fujiwara, Postlewaite, and Suzumura (1990), Fishman and Hagherty

(2003), Shin (2003), Acharya, DeMarzo, and Kremer (2011), and Guttman, Kremer, and Skrzypacz

Eckbo, Giammarino, and Heinkel (1990), Garmaise and Moskowitz (2004), Green, Hollifield, and Schürhoff (2007),
Hollifield, Neklyudov, and Spatt (2014), Jiang and Sun (2015), Menkhoff et al. (2016), and Stroebel (2016).
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(2014) show, in different environments, that full disclosure also becomes suboptimal once there is

uncertainty about the existence of private information or its content.

Unlike in these settings, the information designer in our model is the responder to an ultimatum

offer, and his private information is thus his only source of profits. As a result, his optimal disclosure

plan must be partial, despite the existence of his private information being common knowledge and

disclosure being costless. Yet, we also show that it must yield socially efficient trade in equilibrium.

Our framework therefore speaks to how voluntary information sharing can eliminate inefficient

rationing in classic monopolistic screening problems, where private information and bargaining

power are separated. Examples of situations where such separation, whether full or partial, applies

abound, and include a real estate transaction in which a buyer submits a bid without knowing the

seller’s reservation value for the property, a financial transaction in which a dealer quotes a price

to a hedge fund possessing proprietary data and valuation models, and a supply chain transaction

in which a producer must price merchandise before offering it to a retailer informed about local

demand conditions.4

Monopoly pricing is also studied by Bergemann, Brooks, and Morris (2015) who analyze how

signals providing monopolists with additional information for price discrimination affect total sur-

plus and its allocation. Their analysis shows that, in a setting with private-value uncertainty, general

information structures (including randomization) exist such that total surplus can be increased to any

level less than or equal to the one from efficient trade, and any allocation of the incremental surplus

is attainable. Information available for price discrimination thus critically determines efficiency and

the allocation of surplus, raising the question of what part of a buyer’s private information a monop-

olist should be expected to endogenously gain access to. Our analysis shows that when information

disclosure by the informed agent is (a) voluntary and (b) ex post verifiable (with randomization not

being possible), precise predictions for both total surplus and its allocation obtain: (i) total surplus

is unique and equal to the surplus generated by efficient trade, and (ii) both agents benefit from

the optimal disclosure plan. These results hold for both private- and common-value uncertainty,
4While our framework assumes full separation of bargaining power and private information, as in classic models

of monopolistic screening, the main economic insights we develop will also speak to the multitude of scenarios where
these two sources of rents are partially separated and the full-disclosure/unraveling reasoning from Grossman (1981) and
Milgrom (1981) fails to apply.
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whether the disclosure functions are restricted to be monotone or not, and when disclosure plans are

designed ex ante or at an interim stage.

More broadly, our focus on market power also relates our paper to Gal-Or (1985) who mod-

els oligopolistic firms that can commit ex ante to sharing noisy signals of their private information

about the uncertain demand for their products. Since sharing information increases the correlation of

firms’ output decisions, thereby lowering their expected profits, the unique symmetric pure-strategy

equilibrium is characterized by no information sharing among firms. Lewis and Sappington (1994)

investigate in a setting without disclosure whether an uninformed seller with market power would

like to help his prospective buyer(s) acquire private information about the value of the asset (see also

Eső and Szentes 2007, who assume that trading occurs through an auction). Under general condi-

tions, the seller in Lewis and Sappington (1994) either wants his prospective buyer(s) to be fully

informed or completely uninformed about how much the asset is worth to them. Finally, Roesler

and Szentes (2017) solve for a buyer’s optimal information acquisition in a monopoly setting with-

out disclosure and show that the buyer finds it optimal to limit his information acquisition and avoid

that the monopolist seller inefficiently screens him (see also Glode, Green, and Lowery 2012).

The next section presents the classic problem of a monopolist who inefficiently screens a pri-

vately informed agent. In Section 3, we study the agent’s incentives to share some of his private

information with the monopolist and how the resulting disclosure plan affects the efficiency of trade.

Section 4 shows that our main insights survive when the agent designs his disclosure plan after ob-

taining private information rather than before. The last section concludes. Proofs omitted from the

text can be found in the Appendix.

2 The Bilateral Transaction

The monopolist seller of an asset (or good) chooses the price he will quote to a prospective buyer

(or customer) in a take-it-or-leave-it offer.5 The seller is uncertain about how much the buyer is

willing to pay for the asset but knows that the buyer’s valuation of the asset, which we denote by
5The buyer/seller roles could be reversed without affecting our main results, as long as market power and private

information are still allocated to distinct agents.
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v, has a cumulative distribution function (CDF) denoted by F (v). The buyer only accepts to pay a

price p in exchange for the asset if v ≥ p; otherwise, the seller must retain the asset, which is worth

c(v) to him. The CDF F (v) is continuous and differentiable and the probability density function

(PDF), denoted by f(v), takes strictly positive values everywhere on the support [vL, vH ].6 The

function c(v) is assumed to be weakly increasing and continuous. Both agents are risk neutral and

the functions F (v) and c(v) are common knowledge.7

Whenever the buyer’s valuation is greater than the seller’s — perhaps due to heterogeneity in

preferences, inventories, or liquidity needs — trade would create a social surplus. However, the

seller may find it privately optimal to use his market power and inefficiently screen the informed

buyer, thereby jeopardizing the gains to trade [v − c(v)]. We assume that whenever indifferent

between two strategies, an agent picks the one that maximizes the social surplus in the resulting

subgame-perfect Nash equilibrium.

The seller’s expected payoff from quoting a price p is given by:

Π(p) ≡ [1− F (p)]p+ F (p)E[c(v)|v < p]

=

∫ vH

p
pf(v)dv +

∫ p

vL

c(v)f(v)dv. (1)

When picking a price, the seller considers the tradeoff between the probability that a sale occurs

and the profit he obtains if a sale occurs. The seller’s marginal profit of increasing the price p is:

Π′(p) =

∫ vH

p
f(v)dv − pf(p) + c(p)f(p), (2)

which can be rewritten as:

Π′(p) = [1− F (p)]− f(p)[p− c(p)]. (3)

The first term on the right-hand side of equation (3) is the seller’s marginal expected benefit from
6Our results would also hold if the support of v was unbounded from above. If the support of v was unbounded from

below, our results would hold whenever limv↓−∞(v − c(v)) < 0.
7See, e.g., Hirshleifer (1971), Diamond (1985), and Kurlat and Veldkamp (2015) for the costs and benefits of disclo-

sure in the presence of risk aversion.
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collecting a higher price when trade occurs. The second term is the marginal expected cost from re-

ducing the probability of trade and destroying gains to trade obtained from trading with the marginal

buyer type. We impose the following condition on the surplus from trade [v − c(v)]:

Assumption 1. The surplus from trade [v − c(v)] crosses zero at most once (from below).

This condition is fairly benign as it is guaranteed to hold under any of the following assumptions

common in the literature: (i) the seller’s valuation for the asset is a constant; (ii) the seller’s valuation

for the asset is a fraction of v; (iii) the surplus from trade [v − c(v)] is a constant; (iv) the ratio of

the above-mentioned cost and benefit of marginally increasing the price, i.e., f(v)
1−F (v) [v − c(v)], is

strictly increasing in v.8

Assumption 1 implies that we can designate a cutoff v̂ ∈ [vL, vH ] such that trade is socially

efficient if it occurs when v ≥ v̂, and fails when v < v̂. Since it is possible under Assumption 1 that

[v − c(v)] remains at zero for a positive-measure subset of [vL, vH ] and then becomes positive for

higher values of v, we define the relevant cutoff as v̂ ≡ inf{v ∈ [vL, vH ] : v > c(v)}. Since f(v)

is strictly positive everywhere on the support [vL, vH ], the maximum price the seller can quote and

still maintain socially efficient trade is p = v̂. As a result, trade can be efficient only if:

Π′(v̂) ≤ 0. (4)

This necessary condition for efficient trade to occur in equilibrium can be interpreted as follows.

Efficient trade requires that v̂− c(v̂) ≥ 1−F (v̂)
f(v̂) , which means that either the gains to trade are large,

or that the seller’s beliefs about v are concentrated (i.e., the density f(v) is high enough) when the

surplus from trade becomes positive. If instead Π′(v̂) > 0, the seller inefficiently screens the buyer,

jeopardizing gains to trade. Moreover, the seller never optimally quotes a price p < v̂, because

quoting a price p = v̂ yields strictly higher profits.9

8See, e.g., Glode and Opp (2016) and Glode, Opp, and Zhang (2017) who specifically impose this condition, Fuchs
and Skrzypacz (2015) who define a “strictly regular environment” in a similar way, and Myerson (1981) who similarly
assumes that bidders’ virtual valuation functions are strictly increasing.

9 Specifically, if the seller quotes a price p < v̂, his expected payoff can be written as:

Pr(v ≥ v̂)p+ Pr(p ≤ v < v̂)p+ Pr(v < p)E[c(v)|v < p].
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Since we assume that whenever indifferent, an agent picks the strategy that maximizes social

surplus, we can rule out any equilibrium where the seller inefficiently mixes between quoting mul-

tiple prices pn ∈ [vL, vH ]. If he were to mix over several prices, the seller would have to be

indifferent between mixing and quoting any of these prices with probability one (taking into ac-

count the buyer’s best response to each price). The tie-breaking rule implies that the seller instead

plays the pure strategy of quoting the price that socially dominates all other prices. Similarly, we

can rule out equilibria where the buyer inefficiently mixes between accepting and not accepting a

price quote. A tie-breaking rule based on social optimality thus ensures that we can restrict our

attention to pure-strategy subgame-perfect Nash equilibria.

We further illustrate the seller’s incentives to set inefficient prices through a simple parameter-

ized example that we will revisit later.

Example 1. Suppose the buyer values the asset at v ∼ U [1, 2] and the seller values it at a constant

c̄ ≤ 1. The surplus from trade is then always positive (i.e., v̂ = 1) and trade is efficient if and only if

it occurs with probability 1. The seller’s optimization problem when picking a price can be written

as:

max
p∈[1,2]

Π(p) = Pr(v ≥ p)p+ Pr(v < p)c̄ = (2− p)p+ (p− 1)c̄. (5)

Since Π′(1) = c̄, the seller quotes a price p = 1 whenever c̄ ≤ 0 and the buyer always accepts,

implying that trade is efficient. However, when c̄ ∈ (0, 1] the seller finds it optimal to quote a price

p = 1 + c̄
2 , which destroys the surplus from trade with probability c̄

2 .

The example above shows a simple case where v̂ = vL, that is, the surplus from trade is positive

for any realization of v. In such cases, sustaining efficient trade requires that vL − c(vL) ≥ 1
f(vL) .

For cases where v̂ ∈ (vL, vH) however, efficient trade can never be sustained in equilibrium since

v̂ − c(v̂) = 0 < 1−F (v̂)
f(v̂) , implying that the seller always finds it optimal to quote a price that is at

least marginally higher than the efficient price p = v̂. This situation arises, for example, whenever

the seller values the asset at a constant c̄ ∈ (vL, vH).

In contrast, if the seller quoted a price v̂, his payoff would increase by v̂ − p > 0 when v ≥ v̂, by c(v) − p ≥ 0 when
p ≤ v < v̂ and would remain the same when v < p.
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Although we model a bilateral trading interaction where only one offer can be made, similar

inefficiencies associated with screening can arise in dynamic environments. First, if the seller could

commit to following any dynamic pricing strategy, he would still optimally choose to make the

buyer a take-it-or-leave-it offer at the start of the dynamic game and no further offer later on, just as

in our setup here (see, e.g., Stokey 1979, Harris and Raviv 1981, Riley and Zeckhauser 1983). Sec-

ond, in environments where such commitment is not feasible or credible, equilibria with “sequential

skimming” would typically obtain, where the seller would gradually decrease his price quotes trad-

ing off higher prices with an increased probability of trade delays (see, e.g., Fudenberg, Levine, and

Tirole 1985). Private information and market power would then again impede efficiency, in this case

through socially costly delays. Given the presence of inefficient screening in either environment,

the central forces of our analysis below would thus carry over even if multiple bargaining rounds

were allowed.

3 Information Disclosure prior to Trading

In this section, we analyze the buyer’s decision to share a subset of his information with the seller

before trade occurs. If trade is already socially efficient without disclosure, additional disclosures

are suboptimal for the buyer — in this case, the seller already quotes the lowest possible price,

v̂, and additional information can only cause him to increase his quote. Thus, for the remainder

of the paper we focus on situations where trade would be socially inefficient if the buyer did not

disclose any of his private information. Sharing information might hurt the buyer since possessing

private information yields information rents, but it might also reduce the seller’s incentives to charge

inefficient mark-ups that reduce the expected gains from trade.

