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Abstract

Due to data mining, the expected returns of stock market predictors may
be biased. This bias, however, may be mitigated by the journal review pro-
cess. We develop an estimator for the net bias and apply it to replications
of 172 cross-sectional stock return predictors. Bias-adjusted long-short re-
turns are only 13% smaller than in-sample long-short returns. This small
bias comes from the dispersion of t-stats across predictors, which is too
large to be accounted for by noise, indicating that many predictors have
positive true returns. The bias is too small to account for the deteriora-
tion in average returns after publication (p-value = 0.0002), suggesting an
important role for mispricing. Among predictors that can survive journal
review, a low t-stat hurdle of 1.8 controls for multiple testing using statistics
recommended by Harvey, Y. Liu, and Zhu (2015).
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1. Introduction

The nature of academia leads to an extremely thorough investigation of stock

return data. Some argue that, subject to this much questioning, the data will tell

you whatever you want to hear. Indeed, the data have informed us of more than

one hundred portfolios with high returns and low market risk, leading many to be

suspicious of information obtained in this manner (for example, Lo and MacKin-

lay (1990), Sullivan, Timmermann, and White (1999), Harvey, Y. Liu, and Zhu

(2015), Linnainmaa and Roberts (2016), Chordia, Goyal, and Saretto (2017)).1

Our interrogation of the data is subject to controls, however. Though a skilled

investigator may be able to coerce her desired answer, the confession is only

published if editors and referees deem it trustworthy. Indeed, in reflecting on

his years as the editor of the Journal of Finance, Harvey (2014) recommends that

authors should “convince the reader that there has been minimal data mining2.”

The effectiveness of the journal review process finds support in recent empirical

studies that suggest that stock market anomalies are real (McLean and Pontiff

(2016), Jacobs and Müller (2016), X. S. Yan and Zheng (2017)).

Publication bias is the net result of data mining and the journal review pro-

cess. These effects oppose each other, and the net result remains an open ques-

tion. In this paper, we propose an estimate of the net effect, and apply it to a

dataset of 172 published cross-sectional return predictors.

We find that the controlled interrogation of the CRSP tapes is surprisingly

effective at uncovering true cross-sectional variation in returns. We estimate that

a modest 13% of the typical predictor’s in-sample return is due to publication

bias—that is, while the typical equal-weighted quintile long-short return is about

8% per year, the bias-adjusted return is (1−0.13)8% ≈ 7%.

This modest bias adjustment comes from the shape of the distribution of

published t-stats, seen in Figure 1. The left side of this distribution displays clear

evidence of data mining, as predictors with t-stats less than 2.0 are conveniently

missing.

Data mining, however, cannot account for the right side of the distribution.

Under pure data mining, t-stats should bunch up at the t-stat hurdle, and so we

1Throughout this paper, “return” refers to “mean return.” We also omit the word “mean” in
“in-sample mean return,” “true mean return,” etc.

2Data-mining is also known as “data-snooping,” “p-hacking,” “the file-drawer problem,” “re-
searcher degrees of freedom,” and “the Garden of Forking Paths.”
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Figure 1: Published t-stats vs Pure Data Mining.
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should see not only a sharp shoulder, but also a quick decay. To see this, sup-

pose that there is no predictability anywhere, and published predictors are sim-

ply those which by pure luck happened to have t-stats larger than 2. Then the

t-stats would follow, well, a t-distribution, with many degrees of freedom, trun-

cated around 2. The dashed line in Figure 1 plots this distribution. This pure data

mining distribution fits the left shoulder of the published data, but it decays far

too quickly to account for the right tail.

In this paper, we estimate a model of data mining that allows for the possi-

bility that the journal review process is effective. The power of journal review is

embodied in the dispersion of true returns, that is, the amount of true variation

in expected returns. This dispersion can be extracted by fitting the data, and the

estimator finds that a large dispersion produces a tight fit (solid line). Intuitively,

if true returns are dispersed, then t-stats pick up some of this dispersion, leading

to the slow decay of the solid line in Figure 1.

The estimated model also implies that a predictor’s in-sample return is infor-

mative about its underlying true return. This result is formalized in a Bayesian

expression related to James and Stein (1961) shrinkage, and averaging across pre-

dictors produces our headline 13% number.

Our data consists of 172 long-short portfolio returns from replications of

120 publications in accounting, economics, and finance journals. To our

knowledge, this is the most comprehensive dataset of cross-sectional predic-
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tors to date.3 Our data includes all 97 of McLean and Pontiff (2016)’s pre-

dictors, as well as 75 additional statistically significant predictors that are

published in “top tier” journals.4 We make our data available online at

http://sites.google.com/site/chenandrewy/code-and-data/.

It’s important to note that our small bias adjustments apply only to a select

group of predictors. As our data consists of predictors published in highly selec-

tive journals, our estimates are only relevant to predictors that have the possibil-

ity of being published. More specifically, our estimated model can be considered

a formal description of portfolios with narratives and supplementary results that

can survive the journal review process. Thus, our small adjustments do not apply

to portfolios generated by uncontrolled data-mining experiments, which tend to

be dominated by data-mining bias (Chordia, Goyal, and Saretto (2017)).

Our model estimates do apply, however, to predictors in the cross-sectional

asset pricing literature. Indeed, our estimates lead to two broad implications for

the zoo of anomalies.

The first implication is that the vast majority of published predictors are not

statistical figments. We follow the multiple-testing literature and construct the

false discovery rate (FDR) implied by our model. We find that, among published

predictors with t-stats > 1.96, the FDR is a tiny 0.6%—that is, nearly 100% of pub-

lished anomalies that meet this threshold are true. Thus, we find that the tradi-

tional t-stat hurdle of 1.96 can actually be lowered, and even a t-stat hurdle of 1.8

leads to an FDR of 1.0%.

This surprising result may appear to contradict multiple-testing logic. If one

runs 172 traditional hypothesis tests, the null of no predictability will likely be re-

jected by pure chance. Doesn’t this logic imply that t-stat hurdles must be raised?

The problem with this logic is that, while running many tests raises concerns

about lucky rejections, the many tests also provide information unavailable in

a single test. Critically, examining many published predictors tells us about the

nature of the publication process. We find that this process leads to highly dis-

persed true returns, that each t-statistic is informative about the underlying true

return, and thus a high t-stat hurdle is not required. This logic contrasts with that

3Hou, Xue, and L. Zhang (2017)’s dataset of 447 anomalies contains many alternative lagging
choices and variables which were not demonstrated to produce predictability in the original pa-
pers. Excluding these, their dataset contains 148 anomalies.

4“Top tier” journals are basically the top 5 journals in each of the disciplines: finance, account-
ing, and economics.
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of less structured multiple testing controls (such as the Bonferroni adjustment or

Benjamini and Hochberg (1995)), which do not estimate the distribution of true

returns. Instead, they use the same no predictability assumption from the single

test setting, leading to increased t-stat hurdles.

The second implication of our bias adjustment is that the deterioration in

returns after publication cannot be attributed to publication bias. We replicate

McLean and Pontiff (2016)’s result that post-publication returns are about 50%

smaller than the returns in the original samples. We go beyond McLean and

Pontiff, however, in that we produce a precise measurement of the amount of

deterioration that is due to publication bias. We find that post-publication de-

terioration is 24 basis points per month larger than the publication bias adjust-

ment, and we can reject with extreme confidence that there is no non-statistical

deterioration (p-value = 0.0002).

This second implication is important because it suggests that mispricing

plays a large role in the typical stock return anomaly. With statistical effects ac-

counted for, the deterioration in returns post-publication must be due to either

a decline in risk or a reduction in mispricing. The mispricing story has a com-

pelling economic explanation: traders act on the published mispricing, bidding

up underpriced assets and avoiding overpriced ones. Risk-based stories, on the

other hand, do not provide a clear prediction.

Our results, combined with a couple other recent papers, provide a complete

accounting for the returns of the anomaly zoo. We find that the typical anomaly

return of 8% per year is 13% publication bias. McLean and Pontiff (2016) show

that another 35% is mispricing that can be traded away. Chen and Velikov (2017)

complete the story, showing that the remaining 52% can be accounted for by

trading costs.

Related Literature Our paper is closely related to Harvey, Y. Liu, and Zhu (2015)

(HLZ), who also examine publication bias in cross-sectional asset pricing using

a structured approach. They find that a t-stat hurdle above 2.88 is required to

obtain an FDR of 1%, far above our estimate of 1.8.

HLZ’s data is substantially different than ours, however. While our dataset

contains only variables that predict returns cross-sectionally, HLZ’s dataset is

comprised of asset pricing factors, broadly defined. Thus, the two sets of results

suggest that there is much more publication bias in factor models and aggre-
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gate return predictors than in cross-sectional return predictors. There are other

difference in methodology, however, which may be responsible for our different

results, and unfortunately, we cannot provide a definitive reconciliation. In our

view, such a reconciliation is an important question for future research.

Concerns about data mining bias in stock market predictors go back at least

to Jensen and Bennington (1970) (see also Merton (1987), Lo and MacKinlay

(1990), Black (1993)). Formal evaluations of data mining include Sullivan, Tim-

mermann, and White (1999), Sullivan, Timmermann, and White (2001), and

Chordia, Goyal, and Saretto (2017), who find strong evidence that data mining

leads to spurious inference about predictability.

Publishing, however, involves both data mining (at least, collective data min-

ing) and the journal review process. To measure the effects of journal review,

one needs a body of evidence on the review process, something which was not

available until the recent proliferation of published predictors.

Studies that take advantage of this proliferation have yet to come to a con-

sensus. Harvey, Y. Liu, and Zhu (2015), Linnainmaa and Roberts (2016), and Hou,

Xue, and L. Zhang (2017) find that most published results are false, while Green,

Hand, and F. Zhang (2014), McLean and Pontiff (2016), Jacobs and Müller (2016)

come to the opposite conclusion.

Our paper brings to the debate a more structured model. This structure al-

lows us to examine both bias-adjusted returns (à la McLean and Pontiff (2016))

and bias-adjusted statistical significance (à la Harvey, Y. Liu, and Zhu (2015)) in

the same framework. Additionally, our paper brings to bear the most compre-

hensive set of cross-sectional predictors to date, and we make this data publically

available at http://sites.google.com/site/chenandrewy/code-and-data/.

Outside of finance, the literature on publication bias is large (see Christensen

and Miguel (2016) for a review). Our approach is similar to Hedges (1992) and

Andrews and Kasy (2017), who also explicitly model publication bias. Elements

of our bias adjustment are also found in Efron (2011) and L. Liu, Moon, and

Schorfheide (2016).

Our model complements Q. Liu, Lu, Sun, and H. Yan (2015)’s model of

anomaly discovery. While their model focuses on trading effects and abstracts

from publication bias, we do exactly the converse. Thus, the two models capture

two distinct components of the decay in returns post-sample. Other papers that

study the long-term dynamics of anomaly returns include Alti and Titman (2017)
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and Penasse (2017).

The next section describes a quick 2-page version of our bias adjustment.

Section 3 describes the full bias adjustment’s methodology. The main results are

in Section 4, which presents bias adjusted returns for 172 published predictors.

Section 5 explains why the bias adjustment is small, and Section 6 examines the

implications of our estimates for hypothesis testing and mispricing.

2. A Quick and Dirty Bias Adjustment

This section presents a quick and dirty bias adjustment that captures the in-

tuition and magnitudes of our more rigorous estimation.

Suppose that in-sample returns ri are noisy signals of the true returns µi , and

that µi are on average zero but have some dispersion:

ri ∼ N (µi ,σ) (1)

µi ∼ N (0,σµ), (2)

where σ is the standard error of ri (the same for all i ), and σµ is the dispersion of

true returns. Only statistically significant portfolios are published and observed.

Thus we observe portfolio i only if

ri

σ
> 2. (3)

To adjust for publication bias, we compute the expected true return condi-

tional on publication using Bayes rule:

µ̂i = (1− s)ri (4)

s = σ2

σ2
µ+σ2

. (5)

The bias-adjusted return is simply the in-sample return ri , shrunk at a rate s,

where s is a transformed signal-to-noise ratio. Intuitively, if the publication pro-

cess involves pure noise, the standard error σ is much larger than the dispersion

in true returns σµ, and shrinkage is 100%. Alternatively, a large σµ relative to σ

implies little shrinkage.

To calculate the bias adjustment, one needs σ and σµ. For now, let’s assume
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that the published average standard error is a good estimate of σ. Using our

dataset of 172 predictors, we haveσ≈ 0.19, corresponding to an average portfolio

volatility of 3% per month and a typical sample of 324 months.

σµ, the dispersion of true returns, is not observed. However, σµ is observed

indirectly through the dispersion of in-sample returns. To see this, note Equa-

tions (1) - (3) imply that that published returns follow a truncated normal distri-

bution. The standard deviation of a truncated normal is

Std[ri |ri > 2σ] = f (σ,σµ)
√
σ2 +σ2

µ (6)

where f (σ,σµ) is an adjustment due to truncation.5 The LHS of equation (6) is

directly observed, and everything on the RHS is observed except for σµ. Thus,

Equation (6) can be used to estimate σµ by method of moments.

Figure 2 illustrates the estimation of σµ using Equation (6). The figure plots

the model-implied standard deviation of published in-sample returns as a func-

tion of σµ (Equation (6)). A very high σµ ≈ 0.90 is required to fit the empiri-

cal standard deviation of 0.51% found in our dataset. This high σ̂µ implies a

very small shrinkage (dotted line) of less than 10%. McLean and Pontiff (2016)’s

dataset of 97 predictors leads to a standard deviation of 0.40%, and thus a lower

σ̂µ, but still the shrinkage is quite small and below 10%.

The quick-and-dirty estimate overlooks a number of issues. It assumes ho-

moskedasticity, normality, and no publication bias in standard errors. Moreover,

we have not shown that this simple model provides a good fit for other moments

in the data. These and other issues are addressed in the full estimation that fol-

lows.

3. Methods: Model, Bias Adjustment, and Data

This section describes our methodology. Readers eager for results may wish

to skip to Section 4.

5The adjustment is

f (σ,σµ) = 1+αφ(α)/(1−Φ(α))− [φ(α)/(1−Φ(α))]2

where α= 2σ/
√
σ2 +σ2

µ, φ() is the standard normal pdf, andΦ() is the standard normal cdf.
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Figure 2: Quick and Dirty Bias Adjustment. The solid line (left axis) plots the
theoretical standard deviation of published in-sample returns (Equation (6)).
“Empirical std dev” (horizontal dotted line) is the cross-sectional standard de-
viation of published in-sample returns in our dataset. σ̂µ (vertical dashed-dot
line) is the implied estimate for the dispersion of true returns. The dashed line
(right axis) is the theoretical shrinkage, defined by

Bias-adjusted return = (1− [Shrinkage])× [In-Sample Return]

where shrinkage is calculated using Equation (5). σ̂µ implies a small shrinkage
of less than 10%. Returns are % per month. The model assumes σ = 0.19, the
average published standard error in our dataset of 172 predictors.
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3.1. A Simple Model of Predictor Publication

The model is summarized in Table 1. It is a statistical description of the port-

folio publication process. We introduce characters like “academics” and “jour-

nals” to clarify the interpretation. There are no dynamics, trading, or strategic be-

havior. Thus the “true return” in the model is best understood as the publication-

bias adjusted return, or the return in a world in which the predictor remains un-

touched by traders.

In search of tenure or other glory, academics search financial market data for

publishable material. As a collective, the academics submit every portfolio that

has a remote possibility of being published.

