
Housing Appreciation and Marginal Land Supply in
Monocentric Cities with Topography

We revisit the celebrated relationship between supply constraints and home price
growth. Augmenting existing models, we distinguish the roles of average versus marginal
constraints in a dynamic monocentric city. In both theory and the panel of U.S.
metropolitan areas, housing appreciates more where land availability decreases more
with distance from downtown. Similarly, prices rise faster in cities with steeper rent
gradients. Empirically, the parameter we estimate that governs marginal availability
is not as strongly correlated with demand factors as average availability.

1 Introduction

In the United States, housing appreciation has been notably persistent in coastal regions

where development is difficult. This persistence has motivated economists to document an

empirical relationship between growth rates of housing prices and constraints on housing

supply. In any model with constant and finitely elastic demand, reducing supply raises the

level of prices. However, it is not obvious that supply constraints raise the growth rate of

housing prices holding constant the growth rate of housing demand. For supply constraints

to cause price growth, they presumably must become increasingly restrictive as the city

grows.

We present models of urban growth that distinguish the effects of static versus dynamic

supply constraints on housing price growth. We then augment existing empirical models of

land availability within metropolitan areas so that they are governed by two parameters: a

static parameter that affects land availability everywhere, and a dynamic parameter that

governs the rate of change of land availability as the metropolitan area expands outward.

The second parameter is more tightly linked in our model to price growth than the first.

Similarly, we show that all else equal, price growth should be greater where land value

declines more sharply with distance from downtown. We then provide empirical estimates of

the relevant parameters from geographic data and estimate their relationship with the panel

of repeated-sale home price growth across U.S. metropolitan areas.
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Supply constraints can be man-made or physical, and can affect the intensity of both

new construction and redevelopment of existing properties. The densities of both new de-

velopment on raw land and redevelopment of existing properties are commonly restricted

by zoning. All else equal, stricter zoning will increase the price per square foot of struc-

tures, and might increase or decrease the value of urban land depending on the nature of the

constraints and demand and supply elasticities. How unchanging zoning restrictions affect

price growth as demand grows is not obvious, but when allowable densities are increased,

the supply of residential land is effectively increased. This reduces housing prices, measured

per unit of quantity or quality. Thus the rate of price appreciation will depend on changes

in zoning.

New housing is also built on previously undeveloped land. In many metropolitan areas, a

substantial share of that construction is concentrated in new and unfinished neighborhoods

not far from suburban outer edges. There, land is relatively inexpensive and available for

large subdivsions. Large subdivisions are preferred by large builders for multiple reasons:

greater control, more flexibility, and economies of scale. As the urban area expands outward,

it can encounter obstacles to continued growth, including land with steep slopes, wetlands,

and water. With less land available in new neighborhoods, some large builders must focus

on more remote subdivisions. This increases both sprawl and commuting costs to the core.

Thereby, rates of both sprawl and appreciation can depend on the rate at which the fraction

of buildable land decreases with additional distance from the core.

To distinguish the average level from the growth of supply constraints, we augment

empirical models of physical supply constraints that were pioneered by Saiz (2010) and Kolko

(2008). In our baseline model, following Saiz, the fraction of buildable land F (r) at each

radial distance r from the city’s center is exogenous. We generalize prior work by allowing

this fraction to equal λr−ζ . In previous work, ζ has been held constant at zero, so that

F (r) = λ. This constraint is both proportional and static. It is proportional because only a

percentage of all land at each radial distance r is buildable. It is static because the buildable

percentage λ is constant over time in a sprawling city. Alternatively, when ζ is non-zero,

the supply constraint can be both proportional and dynamic: d lnF (r)/dr = −ζd ln r/dr.

In this case, ζ is a constraint on the growth rate of housing supply when the outer edge of

the city expands at a constant rate.

We show in a baseline model, where development only occurs at the urban fringe, that

price growth falls with the marginal availability elasticity−ζ, but not with the standard static

availability measure λ. Our baseline model is closely related to Capozza and Helsley (1990).

Perfectly competitive landowners with perfect foresight sell their rural land to perfectly

competitive developers, who immediately build and sell houses to the public. In equilibrium
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landowners at each radial distance r maximize the present value of their land by selling when

the outer edge of the city expands to their radial distance.

The essence of urban land models is the gradient of land value with distance to downtown.

Depending on the functional form of that gradient, the extent to which land values decline

may also affect price growth. With a steeper rent gradient, new homes on the urban fringe

are a worse substitute for existing homes, and an equivalent growth in demand leads to

greater price growth where prices are higher. We show that when land rent has a constant

elasticity in distance, price growth increases in that elasticity.

Realistically, unbuildable land is hard to define and endogenous. With higher prices some

housing is built on steeper slopes inside expanding cities. For example, in coastal California

expensive homes are built on very steep slopes at very high unit costs for foundations. For

these reasons we introduce a second model that incorporates construction on previously

unbuildable, steeper slopes at progressively higher unit costs. Housing on steeper slopes can

also be more valuable with better views or less valuable with more difficult access. In the

resulting equilibrium houses are built at two boundaries: the previous outer edge of the city

and an endogenous upper edge on steeper slopes inside the city.

All results from our baseline model hold with minor modifications when the physical

difficulty of development is endogenized. The appreciation rate is increasing in the marginal

cost of construction on slopes of a given steepness and decreasing in the premium paid for

lots on slopes. Otherwise, the previous results are unchanged. Similar results would apply

to development near other amenities, like lakes and seashores, when the density or quality

of new construction is endogenous.

We test the theoretical results using topographical data and a panel of home prices for

302 U.S. metropolitan areas. A consistent estimator is derived for the two constants, ζ and λ

and on our estimate of the land rental gradient. Housing appreciation for each metropolitan

area is then regressed on our estimates of the two constants and multiple demand factors.

As predicted by the model, the measures of the marginal unavailablity of land and the rental

gradient are positively associated with housing appreciation between 1980 and 2010. Con-

sistent with prior studies, average availability λ is also associated with housing appreciation,

conditional on available demand controls. This result is not predicted by the initial model

and could relate to correlation with unobserved demand factors. A relationship between

price growth and λ is also consistent with the enriched model of endogenous development

on slopes.

Previous papers focus on the average availablity of buildable land throughout a metropoli-

tan area measured by the single parameter λ. Here, two parameters, λ and ζ, must be

estimated simultaneously. In our two-parameter model, λ cannot be interpreted as average
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availability unless ζ is held constant. A two-parameter model of land availability must im-

perfectly approximate land availability at any point in a metropolitan area. We show in

that the introduction of ζ significantly improves approximation of land availability at differ-

ent radii relative to a λ-only approximation in the sense that a degrees-of-freedom-adjusted

goodness of fit improves when we relax the standard assumption that ζ = 0.

The next section contextualizes our paper relative to similar theoretical and empirical

exercises. The third section sketches our baseline model and the extension to endogenous

development on steep slopes. The initial model is then introduced formally in subsection 3.1

and its equilibrium is identified in 3.2. Subsection 3.3 covers the corresponding equilibrium

with endogenous development on slopes. The estimator of the parameters of the power

function for buildable land is explained in the Section 4.1 and all empirical results are

presented in Section 4.2. Major results are summarized in the final section. All technical

details appear in the Appendix.

2 Background

The models of this paper are most closely related to Capozza and Helsley (1990) CH was

the first paper to apply results in real options to urban economics. It identified for the first

time an equilibrium in which landowners exercise their options to develop land for housing

at the expanding outer edge of a monocentric city. This innovation was important because

much new construction is concentrated near the outer edges of major metropolitan areas:

Bogin, Doerner, and Larson (2016) This pattern is illustrated in Figure 1 using data from

the American Community Survey., 2011-2015.

CH and the initial model of this paper have the similarities identified in the introduc-

tion. The first major difference is also discussed in the introduction: topography with its

implications for suburban sprawl and housing appreciation. The focus here on the relation-

ship between housing appreciation and supply-side constraints motivates the remaining two

material differences. In CH the dynamic model is additive; here, it is proportional. In CH

elasticities of demand and supply are suppressed; here, elasticities are highlighted.

This paper is focused on the relationship between housing appreciation and the two

proportional, supply-side constraints, static and dynamic, that are identified in the intro-

duction. This suggests a variant of a standard, proportional model from the large literature

on real options. Proportional models are characterized by isoelastic aggregate demand and

supply and stationary growth rates of exogenous variables. In proportional models prices and

other endogenous variables depend on levels of exogenous variables, whereas growth rates of

prices and other endogenous variables depend on elasticities and growth rates of exogenous

4



Figure 1: Median age of housing stock by Census tract for six large metropolitan areas as
of the 2011–2015 American Community Surveys.

(a) Los Angeles (b) Chicago

(c) Houston (d) San Francisco

(e) Atlanta (f) Phoenix

5



variables. Thereby, growth rates of endogenous variables are stationary and constant if ex-

ogenous growth rates are constant. This plausible simplicity, independent of scale, facilitates

the analysis of dynamic, supply-side constraints. It differs from additive models, like CH,

where differences are easily identified but growth rates are complicated. Also, proportional

models are often better approximations of more realistic, more complicated models than

equally tractable, additive models.1 The latter issues in this problem are identified below.

The third significant difference is related to the second. In CH rent for developed ur-

ban land is driven by the time-path of the representative household’s utility. That utility

disappears in their equilibrium rental function. Here, the aggregate demand for housing is

driven by its exogenous component. Households are heterogeneous; their utility functions are

suppressed; and their aggregate demand is specified exogenously. That aggregate demand is

imperfectly inelastic–isoelastic with finite elasticities. These elasticities, which appear in the

equilibrium pricing function for housing, contribute significantly to the empirical implica-

tions of the model. The distinction between prices and rent is moot in models with perfect

foresight.

The supply-side effects of buildable land are central to both this paper and its second

predecessor, Saiz (2010). Saiz has been widely cited for his sophisticated estimates of the

average fractions of buildable land in multiple metropolitan areas throughout the United

States. His model is static with a fixed fraction of buildable land λ. Housing appreciation

is inferred from the elasticity e of the average housing price p̄ with respect to the driver of

aggregate demand x. With an additive pricing equation, that elasticity e is decreasing in the

buildable fraction λ.

This static result can be restated as follows. Using the notation of this paper, combine

the first two equations in Saiz:

P̄ (x) = γ +
κ0√
λ

(x− κ1) .

This additively separable pricing function has four parameters: the unit construction cost

γ > 0, two composite constants, κ0, κ1 > 0, and the buildable fraction, 0 < λ < 1. Suppose

that this static equation holds over some interval of time t. In this case, the growth rate of

the average price p̄ is proportional to the elasticity e:

d ln p̄

dt
= e

ẋ

x
, e ≡ P̄ ′(x)

xP̄ (x)
=

κ0

γ
√
λ+ κ0(x− κ1)

.

1Indeed, it can be shown that our results apply when utility is Cobb-Douglas over other goods, land
consumption, and “iceberg” commuting disutility. The main results do not rely on properties of irreversible
supply and would apply to repeated rent of raw land.
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In this case, the appreciation rate of housing is decreasing in the fraction of buildable land

λ, holding constant the growth rate of exogenous demand, ẋ/x > 0.

This supply-side result holds because the average price of housing is additively separable

in its common cost of construction γ and the average capitalized commuting costs to the core.

The latter term includes the constant κ0/
√
λ. This constant is decreasing in the buildable

fraction λ and proportional to the common commuting cost per unit of radial distance for all

households in the city. Thereby, larger fractions λ reduce suburban sprawl, shorten average

commutes, and reduce average commuting costs. In turn, this decreases average housing

prices and increases the above elasticity e. Finally, this reduces the appreciation rate of

housing, conditional on the growth rate of exogenous demand.