For now, we assume that the agent must design his disclosure plan prior to acquiring private

information, and that he can commit to not manipulating signals specified by this plan later, as is

common in models of information design. Assuming that the buyer is uninformed at the time of

the information design increases the tractability of the analysis, as it eliminates the existence of

signaling concerns. We will relax this assumption in Section 4. We also restrict our attention to
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ex post verifiable disclosures or signals, as in Grossman (1981), Milgrom (1981), and Shin (2003).

In practice, the ex ante design of such disclosure plans is likely relevant in economic contexts with

hard information. In a variety of industries, information is shared automatically between firms

via information technology (IT) systems according to pre-determined algorithms. For example,

firms in the same supply chain are typically connected to a common IT system that automatically

shares information about inventories and production problems. Similarly, in the context of financial

markets, hedge funds systematically share financial data (e.g., holdings and performance data) with

broker-dealers and clients, which reduces information asymmetries about trading motives, such as

liquidity needs (see also footnote 2). We formally define ex post verifiability in the context of our

model as follows.

Definition 1. A signal whose realization s belongs to a set S is called “ex post verifiable” if it can

be represented by a function D : [vL, vH ]→ S such that D−1(s) ≡ {v : D(v) = s} ∈ B([vL, vH ])

∀s ∈ S, where B([vL, vH ]) denotes the Borel algebra on [vL, vH ].

This definition implies that for any signal realization s ∈ S, D−1(s) is a Borel set in [vL, vH ].

Since a Borel set of [vL, vH ] must be characterized by unions of intervals, designing a disclosure

plan implies combining partitions to inform the seller about possible realizations of v. If the buyer

sends a signal, the seller must be able to confirm ex post that the true realization of v was indeed

possible given the signal sent. Signals that are subject to additional random shocks (due to “noise”

components or randomization) are thus ruled out by ex post verifiability. This restriction is common

in the literature on disclosure (see Verrecchia 2001, Milgrom 2008, Beyer, Cohen, Lys, and Walther

2010, for related surveys) and strikes us as natural given the assumption that the “sender” of the

information does not manipulate his signal, as is commonly assumed in persuasion games.10 In

the presence of ex post verifiability, erroneous disclosures could be penalized heavily, providing

the sender with the incentives to indeed send signals that are truthful, even when manipulation is a
10Ex post verifiability implies that, for different signals that can be sent in equilibrium, posterior beliefs about v do

not have overlapping support. Since Bayesian persuasion only requires that the distribution of posteriors is such that the
expected posterior probability equals the prior probability, it allows for randomization and generally does not satisfy the
criterion of ex post verifiability (see Kamenica and Gentzkow 2011).
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feasible action.11

Before proceeding, we summarize the timeline of our baseline model. First, the buyer designs

a disclosure plan. Then the buyer observes the realization of v and the seller receives a signal

consistent with the chosen disclosure plan. Finally, the seller quotes a price and the buyer decides

whether to pay this price in exchange for the asset.

3.1 Disclosure and Efficiency of Trade

We now study how the buyer’s choice of a disclosure plan affects the efficiency of trade. We first

revisit and extend our parameterized Example 1 to provide some initial intuition for the logic that

will underlie our first main result below.

Example 2. As in Example 1, we assume the buyer values the asset at v ∼ U [1, 2] and the seller

values it at a constant c̄ ≤ 1. We already know from Example 1 that absent disclosure, the seller

quotes a price p = 1 + c̄
2 when c̄ ∈ (0, 1], which destroys the gains to trade with probability c̄

2 . The

buyer then acquires the asset whenever v ≥ p and he collects an expected profit equal to:

Pr
(
v ≥ 1 +

c̄

2

) [
E
(
v|v ≥ 1 +

c̄

2

)
−
(

1 +
c̄

2

)]
=

(2− c̄)2

8
. (6)

Now consider what happens if the buyer promises to share some of his information with the seller,

in particular, by disclosing whether v ∈
[
1, 1 + c̄

2

)
or v ∈

[
1 + c̄

2 , 2
]
. The seller’s optimization

problem when quoting a price to the buyer now depends on the realization of the signal. If the seller

learns that v ≥ 1 + c̄
2 , his optimization problem becomes:

max
p∈[1+ c̄

2 ,2]
Pr
(
v ≥ p|v ≥ 1 +

c̄

2

)
p+ Pr

(
v < p|v ≥ 1 +

c̄

2

)
c̄ =

(
2− p
1− c̄

2

)
p+

(
p− (1 + c̄

2 )

1− c̄
2

)
c̄, (7)

and if instead he learns that v < 1 + c̄
2 , the problem takes the form:

max
p∈[1,1+ c̄

2 )
Pr
(
v ≥ p|v < 1 +

c̄

2

)
p+ Pr

(
v < p|v < 1 +

c̄

2

)
c̄ =

(
1 + c̄

2 − p
c̄
2

)
p+

(
p− 1

c̄
2

)
c̄. (8)

11Due to the absence of noise, penalties would then remain off-equilibrium — penalties would only be triggered if the
sender intentionally violated the standards set by his own disclosure plan.
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In the first case, it is easy to verify that the seller finds it optimal to quote ph = 1 + c̄
2 , just as he

did without disclosure. However, in the second case, the seller finds it optimal to quote the price

pl = max{1
2 + 3

4 c̄, 1}.

Under this disclosure plan, the buyer collects an expected profit of:

Pr
(
v ≥ 1 +

c̄

2

) [
E
(
v|v ≥ 1 +

c̄

2

)
−
(

1 +
c̄

2

)]
+ Pr

(
pl ≤ v < 1 +

c̄

2

) [
E
(
v|pl ≤ v < 1 +

c̄

2

)
− pl

]
. (9)

The first term in equation (9) is equal to the expected profit the buyer would collect absent disclosure.

The second term is the additional profit the buyer is able to collect due to the introduced disclosure

plan. This additional profit is strictly positive whenever c̄ > 0. Thus, the buyer is strictly better off

under this disclosure plan than without any disclosure. Moreover, if c̄ ≤ 2
3 the seller quotes pl = 1

when v < 1 + c̄
2 , which implies that trade is efficient regardless of the signal realization.

If c̄ > 2
3 however, the seller quotes pl = 1

2+3
4 c̄when v < 1+ c̄

2 , which leads to a higher efficiency

of trade than without disclosure but still causes trade to break down with positive probability. A

similar reasoning can then be applied again to construct an alternative disclosure plan that splits

the region of inefficient trade
[
1, 1 + c̄

2

)
into

[
1, 1

2 + 3
4 c̄
)

and
[

1
2 + 3

4 c̄, 1 + c̄
2

)
, such that the buyer is

strictly better off and trade is more efficient than under the first disclosure plan. Note, however, that

even though these alternative disclosure plans represent profitable deviations for the buyer, they do

not represent the buyer’s optimal plan. We will derive properties of optimal disclosure plans below.

The example above shows that, if trade is inefficient without disclosure, it is possible to construct

a disclosure plan that improves the social efficiency of trade and makes the buyer strictly better

off. Below, we extend this reasoning to establish a stronger result: the buyer will in fact design a

disclosure plan that leads to efficient trade in order to maximize his expected profit in equilibrium.

In particular, we will show that any disclosure plan that leads to the destruction of trade surplus

cannot be part of an equilibrium, as it can be replaced by a more efficient disclosure plan that

strictly dominates from the buyer’s perspective. In order to show this result, it is useful to introduce

Lemma 1, which is proved in Appendix A.
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Lemma 1. Suppose that the seller would quote a price p̃ if the buyer’s valuation was drawn from a

distribution with CDF F (v) on [vL, vH ]. Then the seller would also quote a price p̃ if the buyer’s

valuation was drawn from this distribution truncated from below at p̃, i.e., F (v|v ≥ p̃).

Lemma 1 is both simple and powerful. If a seller finds it optimal to quote a price p̃ under a

given distribution of v, then truncating this distribution from below at p̃ will not impact his pricing

decision. In other words, by eliminating the possibility that v < p̃, we do not change the fact that

the seller is better off quoting p̃ than any other p ∈ (p̃, vH ]. As a result, a buyer expecting the seller

to quote an inefficient price p̃ > v̂ under a given disclosure plan can design a simple alternative

disclosure plan that increases his expected profit while also increasing the social surplus from trade.

In particular, if the buyer were to create a new signal that is triggered only if v ∈ [vL, p̃), the seller

would optimally respond to receiving this signal by quoting a price below p̃. This response, in turn,

would imply that efficient trade occurs with a higher probability, with both the buyer and the seller

extracting a fraction of the incremental social surplus. Moreover, since the seller’s behavior when

v ≥ p̃ is unaffected by this new signal, this alternative disclosure plan strictly improves both the

buyer’s expected profit and the efficiency of trade.

We now state our first main result, and include the associated proof in the main text to highlight

the underlying logic.

Proposition 1. If the buyer can commit to any disclosure plan that sends ex post verifiable signals

to the seller, he designs in equilibrium a partial disclosure plan that yields socially efficient trade.

Proof. By contradiction, suppose that the buyer’s optimal disclosure plan is represented by D(·),

which does not implement efficient trade. As in the case without disclosure, it cannot happen in

equilibrium that trade occurs for some v < v̂, where c(v) > v (see footnote 9). Thus, in equilibrium

the seller always quotes prices weakly greater than v̂, independently of the signal sent by a disclosure

plan.

Now suppose that trade is inefficient, given the disclosure plan, because trade fails for some

v > v̂ where c(v) < v. We can show that there exists another disclosure plan that yields a higher

13



profit for the buyer. Going forward, we denote by ps the price the seller would quote after receiving

a signal s ∈ S generated by a disclosure function D(·). More generally, we will use the subscript

s on a given function to indicate the conditional version of that function after receiving a signal s,

e.g., Fs(v) ≡ F (v|s). There exists an s0 ∈ S, such that upon receiving signal s0, the seller quotes

a price ps0 > v̂ and ps0 > inf{v ∈ [vL, vH ] : D(v) = s0}. (Since singletons have zero measure,

we assume, without loss of generality, that D−1(s) does not admit any singletons.) A buyer whose

valuation belongs to {v : D(v) = s0} ∩ (v̂, ps0) would refuse to pay the seller’s quoted price ps0 ,

leading to inefficient trade. Consider the following alternative disclosure plan where S′ = S ∪ {s′}

for some s′ /∈ S and

D̃(v) ≡


D(v) if D(v) 6= s0

s0 else if D(v) = s0, v ≥ ps0

s′ otherwise.

(10)

By definition, the disclosure plan D̃(·) also satisfies ex post verifiability.

We now show that D̃(·) would give the buyer a strictly higher ex ante expected profit. First,

note that when s 6= s0 and s 6= s′, trading behavior is unaltered and the seller still quotes a price

ps. Second, Lemma 1 guarantees that the seller still quotes ps0 under the alternative disclosure plan

D̃(·) when he receives a signal s0. Finally, suppose the seller quotes a price z when he receives a

signal s′. Since quoting ps0 yields zero profit in this case, it must be that z ∈ [inf D−1(s0), ps0). As

a result, the buyer’s ex ante expected profit under the alternative disclosure plan D̃(·) is given by:

∑
s∈S

∫
D−1(s)∩[ps,vH ]

(v − ps)dF (v)︸ ︷︷ ︸
Profit from s ∈ S

+

∫
D−1(s0)∩[z,ps0 )

(v − z)dF (v)︸ ︷︷ ︸
Profit from s′

, (11)

whereas the profit under the disclosure plan D(·) is equal to only the first term. Since ps0 > z, the

second term is strictly positive and the buyer earns a strictly higher profit under the disclosure plan

D̃(·) than he does under the plan D(·), thereby contradicting the optimality of D(·). We have thus

shown that in equilibrium the buyer’s optimal disclosure plan must result in socially efficient trade.

14



We can also show that the optimal disclosure plan must reveal the buyer’s information only

partially. Otherwise, the seller quotes the buyer a price p = v for all realizations of v and the buyer

obtains no surplus. A full disclosure plan is therefore weakly dominated by a no-disclosure plan

that leads to inefficient trade, which is then strictly dominated by a partial disclosure plan that leads

to efficient trade, consistent with the arguments above.

Proposition 1 states two key characteristics of an optimal disclosure plan. First, the privately

informed buyer’s incentives to disclose verifiable information are aligned with social surplus max-

imization. By sharing a subset of his information with the seller, the buyer ensures that he will be

quoted prices that avoid inefficient rationing, thereby yielding incremental social surplus.12 A key

insight is that, even though the buyer does not have any bargaining power, he can always ensure that

he obtains a fraction of this incremental surplus (in the form of an information rent). As a result,

as long as a given disclosure plan does not lead to socially efficient trade, the buyer can always

construct an alternative plan that strictly improves his expected payoff while also increasing social

surplus.