Journals only publish portfolios that meet two requirements. The first re-
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Table 1: Model Summary

This table summarizes the model (Section 3.1). All portfolios that have a remote possi-

bility of being published are submitted. Only portfolios with narratives have a chance

of publication, and the probability of publication p(ri /σi |tcut, tslope) is increasing in the

t-stat. All distributions are independent. The model has 7 parameters: µµ, σµ, νµ, µσ,

σσ, tslope, and tcut.

Properties of the Portfolio Based on Narrative i

True return µi =µµ+σµτνµ
τνµ ∼ student’s t with νµ d.o.f

In-sample return ri =µi +εi

εr,i ∼ N (0,σi )
Log standard error logσi ∼ N (µσ,σσ)

Publication probability p(ri /σi |tcut, tslope) = 1

1+exp(tslope(ri /σi − tcut))

quirement is that the portfolio must contain a “narrative,” or display a set of soft

characteristics that meets the journals’ standards. For example, a narrative for

momentum is that investors overreact to the past year’s returns. Thus, a narra-

tive implicitly places a sign on the portfolio (long past winners and short past

losers). Additionally, this narrative implies that returns are generally increasing

in the past year’s returns, and, perhaps, its returns are robust to various subsam-

ples and portfolio construction methods.

We do not measure these soft characteristics directly. Instead, we model the

quality of narrative i using its unobservable true return µi . The quality of all

narratives is described by a scaled t-distribution:

µi =µµ+σµτνµ (7)

τνµ ∼ student’s t with νµ d.o.f, i.i.d.. (8)

where µµ, σµ, and νµ are parameters that govern the quality of narratives. Large

νµ implies that µi is very close to a normal distribution with mean µµ and stan-

dard deviation σµ. We allow for small νµ in order to capture the idea that there

may be rare portfolios with extremely good returns.

The scaled t-distribution of (7), with its single peak, is somewhat restrictive.

In particular, it implies that there are many distinct signals in the data. For ex-

ample, an alternative model might have three peaks (one for value, size, and mo-
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mentum), and then the other predictors are just related variants around those

peaks. We will see that single peak model is a good description of the data.

µµ, σµ, and τνµ are the net result of authors’ data mining and the journals’

narrative screening, and they ultimately describe whether the journals are pub-

lishing true returns. Clearly, if µµ À 0 the net result is that the narrative screen

is effective at eliminating spurious portfolios. However, if µµ = 0 but σµ À 0, the

narrative screen is still effective. In this case, though the average narrative pro-

duces no returns, some narratives will have truly high expected returns. A low

degrees of freedom νµ has similar effects.

The narrative screen is not perfect. Equation (7) means that some (perhaps

many) narratives have µi < 0, and the journals can’t observe µi . Instead, they

observe the in-sample return ri , which is a noisy signal of µi . For a randomly

selected narrative i , the in-sample return follows:

ri =µi +εi (9)

εi ∼ N (0,σi ), i.i.d. (10)

where we assume that the standard error of the return σi is observed without

error. This assumption can be justified by the fact that the standard error of

a typical portfolio’s standard error is two orders of magnitude smaller than the

standard error itself.6

The above assumptions imply that the in-sample mean returns are uncor-

related across accepted portfolios. Theoretically this can be justified because

journals are unlikely to accept a new predictor unless it is distinct from previ-

ously published ones. Moreover, the empirical pairwise time-series correlation

between in-sample monthly returns is typically small. In our sample of more

than 170 predictors, the median pairwise correlation is 0.026, and 80% of corre-

lations are between -0.37 and 0.41. The full distribution of correlations can be

found in Appendix A.2.

Narrative portfolios are heterogeneous in standard errors, and standard er-

rors are lognormal

logσi ∼ N (µσ,σσ) i.i.d. (11)

6If the monthly return is normally distributed, then the standard error of the sample volatility

is about
√

1
2(T−1) times the true volatility. A sample size of 30 years leads to a factor of

√
1

2(600−1) ≈
0.04.
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This assumption implies that standard errors are independent of true returns.

One might think that the volatility component of the standard error should be

correlated with the true return, as in equilibrium theories based on risk. The

cross-sectional asset pricing literature, however, is focused on portfolios that

survive risk adjustment. Indeed, the literature tends to find a wide variety of

in-sample returns with similar volatilities.

This setting leads to the journals’ second requirement for portfolio i ’s publi-

cation: its in-sample return and t-stat must meet a soft threshold. The threshold

is soft in that it is not a strict cutoff, but a probabilistic rule:

decisioni =
pubi with prob p(ri /σi |tcut, tslope)

rejecti , otherwise
(12)

where the probability of publication is given by a logistic function

p(ri /σi |tcut, tslope) = 1

1+exp(tslope(ri /σi − tcut))
. (13)

This function implies that tcut is the midpoint of the soft threshold and tslope is

the slope. The slope captures that fact that journals make editorial decisions that

can soften a strict statistical requirement. For example, many published papers

report only Fama-Macbeth regression coefficients. While the regression coef-

ficients may be statistically significant, the analogous long-short portfolio may

not be.

The statistical requirement improves the quality of published portfolios, as

ri and ri /σi are a noisy signals about µi , and thus E(µi |pubi ) > E(µi ). Unfortu-

nately, the cost of this quality control is a bias: E(εi |pubi ) 6= 0.

Figure 3 illustrates the model by plotting simulation results. The left panel

shows the distribution of all narrative t-stats from a model simulation. The in-

sample t-stats ri /σi are more dispersed than their true counterparts µi /σi , as

a result of measurement error εi . Despite the noise, the average of all narrative

in-sample t-stats is an unbiased measure of the average true t-stat.

This unbiasedness is missing, however, from published narratives in the right

panel. Only narratives that meet the publication threshold (dotted line) are pub-

lished. Since narratives must have large t-stats to be published, this publication

bias leads to a bias in the in-sample t-stats. In this particular simulation, the true

t-stats are much closer to zero than their in-sample counterparts.
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Figure 3: Model Illustration. We simulate the model of biased publication (Table
1), and plot the distributions of t-stats. The left panel shows all “narratives,” that
is, all portfolios which have soft characteristics that satisfy the journals’ require-
ments. In-sample t-stats (solid line) are noisy measures of the true t-stat (dashed
line). The true t-stat is defined as the true return µi divided by the standard er-
ror. The right panel shows narratives which pass the publication threshold (dot-
ted line). Publication bias is evident in the fact that the published in-sample t-
stats are further from zero than the true t-stats. The simulation assumes µµ = 0,
σµ = 0.30, νµ = 7, µσ =−1.31, σσ = 0.45, tcut = 1.5, and tslope = 3.
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In the formalism that follows, it’s helpful to gather all parameters into a vector

θ:

θ = [µµ,σµ,νµ,µσ,σσ,νσ, tcut, tslope]. (14)

3.2. Publication Bias Adjustment

The model implies a formula for adjusting in-sample returns for publication

bias. We derive this formula assuming that we know θ, the parameters that gov-

ern the model. In the next subsection we explain how we extract parameters

from data.

Suppose we observe a published return ri and standard error σi and want to

estimate the true return µi . The naive rule assumes in-sample = true:

µ̂naive
i = ri . (15)

The above expression is biased because it fails to condition on the fact that ri is

published—that is,

E(µ̂naive
i |pubi ) = E(µi |pubi )+E(εi |pubi )︸ ︷︷ ︸

6= 0

. (16)

In fact, typically, E(εi |pubi ) À 0, since the publication process selects for portfo-

lios with large ri (and thus large εi ).

To correct for publication bias, we need to condition on the fact that the port-

folio is published, as well as all other information about µi that is contained in

the model. Thus, we define our estimator as follows:

µ̂i ≡ E(µi |pubi ,ri ,σi ;θ). (17)

As we have a model of publication, we can compute this expectation. The sim-

plest way to compute this is to simulate the model, and then plot the average

published µi as a function of (ri ,σi ). This brute force approach, however, results

in a bit of a black box.

Instead, we compute Equation (17) by applying Bayesian reasoning in two

steps. The first and key step is to realize that, within the model, the fact that

narrative i is published provides no information over and above the model pa-
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rameters θ. This result comes from Equations (7)-(10), which provide a complete

description of µi given θ. Intuitively, publication means that ri is probably high,

but the information set on the RHS implies that we already know ri anyway. For-

mally, this reasoning means we can simplify our estimator:

µ̂(ri ,σi ,θ) ≡ E(µi |pubi ,ri ,σi ;θ) = E(µi |ri ,σi ;θ). (18)

This result may be surprising, and indeed, has sometimes been called a paradox

(Dawid (1994), Senn (2008)).

The reasoning is quite straightforward, however, in a simpler problem. Sup-

pose x ∼ N (y,1), x is not observed, and we only observe y if y > 0. Then the den-

sity of x conditional on y being observed is still N (y,1). The same result holds if

y is only observed with probability p(y). The shape of p(y) may imply that y is

large, but we already know y anyway.

Finally, we can write down an expression for our publication bias-adjusted

return. To do this, rewrite the RHS of equation (18), using the definition of ex-

pectation and Bayes formula:

µ̂(ri ,σi ,θ) =
∫ ∞

−∞
µ′ fµ|r,σ(µ′|ri ,σi ,θ) (19)

fµ|r,σ(µ|ri ,σi ,θ) = fN (ri |µ,σi ) fτ(µ|µµ,σµ,νµ)∫
d µ̃ fN (ri |µ̃,σi ) fτ(µ̃|µµ,σµ,νµ)

(20)

where fN (ri |µi ,σi ) is just a normal pdf and fτ(µi |µµ,σµ,τµ) is a scaled student’s

t pdf (Equations (7) and (9)). The above bias adjustment lacks closed form solu-

tions, so we use numerical integration to compute both integrals.

To gain some intuition, consider the special case that νµ −→∞—that is, the

true returns µi are normally distributed. In this case, µ̂i can be calculated using

textbook normal-normal updating:

µ̂i = (1− s j )r j + s jµµ (21)

where the “shrinkage” s j is

s j =
σ2

i

σ2
µ+σ2

i

. (22)

Equations (21) and (22) capture intuitive aspects of publication bias. The neg-
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ative effect of publication bias comes down to mistaking luck (high εi ) for true

returns (high µi ). Lucky portfolios have higher in-sample returns, and thus the

adjustment in (21) increases in ri . Lucky portfolios still contain signal, however.

Thus, the adjustment contains a signal-to-noise ratio (22), where the noise is the

standard error, and the dispersion of true returns σµ measures the signal. This

signal measures the positive effect of publication bias, that is, the quality of the

narrative controls.

Equations (21) and (22) show that our bias adjustment is an extension of the

celebrated James and Stein (1961) estimator for a vector of means. These, like

other empirical Bayes estimator, improve on the in-sample mean of a given ob-

servation by incorporating information from other observations (Efron (2012)).

3.3. Estimation of Publication Bias

The bias adjustment (Equations (19) and (20)) assumes that the model pa-

rameters θ are known. For our empirical application, we estimate θ using a large

cross section of predictors via maximum likelihood. The invariance property of

maximum likelihood implies that plugging our estimate θ̂ into Equations (19)

and (20) gives the maximum likelihood bias-adjusted return.

The result of this process is illustrated in Figure 4, which plots bias adjust-

ments computed from applying maximum likelihood to simulated data. As the

data is simulated, we’re able to observe the true returns, and can directly observe

publication bias. This bias is manifested by the fact that the naive prediction

(assuming in sample returns equal the true return) is typically higher than the

true returns. Moreover, this bias increases in the in-sample return, as well as the

standard error.

The figure shows that the bias adjustments effectively remove publication

bias. The bias adjusted predictions run right through the center of the clouds of

true returns, and adjust effectively regardless of the in-sample return and stan-

dard error of the portfolio.

Maximum likelihood estimation of our model is somewhat tricky. We discuss

how we handle the difficult aspects of the estimation in the remainder of this

section.

In our baseline estimation, we do not estimate µµ and instead simply set it

to the most conservative value of 0. We do this since the likelihood can be quite
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Figure 4: Bias Adjustment Illustration. We simulate 400 published portfolios
(parameters are in Figure 3), run a maximum likelihood estimation on the simu-
lated data, and apply the bias adjustment (Equations (19)-(20)). Portfolios are
separated into those below the median standard error (left panel) and those
above the median (right panel). The naive prediction (solid line) is that the in-
sample return is equal to the true return. This prediction is biased upward com-
pared to the true returns (x’s) due to the publication bias, and this bias increases
in standard error and the in-sample return. The bias adjusted predictions (trian-
gles) effectively adjust for publication bias.
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flat for negative µµ, which then leads to bad behavior of the numerical optimiz-

ers. This problem is intuitive: Since only positive returns are published, the pub-

lished returns have very little information about the mean of all returns if the

mean is negative. Nevertheless, we find that setting µµ = 0 results in at least a lo-

cal maximum (Figure A.2), and, moreover, assuming other values for µµ has little

effect on our main results.

The likelihood is a bit tricky to write down as a result of publication bias. The

likelihood of a observing a pair (ri ,σi ) needs to be conditioned on publication:

fr,σ|pub(ri ,σi |pubi ,θ) = p(ri /σi |θ) fr |σ(ri |σi ,θ) fN (logσi |µσ,σσ)∫
dσ̃

[∫
dr̃ p(r̃ /σ̃|θ) fr |σ(r̃ |σ̃,θµ)

]
fN (log σ̃|µσ,σσ)

, (23)

where, as before, fN and fτ are the normal and scaled student’s t densities, and

fr |σ is the conditional density of r |σ. fr |σ is found by convolution

fr |σ(r |σ,θµ) =
∫

d µ̃ fτ(µ̃|µµ,σµ,νµ) fN (r |µ̃,σ). (24)

The numerator of Equation (23) is intuitive: Due to publication bias, the like-

lihood of observing a pair ri ,σi includes not only the densities of σi and ri |σi ,

but also the probability of passing the statistical requirements for publication

p(ri /σi |θ). The denominator comes from the fact that, since some portfolios are

not published, we need to renormalize the density and make sure it integrates to

1.

We evaluate the convolution in the numerator by standard numerical

quadrature. The denominator of the likelihood involves three integrals, which

is tricky to do using traditional methods. Thus, we compute the denominator by

monte carlo.

Another issue in the estimation is that the fat tail parameter νµ has non-

smooth derivatives, which tends to make standard optimizers fail. To overcome

this problem, we optimize by iterating between a quasi-newton method for all

parameters besides νµ, and using a more robust golden section search based al-

gorithm for νµ. The iteration stops when the likelihood stops updating. We find

this algorithm to be quite robust, and far outperforms starting simplex optimiz-

ers at various points, for example.

The last issue is that derivative-based standard errors may not work well with

the fat tail parameter. Indeed, we find that the Hessian standard error underesti-

mates uncertainty in νµ in simulated data. To overcome this issue, we calculate
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standard errors by bootstrap.

3.4. Data on 172 Published Cross-Sectional Return Predictors

In principle, our model can be estimated by hand-collecting statistics from

the original publications. The original statistics use various portfolio construc-

tions and regression specifications, however, and the assumption that true re-

turns are drawn from a single-peaked distribution (Equation (7)) means that we

should standardize the returns as much as possible.

Thus, we construct 172 long-short portfolios by replicating 120 publications

in accounting, economics, and finance journals. To our knowledge, this data is

the most comprehensive set of cross-sectional predictors to date. The Hou, Xue,

and L. Zhang (2017) dataset of 447 anomalies consists of only 148 anomalies if

one excludes alternative lagging choices and anomalies that were not demon-

strated to produce predictability in the original papers. The full list and predic-

tor definitions can be found in Table A.1. We also make our dataset available at

http://sites.google.com/site/chenandrewy/code-and-data/.