In both CH and Saiz, the additive separation in housing prices follows from the linear

pricing gradient. The gradient is linear in radial distance because the cost of commut-

ing is proportional to commiting distance with the same unit costs for all households. In

this proportional model the price gradient is assumed to be log-linear in radial distance.

Both specifications are approximations of more complicated, more realistic models. Which

approximation is more accurate? Average commuting speeds are faster farther from down-

town.Also, strict convexity follows from separation and ordering of households by their costs

of commuting. Finally, empirical pricing gradients are mostly decreasing and strictly convex.

Previous papers ignore the endogeneity of development on slopes. Evidence of that en-

dogeneity appears in Table 1. There, the 95th percentile of slope with housing is regressed

on housing prices in 1990. All values are in logarithms. If the maximum buildable slope is

exogenous, that slope should be unrelated to prices. As shown in the table the coefficient of

price is both positive and highly significant. Exogenous development on slopes is rejected at

a high level of statistical significance.

Development on steeper slopes is progressively more costly. Gentle slopes with grades

less than 10% have the lowest unit costs on site. Moderate slopes up to 20% require more

grading and more expensive foundatione Utah Governor’s Office of Planning and Budget

(n.d.). Still steeper slopes require even more costly cut and fill and stabilization to reduce

the risk of erosion and landslides Highland (2008). Local governments have rules related to

risks of earthquakes and landslides Rosenberg and Papurello (2013), drainage and erosion

Ohio Balanced Growth Program (2014), protection of wildlife City of Riverside (1998), and

aesthetics The Marin County Community Development Agency (n.d.). In California houses

are built at high cost on extreme slopes of 50% or more. Housing on steep slopes can also

have higher costs off site of extending roads, sewers, and water to the property. These issues

make it difficult to identify a maximum buildable slope.

Development on or near water has analogous costs. Residential development over water
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Table 1: Regression of 95th percentile of slope with housing on 1990 housing prices. All
values in logarithms.

log(slope)

Price 0.6802∗∗∗ 0.6643∗∗∗

(0.0962) (0.1305)

Coastal 0.0371
(0.2055)

Constant −5.3070∗∗∗ −5.1326∗∗∗

(1.0728) (1.4447)

Observations 396 396
Adjusted R2 0.1103 0.1081

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

or wetlands includes houseboats and housing on piers, wharfs, and landfill. All are more

costly than development on dry land. Land near water can have poor drainage, poor soils,

and subsurface water Building Advisor (2013). Development on that land may require

compliance with coastal commissions concerned about environmental issues and public ac-

cess. Housing built on that land has additional risks from floods and other hazards like

liquification during earthquakes.

3 Theory

In this section the two models are presented and their equilibria are identified. In the

first the maximum buildable slope is exogenous; in the second the maximum built slope is

endogenized. The major assumptions are identified. For both the preliminary and enriched

models the major results are also summarized.

A monocentric city is surrounded by both topography and an infinite supply of buildable

land. In the initial model the fraction of buildable land at each radial distance is an exogenous

power function of that radial distance. If the exponent or constant elasticity of that power

function is zero, as in previous papers, then topography is independent of radial distance. If

the exponent is negative, the fraction of buildable land at each radial distance is decreasing
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in that distance. The unit cost of developing buildable vacant land is constant inside the city

and nondecreasing with radial distance beyond its outer boundary. The latter costs increase

with distance if developers must pay to extend streets and utilities from the boundary to

the property. Homes are priced in a spot market like consumer durables. Aggregate demand

for housing is isoelastic That demand is driven by an exogenous component that increases

over time at a constant rate. Housing prices decrease with radial distance at a constant

rate that depends more on relative radial distance from the urban core than the relative

supply of housing at those radial distances. Rural parcels are priced by perfectly competitive

landowners as real options to build housing. Landowners exercise their options by selling

their properties to perfectly competitive developers who then build and sell homes to the

public without delay.

In the resulting equilibrium all development occurs at the outer edge of the city. De-

velopment of more remote, rural land is not optimal because the unit costs of development

are nondecreasing in radial distance beyond the outer boundary and the market price of

completed homes is decreasing in radial distance. At the boundary between suburban and

rural land, the price of housing equals the unit price at which owners of local land optimally

exercise their options to build. That constant price exceeds the constant cost of construction.

The percentage premium that landowners at the boundary demand to exercise their options

does not change as the boundary expands outward over time. That constant premium is

increasing in the endogenous growth rate of housing prices and decreasing in landowners’

constant discount rate. With a higher percentage premium the city has less housing and less

sprawl.

The growth rate of housing prices is also constant in equilibrium. It equals the constant

elasticity of the housing price gradient with respect to radial distance multiplied by the

endogenous expansion rate of the outer boundary. This should not be surprising. Housing

appreciates at each fixed radial distance inside the city because its negatively sloped, isoelas-

tic price gradient shifts outward with the boundary. As a result, housing appreciates more

rapidly in cities with steeper price gradients or more rapid sprawl. Both are greater with a

more negative exponent of the fraction of buildable land with respect to radial distance. In

this sense, the appreciation rate of housing is decreasing in the marginal supply of buildable

land. More rapidly growing aggregate demand induces more rapid sprawl and thereby more

rapid housing appreciation.

Alternatively, if the fraction of buildable land does not depend on radial distance, then

the appreciation rate of housing does not depend on that fixed faction. Nor does the rate

of suburban sprawl. Instead, the fixed fraction of buildable land at each radial distance

affects only the level of housing prices and the area of the city. Larger fixed fractions are
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associated with lower prices and less sprawl. In this model where the fraction of buildable

land is a power function of radial distance, both the appreciation rate of housing and the

rate of suburban sprawl are independent of the coefficient of the power function.

The above result is generalized in the second, more realistic model with endogenous de-

velopment on slopes. On the previously unbuildable land with steep slopes, unit construction

costs are now a convex power function of relative slope. The coefficient of that power func-

tion is the previous unit cost of building at the outer boundary. In the resulting equilibrium

all development occurs at the outer boundary and a second upper boundary. The upper

boundary is a continuum of maximum slopes that are developed at different radial distances

inside the city. At each distance inside the outer boundary, the maximum developed slope

is a product of two components: the exogenous fraction of buildable land from the initial

model and an endogenous residual. The residual decreases with greater radial distance from

the center, more rapidly with larger premiums paid for better views or smaller construction

costs on slopes, and disappears at the outer edge of the city. Thereby, steeper slopes are

developed closer the urban core with the difference disappearing only at the city’s outer

edge. In this sense, development on slopes deviates systematically from physical measures

of developable land.

Endogenous development on slopes has other effects. Most importantly, it decreases

proportionally both the elasticity of the housing price gradient and the rate of growth of

housing prices. Cities then have steeper price gradients and more rapid housing appreciation

with higher construction costs on slopes or smaller premiums for views. Cities also have more

sprawl and higher housing prices with either attribute.

More rapid housing appreciation with smaller premiums for views can help to explain a

negative relationship between housing appreciation and the coefficient of the power function

for buildable land. Relatively more buildable land can be associated with a smaller supply

of potential lots with views relative to lots without views and thereby a larger premium for

views. This induces more construction on slopes relative to the periphery, which flattens

the price gradient and, in turn, reduces the appreciate rate of housing. Thereby, cities with

larger coefficients of the power function can have slower housing appreciation.

3.1 Initial model

A circular city has a central business district with unit radius. All housing is located in the

remaining residential band surrounding the CDB. That housing is distinguished solely by its

radial distance r from the center of the city: 1 < r ≤ r̄. The city is much larger than its

CBD: r̄ � 1. Over time the outer boundary r̄ expands with the development of new housing.
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To simplify the model, all housing is always developed at a constant density, conveniently

normalized at 1. Development is instantaneous once started. Once constructed housing

never depreciates or otherwise obsolesces. Also, existing housing is never redeveloped at

higher densities.

Beyond the outer boundary of the city, all land is rural. Each rural parcel located at any

radial distance, r ≥ r̄, can be permitted for one house. To simplify the subsequent notation,

rural land generates no net cash inflow. Thereby, each rural parcel is an option to develop

a permitted and finished, fully serviced lot with one house. The exercise price of this option

is the unit cost of building: b = B(r) for r > 1. Both inside the city and at its outer edge,

this unit cost is constant, independent of radial distance from the center: B(r) = β > 0 for

1 < r ≤ r̄. Beyond the outer boundary the unit cost B is nondecreasing in the radial distance

r − r̄ between the boundary and property. With the latter assumption and a negative price

gradient from the core outward, housing is built in the subsequent equilibrium only at the

outer boundary of the city.

Houses can be constructed only on an exogenous fraction of all land at each radial

distance. The remaining land has difficult topography: steep slopes, soft soils, or water.

The fraction of buildable land F (r) at each radial distance r changes at a constant rate:

F ′/F = −ζ > −2. That rate can be zero, ζ = 0, in which case the fraction of buildable

land is an exogenous constant: F (r) = λ with 0 < λ ≤ 1. These restrictions produce the

power function: F (r) = λr−ζ . This power function has two advantanges. It generalizes the

constant fraction λ in previous papers. It also makes possible an explicit, stationary equi-

librium. With it and subsequent assumptions, the growth rate of housing prices is constant

in equilibrium.

If the elasticity −ζ is negative, the city is surrounded by smaller shares of buildable

land at greater radial distances. Figure 2 shows the buildable share as a function of radial

distance together with the buildable share predicted by the best-fit values of λ and ζ for

selected metro areas. The estimated elasticities range from −xx to −xx.

Under the above assumptions the existing housing stock is proportional to the buildable

area inside the city. At radial distance r the city then has the marginal housing stock:

H ′(r) = 2λπr1−ζ for 1 < r ≤ r̄. In this situation the city has the approximate total housing

stock:

h = H(r̄) =

∫ r̄

1

H ′(r)dr =
2λπ

2−ζ
(
r̄2−ζ − 1

)
≈ 2λπ

2−ζ
r̄2−ζ , (1)

with the outer boundary r̄ � 1. The housing stock (1) is an increasingly accurate approxi-

mation as r̄ →∞ . Henceforth, the approximation is suppressed.

As explained and motivated in the previous section, the model is dynamic and propor-
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Figure 2: Sample plots of buildable area as a function of radial distance for selected metro
areas (bars) with buildable share as predicted by best-fit values of λ and ζ (dashed line).

(a) Boston, MA (b) Las Vegas, NV

(c) Santa Fe, NM (d) Eugene, OR

(e) Port St. Lucie, FL (f) Greenville, SC
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tional with a stationary equilibrium. This requires that the unit pricing function for housing

P be isoelastic everywhere. In other words, the inverse demand for housing and thereby the

aggregate demand for housing must be a power function. This power function P depends on

two variables. The first two are the radial distances to the property r and the outer boundary

r̄. The third variable is the exogenous component of housing demand: x ≥ 0. That demand

that grows over time at the constant rate: ρ > 0. This single statistic x summarizes the

impact on aggregate demand of familiar variables like local employment, average wages, and

nonhousing costs of living. Again, the constant rate of growth ρ preserves the proportionality

of the model that makes possible the subsequent stationary equilibrium.