Second, the proposition reveals that it is never optimal for the buyer to share all his information

with the seller, as such a disclosure plan would drive the buyer’s rents to zero. Unlike in Grossman

(1981) where full disclosure is optimal and unraveling obtains, the informed trader in our model

does not have market power and can only extract rents if he conceals some information from his

counterparty. Our results thus highlight that the extent to which market power and private infor-

mation are separated (that is, allocated to different agents) will greatly affect whether information

revelation is perfect (as in Grossman’s case) or partial (as in our case). As we show in the next sub-

section, such partial revelation will imply “coarseness” in disclosures, a feature that is commonly

observed in financial and goods markets.
12The seller always weakly benefits from verifiable disclosures, since he can disregard the information provided and

quote the same price as he would absent disclosures.
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3.2 Optimal Disclosure Plans

In the general environment we have considered so far, solving for the optimal disclosure function

D(·) involves functional optimization, which is equivalent to choosing an infinitely dimensional

vector of choice variables indexed by v ∈ [vL, vH ]. Moreover, this problem is generally non-

convex. We have already shown that the buyer’s optimal disclosure plan in this general environment

must satisfy two properties in equilibrium: (i) disclosure is partial, and (ii) leads to efficient trade.

In this subsection, we go several steps further in characterizing optimal disclosure plans. First,

we recast the buyer’s information design problem in a simplified form by relying on Proposition

1, derive additional properties of optimal disclosure plans, and provide intuition for the tradeoffs

the buyer faces in our general environment. Second, we provide a full characterization of optimal

disclosure plans when disclosure plan functions D(v) are restricted to be monotone, an assumption

that is related to a commonly imposed restriction in the security design literature. Finally, we show

how optimal disclosure plans can be determined under discrete distributions F (v), without imposing

monotonicity.

3.2.1 General Properties of an Optimal Disclosure Plan

We now recast the buyer’s information design problem in a simplified form and discuss the tradeoffs

the buyer faces. We can write the buyer’s expected payoff from a disclosure plan D(·) as follows:

W (D) =
∑
s∈S

∫
{v∈D−1(s):v≥ps}

(v − ps)dF (v). (12)

The proof of Proposition 1 implies that an optimal disclosure plan must yield efficient trade, that

is, trade occurs when v > v̂ , and does not occur when v < v̂. As a result, maximizing the buyer’s

expected payoff is equivalent to finding a disclosure functionD(v) that minimizes the expected price

paid for all v ≥ v̂: ∑
{s∈S:inf[D−1(s)]≥v̂}

inf[D−1(s)]

∫
D−1(s)

dF (v), (13)
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subject to the efficiency constraints that conditional on v > v̂, the prices the seller optimally quotes

are all accepted by the buyer:

ps ≤ inf[D−1(s)] ∀s ∈ S : inf[D−1(s)] ≥ v̂, (14)

where we assume, without loss of generality, that the disclosure function D(v) separates all realiza-

tions of v based on whether trade is strictly beneficial or not, that is,13

{v ∈ D−1(s) : v ≤ c(v)} ∩ {v ∈ D−1(s) : v > c(v)} = ∅ ∀s ∈ S. (15)

From the set of efficient disclosure plans — which satisfy the efficiency constraints (14) — the

buyer optimally chooses a plan that pools realizations of v so as to minimize the expected price he

pays. Ideally, the buyer would like to pool all realizations where v ≥ v̂ in one signal, if this did

not violate the efficiency constraint (14), as doing so would imply that the expected price he pays is

just v̂. Yet, whenever condition (4) is violated, the efficiency constraint (14) would also be violated

under such a plan, and would lead to inefficient rationing. As a result, the buyer’s optimal disclosure

plan has to provide some separation of realizations where v ≥ v̂, enough to ensure that the seller is

not tempted to resort to inefficient screening.

Disclosure plans that provide more separation lower the seller’s incentives to screen in the fol-

lowing sense. Consider the decision of a buyer to pool or separate two generic intervals in a disclo-

sure plan D(·). Let A ≡ [aL, aH) and B ≡ [bL, bH) denote these two intervals, where bL ≥ aH

and aL ≥ v̂. When a pooling signal is generated by the disclosure plan, the necessary condition for

efficient trade to occur in equilibrium is:

aL − c(aL) ≥ Pr(v ∈ A ∪B)

f(aL)
. (16)

13Under Proposition 1, it is still possible to have a signal s where v̂ ∈ (inf{D−1(s)}, sup{D−1(s)}) as long as
ps = v̂. However, it was shown as part of the proof of Proposition 1 that the seller never finds it optimal to quote a price
below v̂, regardless of the buyer’s disclosure. Hence, a disclosure plan that includes this particular signal s would yield
the same trading outcomes as an alternative disclosure plan where the signal s is split into two new signals, based on
whether v ≤ v̂ and v > v̂. To simplify the exposition of our results, we assume that whenever relevant, it is this refined,
yet equivalent, disclosure plan that is chosen by the buyer.
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This condition is strictly more restrictive than the corresponding condition when v ∈ A, and a

separating signal is generated:

aL − c(aL) ≥ Pr(v ∈ A)

f(aL)
. (17)

As a result, the set of the functions F (·) and c(·) for which the seller inefficiently screens the buyer

is strictly larger when a disclosure plan D(·) pools the regions A and B. Yet, if the functions F (·)

and c(·) are such that the seller does not resort to inefficient screening after receiving the pooling

signal, then the buyer strictly prefers a disclosure plan that sends this pooling signal, as it implies

that he pays a strictly lower expected price.

Related to this intuition, we will derive additional properties of optimal disclosure plans that

rely on the following definition.

Definition 2. The constraint that trade has to be efficient conditional on a signal s ∈ S generated

by a disclosure function D(·) is said to be “binding” if

Π′s(inf{D−1(s)}) = 0, (18)

or if there exists a price p′ ∈ D−1(s) such that p′ 6= inf{D−1(s)}, and

Πs(inf{D−1(s)}) = Πs(p
′), (19)

where Πs(p) denotes the seller’s expected payoff from quoting a price p conditional on receiving a

signal s.

Recall that ps denotes the price the seller quotes to maximize his conditional expected payoff

Πs. Suppose an optimal disclosure plan involves n signal realizations s ∈ {1, ..., n} for which trade

creates a surplus (i.e., v > c(v)), and the corresponding quoted prices are denoted as p1, ..., pn.

Without loss of generality, assume p1 < p2 < ... < pn. We will refer to s ∈ {1, ..., (n− 1)} as the

(n − 1) lowest signal realizations, since the associated quoted prices {p1, ..., pn−1} are lower than
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that associated with s = n. We show in Appendix A that a buyer’s optimal disclosure plan satisfies

the following property.

Proposition 2. Under an optimal disclosure plan with n possible signal realizations for which

v > c(v), the efficiency constraints associated with the (n − 1) lowest signal realizations are

binding.

Proposition 2 shows that under an optimal disclosure plan, the seller is indifferent between

quoting an efficient price and at least one other higher, inefficient price after receiving the (n − 1)

lowest signals for which v > c(v). Starting from an optimal disclosure plan, any attempts to

reassign a positive measure of realizations of v that pay the highest price pn under this plan to any

of the lower signals would violate the efficiency constraint associated with that lower signal (see

condition (14)). Otherwise, the buyer could construct an alternative disclosure plan that lowers the

expected price he pays for the asset.

To see this, consider a simple situation where trade would always create a surplus, and where

the buyer designs a disclosure plan that sends one of two signals: a “low” signal (associated with

a low price) and a “high” signal (associated with a high price). If the seller were to strictly prefer

quoting the low price over quoting any other possible price (including a marginally higher price)

after receiving the low signal, the buyer could improve his disclosure plan as follows. He could

move a small measure of the highest realizations of v (those close to vH ) that were initially assigned

to the high signal, and reassign them to the low signal. By doing so, the buyer would increase the

probability of the low signal being sent, without impacting the prices the seller quotes under either

signal. This deviation would decrease the average price the buyer pays for the asset, making him

strictly better off. Such a profitable deviation remains possible until the efficiency constraint of a

buyer’s optimal disclosure plan is binding for each of the (n− 1) lowest signal(s).

3.2.2 Monotone Disclosure Functions

In this subsection we characterize the buyer’s optimal disclosure plan when disclosure functions

D(·) are restricted to be monotone. Monotonicity assumptions are commonly imposed in general
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environments like ours. For example, they are a common restriction in the security design litera-

ture,14 and some of the arguments used in that literature to justify monotonicity also carry over to

the context of our model.15 Formally, we make the following assumption in this subsection:

Assumption 2. Disclosure plans D(v) are restricted to be monotone in v.

Assumption 2 maintains the property that the functionD(·) is an infinite-dimensional object and

that solving for the optimal plan is a non-convex problem. Nonetheless, it yields additional tractabil-

ity, allowing us to characterize optimal disclosure plans under fairly mild technical conditions fur-

ther detailed below. Given Assumption 2, an optimal disclosure plan D(v) can be represented in

the following form:16

D(v) =



0, for v ∈ [vL, v̂], if vL ≤ c(vL)

1, for v ∈ (v̂, v2), if vL ≤ c(vL), and for v ∈ [v̂, v2) if vL > c(vL)

2, for v ∈ [v2, v3),

...

n, for v ∈ [vn, vH ].

(20)

where (n − 1) partition cutoffs v2, ..., vn, with v1 ≡ v̂ < v2 < ... < vn < vn+1 ≡ vH , separate

realizations where v > v̂ into n subsets. Moreover, this function satisfies condition (15) by gener-

ating a separate signal s = 0 for all realizations of v for which trade is not strictly beneficial, that

is, for all v ∈ [vL, vH ] : v ≤ c(v).
14See, e.g., Innes (1990), Nachman and Noe (1994), and DeMarzo and Duffie (1999).
15For example, if disclosure functionsD(·) were not monotone, then the buyer could benefit by contributing additional

funds to the asset before v is verified. Analogously to the argument in footnote 28 of DeMarzo and Duffie (1999), suppose
that there are two buyer types v′ and v′′ with v′ < v′′, where under the equilibrium disclosure plan v′ is associated with a
“higher signal” s′′, and v′′ with a “lower signal” s′, in the sense that the buyer is charged a higher price conditional on the
signal s′′, that is ps′′ > ps′ . Given a realization v′, suppose the buyer can inject (v′′ − v′) into the asset before the final
payoff v is verified. Then doing so would allow the buyer to pay the lower price ps′ , while still collecting v′ and his own
contribution (v′′− v′). Thus, whenever there exists a ṽ > v that is associated with a price pD(ṽ) that is lower than pD(v),
the buyer would have an incentive to inject (ṽ − v) into the asset and pay the lower price. If such contributions cannot
be prevented, then only monotone disclosure functions are observed in equilibrium, and the monotonicity assumption is
without loss of generality.

16Note that the function D(v) that achieves the optimum is clearly not unique. For instance, instead of having signals
S = {1, 2, 3, ..., n}, D(v) could produce the signals {2, 4, 6, ..., 2n}.
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To further increase analytical tractability, we impose the following assumption that is closely

related to the standard assumption in auction theory that bidders virtual valuation functions are

strictly increasing (e.g., Milgrom 1981).

Assumption 3. The functions h(v) ≡ f(v)
1−F (v) and H(v) ≡ f(v)(v−c(v))

1−F (v) are strictly increasing in v

for v ∈ [vL, vH).

If Assumption 3 is satisfied under some distribution F (·), then it is also satisfied under any trun-

cated version of that distribution.17 As a result, Assumption 3 guarantees that the seller’s marginal

profit function conditional on each signal, which we denote by Π′s(·), crosses zero from above at

most in one point. The seller then quotes an efficient price ps = vs for any vs > c(vs) whenever the

following condition is satisfied:

Hs(vs) ≡
f(vs)(vs − c(vs))
F (vs+1)− F (vs)

≥ 1. (21)

The proof of Proposition 1 implies that even when disclosure plans are restricted to be monotone

in v, an optimal plan from the buyer’s perspective has to ensure efficient trade. Thus, the buyer’s

problem of finding an optimal monotone D(·) function can be recast as the problem of finding

partition cutoffs (v2, ..., vn) that minimize the expected price the buyer pays for all v > c(v), which

is given by:

n∑
s=1

(F (vs+1)− F (vs)) vs, (22)

subject to the efficiency constraints:

Hs(vs) ≥ 1 ∀s ∈ {1, ..., n} if vL > c(vL),

lim
v↓v1

H1(v) ≥ 1 and Hs(vs) ≥ 1 ∀s ∈ {2, ..., n} if vL ≤ c(vL).
(23)

17See Lemma 1 in Glode and Opp (2016).
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It is useful to introduce the following two functions that are related to these efficiency con-

straints. We define the left efficiency bound function lb : (v̂, vH ]→ R and the right efficiency bound

function rb : [v̂, vH)→ R as follows:

lb(v) ≡


x ∈ [v̂, v) : f(x)(x−c(x))

F (v)−F (x) = 1, for f(v̂)(v̂−c(v̂))
F (v)−F (v̂) < 1,

v̂, for f(v̂)(v̂−c(v̂))
F (v)−F (v̂) ≥ 1,

(24)

rb(v) ≡


x ∈ [v, vH) : f(v)(v−c(v))

F (x)−F (v) = 1, for f(v)(v−c(v))
F (vH)−F (v) < 1,

vH , for f(v)(v−c(v))
F (vH)−F (v) ≥ 1.