To construct our data, we begin with McLean and Pontiff (2016)’s set of 97

predictors and add predictors listed in Green, Hand, and X. F. Zhang (2013)

(GHZ), Harvey, Y. Liu, and Zhu (2015) (HLZ), and Hou, Xue, and L. Zhang (2017)

(HXZ). In adding predictors, we require that (1) the predictor is published in a

“top tier” journal,7 (2) the portfolio is shown to generate statistically significant

return predictability in the original paper, and (3) the portfolio uses publicly-

available data that are regularly updated. This process adds 23 variables from

GHZ, 26 variables from HLZ, 47 variables from HXZ, and 20 variables which over-

lap between these papers.

We do not aim to perfectly replicate the original papers, but rather try to (1)

capture the spirit of the paper and (2) produce t-statistics above 1.5. In our ex-

perience, simply following the instructions in the original paper does not guar-

antee a good replication, and including the t-statistic minimum helps avoid er-

rors which invariably occur when replicating so many studies. Aiming for high

7We define “top tier” journals as: the Journal of Finance, the Journal of Financial Economics,
the Review of Financial Studies, and the Journal of Financial and Quantitative Analysis, Man-
agement Science, the Accounting Review, the Journal of Accounting Research, the Journal of
Accounting and Economics, the Review of Accounting Studies, Contemporary Accounting Re-
search, the Quarterly Journal of Economics, the Journal of Political Economy, the American Eco-
nomic Review, Econometrica, and the Review of Economic Studies.
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t-stats is also important for avoiding “reverse p-hacking,” that is, suffering from

the publishing process’s bias for negative replication results (Galiani, Gertler, and

Romero (2017)).

We set the t-statistic goal to be less than 2 to allow for differences in t-stat

calculations and updates to data sources. We include 12 portfolios with t-stats

< 1.5 that were in McLean and Pontiff (2016)’s dataset. 4 additional portfolios

also had t-stats < 1.5 but reasonable in-sample returns. We include these port-

folios to avoid adding selection beyond what the publication process produces.

Nevertheless, excluding these portfolios has little effect on our results.

The resulting dataset covers 90% of the 121 factors in HLZ that meet our

screening criteria. Similarly, it covers 91% of the 149 predictors in HXZ that

meet our screening criteria and are not duplicates. Most of the remaining predic-

tors require either specialized or proprietary data (TAQ, BEA input-output tables,

conference call transcripts). In a handful of cases, we had difficulty replicating

the original papers. In these cases, we assume that the error was ours and ex-

clude these portfolios.

Table 2 gives an overview of our dataset. The top panel describes the types

of journals as well as the categories of predictors we cover. More than half of the

predictors (104) come from the “top 3” finance journals. The bulk of the remain-

der (44) come from the “top 3” accounting journals.

We categorize predictors primarily by the data source used for constructing

the signals. More than half of the predictors focus on Compustat data, and in-

deed, nearly all of the accounting journal predictors have this focus. The second

largest group of predictors relies on only market prices (equity prices or equity

option prices). The remainder of the predictors use either analyst forecasts, in-

stitutional ownership data, or focus on events (such as mergers or IPOs).

In our baseline results, we focus on equal-weighted long short portfolios.8

Most variables are long-short quintiles, though our dataset also includes a nu-

mer of indicator variables (like recent IPOs). Panel B of Table 2 shows the mean

returns and t-stats from these portfolios. The returns in the original samples are

around 0.70% per month on average. For comparison, the mean return of equal-

8Nearly all of the original papers use equal-weighted portfolios or Fama-Macbeth regressions.
An important exception is the idiosyncratic volatility (Ang, Hodrick, Xing, and X. Zhang (2006))
which focuses on value-weighted portfolios. We equal-weight our idiosyncratic volatility portfo-
lios for ease of communication, but our results are not sensitive to using value-weights for this
particular predictor.
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weighted long short quintiles based on B/M is around 1.00% in Fama and French

(1992)’s sample. The standard deviation of mean returns (across predictors) is

around 0.50%, indicating that there is substantial heterogeneity in returns. These

values are close to those from McLean and Pontiff (2016), who find a mean return

of 0.58% and a standard deviation of 0.40%.

Interestingly, the data show that all journal categories and predictor data

sources lead to similar mean returns. Accounting journals and analyst forecast

data appear to produce higher t-stats, but considering the large dispersion in

t-statistics it’s hard to say that any category is special. Indeed, we find that in-

cluding only predictors from top 3 finance journals does not affect our results.
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Table 2: Summary Statistics for 172 Cross-Sectional Return Predictors

Most portfolios are quintile sorts. A minority of portfolios use indicator variables.

Top 3 Finance includes the Journal of Finance, the Journal of Financial Economics

and the Review of Financial Studies. Top 3 Accounting includes the Accounting Re-

view, the Journal of Accounting Research and the Journal of Accounting and Eco-

nomics. Top 5 Econ includes the Quarterly Journal of Economics and the Journal of

Political Economy (as these two journals are the only ones among top 5 economics

journals with predictors that we replicated). Accounting includes predictors based

on Compustat information, Analyst forecasts includes predictors based on IBES, Event

includes company events such as mergers or initial public offerings, Price Only in-

cludes predictors based on stock or options market information based on CRSP or

OptionMetrics, and Owner which includes predictors based on 13F data. Appendix

A.1 provides a complete list of predictors. Monthly portfolio returns can be found at

http://sites.google.com/site/chenandrewy/code-and-data/.

Panel A: Predictor Categories

Accounting
Price Analyst

Event Owner Total
Only Forecasts

Top 3 Finance 42 40 8 8 5 103
Top 3 Accounting 41 0 3 0 0 44
Top 5 Econ 2 2 0 0 0 4
Other 11 5 4 1 0 21

Total 96 47 15 9 5 172

Panel B: In-Sample Statistics for Equal-Weighted Long-Short Portfolios

Mean Return
t-statistic

(% per month)

#Portfolios Mean Std Mean Std

Journal

Top 3 Finance 103 0.68 0.49 3.57 2.43
Top 3 Accounting 44 0.69 0.60 5.23 4.05
Top 5 Econ 4 0.55 0.18 2.79 1.95
Other 21 0.76 0.41 4.82 3.02

Predictor Type

Accounting 96 0.60 0.45 4.39 3.19
Analyst Forecast 15 0.86 0.53 5.81 4.15
Market Price 47 0.76 0.55 3.26 2.27
Event 9 0.56 0.29 2.55 0.69
Ownership 5 1.42 0.71 5.13 3.27
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4. Main Result: Estimated Publication Bias Adjust-

ments

Having described our model, estimation, and data, we are finally in a posi-

tion to show the main results. This section focuses on describing the estimated

parameters, bias adjustments, and robustness. Section 5 explains why the bias

adjustments are so small.

4.1. Estimated parameters and bias adjustments

Table 3 shows the main result: estimated model parameters and implied

bias adjustments. We estimate a model of biased publication (Table 1) on our

database of cross-sectional predictors (Table 2) by maximum likelihood (Section

3.3). The table shows our baseline specification, as well as four alternative spec-

ifications for robustness.

The first estimated parameter shows that many predictors are real. In the

baseline estimation, the dispersion of true returns is estimated to be quite large

at 0.45. Combined with the estimated fat tail parameter of 3.53, this implies that

the cross-sectional standard deviation of all narrative true returns is σµ

√
νµ

νµ−2 =
0.68% per month. In other words, it’s quite common to find narrative portfolios

with true, bias-adjusted returns of 0.68% per month.

Moreover, the dispersion of true returns and the fat tail parameter are pre-

cisely estimated. Indeed, the dispersion of true returns is more than 5.5 standard

errors from zero, showing that we can, with little doubt, reject the hypothesis that

all predictors are false (equivalently, we reject that shrinkage is 100%).

The remainder of the parameters demonstrate that the estimator works prop-

erly, but they are otherwise not very interesting. The standard error parameters

imply that the mean of all narrative standard errors is exp(µσ+0.5σ2
σ) = 0.21% per

month. This is slightly higher than the mean standard error for published data

(0.19%) per month, indicating that there is a bit of downward publication bias

in standard errors. The dispersion of log standard errors is similar to its naive

counterpart, as is the midpoint of the t-statistic cutoff. The t-stat threshold slope

of 2.47 indicates that the publication threshold is soft, which can be seen directly

in the shape of the published t-stat distribution (Section 5.3).

The bottom of Table 3 provides the key numbers from the estimation: sum-
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Table 3: Estimation Results

We estimate a model of biased publication (Table 1) on our library of cross-sectional

return predictors (Table 2) by maximum likelihood. Bootstrap standard errors are in

parentheses. Shrinkage for a portfolio is defined by

Bias-adjusted return = (1− [Shrinkage])× [In-Sample Return]

where the bias-adjusted return is calculated using Equations (19)-(20). The bias adjust-

ment is small, at 13% of the in-sample return. This small shrinkage is well-estimated,

and robust across several alternative specifications. “t-stat > 2.0 only” uses 132 portfo-

lios with t-stats > 2.0, “top 3 finance only” uses 104 portfolios from the Journal of Finance,

Journal of Financial Economics, and Review of Financial Studies, “Normally distributed

true returns” assumes that νµ = 100, and “negative mean of true returns” assumes that

µµ is equal to the negative of the average in-sample return.

Parameter Baseline Alternative Specifications

172 EW t-stat Top 3 Normally Negative
long-short > 2.0 Finance distributed mean of
portfolios Only Only true returns true returns

Assumed Parameters
µµ mean true return 0 0 0 0 -0.69

Estimated Parameters
σµ dispersion of 0.45 0.41 0.43 0.70 0.75

true returns (0.08) (0.05) (0.11) (0.06) (0.08)
νµ fat tail (d.o.f.) of 3.53 3.56 3.64 100.00 12.58

true returns (0.99) (0.74) (2.33) - (3.11)
µσ mean of log -1.70 -1.71 -1.59 -1.74 -1.72

standard error (0.06) (0.05) (0.07) (0.04) (0.05)
σ2
σ std of log 0.51 0.51 0.51 0.51 0.51

standard error (0.03) (0.03) (0.03) (0.02) (0.02)
tcut midpoint of 1.49 1.99 1.45 1.09 1.40

t-stat threshold (0.47) (0.02) (0.67) (0.20) (0.20)
tslope slope of 2.47 100.00 2.37 2.98 2.75

t-stat threshold (0.50) - (1.98) (3.01) (0.44)

Estimated Bias Adjustments
Mean Shrinkage 0.13 0.11 0.16 0.08 0.14

(0.05) (0.02) (0.08) (0.01) (0.03)
Median Shrinkage 0.09 0.09 0.12 0.05 0.09

(0.05) (0.01) (0.09) (0.01) (0.02)
Std Shrinkage 0.10 0.09 0.12 0.07 0.15

0.03 0.01 0.04 0.01 0.04
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mary statistics for bias adjusted returns. The bias adjusted returns are calculated

by applying Bayes rule within the context of the model (Equations (19)-(20)).

To ease interpretation, we express bias adjusted returns in terms of “shrinkage,”

which is defined as

Bias-adjusted return = (1− [Shrinkage])× [In-Sample Return]. (25)

The baseline specifications finds that the mean shrinkage is modest, at just

13%. In other words, for the typical in-sample return of 0.70% per month, the

bias adjusted return is 0.61% = 0.70× (1−0.13)%). This small shrinkage is well-

identified, with the standard error for the mean shrinkage at just 5%.

These mean shrinkage numbers summarize our main result. We can say with

confidence that the net effect of publication bias on the cross-sectional return

prediction literature is small.

4.2. Alternative Specifications

We can be even more confident in our headline result because it is robust

across model specifications. The alternative specifications columns of Table 3

show that the mean shrinkage around 13% regardless of whether we keep only

replications with t-stats > 2.0, top 3 finance journal papers, assume normally dis-

tributed true returns, or assume a negative mean true return.

The “t-stat > 2.0 only” specification uses only the 132 portfolios with t-stats

> 2.0. It’s arguable that the predictors with t-stats < 2.0 were due to errors in

our replications, and this specification shows that our main results are robust to

excluding these portfolios. In this estimation, we do not estimate the slope of the

t-stat adjustment since we know by construction that the slope is nearly infinite.

The “top 3 finance only” specification uses 104 portfolios published in the

Journal of Finance, Journal of Financial Economics, and the Review of Finan-

cial Studies. This specification should alleviate the concern that our results are

driven by the 21 predictors in the “other” journal category (Table 2). Moreover it

shows that the small bias exists within the finance journals alone.

The last two alternative specifications concern model assumptions. “Nor-

mally distributed true returns” assumes that the degrees of freedom parameter

is very large and omits it from the estimation. This specification should alleviate

the concern that our results are due to an artifact of the fat tail assumption in our
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model. Indeed, the normal assumption results in even smaller mean shrinkage

of 8%.

“Negative mean of true returns” explores the assumption that the mean of

true returns is very negative. In the baseline estimation, we assumed that the

mean of true returns is 0 because the likelihood becomes very flat if this pa-

rameter is negative (Section 3.3). Interestingly, assuming a very negative mean

of true returns has little effect on the mean shrinkage. This invariance occurs

because the dispersion of true returns increases in order to compensate for the

lower mean. These two parameters have opposing effects on the bias adjustment

(Equation (22)), and in the end cancel out. Estimations with other assumptions

for the mean of true returns lead to a similar cancellation effect.

4.3. Heterogeneity in bias adjustments

The mean shrinkage is just 13%, but the cross-sectional standard deviation is

somewhat large at 10 percentage points (Table 3). Nevertheless, modest shrink-

age is a good description of the estimates overall.

This heterogeneity is explored in detail in Figure 5, which shows a histogram

of the shrinkage distribution, as well as the identities of the predictors. The dis-

tribution is very right-skewed, with 80% of predictors having shrinkage estimates

less than 20%. Even the high shrinkage predictors have only a moderate amount

of publication bias, however. 169 out of 172 predictors have shrinkage estimates

less than 40%, and the maximum shrinkage is 53%.

Figure 5 also illustrates the determinants of the predictor-level shrinkage.

Portfolios with high return volatility (red text) occupy nearly all of the distribu-

tion above 20% shrinkage. This result is intuitive: portfolios with a lot of noise

are more likely to have had lucky in-sample returns, and thus exhibit more pub-

lication bias (on average).

Theoretically, the sample length should also play a key role in the amount of

noise, and thus the magnitude of shrinkage (Equation (22)). However, we find

that the empirical correlation between the sample lengths and return standard

errors is only mildly negative, at -0.20.

It’s worth noting that higher shrinkage does not imply poor bias-adjusted re-

turns. Higher shrinkage portfolios have larger standard errors, and these portfo-

lios need to have higher in-sample returns in order to meet the publication t-stat
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threshold. The higher in-sample returns, then, compensates for the large shrink-

age. Indeed, the three highest shrinkage portfolios (the credit rating downgrade

predictor of Dichev and Piotroski (2001), the IPO-age predictor of Ritter (1991),

and the recent IPO predictor (also of Ritter (1991)) have reasonably good bias-

adjusted returns of 0.37%, 0.48%, and 0.54%, respectively.
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Figure 5: Distribution of publication bias adjustments for 172 cross-sectional
return predictors. We estimate a model of biased publication (Table 1) on 172
long-short returns and t-stats (Table 3). Shrinkage is defined by

Bias-adjusted return = (1− [Shrinkage])× [In-Sample Return]

where the bias-adjusted return is calculated using Equations (19)-(20). Each
name represents one cross-sectional predictor. The full references are in Table
A.1. Publication bias is heterogeneous and right skewed, but modest overall: 80%
of the portfolios have shrinkage below 0.20. High shrinkage portfolios are mostly
those with high return volatility.
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5. Why is Publication Bias So Small?

Our results may be surprising, especially to those who work in the cross-

sectional returns literature. Those in the field might feel certain that, we must

be mining the data. At least, as a collective we must be.

