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Abstract

In this paper we exploit a natural experiment arising from the 2012 Canadian law change
that restricts access to mortgage insurance to homes under one million dollars ($1M), which
effectively increases the minimum downpayment from 5% to 20% for homes of million dollars
or more. Our empirical analysis is motivated by a directed search model that features auction
mechanisms and financially constrained bidders. We model the regulation as a tightening of
the financial constraint faced by a subset of prospective buyers. This prompts some sellers
near the $1M segments to strategically adjust their asking price to $1M, which attracts both
constrained and unconstrained buyers. Competition between bidders dampens the impact of
the policy on sales prices. Using transaction data from the Toronto housing market, we find
that the policy causes a sharp bunching of homes listed at the $1M and a corresponding in-
crease in the bidding intensity, which together result in muted response in the sales price.
Despite failing to cool the boom in the million dollar segment, the policy improves borrowers
creditworthiness by reallocating million dollar homes to those who are less constrained by the
20% downpayment. Everything considered, our analysis points to the importance of designing
macroprudential policies that recognize the strategic responses of buyers and sellers in terms
of listing, searching and bidding.
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1 Introduction

This paper examines how the financial constraints faced by prospective home buyers affect

buyers’ and sellers’ behavior and thereby housing market outcomes. Financial constraints are

a fundamental feature of the housing market (Stein, 1995; Genesove and Mayer, 1997; Ortalo-

Magne and Rady, 2006). For example, loan-to-value ratio and debt-to-income ratio reflect

two typical underwriting constraints that limit how much a buyer can bid on a property,

which in turn affects a seller’s decision to list a house and choice of asking price if listing. The

central role of financial constraints makes them by far the most widespread policy vehicle in

housing markets. For example, Kuttner and Shim (2016) document 94 actions on the loan-

to-value ratio and 45 actions on the debt-service-to-income ratio in 60 countries between

1990–2012.1 Recently in the aftermath of the global financial crisis, tightening borrowers’

financial constraints has become a primary macroprudential tool that central banks used to

create a buffer to “ensure that shocks from the housing sector do not spill over and threaten

economic and financial stability” (IMF Speech, 2014).2 In light of this, a large and important

literature has emerged to examine how financial constraints affect house price growth through

homeowner default and mobility (Mian and Sufi, 2009; Demyanyk and Van Hemert, 2011).

However, despite the importance of understanding the link between financial constraints and

behaviour of home buyers and sellers facing optimization frictions such as search costs, there

is virtually no existing micro analysis from such settings. This paper aims to fill this gap

by exploiting a natural experiment that arose from a change in mortgage insurance policy

implemented in Canada in 2012 and by developing a search theoretical model to facilitate

the interpretation of empirical results.

Canada experienced one of the world’s largest modern house price booms, with the real

price doubling between 2000 and 2016. In an effort to cool this unprecedentedly long boom,

the government tightened mortgage insurance rules eight times since 2008 – many of which

1Also see Elliott et al. (2013) for a comprehensive survey of the history of cyclical macroprudential policies
in the U.S.

2Source: “Managing House Price Boom: The Role of Macroprudential Policies.” December 2014, https:
//www.imf.org/external/np/speeches/2014/121114.htm.
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through stricter requirements on borrowers’ down payment or income. Our focus is on the

so-called “million dollar” policy that restricts access to mortgage insurance (the transfer of

mortgage default risk from lenders to insurers) when the purchase price of a home exceeds

1 million Canadian dollars.3 Note that lenders are required to insure mortgages with over

80% loan-to-value ratio. As such, the minimum downpayment jumps from 5% to 20% of

the entire transaction price at a threshold of $1M, creating an increase in the minimum

downpayment of $150,000 for million dollar homes. Such a notch in home buyers’ budget

constraint creates strong incentives for bunching at the threshold, allowing for nonparametric

identification of house price responses using bunching techniques. The existence or lack of

bunching around the threshold should provide compelling and transparent evidence about

how households respond to constraints with considerable kinks. In this sense, although the

focus in this paper is on the down payment discontinuity at a specific threshold of house

price, our analysis has a broad applicability to examining the behavorial responses to financial

policies in a market with frictions.

Bunching responses to financial constraints are not just behavioral but also rational.

Understanding the mechanisms that generates bunching requires an equilibrium analysis of

a two-sided market. To this end, we preface the empirical work with a search-theoretic

model that features financial constraints on the buyer side and free-entry on the seller side.

Sellers pay a cost to list their house and post an asking price, and buyers allocate themselves

across sellers subject to search/coordination frictions governed by a many-to-one meeting

technology. Prices are determined by an auction mechanism: a house is sold at the asking

price when a single buyer arrives; when multiple buyers meet the same seller, the house is sold

to the highest bidder. In that sense, our model draws from the competing auctions literature

(e.g., McAfee 1993, Peters and Severinov 1997, Julien et al. 2000, Albrecht et al. 2014, Lester

et al. 2015). The distinguishing feature of the model is the financial constraints faced by

buyers which limit how much they can bid on a house.4 We assume that buyers initially

3In July 2012, when the policy was implemented one Canadian dollar was approximately equal to one
US dollar.

4Others have studied auction mechanisms with financially constrained bidders (e.g., Che and Gale,
1996a,b, 1998; Kotowski, 2016), but to our knowledge this is the first paper to consider bidding limits
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face a common income constraint that is not too restrictive, but that the introduction of

the million dollar policy imposes a minimum wealth requirement that further constrains a

subset of buyers.

We characterize the pre- and post-policy equilibria and derive a set of empirical predic-

tions. Under appropriate parameter restrictions, the post-policy equilibrium features some

sellers with asking prices exactly at the bidding limit imposed by the policy (i.e., the $1M

threshold). In some circumstances, this represents a reduction in the set of equilibrium ask-

ing prices. Sellers lower their asking price to the threshold in order to attract offers from

buyers genuinely constrained by the policy. At the same time, they continue to attract un-

constrained buyers which sometimes pushes the sales price above the asking price. In other

circumstances, this represents an increase in the set of equilibrium asking prices relative to

the pre-policy equilibrium. This may seem surprising at first glance, but is consistent with

the intuition that sellers make up for the reduction in expected sales revenue in multiple

offer situations by increasing the asking price to extract a higher payment from the buyer in

a bilateral situation. In both cases, the policy generates an excess mass (i.e., bunching) of

homes listed at the $1M. However, the bunching response in the asking price is dampened by

intensified bidding among constrained and unconstrained buyers pooled at the $1M, making

the net impact of the policy on the sales price an ultimately empirical question.

We then test the model’s predictions using the 2010-2013 housing market transaction

data for single-family homes in the Greater Toronto Area, Canada’s largest housing market.

This market provides a particularly suitable setting for this study for two reasons. First,

home sellers in Toronto typically initiate the search process by listing the property and

specifying a particular date on which offers will be considered (often 5-7 days after listing).

This institutional practice matches well with our model of competing auctions. Second, the

million dollar policy was implemented in the midst of a housing boom in Toronto and caused

two discrete changes in the market: one at the time the policy was implemented, and another

at the $1M threshold. This provides a natural experimental opportunity for examining the

in a model of competing auctions.
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price response to financial constraints.

Despite the appealing setting, estimating the policy’s impact is complicated by two fac-

tors. First, the implementation of the policy coincided with a number of accompanying

government interventions as well as a booming market.5 These confounding factors make it

difficult to isolate the effects of the policy. Second, housing composition may shift around the

time when the policy was implemented. If the quality of houses in the million dollar segment

depreciates over time, then a finding of lower asking price in the post-policy period cannot

be attributed to sellers’ response to the policy but rather the change of house characteristics.