Without additional loss of generality, the isoelastic inverse aggregate demand for housing

at any radial distance P (r, r̄, x) can be decomposed into two components. The first is the

isoelastic inverse demand at any single radial distance, including the expanding outer edge

of the city. Here, that radial distance is the expositionally convenient outer edge r̄ with the

associated price P (r̄, r̄, x). This choice is motivated below. The second is the isoelastic pricing

gradient over all remaining radial distances: P (r.r̄, x)/P (r, r̄, x) = (r̄/r)φ[H ′(1)/H ′(r)]χ for

all 1 < r ≤ r̄. The constant elasticities, −φ and −χ, satisfy the inequalities: −∞ < −χ <
−φ < 0. The indicated independence of the pricing gradient from the remaining variables,

r̄ and x, is a property of the power function P .

The elasticity of the price gradient with respect to radial distance −φ is easily motivated.

With this negative constant the price of housing is everywhere decreasing and strictly convex

in radial distance r. This convexity holds in monocentric cities with average commuting

speeds that increase with radial distance. It is also consistent with heterogeneous households

who are separated and ordered in radial bands by their costs of commuting between suburban

homes and urban jobs. The constant elasticity can be viewed either as an analytically

convenient approximation or a reduced form from a model with isoelastic household utilities.

The elasticity of the price gradient with respect to the relative supply of housing −χ is

less familiar. If χ = 0, this elasticity does not depend on the relative supply of housing at

different radial distances. This is plausible only if households are either identical or com-

pletely mixed by their heterogeneous attributes. If, however, households are heterogenous

and at least partly separated into radial bands by their heterogenous attributes, then in each

radial band the price paid by residents must be greater than all bids by nonresidents. In

this case, the housing price within the band can decrease in relative housing supply. As this

partition becomes increasingly fine, it approaches in the limit a radial continuum of house-

holds distinguished by their heterogenous attributes where relative housing prices decrease

everywhere in relative supply: −χ < 0. With the restriction −φ < −χ < 0, relative radial

distance affects relative housing prices more than relative housing supply. In other words,
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prices depend more on commuting costs than relative housing supply. This complication

with the elasticity, −χ < 0, is essential for the results in Proposition 2 below.

The isoelastic pricing function P is anchored above by its value at the outer boundary r̄.

Only this price P (r̄, r̄, x) affects the aggregate demand for housing. As explained below, the

pricing function P can be anchored at any single radial distance, as it is in both Capozza

and Helsley (1990) and Saiz (2010). Prices at other radial distances are redundant. This

simplification generates the isoelastic aggregate demand for housing: P (r̄, r̄, x)−ηwith the

constant price-elasticity: −∞ < −η < 0. The unitary elasticity with respect to exogenous

aggregate demand x is merely a notational simplification because the variable x can be

replaced by its power function.

The above aggregate demand for housing is motivated as follows. If all households are

identical, they must be indifferent in equilibrium between housing at all radial distances both

inside the city and at its outer edge. In this case, the housing price at any radial distance

inside the city, including its expanding outer edge, can anchor the pricing function P . With

heterogeneous households some entrants into the housing market may prefer to buy existing

homes. If so, their sellers then buy other homes, existing or new. This creates a sequence of

sellers that terminates eventually with sellers who buy new homes at the expanding outer

edge. If the mix of entrants is stationary, then the pricing gradient must be stationary in

equilibrium. In a proportional model the pricing function P must then be isoelastic.

In equilibrium the equality of aggregate demand and supply determines the price of

housing at the outer boundary r̄. With aggregate supply (1) and the above price gradient,

the unit price has the form:

p = P (r, r̄, x) =
( r̄
r

)φ+χ−ζχ[ x

H(r̄)

]1/η
, (2)

for 1 < r ≤ r̄ and x ≥ 0. This pricing function can be extended to all rural land beyond the

outer boundary of the city: r̄ < r < ∞. As such it can be interpreted as the implicit price

of rural housing that could be built, but is not in the subsequent equilibrium.

Before the landowner’s problem can be specified, some preliminaries are necessary. All

landowners exercise their options to develop housing by selling their properties to perfectly

competitive, identical developers who immediately finish lots and build houses. Once started

that development is instantaneous. For a landowner at radius r, the exercise price of this

option to develop is the unit cost of building: b = B(r). The price of the underlying asset

is the unit price of a finished house and lot: p = P (r, r̄, x) in (2). These variables enter the

developer’s problem only through payout on the option, p−b, at its future exercise date. Also,

the rate of change over time in the unit price (2) does not depend on exogenous demand x.
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As a result, each developer always prices or values rural land V(p, r) at each radial distance

r conditional only on the current price of housing, p in (2). In other words, the endogenous

value of land in the subsequent equilibrium always depends on aggregate demand and supply

only through the price of housing in that equilibrium.

The market for residential land is perfectly competitive. Each owner of rural land at

radius r takes as given both the current price of housing, p from (2), and the unit cost of

building, b = B(r), and solves the problem:

V(p, r) = max
{
p−b, e−δ∆tV(p+∆p, r)

}
, (3)

for r̄ ≤ r < ∞ and 0 < x < ∞. In (3) the current value of land is the maximum of

two separate values: the value of immediate development, p − b, and the present value of

deferred development. Development deferred from time t to time t+∆t has the future value

of undeveloped land when housing has the price p+∆p. This future value is discounted to

the present at the constant rate δ over the interval of time ∆t.

The solution to problem (3) is a stopping rule. Each landowner at radius r defers the

option to develop until the price of land (2) first reaches a critical value: p∗ = P ∗(r). This

stopping price, which is identified in the subsequent equilibrium, can be interpreted as the

landowner’s reservation price for sales to developers. The optimal price p∗ depends partly

on the appreciation rate of housing. To solve this problem, each owner conjectures, correctly

in the subsequent equilibrium, that the unit price p at each radial distance r always grows

at the same constant rate g over each very small interval of time ∆t: ∆p/p = g∆t+ o (∆t).

The residual o (∆t) represents terms of smaller order than ∆t. The endogenous, constant

growth rate g∗ is also determined in the subsequent equilibrium.

Equilibrium in the housing market is determined by two conditions. All landowners

solve problem (3) by exercising their options to develop when the price of housing at their

rural radial distance P (q, r) reaches their reservation value P ∗(r). Second, the rate at which

landowners exercise their options must supply sufficient land for new housing to meet the

aggregate demand for new housing. Thereby, housing demand and supply must always grow

at the same rate.

3.2 Initial equilibrium

The equilibrium of the initial model is identified in this section. First, the landlord’s problem

is rewritten as follows. Expand the right side of (3) in ∆t; subtract V from both sides of

15



(3); divide the resulting right side by ∆t; and let ∆t→ 0. This produces the problem:

0 = max {p−b− V(p, r), gpVp(p, r)− δV (p, r)} . (4)

In the absorbing state, p = 0, rural land has no present value from its alternative use:

V(0, r) = 0. (5)

Finally, the optimal exercise price p∗ must satisfy the smooth-pasting condition:

Vp(p
∗, r) = 1. (6)

Conditions (4) through (6) hold for all for r̄ ≤ r < ∞ and 0 < x < ∞. The solution to (4)

though (6) determines the landlord’s optimal exercise price, p∗ = P ∗(r), and resulting value

of raw land V .

In the subsequent equilibrium all housing is developed at the outer boundary. Develop-

ment beyond the outer boundary is precluded by the argument at the end of this section.

Development at the outer boundary requires that the solution to (4) through (6) satisfies

the following market clearing condition. At the outer radius R∗(x), the optimal price of

housing at which landowners exercise their option to develop, P ∗[R∗(x)] in (4) through (6),

always equals the market clearing price for housing in (2): P ∗[R∗(x)] = P [R∗(x), x] for all

x ≥ 0. This equality determines the city’s endogenous outer radius R∗(x) for all x ≥ 0 and

thereby its housing stock (1). The growth rate of housing prices g∗ follows in turn from the

pricing function (2) and the rate at which the outer radius R∗(x) expands with the growth

of exogenous demand x. These properties, combined with the solution to (4) through (6),

characterize of equilibrium.

Proposition 1: The housing market characterized by (1), (2), and (4) through (6) has

a unique equilibrium if g∗ < δ. In this case, all development occurs at the outer boundary,

R∗(x) =

(
2−ζ
2λπ

xp∗−η
)1/(2−ζ)

, (7)

with the associated housing supply,

H∗(x) = xp∗−η. (8)
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Housing has the unit price,

P (r, x) = p∗
[

r

R∗(x)

]−φ−χ+ζχ

, (9)

for 0 < r <∞, with the value at the outer boundary,

p∗ =
βδ

δ−g∗
. (10)

At all fixed radial distances r housing prices grow at the constant rate:

g∗ = ρ
φ+χ−ζχ

2−ζ
. (11)

Rural land has the unit value,

V ∗(r, x) =
g∗

δ
P ∗(r)

[
P (r, x)

P ∗(r)

]δ/g∗
, (12)

with the optimal exercise price,

P ∗(r) =
δ

δ−g∗
B(r), (13)

for R∗(x) ≤ r <∞. All results hold for 0 ≤ x <∞.

This proposition is proved in the Appendix. Its main result is the endogenous growth

rate of housing prices (11). That growth rate g∗ is determined by the equality in (A.3) of the

two prices, P ∗[R∗(x)] in (13) and P ∗[R∗(x), x] in (2), with the outer boundary, R∗(x) in (7),

and the associated housing stock, H∗(x) in (8). This equality also appears in the text above

the proposition. Differentiating this equality with respect to time t generates the growth

rate, g∗ in (11). Thereby, the constant growth rate of housing prices (11) clears the housing

market continuously through time. This growth rate must be less than the discount rate δ

if the landlord’s problem is to have a finite solution.

The appreciation rate of housing (11) has the following properties. It is the product of two

factors: the rate of sprawl, ρ/(2−ζ), from (7) and the elasticity of the housing price gradient,

φ+χ−ζχ in (9). This result is not surprising. As the city sprawls, the negatively sloped

price gradient to the outer edge expands outward and upward. The sprawl or expansion

of the outer boundary (7) is distinct from the expansion of the housing stock (8), which

is independent of the elasticity ζ of the fraction of buildable land with respect to radial

distance. The same product (11) increases in the constant ζ if, as previously assumed,

commuting costs affect relative housing prices more than relative housing supply at different
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radial distances, φ > χ. In this case, the growth rate of housing prices is greater with smaller

marginal shares of buildable land farther from the urban core.

By contrast, the appreciation rate (11) is independent of the coefficient λ. This second

constant is the fixed fraction of land available for development when land lost to topography

is independent of radial distance: ζ = 0. Larger values of the latter constant λ reduce the

outer radius (7) and thereby the unit housing price (9), but alter neither the growth rate

of the boundary (7), the price of housing (10) at the boundary, nor the appreciation rate of

housing (11). Cities with smaller fixed fractions of buildable land have higher housing prices

at fixed radial distances and larger sizes, but no other differences.

The price of housing at the outer boundary is not exogenous. Nor is it determined solely

by the cost of construction. Instead, the endogenous unit price, p∗ in (10), at the outer

boundary (7) reflects the self-interested behavior of landowners who sell to builders at the

optimal times to develop their properties. With higher growth rates of housing prices g∗,

landowners defer development or, equivalently, raise their reservation prices and wait longer

for higher bids from builders. The resulting higher unit price at the boundary (10) reduces

the outer radius (7) and thereby the housing stock (1). By this process all factors that

accelerate the appreciation rate of housing also reduce the size of the city. Other constants

that affect the unit price (10) are familiar from the literature on real options.

The unit value of rural land in (12) is largely familiar from models of real options. Only

its novel properties are discussed here. Housing has the unit price (9) everywhere inside the

city. Again, that price can be extended everywhere outside the city, R∗(x) ≤ r < ∞, as

the price of housing that could be built, but is not in equilibrium. This extended pricing

function (9) is everywhere decreasing in radial distance r. By contrast, the optimal price at

which the option is optimally exercised, P ∗(r) in (13), is increasing in r. For both reasons,

the option to develop is worth more in (12) not exercised than exercised at all rural radial

distances beyond the outer boundary, R∗(x) < r <∞. In other words, the option to develop

is in the money only at the outer boundary of the city.