But there are controls on the publication process that are designed to limit

the negative effects of data-mining. And a priori, it’s hard to know which force

dominates.

Our estimator takes an empirical approach, and lets the data speak about

which force is stronger. The estimator belongs to the empirical Bayes family, and

as such, it learns about a given predictor by studying the larger family of pre-

dictors (Efron (2012)). This family displays considerable dispersion, much more

dispersion than would be implied by pure noise. Using this information, the es-

timator concludes that there is a lot of signal in each predictor.

This section explains our empirical results in detail. Section 5.1 begins by

showing how the dispersion of true returns is critical for determining the mean

shrinkage. Section 5.2 goes on to show how the dispersion of true returns is de-

termined by the dispersion of in-sample returns. Section 5.3 finishes up by com-

paring our estimated bias adjustments with McLean and Pontiff (2016)’s upper

bound.

5.1. Mean Shrinkage is Determined by the Dispersion of True

Returns

Our bias adjusted return comes from a complicated expression (Equations

(19) and (20)), but plotting the bias adjustments reveals some intuition for how

the adjustment works.

Figure 6 plots the bias adjustments for all 172 of our predictors. The bias ad-

justment is plotted in terms of shrinkage, and is shown as a scatter against the

standard error of the portfolio’s in-sample return. Clearly, the portfolio’s stan-

dard error is an important determinant of shrinkage. The higher the standard

error, the more shrinkage is recommended. This result is intuitive: more volatile

portfolios or publications with shorter samples are more likely to have lucky in-

sample returns. Thus, these lucky portfolios require a larger adjustment.

Indeed, the relationship between the standard error and shrinkage can be
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Figure 6: Determinants of the bias adjustments. Each marker represents one
portfolio from our database of 172 predictors. Shrinkage is defined by

Bias-adjusted return = (1− [Shrinkage])× [In-Sample Return]

where the bias-adjusted return is Eqns. (19)-(20). The normal approximation is

[Shrinkage]i =
σ2

i

σ̂2
µ+σ2

i

.

where σi is the standard error and σ̂2
µ is the estimated dispersion of true returns.

The normal approximation works well for most portfolios. The primary determi-
nant of the mean shrinkage is σ̂2

µ.
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expressed in closed form for the normal approximation of our model (Section

3.2). In this approximation, the shrinkage is a sort of noise-to-signal ratio, where

the noise is the portfolio-specific standard error (Equation (22)).

Figure 6 also plots the normal approximation. The normal approximation

works well for most of the portfolios, though it misses the portfolios with very

high in-sample returns. This deviation occurs because the full model has a fat

tail in true returns, and these high return portfolios are more likely to belong in

the tail.

But overall, the normal approximation does a good job of capturing shrink-

age. Indeed, our headline 13% shrinkage can be derived using this approxima-

tion. Plugging in the mean standard error of 0.20% and our estimated σ̂µ = 0.45,
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the typical shrinkage is approximately

σ2
i

σ̂2
µ+σ2

i

= 0.202

0.452 +0.202
= 0.16. (26)

This analysis begs the question: where does our estimate of σ̂µ = 0.45 come

from?

5.2. The Estimated Dispersion of True Returns is Determined

by the Dispersion of In-Sample Returns.

We’ve seen that the mean shrinkage is determined by the estimated disper-

sion of true returns σ̂µ. Here we show that σ̂µ is identified by the dispersion of

in-sample returns.

This identification is illustrated in Figure 7, which plots the distribution of

in-sample returns in the data (bars) and model-implied distributions (lines with

square markers). The left panel shows our estimated model. The other panels

show models that display large publication bias.

The estimated model (left panel) is a tight fit for the published data. The

model histogram counts are close to the data throughout the distribution. This

tight fit comes despite the fact that the model has only six estimated parameters,

and that the model also must fit the distribution of standard errors (not shown).

The left panel also shows the distribution of true returns implied by the model

(dash-dot line). True returns are quite close to the in-sample returns, leading to

the small mean shrinkage of just 0.13.

The middle panel plots the distribution of in-sample returns implied by a

model with large bias. This model deviates from the estimated model only in that

σµ = 0.07, compared to the estimated σµ = 0.45. σµ = 0.07 is chosen in order to

achieve a mean shrinkage of 0.50. This shrinkage is important because McLean

and Pontiff (2016) find that post-publication returns are lower than in-sample

returns by 58%. Thus, σµ = 0.07 is required to assign the majority of this decline

to publication bias.

The middle panel shows that this large bias model is a terrible fit for the data.

This model utterly fails to capture the dispersion of in-sample returns. Our es-

timator sees much more than just the dispersion however. As we use maximum

likelihood, the estimator sees the fit of every in-sample return bin, and the ex-
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Figure 7: Identification of the Dispersion of True Returns σµ. Each panel il-
lustrates the fit of a different model. The left panel compares the distribution of
published in-sample returns in the data (grey bars) with the distribution implied
by the estimated model of Table 3 (blue squares). The distribution of true returns
implied by the model is plotted for comparison (dash dotted line). The middle
panel shows a model in which σµ is decreased to 0.07, but all other parameters
remain the same. The right panel shows a model in whichσµ is decreased to 0.07
and tcut is increased to 4.00. Both of the alternative models imply large mean
shrinkage, and both are poor fits for the data.
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cessively high counts for the low return bins as well as the excessively low counts

for the in-sample returns around 1 are all penalized by the estimator. Indeed,

the log-likelihood of this model is -454, more than 200 log points away from our

maximum likelihood estimate of -198.

One might argue that the large bias model needs to have other parameters

adjusted to fit the data. One adjustment consistent with the idea that the data

exhibits a large bias is a large increase in tcut—that is, the journals exhibit a large

bias for statistical significance.

The right panel of Figure 7 shows that increasing tcut does not fit the data

either. The panel assumes a high t threshold midpoint of tcut = 4.00, which, we

found fits the data the best holding other parameters constant. This high cutoff

still leads to too little dispersion in in-sample returns, and the log likelihood of

-282 is still very far from our baseline estimate. Moreover, this high t-stat cutoff

results in an implausibly strong preference for high t-stats. tcut = 4.00 implies

that a quality narrative portfolio with a t-stat of 2.5 gets only a 2.4% chance of

31



publication, while a t-stat of 5.5 implies a 97.6% chance (Equation (13)).

This identification discussion begs the question: does the estimated model

fit the other dimensions of the data? Figure 8 shows that the answer is yes.

Figure 8: Model fit. We simulate the model using estimated parameter val-
ues (Table 3) and compare the distribution of observables with those from our
database of 172 predictors (Table 2). The t-stat thresh uses estimated parame-
ter values. The model fits all observable distributions very well, including the
correlation between in-sample returns and standard error (bottom right).
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The figure’s 4 panels plot the distribution of t-stats, in-sample returns, stan-

dard errors, as well as a plot that illustrates the correlation between in-sample

returns and standard errors. All 4 panels of show that the estimated model cap-

tures the data very well.
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5.3. External Verification: McLean and Pontiff (2016)’s Lower

Bound

We’ve shown that the model fits data that it algorithmically targets. Is there a

way to bring to bear data from outside the estimation?

The natural external test would be to compare our estimated shrinkage to

out-of-sample returns. Out-of-sample returns, however, are polluted by trading

effects, since investors that learn about predictability may decide to change their

portfolio allocations.

McLean and Pontiff (2016) (MP) develop a clever way to try to isolate trad-

ing effects. Assuming that papers are less widely known before publication, the

return between the end of the original sample and the publication date should

exhibit a limited amount of trading effects. Thus, the mean return in this “be-

tween” sample serves as a lower bound on the publication bias adjusted return.

Figure 9 examines MP’s lower bound. The figure shows scatterplots of bias-

adjusted returns against the in-sample return, as well as the mean returns be-

tween the end of the original sample and publication. For comparison, the figure

also plots the naive prediction: in-sample return = true return.

The first thing that jumps out from the plot is that bias-adjusted returns are

very similar to naive predictions. This, essentially, is the main message of our

paper: publication bias is modest. This modest bias is particularly evident in

low-standard error portfolios (left panel).

More importantly, the figure provides a simple external validation of our bias

adjustment. The circles represent the returns between the end of the sample

and publication. High publication bias would imply that these circles would be

symmetrically spread across 0. Instead, the circles are more or less symmetrically

spread around the naive prediction line.

Moreover, our bias adjusted returns are slightly above the middle of the cloud

of circles. Averaging across the blue circles we find that our mean bias-adjusted

return is consistent with MP’s lower bound. The average return in the between

sample is 0.57% per month, slightly below our mean bias-adjusted return of

0.60%.
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Figure 9: Bias adjusted returns and returns after the original in-sample period.
Each marker represents one long-short portfolio. The naive prediction assumes
that the true return is equal to the in-sample return. “Return between sample
and pub” is the mean return between the end of the original paper’s sample and
publication date. Low standard error portfolios are those with standard error
below the median. The bias-adjusted prediction is calculated by using Equa-
tions (19)-(20) and the maximum likelihood estimates of our model (Table 3).
The bias-adjusted predictions are slightly above the mean return between sam-
ple and pub.
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6. Implications for the Anomaly Zoo

The asset pricing literature has uncovered hundreds of patterns in the cross-

section of stock returns. Recent research has aimed to place some order on this

zoo of anomalies (Cochrane (2011), Harvey, Y. Liu, and Zhu (2015), Kozak, Nagel,

and Santosh (2017), Feng, Giglio, and Xiu (2017)).

Our bias adjusted returns imply that (1) correcting for data mining does not

help reduce the multitude of cross-sectional predictors, and (2) much of the pre-

dictability throughout the zoo of anomalies was due to mispricing at the time of

publication. Sections 6.1 and 6.2 discuss these implications, respectively.
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6.1. Hypothesis Tests Adjusted for Publication Bias

The small bias adjustments for expected returns suggests that the zoo of

anomalies cannot be simply attributed to publication bias. Here, we look more

closely at the question, and show that 96% of published anomalies are true using

multiple testing statistics.

To demonstrate this, we use our estimated model to calculate the false dis-

covery rate (FDR), one of the multiple testing statistics recommended by Harvey,

Y. Liu, and Zhu (2015) (HLZ). We focus on the FDR instead of the family wise er-

ror rate because of its simple interpretation: the FDR is the share of anomalies

that are statistical figments.

We define a null predictor as one with non-positive true returns (µi ≤ 0). This

definition stays close to the classical definition and also to HLZ, both of which

define the null as µi = 0. This null is also important as it is used in popular mul-

tiple testing adjustments (for example, Bonferroni and Benjamini and Hochberg

(1995)). In contrast to these approaches, our model considers portfolios with

worse-than-zero true returns, and thus we must label µi < 0 as null in addition

to µi = 0.9

Using this definition of a null predictor, we can calculate false discovery rates

by simulating the estimated model. Figure 10 illustrates this calculation. The top

panel shows the distribution of narrative portfolios’ true returns against t-stats.

Null portfolios, that is, portfolios with negative true returns are highlighted in

red.

For portfolios with t-stats less than 0.5, the probability of being null is about

0.5, as indicated by the even split between red and light blue dots near the left

side of the panel. The cloud of dots, however, is upward sloping, and thus, higher

t-stat portfolios are more likely to be non-null.

This pattern is more precisely described in the bottom panel. The panel plots

the FDR as a function of the t-stat hurdle. Even the extremely generous hurdle

of 0 leads to a low FDR of 12%. Increasing the t-stat hurdle decreases the false

discoveries sharply. At a t-stat hurdle of 0.9 we already have an FDR of 5%, one of

the FDR values in recommended by HLZ. Raising the t-stat hurdle to 1.8 reduces

the FDR to 1%, HLZ’s alternative recommendation.

9An alternative to using µi ≤ 0 as the null is to estimate a model in which µi is drawn from
a strictly positive distribution and a point mass at zero. The point mass at zero serves a similar
function as the distribution of negative µi in our model.
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Figure 10: Multiple Tests of the Null of Non-Positive True Returns. We simulate
narrative portfolios using our estimated model (Table 3). The top panel shows a
scatter plot of 10,000 true returns against t-stats. The false discovery rate (FDR)
for a given t hurdle is the fraction of predictors which exceed the hurdle that have
non-positive true returns (red dots). Incorporating information from multiple
tests leads to the t-hurdles given by the green lines, which are more lenient t-stat
hurdle than the traditional 1.96 (grey dashed line).
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Thus, our results suggest that the traditional t-stat hurdle of 1.96 could actu-

ally be loosened. Even a t-stat hurdle of 0.9 effectively controls for false discover-

ies, given that the portfolio has a top-tier quality narrative. This surprising result

comes from the fact that we estimate the dispersion of narrative true returns to

be very large. This large dispersion implies that the t-stat is a strong signal about

the underlying true return, the cloud of dots in the top panel of Figure 10 is up-

ward sloping, and thus a large t-stat is not required for concluding the true return

is positive.

In contrast, single hypothesis tests do not allow for any inferences about the

dispersion of true returns. With a single predictor, the only reasonable approach
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is to assume that the predictor is useless, leading to a high t-stat hurdle. Less

structured multiple-testing adjustments such as the Bonferroni and Benjamini-

Hochberg adjustments also do not estimate the distribution of true returns and

instead assume the worst case, as we explain in Appendix A.3.

An important caveat is that our results apply only to predictors that are

judged to have quality narratives, that is, soft characteristics that satisfy the jour-

nal review process. Thus, our results do not imply that a randomly data-mined

portfolio with a t-stat of 1.0 is 95% likely to have positive true returns, and our

low FDR estimates are consistent with Chordia, Goyal, and Saretto (2017)’s re-

sults regarding randomly generated signals. Similarly, our results do not imply

that journals should consider loosening their t-stat restrictions without carefully

maintaining their narrative controls.

Nevertheless, our results do apply to predictors that are published in top tier

journals. Indeed, as top tier journals only allow narratives that meet a soft thresh-

old centered around 1.5 (Table 3), published predictors are almost all true. Ac-

cording to our model estimates, the FDR among published predictors is only 4%.

One interpretation of the low estimated t-stat hurdles is that the traditional

null hypothesis of µi = 0 is inadequate. This null describes only a tiny portion

of narrative predictors. As a result, non-null predictors are not unusual, and the

null does not help separate interesting cases from typical ones. In this case, one

may want to use an “empirical null” that is designed to generate unusual cases

(Efron (2012). We discuss one such empirical null in Appendix A.4.

Our results contrast with HLZ, who find that t-stat hurdles close to 3.0 are

required to reduce the FDR below 1%. HLZ’s data is substantially different than

ours, however. While our dataset includes only predictors which demonstrate

return predictability, HLZ’s dataset is comprised of asset pricing factors, broadly

defined. Perhaps as a result, the dispersion of t-statistics is larger in our data. The

90th percentile t-statistic in our sample is 7.8, compared to the 90th percentile of

6.3 in HLZ.

There are other differences in methodology which may contribute to the de-

viation in results, however. Our model uses both point estimates and standard

errors, while HLZ consider only the t-stat. HLZ’s model assumes a mixture dis-

tribution for true returns, while ours assumes a single fat-tailed distribution. A

clear reconciliation of our low t-stat hurdle and HLZ’s t-stat hurdles above 3.0 is,

in our view, an important question for future research.
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6.2. Implied Mispricing

Our estimation results thus far are negative. We find that publication bias

cannot account for the zoo of published stock return anomalies.

In this section, we present evidence in favor of a more positive conclusion.

Combining our estimation with the empirical methodology of McLean and Pon-

tiff (2016) and Marquering, Nisser, and Valla (2006), we find evidence suggesting

that mispricing plays an important role throughout the anomaly zoo.