Our solution relies on a two-stage estimation procedure. First, using the well-known

reweighting approach introduced by DiNardo et al. (1996) and leveraging the richness of

our data on house characteristics, we decompose the observed before-after-policy change in

the distribution of house prices (both asking and sales) into: (1) a component that is due

to changes in house characteristics; and (2) a component that is due to changes in sellers’

listing strategy. The latter yields a quality-adjusted distribution of house prices that would

have prevailed in the post-policy period if the characteristics of houses stayed the same as in

the pre-period. Next, using this quality-adjusted distribution, we measure the effects of the

policy on listings and sales by comparing the observed post-policy distributions of asking

price and sales price to their counterfactual distributions assuming there were no change

policy. To this end, we adopt the recently developed bunching estimation approach (e.g.,

Chetty et al. 2011a, Kleven and Waseem 2013, DeFusco et al. 2017).

Our main findings are the following. First, the distribution of asking price features a large

and sharp bunching right at the million dollar accompanied with holes both above and below

the million dollar. In particular, the policy adds 93 homes to listings at the million dollar

5As noted in Wachter et al. (2014), the macroprudential policies are “typically used in combination
with macroeconomic policy and direct interventions, complicating the challenge to attribute outcomes to
specific tools.” The law that implemented the million dollar policy also reduced the maximum amortization
period from 30 years to 25 years for insured mortgages; limited the amount that households can borrow
when refinancing to 80 percent (previously 85 percent); and limited the maximum gross debt service ratio
to 39 percent (down from 44 percent), where the gross debt service ratio is the sum of annual mortgage
payments and property taxes over gross family income. Source: “Harper Government Takes Further Action
to Strengthen Canada’s Housing Market.” Department of Finance Canada, June 21, 2012.
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bin, which represent about a 42% increase relative to homes that would have been listed in

this bin in the absence of the policy. Among these, about 60% would have otherwise been

listed below $1M; the remaining would have otherwise been listed above $995, 000. Both are

consistent with sellers’ strategic responses predicted by the theory.

On the contrary, the policy adds only about 12 homes to sales at the the million dollar

bin, which is economically small and statistically insignificant. The lack of bunching in

the sales price suggests that buyers’ heightened competition pushes the sales price above

asking price and mitigates the intended cooling impact from the policy. Consistent with

this interpretation, we also find sharp, non-parametric evidence that housing segments right

below the $1M experience a shorter time on the market and a larger fraction of above asking

sales.

Together, these results imply two useful policy implications. First, the mortgage insur-

ance restriction did not achieve the specific goal of cooling the housing boom in the million

dollar segment. This is not because market participants did not respond to the policy. In-

deed, it is precisely the strategic responses by home sellers (in listing) and home buyers (in

bidding) that interact to undermine the intended impact of the policy on the sales price.

Everything considered, our analysis points to the importance of designing macroprudential

policies that recognize the endogenous responses of buyers and sellers in terms of listing

strategies, search decisions and bidding behaviour.

Second, despite failing to cool the boom in the targeted segment, the policy achieves the

goal of improving borrowers creditworthiness. In particular, our results show that buyers

who are not constrained by the 20% downpayment outbid those who are constrained in the

post-policy equilibrium. Such reallocation of million dollar homes helps support a healthy

housing market in a broad sense.

The paper proceeds as follows. The next section discusses related literature. In Section

3 we provide an overview of the Canadian housing market and the institutional details of

the mortgage insurance market. In section 4 we develop a theoretical model, characterize

the directed search equilibrium, and derive a set of empirical implications. In sections 5 and
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6 we discuss the data, outline our empirical strategy, and present our results on the impact

of the MI policy. Section 7 concludes.

2 Literature Review

Financial constraints (sometimes called “credit” or “borrowing” or “collateral” or “financing”

or “liquidity” constraints) are a recurring theme of the literature on the housing markets.

While much of the literature has focused on the impact of financial constraints on individual

households’ consumption-savings decision (Hayashi, 1985; Hurst and Lusardi, 2004; Lehn-

ert, 2004) and rent versus buy choice (Linneman and Wachter, 1989; Gyourko et al., 1999),

less work examines the macro consequences of financial constraints on house price, trading

volume, and price volatility. Our paper is closely linked to the latter. On the theory front, a

typical form of financial constraints that has been modelled is down-payment requirements.

Focusing on repeated homebuyers, Stein (1995) demonstrates that tight down-payment con-

straints can result in lower house prices and fewer transactions. Extending Stein’s idea into a

dynamic setting, Ortalo-Magne and Rady (2006) show that down-payment constraints delay

some households’ first home purchase and force others to buy a house smaller than they would

like, resulting in a lower house price. Both Stein (1995) and Ortalo-Magne and Rady (2006)

take a partial equilibrium approach as they assume fixed housing supply. Favilukis et al.

(2017) incorporate a housing production response in the modelling the impact of financial

constraints. In dong so, they show that in a general equilibrium setting the only way that a

relaxation of financial constraints could lead to a housing boom is through a reduction in the

housing risk premium. Our paper adds to this literature by taking an alternative approach

to the general equilibrium analysis. In particular, we provide a search theoretical analysis

to model buyers and sellers’ search and listing decisions in a two-sided housing market. In

this regard, our work is also close to a line of literature on search and matching in housing

(e.g., Wheaton 1990, Krainer 2001, Williams 1995, Genesove and Han 2012). Unlike our

paper, none of these search papers incorporates credit market imperfections. In this sense,

the theoretical analysis in our paper is the first search theoretical analysis that models the
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role of financial constraints in housing markets.6

Turning to the empirical literature, financial constraints are defined much more broadly.

They take the form of downpayment constraints (Lamont and Stein, 1999; Genesove and

Mayer, 2001), debt-to-income ratio (Demyanyk and Van Hemert, 2011), borrowing against

existing housing equity (Mian and Sufi, 2011), mortgage contract terms (Berkovec et al.,

2012), and innovations in easing the access to mortgages (Vigdor, 2006). In understanding

the recent financial crisis, much focus has been placed on examining the role of financial

constraints in explaining housing booms and busts through borrower creditworthiness.7 Our

paper differs from this body of work in that we examine how the mortgage insurance restric-

tion affects sellers’ listing strategy and buyers’ search strategy, and thereby market outcomes

such as sales price and time on the market. We also exploit the geographical variation in

the effects of the MI policy and linked that to the share of constrained households.

On the methodology side, our work follows a recent and emerging literature that ex-

ploits the bunching behaviour of agents when faced with non-linear budget sets, often the

product of the tax system. Bunching estimators were first developed in the context of tax

kinks by Saez (2010) and Chetty et al. (2011a) before being extended to the analysis of tax

notches by Kleven and Waseem (2013). Notches occur when there are discrete changes in

agents’ budget sets induced by policy. The policy analysed in this paper corresponds to a

notch – that is, a discrete change in the required down-payment at the $1M threshold. In

the context of real estate, there are several related papers that employ a related bunching

empirical strategy. Kopczuk and Munroe (2015) analyse bunching behaviour in sales vol-

ume induced by discontinuities in the real-estate transfer taxation that occurs at the $1M

6For other studies that consider downpayments or credit frictions in housing markets, see Corbae and
Quintin (2015), Landvoigt et al. (2015), Fuster and Zafar (2016), Duca et al. (2016), and Acolin et al. (2016).