In equilibrium all development must occur at the outer boundary. To see this, suppose

that landlords exercise their options to build only at the boundary of the city at all times

before some time, t > 0, when the exogenous demand reaches the value x. In this case, the

city has at time t the outer radius, R∗(x) in (7). By the above argument landlords then

optimally exercise at time t their options to build only at the boundary (7). At each radial

distance beyond the boundary, the housing price at which they would exercise their options

(13) exceeds the implicit price of housing (9) at that radial distance: P ∗(r) > P(r, x) for all

r > R∗(x) and all x > 0. The same argument also applies at all previous times, including

the initial time 0 when development of the city starts. Therefore, development starts at the
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outer boundary and continues thereafter. This is the only equilibrium.

3.3 Endogenous development on slopes

In the model of Section 3.2 the fraction of land that can be developed is exogenous and

independent of radial distance. In this section land is no longer characterized merely as

buildable or not. Instead, it is ordered at each radial distance by its unit cost of development.

The endogenous boundary for building on topography is then determined for each radial

distance from the city center.

To simplify the exposition, construction is constrained only by topography. Also, to-

pography is summarized by a single state variable s0, conveniently called slope. Slope is

continuous across all radial angles and distances from the city center. At each radius r,

slope is uniformly distributed on the interval: 0 ≤ s0 ≤ S0(r).2 The maximum slope S0 can

differ across both radial distances r and metropolitan areas. Each slope s0 has the percentile

or rank order: s1 = s0/S0(r).

In this model housing can be constructed at higher unit costs on previously unbuildable

slopes. On sufficiently shallow slopes, the unit cost of construction C(r, s) is unchanged:

C(r, s) = B(r) for all 0 ≤ s0 ≤ σ. On all steeper slopes, the unit costs are greater: C(r, s)

> B(r) for all σ < s0 ≤ S0(r). The constant, σ > 0, is the previous maximum buildable

slope: s0/σ = s1/λr
−ζ. In other words, the slope divided by its buildable maximum equals

the slope’s percentile divided by the percentile of the previous buildable maximum. For

example, the buildable maximum and its associated percentile have the respective values,

.15 and λ, in Saiz (2010). This specification of the slope σ links the current analysis with

endogenous slopes to the previous analysis with exogenous slopes and allows comparisons

between the two. It is possible with the uniform distribution of slopes at each radial distance.

In this proportional model the unit costs of construction must also be isoelastic. Specifi-

cally, the higher unit costs of construction on steeper slopes must be homogeneous in slope:

B(r) (s0/σ)γ for σ < s0 < 1 with the new constant, γ > 1. Because all steeper slopes

have the relative values, s0/σ = s1/λr
ζ, this generates the isoelastic costs: B(r)

(
s1/λr

ζ
)γ

for

λrζ < s1 < 1. Henceforth, slopes are identified by their percentile ranks: s = s1. With this

new notation, the costs of development can be summarized as follows:

C(r, s) = B(r) max
{

1,
(
s/λr−ζ

)γ}
, (14)

2Alternatively, slope can be Pareto or power law at each radial distance. In this case, the subsequent
results have one additional parameter: the exponent of the power law.
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for all radial distances, 1 < r < ∞, and all feasible slopes, 0 ≤ s ≤ 1. As in the previous

section, the unit cost B has the values: B(r) = β for 1 < r ≤ r̄ and B(r) > β for r̄ < r <∞.

The cost of construction (14) is an analytically convenient generalization of the initial

model. The unit cost is the previous minimum, C(r, s) = β, on all previously buildable

slopes, 0 ≤ s ≤ λr−ζ , both inside the city and at its outer boundary, 0 < r ≤ r̄. On all

remaining, previously unbuildable, steeper slopes, λr−ζ < s ≤ 1, the marginal costs are

positive and increasing: γ > 1. This convexity, combined with an additional assumption

below, guarantees that the city has an equilibrium with two endogenous boundaries: the

previous outer boundary (7) on all smaller slopes, 0 ≤ s ≤ λr−ζ, and, inside the city, an

additional upper boundary on all steeper slopes, λr−ζ < s ≤ 1. The latter boundary was

previously exogenous with the percentile or rank order slope λr−ζ equal to the fraction of

buildable land at radius r. Both endogenous boundaries are identified in the subsequent

solution. The isoelastic unit costs (14) make possible explicit solutions for both boundaries.

With the uniform distribution the equilibria from the two models can be compared.

As before, all housing has an exogenous, unit density that does not change over time with

either depreciation or redevelopment. In this case, the housing stock is again proportional to

the developed area with one modification. At each radial distance, 0 < r ≤ r̄, the exogenous

fraction of developed area λr−ζ is replaced by the endogenous fraction S̄(r), which is the

maximum developed slope at radial distance r. This generates the marginal housing stock:

H ′(r) = 2πrS̄(r), and thereby the total housing stock:

h = H(r) = 2π

∫ r̄

1

rS̄(r)dr ≈ 2π

∫ r̄

0

rS̄(r)dr, (15)

with the outer boundary r̄ � 1. This housing stock (15) replaces the previous housing stock

(1).

The premium paid for slopes, if any, is modeled simply as follows. On all previously

buildable land, 0 ≤ s ≤ λr−ζ , the previous pricing function (2) with no premium for slopes

again applies. On all remaining, previously unbuildable land with steeper slopes, the unit

price of housing is also homogenous in relative slope s. For the latter land this produces the

isoelastic prices: p = P (r, s, x) = (r̄/r)φ[H ′(r̄)/H ′(r)]χ
(
s/λr−ζ

)ψ
P (r̄, s, x) for λr−ζ < s ≤ 1

The new constant elasticity ψ is positive with a premium for views and negative with a

discount for difficult access on slopes. Its upper bound, ψ < γ, is motivated below. Across

all slopes this generates the unit price:

p = P(r, s, x) =
( r̄
r

)φ[ r̄S̄(r̄)

rS̄(r)

]χ
max

{
1,
( s

λr−ζ

)ψ}[ x

H(r)

]η
, (16)
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for 1 < r ≤ r̄, 0 ≤ s ≤ 1, and x ≥ 0. For notational convenience, the dependence of the the

new pricing function P on both boundaries, r̄ and S̄, is also suppressed. This new pricing

function (16) replaces (2).

The housing equilibrium is derived much like before. Under the above assumptions,

including (14), all housing is built at the two boundaries of the city: outer r̄ and upper

S̄. In equilibrium these two boundaries have the respective values: R∗(x) and S∗(r, x). In

the initial model the optimal exercise price at which development occurs depends on radial

distance P ∗(r). Here, the same exercise price also depends on slope P ∗(r, s). Much like the

initial model, the optimal price at which development occurs at the outer boundary must

equal in equilibrium the market-clearing price (16) at the outer boundary: P ∗[R∗(x), s] =

P [R∗(x), s, x] for all 0 ≤ s ≤ λR∗(x)−ζ. Similarly, the optimal price at which development

occurs at the upper boundary must equal in equilibrium the market-clearing price (16) at the

upper boundary: P ∗[r, S∗(r, x)] = P [r, S∗(r, x), x] for all 1 < r ≤ R∗(x). The first equality

determines the outer boundary R∗(x), while the second determines the upper boundary

S∗(r, x).

The second proposition is presented much like the first. It uses the new notation:

ν ≡ (φ+χ−ζχ)/(γ+χ−ψ) > 0 and ξ ≡ (γ−ψ)/(γ+χ−ψ) > 0. Again, all calculations appear

in the Appendix.

Proposition 2: The housing equilibrium characterized by (4) through (6), (15), and

(16) has a unique solution if g∗ < δ. In this second case, all development occurs at the two

boundaries:

R∗(x) =

(
2−ζ−ν
2λπp∗η

x

)1/(2−ζ)

, (17)

and

S∗(r, x) = λr−ζ
[
R∗(x)

r

]ν
, (18)

for 1 < r ≤ R∗(x). Housing has the aggregate supply (1) and the unit price,

P (r, s, x) = p∗
[
R∗(x)

r

]ξ(φ+χ−ζχ)

max

{
1,
( s

λr−ζ

)ψ}
, (19)

with the value, p∗ in (10), at the outer boundary and the growth rate,

g∗ = ξρ
φ+χ−ζ

2−ζ
. (20)
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rural land has the unit value,

V ∗(r, s, x) =
g∗

δ
P ∗(r, s)

[
P(r, s, x)

P ∗(r, s)

]δ/g∗
, (21)

with the optimal exercise price,

P ∗(r, s) =
δ

δ−g∗
C(r, s), (22)

for R∗(x) ≤ r <∞ and 0 ≤ s ≤ 1. All results hold for 0 < x <∞.

Endogenous development on slopes reduces proportionally both the elasticity of the price

gradient in (19) and the growth rate of housing prices (20). Each value with endogenous

development, ξ(φ+χ−ζχ) in (19) and g∗ in (20), equals the respective value with exogenous

development, (9) and (11), multiplied by the constant, 0 < ξ < 1. This composite constant

ξ is increasing in the difference, γ−ψ, between the elasticity of construction costs γ and the

elasticity of the pricing premium ψ, both for housing on steep slopes, λr−ζ < s ≤ 1. This

result holds because the relative supply of built land at each radial distance r inside the city

decreases in the same difference, γ−ψ, under the previous assumptions. In other words, cities

with with higher marginal construction costs on slopes or smaller marginal premiums paid

for buildable lots on slopes have, other things equal, less endogenous development on slopes

and more rapid appreciation of housing.

Endogenous development on slopes has other properties. The maximum developed slope

(18) is the product of twocon components: the exogenous factor from the previous proposition

λr−ζ and the endogenous residual, S∗(r, x)/λr−ζ > 1. The residual decreases toward 1 as

the cost elasticity γ increases without limit, γ → ∞. It also decreases in radial distance

r. Here, steeper slopes are developed at higher marginal costs closer to the center because

unit housing prices are higher closer to the center. At the outer edge of the city (17),

only smaller slopes are developed: S∗[R∗(x), x] = λR∗(x)−ζ with ψ > χ. The last result

holds because owners of land at the outer boundary prefer not to exercise their more costly

options to develop steeper slopes when the unit price at the outer boundary p∗1 makes the

same owners indifferent at the margin between exercising or not their option on shallow

slopes. Not surprisingly, the steepest developed slope also increases with exogenous demand

x. Finally, endogenous development on steeper slopes, λr−ζ < s ≤ S∗(r, x), inside the city,

0 < r < R∗(x), reduces the outer boundary (17) below its previous value (7). Thereby,

suburban sprawl is less with endogenous development on slopes, while the supply of housing

(8) is unchanged.

In other aspects the growth rate of housing prices is unchanged by endogenous devel-
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opment on slopes. Much like (11), the growth rate (20) is greater with larger elasticities ζ

and thereby less relatively flat land, 0 ≤ s ≤ λr−ζ, at greater radial distances r. It is also

greater with more negative price gradients in (19), which, in turn, are more negative with

larger elasticities ζ. If ζ = 0, the parameter λ is the constant fraction of land with shallow

slopes. As before, this parameter affects neither the price gradient in (19) nor the growth

rate of housing prices, g∗ in (20).