McLean and Pontiff (2016) (MP) and Marquering, Nisser, and Valla (2006)

build on the insight that the average return post publication is informative about

the nature of the cross-sectional predictability. If predictability is due to mis-

pricing, post publication returns should be poor, as traders bid up underpriced

assets and avoid overpriced ones. Similarly, if predictability is due to publication

bias, post-publication returns should be poor as the pre-publication predictabil-

ity was a statistical figment. On the other hand, risk-based stories do not provide

a clear prediction.

This logic leads to the decompositions of in-sample returns seen in Figure 11.

The figure decomposes the average in-sample return across predictors into (1)

publication bias deterioration (2) non-statistical deterioration, and (3) the post-

publication return.

The decomposition comes from computing average returns of different types

and taking differences. The publication bias deterioration is the average differ-

ence between in-sample returns and bias adjusted returns calculated according

to Equations (19) and (20). Post-publication returns are the average returns in

the sample after the publication date. The non-statistical deterioration is the

average difference between bias-adjusted returns and post-publication returns.

These averages are computed within subsets of predictors. Low standard error

and low t-stat predictors are those below the median, while high standard errors

and high t-stat are above the median.

The figure shows that a significant portion of in-sample returns is due to non-

statistical deterioration. On average, post-publication returns are 0.25 percent-

age points per month lower than bias-adjusted returns, and this non-statistical

deterioration accounts for 35% of the average in-sample return. Non-statistical

deterioration is largest for high t-stat, low standard error, and high in-sample

return portfolios, consistent with MP and the hypothesis that mispricing is the
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Figure 11: Implied mispricing. This chart decomposes the average in-
sample return into publication bias, non-statistical deterioration, and the post-
publication return. Publication bias is the average in-sample return minus the
average bias-adjusted return (Equations (19)-(20)). Post-publication return is the
average mean return in the sample after publication. Non-statistical deteriora-
tion is the average difference between bias adjusted returns and post-sample re-
turns. Each bar computes averages within subset of the predictors. “Low S.E.”
consists of portfolios with below the median standard error, and similarly for
“low t-stat.” A significant portion of in-sample returns is due to non-statistical
deterioration, suggesting that mispricing plays a role across many anomalies.
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underlying driver of predictability.

Our results go beyond MP, however, in several ways. While MP place an upper

bound on publication bias, and thus a lower bound on non-statistical deteriora-

tion, our bias adjustments provide direct estimates of both. MP’s upper bound

also runs into a couple theoretical concerns: namely it assumes that there is no

selection happening between the end of the in-sample period and publication.

Our estimator avoids these concerns by explicitly modeling and estimating the

selection process. Finally, our dataset is nearly twice the size of MP’s, which is

important considering how volatile stock returns are and how short the post-

publication period can be.
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These refinements mean that we can make inferences on subsamples of pre-

dictors with confidence. This increased precision is highlighted in Figure 12,

which plots the bootstrapped distribution of non-statistical deterioration.

Figure 12: Implied mispricing: bootstrapped distribution. We resample the
data 10,000 times and run our estimator on each resampling. Low S.E. port-
folios have in-sample return standard errors below the median. Mean non-
statistical deterioration is the average bias-adjusted in-sample return minus the
average post-publication return, all divided by the average in-sample return. The
hypothesis that publication bias accounts for all deterioration in returns post-
publication is soundly rejected, suggesting that mispricing is important.
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The figure splits the data into portfolios with standard errors below the me-

dian (left panel) and those above (right panel). In both panels, the 5th percentile

of the bootstrapped standard errors are far from zero, indicating that we can be

confident that a significant share of in-sample returns is due to non-statistical

deterioration. Indeed, the hypothesis that publication bias can account for all of

the deterioration is soundly rejected for both low and high standard error port-

folios (p-values of 0.0002 and 0.0056, respectively).

7. Conclusion

We find that the net effect of publication bias on cross-sectional stock pre-

dictors is small. These results suggest that editors and referees provide an im-

portant control on our collective mining of the data, leading to the discovery of
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a multitude of portfolios with high returns and low market risk. These high re-

turns, however, are short-lived, as traders quickly act on the publication of return

predictability and eliminate mispricing.

Our results, combined with a couple other recent papers, provide a complete

accounting for the returns of the anomaly zoo. We find that the typical anomaly

return of 8% per year is 13% publication bias. McLean and Pontiff (2016) show

that another 35% is mispricing that can be traded away. Chen and Velikov (2017)

complete the story, showing that the remaining 52% can be accounted for by

trading costs.
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A. Appendix

A.1. Additional Exhibits on the Data

Table A.1: Description of Anomaly Construction. This table provides details of the construction of 174 anomalies used in the paper. Data
come from the CRSP stock return database, Compustat North America Annual and Quarterly databases, IBES earnings estimates database, Op-
tionMetrics, Thomson SDC and a number of additional databases noted in the descriptions of specific anomalies. Our final database is set up at
monthly frequency. We lag annual Compustat data by five months and quarterly Compustat data by 3 months to assure availability of relevant data
at the time of trading.

Acronym Description Author(s) Pub year Sample Start Sample End Description

AbnormalAccruals Abnormal Accruals Xie 2001 1971 1992 Define Accruals as net income (ib) minus operating cash flow (oancf),

divided by average total assets (at) for years t-1 and t. If oancf is miss-

ing, replace operating cash flow with funds from operations (fopt) mi-

nus the annual change in total current assets (act) plus the annual

change in cash and short-term investments (che) plus the annual

change in current liabilities (lct) minus the annual change in debt in

current liabilities (dlc). For each year t, regress Accruals on: the in-

verse of average total assets for years t-1 and t, the change in revenue

(sale) from year t-1 to t divided by average total assets, propery plant

and equipment (ppegt) divided by average total assets, industry dum-

mies for Fama-French’s 48 industry classification. AbnormalAccrual

is the residual from this cross-sectional regression.

Accruals Accruals Sloan 1996 1962 1991 Annual change in current total assets (act) minus annual change in

cash and short-term investements (che) minus annual change in cur-

rent liabilities (lct) minus annual change in debt in current liabilities

(dlc) minus change in income taxes (txp). All divided by average total

assets (at) over this year and last year. Exclude if abs(prc) < 5.

AccrualsBM Book-to-market and accruals Bartov and Kim 2004 1980 1998 Binary variable equal to 1 if stock is in the highest Accrual quintile and

the lowest BM quintile, and equal to 0 if stock is in the lowest Accrual

quintile and the highest BM quintile. Exclude if book equity (ceq) is

negative.

AdExp Advertising Expense Chan, Lakonishok and

Sougiannis

2001 1975 1996 Advertising expense (xad) over market value of equity

(shrout*abs(prc))

AgeIPO IPO and age Ritter 1991 1975 1984 Age (current year - founding year from Jay Ritter’s dataset). Exclude if

IndIPO == 0 or if there are fewer than 150 firms with IndIPO equal to

1 in a month.

AM Total assets to market Fama and French 1992 1963 1990 Total assets (at) divided by market value of equity.

Continued on next page
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Table A.1: (continued)

Acronym Description Author(s) Pub year Sample Start Sample End Description

AnalystValue Analyst Value Frankel and Lee 1998 1975 1993 Analyst value is (1 + (FROE - .1)/1.1 + (FROE - .1)/(.1*1.1))*BMAve.

FROE is the most recent mean analyst EPS forecast (meanest) times

shares outstanding (shrout) divided by book value of common equity

(ceq). BMAve is average book to market equity (ceq/(shrout*abs(prc))

over the past two years. Exclude if FROE > 1 or book equity negative

or abs(prc) < 1 (Frankel and Lee, page 291).

AnnouncementReturn Earnings announcement return Chan, Jegadeesh and

Lakonishok

1996 1977 1992 Get announcement date for quarterly earnings from IBES (fpi = 6).

AnnouncementReturn is the sum of (ret - mktrf + rf) from one day

before an earnings announcement to 2 days after the announcement.

AOP Analyst Optimism Frankel and Lee 1998 1975 1993 AnalystValue (defined above) minus IntrinsicValue (defined above),

divided by abs(IntrinsicValue).

AssetGrowth Asset Growth Cooper, Gulen and Schill 2008 1968 2003 Annual growth rate of total assets (at)

AssetTurnover Asset Turnover Soliman 2008 1984 2002 Sales (sale) divided by two year average of net operating assets.

Net operating assets is the sum of receivables (rect), inventories

(invt), current assets other (aco), net property, plants and equipment

(ppent) and intangibles (intan), minus accounts payable (ap), other

current liabilities (lco) and other liabilities (lo). Exclude if abs(prc) <

5 or AssetTurnover < 0.

Beta CAPM beta Fama and MacBeth 1973 1926 1968 Coefficient of a 60-month rolling window regression of monthly stock

returns minus the riskfree rate on market return minus the risk free

rate (ewretd - rf). Exclude if estimate based on less than 20 months of

returns.

BetaSquared CAPM beta squred Fama and MacBeth 1973 1926 1968 Square of Beta (defined above).

BetaTailRisk Tail risk beta Kelly and Jiang 2014 1963 2010 Each month, compute the 5th percentile over daily returns over all

firms. For all daily return observations with return below that 5th

percentile, compute the average of (log(ret/5th percentile of cross-

sectional return distribution). Call that average tailEX. BetaTailRisk is

the coefficient of a 120-month rolling regression of a firm’s stock re-

turn on tailEX. Exclude if price less than 5 or share code greater than

11.

BidAskSpread Bid-ask spread Amihud and Mendelsohn 1986 1961 1980 Spread use the Corwin-Schultz 2012 estimate from Shane Cor-

win’s website (https://www3.nd.edu/ scorwin/) divided by price

(abs(prc)).

BM Book to market Fama and French 1992 1963 1990 Log of annual book equity (ceq) over market equity (see above).

BPEBM Leverage component of BM Penman, Richardson and

Tuna

2007 1961 2002 BP - EBM, where BP = (ceq + tstkp - dvpa)/(shrout*abs(prc)), and

EBM is defined above. Exclude if price less than 5.

Cash Cash to assets Palazzo 2012 1972 2009 Ratio of quarterly cash and short-term investments (cheq) and total

assets (atq).
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Table A.1: (continued)

Acronym Description Author(s) Pub year Sample Start Sample End Description

CBOperProf Cash-based operating profitability Ball, Gerakos,

Linnainmaa and

Nikolaev

2016 1963 2014 Revenue (revt) minus cost (cogs) - administrative expenses (xsga) -

R&D expenses (xrd) minus annual change in receivables (rect), an-

nual change in investment (invt) and annual change in prepaid ex-

penses, plus annual change in current deferred revenue (drc), long-

term deferred revenue (drlt), accounts payable (ap) and accrued ex-

penses (xacc), all divided by total assets (at) in year t-1. Replace all

variables in the numerator with 0 if they are missing. Exclude if share

code is greater 11, market value of equity, BM or total assets are miss-

ing, or if SIC code between 6000 and 6999.

CF Cash flow to market Lakonishok, Shleifer and

Vishny

1994 1968 1990 Net income (ib) plus depreciation (dp) divided by market equity. Ex-

clude NASDAQ stocks.

cfp Cash flow to price Desai et al 2005 1973 1997 Operating cash-flow (oancf) divided by market value of equity. If op-

erating cash-flow is missing, replace by difference betwee net income

(ib) and level of accruals, where the latter is the annual change in cur-

rent assets (act) minus the annual change in cash and short-term in-

vestments (che), minus the annual change in current liabilities (lct)

plus the annual change in debt in current liabilities (dlc) plus the an-

nual change in payable income taxes (txp) plus depreciation (dp).

ChangeInRecommendation Change in recommendation Jegadeesh, Kim, Krische

and Lee

2004 1985 1998 (As in MP). If an analyst issues a new strong buy recommendation

(ireccd == 1), we assign a value of 1 to that event, if an analyst issues

any other change in recommendation, we assign a value of -1; we as-

sign 0 if the recommendation is unchanged. The final variable is the

average over the constructed variable over all analysts each month.

ChAssetTurnover Change in Asset Turnover Soliman 2008 1984 2002 Annual change in AssetTurnover (defined above). Exclude if price less

than 5.

ChEQ Sustainable Growth Lockwood and Prombutr 2010 1964 2007 Ratio of book equity (ceq) to book equity in the previous year. Include

only if book equity is positive this year and last year.

ChForecastAccrual Change in Forecast and Accrual Barth and Hutton 2004 1981 1996 Within upper half of Accruals distribution, equal to 1 if mean earnings

estimate increased relative to the previous month. 0 if it decreased.

ChInv Inventory Growth Thomas and Zhang 2002 1970 1997 12 month change in inventory (invt) divided by average total assets.

ChInvIA Change in capital inv (ind adj) Abarbanell and Bushee 1998 1974 1988 Growth in capital expenditure (capx) minus average growth in capital

expenditure in the same industry (two-digit SIC). If capx is missing,

capital expenditure is defined as the annual change in property, plant

and equipment (ppent). Capital expenditure growth is defined as the

percentage growth of capx today relative to the average capx over the

previous two years (.5*(capxt−1 + capxt−2), or as percentage growth

relative to the previous year only if t-2 is missing.

ChNAnalyst Decline in Analyst Coverage Scherbina 2008 1982 2005 Binary variable equal to 1 if the number of analysts (numest) for next

quarter’s EPS estimate decreased relative to three months ago, and 0

if it increased.

ChNCOA Change in Noncurrent Operating

Assets

Soliman 2008 1984 2002 Twelve-month change in noncurrent operating assets. Noncurrent

operating assets is ( (at - act - ivao) - (lt - dlc - dltt) )/at.
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Table A.1: (continued)

Acronym Description Author(s) Pub year Sample Start Sample End Description

ChNWC Change in Net Working Capital Soliman 2008 1984 2002 Twelve-month change in net working capital. Net working capital is (

(act - che) - (lct - dlc) )/at

ChPM Change in Profit Margin Soliman 2008 1984 2002 Annual change in profit margin PM (profit margin defined below).

Exclude if price less than 5.

ChTax Change in Taxes Thomas and Zhang 2011 1977 2006 4-quarter change in quarterly total taxes (txtq), scaled by lagged total

assets (at).

CompEquIss Composite equity issuance Daniel and Titman 2006 1968 2003 5 year growth rate of market value of equity minus 5 year stock return.

CompositeDebtIssuance Composite debt issuance Lyandres, Sun and Zhang 2008 1970 2005 Log of long-term debt (dltt) plus debt in current liabilties (dlc) minus

log of the same variable 5 years ago.

ConsRecomm Consensus Recommendation Barber, Lehavy,

McNichols and Trueman

2001 1985 1997 Binary variable if the monthly mean of recommendations (ireccd)

over analysts is greater than 3, and 0 if it is less or equal than 1.5.

ConvDebt Convertible debt indicator Valta 2016 1985 2012 Binary variable equal to 1 if deferred charges (dc) greater than 0 or

common shares reserved for convertible debt (cshrc) greater than 0.

Coskewness Coskewness Harvey and Siddique 2000 1963 1993

CredRatDG Credit Rating Downgrade Dichev and Piotroski 2001 1970 1997 Equal to 1 if credit rating (splticrm) decreased by at least one notch

relative to the previous month and 0 otherwise. Exclude if price less

than 5.

DebtIssuance Debt Issuance Spiess and Affleck-Graves 1999 1975 1989 Equal to 1 if debt issuance (dltis) greater 0 and 0 otherwise. Exclude if

share code > 11 or missing book-to-market.

DelBreadth Breadth of ownership Chen, Hong and Stein 2002 1979 1998 Quarterly change in the number of institutional owners (numin-

stowners) from 13F data. Exclude if in the lowest quintile of stocks

by market value of equity (based on NYSE stocks only).

DelCOA Change in current operating

assets

Richardson, Sloan,

Soliman and Tuna

2005 1962 2001 Difference in current operating assets (total current assets (act) mi-

nus cash and short-term investments (che)) between years t-1 and t,

scaled by average total assets (at) in years t-1 and t.