7For example, Vigdor (2006), Duca et al. (2011), Berkovec et al. (2012) show that a relaxation of financial
constraints results in a boom in house prices; Agarwal et al. (2017) show that increased intensity of mortgage
renegotiations leads to reduced foreclosure rates and higher house price growth; Agarwal et al. (2017) show
that credit supply restrictions can lead to adverse selection in the market for mortgage loans; Mian and Sufi
(2009) link the expansion of mortgage credit to higher initial house prices and subsequent elevated default
rates, which further lead to price declines; and Demyanyk and Van Hemert (2011) demonstrate that extreme
credit constraints can result in a lower housing prices and fewer transactions because negative equity prevents
some households from moving.
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threshold in New York and New Jersey, Best et al. (2015) and Best et al. (2017) exploit

variation in interest rates that produce notches in the loan-to-value ratio at various thresh-

olds using a bunching estimator, and DeFusco et al. (2017) estimate leverage responses to

a notch created by the conforming loan limit in the US. There are two main differences

between our empirical design, relative to these papers. First, we use a two-step approach

that exploits a standard reweighting estimator to account for changes in the distribution of

housing characteristics between the pre-and post-policy period and, second, we consider a

two-sided bunching estimator to accommodate the two-sided nature of bunching implied by

our theoretical framework.

Finally, our paper contributes to work on macroprudential policies. In the aftermath of

the Great Recession, macroproudential tools transformed from esoteric and rarely considered

ideas, to prominent policy vehicles Blanchard et al. (2010). Naturally, with emergence of

these policies, a growing literature developed to investigate their effects. For example, Allen

et al. (2016) use loan-level data to examine the macroprudential policies on mortgage contract

characteristics and mortgage demand. In contrast, our paper examines the policy impact on

housing market outcomes.

3 Background

3.1 Mortgage Insurance

A common way for central banks to impose financial constraints on the housing market is

through mortgage insurance. Mortgage insurance is an instrument used to transfer mortgage

default risk from the lender to the insurer, which has been a key component of housing finance

systems in many countries, including the United States, the United Kingdom, the Nether-

lands, Hong Kong, France, and Australia. These countries share two important institutional

features with Canada: (i) the requirement that regulated lenders insure high loan-to-value

(LTV) mortgages, and (ii) the central role of the government in providing such insurance.8

8The mortgage insurance market in the U.S., for example, is dominated by a large government-backed
entity, the Federal Housing Administration (FHA), and MI is required for all loans with a LTV ratio greater
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The combination of these two requirements gives the central government unparallelled power

to influence housing finance (Krznar and Morsink, 2014).

We focus on Canada. Federally regulated financial institutions are required to purchase

mortgage insurance on any loan with an LTV higher than 80 percent. The mortgage insur-

ance premiums vary based on the LTV and are made as a single upfront payment at the time

of loan origination that covers the entire amortization period. Typically, lenders pass the

mortgage insurance premiums completely on to the mortgage borrower, so that the mort-

gage insurance premiums are included in the home loan. The mortgage insurance market

is dominated by three main players: the government owned Canada Mortgage and Hous-

ing Corporation (CMHC) and two private insurers, Genworth Financial Mortgage Insurance

and Canada Guaranty. The Canadian government provides 100 percent guarantee for home

mortgages insured through CMHC, and 90 percent guarantee for home mortgages insured

through Genworth Financial and Canada Guaranty. As a result, all mortgage insurers are

subject to financial market regulation through the Canadian Office of the Superintendent of

Financial Institutions (OFSI).

For the purpose of our paper, it is important to note that the 12 largest financial insti-

tutions – all regulated by the OSFI – originate over 90 percent of all home mortgages in

Canada. The fraction of unregulated housing sector in the Canadian mortgage market is

quite small, accounting for less than 1 percent of mortgage volume according to Coletti et al.

(2016); Mordel and Stephens (2015).9 While possible, it is in general difficult for a borrower

to obtain a second mortgage at the time of origination to reduce the downpayment of the

primary loan below 20%.10 Thus, as stated by the IMF, “the pervasiveness of the mortgage

than 80 percent. Indeed, in the US, over 1.1 trillion US dollars of mortgages are insured by the government-
backed Federal Housing Administration (FHA) and the US Congress is reviewing proposals that would make
the US MI system similar to that used in Canada. See Option 3 in “Reforming America’s Housing Finance
Market, A Report to Congress.” February 2011. The US Treasury and the US Department of Housing and
Urban Development.

9These unregulated loans are largely issued by Mortgage Finance Companies and cannot be securitized
into either Canada Mortgage Bonds or National Housing Act mortgage-backed bonds. Anecdotal evidence
suggests that the interest rates on unregulated mortgages are 3 - 6 times higher than conventional mortgage
rates. see “Ordinary Canadians turn bankers as shadow mortgage lending rises,” Reuters. July 9, 2015.

10See the Government of Canada guidelines on borrowing against home equity.
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insurance within housing finance system gives the Canadian authorities exceptional power

to affect housing finance through the key role of government-backed mortgage insurance.”

3.2 The Canadian Mortgage Insurance Regulation

Figure 4 plots the national house price indices for Canada and the U.S, supporting the

observation that “what is happening in Canada is kind of a slow-motion version of what

happened in the U.S” (Robert Shiller, 2012). As home prices in Canada continued to escalate

post-financial crisis, the Canadian government became increasingly concerned that rapid

price appreciation would eventually lead to a severe housing market correction.11

To counter the potential risks associated with this house price boom, the Canadian gov-

ernment implemented four major rounds of housing market macroprudential regulation – all

through changes to the mortgage insurance rules – between July 2008 and July 2012. These

included increasing minimum down payment requirements (2008); reducing the maximum

amortization period for new mortgage loans (2008, 2011, 2012); reducing the borrowing limit

for mortgage refinancing (2010, 2011, 2012); increasing homeowner credit standards (2008,

2010, 2012); and limiting government-backed mortgage insurance to homes with a purchase

price of less than one million Canadian dollars (2012).

This paper examines the impact of the million dollar policy. Since regulated lenders are

required to insure mortgages with over 80% loan-to-value ratio, the policy effectively imposes

a minimum down payment requirement of 20 percent for homes with a purchase price of $1M

or more. The aim of the regulation was twofold: to increase borrower creditworthiness; and

to curb price appreciation in high price segments. The law was announced on June 21, 2012,

and effected July 9, 2012. Moreover, anecdotal evidence suggests that the announcement of

the MI policy was largely unexpected by market participants.12

11In 2013, Jim Flaherty, Canada’s Minister of Finance from February 2006 to March 2014, stated: “We
[the Canadian government] have to watch out for bubbles - always - . . . including [in] our own Canadian
residential real estate market, which I keep a sharp eye on.” Sources: “Jim Flaherty vows to intervene in
housing market again if needed.” The Globe and Mail, November 12, 2013.

12See “High-end mortgage changes seen as return to CMHC’s roots.” The Globe and Mail, June 23, 2012.
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4 Theory

To understand how the million dollar policy affects strategies and outcomes in the housing

market, we present a two-sided search model that incorporates auction mechanisms and fi-

nancially constrained buyers. We characterize pre- and post-policy directed search equilibria

and derive a set of empirical implications. The purpose of the model is to guide the empirical

analyses that follow. As such, we present a simple model of directed search with auctions

and bidding limits that features heterogeneity only along the financial constraints dimension.

The clean and stylized nature of the model allows for a quick understanding of the intuition

underlying plausible strategic reactions among buyers and sellers to the implementation of

the policy.

4.1 Environment

Agents. There is a fixed measure B of buyers, and a measure of sellers determined by free

entry. Buyers and sellers are risk neutral. Each seller owns one indivisible house that she

values at zero (a normalization). Buyer preferences are identical; a buyer assigns value v > 0

to owning the home. No buyer can pay more than some fixed u ≤ v, which can be viewed

as a common income constraint (e.g., debt-service constraint).