Although the parameter λ has no direct effect on the appreciation rate of housing, it can

have an indirect effect. Suppose that cities with relatively more flat, buildable land have

relatively fewer potential lots with views and thereby larger premiums for those views. In this

case, cities with larger coefficients λ have larger parameters ψ, relatively more built housing

on slopes everywhere inside the city, a more elastic negative price gradient for housing, and

thereby less rapid appreciation of housing. Thereby, a negative relationship between λ and

housing appreciation is consistent with endogenous development on slopes.

Steep slopes and water have similar effects on supply and demand. The costs of develop-

ment are increasing and convex costs both on steeper slopes and closer to water. Also, views

from and of slopes are an amenity much like views of water and easy access to shorelines.

With either amenity the unit price of land is higher. With endogenous development either

on steep slopes or near water, the parameter λ should then have a negative indirect effect

on housing appreciation through the negative relationship between λ and the availability of

land on or near slopes or shorelines.

In practice, the density of development can also be controlled at boundaries on steep

slopes or near water. If the cost of development is increasing and convex in the quality or

quantity of housing, then these measures of density are greater near either amenity, more so

with higher prices of those amenities. The latter result follows from a minor modification

of the second model This additional density increases the supply of housing inside the city,

which, by the above argument, further reduces the rate of housing appreciation. Therefore,

the parameter λ should have a more negative, indirect effect on housing appreciation.

4 Empirics

4.1 Estimating parameters

Whether the maximum built slope is exogenous or endogenous the appreciation rate of

housing depends on the marginal supply of buildable land. Tests of the model predictions

require a tractable, consistent estimator of the two parameters ζ and λ of the power function

λr−ζ for the fraction of buildable land at all radial distances r in each metro area. Because
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the empirical distribution of buildable land can match the power distribution more closely in

some cities than in others, the tests include a measure of the “goodness of fit” of the power

law.

The estimator is calculated by minimizing the asymptotic mean integrated squared error

(AMISE) of the power distribution relative to the empirically observed distribution of build-

able land in each metropolitan area3. The latter distribution is denoted by Dm for metro

area m. For each metro area m, the estimator
(
ζ̂m, λ̂m

)
minimizes the AMISE:

(
ζ̂m, λ̂m

)
= arg min

{
1

π (r̄2 − 1)

∫ 2π

0

∫ r̄

1

[
Dm(r)− λr−ζ

]2
r dr dθ

}
. (23)

The minimand in (23) is the squared distance between the predicted and actual buildable

share, averaged over the annulus 1 ≤ r ≤ r̄. The first-order conditions for (23) generate the

two equations, (A.5) and (A.6) in the Appendix. In the subsequent exposition the subscripts

m are deleted.

In the data each distribution Dm is sampled. Suppress the subscript m and identify

each observation by its number: n = 1, ..., N . Each observation n is a pixel at some radius,

1 ≤ rn ≤ r̄, that is either buildable, dn = 1, or not, dn = 0 . With this notation the

finite-sample analogues of (A.5) and A.6) are

1
N

∑N
n=1 dn log(rn)r−ζ̂n

1
N

∑N
n=1 dnr

−ζ̂
n

=
1

2
(

1− ζ̂
) r̄2(1−ζ̂)

[
2
(

1− ζ̂
)

log(r̄)− 1
]

+ 1

r̄2(1−ζ̂) − 1
(24)

and.

λ̂ =
1
N

∑N
n=1 dnr

−ζ̂
n

1
N

∑N
n=1 r

−2ζ̂
n

. (25)

The estimate ζ̂ is the numerical solution to (24). The estimate λ̂ then follows from (25).

This completes the estimation. The procedure produces an estimate of the mean inte-

grated squared error:

M̂ISE =
1

N

N∑
n=1

[
dn − λ̂r−ζ̂n

]2

(26)

In the regressions of price growth on λ and ζ below, this estimated MISE is used as the

weight in weighted least-squared regressions.

Observations are obtained as follows. As in Saiz (2010), a pixel is unbuildable if it

3The mean integrated error provides a global criterion of fit closeness Hart (2013). Scott (2001) investi-
gates its application in parametric estimation.
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is covered by water or its slope is greater than 15%; otherwise, it is buildable. Water is

identified from the USGS National Hydography Dataset and rasterized using QGIS. Slopes

are identified from elevations in the SRTM data of NASA and converted to slopes using the

GDAL Digital Elevation Model utility. Additional details appear in the Appendix.

For each metropolitan area, an urban extent is identified as described in the Appendix.

As described in the Appendix, a large sample of coordinate pairs is randomly generated

on a disk centered on the principal city of the metropolitan area. The radius of this disk

corresponds to the spatial scale of the urban extent. The land at each coordinate pair is

either buildable or not by the above criteria. The estimates, ζ̂ and λ̂, are then calculated

from (24) and (25) with the associated mean integrated squared error (26). Small changes

to these definitions do not appreciably alter the estimated values of ζ and λ.

4.2 Housing appreciation and land supply

In the initial model with exogenous development on slopes, housing appreciation depends

on the marginal availability of land ζ but not the normalization factor λ. With either

endogenous development on slopes or endogenous density at boundaries, both parameters

affect housing appreciation. To test these theoretical prediction, housing appreciation rates

are first regressed on the estimates of ζ and λ, a measure of growing labor demand, and

additional covariates. All regressions are weighted by the inverse of the mean estimated

squared error (26). In the panel regressions all standard errors are clustered at the level of

the metropolitan area.

Two measures of housing appreciation are used below. To assess the medium-term re-

lationship between appreciation and available land, appreciation is computed over each of

three periods: 1980–1990, 1990–2000, and 2000–2010. This is the above panel specification.

For a longer-run relationship, appreciation is measured over the single period: 1987 through

20144. In both cases housing prices come from the FHFA index for the metropolitan area.

The body of the text presents the decadal results and the long period results are in the

Appendix. Throughout, coefficients are similar in magnitude and significance across the two

specifications.

Growth in labor demand is estimated by the statistic Bartik5. This statistic, which was

popularized in the economic literature by Bartik (1991) and Blanchard et al. (1992), is now

4The starting date 1987 maximizes the product of the number of metropolitan areas with available data
multiplied by the length of the time period.

5For city m Bartik is the sum over all industries k of the share of workers in industry k within city m
multiplied by the employment growth in industry k over all cities other than m. Let σmk the share of workers
in city m employed in industry k and let ymk be employment growth in city m in industry k. Then, Bartik
is defined by

∑
−m

∑
k sigmamky−mk.
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widely used in urban economics. It is a proxy for local growth in labor demand under the

assumption that employment in each industry is driven by factors outside the metropolitan

area. All Bartik shocks are calculated over the appropriate time periods using three-digit

industry codes from IPUMS.

In Table 1 the indicator variable Coastal identifies a metropolitan area in coastal Califor-

nia or the Northeast Corridor from Washington, DC to Boston. These areas have consistently

experienced the most price growth among all metropolitan areas in the United States. Slope

is the median slope of all pixels in the metropolitan area. Gradient is the elasticity of the

housing price gradient with respect to radial distance from the city center. Immigrant is the

percentage of immigrants in the population. Degree is the percentage of the population with

post-secondary degrees. These demographic variables are calculated from the beginning of

each decade in the decadal regressions.

Table 2: Summary statistics for regression variables.

Statistic N Mean St. Dev. Min Max

Appreciation 871 0.486 0.305 0.001 2.654
Zeta 871 0.759 0.349 −1.206 1.987
Lambda 871 1.217 0.408 0.036 2.039
Bartik 871 24.767 24.868 −25.016 121.747
Coastal 871 0.096 0.295 0 1
Slope 869 3.955 4.290 0.688 30.076
Gradient 757 −0.025 0.197 −0.765 0.711
Immigrant 871 0.066 0.066 0.007 0.405
Degree 871 0.118 0.051 0.024 0.383

We estimate λ and ζ using three different sets of boundaries for the extent of the

metropolitan area. In our baseline specification, we calculate the radial distance from the

metro area centroid to each pixel in the extent of the built-up area. Then, we define a disc

from the 25th percentile to the 99th percentile of radial distance to the metro area centroid

as our inner and outer radii and estimate λ and ζ over that disc. However, because urban

extents are endogenously determined, it is possible that using actual extents might bias the

parameter estimates. Accordingly, we also estimate λ and ζ for a specification where the

1970 population of each metro area is used to predict these baseline boundaries. These are

the boundaries that would have been realized had 1970 population grown at the national

average rate and been dispersed as in a standard monocentric model. Finally, we consider

a fully exogenous specification where the inner and outer radii are fixed at 1 km and 50 km

for all metro areas irrespective of their actual spatial extent.
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Table 3 confirms, not surprisingly, that our estimators of λ and ζ that use data concerning

metropolitan area size (the baseline, first column) or historical population (second column)

perform better in fitting data than using exogenous boundaries. The measure of goodness

of fit (low AMISE) falls by almost 40% going from the third to the first column. We find

that the boundaries over which λ and particularly ζ are estimated can substantially modify

our estimates. The estimates of ζ are significantly, but highly imperfectly, correlated across

specifications.

Table 3

Baseline boundaries Predicted boundaries Constant boundaries

Correlation of λ with constant boundaries λ 0.642 0.779
Correlation of λ with predicted boundaries λ 0.791
Correlation of ζ with constant boundaries ζ 0.367 0.584
Correlation of ζ with predicted boundaries ζ 0.467
Mean AMISE 0.163 0.190 0.266
Median AMISE 0.166 0.201 0.275

Table 4 presents our main results from regressing 1980-2014 price growth on our esti-

mates of static constraint λ, dynamic constraint ζ, and Gradient φ. Consistent with model

predictions, dynamic land constraint ζ and the Gradient are positively associated with price

growth in all specifications. The coefficient on the static land availability measure λ is always

significantly negatively associated with price growth. This is consistent with past empirical

work and not inconsistent with the enriched model with endogenous building on slopes, but

inconsistent with the baseline model where development occurs only at the urban fringe.

Additional demand controls are introduced between specifications (1) and (2) of Table

4 and do not reduce the estimated relationship between the dynamic constraint ζ or the

price gradient φ and long-run price growth. In the case of both λ and ζ, modifying the

boundaries over which these land constraint measures are estimated has ambiguous effects

on their relationship with price growth. The baseline model, estimated between the 25th and

99th percentiles of built-up extent yields coefficients that are roughly double those estimatd

based on predicted boundaries with 1970 population, but half those estimated using the

same distance from downtown across all metropolitan areas.

4.3 Average and marginal land availability

The preceding regressions establish a relationship between price appreciation and land avail-

ability, as measured by the parameters λ and ζ. The interpretation of these results is

complicated by the correlation between the average share of land lost to oceans and moun-

tains and a host of demand-side factors Davidoff (2014). Land lost at the margin might

be less correlated with natural amenities and thereby other demand-side factors. This

possibility is explored below and two features of the analysis stand out.

27



Table 4: Regressions of FHFA price growth 1980-2014 on land availability parameters λ
and ζ and land price gradient φ and controls. Observations are inverse-AMISE-weighted
metropolitan areas.