(25)

Given the above definition of lb(·), the efficiency constraints (23) imply the following inequality

constraints:

vs ≥ lb(vs+1) ∀s ∈ {1, 2, ..., n} if vL > c(vL),

vs ≥ lb(vs+1) ∀s ∈ {2, 3, ..., n} if vL ≤ c(vL).

(26)

Moreover, the functions lb(·) and rb(·) allow us to derive the following useful property of optimal

partition cutoffs (its proof can be found in Appendix A).

Lemma 2. Given any two partition cutoffs vs−1 and vs+1 with s ≥ 2 that satisfy the efficiency

constraint vs−1 ≥ lb(lb(vs+1)) implied by (26), the interior cutoff vs that maximizes the buyer’s

expected payoff is either equal to rb(vs−1) or equal to lb(vs+1).

Lemma 2 dramatically reduces the set of potentially optimal partition cutoffs: given any two

neighboring partition cutoffs vs−1 and vs+1 that do not immediately violate the efficiency con-

straints (26), the optimal interior cutoff vs takes one of two possible candidate values: rb(vs−1)

or lb(vs+1). We now derive a condition that ensures that one of these two candidates consistently

dominates on the relevant part of the domain, that is, for v > c(v). To do so, we specify the function
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Φ : Ω→ R as:

Φ(u,w) ≡ u · [F (rb(u))− F (lb(w))] + rb(u)[F (w)− F (rb(u))]− lb(w)[F (w)− F (lb(w))],

(27)

where the domain is defined as follows:

Ω ≡


{(u,w) : u ∈ (lb(lb(w)), lb(w)] and w ∈ (rb(vL), vH ]}, for c(vL) ≤ vL,

{(u,w) : u ∈ (lb(lb(w)), lb(w)] and w ∈ (v̂, vH ]}, for c(vL) > vL.

(28)

The Φ-function represents the buyer’s expected net benefit of choosing, given some generic neigh-

boring partition cutoffs u and w, an interior cutoff ṽ that is equal to lb(w) rather than equal to rb(u).

The Φ-function encodes non-local properties of the functions F (·) and c(·) affecting the optimal dis-

closure plan. In particular, we can show that even if Assumption 3 is satisfied, the sign of Φ is not

uniquely determined on its domain (see Appendix B). Yet, under commonly used specifications in-

volving distributions F (·) such as the uniform distribution, and (truncated) parameterizations of the

Normal distribution and the gamma distribution, and c(·)-functions such as c(v) = c̄, c(v) = v−∆,

and c(v) = βv (with β < 1), the Φ-function consistently takes weakly positive values. In cases

like this, the characterization of an optimal disclosure plan becomes highly tractable. In light of this

fact, we specify the following technical condition.

Assumption 4. The functions F (·) and c(·) imply that inf{Φ(u,w) : (u,w) ∈ Ω} ≥ 0.

We can now proceed to fully characterizing optimal disclosure plans under Assumptions 1-4

(see proof in Appendix A).

Proposition 3. The partition cutoffs of an optimal disclosure plan function (20) are given by a

descending sequence starting with vn+1 = vH and where:

vs = lb(vs+1), for s = n, (n− 1), ..., 3, 2. (29)
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When vL > c(vL), this sequence {vn, vn−1, vn−2, ..., v2} is finite. When vL ≤ c(vL), this sequence

is infinite (that is, n→∞) and converges to v̂.

Recall that the Φ-function quantifies the net benefit of setting the partition cutoff vs equal to

lb(vs+1) rather than equal to rb(vs−1), taking as given generic neighboring partition cutoffs vs−1

and vs+1. Naturally, if this net benefit is consistently positive then the buyer consistently optimally

chooses vs = lb(vs+1), giving rise to the optimal sequence described in Proposition 3. While under

many standard specifications of the functions F (·) and c(·) the sign of the Φ-function is positive

everywhere on its domain Ω, we also provide in Appendix B an example of functions F (·) and c(·)

satisfying Assumption 3 where the sign is consistently negative, thereby violating Assumption 4. In

Appendix B, we also characterize the optimal disclosure plan in such environments. To streamline

the exposition, we focus here on the case where Assumption 4 is satisfied, which is also the relevant

case under the standard parameterizations we consider below.

Consistent with Definition 2, an efficiency constraint (23) of a monotone disclosure function

D(·) is binding for a signal s if it holds with equality.18 Note that the earlier result that the (n− 1)

lowest efficiency constraints must be binding in equilibrium (Proposition 2) does not hold once we

restrict disclosure functions to be monotone – the proof of Proposition 2 relies on a deviation that is

not feasible when disclosure plans are restricted to be monotone. In fact, it is straightforward to see

that the optimal plan characterized in Proposition 3 implies that the efficiency constraints with the

(n−1) highest signal realizations are binding, but generally not the lowest efficiency constraint. For

example, when vL > c(vL), the optimal plan in Proposition 3 will generically imply that conditional

on the signal s = 1 being sent, the efficiency constraint is non-binding, that is, H1(v1) > 1. Yet, as

highlighted above, monotonicity may be viewed as a plausible restriction for disclosure plans (see

in particular footnote 15).

Equipped with these results, we now turn to several examples that illustrate how the funda-

mentals of our environment, as described by the functions F (·) and c(·), affect the buyer’s optimal

disclosure plan D(·). In all these examples Assumptions 3 and 4 are satisfied, implying that an

18Note that Hs(vs) = 1 is equivalent to Π′s(vs) = 0.
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optimal disclosure plan’s partition cutoffs are characterized by the descending sequence defined in

Proposition 3. Thus, in all these disclosure plans, the highest partition cutoff vn is set equal to

lb(vH), which also coincides with the price the seller would quote absent disclosures. If additional

separating information is needed to avoid inefficient screening by the seller, the buyer specifies an-

other partition cutoff vn−1 = lb(vn) < vn, which coincides with the price the seller would charge

conditional on knowing that the CDF of v is F (v|v < vn). These steps are repeated until the

disclosure plan yields full efficiency.

Varying the seller’s valuation. First, we return to the environment considered in Examples 1 and

2, where v ∼ U [1, 2] and where the seller values the asset at a constant c̄. The panels in Figure I

illustrate two separate cases. In Panel (a), we set c̄ = 0.5 < 1, implying that trade should occur

for all v ∈ [1, 2] in order to be efficient. In Panel (b), we set c̄ = 1.25 > 1, implying that trade

should occur only for v ≥ 1.25. In the first case, illustrated by Panel (a), the buyer finds it optimal

to disclose relatively little information, as graphically represented by a largely “flat” disclosure

function that pools large regions of v. He releases only two signals that split the domain of v into

two subintervals that are associated with the prices p1 = vL = 1 and p2 = lb(vH) = 1.25. Doing

so suffices to ensure efficient trade. In contrast, absent disclosure, gains to trade would be destroyed

with probability 0.25. Both agents benefit from the buyer’s optimal disclosure plan, and disclosure

increases the surplus from trade by 19%, relative to the case without disclosure.19

In the second case, illustrated in Panel (b), the optimal disclosure plan consists of an infinite

number of signals. As v approaches v̂ = c̄ = 1.25 from above, the pooling regions become

smaller and smaller. Now the buyer optimally discloses relatively more information, as shown by

a disclosure function that is more sensitive to the underlying value of v. The higher reservation

value of the seller naturally increases the prices that the buyer has to pay, and increasing incentives
19As discussed above, the monotonicity restriction imposed in this subsection affects the design of the optimal plan,

which is evident from the fact that the lowest efficiency constraint is non-binding, contrary to the result in Proposition
2. Absent the requirement that disclosure plans be monotone, the buyer can design a non-monotone plan that yields
him a higher expected payoff. For example, a plan informed by the optimal solution to the case of the discrete uniform
distribution analyzed in Figure V of Subsection 3.2.3 below yields a higher surplus. Specifically, choosing a disclosure
function that generates two signals s ∈ {1, 2}, with D(v) = 1 for all v ∈ {[1, 1.2) ∪ [1.5, 1.7)} and D(v) = 2 for all
v ∈ {[1.2, 1.5)∪ [1.7, 2] increases the buyer’s expected surplus by 22%, relative to the optimal monotone disclosure plan
shown in Figure Ia.
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(a) c̄ < vL
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(b) c̄ > vL
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FIGURE I
Changing the seller’s value c. The graphs illustrate the PDF and the optimal disclosure plan for v ∼ U [1, 2],
where c(v) = c̄ = 0.5 (Panel (a)) and c(v) = c̄ = 1.25 (Panel (b)). The vertical axis on the left of each
graph corresponds to the dashed line that plots the PDF f(v), and the vertical axis on the right corresponds to
the solid line that plots the partition cutoff vs (with s = 1, ..., n) of the optimal disclosure function for all v ∈
[vs, vs+1). Moreover, in Panel (b), the graph plots vL for v ∈ [vL, v̂], where the generated signal is s = 0.

to resort to inefficient screening imply that the buyer has to provide more and more separating

information as v approaches c̄ = 1.25 from above. Disclosure leads again to efficient trade and

benefits both agents, increasing the total surplus from trade by 33%, relative to the scenario without

disclosure.

The reasons why optimal disclosure plans often provide varying degrees of precision in different

parts of the support of v are intimately linked to the seller’s screening incentives. Recall that the

seller, after receiving a signal s, has a strict incentive to marginally increase the price relative to the

efficient price p = vs unless:

f(vs)(vs − c(vs)) ≥ F (vs+1)− F (vs). (30)

To ensure efficient trade, the partitions of a disclosure plan thus have to be finer whenever vs must

be chosen to be closer to a given vs+1 in order to ensure that condition (30) holds. Thus, the left-

hand side of condition (30) indicates two central determinants of the precision of a disclosure plan

in a given area of the support of v: the magnitude of the marginal type’s gains to trade [v − c(v)]
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and the density f(v). In the considered case where c(v) is a constant, the gains to trade (v − c̄)

are increasing in v, necessitating finer partitions for realizations of v that are lower (and thus closer

to c̄) while still generating positive gains to trade (v − c̄ > 0). For this reason, the disclosure plan

in Panel (b) of Figure I becomes infinitely precise as v approaches c̄ from above. In the uniform

case, the density does not vary on the support, implying that any variation in disclosure precision

must come from the magnitude of the gains to trade. We will revisit the role played by the density

function in later examples.

In Figure II we introduce common value uncertainty, that is, the seller’s valuation becomes de-

pendent on v. In Panel (a), the specification maintains the property that gains to trade are increasing

in v, implying that partitions are finer for lower values of v. In contrast, in Panel (b) we consider

constant gains to trade c(v) = v − 0.2, where the partitions of the optimal disclosure plan are of

equal size. Interestingly, in this case, the Φ-function takes the value zero everywhere on the do-

main Ω, indicating that it is irrelevant whether the optimal plan is constructed by the descending

sequence stated in Proposition 3, or by an ascending sequence where vs = rb(vs−1). This result

obtains due to the knife-edge case that both the gains to trade [v − c(v)] and the density f(v) are

constant. As discussed in Appendix B, when the gains to trade are decreasing and the Φ-function

takes consistently negative values, the optimal plan is constructed by an ascending sequence of par-

tition cutoffs. In this case, more separating information is provided for higher realizations of v. Yet,

the economics underlying the optimal disclosure plan still follow the same principles — the buyer’s

optimal plan pools as many realizations of v as possible subject to the efficiency constraints (26).

Since generically not all constraints can be binding (when constructing an ascending or descending

sequence either the top constraint or the bottom constraint will not bind), the buyer chooses the

(n− 1) lowest constraints to be binding when the gains to trade are higher for low realizations of v.