Million dollar policy. The introduction of the million dollar policy causes some buyers

to become more severely financially constrained. Post-policy, a fraction Λ of buyers are un-

able to pay more than c, where c < u. Parameter restrictions c < u ≤ v can be interpreted

as follows: all buyers may be limited by their budget sets, but some are further financially

constrained by a binding wealth constraint (i.e., minimum down payment constraint) follow-

ing the implementation of the MI policy. Buyers with financial constraint c are hereinafter

referred to as constrained buyers, whereas buyers willing and able to pay up to u are termed

unconstrained.

Search and matching. The matching process is subject to frictions which we model

with an urn-ball meeting technology. Each buyer meets exactly one seller. From the point of
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view of a seller, the number of buyers she meets is a random variable that follows a Poisson

distribution. The probability that a seller meets exactly k = 0, 1, . . . buyers is

π(k) =
e−θθk

k!
, (1)

where θ is the ratio of buyers to sellers and is often termed market tightness. The probability

that exactly j out of the k buyers are unconstrained is

φk(j) =

(
k

j

)
(1− λ)jλk−j, (2)

which is the probability mass function for the binomial distribution with parameters k and

1− λ, where λ is the share of constrained buyers. Search is directed by asking prices in the

following sense: sellers post a listing containing an asking price, p ∈ R+, and buyers direct

their search by focusing exclusively on listings with a particular price. As such, θ and λ

are endogenous variables specific to the group of buyers and sellers searching for and asking

price p.

Price determination. The price is determined in a sealed-bid second-price auction.

The seller’s asking price, p ∈ R+, is interpreted as the binding reserve price. If a single

bidder submits an offer at or above p, he pays only p. In multiple offer situations, the bidder

submitting the highest bid at or above p wins the house but pays either the second highest

bid or the asking price, whichever is higher. When selecting among bidders with identical

offers, suppose the seller picks one of the winning bidders at random with equal probability.

Free entry. The measure of sellers is determined by free entry so that overall market

tightness is endogenous. Supply side participation in the market requires payment of a fixed

cost x, where 0 < x < c. It is worthwhile to enter the market as a seller if and only if the

expected revenue exceeds the listing cost.
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4.2 Equilibrium

4.2.1 The Auction

When a seller meets k buyers, the auction mechanism described above determines a game

of incomplete information because bids are sealed and bidding limits are private. In a

symmetric Bayesian-Nash equilibrium, it is a dominant strategy for buyers to bid their

maximum amount, c or u. When p > c (p > u), bidding limits preclude constrained (and

unconstrained) buyers from submitting sensible offers.

4.2.2 Expected payoffs

Expected payoffs are computed taking into account the matching probabilities in (1) and

(2). These payoffs, however, are markedly different depending on whether the asking price,

p, is above or below a buyer’s ability to pay. Each case is considered separately in Appendix

A.1. In the submarket associated with asking price p and characterized by market tightness

θ and buyer composition λ, let V s(p, λ, θ) denote the sellers’ expected net payoff. Similarly,

let V c(p, λ, θ) and V u(p, λ, θ) denote the expected payoffs for constrained and unconstrained

buyers.

For example, if the asking price is low enough to elicit bids from both unconstrained and

constrained buyers, the seller’s expected net payoff is

V s(p ≤ c, λ, θ) = −x+ π(1)p+
∞∑
k=2

π(k)

{
[φk(0) + φk(1)] c+

k∑
j=2

φk(j)u

}
.

Substituting expressions for π(k) and φk(j) and recognizing the power series expansion of

the exponential function, the closed-form expression is

V s(p ≤ c, λ, θ) = −x+ θe−θp+
[
1− e−θ − θe−θ

]
c

+
[
1− e−(1−λ)θ − (1− λ)θe−(1−λ)θ

]
(u− c).

The second term reflects the surplus from a transaction if she meets only one buyer. The
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third and fourth terms reflect the surplus when matched with two or more buyers, where the

last term is specifically the additional surplus when two or more bidders are unconstrained.

The expected payoff for a buyer, upon meeting a particular seller, takes into account the

possibility that the seller meets other constrained and/or unconstrained buyers as per the

probabilities in (1) and (2). The expected payoff for a constrained buyer in this case is

V c(p ≤ c, λ, θ) = π(0)(v − p) +
∞∑
k=1

π(k)φk(0)
v − c
k + 1

and the closed-form expression is

V c(p ≤ c, λ, θ) =
e−(1−λ)θ − e−θ

λθ
(v − c) + e−θ(c− p).

The first term is the expected surplus when competing for the house with other constrained

bidders; the last term reflects the possibility of being the only buyer. Note that whenever an

unconstrained buyer visits the same seller, the constrained buyer is outbid with certainty and

loses the opportunity to purchase the house. Finally, the expected payoff for an unconstrained

buyer can be similarly derived to obtain

V u(p ≤ c, λ, θ) = π(0)(v − p) +
∞∑
k=1

π(k)

[
φk(0)(v − c) +

k∑
j=1

φk(j)
v − u
j + 1

]

=
1− e−(1−λ)θ

(1− λ)θ
(v − u) + e−(1−λ)θ(u− c) + e−θ(c− p).

The first term is the expected surplus when competing for the house with other unconstrained

bidders, and the second term is the additional surplus when competing with constrained

bidders only. In that scenario, the unconstrained bidder wins the auction by outbidding

the other constrained buyers, but pays only c in the second-price auction. The third term

represents the additional payoff for a monopsonist. Closed-form solutions for the other cases

are derived in Appendix A.1.
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4.2.3 Directed Search

Agents perceive that both market tightness and the composition of buyers depend on the

asking price. To capture this, suppose agents expect each asking price p to be associated

with a particular ratio of buyers to sellers θ(p) and fraction of constrained buyers λ(p). We

will refer to the triple (p, λ(p), θ(p)) as submarket p. When contemplating a change to her

asking price, a seller anticipates a corresponding change in the matching probabilities and

bidding war intensity via changes in tightness and buyer composition. This is the sense in

which search is directed. It is convenient to define V i(p) = V i(p, λ(p), θ(p)) for i ∈ {s, u, c}.

Definition 1. A directed search equilibrium (DSE) is a set of asking prices P ⊂ R+; a

distribution of sellers σ on R+ with support P, a function for market tightness θ : R+ →

R+ ∪ +∞, a function for the composition of buyers λ : R+ → [0, 1], and a pair of values

{V̄ u, V̄ c} such that:

1. optimization:

(i) sellers: ∀p ∈ R+, V s(p) ≤ 0 (with equality if p ∈ P);

(ii) unconstrained buyers: ∀p ∈ R+, V u(p) ≤ V̄ u (with equality if θ(p) > 0 and

λ(p) < 1);

(iii) constrained buyers: ∀p ∈ R+, V c(p) ≤ V̄ c (with equality if θ(p) > 0 and λ(p) > 0);

where V̄ i = maxp∈P V
i(p) for i ∈ {u, c}; and

2. market clearing:

∫
P
θ(p) dσ(p) = B and

∫
P
λ(p)θ(p) dσ(p) = ΛB.