(1) (2) (3) (4)

Bartik (baseline boundaries) 0.0026∗∗∗ 0.0011 0.0007 0.0014∗

(0.0005) (0.0007) (0.0007) (0.0007)

Lambda (baseline boundaries) −0.1432∗∗ −0.1545∗∗

(0.0661) (0.0653)

Zeta 0.1635∗∗ 0.1829∗∗

(0.0731) (0.0724)

Lambda (predicted boundaries) −0.0806∗∗

(0.0393)

Zeta (predicted boundaries) 0.0922∗∗∗

(0.0264)

Lambda (constant boundaries) −0.0941∗∗∗

(0.0282)

Zeta (constant boundaries) 0.3602∗∗∗

(0.0947)

Gradient 0.2168∗∗∗ 0.1414∗ 0.1230 0.2232∗∗∗

(0.0795) (0.0821) (0.0851) (0.0744)

Coastal 1.3091∗∗ 2.1061∗∗∗ 0.8605
(0.5650) (0.4512) (0.5853)

Immigrant 3.0569∗ 3.4002∗∗ 3.0745∗

(1.5528) (1.5797) (1.6447)

Degree 0.0119 0.0095 0.0166∗∗∗ 0.0140∗∗∗

(0.0082) (0.0082) (0.0063) (0.0054)

Slope 0.4057∗∗∗ 0.3872∗∗∗ 0.5192∗∗∗ 0.3622∗∗∗

(0.0937) (0.0926) (0.0822) (0.0923)

Constant −0.3317∗∗∗ −0.3036∗∗∗ −0.3033∗∗∗ −0.3467∗∗∗

(0.0809) (0.0815) (0.0766) (0.0762)

Observations 271 271 271 271
Adjusted R2 0.3451 0.3632 0.4350 0.3915

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

28



First, the estimated values of the two parameters, λ and ζ, and the monocentric gradient

are regressed on 1980 values of local attributes correlated with demand growth. Table 5

contains the resulting coefficients. The monocentric gradient and the parameter related to

average builable share λ have a significant relationship with the Coastal indicator and the

1980 share of the population with degrees. By contrast, the marginal-share parameter ζ has

no statistically significant relationship with these variables.

Table 5: Regression of estimated λ, ζ, and monocentric gradient on attributes of metropoli-
tan areas.

λ ζ Gradient

Immigrant −0.7625∗∗∗ −0.4181∗ −0.2331 −0.2237 0.1753 0.2795∗∗

(0.2136) (0.2158) (0.1903) (0.1967) (0.1131) (0.1160)

Degree −1.9946∗∗∗ −1.4032∗∗∗ 0.1580 0.1742 0.1473 0.3211∗

(0.3185) (0.3250) (0.2838) (0.2963) (0.1664) (0.1721)

Bartik −0.0032∗∗∗ −0.0018∗∗∗ 0.0009 0.0009 0.0002 0.0007∗

(0.0006) (0.0006) (0.0006) (0.0006) (0.0003) (0.0003)

Coastal −0.3187∗∗∗ −0.0087 −0.0920∗∗∗

(0.0500) (0.0456) (0.0257)

Constant 1.5817∗∗∗ 1.4850∗∗∗ 0.7346∗∗∗ 0.7320∗∗∗ −0.0615∗∗ −0.0902∗∗∗

(0.0464) (0.0479) (0.0414) (0.0436) (0.0249) (0.0259)

Observations 871 871 871 871 757 757
Adjusted R2 0.0829 0.1229 0.0009 −0.0002 0.0025 0.0179

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

Second, the estimated marginal increases of unbuildable land ζ have a substantially dif-

ferent ordering than the average unbuildable shares in Saiz (2010). Table 6 displays for

metropolitan areas with the highest and lowest unbuildable shares in Saiz (2010) their rank

in the distribution of estimated marginal increase in unbuildable land ζ.6 The average and

marginal ranks are substantially different. For example, Miami-Miami Beach-Kendall, FL

6Because metropolitan areas are defined differently in the two studies, the areas are matched by their
principal cities. If a metropolitan area with the same principal city is absent from either ranking, it is
excluded from the following tables.

29



has a high average share of unbuildable land and a low marginal rate of increase in unbuild-

able land. Its buildable land is tightly constrained on average and weakly constrained at

the margin. Table ?? displays the metropolitan areas with the highest and lowest estimated

ζ with their rank in the distribution of unbuildable land in Saiz (2010). Both lists contain

some cities with ample amenities and persistently high productivity growth (as documented

in Davidoff (2014)) as well as other cities without these characteristics. While there is an

obvious negative correlation between amenity value and λ, the relationship with amenities

is not clear in the case of ζ.
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Table 6: Rank of values of ζ for the ten metropolitan areas with the highest and lowest average share of unbuildable land in
Saiz (2010).

‘

Highest average unbuildable land Lowest average unbuildable land
Metropolitan area Rank Metropolitan area Rank

Miami-Miami Beach-Kendall, FL 374 Wichita, KS 294
Los Angeles-Long Beach-Glendale, CA 2 Fort Wayne, IN 118
Fort Lauderdale-Pompano Beach-Deerfield Beach, FL 210 Indianapolis-Carmel-Anderson, IN 223
San Francisco-Redwood City-South San Francisco, CA 382 Dayton, OH 275
San Diego-Carlsbad, CA 56 McAllen-Edinburg-Mission, TX 248
Oakland-Hayward-Berkeley, CA 88 Omaha-Council Bluffs, NE-IA 192
Salt Lake City, UT 7 Tulsa, OK 73
Oxnard-Thousand Oaks-Ventura, CA 384 Oklahoma City, OK 186
New York-Jersey City-White Plains, NY-NJ 31 Kansas City, MO-KS 61
San Jose-Sunnyvale-Santa Clara, CA 49 Greensboro-High Point, NC 127
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4.4 Slopes versus water

Steep slopes are not distinguished from water in the previous regressions of housing appre-

ciation on buildable land. In fact, steep slopes and water are concentrated in different

metropolitan areas: Figure 3. Many metro areas have extremely low shares of pixels with

either steep slopes or water, but not both. To quantify this, all metro areas are ranked by

their ratios of pixels with steep slopes relative to pixels with water. Cities in the bottom

quartile have at most 0.6% of their pixels covered by steep slopes, while cities in the top

quartile have no more than 6.7% of their pixels covered by water. The correlation between

pixels covered by steep slopes and water is 0.45 for the low-slope quartile and 0.21 for the

low-water quartile. For all metro areas the corresponding correlation is -0.11. All correla-

tions are calculated over the radial distances indicated in the previous subsection. All are

statistically significant at p < 0.05.

For each of the two quartiles, low-slope and low-water, the paired parameters, λ and ζ,

are estimated as before. Next, housing appreciation for metro areas in each is regressed on

the corresponding estimates and the previous covariates other than Slope. Median slope

is excluded from these two small subsamples that are the extreme quartiles of metro areas

ranked by relative slope. Specifics appear in the Appendix. The results are presented in

Table 7 for the low-water quartile and 8 for the low-slope quartile. With one exception, the

estimated coefficients of both variables, λ̂ and ζ̂, are statistically significant with the correct

signs.

When combined with Table 1, these results are consistent with endogenous development

both on slopes and near water — possibly more so near water. These results are also consis-

tent with a relationship bewteen the coefficient λ and drivers of demand in both quartiles.

5 Conclusion

In the initial version of our model the fraction of buildable land at each radial distance from

the center of a monocentric city is a power function of that distance. In its extension steeper

slopes can be developed at higher unit costs. In both versions vacant land is valued as a

real option to develop housing. Each equilibrium includes a negative relationship between

the appreciation rate of housing and the marginal supply of buildable land and a positive

relationship between price growth and the elasticity of land value with respect to distance

from downtown. That marginal supply is measured by the elasticity of the buildable share

of land with respect to radial distance. The corresponding relationship between appreciation

and the parameter affecting average supply is zero in the basic model and negative in its
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Table 7: Regression results for long-period price growth on λ and ζ for the low-water
subsample of metro areas.

Price growth (decade)

Bartik 0.0017 0.0011 0.0015
(0.0014) (0.0014) (0.0021)

Lambda −0.1314∗∗ −0.0978 0.1148
(0.0627) (0.0621) (0.1783)

Zeta 0.3756∗∗ 0.3042∗∗ 0.1262
(0.1417) (0.1401) (0.2128)

Coastal 0.6024∗∗ 0.6270∗∗

(0.2590) (0.3090)

Slope 0.0256
(0.0213)

Gradient 0.2435
(0.2824)

Immigrant −3.1557
(2.0853)

Degree 6.8524
(5.2392)

Constant −0.1981 −0.0710 −0.3382
(0.1891) (0.1904) (0.2227)

Observations 63 63 55
Adjusted R2 0.1338 0.1940 0.2501

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 8: Regression results for long-period price growth on λ and ζ for the low-slope
subsample of metro areas.

Price growth (decade)

Bartik 0.0005 0.0004 0.0003
(0.0008) (0.0008) (0.0010)

Lambda −0.1537∗ −0.1520∗ −0.2571∗∗∗

(0.0856) (0.0865) (0.0884)

Zeta 0.1537 0.1528 0.2376∗∗

(0.1272) (0.1281) (0.1151)

Coastal 0.0621 0.1973
(0.2720) (0.2568)

Slope −0.0838
(0.0522)

Gradient 0.1402
(0.1541)

Immigrant 0.6560
(0.7475)

Degree −3.3985
(4.0012)

Constant −0.0314 −0.0311 0.1712
(0.1358) (0.1366) (0.1511)

Observations 81 81 74
Adjusted R2 0.0116 −0.0007 0.1089

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Figure 3: Share of cities covered by water and slope pixels. Metro areas with extreme
values are noted.

extension. Estimators of these parameters are then derived to test the predicted relationships

on a panel of US metropolitan areas.

The empirical results are consistent with the theoretical predictions. Most importantly,

the relationship between housing appreciation and marginal supply is negative, significant,

and robust across a range of empirical specifications over different time periods. The esti-

mated parameter values for marginal supply appear to be largely uncorrelated with cross-

sectional differences in demand. The relationship between appreciation and average supply

is also negative. The latter result is inconsistent with the basic model, but consistent with its

extensions to endogenous development both on slopes and near water. The marginal supply

is also uncorrelated with several factors that influence demand growth: historical immigrant

share of population, historical education levels, and location on the Pacific or Northeastern

coasts.

We also demonstrate that the urban land rent gradient is associated both theoretically

and empirically with greater price appreciation. The rental and land availability gradients

play similar roles on the demand and supply side. There is more scope for price growth
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where the relative availability and desirability of land is greater close to the urban center.

Appendix

Proof of Proposition 1

On any interval in which the option to develop is not exercised, the first-order differential

equation in (4) has the general solution:

V(p, r) = apδ/g, (A.1)

with the undetermined constant a for all 0 ≤ p <∞. With g > 0, this solution satisfies the

lower-boundary condition (5) for all constants, a ≥ 0. The maximand in (4) requires that

the valuation function V be continuous at the optimal exercise price p∗:

V(p∗, r) = p∗ − b. (A.2)

With g < δ, the smooth-pasting condition (6) and (A.2) yield the unit value of rural

land (12) and the optimal exercise price (13) with its value (10) at the outer boundary. The

housing supply (9) follows from the unit price (2) and the equilibrium condition:

p∗ = P ∗[R∗(x)] = P [R∗(x), x] =

[
x

H∗(x)

]1/η

. (A.3)

Together, (1) and (9) generate the outer boundary (7), while (2) and (9) produce the unit

price (9). Differentiate with respect to time t the price (9) with the outer boundary (7).

This gives the growth rate (11).