Taken together, these results highlight that more precise disclosures naturally occur in parts

of the domain of v where the gains to trade are small but positive. Thus, when gains to trade

are increasing in the fundamental v, disclosures will tend to be more precise in the left tail of

the distribution. Relatedly, disclosure plans vary based on the presence of private and common

value uncertainty. In the private value case where c(v) = c̄ for all v (see Figures Ia, Ib, and IIa),
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disclosures become more precise for lower values of v, as long as gains to trade are positive. In the

pure common value case (see Figure IIb), constant gains to trade generate no variation in screening

incentives, and thus no need to vary precision on the support of v. While the examples thus far

have abstracted from any variation in the PDF of the buyer’s valuation (in all examples v followed

a uniform distribution), we now turn to examples exploring this channel.

(a) Increasing gains to trade
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(b) Constant gains to trade
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FIGURE II
Constant and proportional gains to trade. The graphs plot the PDF and the optimal disclosure plan for
v ∼ U [1, 2] when gains to trade are constant, c(v) = v − 0.20 (Panel (a)), and when gains to trade
are increasing, c(v) = 0.8 · v (Panel (b)). The vertical axis on the left of each graph corresponds to
the dashed line that plots the PDF f(v), and the vertical axis on the right corresponds to the solid line that
plots the partition cutoff vs (with s = 1, ..., n) of the optimal disclosure function for v ∈ [vs, vs+1).

Varying the distribution of the buyer’s valuation. As highlighted above, our results in Propo-

sition 3 apply to a variety of standard specifications for the distribution of v. In Figures III and IV

we consider several examples where v follows a truncated normal distribution. For simplicity, these

examples assume that c(v) = c̄ < vL, implying that the optimal disclosure plans create a finite

number of partitions.

First, in the two panels of Figure III, we consider normal distributions that are centered on the

support [vL, vH ]. The two panels vary the dispersion of the distribution. In Panel (a) dispersion is

lower, implying that the density f(v) takes lower values in the tails of the distribution. Following

our earlier discussion in relation to condition (30), two channels now increase the incentives for the
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seller to screen the buyer in the left tail of the distribution. First, the gains to trade (v− c̄) are smaller

for lower realizations of v. Second, the density f(·) takes lower values in the tails, again reducing

the left-hand side of the inequality (30) for low realizations of v. As a result of these two effects,

the optimal disclosure plan provides relatively more information for low realizations of v.

In contrast, in Panel (b) the dispersion of the v-distribution is higher, implying that the density

f(·) takes larger values in the tails of the distribution. Thus, the seller’s incentives to screen are

lower, allowing the buyer to design an optimal disclosure plan that reveals less information. The

high dispersion case is more profitable for the buyer, as it implies that the seller has less precise

information about v ex ante. As a result, the buyer can extract larger information rents in equilibrium

— the buyer’s surplus is 21% higher in Panel (b) than it is in Panel (a), even though the mean asset

value and the total gains to trade are identical across the two panels.

(a) Low dispersion
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(b) High dispersion
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FIGURE III
Mean-preserving spread in v. The graphs plot the PDF and the optimal disclosure plan for v ∼ N(1.5, 0.1)
(left panel) and for v ∼ N(1.5, 0.2), where the normal distributions are each truncated by the boundaries vL =
1 and vH = 2. In both panels c(v) = c̄ = 0.5. The vertical axis on the left of each graph corre-
sponds to the dashed line that plots the PDF f(v), and the vertical axis on the right corresponds to the solid
line that plots the partition cutoff vs (with s = 1, ..., n) of the optimal disclosure function for v ∈ [vs, vs+1).

Finally, in the two panels of Figure IV, we also consider cases where the buyer’s valuation

v follows truncated normal distributions, but here we vary the mean of the distribution, implying

variation in skewness. In Panel (a) the distribution is right skewed. Following our arguments above,

as the density f(·) takes relatively high values for low realizations of v, this distribution discourages
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inefficient screening. As a result, the buyer discloses little information. In contrast, under the left-

skewed distribution in Panel (b), the seller’s incentives to screen are larger, implying that the buyer’s

optimal disclosure plan has to provide relatively more information about the underlying value v.

(a) Right skewness
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(b) Left skewness
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FIGURE IV
Changing the skewness of v. The graphs plot the PDF and the optimal disclosure plan for v ∼ N(1.25, 0.15)
(left panel) and for v ∼ N(1.75, 0.15), where the normal distributions are each truncated by the boundaries
vL = 1 and vH = 2. In both panels c(v) = c̄ = 0.5. The vertical axis on the left of each graph cor-
responds to the dashed line that plots the PDF f(v), and the vertical axis on the right corresponds to the solid
line that plots the partition cutoff vs (with s = 1, ..., n) of the optimal disclosure function for v ∈ [vs, vs+1).

The above examples illustrate how our theory consistently produces coarse information disclo-

sures. This feature mirrors the coarseness of credit ratings in practice, which also pool creditors

with ranges of credit risks. In Section 5 we discuss how key features of our environment, and its

predictions, might shed light on the prevalence of ratings in debt markets (rather than in equity

markets), and on the fact that these ratings are discrete (and coarse) when purchased by the issuer

(issuer-paid ratings), whereas continuous information tends to be provided when investors pay for

similar services.

3.2.3 Discrete Distributions

In the previous subsection we restricted disclosure plans to be monotone, which greatly increased

the tractability of the analysis. An alternative setting that simplifies the analysis of optimal disclo-

sure plans without imposing monotonicity is an environment where the distribution F (·) is discrete.
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Analyses of discrete environments are useful, as any continuous distribution can be approximated

arbitrarily well by a discrete counterpart. Yet, in the presence of a discrete distribution, standard

optimization procedures can be used to determine an optimal disclosure plan. In particular, since

the choice variables are integers and the system to be solved is linear, an integer linear program-

ming problem obtains. Moreover, as we will discuss next, the analysis is again facilitated by our

key result that we can restrict our attention to efficient disclosure plans when solving for a plan that

maximizes the buyer’s expected payoff. As a result, the set of candidates for the optimal disclosure

plan is drastically reduced.

We show in Appendix B how the proof of Proposition 1 can be adapted to discrete distributions

of v. A slight difference is that with a discrete distribution of v, there may exist cases where

the alternative, more efficient disclosure plan makes the buyer only weakly better off, rather than

strictly better off as in our baseline model with a continuous distribution. Under the tie-breaking rule

introduced in Section 2 (i.e., whenever indifferent an agent takes the action that maximizes social

surplus), the buyer’s optimal disclosure plan then still always leads to socially efficient trade. For

similar reasons, the optimal disclosure plan may be fully revealing under certain parameterizations

of discrete distributions (for example, when v can only take one of two values and trade would be

inefficient without disclosure).

In the following, we provide a concrete example that is related to our earlier Examples 1 and 2

where v is uniformly distributed. In the discrete environment considered in Figure V, all possible

values v have equal probability mass and the seller’s value is constant and equal to c̄ = 0.5. Again,

the buyer’s optimization problem effectively aims to pool possible sets of v to minimize the expected

transaction price while ensuring that trade remains socially efficient.

The buyer finds it optimal to split the set of realizations of v into two subsets associated with the

signals s ∈ {1, 2}. Figure V shows that the signal structure involves gaps between these subsets.

Our restriction that disclosure plans must be ex post verifiable still allows for the design of signals

that pool multiple disjoint subsets,20 and in this example, a non-monotone plan allows the buyer to
20Non-monotonicity is also a property of the signal functions associated with the optimal disclosure plans in Goldstein

and Leitner (2015) and Inostroza and Pavan (2017) who study the information design problem of a regulator in the context
of bank stress tests.
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FIGURE V
Discrete distribution for v. The graphs plot the PDF and an optimal disclosure plan when v follows a discrete uni-
form distribution on the support {1, 1.1, ..., 1.9, 2}, where each possible outcome has probability 1/11 and where
c(v) = c̄ = 0.5. The vertical axis on the left of each graph corresponds to the squares that identify the PDF f(v),
and the vertical axis on the right corresponds to the circles that plot min[D−1(s)] for v ∈ D−1(s) with s ∈ {1, 2}.

minimize the average price paid while preventing the seller from quoting prices that cause inefficient

rationing.

When the seller receives a signal that v belongs to the lower combination of circles, he responds

by quoting a price p = 1. When the seller instead receives a signal that v belongs to the higher

combination of circles, quoting a price p = 1.2 maximizes his conditional expected payoff. In both

cases, these price quotes are equal to the lowest possible realizations of v, given the signal, and as a

result the buyer always accepts them. Note that there exist alternative disclosure plans that deliver

identical payoffs to all agents, implying that the equilibrium disclosure plan is not unique, even

though the allocation of the surplus is.

4 Interim Disclosure

In the previous section, we assumed that the buyer designs his disclosure plan prior to obtaining

private information. We now discuss the robustness of our results to “interim” disclosure, that is,

the scenario where the buyer chooses the disclosure plan after obtaining private information, but
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before the realization of v becomes publicly observable. Specifically, the timeline of the sequential

game we now study is as follows. First, the buyer privately observes v. Second, he designs an

ex post verifiable signal that he sends to the seller. Finally, the seller quotes a price and the buyer

decides whether to accept or reject. Below we show that equilibria satisfying sensible and well-

known refinements must feature partial information disclosure leading to socially efficient trade,

just as in our baseline setting (see Proposition 1).

We start by describing each agent’s strategy. Consistent with our earlier notation, let D(v)

denote the signal that the buyer sends when his valuation for the asset is v. In the context of interim

disclosure (where the buyer does not commit ex ante to a mapping between realizations of v and

signals), ex post verifiability requires that any signal s = D(v) is itself a Borel set in [vL, vH ]

and that v ∈ D(v) for any v. Since D(v) is now designed by the buyer after he observes v, we

can interpret D(v) as the pure-strategy message that the buyer sends in this signaling game (see

also Bertomeu and Cianciaruso 2017). Upon receiving a signal s, the seller forms beliefs about the

buyer’s type v, which we denote by the distribution function µ(s) ∈ ∆([vL, vH ]).21 Then the seller

quotes a price, which we now denote as p(s), to maximize his expected profit, and the buyer decides

whether to accept. A buyer’s optimal strategy in that last stage is simply to accept the offer if and

only if the quoted price is weakly less than his true valuation v. For ease of exposition, we do not

introduce extra notation for this final stage and directly impose that the buyer follows this dominant

strategy.

To summarize, we now consider a signaling game where the buyer sends a message and the

seller chooses an action based on that message. We dub this signaling game as the interim disclosure

game. We can now state the definition of an equilibrium in this setting.

Definition 3. A (D(·), µ(·), p(·)) profile forms a perfect Bayesian equilibrium of the interim disclo-

sure game if:

1. For every possible signal s, p(s) solves maxp{Πs(p)}, where Πs(p) denotes the seller’s ex-

pected profit if he quotes a price p and the buyer’s valuation is drawn from µ(s).

21We use ∆([vL, vH ]) to denote the set of all possible probability distributions on [vL, vH ].
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2. For every v ∈ [vL, vH ], D(v) solves maxs{max[v − p(s), 0]}, where v ∈ D(v).

3. For every s in the range of D (i.e., every Borel set s that can be disclosed in equilibrium), the

seller’s belief µ(s) is obtained by applying Bayes’ rule given the particular signal s.

Since beliefs are unrestricted following off-equilibrium deviations, there exist beliefs such that

the seller (who has market power) drives the buyer’s information rents to zero following any off-

equilibrium deviation in disclosure. This leads to the existence of multiple perfect Bayesian equi-

libria with various degrees of information revelation, as opposed to a unique equilibrium with full

revelation as in Grossman (1981) and Milgrom (1981) (see Perez-Richet 2014, for a broader dis-

cussion of equilibrium multiplicity when the information designer picks a signal structure after

acquiring private information). For instance, either full disclosure, partial disclosure, or no disclo-

sure can be supported in equilibrium if the seller has the following beliefs: if for any s not in the

range of D (that is, whenever s is an off-equilibrium signal), the belief µ(s) assigns probability 1 to

type v̄(s), where v̄(s) ≡ sup s (recall that s is a Borel set).22

Given the multiplicity of equilibria, we now focus on “buyer-preferred” equilibria. An impor-

tant insight from the earlier analysis was that the buyer’s preference in terms of disclosure plan

coincides with the social planner’s (see Proposition 1). Thus, selecting equilibria that the buyer

“prefers” provides us with a natural way to capture the spirit of our earlier setting where the buyer

moved first, before any private information was obtained. What it means for the buyer to “prefer” an

equilibrium here is, however, complicated by the fact that he can be of many types when designing

the disclosure plan. We define as buyer-preferred equilibria the set of equilibria that are not dom-

inated among buyer types — in the Pareto sense — by another equilibrium based on their interim

payoffs. Consistent with Riley (1975) and Riley (1979), we treat different types as distinct players.

We now state our first main result for the interim disclosure game, which is proved in Appendix A.