The definition of a DSE is such that for every p ∈ R+, there is a θ(p) and a λ(p). Part

1(i) states that θ is derived from the free entry of sellers for active submarkets (i.e., for

all p ∈ P). Similarly, parts 1(ii) and 1(iii) require that, for active submarkets, λ is derived
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from the composition of buyers that find it optimal to search in that submarket. For inactive

submarkets, parts 1(ii) and 1(iii) further establish that θ and λ are determined by the optimal

sorting of buyers so that off-equilibrium beliefs are pinned down by the following requirement:

if a small measure of sellers deviate by posting asking price p 6∈ P, and buyers optimally sort

among submarkets p ∪ P, then those buyers willing to accept the highest buyer-seller ratio

at price p determine both the composition of buyers λ(p) and the buyer-seller ratio θ(p). If

neither type of buyer finds asking price p acceptable for any positive buyer-seller ratio, then

θ(p) = 0, which is interpreted as no positive measure of buyers willing to search in submarket

p. The requirement in part 1(i) that V s(p) ≤ 0 for p 6∈ P guarantees that no deviation to an

off-equilibrium asking price is worthwhile from a seller’s perspective. Finally, part 2 of the

definition makes certain that all buyers search.

4.2.4 Pre-Policy Directed Search Equilibrium

We first consider the initial setting with identically unconstrained buyers by setting Λ = 0.13

Buyers in this environment direct their search by targeting the asking price that maximizes

their expected payoff. Because the buyer correctly anticipates the free entry of sellers, the

search problem can be written

V̄ u = max
p,θ

V u(p, 0, θ) s.t. V s(p, 0, θ) = 0. (P0)

We construct a DSE with a single active submarket with asking price and market tightness

determined by the solution to problem P0, denoted {p0, 0, θ0}.14 Given the auction mech-

anism and the role of the asking price, a strictly positive expected surplus from searching

requires p ≤ u. If the solution is interior it satisfies the following first-order condition and

13A DSE when Λ = 0 is defined according to Definition 1 except that we impose λ(p) = 0 for all p ∈ R+

and ignore condition 1(iii).
14The same active submarket can instead be determined by solving the seller’s price posting problem and

imposing free entry. Specifically, sellers set an asking price to maximize their expected payoff subject to
buyers achieving their market value V̄ u. The seller’s asking price setting problem is therefore

max
p,θ

V s(p, 0, θ) s.t. V u(p, 0, θ) = V̄ u. (P′0)

16



the constraint:

x = [1− e−θ∗u − θ∗ue−θ
∗
u ]v (3)

θ∗ue
−θ∗up∗u = [1− e−θ∗u − θ∗ue−θ

∗
u ](v − u). (4)

If this solution is infeasible because of financial limit u, the solution is instead {u, θu}, where

θu satisfies the free entry condition V s(u, 0, θu) = 0, or

x = [1− e−θu ]u. (5)

The solution to problem P0 can therefore be summarized as p0 = min{p∗u, u} and θ0 satisfying

V s(p0, 0, θ0) = 0.

The following proposition provides a partial characterization of the pre-policy DSE con-

structed using this solution as per the algorithm in Appendix A.2.

Proposition 1. There is a DSE with P = {p0}, θ(p0) = θ0 and V̄ u = V u(p0, 0, θ0).

As buyers’ ability to pay approaches their willingness to pay (i.e., as u → v), the equi-

librium asking price tends to zero (i.e., p0 = p∗u → 0), which is the seller’s reservation value.

This aligns with standard results in the competing auctions literature in the absence of bid-

ding limits (McAfee, 1993; Peters and Severinov, 1997; Albrecht et al., 2014; Lester et al.,

2015). When buyers’ bidding strategies are somewhat limited (i.e., p0 = p∗u ≤ u < v), sellers

set a higher asking price to capture more of the surplus in a bilateral match. The equilibrium

asking price is such that the additional bilateral sales revenue (the left-hand side of equation

(4)) exactly compensates for the unseized portion of the match surplus when two or more

buyers submit offers but are unable to bid up to their full valuation (the right-hand side of

equation (4)). When buyers’ bidding strategies are too severely restricted (i.e., p0 = u < p∗u),

the seller’s choice of asking price is constrained by the limited financial means of prospective

buyers. Asking prices in equilibrium are then set to the maximum amount, namely u. In this

case, a seller’s expected share of the match surplus is diminished, and consequently fewer
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sellers choose to participate in the market (i.e., θu > θ∗u).
15

As long as p0 = p∗u ≤ u, the equilibrium expected payoff V̄ u is independent of u (in

particular, V̄ u = θ∗ue
−θ∗uv). As long as the constraint remains relatively mild, a change to

buyers’ ability to pay, u, will cause the equilibrium asking price to adjust in such a way

that market tightness and the expected sales price remain unchanged. This reflects the fact

that the financial constraint does not affect the incentive to search. When p0 = u < p∗u, the

constraint is sufficiently severe that it affects the ability to search in that it shuts down the

submarket that would otherwise achieve the mutually desirable trade-off between market

tightness and expected price. This feature highlights the distinction between the roles of

financial constraints and reservation values, since a change to buyers’ willingness to pay, v,

would affect the incentive to search, the equilibrium expected payoff, and the equilibrium

trade-off between market tightness and expected sales price.

4.2.5 Post-Policy Directed Search Equilibrium

As in the previous section, an active submarket with p ≤ c is determined by an optimal search

strategy. The search problem of a constrained buyer takes into account the participation of

both sellers and unconstrained buyers:

V̄ c = max
p,λ,θ

V c(p, λ, θ) s.t. V s(p, λ, θ) = 0 and V u(p, λ, θ) ≥ V̄ u. (P1)

Let {p1, λ1, θ1} denote the solution to problem P1 when V̄ u is set equal to the maxi-

mized objective of problem P0. The bidding limit once again limits the set of worthwhile

submarkets. In particular, the optimal submarket for constrained buyers must feature an

asking price less than or equal to c. If the solution is interior, it satisfies the two constraints

with equality and a first-order condition derived in Appendix A.3. This interior solution is

denoted {p∗c , λ∗c , θ∗c}. The corner solution is denoted {c, λc, θc}, where λc and θc satisfy the

free entry condition V s(c, λc, θc) = 0 and an indifference condition for unconstrained buyers

15Using (3) and (4) to define p∗u, inequality u < p∗u can be written
[
1− e−θ∗u

]
u < x. Combining this

inequality with the free entry condition in (5) yields θu > θ∗u.
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V u(c, λc, θc) = V̄ u. In summary, the solution to problem P1 is p1 = min{p∗c , c} with λ1 and

θ1 satisfying V s(p1, λ1, θ1) = 0 and V u(p1, λ1, θ1) = V̄ u.

As long as the aggregate share of constrained buyers, Λ, does not exceed λ1, we can con-

struct an equilibrium with two active submarkets associated with the asking prices obtained

by solving problems P0 and P1 in the manner described above.

Proposition 2. Suppose Λ ≤ λ1. There is a DSE with P = {p0, p1}, λ(p0) = 0, θ(p0) = θ0,

λ(p1) = λ1, θ(p1) = θ1, V̄ c = V c(p1, λ1, θ1) and V̄ u = V u(p0, 0, θ0) = V u(p1, λ1, θ1).

Intuitively, some unconstrained buyers prefer to search alongside constrained buyers be-

cause they can out-bid them. If the fraction of constrained buyers is not too high (i.e.,

Λ < λ1), the DSE features partial pooling (i.e., only some unconstrained buyers search for

homes priced at p1 while the rest search in submarket p0). As Λ → λ1, it can be shown

that σ(p0) → 0 and the DSE converges to one of full pooling (i.e., all buyers and sellers

participate in submarket p1). Finally, if Λ > λ1, market clearing (part 2 of Definition 1)

is incompatible with unconstrained buyer indifference between these two submarkets, which

begets the possibility of full pooling with unconstrained buyers strictly preferring to pool

with constrained buyers. We restrict attention to settings with Λ ≤ λ1 for the analytical

characterization of equilibrium and rely on numerical results for settings with Λ > λ1.16

For many sets of parameter values satisfying 0 < x < c < u ≤ v, the financial constraint

c determines the solution to problem P1 and a consequence of the MI policy is therefore a

mass of asking prices and sales prices at threshold c. These and other empirical implications

are the focus of the next section.