Proof of Proposition 2

The general solution is again (A.1). The continuity condition is (A.2) with the cost, b = B(r),

replaced by the cost, c = C(r, s) in (14). This and the smooth-pasting condition (6) yield

the unit value of rural land (21) and the optimal exercise price (22) with its value (10) at the

outer boundary. At the outer boundary, r = R∗(x), the optimal exercise prices (22) and (13)

are equal: P ∗[R∗(x), s] = P ∗[R∗(x)], on all smaller slopes, 0 ≤ s ≤ λr−ζ. This follows from

the unit costs (14). At the outer boundary on the same smaller slopes, the pricing functions

(16) and (2) are also equal: P [R∗(x), s, x] = P [R∗(x), x]. As a result, the housing supply (8)

again follows from (A.3). With this housing supply, the upper boundary, S∗(r, x) in (18),
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follows from the optimal exercise price (22) with the unit cost (14) and the unit price (16)

with (10):

p∗
[
S∗(r, x)

λr−ζ

]γ
= P ∗[r, S∗(r, x)]

= P [r, S∗(r, x), x]

= p∗
[
R∗(x)

r

]φ [
λR∗(x)1−ζ

rS∗(r, x)

]χ [
S∗(r, x)

λr−ζ

]ψ
. (A.4)

Together, (10) and (15) with (18) generate the outer boundary (17). Finally, (18) and (A.4)

generate the unit price (19) with its attributes (10) and (20).

Derivation of estimators in (24) and (25)

Assume the empirical distribution of buildable land Dm is absolutely continuous. In this

case, differentiate (23) with respect to both parameters, ζ and λ, and rearrange terms. This

yields two equations:

1
π(r̄2−12)

∫ 2π

0

∫ r̄
1
Dm(r) log(r)r−ζ̂r dr dθ

1
π(r̄2−12)

∫ 2π

0

∫ r̄
1
Dm(r)r−ζ̂r dr dθ

=
1

2
(

1− ζ̂
) r̄2(1−ζ̂)

[
2
(

1− ζ̂
)

log(r̄)− 1
]

+ 1

r̄2(1−r̄) − 1

(A.5)

and

λ̂ =

1
π(r̄2−12)

∫ 2π

0

∫ r̄
1
Dm(r)r−ζ̂r dr dθ

1
π(r̄2−12)

∫ 2π

0

∫ r̄
1
r−2ζ̂r dr dθ

. (A.6)

These two equations have the discrete analogues (24) and (25), respectively

Estimation procedure

The built-up extent of metropolitan areas may not match closely the boundaries of their

constituent counties: Rozenfeld and Rybski (2011) and others. For this reason, urban

extents are identified from the Global Rural-Urban Mapping Project (GRUMP) data set

GRUMP11 as described in Balk. Specifically, the center of the metro area is specified

as the centroid of its principal city, as defined by the US Census Gazetteer. From this

initial location, pixels are iteratively assigned to the urban extents of the metropolitan area.

Any pixel is assigned to the urban extent of the metropolitan area if three conditions are

satisfied. (1) GRUMP classifies the pixel as urban. (2) The pixel is within the boundaries

of the metropolitan area according to shapefiles provided by the US Census. (3) The pixel
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shares at least one face with a pixel already assigned to the urban extent of the metropolitan

area. This procedure allows for the designation of an urban extent for every metropolitan

area with the exception of The Villages, FL; this metropolitan area is almost entirely newer

than the GRUMP data set and accordingly no urban extents can sensibly be defined.

For each metropolitan area, ten thousand coordinate pairs are randomly generated over

a disk with a radius of the ninety-fifth percentile of the distance from pixels in the urban

extent. Then, λ and ζ are estimated as described in the text by considering the pixels in an

annulus between an inner radius (normalized to unity) of the twenty-fifth percentile of the

distance from the generated coordinate pairs to the centre of the principal city and an outer

radius of the ninety-ninth percentile of the distance from the generated coordinate pairs

to the centre of the principal city. This annulus comprises the salient radii for potential

construction of new housing on the periphery of the built-up area.

In Tables 11 and 12, the regressions are run on two small subsamples: the extreme

quartiles of all metro areas ranked by pixels with steep slopes relative to pixels with water.

In these regressions the independent variable, Slope, is excluded. Not surprisingly, the

median slope has little measurable effect in the low-slope quartile. With and without Slope,

the estimated coefficients of the principal variables, λ̂ and ζ̂ are statistically significant and

stable. In the low-water quartile, the median slope appears to be colinear with the two

principal variables. The estimated coefficients of λ̂ and ζ̂ are insignificant with Slope and

unstable–the wrong sign for λ̂ and much closer to zero for ζ̂ . The variance inflation factor

(VIF) is 3.27 for the low-water quartile, 1.99 for the whole sample, and 1.08 for the low-slope

quartile.

Estimated parameter values

Table 9 shows the estimated values for the parameter ζ for each metropolitan statistical area

and metropolitan division.

Long-period regression results

Table 10 and Table 11 contain regression coefficient results analogous to Table ?? and Table

?? for price appreciation over the entire 1980–2010 period.
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Table 9: Estimated values of the parameter ζ.

Metro area ζ̂ Metro area ζ̂ Metro area ζ̂

Carson City, NV 1.987 Florence-Muscle Shoals, AL 0.967 St. Cloud, MN 0.741 Binghamton, NY 0.527

Los Angeles-Long Beach-Glendale, CA 1.728 York-Hanover, PA 0.963 Atlantic City-Hammonton, NJ 0.74 Rockingham County-Strafford County, NH 0.524

Medford, OR 1.698 Jackson, MI 0.961 Dutchess County-Putnam County, NY 0.738 Philadelphia, PA 0.523

Bremerton-Silverdale, WA 1.669 Evansville, IN-KY 0.958 Rochester, MN 0.737 Fayetteville-Springdale-Rogers, AR-MO 0.521

Mankato-North Mankato, MN 1.563 Bloomington, IL 0.949 Parkersburg-Vienna, WV 0.736 Duluth, MN-WI 0.521

Denver-Aurora-Lakewood, CO 1.498 Ann Arbor, MI 0.949 Wausau, WI 0.732 Grand Rapids-Wyoming, MI 0.519

Salt Lake City, UT 1.477 Barnstable Town, MA 0.947 Crestview-Fort Walton Beach-Destin, FL 0.732 Hanford-Corcoran, CA 0.518

Santa Maria-Santa Barbara, CA 1.46 Lexington-Fayette, KY 0.945 Charlotte-Concord-Gastonia, NC-SC 0.732 Birmingham-Hoover, AL 0.518

Jacksonville, FL 1.443 Morristown, TN 0.943 Fort Worth-Arlington, TX 0.727 Goldsboro, NC 0.517

Beckley, WV 1.412 Coeur d’Alene, ID 0.942 Pensacola-Ferry Pass-Brent, FL 0.727 Grand Forks, ND-MN 0.516

Fargo, ND-MN 1.408 Sioux Falls, SD 0.942 Hammond, LA 0.725 Iowa City, IA 0.509

Lake Havasu City-Kingman, AZ 1.384 Buffalo-Cheektowaga-Niagara Falls, NY 0.937 Fort Lauderdale-Pompano Beach-Deerfield Beach, FL 0.724 Boise City, ID 0.508

Roanoke, VA 1.38 Hinesville, GA 0.936 Albany, OR 0.724 Salem, OR 0.507

Missoula, MT 1.336 Pueblo, CO 0.935 Midland, MI 0.722 Bridgeport-Stamford-Norwalk, CT 0.506

Columbia, MO 1.335 Bakersfield, CA 0.93 Amarillo, TX 0.722 Akron, OH 0.503

Eugene, OR 1.321 Columbia, SC 0.93 Saginaw, MI 0.72 Burlington, NC 0.502

Morgantown, WV 1.306 Lawton, OK 0.93 Dover, DE 0.72 Naples-Immokalee-Marco Island, FL 0.501

Grand Island, NE 1.303 Kingsport-Bristol-Bristol, TN-VA 0.929 Florence, SC 0.719 Fond du Lac, WI 0.499

Grants Pass, OR 1.297 Fort Wayne, IN 0.925 Scranton–Wilkes-Barre–Hazleton, PA 0.718 Sheboygan, WI 0.496

Ogden-Clearfield, UT 1.289 Lima, OH 0.923 Sierra Vista-Douglas, AZ 0.718 Brownsville-Harlingen, TX 0.493

Salinas, CA 1.286 Wilmington, DE-MD-NJ 0.922 Augusta-Richmond County, GA-SC 0.717 Battle Creek, MI 0.491

Knoxville, TN 1.286 Hattiesburg, MS 0.917 Pocatello, ID 0.714 Auburn-Opelika, AL 0.49

Cambridge-Newton-Framingham, MA 1.285 Boston, MA 0.914 College Station-Bryan, TX 0.714 Weirton-Steubenville, WV-OH 0.488

Richmond, VA 1.284 Columbus, OH 0.909 Tampa-St. Petersburg-Clearwater, FL 0.714 Rockford, IL 0.488

Logan, UT-ID 1.284 Champaign-Urbana, IL 0.895 Indianapolis-Carmel-Anderson, IN 0.711 North Port-Sarasota-Bradenton, FL 0.485

Seattle-Bellevue-Everett, WA 1.274 Warner Robins, GA 0.895 Utica-Rome, NY 0.71 Watertown-Fort Drum, NY 0.48

Portland-Vancouver-Hillsboro, OR-WA 1.269 Reading, PA 0.893 El Centro, CA 0.708 Youngstown-Warren-Boardman, OH-PA 0.479

Cleveland, TN 1.258 Greensboro-High Point, NC 0.892 Odessa, TX 0.708 Corvallis, OR 0.476

Minneapolis-St. Paul-Bloomington, MN-WI 1.257 Cape Girardeau, MO-IL 0.889 Trenton, NJ 0.706 Virginia Beach-Norfolk-Newport News, VA-NC 0.473

Santa Rosa, CA 1.254 Monroe, LA 0.88 Farmington, NM 0.703 Decatur, AL 0.472

New York-Jersey City-White Plains, NY-NJ 1.253 Dothan, AL 0.878 Dubuque, IA 0.693 Palm Bay-Melbourne-Titusville, FL 0.469

Lincoln, NE 1.253 Anniston-Oxford-Jacksonville, AL 0.874 Tallahassee, FL 0.686 Manhattan, KS 0.467

Olympia-Tumwater, WA 1.25 San Antonio-New Braunfels, TX 0.873 Austin-Round Rock, TX 0.685 Harrisburg-Carlisle, PA 0.467

Walla Walla, WA 1.24 Laredo, TX 0.871 Port St. Lucie, FL 0.684 Lakeland-Winter Haven, FL 0.462

Jefferson City, MO 1.23 Bloomington, IN 0.871 Sumter, SC 0.682 Michigan City-La Porte, IN 0.453

Bismarck, ND 1.227 Yuma, AZ 0.871 Terre Haute, IN 0.678 Madera, CA 0.444

Riverside-San Bernardino-Ontario, CA 1.225 Kokomo, IN 0.87 Hickory-Lenoir-Morganton, NC 0.677 Brunswick, GA 0.44

Salisbury, MD-DE 1.212 Baltimore-Columbia-Towson, MD 0.866 El Paso, TX 0.677 Manchester-Nashua, NH 0.436

Rocky Mount, NC 1.207 Chambersburg-Waynesboro, PA 0.862 Norwich-New London, CT 0.672 Camden, NJ 0.435

Chico, CA 1.193 St. Louis, MO-IL 0.859 Savannah, GA 0.67 Springfield, OH 0.432

Decatur, IL 1.186 California-Lexington Park, MD 0.858 Kennewick-Richland, WA 0.67 St. Joseph, MO-KS 0.43

Springfield, MO 1.185 Harrisonburg, VA 0.857 Raleigh, NC 0.668 Janesville-Beloit, WI 0.427

Anaheim-Santa Ana-Irvine, CA 1.17 Lewiston-Auburn, ME 0.857 Billings, MT 0.661 Elgin, IL 0.422