Proposition 4. In any buyer-preferred equilibrium of the interim disclosure game, the buyer’s opti-

mal disclosure is partial and yields socially efficient trade.
22An equilibrium is said to feature full disclosure if µ(D(v)) assigns probability 1 to type v, whereas it is said to feature

no disclosure if D(v) = [vL, vH ] for all v ∈ [vL, vH ], and thus µ([vL, vH ]) is equal to F (v), the prior distribution of v.
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This proposition shows, using a logic similar to the one used in Proposition 1, that any equilib-

rium in which trade is socially inefficient is dominated from the buyer’s perspective by an equilib-

rium that features socially efficient trade due to more informative disclosures. Lemma 1 implies that

for any equilibrium featuring inefficient trade we can construct an alternative equilibrium featuring

more informative disclosures and Pareto improvements among buyer types — some previously ex-

cluded buyer types are not rationed anymore and extract some surplus from trade while all other

types are equally well off as before. Also consistent with the logic of Proposition 1, full disclosure

is also not attractive to the buyer since it yields zero profit in all states of the world. As a result,

buyer-preferred equilibria cannot feature full disclosure.

For robustness, we show that these equilibrium properties also apply under an alternative equi-

librium refinement known as Grossman-Perry-Farrell, based on the perfect sequential equilibrium

of Grossman and Perry (1986) and the neologism-proof equilibrium of Farrell (1993).23 This re-

finement is commonly used in models of verifiable disclosure (see, e.g., Bertomeu and Cianciaruso

2017, and the references therein). Instead of comparing equilibria in a Pareto sense as above, this

refinement eliminates equilibria with off-equilibrium beliefs that are deemed unreasonable given

agents’ incentives to deviate from their equilibrium strategies.

Denote by U(v, s, µ(s)) the buyer’s utility if his valuation is v, he sends a message s, and the

seller quotes an optimal price given the belief function µ(s). For any signal s that is a Borel set in

[vL, vH ] (including off-equilibrium messages), denote by µs the actual distribution of v conditional

on v ∈ s. (Recall that we restrict the sets of signals to be Borel sets in the interim disclosure game,

to be consistent with ex post verifiability.) As in Bertomeu and Cianciaruso (2017), we define a

Grossman-Perry-Farrell equilibrium by ruling out the existence of self-signaling sets.

Definition 4. A pure-strategy perfect Bayesian equilibrium of the interim disclosure game (D(·), µ(·), p(·))

is called a “Grossman-Perry-Farrell equilibrium” if there does not exist a self-signaling set, which

23We adopt the terminology “Grossman-Perry-Farrell” from Gertner, Gibbons, and Scharfstein (1988), Lutz (1989),
and Bertomeu and Cianciaruso (2017).
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is defined as a non-empty Borel set s ⊂ [vL, vH ] such that:

s = {v ∈ s : U(v, s, µs) > U(v,D(v), µ(D(v)))}. (31)

Note that only buyers whose valuation v ∈ s can send the signal s because ex post verifiability

requires that the true valuation belongs to the chosen signal. A self-signaling set s contains all buyer

types who could be strictly better off by sending the signal s rather than playing according to the

considered perfect Bayesian equilibrium. A deviation from an equilibrium consists of a message

announcing “my type is in s.”24 The deviation is credible if s is self-signaling. An equilibrium

survives the refinement if it does not admit any credible deviation.

We now state our main results regarding the properties of equilibria satisfying the Grossman-

Perry-Farrell refinement (the proof is provided in Appendix A).

Proposition 5. In any Grossman-Perry-Farrell equilibrium of the interim disclosure game, the

buyer’s optimal disclosure is partial and yields socially efficient trade.

The logic underlying Proposition 5 is again related to the insights from Proposition 1. In a

perfect Bayesian equilibrium where trade breaks down and surplus is destroyed, excluded buyer

types would like to form a self-signaling set and warn the seller that he is about to quote a price that

will be rejected. Since this deviation is credible, the seller would then adjust his beliefs and lower

his price quote, thereby improving the efficiency of trade and making some of these excluded buyer

types strictly better off.

Finally, the following proposition further highlights how the economics underlying the interim

disclosure game resemble those of the ex ante disclosure game.

Proposition 6. An equilibrium disclosure plan of the ex ante disclosure game can be sustained

both in a buyer-preferred equilibrium and in a Grossman-Perry-Farrell equilibrium of the interim

disclosure game.
24Unlike Farrell (1993) who allows for the possibility of any type of senders announcing “my type is in s”, we assume

only buyer types whose true valuation v ∈ s can do so, consistent with our restriction of ex post verifiability.
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Although the proposition above shows that an equilibrium of the ex ante disclosure game can be

sustained in the interim disclosure game under either equilibrium refinement, it is straightforward

to construct examples showing that the converse is not true. Specifically, while the equilibrium

allocation of surplus in the ex ante game can be shown to be unique, multiple surplus allocations

can be sustained in the refined equilibria of the interim game (although all these refined equilibria

must feature partial disclosure and efficient trade, as stated in Propositions 4 and 5).25

5 Concluding Remarks

We characterize optimal voluntary disclosures by a privately informed agent who faces a counter-

party endowed with market power in a bilateral transaction. Although disclosures reduce the agent’s

private information, they may increase his information rents by mitigating the counterparty’s incen-

tives to charge prices that lead to inefficient rationing. We show that when disclosures are restricted

to be ex post verifiable, the privately informed agent always finds it optimal to design a partial

disclosure plan that implements socially efficient trade in equilibrium.

Our paper speaks to the fundamental forces determining whether asymmetric information im-

pedes trade in the presence of imperfect competition. We show that in a relevant class of settings,

efficient trade should not be impeded, in particular, when information is ex post verifiable, truthful-

ness is enforced, and private information pertains only to the bilateral transaction considered. By

the same token, our results highlight conditions that would need to be violated in practice in order

for inefficiencies to arise. Only in the presence of such violations might improving efficiency re-

quire the involvement of informed intermediaries,26 signaling through trade delays,27 or an external
25For example, we can construct a buyer-preferred equilibrium in the parameterization with v ∼ U [1, 2] and c̄ = 0.5

where the buyer only discloses whether v ∈ [1, 1.5) or v ∈ [1.5, 2]. In this equilibrium of the interim disclosure game,
the seller collects an expected surplus of 0.75 whereas the buyer collects an expected surplus of 0.25. This allocation of
surplus is not the equilibrium outcome of the ex ante disclosure game.

26As in, e.g., Biglaiser (1993), Li (1998), Glode and Opp (2016), and Zhang (2016).
27See, e.g., Fudenberg, Levine, and Tirole (1985). In a dynamic environment, an informed agent can, under specific

conditions, signal his low value to a counterparty with market power by rejecting high early offers, at the cost of delaying
gains from trade. In particular, such behavior may occur in practice when ex post verification of disclosures is infeasible or
too costly, relative to the inefficiencies from delay, and the conditions for the possibility of separating signaling equilibria
are satisfied.
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regulatory intervention.28 Our insights thus have relevant implications for regulating information

disclosure in bilateral transactions. Under the conditions we lay out, a regulator does not need to

mandate what information agents must disclose, nor does he need to produce additional information

for uninformed market participants. The regulator should instead focus on enforcing the truthful-

ness of disclosures by disciplining agents who send signals that ex post prove to violate their own

disclosure standards. Agents would then have incentives to share their private information in ways

that maximize the social efficiency of trade.

Our analysis also provides relevant predictions related to existing disclosure practices in finan-

cial markets. For instance, the two distinguishing features of our environment — (1) the separation

of market power and private information and (2) ex post verifiability — may shed light on the rea-

sons why coarse ratings play a particularly prevalent role in credit markets, whereas such ratings are

effectively absent in equity markets.29 Feature (1) is likely present in debt markets as debt issuers

naturally have private information about their assets, and since debt investors are likely to have some

bargaining power given that the debt market is relatively concentrated (e.g., large insurance compa-

nies are key players in this market). Feature (2) is also more likely present in debt markets, as debt

investors are concerned with a firm’s assets in place, which can be subjected to verification. In con-

trast, these two features might be less typical for equity markets. First, empirical evidence suggests

that competition among investors in the equity market is stronger than it is in debt markets (see,

e.g., Biais and Green 2007), such that private information and market power might not be separated.

Second, equity investors are interested in growth expectations, which depend on information that is

more difficult to verify. Taken together, these distinguishing features of bond and equity markets

might, in turn, contribute to the fact that firms in practice disclose information by soliciting coarse

ratings for their debt, whereas no equivalent phenomenon exists for equity.

In addition, our model can shed light on the fact that credit ratings that are solicited and paid for

by the issuer are on a discrete scale,30 whereas investor-paid information about credit quality tends
28As in, e.g., Tirole (2012), Goldstein and Leitner (2015), and Faria-e-Castro, Martinez, and Philippon (2017).
29It is useful to recall that we can reverse the roles of the buyer and seller in our environment without affecting the

key predictions of our theory: the issuer of a security can have private information about v, and the buyer can be the
one making the take-it-or-leave-it offer. Moreover, a rating agency, which in practice is hired by the issuer, could be
interpreted as a device for the seller to commit to truthful disclosure.

30For example, the leading rating agencies Moody’s, Fitch, and S&P issue ratings that are on a discrete scale when
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to be continuous. For example, even though Moody’s issuer-solicited ratings business and Moody’s

investor-paid ratings business are owned by the same parent company, one subsidiary issues coarse

ratings (and the issuer pays for the disclosure) whereas the other one provides continuous credit

scores (and investors pay for the information). The coarseness of issuer-solicited ratings thus ap-

pears to be a deliberate choice that, according to our theory, can be in the interest of issuers when

facing investors that have market power.31

Overall, these results suggest that the economic forces highlighted by our model yield relevant

insights on existing disclosure practices in financial markets, and might help gauge the benefits of

regulatory interventions. Extensions of our framework that provide more concrete applications to

specific contexts, such as credit ratings, are a promising endeavor that we leave for future research.

ratings are paid for by the issuer.
31The regulatory use of issuer-paid ratings may also affect rating agencies’ disclosure policies (see, e.g., Opp, Opp,

and Harris 2013).
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Appendix A: Proofs Omitted from the Text

Proof of Lemma 1: Let F , E, and Π denote the CDF, the expectation operator, and the profit

function under the initial distribution of v. We use a subscript 0 to indicate the counterparts of these

functions under the truncated distribution of v. The seller’s expected payoff from quoting p under

F0(v) can be written as:

Π0(p) = (1− F0(p))p+ F0(p)E0[c(v)|v < p]

=

(
1− F (p)

1− F (p̃)

)
p+

(
F (p)− F (p̃)

1− F (p̃)

)
E[c(v)|p̃ ≤ v < p]

=
1

1− F (p̃)

[
(1− F (p))p+

∫ p

p̃
c(v)dF (v)

]
=

1

1− F (p̃)

[∫ vH

p
vdF (v) +

∫ p

vL

c(v)dF (v)−
∫ p̃

vL

c(v)dF (v)

]
=

1

1− F (p̃)

[
Π(p)−

∫ p̃

vL

c(v)dF (v)

]
. (A1)

The seller’s expected payoff from quoting p under F0(v) is thus a positive linear transformation of

Π(p). Since by definition quoting p = p̃ maximizes Π(p) among all p ∈ [vL, vH ], it must also

maximize the seller’s expected payoff under F0(v) among all p ∈ [p̃, vH ].

Proof of Proposition 2: We argue by contradiction. Suppose the efficiency constraint is not binding

for a signal realization s = j, despite it being one of the (n−1) lowest realizations in S where trade

is efficient, implying that:

Π′j(pj) 6= 0, and Πj(pj) > Πj(p),∀p 6= pj . (A2)

Since pj is the optimal price conditional on receiving a signal s = j, it follows that Π′j(pj) < 0.

Take the highest signal s = n and denote v̄n ≡ sup{D−1(n)}. Without loss of generality,

assume that v̄n is not a singleton ofD−1(n).32 For a small ε > 0, the interval (v̄n−ε, v̄n) ⊂ D−1(n).

32Otherwise, we can let v̄n = sup{D−1(n) \ {max{D−1(n)}}}.
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Now, consider the following alternative disclosure plan:

D̃(v) ≡


D(v) if D(v) 6= n

j else if D(v) = n, v ∈ (v̄n − ε, v̄n)

n otherwise.

(A3)

Let Π̃s(p) denote the seller’s payoff from quoting a price p conditional on receiving s under the

disclosure plan D̃.