16We construct fully pooling DSE numerically when Λ > λ1 by increasing V̄ u above the maximized
objective of problem P0 until the share of constrained buyers in the submarket that solves problem P1 is
exactly Λ. A thorough analysis of such DSE would require abandoning the analytical convenience of block
recursivity (i.e., the feature that equilibrium values and optimal strategies do not depend on the overall
composition of buyers). We sacrifice completeness for conciseness and convenience by restricting the set of
analytical results to settings with Λ ≤ λ1.
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4.3 Empirical Predictions

This section summarizes the consequences of the MI policy by comparing the pre- and post-

policy directed search equilibria. There are four possible cases to consider depending on

whether financial constraints u and c lead to corner solutions to problems P0 and P1. In this

section we focus on the case where the relevant financial constraint is slack in problem P0 but

binds in problem P1. In other words, we consider the possibility that pre-existing financial

constraints are mild (i.e., not restrictive enough to affect expected payoffs and seller entry in

the pre-policy equilibrium), but that the additional financial constraint imposed by the MI

policy is sufficiently severe (i.e., restrictive enough that some households search among the

highest priced homes within their financial means). Under this assumption, the equilibrium

asking prices are p0 = p∗u and p1 = c. There are still two possible subcases, namely (i) p∗u ≤ c

and (ii) p∗u > c, which we use to motivate bunching from both above and below the bidding

limit for the empirical analysis that follows.

Under the restrictions discussed above, the model has several testable predictions that

we bring to the data in Section 6. Some of these predictions rely on additional analytical

results, which are summarized in the following lemma:

Lemma 1. (i) σ(p0) = B/θ0 in the pre-policy DSE. In the post-policy DSE,

σ(p0) =
(λ1 − Λ)B
λ1θ0

and σ(p1) =
ΛB
λ1θ1

. (6)

(i) p0 ≤ p1 implies (1− λ1)θ1 ≤ θ0.

(ii) p0 > p1 implies (1− λ1)θ1 < θ1.

Prediction 1. The million dollar policy motivates some sellers to change their asking price

from p0 to p1 = c. This represents an increase (decrease) in the set of asking asking prices

if p0 ≤ c (p0 > c).

As per Propositions 1 and 2, the set of asking prices changes from just P = {p0} pre-

policy to P = {p0, p1} post-policy. Following the introduction of the policy, some or all
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sellers find it optimal to target buyers of both types by asking price p1 = c. The measure of

sellers participating in submarket p0 is lower post-policy (see part (i) of Lemma 1). Both the

introduction of homes listed at p1 and the smaller measure of homes listed at p0 contribute

to the increase (decrease) in the set of equilibrium asking prices when p0 ≤ c (p0 > c).

Prediction 1 suggests that the million dollar policy can induce strategic responses among

sellers in market segments near the newly imposed financial constraint. Some sellers who

would have otherwise listed below c might respond to the policy by increasing their asking

price to the threshold. The intuition for bunching from below is the following: as buyers

become more constrained, the distribution of possible sales prices features fewer extreme

prices at the high end. Sellers respond by raising their asking price to effectively truncate

the distribution of prices from below. The higher price in a bilateral situation can offset

the unseized sales revenue in multiple offer situations arising from the additional financial

constraint. The MI policy may also induce some sellers who would have otherwise listed

above c to drop their asking price to exactly equal the threshold. In the case of bunching

from above, the reduction in asking prices is designed to attract constrained buyers. Because

there is pooling of both buyer types in submarket p1, these sellers may still match with

unconstrained buyers and sell for a price above c.

To illustrate the predictions of the theory, we simulate two parameterized versions of

the model. Example 1 features bunching from below using parameter values B = 1, v = 1,

x = 0.15, c = 0.40, u = 0.50 and Λ = 0.05. The second example features bunching from

above using the same set of parameter values except x = 0.10, c = 0.15, and u = 0.30.

Figure 1 provides a graphical illustration of Prediction 1 by plotting the pre- and post-policy

distributions of asking prices. The plot on the left corresponds to Example 1 (bunching from

below) and the plot on the right corresponds to Example 2 (bunching from above).

Prediction 2. The million dollar policy decreases (increases) these sellers’ matching proba-

bilities with unconstrained buyers, resulting in a lower (higher) incidence of price escalation

up to u if p0 ≤ p1 (p0 > p1).

Prediction 2 is related to the ratio of unconstrained buyers to sellers (see parts (ii) and
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(iii) of Lemma 1) and relies on the indifference condition for unconstrained buyers between

submarkets, p0 and p1. If p1 < p0, this ratio is higher in submarket p1 (i.e., θ0 < (1− λ1)θ1),

which shifts the Poisson distribution that governs the random number of unconstrained

buyers meeting each particular seller in the sense of first-order stochastic dominance. The

MI policy therefore increases the probability of multiple offers from unconstrained buyers and

the overall share of listed homes selling for u. If instead p0 < p1, the indifference condition

for unconstrained buyers implies the opposite, namely θ0 ≥ (1− λ1)θ1. In that case, the MI

policy lowers the probability of multiple offers from unconstrained buyers.

Figure 3 presents graphical illustrations of Prediction 2 by plotting market tightness, θ,

for asking prices in [x, u]. In both cases, market tightness is only affected by the presence of

constrained buyers for a subset of asking prices. Submarkets that attract both constrained

and unconstrained buyers post-policy feature higher market tightness because unconstrained

buyers have an advantage when competing bidders face tighter financial constraints. Follow-

ing the implementation of the policy, unconstrained buyers are therefore willing to tolerate

a higher ratio of buyers to sellers. The ratio of unconstrained buyers to sellers, (1 − λ)θ,

remains unchanged. Since this ratio is decreasing in the asking price to satisfy the indif-

ference condition for unconstrained buyers, it follows that an increase (decrease) in asking

price from p0 to c is associated with a lower (higher) probability of selling at price u.

Prediction 3. Predictions 1 and 2 have opposing effects on equilibrium sales prices, resulting

in a more dramatic impact of the MI policy on asking prices than sales prices.

The frictional matching process and the auction mechanism imply a smaller mass of

sales relative to listings at price c. Figure 2 plots the distributions of sales prices for the

two numerical examples. In both cases, the post-policy share of sales at price c is less than

the corresponding share of listings at price c in Figure 1. The MI policy’s effect on sales

prices is further mitigated by the post-policy equilibrium search strategies of buyers. In

particular, upward (downward) pressure on sales prices resulting from sellers’ adjustments

to price-posting strategies is partly offset by the lower (higher) incidence of price escalation

up to u. For example, the CDF plotted on the left of Figure 2 (Example 1: bunching from
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below) reveals relatively fewer transactions at p0, but also fewer transactions at price u. The

net impact of the policy on the sales price is ultimately an empirical question.

4.4 Caveats

A brief discussion of some of the features of the model is in order. First, since financial

constraint c is intended to represent the maximum ability to pay among buyers affected

by the MI policy, parameter c corresponds to the $1M threshold (relative to the seller’s

reservation value) and Λ reflects the share of potential buyers with insufficient wealth from

which to draw a 20 percent down payment.17 If the parameter values for v, u and c are

small, the scope of the model shrinks to a narrow segment of the market around $1M.