DelCOL Change in current operating

liabilities

Richardson, Sloan,

Soliman and Tuna

2005 1962 2001 Difference in current operating liabilities (total current liabilities (lct)

minus debt in current liabilities (dlc)) between years t-1 and t, scaled

by average total assets (at) in years t-1 and t.

DelDRC Deferred Revenue Prakash and Sinha 2012 2002 2007 Annual change in deferred revenue (drc) scaled by average total as-

sets (at) in t-1 and t. Exclude if negative book equity (ceq), deferred

revenue equal to 0 in both years, revenue less than 5m, or SIC code

between 6000 and 6999.

DelEqu Change in equity Richardson, Sloan,

Soliman and Tuna

2005 1962 2001 Difference in book equity (ceq) between years t-1 and t, scaled by av-

erage total assets (at) in years t-1 and t.

DelFINL Change in financial liabilities Richardson, Sloan,

Soliman and Tuna

2005 1962 2001 Difference in financial liabilities (sum of long-term debt (dltt), cur-

rent liabilitites (dlc) and preferred stock (pstk)) between years t-1 and

t, scaled by average total assets (at) in years t-1 and t.

DelLTI Change in long-term investment Richardson, Sloan,

Soliman and Tuna

2005 1962 2001 Difference in investment and advances (ivao) between years t-1 and

t, scaled by average total assets (at) in years t-1 and t.
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Table A.1: (continued)

Acronym Description Author(s) Pub year Sample Start Sample End Description

DivInd Dividends Hartzmark and Salomon 2013 1927 2011 Binary variable equal to 1 if return with dividends (ret) is greater than

return without dividends (retx) 11 months ago or 2 months ago, and

0 otherwise or if price less than 5.

DivInit Dividend Initiation Michaely, Thaler and

Womack

1995 1964 1988 Define dividend initiation as having paid a dividend in month t (di-

vamt > 0) and not having paid a dividend in the 24 preceding months.

DivInit is equal to 1 if a dividend was initiated in the past 12 months

and 0 otherwise. Exclude if share code greater 11 and use NYSE stocks

only.

DivOmit Dividend Omission Michaely, Thaler and

Womack

1995 1964 1988 Define dividend omission as not having paid a dividend in the current

month or the two preceding months, but having paid dividends in the

3, 6, 9, 12, 15, 18 months before. DivOmit is equal to 1 if a dividend

was omitted in the previous 12 months and 0 otherwise.

DivYield Dividend Yield Naranjo, Nimalendran

and Ryngaert

1998 1963 1994 4 times latest dividend (divamt) divided by price (prc). Include only

if dividend has been paid in all of the past 4 quarters.

DolVol Past trading volume Chordia, Roll and

Subrahmanyam

2001 1966 1995 Log of the product of two-month lagged trading volume (vol) and

two-month lagged price (prc).

DownForecast Down forecast EPS Barber, Lehavy,

McNichols and Trueman

2001 1985 1997 Binary variable equal to 1 if mean earnings forecast (meanest) de-

creased over the past month.

EarnIncrease Consistent earnings increases Barth, Elliott and Finn 1999 1982 1992 Binary variable equal to 1 if the change in quarterly net income (ibq)

from t-1 to 1 was positive in quarters t, t-1, t-2, t-3 and t-4, and 0

otherwise.

EarningsConsistency Earnings Consistency Alwathainani 2009 1971 2002 Average earnings growth over previous 48 months. Earnings growth is

defined as EPS (epspx) minus EPS 12 months ago divided by average

EPS 12 and 24 months ago. Exclude if price less than 5, absolute value

of 12 month earnings growth greater 600%, or earnings growth and

earnings growth 12 months ago have different signs.

EarningsSurprise Earnings Surprise Foster, Olsen and Shevlin 1984 1974 1981 EPS (epspxq) minus EPS twelve months ago - Drift, scaled by stan-

dard deviation of that expression. Drift is the average earnings growth

(EPS - EPS twelve months ago) over the past two years. Exclude if

price less than 5

EarnSupBig Earnings surprise of big firms Hou 2007 1972 2001 Average monthly value of EarningsSurprise (defined above) of the

30% largest companies by market value of equity in the same Fama-

French 48 industry. Exclude the largest 30% of companies for Earn-

SupBig (not to compute the anomaly!)

EBM Enterprise component of BM Penman, Richardson and

Tuna

2007 1961 2001 (book equity (ceq) + cash and short-term investments (che) - long-

term debt (dltt) - debt in current liabilities (dlc) - deferred charges

(dc) - preferred dividends in arrears (dvpa) + treasury stock (tstkp)

) / (market value of equity (shrout*abs(prc) + cash and short-term

investments (che) - long-term debt (dltt) - debt in current liabilities

(dlc) - preferred dividends (dvpa) + treasury stock (tstkp) ). Exclude if

price less than 5.
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Table A.1: (continued)

Acronym Description Author(s) Pub year Sample Start Sample End Description

EntMult Enterprise Multiple Loughran and Wellman 2011 1963 2009 Market value of equity + long-term debt (dltt) + debt in current liabil-

ities (dlc) + deferred charges (dc) - cash and short-term investments

(che) , divided by operating income (oibdp). Exclude if missing book

equity or negative operating income.

EP Earnings-to-Price Ratio Basu 1977 1964 1971 net income (ni) divided by market value of equity. NYSE stocks only.

ExchSwitch Exchange Switch Dharan and Ikenberry 1995 1962 1990 Binary variable equal to 1 if a firm switched from AMEX or NASDAQ

to NYSE within the past year, or from NASDAQ to AMEX within the

past year.

ExclExp Excluded Expenses Doyle, Lundholm and

Soliman

2003 1988 1999 Difference between unadjusted earnings (EPSActualUnadj) from

IBES and quarterly earnings per share (epspiq). Exclude the highest

and lowest 1% of values.

FailureProbability Failure probability Campbell, Hilscher and

Szilagyi

2008 1963 2003 Using the specification for 12-month ahead failure probability in col-

umn 3 of table 4, failure probability is -9.16 -.058*PRICE + .075*MB

- 2.13*CASHMTA - .045*RSIZE + 1.41*IdioRisk - 7.13*EXRETAVG +

1.42*TLMTA - 20.26*NIMTAAVG. PRICE is log(min(abs(prc), 15)); MB

is shrout*abs(prc)/ceqq; CASHMTA is cheq/(shrout*abs(prc) + ltq);

RSIZE is log(shrout*abs(prc)/ sum of shrout*abs(prc) for the largest

500 companies each month); IdioRisk is defined above, EXRETAVG is

the weighted average excess return (log(1 + ret) - log(1 + mktrf)) over

the previous 12 months, with weight on month t-j being φ j and the

sum scaled by
1−φ

1−φ12 ; TLMTA is total liabilities (ltq/(shrout*abs(prc));

NIMTAAVG is a weighted average of net income over total assets

(ibq/(shrout*abs(prc) + ltq)) over four quarters, with weight φq on

quarter t − q and the sum scaled by
1−φ3

1−φ12 . φ = 2−
1
3 . All input vari-

ables are winsorized at the 5th and 95th percentile. Exclude if price

less than 1.

fgr5yrLag Long-term EPS forecast La Porta 1996 1983 1990 Long-term earnings forecast (fgr5yr) lagged by twelve months. Ex-

clude if book equity (ceq), net income (ib), deferred taxes (txdi), divi-

dends (dvp), revenue (sale) or depreciation (dp) is missing.

FirmAge Firm Age Barry and Brown 1984 1931 1980 Months since start of CRSP coverage. Exclude if price less than 5.

FirmAgeMom Firm Age - Momentum Zhang 2004 1983 2001 6 month return, restricted to the bottom quintile of the cross-

sectional firm age distribution. Exclude if price less than 5 or firm

younger than 12 months.

ForecastDispersion EPS Forecast Dispersion Diether, Malloy and

Scherbina

2002 1976 2000 Standard deviation of earnings estimates (stdev_est) scaled by mean

earnings estimate.

FR Pension Funding Status Franzoni and Marin 2006 1980 2002 FR = (FVPA - PBO), scaled by market value of equity. FVPA is pbnaa

from 1980 to 1986, pplao + pplao from 1987 to 1997, and pplao after

1997. PBO is pbnvv from 1980 to 1986, pbpro + pbpru from 1987 to

1997, and pbpro after 1997. Exclude if price less than 5 or shrcd > 11.
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Table A.1: (continued)

Acronym Description Author(s) Pub year Sample Start Sample End Description

Frontier Efficient frontier index Nguyen and Swanson 2009 1980 2003 Frontier is the residual of a regression of log(BM) on log(book eq-

uity (ceq)), long-term debt (dltt) to assets (at), capital expenditures

(capx) to revenue (sale), R&D expense (xrd) to revenue, advertising

expense (xad) to revenue, property plant and equipment (ppent) to

assets, EBIT (ebitda) to assets, and dummies for Fama-French’s 48 in-

dustry definitions. Regression is updated each month with a rolling

window of 60 months.

G Governance Index Gompers, Ishii and

Metrick

2003 1990 1999 Index available from http://fac

ulty.som.yale.edu/andrewmetrick/data.html . The index is only

available every 2-3 years for each firm, we replace intermediate miss-

ing values with the latest available one.

GHZlev Leverage component of BM Bhandari 1988 1946 1981 Total liabilities (lt) divided by market value of equity.

GP Gross Profitability Novy-Marx 2013 1962 2010 Revenue (sale) - cost of goods solds (cogs), divided by 12 months

lagged total assets.

GrAdExp Growth in advertising expenses Lou 2014 1974 2010 Log of advertising expense (xad) minus log of advertising expense last

year. Exclude if price less than 5, xad less than .1 or stock in the lowest

decile of market value of equity.

grcapx Change in capex (two years) Anderson and

Garcia-Feijoo

2006 1976 1999 Growth rate of capital expenditures (capx) relative to t-2. If capx is

missing, replace with annual change in property, plant and equip-

ment (ppent).

GrGMToGrSales Gross Margin growth over sales

growth

Abarbanell and Bushee 1998 1974 1988 Define gross margin GM as revenue (sale) minus cost of goods sold

(cogs). GrGMToGrSales is the percentage growth of GM relative to

average GM in years t-1 and t-2, divided by the percentage growth

of revenue relative to average revenue in years t-1 and t-2. Replace

growth rates with growth relative to the previous year only if data for

t-2 are not available.

GrLTNOA Growth in Long term net

operating assets

Fairfield, Whisenant and

Yohn

2003 1964 1993 Annual growth in net operating assets, minus accruals. Net operating

assets are (rect + invt + ppent + aco + intan + ao- ap- lco- lo) / at.

Accruals are ( rect-l12.rect + invt - l12.invt + aco - l12.aco - (ap - l12.ap

+ lco - l12.lco) - dp ) / ((at + l12.at)/2)

GrSaleToGrInv Sales growth over inventory

growth

Abarbanell and Bushee 1998 1974 1988 Percentage growth in sales (sale) relative to average sales of t-1 and

t-2, minus percentage growth in inventory (invt) relative to average

inventory of t-1 and t-2. Both growth terms are calculated relative to

t-1 only if t-2 is missing.

GrSaleToGrOverhead Sales growth over overhead

growth

Abarbanell and Bushee 1998 1974 1988 Percentage growth in sales (sale) relative to average sales of t-1 and t-

2, minus percentage growth in administrative expenses (xsga) relative

to average administrative expenses of t-1 and t-2. Both growth terms

are calculated relative to t-1 only if t-2 is missing. Exclude if price less

than 5.
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Acronym Description Author(s) Pub year Sample Start Sample End Description

Herf Industry concentration

(Herfindahl)

Hou and Robinson 2006 1963 2001 Three-year rolling average of the three digit industry Herfindahl in-

dex based on firm revenue (sale). Exclude regulated industries (4011,

4210, 4213 & year <= 1980; 4512 and year <=1978, 4812, 4813 and year

<= 1982, 49)

High52 52 week high George and Hwang 2004 1963 2001 Divide the absolute value of prc by the maximum value of prc over

the past twelve months.

hire Employment growth Bazdresch, Belo and Lin 2014 1965 2010 Change in number of employees (emp) between t -1 and t, scaled by

average number of employees in t-1 and t. Replace hire with 0 if emp

or lagged emp is missing.

IdioRisk Idiosyncratic risk Ang, Hodrick, Xing and

Zhang

2006 1963 2000 Standard deviation of residuals from monthly CAPM regressions.

Illiquidity Amihud’s illiquidity Amihud 2002 1964 1997 Past twelve month average of: daily return (abs(ret)) divided by

turnover((abs(prc)*vol)

IndIPO Initial Public Offerings Ritter 1991 1975 1984 Binary variable equal to 1 if IPO in the past 36 months.

IPO dates are taken from Jay Ritter’s IPO data available at:

http://bear.warrington.ufl.edu/ritter/ipodata.htm

IndMom Industry Momentum Grinblatt and Moskowitz 1999 1963 1995 Weighted average of firm-level 6 month buy-and-hold return. Aver-

age is taken over two digit industries each month and weights are

based on market value of equity.

IndRetBig Industry return of big firms Hou 2007 1972 2001 Average monthly return (ret) of the 30% largest companies by mar-

ket value of equity in the same Fama-French 48 industry. Exclude

the largest 30% of companies for IndRetBig (not to compute the

anomaly!)

IntanBM Intangible return Daniel and Titman 2006 1968 2003 In each month, run a cross-sectional regression of a firm’s five-year

stock return on 5 year lagged BM (defined above) and a constructed

regressor that is the change in BM from 5 years ago to today plus the

five-year stock return. The residual from that regression is IntanBM.

IntanCFP Intangible return Daniel and Titman 2006 1968 2003 In each month, run a cross-sectional regression of a firm’s five-year

stock return on the 5 year lagged CFP = (net income (ni) plus depreci-

ation (dp))/market value of equity and a constructed regressor that is

the change in CFP from 5 years ago to today plus the five-year stock

return. The residual from that regression is IntanCFP.

IntanEP Intangible return Daniel and Titman 2006 1968 2003 In each month, run a cross-sectional regression of a firm’s five-year

stock return on the 5 year lagged EP = net income (ni)/market value

of equity and a constructed regressor that is the change in EP from 5

years ago to today plus the five-year stock return. The residual from

that regression is IntanEP.

IntanSP Intangible return Daniel and Titman 2006 1968 2003 In each month, run a cross-sectional regression of a firm’s five-year

stock return on 5 year lagged SP (defined above) and a constructed

regressor that is the change in SP from 5 years ago to today plus the

five-year stock return. The residual from that regression is IntanSP.
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Acronym Description Author(s) Pub year Sample Start Sample End Description

IntMom Intermediate Momentum Novy-Marx 2012 1926 2010 Stock return between months t-12 and t-6

IntrinsicValue Intrinsic value Frankel and Lee 1998 1975 1993 Define FROE as net income (ib) divided by book equity (ceq),

and drop if abs(FROE) > 1. DefineAveBM as average book eq-

uity to market value of equity for years t-1 and t (in the first year

of coverage, use book-to-market equity directly). IntrinsicValue is(
1+ F ROE−.1

1.1 + F ROE−.1
.1×1.1

)
AveB M . Exclude if price less than 1 or

book equity less than 0.

invest Capex and Inventory Change Chen and Zhang 2010 1972 2006 Annual change in property, plant and equipment (ppegt) plus an-

nual change in inventory (invt), scaled by lagged total assets (at). Use

ppent if ppegt is missing.

Investment Investment Titman, Wei and Xie 2004 1973 1996 Ratio of capital investment (capx) to revenue (revt) divided by the

firm-specific 36-month rolling mean of that ratio. Exclude if revenue

less than USD 10m.