We first show that we can pick ε small enough such that the optimal quoted price conditional

on receiving s = j under the disclosure plan D̃ is the same as under the disclosure plan D. By

contradiction, suppose that for any εm → 0, there exists a price candidate ym ∈ D̃−1(j) such that:

Π̃j(ym) > Π̃j(pj). (A4)

Since {ym : m = 1, 2, ...} is a bounded sequence, there exists a convergence subsequence {ymk
:

k = 1, 2, ...} (Bolzano-Weierstrass theorem). Suppose ymk
→ y. If y 6= pj , using εm → 0 in

equation (A4) with ymk
implies that Πj(y) ≥ Πj(pj), which is contradicted by the assumption

that the constraint is not binding conditional on the signal realization s = j. Thus, it must be that

y = pj . From equation (A4) and Lagrange’s Mean Value Theorem, it follows that there exists

zmk
∈ (pj , ymk

) such that Π̃′j(zmk
) > 0. Since ymk

→ pj , we also have zmk
→ pj . Taking limit

on Π̃′j(zmk
) > 0 yields Π′j(pj) ≥ 0, which is a contradiction since the efficiency constraint after a

signal s = j is not binding.

We next show that the optimal quoted price conditional on receiving s = n under the disclosure

plan D̃ is the same as under disclosure plan D. To do so, we need to show that:

Π̃n(inf{D−1(n)}) ≥ Π̃n(p), ∀p. (A5)

Again, we show this by contradiction. Suppose there exists p0 < v̄n such that Π̃n(p0) > Π̃n(inf{D−1(n)}).

Let ξ ≡ Pr(v ∈ D−1(n)) and η ≡ Pr(v ∈ (v̄n − ε, v̄n)). In other words, ξ is the probability that

41



the signal realization is s = n under the disclosure planD whereas η is the probability that v falls in

the region that used to be associated with s = n under the disclosure plan D, but is now associated

with s = j under the disclosure plan D̃. Consider the seller’s profit by quoting p0 conditional on

receiving s = n under the disclosure plan D. We can pick ε small enough such that all buyer types

in (v̄n − ε, v̄n) would accept the quoted price p0, implying that:

Πn(p0) =

(
1− η

ξ

)
Π̃n(p0) +

η

ξ
p0, (A6)

or equivalently,

ξΠn(p0) = (ξ − η) Π̃n(p0) + ηp0. (A7)

Since p0 > inf{D−1(n)}, then

ξΠn(p0) > (ξ − η)Πn(inf{D−1(n)}) + η inf{D−1(n)}

= ξ inf{D−1(n)}

= ξΠn(inf{D−1(n)}). (A8)

This inequality is contradicted by the fact that inf{D−1(n)} is the optimal price to quote when the

seller receives the signal s = n under the disclosure plan D.

Lastly, we know that buyer types whose valuation v belongs to (v̄n − ε, v̄n) pay a lower price

under the new disclosure plan. The buyer’s payoff under the disclosure plan D̃ is thus strictly

higher than under D. Thus, if the efficiency constraint is not binding after the signal s = j, we can

construct an alternative disclosure plan that strictly improves the buyer’s payoff, contradicting the

conjectured optimality of D.

Proof of Lemma 2: For given partition cutoffs vs−1 and vs+1 the buyer’s marginal cost of increasing

vs (if feasible given efficiency constraints) is given by the partial derivative of the expected price
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paid by the buyer (22) with respect to vs:

∂ (
∑n

s=1 (F (vs+1)− F (vs)) vs)

∂vs
= (F (vs+1)− F (vs))− f(vs)(vs − vs−1). (A9)

We first show that for any two partition cutoffs vs−1 and vs+1 with s ≥ 2 that satisfy the efficiency

constraint vs−1 ≥ lb(lb(vs+1)) implied by (26), the marginal cost (A9) as a function of vs crosses

zero at most once. Setting equation (A9) equal to zero and rearranging, we obtain:

f(vs)(vs − vs−1)

F (vs+1)− F (vs)
= 1. (A10)

Note that hs(v) = f(v)
F (vs+1)−F (v) , and thus, ∂(hs(v)(v−vs−1))

∂v = h′s(v)(v − vs−1) + hs(v) > 0 for

v ∈ (vs−1, vs+1), implying that the left-hand-side of equation (A10) is an increasing function of

vs. Thus, the marginal cost (A9) crosses zero at most once from above. Then the expected price

paid by the buyer (22) is first increasing and then decreasing in vs for vs ∈ [lb(vs+1), rb(vs−1)].

Consequently, the buyer’s expected payment (22) must reach its minimum when vs is equal to either

rb(vs−1) or equal to lb(vs+1).

Proof of Proposition 3: Lemma 2 implies that if the buyer’s optimal disclosure plan includes the

cutoffs vs−1 and vs+1, then it must be that vs is either equal to rb(vs−1) or equal to lb(vs+1). To

evaluate whether vs = lb(vs+1) dominates vs = rb(vs−1) for all possible values that vs−1 and vs+1

can take (as defined by the domain Ω), we define the difference in the expected prices paid by the

buyer when choosing vs = rb(vs−1) instead of vs = lb(vs+1):

Φ(vs−1, vs+1) = [vs−1 · (F (rb(vs−1))− F (vs−1)) + rb(vs−1) · (F (vs+1)− F (rb(vs−1)))]

−[vs−1 · (F (lb(vs+1))− F (vs−1)) + lb(vs+1) · (F (vs+1)− F (lb(vs+1)))].

(A11)

If Φ(vs−1, vs+1) ≥ 0 everywhere on the domain Ω then choosing vs = lb(vs+1) always (weakly)

dominates and is the optimal solution, implying that the proposed descending sequences determine
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the optimal partition cutoffs.

Proof of Proposition 4: To show that trade is socially efficient in any buyer-preferred equilibrium

(D(·), µ(·), p(·)), we argue by contradiction. Suppose there exists a signal s0 = D(v) for some

v ∈ [vL, vH ] such that p(s0) > v̂ and p(s0) > inf{v ∈ [vL, vH ] : D(v) = s0}. A buyer whose

valuation belongs to {v : D(v) = s0} ∩ (v̂, p(s0)) would refuse to pay the seller’s quoted price

p(s0), leading to inefficient trade. Let s′ ≡ {v ∈ s0 : v̂ ≤ v < p(s0)}. Consider the following

candidate equilibrium (D̃(·), µ̃(·), p̃(·)), where:

D̃(v) ≡


D(v) if v /∈ s0

s′ else if v ∈ s′

s0\s′ otherwise .

(A12)

We obtain µ̃(s′) and µ̃(s0\s′) using Bayes’ rule at s′ and s0\s′, respectively. For any off-equilibrium

signal s, µ̃(s) assigns probability 1 to v̄(s) ≡ sup s. For any equilibrium signal outside the range

of s0, µ̃(s) = µ(s). Let p̃(s) maximize the seller’s expected profit if he quotes a price p and the

buyer’s valuation is drawn from µ̃(s). It is clear that we are indeed in an equilibrium, since deviating

to any other disclosure yields a profit of 0 for the buyer. Now consider the buyer’s interim payoffs in

this alternative equilibrium. Buyers whose type either satisfies v /∈ s0 or v ∈ s0\s′ receive payoffs

identical to those from the original equilibrium (D(·), µ(·), p(·)). However, buyer types in s′ receive

weakly higher payoffs. Moreover, a buyer type v = (p(s0)− ε), where ε is a small positive number,

receives a strictly higher payoff, since he made zero profit in the original equilibrium. Overall, if

trade is not efficient in an equilibrium, then it is Pareto dominated among buyer types by a more

efficient equilibrium. Consequently, in any buyer-preferred equilibrium of the interim disclosure

game, trade must be socially efficient.

To show that a buyer-preferred equilibrium does not feature full disclosure, where each buyer

type is quoted p = v and makes zero profit, it is sufficient to construct an equilibrium where some

buyer types receive positive payoffs (as no buyer type can do worse than zero profit given their

right to reject a price quote). Consider the equilibrium induced by the ex ante disclosure plan we
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solved for in Proposition 1 of Section 3. Formally, suppose D(·) is the verifiable disclosure plan

chosen by the buyer in the ex ante disclosure game and let the interim disclosure followD(v) for all

v ∈ [vL, vH ]. Now, let µ(·) be a belief function obtained using Bayes’ rule on the equilibrium path

and that assigns probability 1 to the highest type for any signal off the equilibrium path. Lastly, p(s)

maximizes the seller’s profit based on the conditional distribution µ(s). The profile (D(·), µ(·), p(·))

is clearly an equilibrium of the interim disclosure game. In this equilibrium, the buyer receives

profits identical to those obtained in the ex ante disclosure game. Thus, this equilibrium featuring

partial disclosure Pareto dominates among buyer types any equilibrium with full disclosure.

Proof of Proposition 5: To show that trade is socially efficient in any Grossman-Perry-Farrell

equilibrium (D(·), µ(·), p(·)), we argue by contradiction. Suppose there exists a signal s0 = D(v)

for some v ∈ [vL, vH ] such that p(s0) > v̂ and p(s0) > inf{v ∈ [vL, vH ] : D(v) = s0}. A buyer

whose valuation belongs to {v : D(v) = s0} ∩ (v̂, p(s0)) would refuse to pay the seller’s quoted

price p(s0), leading to inefficient trade. Let s1 ≡ {v ∈ s0 : v̂ ≤ v < p(s0)} and suppose the seller

would quote a price p1 under beliefs characterized by the conditional distribution µs1 .

Now consider the following set: s2 ≡ {v ∈ s0 : p1 < v < p(s0)}. From Lemma 1, we

know that the seller would also quote a price p1 under the belief characterized by the conditional

distribution µs2 . Thus, U(v, s2, µs2) > 0,∀v ∈ s2. Recall that all types of buyers in s2 do not trade

in the equilibrium (D(·), µ(·), p(·)), thus U(v,D(v), µ(D(v))) = 0, ∀v ∈ s2. As a result, all types

of buyers in s2 are strictly better off by announcing “my type is in s2,” and s2 is a self-signaling set,

contradicting the conjecture that a Grossman-Perry-Farrell equilibrium can feature inefficient trade.

To show that full disclosure cannot be a feature of a Grossman-Perry-Farrell equilibrium, it is

sufficient to construct a self-signaling set. Suppose the seller would quote a price p′ under the prior

belief. Then, it is clear that (p′, vH ] is a self-signaling set, since these buyer types would be strictly

better off being quoted a price p′ than a price equal to their respective valuation v.

Proof of Proposition 6: We first show how to construct a strategy profile that supports the optimal

disclosure plan of the ex ante game in the interim game. Suppose the optimal disclosure plan of

the ex ante game is denoted by D : [vL, vH ] → S. Without loss of generality, assume S is itself a
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collection of Borel sets such that D−1(s) = s, ∀s ∈ S.33 In the interim game, consider a candidate

equilibrium in which:

1. Disclosure follows the ex ante disclosure D(v).

2. For s ∈ S, the belief µ(s) is given by F conditional on s. For any s /∈ S (that is, whenever s

is an off-equilibrium signal), the belief µ(s) assigns probability 1 to type v̄(s).

3. For every possible signal s, p(s) solves maxp Πs(p), where Πs(p) denotes the seller’s ex-

pected profit if he quotes a price p and the buyer’s valuation is drawn from µ(s).

We can show that the constructed strategy profile forms a buyer-preferred equilibrium. By con-

tradiction, suppose (D1(·), µ1(·), p1(·)) is an equilibrium that dominates (D(·), µ(·), p(·)) among

buyer types in the Pareto sense based on their interim payoffs. Let S1 = {D1(v) : v ∈ [vL, vH ]} and

consider an ex ante disclosure D1 : [vL, vH ]→ S1. Since µ1(·) is obtained by applying Bayes’ rule

on the equilibrium path, the buyer’s expected payoff under the disclosure D1 of the ex ante game

is equal to his expected payoff under the (D1(·), µ1(·), p1(·)) equilibrium of the interim game. It

then follows that the buyer’s expected payoff under the disclosure plan D1(·) is strictly higher than

the one under the disclosure plan D(·) in the ex ante game, contradicting the fact that D(·) is an

optimal disclosure plan of the ex ante game.

We now show that the constructed strategy profile above also forms a Grossman-Perry-Farrell

equilibrium of the interim game. We argue by contradiction, that is, suppose there exists a self-

signaling set s0 in that case. Let S = {D(v) : v ∈ [vL, vH ]} be the set of signals that are on the equi-

librium path. We first show that s0 /∈ S. Otherwise, the signal s0 is on the equilibrium path: s0 ∈ S,

implying that for some v0 ∈ s0, D(v0) = s0. Then, U(v0, s0, µs0) = U(v0, D(v0), µ(D(v0))),34

contradicting the fact that s0 is a self-signaling set.

Now we turn to the ex ante game. Let S2 = S∪{s0}. Consider the following ex ante disclosure

33If S is not a collection of Borel sets, then we can define S′ = {D−1(s) : s ∈ S}, which is a collection of Borel
sets. Consider an ex ante disclosure D′(v) = D−1(D(v)) : [vL, vH ] → S′. Under this disclosure, a buyer whose type
belongs to s′ sends the signal s′, i.e., s′ ∈ S′, (D′)−1(s′) = s′.