Second, the determination of prices in practice differs in some ways from the simple

auction mechanism modelled here. In a bilateral meeting, it is quite common for the buyer

and seller to negotiate a final transaction price slightly below the asking price. In contrast,

we assume that the asking price effectively represents a firm commitment to a minimum

price. We rely on this assumption for deriving meaningful implications about the effect

of the MI policy on asking prices. Embellishing the price determination mechanism18 may

allow for transaction prices below asking prices without compromising the asking price-

related implications of the theory. Such extensions, however, would add considerably to the

analytical complexity of the model.

Finally, entry on the supply side of the market is a common approach to endogenizing

housing market tightness in directed search models with auctions (e.g., Albrecht et al.,

2016 and Arefeva, 2016). The alternative (i.e., buyer entry) would be less straightforward

in our context given that the demand side of the market is homogeneous pre-policy but

heterogeneous thereafter. With post-policy entry decisions on the demand side, buyers would

self-select into the market in such a way that the effects of the policy would be mitigated or

17Since the MI policy effectively imposes a 20 percent down payment requirement when the purchase price
is $1M or more, c more precisely represents a bidding limit of $999, 999 (less the seller’s minimum acceptable
sales price).

18See Albrecht et al., 2016 and Han and Strange, 2016 for more sophisticated pricing protocols that can
account for sale prices both above and below the asking price.
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even non-existent. More specifically, suppose for a moment that both types of buyers face

entry decisions subject to an entry fee or search cost. Provided there are sufficiently many

unconstrained potential market participants, unconstrained buyers would enter the market

until they reach indifference about market participation: their expected payoff would equal

the participation cost. Because constrained buyers are outbid by unconstrained buyers,

the expected payoff for a constrained buyer would be strictly less than the cost of market

participation. It follows that constrained buyers would optimally choose not to participate

in this segment of the housing market and consequently the post-policy equilibrium would

be indistinguishable from the pre-policy equilibrium with identically unconstrained buyers.

In contrast, we show in the analysis that follows that the MI policy does affect equilibrium

strategies and outcomes when entry decisions are imposed on the supply side of the market.

5 Data

Our data set includes all transactions of single-family houses in the Greater Toronto Area

from January 1 2010 to December 31 2013. For each transaction, we observe asking price,

sales price, days on the market, transaction date, location, as well as detailed housing char-

acteristics. Since the MI policy took effect in July of 2012, the pre-policy period is defined as

July 2011 to June 2012 and the post-policy period is defined as July 2012 to June 2013. For

the purposes of assigning a home to a pre- or post-policy date, we use the date the house

was listed.

Table 1 contains summary statistics for detached, single-family homes in the Greater

Toronto Area. Our data include 33,546 observations in the pre-policy period and 29,323

observations in the post-policy period. The mean sales price in Toronto was $64, 900.19 in

the pre-policy period and $680,482.77 in the post-policy period, reflecting continued rapid

price growth for single family houses. Our focus is on homes near the $1M threshold, which

corresponds to approximately the 90th percentile of the pre-policy price distribution. There

were 1,365 homes sold within $100,000 of $1M in the pre-policy period, and 1,655 in the

post-policy period.

24



6 Empirical Evidence

We now present empirical tests of the predictions derived in Section 4. The main prediction

of the model is that the million dollar policy leads to sellers adjusting the asking price,

which results in changes in sales price, both at the million dollar segment (Predictions 1 and

3). To measure these market responses, we use a bunching approach recently developed in

recent public finance literature (Saez (2010), Chetty et al. (2011b) and Kleven and Waseem

(2013)). The key idea is to use the distribution of price segments that are not subject to

the policy effect to form a valid counterfactual distribution of the price segment near the

$1M threashold in the absence of the policy. The two underlying assumptions are that,

(1) the policy effect occurs locally in a segment near $1M, leaving part of the distribution

unaffected by the policy, and (2) that the counterfactual distribution is smooth and can be

estimated using the unaffected part of the distribution. In forming the counterfactual, we

use a two-step approach: first construct a counterfactual price distribution that would have

prevailed if there were no composition changes of housing stock using a common reweighting

method; then build a counterfactual composition-constant distribution of house prices in the

absence of the MI policy using the bunching approach.

The core estimation is presented in Subsection 6.1 with an aim to test Predictions 1

and 3, followed by a test of prediction 2 on bidding intensity in Subsection 6.2. Finally, we

present a cross-markets analysis in Subsection 6.3,

6.1 Predictions 1 and 3 : The Policy Effects on Asking Price and Sales Price

6.1.1 First step: controlling for housing composition

When taking the predictions to the data, one challenge we face is that the model is featured

with homogenous housing while in reality houses differ along many dimensions. If houses

listed or sold in the $1M segment in the post-policy year are generally in better condition

than in the previous year, then the difference between the actual price distribution and

the counterfactual price distribution could simply reflect the changes in the composition of
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housing rather than the policy effect.19 We rule out this concern by leveraging the richness

of our data to flexibly control for the complete set of observed house characteristics to back

out a counterfactual distribution of of house prices that would have prevailed period if the

characteristics of houses in the post-period were the same as in the pre-period.

Let Yt denote the (asking or sale) price of a house and let Xt denote the characteristics of

a house that affect prices, for t = 0, the pre-policy period, and t = 1, the post-policy period.

The conditional distribution functions FY0|X0(y|x) and FY1|X1(y|x) describe the stochastic

assignment of prices to houses with characteristics x in each of the periods. Let FY 〈0|0〉 and

FY 〈1|1〉 represent the observed distribution of house prices in each period. We are interested

in FY 〈1|0〉, the counterfactual distribution of house prices that would have prevailed in the

post-period if the characteristics of the houses in the post-period were as in the pre-period.

We can decompose the observed change in the distribution of house prices:

FY 〈1|1〉 − FY 〈0|0〉︸ ︷︷ ︸
∆O=Observed

=
[
FY 〈1|1〉 − FY 〈1|0〉

]︸ ︷︷ ︸
∆X=Composition

+
[
FY 〈1|0〉 − FY 〈0|0〉

]︸ ︷︷ ︸
∆S=Price Structure

. (7)

Since the counterfactual is not observed, it must be estimated. We use a simple reweight-

ing method proposed by DiNardo et al. (1996) that is based on the following relation:

FY 〈1|0〉 =

∫
FY1|X1(y|x) ·Ψ(x) · dFX1(x)

where Ψ(x) =
dFX0

dFX1
is a reweighting factor that can be easily estimated by using a logit,

for example (Fortin et al., 2011). In our implementation of this method, we obtain the

weighting function by pooling pre- and post-period data and estimating a logit model where

the dependent variable is a pre-period dummy. The covariate vector contains indicators for

district, month, the number of rooms, whether the basement is finished, and the housing

type (detached, semi-detached).20 The estimated counterfactual distribution is given by

19Note that our bunching estimator, which we describe below, relies on agents sorting around the policy
threshold. Thus, in comparison to a regression discontinuity design, where there is assumed to be no
manipulation around the policy threshold, such concerns about composition are valid here.

20The weighting function is Ψ(x) = p(x)
1−p(x) ·

1−P (t=1)
P (t=0) , where p(x) is the propensity score, ie, the probability
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F̂Y 〈1|0〉 =
∫
F̂Y1|X1(y|x) · Ψ̂(x) · dF̂X1(x), where F̂Y 〈1|0〉 is an empirical distribution function

that is estimated using grid intervals of $5,000 and is a reweighted version of the observed

price distribution in the post-policy period; that is, F̂Y 〈1|0〉 is the price distribution that would

prevail if the characteristics of homes where the same in the same as in the pre-period.