Asheville, NC 1.167 Hilton Head Island-Bluffton-Beaufort, SC 0.856 Lancaster, PA 0.66 Provo-Orem, UT 0.421

Cheyenne, WY 1.162 Davenport-Moline-Rock Island, IA-IL 0.851 Springfield, MA 0.65 Portland-South Portland, ME 0.421

Redding, CA 1.161 Fresno, CA 0.85 Lake Charles, LA 0.648 Merced, CA 0.412

Johnson City, TN 1.147 Spokane-Spokane Valley, WA 0.848 Erie, PA 0.644 Bay City, MI 0.408

Muskegon, MI 1.147 Albany, GA 0.848 Joplin, MO 0.631 Corpus Christi, TX 0.402

San Jose-Sunnyvale-Santa Clara, CA 1.144 Alexandria, LA 0.846 Yuba City, CA 0.629 Appleton, WI 0.4

Jackson, TN 1.13 Lewiston, ID-WA 0.843 McAllen-Edinburg-Mission, TX 0.628 Charlottesville, VA 0.399
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South Bend-Mishawaka, IN-MI 1.127 Cedar Rapids, IA 0.841 Canton-Massillon, OH 0.627 Lebanon, PA 0.396

Reno, NV 1.123 Clarksville, TN-KY 0.833 Boulder, CO 0.626 Worcester, MA-CT 0.394

Staunton-Waynesboro, VA 1.119 Pittsburgh, PA 0.831 Sebastian-Vero Beach, FL 0.624 Santa Cruz-Watsonville, CA 0.391

Athens-Clarke County, GA 1.117 Orlando-Kissimmee-Sanford, FL 0.828 Winchester, VA-WV 0.623 Chicago-Naperville-Arlington Heights, IL 0.388

Gadsden, AL 1.114 Homosassa Springs, FL 0.828 Owensboro, KY 0.616 Monroe, MI 0.383

San Diego-Carlsbad, CA 1.113 Flint, MI 0.825 Houma-Thibodaux, LA 0.614 Mobile, AL 0.381

Topeka, KS 1.11 Colorado Springs, CO 0.825 New Haven-Milford, CT 0.613 Shreveport-Bossier City, LA 0.378

Lubbock, TX 1.101 Ocala, FL 0.823 Dalton, GA 0.61 Silver Spring-Frederick-Rockville, MD 0.376

Rome, GA 1.091 Washington-Arlington-Alexandria, DC-VA-MD-WV 0.819 Hagerstown-Martinsburg, MD-WV 0.606 Napa, CA 0.373

Des Moines-West Des Moines, IA 1.09 Wichita Falls, TX 0.819 Williamsport, PA 0.606 Nashville-Davidson–Murfreesboro–Franklin, TN 0.37

Kansas City, MO-KS 1.078 Sioux City, IA-NE-SD 0.817 Danville, IL 0.606 Spartanburg, SC 0.368

St. George, UT 1.077 Gary, IN 0.816 Bowling Green, KY 0.606 Gulfport-Biloxi-Pascagoula, MS 0.365

Valdosta, GA 1.069 Louisville/Jefferson County, KY-IN 0.815 Lafayette-West Lafayette, IN 0.605 Kingston, NY 0.359

Greeley, CO 1.068 Rochester, NY 0.813 Waco, TX 0.603 Altoona, PA 0.339

Casper, WY 1.065 Waterloo-Cedar Falls, IA 0.813 Ithaca, NY 0.603 Vallejo-Fairfield, CA 0.336

Chattanooga, TN-GA 1.064 Ames, IA 0.808 Yakima, WA 0.6 West Palm Beach-Boca Raton-Delray Beach, FL 0.329

Cleveland-Elyria, OH 1.059 Mansfield, OH 0.807 Greenville-Anderson-Mauldin, SC 0.598 New Bern, NC 0.326

Grand Junction, CO 1.057 Atlanta-Sandy Springs-Roswell, GA 0.806 Elkhart-Goshen, IN 0.598 Springfield, IL 0.324

Macon, GA 1.052 Montgomery County-Bucks County-Chester County, PA 0.806 Bellingham, WA 0.597 Kankakee, IL 0.311

Madison, WI 1.051 Panama City, FL 0.803 Muncie, IN 0.596 Syracuse, NY 0.3

Milwaukee-Waukesha-West Allis, WI 1.05 Memphis, TN-MS-AR 0.803 Prescott, AZ 0.593 Carbondale-Marion, IL 0.291

Jonesboro, AR 1.047 Lake County-Kenosha County, IL-WI 0.801 Tuscaloosa, AL 0.592 Wilmington, NC 0.263

Tulsa, OK 1.046 Lawrence, KS 0.796 Midland, TX 0.59 Las Cruces, NM 0.245

Las Vegas-Henderson-Paradise, NV 1.046 Punta Gorda, FL 0.796 Longview, WA 0.589 Killeen-Temple, TX 0.245

Tucson, AZ 1.045 Glens Falls, NY 0.796 Idaho Falls, ID 0.588 Hot Springs, AR 0.224

Phoenix-Mesa-Scottsdale, AZ 1.042 Detroit-Dearborn-Livonia, MI 0.794 Visalia-Porterville, CA 0.586 Ocean City, NJ 0.222

Rapid City, SD 1.037 Green Bay, WI 0.794 Dayton, OH 0.582 Miami-Miami Beach-Kendall, FL 0.206

Vineland-Bridgeton, NJ 1.034 Columbus, IN 0.789 Cape Coral-Fort Myers, FL 0.58 Blacksburg-Christiansburg-Radford, VA 0.205

San Angelo, TX 1.031 Montgomery, AL 0.788 Beaumont-Port Arthur, TX 0.575 Bloomsburg-Berwick, PA 0.192

Durham-Chapel Hill, NC 1.029 Winston-Salem, NC 0.788 Toledo, OH 0.573 New Orleans-Metairie, LA 0.177

Fayetteville, NC 1.025 State College, PA 0.788 Bend-Redmond, OR 0.571 Nassau County-Suffolk County, NY 0.172

Bangor, ME 1.019 Gettysburg, PA 0.784 Eau Claire, WI 0.57 Gainesville, GA 0.165

La Crosse-Onalaska, WI-MN 1.019 Stockton-Lodi, CA 0.783 Deltona-Daytona Beach-Ormond Beach, FL 0.569 Huntington-Ashland, WV-KY-OH 0.154

Lansing-East Lansing, MI 1.016 Jacksonville, NC 0.781 Pine Bluff, AR 0.567 Wenatchee, WA 0.134

Great Falls, MT 1.014 Fort Collins, CO 0.78 Texarkana, TX-AR 0.562 San Francisco-Redwood City-South San Francisco, CA 0.132

Columbus, GA-AL 1.012 Tyler, TX 0.778 Little Rock-North Little Rock-Conway, AR 0.562 Johnstown, PA 0.126

Fort Smith, AR-OK 1.01 Oklahoma City, OK 0.771 Longview, TX 0.554 Oxnard-Thousand Oaks-Ventura, CA 0.125

Oakland-Hayward-Berkeley, CA 1.002 Jackson, MS 0.768 Sebring, FL 0.552 Oshkosh-Neenah, WI 0.124

Huntsville, AL 1.001 Charleston-North Charleston, SC 0.767 Niles-Benton Harbor, MI 0.552 San Luis Obispo-Paso Robles-Arroyo Grande, CA 0.119

Newark, NJ-PA 0.992 Warren-Troy-Farmington Hills, MI 0.767 Elizabethtown-Fort Knox, KY 0.551 Providence-Warwick, RI-MA 0.111

Peoria, IL 0.987 Kalamazoo-Portage, MI 0.765 Pittsfield, MA 0.551 East Stroudsburg, PA 0.082

Tacoma-Lakewood, WA 0.984 Daphne-Fairhope-Foley, AL 0.765 Victoria, TX 0.551 Wheeling, WV-OH 0.06

Houston-The Woodlands-Sugar Land, TX 0.983 Omaha-Council Bluffs, NE-IA 0.762 Sherman-Denison, TX 0.549 Elmira, NY -0.04

Sacramento–Roseville–Arden-Arcade, CA 0.977 Racine, WI 0.755 Santa Fe, NM 0.541 San Rafael, CA -0.054

Hartford-West Hartford-East Hartford, CT 0.97 Albany-Schenectady-Troy, NY 0.755 Burlington-South Burlington, VT 0.54 Cumberland, MD-WV -0.169

Lynchburg, VA 0.97 Allentown-Bethlehem-Easton, PA-NJ 0.753 Wichita, KS 0.535 Charleston, WV -0.393

Mount Vernon-Anacortes, WA 0.97 Albuquerque, NM 0.751 Modesto, CA 0.532 Gainesville, FL -0.735

Cincinnati, OH-KY-IN 0.968 Greenville, NC 0.745 Baton Rouge, LA 0.531 Myrtle Beach-Conway-North Myrtle Beach, SC-NC -1.206

Dallas-Plano-Irving, TX 0.967 Flagstaff, AZ 0.741 Lafayette, LA 0.53
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Table 10: Regression results for long-period price growth on average and marginal land
availability parameters λ and ζ.

Price growth (decade)

Bartik 0.0030∗∗∗ 0.0026∗∗∗ 0.0029∗∗∗ 0.0026∗∗∗

(0.0005) (0.0005) (0.0005) (0.0005)

Lambda −0.2502∗∗∗ −0.2275∗∗∗ −0.1598∗∗ −0.1532∗∗

(0.0388) (0.0398) (0.0657) (0.0655)

Zeta 0.2721∗∗∗ 0.2528∗∗∗ 0.1909∗∗∗ 0.1852∗∗

(0.0638) (0.0640) (0.0721) (0.0719)

Coastal 0.1812∗∗ 0.1499∗

(0.0811) (0.0819)

Slope 0.0153∗∗ 0.0133∗

(0.0077) (0.0078)

Constant −0.3799∗∗∗ −0.3330∗∗∗ −0.3873∗∗∗ −0.3471∗∗∗

(0.0776) (0.0799) (0.0783) (0.0810)

Observations 303 303 302 302
Adjusted R2 0.2458 0.2557 0.2601 0.2659

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 11: Regression results for long-period price growth on average and marginal land
availability parameters λ and zeta as well as monocentric price gradient and additional
demand controls.

Price growth (decade)

Bartik 0.0031∗∗∗ 0.0026∗∗∗ 0.0011 0.0011
(0.0005) (0.0005) (0.0007) (0.0007)

Lambda −0.1488∗∗ −0.1432∗∗ −0.1598∗∗ −0.1545∗∗

(0.0669) (0.0661) (0.0655) (0.0653)

Zeta 0.1704∗∗ 0.1635∗∗ 0.1901∗∗∗ 0.1829∗∗

(0.0739) (0.0731) (0.0726) (0.0724)

Coastal 0.2168∗∗∗ 0.1414∗

(0.0795) (0.0821)

Slope 0.0159∗ 0.0119 0.0114 0.0095
(0.0082) (0.0082) (0.0081) (0.0082)

Gradient 0.3674∗∗∗ 0.4057∗∗∗ 0.3613∗∗∗ 0.3872∗∗∗

(0.0937) (0.0937) (0.0917) (0.0926)

Immigrant 1.5164∗∗∗ 1.3091∗∗

(0.5541) (0.5650)

Degree 3.5984∗∗ 3.0569∗

(1.5263) (1.5528)

Constant −0.3970∗∗∗ −0.3317∗∗∗ −0.3381∗∗∗ −0.3036∗∗∗

(0.0783) (0.0809) (0.0793) (0.0815)

Observations 271 271 271 271
Adjusted R2 0.3292 0.3451 0.3584 0.3632

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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