IO_ShortInterest Institutional Ownership for stocks

with high short interest

Asquith, Pathak and

Ritter

2005 1980 2002 Exclude all stocks with short interest (ShortInterest) below .025.

Among the remaining stocks, IO_ShortInterest is equal to 1 if a stock

is in the highest institutional ownership (instown_perc) tercile and 0

if it is in the lowest tercile.

KZ Kaplan Zingales index Lamont, Polk and

Saa-Requejo

2001 1968 1997 -1.002* (net income (ni) + depreciation (dp))/total assets (at) +

.283*(total assets (at) + market value of equity - book value of eq-

uity (ceq) - deferred taxes (txdi))/total assets (at) + 3.319*(debt in

current liabilities (dlc) + long-term debt (dltt))/(debt in current li-

abilities + long-term debt + book value of equity) - 39.368*(Div-

idends (divamt)/total assets) - 1.315*(cash and short-term invest-

ments (che)/total assets). Replace txdi and divamt with 0 if missing.

LTLeverage Long-term leverage Bhandari 1988 1946 1981 Log of long-term debt (dltt) to market value of equity

(shrout*abs(prc))

MaxRet Maximum return over month Bali et al 2010 1962 2005 Maximum of daily returns (ret) over the previous month

MeanRankRevGrowth Revenue Growth Rank Lakonishok, Shleifer and

Vishny

1994 1968 1990 Rank firms by their annual revenue growth each year over the past 5

years. MeanRankRevGrowth is the weighted average of ranks over the

past 5 years, that is, MeanRankRevGrowth = (5*Rankt−1 + 4*Rankt−2

+ 3*Rankt−3 + 2*Rankt−4 + 1*Rankt−5)/15. Exclude NASDAQ stocks.

Merger Mergers Langetieg 1978 1929 1969 Binary variable equal to 1 if involved in a merger in previous 12

months, and 0 otherwise. Merger data are from SDC.

Mom12m Momentum (12 month) Jegadeesh and Titman 1993 1964 1989 Stock return between months t-12 and t-1.

Mom18m13m Momentum-Reversal Jegadeesh and Titman 1993 1964 1989 Stock return between months t-18 and t-13.

Mom1m Short term reversal Jegedeesh 1989 1934 1987 Stock return (ret) over the previous month.

Mom36m Long-run reversal De Bondt and Thaler 1985 1926 1982 Stock return between months t-36 and t-13.

Mom6m Momentum Jegadeesh and Titman 1993 1964 1989 Stock return between months t-6 and t-1. Exclude if price less than 5.

Mom6mJunk Junk Stock Momentum Avramov, Chordia,

Jostova and Philipov

2007 1985 2003 Mom6m. Include only stocks with a credit rating (splticrm) of BBB or

lower

Continued on next page

50



Table A.1: (continued)

Acronym Description Author(s) Pub year Sample Start Sample End Description

MomRev Momentum and LT Reversal Chan and Kot 2006 1965 2001 Binary variable equal to 1 if firm is in the highest Mom6m quintile and

the lowest Mom36m quintile, and equal to 0 if firm is in the lowest

Mom6m quintile and the highest Mom36m quintile. Exclude if price

less than 5.

MomSeas Return Seasonality Heston and Sadka 2008 1965 2002 Average return in the same month over the preceding 20 years. Ex-

clude NASDAQ stocks.

MomVol Momentum and Volume Lee and Swaminathan 2000 1965 1995 Mom6m. Include only stocks in the highest quintile of average trad-

ing volume (vol) over the previous 6 months. Exclude NASDAQ

stocks, if price less than 1 or if stock has been trading for less than

24 months.

MS Mohanram G-score Mohanram 2005 1978 2001 Binary variable based on sum of eight indicator variables which are:

1 if return on assets (ni/average assets) above the two digit indus-

try median; 1 i net cash flow to assets (oancf/average assets) above

the two digit indstry median; 1 if net cash flow greater than net in-

come; 1 if R&D expense to assets (xrd/average assets) greater than

two digit industry median; 1 if capital expenditure (capx/average as-

sets) greater than two digit industry median; 1 if advertising expenses

(xad/average assets) greater than two digit industry median; 1 if the

volatility of net income over the past 3 years is below the two digit in-

dustry median, 1 if the volatility of revenue (revt) over the past 3 years

is below the two digit industry median. The final variable is equal to 1

if the sum of the above 8 indicators is greater than 5 and 0 if the sum

is less than 2.

NetDebtFinance Net debt financing Bradshaw, Richardson

and Sloan

2006 1971 2000 Long-term debt issuance (dltis) minus long-term debt reduction

(dltr) minus current debt changes (dlcch), scaled by average total as-

sets (at) in years t-1 and t. Replace missing values of dlcch with 0.

Exclude if ratio is greater than 1.

NetDebtPrice Net debt to price Penman, Richardson and

Tuna

2007 1961 2001 Long-term debt (dltt) plus debt in current liabilities (dlc) plus pre-

ferred stock (pstk) plus preferred dividends in arrears (dvpa) minus

treasury stock (tstkp) minus cash and short-term investments (che),

scaled by market value of equity. Exclude if SIC between 6000 and

6999, or if missing value for total assets (at), net income (ib), com-

mon shares outstanding (csho), book value of equity (ceq) or price

close fiscal year (prcc_f).

NetEquityFinance Net equity financing Bradshaw, Richardson

and Sloan

2006 1971 2000 Sale of common stock (sstk) minus minus purchase of common stock

(prstkc), scaled by average total assets (at) from years t and t-1. Ex-

clude if absolute value of ratio is greater than 1.

NetPayoutYield Net Payout Yield Boudoukh, Michaely,

Richardson and Roberts

2007 1984 2003 Dividends (dvc) plus purchase of common and preferred stock

(prstkc) minus sale of common and preferred stock (sstk), divided by

market value of equity.
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Table A.1: (continued)

Acronym Description Author(s) Pub year Sample Start Sample End Description

NOA Net Operating Assets Hirshleifer, Hou, Teoh

and Zhang

2004 1964 2002 Difference between operating assets and operating liabilities, scaled

by lagged total assets. Operating assets are total assets (at) minus

cash- and short-term investments (che), operating liabilities are total

assets minus long-term debt (dltt), minority interest (mib), deferred

charges (dc) and book equity (ceq).

NumEarnIncrease Number of consecutive earnings

increases

Barth, Elliott and Finn 1999 1982 1992 Number of 4-quarter net income (ibq) increases over the previous 2

years.

OperProf Operating Profitability Fama and French 2015 1963 2013 Revenue (revt) minus cost (cogs) - administrative expenses (xsga) -

interest expenses (xint), scaled by book value of equity (ceq). Exclude

smallest size tercile.

OPLeverage Operating Leverage Novy-Marx 2010 1963 2008 Sum of administrative expenses (xsga) and cost of goods sold (cogs),

scaled by total assets (at).

OptionVolume1 Option Volume Johnson and So 2012 1996 2010 Total monthly option volume (volume) over all puts and calls, divided

by monthly stock trading volume (vol). Exclude if price less than 1

or share code greater 11 or option volume or stock volume data are

missing for the previous month.

OptionVolume2 Option Volume Johnson and So 2012 1996 2010 Total monthly option volume (volume) over all puts and calls, relative

to the average of that same variable from months t-6 to t-1. Exclude

if price less than 1 or share code greater 11 or option volume or stock

volume data are missing for the previous month.

OrderBacklog Order backlog Rajgopal, Shevlin and

Venkatachalam

2003 1981 1999 Order backlog (ob) divided by average total assets (at) in years t-1 and

t. Exclude if order backlog is 0.

OrgCap Organizational Capital Eisfeldt and

Papanikolaou

2013 1970 2008 Defined recursively. Initialize with OrgCap = 4*general expenses

(xsga) in the first year, and calculate as .85*OrgCap previous year +

xsga current year thereafter. Scale by total assets (at).

OScore O Score Dichev 1998 1981 1995 -1.32 - .407*log(at/GNP deflator) + 6.03*(lt/at) - 1.43*( (act - lct)/at)

+ .076*(lct/act) - 1.72*I(lt > at) - 2.37*(ib/at) - 1.83*(fopt/lt) + .285*(ib

+ ibt−12 + ibt−24 < 0) - .521*( (ib - ibt−12)/(abs(ib) + abs(ibt−12)) ).

Funds from operations (fopt) is the sum of net income (ni), total taxes

(txt) and depreciation (dp). NYSE stocks only. Exclude if SIC code

between 3999 and 4999, or greater than 5999. Exclude if price less

than 5.

PayoutYield Payout Yield Boudoukh, Michaely,

Richardson and Roberts

2007 1984 2003 Sum of dividends (dvc), purchase of common and preferred stock

(prstkc) and max(preferred stock redemption value (pstkrv), 0), di-

vided by market value of equity.

pchdepr Change in depreciation to gross

PPE

Holthausen and Larcker 1992 1978 1988 Annual percentage change in the ratio of depreciation (dp) to prop-

erty, plant and equipment (ppent).

pchgm_pchsale Change in gross margin vs sales Abarbanell and Bushee 1998 1974 1988 Annual percentage change in revenue (sale) minus cost (cogs), minus

annual percentage change in revenue.

Continued on next page
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Table A.1: (continued)

Acronym Description Author(s) Pub year Sample Start Sample End Description

PctAcc Percent Operating Accruals Hafzalla, Lundholm and

van Winkle

2011 1989 2008 Income before extraordinary items (ib) minus net cash flow (oancf)

divided by absolute value of ib. If oancf is missing, PctAcc is defined

as ( (act - actt−12) - (che - chet−12) - ( (lct - lctt−12) - (dlc - dlct−12) -

(txp - txpt−12) - dp ) )/abs(ib). In either case, if ib is equal to 0, divide

by .01 instead. Exclude if price less than 5.

PctTotAcc Percent Total Accruals Hafzalla, Lundholm and

van Winkle

2011 1989 2008 Net income (ni) minus (purchase of common and preferred stock

(prstkcc) minus sale of common and preferred stock (sstk) plus divi-

dends (dvt), cash flow from operations (oancf), from financing (fincf)

and investment (ivncf)). Scaled by absolute value of net income.

PM Profit Margin Soliman 2008 1984 2002 Net income (ni) over revenue (revt). Exclude if price less than 5.

PredictedFE Predicted Analyst forecast error Frankel and Lee 1998 1975 1993 Define FROE as mean earnings estimate (meanest) times shares out-

standing (shrout), divided by book equity (ceq). Define the predic-

tion error as net income (ib) over book equity (ceq), minus FROE. In

each month t, regress the prediction error on 3 year lagged values of a

firm’s relative ranks in the cross-sectional revenue (sale), BM (defined

above), AOP (defined above) and FROE distributions. PredictedFE is

the fitted value from that regression. Update monthly.

Price Price Blume and Husic 1972 1932 1971 Log of absolute value of price (prc).

PriceDelay Price delay Hou and Moskowitz 2005 1964 2001 Regress daily stock return (ret) on market return (mktrf) in t , t −
1, . . . , t −4 with observations over the previous year. Trim the highest

and lowest 1% of estimated coefficients. Define PriceDelay as the ra-

tio of 1*beta on mktrft −1 + 2*beta on mktrft −2 + 3*beta on mktrft −3

+ 4*beta on mktrft −4, and beta on mktrft + beta on mktrft −1 + beta

on mktrft −2 + beta on mktrft −3 + beta on mktrft −4. The final vari-

able is the average of that ratio over the previous month.

Profitability Profitability Karthik, Bartov and

Faurel

2010 1976 2005 Quarterly earnings per share (epspxq) times quarterly shares out-

standing used to calculate EPS (cshprq) divided by total assets (at).

Exclude if price less than 1.

PS Piotroski F-score Piotroski 2000 1976 1996 Sum of nine indicator variables which are: 1 if net income (ib) greater

0; 1 if net cash flow (oancf) greater 0; 1 if return on assets (ib/at) in-

creased relative to previous year; 1 if net cash flow greater net income;

1 if long-term debt to assets (dltt/at) declined over the previous year;

if current assets to current liabilities (act/lct) increased over the pre-

vious year; 1 if gross margin ( (sale - cogs)/sale) increased over the

previous year; 1 if revenue to assets increased over the previous year;

1 if no issuance of common shares. Include highest quintile of book-

to-market only.

RD R&D over market cap Chan, Lakonishok and

Sougiannis

2001 1975 1995 R&D expense (xrd) over market value of equity.

RDIPO IPO and no R&D spending Gou, Lev and Shi 2006 1980 1995 Binary variable equal to 1 if positive R&D expense (xrd) and 0 other-

wise. Only defined for firms with IndIPO equal to 1.

Continued on next page
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Table A.1: (continued)

Acronym Description Author(s) Pub year Sample Start Sample End Description

RDS Real dirty surplus Landsman, Miller,

Peasnell and Yeh

2011 1976 2003 Define Dirty Surplus as annual change in marketable securities ad-

justment msa plus annual change in retained earnings adjustment

(recta) + .65 times the annual change in min(Unrecognized prior

service cost (pcupsu) - Pension additional minimum liability (pad-

dml),0). Real dirty surplus is the annual change in book equity (ceq)

minus dirty surplus minus (net income (ni) minus dividends pre-

ferred (dvp)) + dividends (divamt) - end-of-fiscal-year-stock-price

(prcc_f)*annual change in common shares outstanding (csho).

realestate Real estate holdings Tuzel 2010 1971 2005 Industry-adjusted value of real estate holdings. Real estate holdings

are calculated as: PPE/Buildings at cost (fatb) plus PPE/Leases at cost

(fatl), divided by PPE (ppegt). Use ppent if ppegt is missing. Subtract

monthly industry-mean at the 2 digit SIC level.

retConglomerate Conglomerate return Cohen and Lou 2012 1977 2009 Identify conglomerate firms as those with multiple OPSEG or

BUSSEG entries in the Compustat segment data (and require that at

least 80% of firm’s total assets are covered by segment data). Compute

monthly stock return at the 2-digit SIC level for stand-alone (non-

conglomerate) firms only, and match those returns to conglomerates’

segments. Compute weighted conglomerate return as the industry

return of stand-alone companies, weighted with a conglomerate’s to-

tal sales in each industry.

REV6 Earnings forecast revisions Chan, Jegadeesh and

Lakonishok

1996 1977 1992 Define revisions as the change in the mean earnings estimate (mean-

est) for the next quarter from month t-1 to t, scaled by stock price in

month t-1. REV6 is the sum of that variable from months t-6 to t.

RevenueSurprise Revenue Surprise Jegadeesh and Livnat 2006 1987 2003 Define revenue per share as quarterly revenue (revtq) divided by

quarterly common shares outstanding (cshprq). RevenueSurprise

is the 4-quarter change in revenue per share minus the average 4-

quarter change in revenue per share over the previous 2 years. Rev-

enueSurprise is scaled by its standard deviation over the previous 2

years. Exclude if price less than 5.

RIO_Disp Inst Own and Forecast Dispersion Nagel 2005 1980 2003 Binary variable equal to 1 if RIO (defined above) is in the highest quin-

tile and ForecastDispersion (defined above) is above the median, 0 if

RIO is in the lowest quintile and ForecastDispersion is above the me-

dian.

RIO_IdioRisk Inst Own and Idio Vol Nagel 2005 1980 2003 Binary variable equal to 1 if RIO (defined above) is in the highest quin-

tile and monthly IdioRisk (defined above) is above the median, 0 if

RIO is in the lowest quintile and IdioRisk is above the median.