34Recall that U(v, s, µ(s)) is the buyer’s utility if his valuation is v, he sends a message s, and the seller quotes an
optimal price given the belief µ(s). Recall also that µs is the distribution of v conditional on v ∈ s.
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plan D2 : [vL, vH ]→ S2:

D2(v) ≡


D(v) if v /∈ s0,

s0 otherwise.

For buyers whose types are not in s0, their payoffs are equal to their payoffs under the (D(·), µ(·), p(·))

equilibrium of the interim game. For a buyer whose type is v ∈ s0, his payoff is now given by

U(v, s0, µs0), which is strictly greater than U(v,D(v), µ(D(v))). Thus, the ex ante disclosure plan

D2(·) yields a strictly higher expected buyer payoff than the disclosure plan D(·), contradicting the

fact that D(·) is an optimal disclosure plan of the ex ante game.

Appendix B: Additional Characterizations of Optimal Disclosure Plans

(i) Monotone Disclosure Functions

As pointed out in Subsection 3.2.2, many standard parameterizations of our model lead the Φ-

function to take positive values everywhere on its domain Ω. For this reason, we focused our deriva-

tions in the main text on this particular case. Here, we relax this assumption and briefly explain how

to solve for the optimal monotone disclosure plan when Φ takes negative values everywhere on its

domain.

First note that Assumption 3 does not determine the sign of the Φ-function. Below is an example

where Φ takes negative values everywhere on the domain Ω but Assumption 3 is satisfied. The

caption of Figure VI provides details.

The Φ-function taking negative values everywhere on its domain implies that for any two par-

tition cutoffs vs−1 and vs+1 with s ≥ 2 that satisfy the efficiency constraint vs−1 ≥ lb(lb(vs+1))

implied by (26), the optimal interior cutoff is given by rb(vs−1). Instead of obtaining a descending

sequence of partition cutoffs as in Proposition 3, we then obtain an ascending sequence of cutoffs.

Formally, when c(vL) < vL and Φ(vs−1, vs+1) < 0 for all (vs−1, vs+1) ∈ Ω, an optimal disclo-

sure plan is constructed as follows: the partition cutoffs are determined by an ascending sequence
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FIGURE VI
Example where Φ takes negative values. The graphs plot the PDF and the optimal disclosure plan for v ∼ U [1, 2]
and c(v) = 1.1 · v − 0.3. The vertical axis on the left corresponds to the dashed line that plots the PDF f(v),
and the vertical axis on the right corresponds to the solid line that plots the partition cutoff vs (with s = 1, ..., n)
of the optimal disclosure function for v ∈ [vs, vs+1). Since the Φ-function takes negative values everywhere on its
domain Ω, the optimal disclosure plan’s partition cutoffs are constructed via an ascending sequence vs = rb(vs−1).

starting with v1 = vL and

vs = rb(vs−1), (B1)

until vn+1 = vH = rb(vn).

Furthermore, we can show the existence of an optimal disclosure plan as follows. Disclosure

plans are restricted to connected intervals (partitions), thus we must have i = {1, 2, ..., n} signals

associated with the partitions (v1, v2), [v2, v3), · · · , [vn, vn+1], where v1 = v̂ and vn+1 = vH and n

could be∞. This notation already embeds the insight that the agent will disclose whenever v ≤ v̂

with a separate signal (i = 0). Our disclosure plan analysis thus focuses on the region where v > v̂.

Suppose that V ≡ {vi : i = 1, 2, · · · } gives the cutoffs for the optimal disclosure plan associated

with connected intervals. Let V be the closure of V .

Lemma 3. There is at most one point, v̂, that is in the closure of V but not in V , i.e.,V \ V ⊆ {v̂}.

Proof. From the efficient trade constraints: vi ∈ (lb(vi+1), rb(vi−1)), ∀i ≥ 1. There is no redundant

interval in the sense that vi+2 > rb(vi) because otherwise removing vi+1 strictly increases the

buyer’s payoff. Now since ∀v′ 6= v̂, we know that rb(v′) > v′ and lb(v′) < v′. Then there cannot

48



exist a sub-sequence in V that approaches to v′, ∀v′ 6= v̂, implying V \ V ⊆ {v̂}.

We can now show that there exists {vi : i = 1, 2, · · · } such that the optimal monotone disclosure

plan can be characterized by cutoffs vi. Given Lemma 3, we construct the cutoffs starting from the

top: suppose k0 = vH , and k1 > k2 > · · · . Let k = (k1, k2, · · · ). Recall that the buyer chooses a

disclosure plan to minimize the expected price subject to the cutoffs yielding efficient trade, that is:

min
k
EP (k) ≡

∞∑
i=1

ki(F (ki−1)− F (ki)),

subject to

ki ≥ lb(ki−1),∀i.

Define the space S = {(k1, k2, · · · ) : k1 ≥ k2 ≥ · · · , and ki ≥ 0,∀i}, i.e., S consists of decreasing

sequences. Define a metric on S as

d(k1, k2) =

∞∑
i=1

2−i|k1
i − k2

i |,

where k1 = (k1
1, k

1
2, · · · ) and k2 = (k2

1, k
2
2, · · · ). The metric d naturally induces a topology on S.

Define the feasible set S1 = {k ∈ S : ki ∈ [vL, vH ], and ki ≥ lb(ki−1),∀i ≥ 1}. The feasible

set is a bounded set because |k| ≤
∑∞

i=1 2−i|ki| ≤
∑∞

i=1 2−i|vH | = vH . We show that the feasible

set is a closed set. Suppose kj ∈ S1 and kj → k0. Since |kji − k0
i | ≤ 2id(kj , k0) → 0, we have

kji → k0
i . Since lb(·) is a continuous function, it follows that k0

i ≥ lb(k0
i−1), i.e. k0 ∈ S1. Overall

the feasible set is a compact set.

Let EPm(k) ≡
∑m

i=1 ki(F (ki−1) − F (ki)). We claim that EPm(k) uniformly converges to

EP (k) on S1. For any ε > 0, there exists k > v̂ such that F (k) − F (v̂) < ε
vH

. Since lb(ki) < ki

for all ki 6= v̂ and Lemma 1, there exists a sufficiently large m, such that applying lb(·) for m

times leads to a lower value than k, i.e., lb(lb(· · · (lb(vH)) · · · )) < k. For this m, we know that

EP (k)−EPm(k) =
∑∞

i=m+1 ki(F (ki−1)−F (ki)) ≤ k
∑∞

i=m+1(F (ki−1)−F (ki)) ≤ k(F (k)−

F (v̂)) < k ε
vH

< ε. So EPm(·) uniformly converges to EP (·).

We next show that the objective function EP (·) is a continuous function on S1. Suppose
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given any sequence {kj : j = 1, 2, · · · } in S1 that kj → k0. We have limj→∞EP (kj) =

limj→∞ limm→∞EP
m(kj) = limm→∞ limj→∞EP

m(kj), where the exchange of lim is due to

the uniformly convergent property. Since limm→∞ limj→∞EP
m(kj) = limm→∞EP

m(k0) =

EP (k0), it follows that limj→∞EP (kj) = EP (k0) for any kj → k0.

Since a continuous function maps a compact set into a compact set, we know that EP (S1) is a

compact set. So, a minimum must be attainable, which in turns implies the existence of an optimal

monotone disclosure plan.

(ii) Discrete Distributions

As stated in Subsection 3.2.3, our results on optimal disclosure hold also under a discrete distribu-

tion. The main difference is that there may now exist cases where the alternative, more efficient

disclosure plan being considered makes the buyer only weakly better off, rather than strictly better

off as in our baseline model. Specifically, while the second term of equation (11) in the proof of

Proposition 1 is strictly positive when v is continuously distributed with strictly positive density ev-

erywhere on the support, this term may occasionally take a value of 0 with a discrete distribution. If

we apply the tie-breaking rule that assumes that whenever indifferent between disclosure plans the

buyer chooses the one that maximizes social surplus, our result that the buyer’s optimal disclosure

plan always leads to socially efficient trade also holds with discrete distributions.

Formally, denote the possible realization of the distribution of v by the set {ai : 1 ≤ i ≤ n},

where a1 < a2 < · · · < an. Suppose P (v = ai) = qi, ∀1 ≤ i ≤ n and let ci ≡ c(ai),∀1 ≤ i ≤ n.

Suppose k is the smallest index such that ai ≥ ci and denote v̂ = ak. As in our baseline model, in

equilibrium the seller always quotes prices weakly greater than v̂.

Denote by D(·) the buyer’s optimal disclosure plan given the tie-breaking rule and suppose that

trade is inefficient under a signal s0 of D(·). Just as in the proof of Proposition 1, we can show that

there exists another disclosure plan that yields a strictly higher social surplus and a weakly higher

profit for the buyer.

Recall that ps denotes the price the seller quotes conditional on receiving a signal s. A buyer

whose valuation belongs to {v : D(v) = s0, v̂ ≤ v < ps0} would refuse to pay the seller’s
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quoted price ps0 , making trade inefficient. Consider the following alternative disclosure plan where

S′ = S ∪ {s′} for some s′ /∈ S and

D̃(v) ≡


D(v) if D(v) 6= s0,

s0 else if D(v) = s0, v ≥ ps0 ,

s′ otherwise.

(B2)

First, note that when s 6= s0, nothing changes and the seller still quotes a price ps. Second,

Lemma 1 guarantees that the seller still quotes ps0 under the alternative disclosure plan D̃(·) when

he receives a signal s0. Finally, suppose the seller quotes a price z when he receives a signal s′.

Since quoting ps0 yields zero profit in this case, it must be that z ∈ [minD−1(s0), ps0). As a result,

the buyer’s ex ante expected profit under the alternative disclosure plan D̃(·) is given by:

∑
s∈S

∑
ai∈D−1(s)∩[ps,vH ]

(ai − ps)qi︸ ︷︷ ︸
Profit from s ∈ S

+
∑

ai∈D−1(s0)∩[z,ps0 )

(ai − z)qi

︸ ︷︷ ︸
Profit from s′

, (B3)

where the profit under the disclosure plan D(·) is given by only the first term. If the second term

is strictly positive, then the buyer earns a strictly higher profit under the disclosure plan D̃(·) than

under the plan D(·), contradicting the optimality of D(·). If the second term is zero, the price must

equal the highest possible realization in D̃−1(s′), i.e, z = max{v : D(v) = s0, v < ps0}. Note

that gains to trade must be positive when the buyer’s valuation is z : z > c(z), otherwise trade is

efficient under the signal s0. Then, the buyer with type z gets the asset under the disclosure plan

D̃(·) but not under the plan D(·), contradicting the tie-breaking rule. We have thus shown that the

buyer’s optimal disclosure plan must result in socially efficient trade.

Furthermore, it is easy to show that an optimal disclosure plan always exists when the distribu-

tion of v is discrete. A disclosure plan basically divides the set {ai : 1 ≤ i ≤ n} into subgroups.

Denote D the set of all possible disclosure plans. Since there are n realizations, there is a finite

number of possible combinations of subgroups, implying that the cardinality of D is finite (in fact,

#|D| ≤ n!). Now, the buyer chooses a disclosure plan inD to maximize his expected payoff. Since
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there are finitely many choices, there exists a disclosure plan that gives the buyer his maximum

expected payoff, i.e., an optimal disclosure plan always exists.
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and the Costs of Trading in an Opaque Market.” Review of Financial Studies 20: 275-314.

Grossman, Sanford J. 1981. “The Informational Role of Warranties and Private Disclosure about
Product Quality.” Journal of Law and Economics 24: 461-483.

Grossman, Sanford J., and Oliver D. Hart. 1980. “Disclosure Laws and Takeover Bids.” Journal
of Finance 35: 323-334.

Grossman, Sanford J., and Motty Perry. 1986. “Perfect Sequential Equilibrium.” Journal of Eco-
nomic Theory 39: 97-119.

Guttman, Ilan, Ilan Kremer, and Andrzej Skrzypacz. 2014. “Not Only What but also When: A
Theory of Dynamic Voluntary Disclosure.” American Economic Review 104: 2400-2420.

Harris, Milton, and Artur Raviv. 1981. “A Theory of Monopoly Pricing Schemes with Demand
Uncertainty.” American Economic Review 71: 347-365.

Heimer, Rawley Z., and David Simon. 2012. “Facebook Finance: How Social Interaction Propa-
gates Active Investing.” Unpublished.

Hendershott, Terrence, Dan Li, Dmitry Livdan, and Norman Schürhoff. 2015. “Relationship
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