RIO_Turnover Inst Own and Turnover Nagel 2005 1980 2003 Binary variable equal to 1 if RIO (defined above) is in the highest quin-

tile and monthly turnover (vol/shrout) is above the median, 0 if RIO

is in the lowest quintile and turnover is above the median.
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Table A.1: (continued)

Acronym Description Author(s) Pub year Sample Start Sample End Description

RIO_BM Inst Own and BM Nagel 2005 1980 2003 Residual institutional ownership (RIO) is defined as log(institutional

ownership (instown_perc)/(1-institutional ownership)) + 23.6 -

2.89*log(market value of equity) +.08*log(market value of equity)2.

Replace instown_perc with 0 if it is missing, with .9999 if it’s above

.9999, and with .0001 if it’s below .0001. RIO_BM is a binary variable

equal to 1 if a firm is in the highest quintile of the monthly RIO distri-

bution and has BM below the cross-sectional median, and 0 if a firm

is in the lowest quintile of RIO and has BM below the median.

roaq Return on assets Balakrishnan, Bartov and

Faurel

2010 1976 2005 Quarterly net income (ibq) divided by lagged total assets (atq). Ex-

clude if price less than 1.

RoE Return on Equity Haugen and Baker 1996 1979 1993 Net income (ni) over book value of equity (ceq). Exclude if price less

than 5.

SEO Public Seasoned Equity Offerings Loughran and Ritter 1995 1975 1984 Binary variable equal to 1 if seasoned equity offering within the pre-

vious 12 months. SEO data are from SDC.

sfe Earnings Forecast Elgers, Lo and Pfeiffer 2001 1982 1998 Mean earnings estimate (meanest) for next quarter’s earnings divided

by stock price (prc). Exclude if price less than 1.

sgr Annual sales growth Lakonishok et al 1994 1968 1990 Sales (sale) relative to t-1.

ShareIss1Y Share issuance (1 year) Pontiff and Woodgate 2008 1970 2003 Growth in number of shares between t-18 and t-6. Number of shares

is calculated as shrout/cfacshr to adjust for splits.

ShareIss5Y Share issuance (5 year) Daniel and Titman 2006 1968 2003 5-year growth in number of shares. Number of shares is calculated as

shrout/cfacshr to adjust for splits.

ShareRepurchase Share repurchases Ikenberry, Lakonishok

and Vermaelen

1995 1980 1990 Binary variable equal to 1 if stock repurchase indicated in cash flow

statement (prstkc > 0), and 0 if prstkc = 0.

ShareVol Share Volume Datair et al 1998 1962 1991 Sum of monthl share trading volume (vol) over the previous three

months, scaled by 3 times common shares outstanding (shrout). Ex-

clude if common shares outstanding changed over the previous three

months, or if SIC code between 6000 and 6999. Trim the highest and

lowest 1% of observations.

ShortInterest Short Interest Dechow, Pathak and

Ritter

2001 1976 1993 Short-interest from Compustat (shortint) scaled by shares outstand-

ing (shrout). Short-interest data are available bi-weekly with a four

day lag. We use the mid-month observation to make sure data would

be available in real time.
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Table A.1: (continued)

Acronym Description Author(s) Pub year Sample Start Sample End Description

sinAlgo Sin Stock (selection criteria) Hong and Kacperczyk 2009 1926 2006 Using Compustat Segment data, sinAlgo is defined as a binary vari-

able equal to 1 if at least one segment of a firm is listed as being in at

least one of the following industries: sic >= 2100 & sic <= 2199, sic

>=2080 & sic <= 2085, NAICS in {7132, 71312, 713210, 71329, 713290,

72112, 721120}. As in the original paper, we assume that the sin stock

indicator applies to the entire history and future of the identified firm.

sinAlgo is equal to 0 if the firm is not identified in the CS Segment data

as a sin stock and if the firm is in one of the following industries: (sic

>= 2000 & sic <= 2046) OR (sic >= 2050 & sic <= 2063) OR (sic >=
2070 & sic <= 2079) OR (sic >= 2090 & sic <= 2092) OR (sic >= 2095

& sic <= 2099) OR (sic >= 2064 & sic <= 2068) OR (sic >= 2086 & sic

<= 2087) OR (sic >= 920 & sic <= 999) OR (sic >= 3650 & sic <= 3652)

OR sic == 3732 OR (sic >= 3931 & sic <= 3932) OR (sic >= 3940 & sic

<= 3949) OR

(sic >= 7800 & sic <= 7833) OR (sic >= 7840 & sic <= 7841) OR

(sic >= 7900 & sic <= 7911) OR (sic >= 7920 & sic <= 7933) OR

(sic >= 7940 & sic <= 7949) OR sic == 7980 OR (sic >= 7990 & sic <=
7999)

Size Size Banz 1981 1926 1975 Log of monthly market value of equity (abs(prc)*shrout)).

Skew1 Volatility smirk Xing, Zhang and Zhao 2010 1996 2005 Using OptionMetrics data, among options with duration between 10

and 60 days, implied volatility of put option with moneyness closest

to but above 1 minus implied volatility of call option with moneyness

closest to but below 1.

SmileSlope Smile of slope Yan 2011 1996 2005 Using OptionMetrics data, average implied volatility of put options

with duration between 15 and 30 days and rounded delta of -.5 minus

average implied volatility of call options with duration between 15

and 30 days and rounded delta of .5.

SP Sales-to-price Barbee, Mukherji and

Raines

1996 1979 1991 Ratio of annual sales (sale) to market value of equity.

Spinoff Spinoffs Cusatis, Miles and

Woolridge

1993 1965 1988 Spinoffs are identified as all observations in the CRSP acquisition file

with valid acperm entry. Spinoff is a binary variable equal to 1 if a

firm is identified in the CRSP Acquisition data and if it has at most

one year of history in the CRSP stock return data. Spinoff is equal to

0 otherwise.

std_dolvol Dollar volume volatility Chordia, Roll and

Subrahmanyam

2001 1966 1995 Standard deviation of log daily dollar trading volume (abs(prc*vol)).

Exclude if NASDAQ stock.

std_turn Turnover volatility Chordia, Roll and

Subrahmanyam

2001 1966 1995 Standard deviation of daily turnover (vol/shrout). Exclude if NASDAQ

stock.

SurpriseRD Unexpected R&D increase Eberhart, Maxwell and

Siddique

2004 1974 2001 Binary variable equal to 1 if: R&D (xrd) scaled by revenue (revt) is pos-

itive, R&D scaled by total assets (at) is positive, annual R&D growth

is greater than 5%, annual growth in R&D over total assets is greater

than 5%. SurpriseRD is 0 otherwise.
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Table A.1: (continued)

Acronym Description Author(s) Pub year Sample Start Sample End Description

tang Tangibility Hahn and Lee 2009 1973 2001 Cash and short-term investments (che) plus .715*receivables (rect) +

.547*inventory (invt) + .535* property, plant and equipment (ppent),

scaled by total assets (at). Only defined for manufacturing firms (SIC

>= 2000 and SIC <4000). Exclude the lowest tercile of manufacturing

firms by total assets.

Tax Taxable income to income Lev and Nissim 2004 1973 2000 Ratio of Taxes paid and tax share of net income. Numerator is de-

fined as the sum of foreign (txfo) and federal (txfed) income taxes. If

either one is missing, numerator is defined as total taxes (txt) minus

deferred taxes (txdi). Denominator is the product of the prevailing tax

rate and net income (ib). Tax rate is .48 before 1979, .46 from 1979 to

1986, .4 in 1987, .34 between 1988 and 1992 and .35 from 1993 on-

wards. If net income is negative, Tax is defined as 1 if the numerator

of the ratio is positive. Exclude if price less than 5.

UpForecast Up Forecast Barber, Lehavy,

McNichols and Trueman

2001 1985 1997 Binary variable equal to 1 if mean analyst earnings forecast for the

next quarter (meanest) has improved over the previous month, and 0

otherwise.

VarCF Cash-flow variance Haugen and Baker 1996 1979 1993 Rolling variance of CF over the past 60 months. Exclude if less than 24

months of data available, or NASDAQ stock, price less than 5 or shrcd

> 11.

VolMkt Volume to market equity Haugen and Baker 1996 1979 1993 Average monthly dollar trading volume (vol*abs(prc)) over the previ-

ous 12 months, scaled by market value of equity. Exclude if price less

than 5.

VolSD Volume Variance Chordia, Roll and

Subrahmanyam

2001 1966 1995 Rolling standard deviation of monthly trading volume (vol) over the

past 36 months (require at least 24 observations). Include only NYSE

stocks.

VolumeTrend Volume Trend Haugen and Baker 1996 1979 1993 Rolling coefficient from regressing monthly trading volume on a lin-

ear time trend over a window of 60 months (require that at least 30

exist). Scale coefficient by 60-month average of trading volume.

XFIN Net external financing Bradshaw, Richardson

and Sloan

2006 1971 2000 Sale of common stock (sstk) minus dividends (dv) minus purchase

of common stock (prstkc) plus long-term debt issuance (dltis) minus

long-term debt reductions (dltr). Scaled by total assets (at).

zerotrade Days with zero trades Liu 2006 1960 2003 In each month, count the number of days with no trades. Define zero-

trade as the number of days without trades plus (the sum of monthly

turnover (vol/shrout) divided by 48*105), multiplied by 21/number

of trading days per month. Zerotrade is the 6-month average of that

variable.

ZScore Altman Z-Score Dichev 1998 1981 1995 1.2*(current assets (act) - current liabilities (lct))/total assets (at) +

1.4*(Retained earnings (re)/total assets (at)) + 3.3*(net income (ni) +

interest expense (xint) + total taxes (txt))/total assets (at) + .6*(mar-

ket value of equity/Total liabilities (lt)) + revenue (revt)/ total assets

(at). Include only NYSE stocks. Exclude if SIC code between 4000 and

4999, or above 5999.
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A.2. Additional Estimation Figures

Figure A.1: Pairwise Correlations. This histogram shows the distribution of pair-
wise correlations in our database of monthly long-short equal-weighted portfo-
lio returns.
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Figure A.2: Likelihood function. This figure plots the likelihood function near
our maximum likelihood estimate (Table 3).
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Figure A.3: Bootstrapped distribution of mean and median shrinkage. This
figure plots details of the mean shrinkage standard errors in Table 3.
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A.3. The Benjamini-Hochberg Adjustment in Our Model

The Benjamini-Hochberg (BH) adjustment requires very few assumptions. It

merely assumes that a certain, unspecified proportion of t-statistics are close to

the null N (0,1) distribution.

This generality comes at a cost, however. Without specifying the proportion

of null t-statistics, the adjustments can only provide an upper bound on the false

discovery rate. Indeed, in many cases the BH adjustment will be excessively con-

servative, as we illustrate in this section.

To illustrate the mechanics of the BH adjustment, it helps to derive the ad-

justment within the context of our model. Suppose there is a small number ∆,

such that any portfolio with µi ∈ [−∆,∆] ≈ 0. Let’s label these portfolios as nulli .

These are portfolios with zero true returns, so their in-sample returns follow the

traditional null distribution ri |nulli ∼ N (0,σi ). This leads to a binary transfor-

mation of the model of Section 3.1:

ti ∼
εi w/ prob Pr (nulli )

µi
σi

+εi otherwise
(27)

Consider the t-stat hurdle th . For portfolios which meet this hurdle, the false
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discovery rate is

Pr (nulli |ti > th) = Pr (ti > th |nulli )Pr (nulli )

Pr (ti > th)
= (1−Φ(ti ))Pr (nulli )

Pr (ti > th)
. (28)

Where Φ() is the standard normal CDF. Note that (1 −Φ(ti )) = pi , the p-value

corresponding to ti . Also, the denominator can be estimated using its sample

counterpart (assuming all narrative portfolios are observed). These facts lead to

the BH adjustment

Pr (nulli |ti > th) = Pr (nulli )ph

Proportion of portfolios with ti > th
(29)

≤ ph

Proportion of portfolios with ti > th
. (30)

Thus, BH is an upper bound, rather than a direct estimate of the false discov-

ery rate. Moreover, the BH adjustment is excessively conservative if Pr (nulli ) is

far from 1. For example, if null portfolios comprise roughly half the data (as in

our estimation and in Harvey, Y. Liu, and Zhu (2015)), then the BH FDR bound

exceeds the actual FDR by a factor of 2.

The null hypothesis discussed in Section 6.1µi ≤ 0 cannot be examined using

BH’s algorithm without the additional estimation of the distribution of µi . To see

this, note that the false discovery rate for µi ≤ 0 is

Pr (nulli |ti > th) = Pr (ti > th |µi ≤ 0)Pr (µi ≤ 0)

Pr (ti > th)
(31)

=
∫ 0

−∞
dµ fµ(µ|θ)

[
1−Φ

(
ti − µi

σi

)]
Pr (µi ≤ 0)

Pr (ti > th)
. (32)

where fµ(µ|θ) is the distribution of true means that we estimate in Section 3.3.

A.4. Multiple Tests of the Null: Bias-Adjusted t-stat < 1.96

The low t-stat hurdles in Section 6.1 are due to the inadequacy of the tradi-

tional null hypothesis of µi = 0. This null describes only a tiny portion of nar-

rative predictors. As a result, the null is ineffective for isolating cases worthy of

further study.

When the traditional null is a poor fit, one may want to use an empirical

null, that is, a null which is designed to generate unusual and interesting cases.

This notion of estimating a null distribution is not possible in classical single test
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statistics, but is common in large-scale studies (Efron (2012)).

In this section, we examine a null hypothesis which effectively generates in-

teresting predictors. Specifically, we define a null predictor as one that satisfies

true t-stat ≡ true return

standard error
< 1.96. (33)

This null is motivated by both theory and data. From a theoretical perspec-

tive, Equation (33) is a natural extension of the traditional t-stat < 1.96 hurdle. As

the observed t-stat is a noisy estimate of the true t-stat, roughly half of the true

t-stats will be below the observed one. Using the null in Equation (33) limits this

uncertainty, and provides a higher order assurance that the true t-stat exceeds

1.96.

From an empirical perspective, the data show that we need a rather strict

definition of a null in order to isolate unusual cases. As we will see, relatively

few narrative portfolios satisfy equation (33), and those that do are likely to be

portfolios worthy of further research.

Figure A.4 illustrates the FDR implied by the null (33). The top panel shows a

scatterplot of published true t-stats against observed t-stats from simulating the

estimated model. If there was no publication bias, observed t-stats would be an

unbiased estimate of the true t-stat, and the scatterplots would be evenly spread

across the 45 degree line (dotted line). There is a bit of publication bias, and thus

there are more markers below the 45 degree line than above it.

Despite the fact that the bias adjustments are small, many predictors are null

(red dots). The presence of many null predictors is due to the stringency of our

null definition. By design, only about half of the predictors with observed t-stats

around 2 are “significant.”

The bottom panel shows the FDR as a function of the t-stat hurdle. Using a

hurdle of 0, 54% of predictors are null, and roughly 20% of predictors are null

using the traditional hurdle of 1.96. It’s not until t-stat hurdles above 3.0 that one

achieves an FDR recommended by HLZ. Indeed, a high t-stat of 3.92 is required

to achieve an FDR of 1%.

The t-stat hurdle of 3.92 effectively generates interesting academic case stud-

ies. Predictors that meet this hurdle are very likely to be notable in the traditional

academic sense. As the number of predictors available for study has become un-

wieldy, this higher hurdle may be helpful for focusing the literature.
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Figure A.4: Multiple Tests of the Null: True t-stat < 1.96. We simulate nar-
rative portfolios using our estimated model (Table 3). The top panel shows a
scatter plot of true t-stats against observed t-stats, where true t-stat = [true re-
turn]/[standard error]. Non-null predictors are those with true t-stats > 1.96
(light dots). The false discovery rate for a given t hurdle is the fraction of pre-
dictors which exceed the hurdle that are null.
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