Figure 5 examines the distribution of asking price for pj = 500,000, . . . , 1,400,000. In

panel A, we plot the estimated CDF function for the pre- and post-policy period. The post-

period CDF, represented by the green line, lays everywhere below the pre-period survivor,

indicating that all the housing market segments experienced a boom. In panel B, we plot

the difference between the two CDF functions. If the CDFs were the same pre- and post-

policy for a given bin, the difference would show up as a zero in the figure. We find that the

actual difference in CDFs is always below zero and upward sloping, indicating that houses

in general are becoming more expensive over time and this effect is larger for lowered priced

segments than for higher ones.

Following equation (7), we then decompose the difference in CDFs into two components:

(i) price difference due to shifting of housing characteristics in each segment (Panel C); and

(ii) price difference due to changes in sellers’ listing strategy caused by the MI (Panel D).

The latter is the market response that we aim to measure. As shown in Panel C, the price

change caused by shifting of housing characteristics is small in magnitude and relatively flat.

In contrary, Panel D shows that the price change caused by sellers’ listing strategy generally

increases smoothly with price, with a relatively large jump at the $1M threshold. Given the

minimal composition effects, nearly all of the shifts in the observed distribution of asking

price are driven by sellers’ listing strategy.

Figure 6 examines the distribution of sales price for pj = 500,000, . . . , 1,400,000. One

key difference between the sales prices in Figure 6 and the asking prices in Figure 5 is that

the former are much smoother than the latter. The lack of smoothness in the asking price

can be attributed to a behavioural response in seller’s listing strategy, which caused a fair

degree of heaping at certain thresholds in the asking price. In addition, Figure 6 shows no

that t = 0 given x.
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noticeable jump of the sales price at the million dollar threshold, suggesting that most of

the jump of the asking price may be mitigated by buyers’ bidding activities.

Together, the descriptive findings presented in Figures 5 and 6 are consistent with the

model. However, this evidence alone does not distinguish the policy effects from the impact

of other common macro forces around the time when the MI policy was implemented and

hence is not sufficient for supporting the implications from the theory. To isolate the MI

policy’s effects on the price distribution, we now turn to the bunching estimation.

6.1.2 Second step: bunching estimation

Set-up With the estimated ∆̂S(yj) = F̂Y 〈1|0〉(yj) − F̂Y 〈0|0〉(yj) in hand, we are now ready

to estimate the MI effects on asking and sales price using a bunching estimation procedure.

This procedure requires separation of the observed ∆̂S(yj) into two parts: the price segments

near $1M that are subject to the policy effect, and the segments that are not. The affected

segment is known as the ‘excluded’ region in the bunching literature. Since knowledge of this

region is not known a priori, we must also estimate this and we develop a procedure below to

do so. Once this region is obtained, we use standard methods to estimate the counterfactual

distribution by fitting a flexible polynomial to the empirical distribution, excluding data in

a range around $1M. We use the estimated polynomial to predict or ‘fill in’ the excluded

region which forms our counterfactual. Our estimates of the policy effect are given by the

difference between the observed ∆̂S(yj) and the estimated counterfactual.

In particular, consider the equation:

∆̂S(yj) =

p∑
i=0

βi · yij + βA · 1[yj = $1M ] + βB · 1[yj = $1M − h]

+
L∑
l=1

γl · 1[yj = $1M − h · (1 + l)] +
R∑
r=1

αr · 1[yj = $1M + h · r] + εj (8)

where p is the order of the polynomial, L is the excluded region to the left of bin just below

the cut off, R is the excluded region to the right of the cut off, and h is the bin size.
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The total observed jump at the cut-off $1M is21

∆̂S($1M)− ∆̂S($1M − h)︸ ︷︷ ︸
Jump at threshold

=

p∑
i=0

β̂i · yi$1M −
p∑
i=0

β̂i · yi$1M−h︸ ︷︷ ︸
Counterfactual

+ β̂A − β̂B︸ ︷︷ ︸
Total Policy Response

(9)

It is important to note that the interpretation of the total jump at the threshold is not

all causal. Since housing boom is larger in the lower-priced segments, we would expect that

the difference in the CDFs to have a jump as we move from the bins from the left to the

$1M bin, even in the absence of the MI. This jump is considered as “counterfactual” and

therefore should not be attributed to the policy.

After teasing out the “counterfactual jump,” we are left with β̂A − β̂B, which is the

policy response we aim to measure. A finding of β̂A > 0 is consistent with “bunching from

above” since it indicates that sellers that would otherwise locate in bins above $1M now

move down to locate in the $1M bin. A finding of β̂B < 0, on the other hand, is consistent

with “bunching from below” since it indicates that sellers that would otherwise locate below

the $1M bin now move up to locate in the $1M bin. Both responses are induced by the MI

policy.

Under the assumption that there is no extensive margin response, the two sources of

response described above imply two adding up constraints. First, sellers locating from adja-

cent bins below the threshold come from bins in the region L. Thus, “bunching from below”

should equal the the responses from lower adjacent bins, implying

RB ≡ βB −
L∑
l=1

γl · 1[yj = $1M − h · (1 + l)] = 0 (10)

21Note that there is no residual component in equation (8) since, through the excluded region, every bin
has its own dummy and the fit is exact. We observe the population of house sales during this time, thus, the
error term in (8) reflects specification error in our polynomial fit rather than sampling variation. We discuss
the computation of our standard errors of our estimates in more detail below.
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And similarly for those sellers coming from above the threshold:

RA ≡ βA −
R∑
r=1

αr · 1[yj = $1M + h · r] = 0. (11)

Estimation In order to implement our estimator, several decisions must be made about

unknown parameters, as is the case for bunching approaches. In particular, the number of

excluded bins to the left, L, and right, R, are unknown, as is the order of the polynomial, p.

In addition to this we choose to limit our estimation to range of price bins around the $1M

threshold. We do this because the success of our estimation procedure requires estimation of

the counterfactual in the region local to the policy threshold. Using data points that are far

away from the excluded region to predict values within the excluded region can be sensitive

to polynomial choice and implicitly place very high weights on observations far from the

threshold (?). Thus, we focus on a more narrow range, or estimation window, W , of house

prices around the policy threshold. Since we are fitting polynomial functions, this can be

thought of as a bandwidth choice for local polynomial regression with rectangular weights ?.

Thus, the parameters we require for estimation of the regression coefficients are (L,R,W, p).

We use a data-driven approach to select these parameters. The procedure we implement

is a 5-fold cross-validation procedure, described more fully in Appendix ??. Briefly, we

randomly split our individual-level data into 5 equally sized groups and carry out both step 1

and 2 of our estimation procedure using 4 of the groups (i.e., holding out the last group), and

then obtain predicted squared residuals from equation (8) for the hold-out group. We repeat

this procedure 5 times, holding out a different group each time, and average the predicted

squared residuals across each repetition. This is the cross-validated Mean Squared Error

(MSE) for a particular choice of (L,R,W, p). We perform a grid search over several values

of each parameter, and choose the specification which minimizes the MSE. This procedure is

very similar to ?, except in one important respect: in their implementation, they impose the

adding up constraints similar to (10) and (11). We choose not to impose the constraints at

the model selection stage, and instead test that the constraints hold in the data for a given
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selected model. This allows us to assess whether our data-driven model selection procedure

produces a model that is consistent with the theoretical framework.22

6.1.3 Results

Figure 7 shows a graphical test of Prediction 1 based on the estimates of equation (8).

In particular, we plot both the observed changes in CDFs of the asking price, ∆̂S(yj) =

F̂Y 〈1|0〉(yj)− F̂Y 〈0|0〉(yj), and the estimated counterfactual changes. The solid connected line

plots the observed changes, with each dot representing the difference in the CDFs before and

after the policy for each $5,000 price bin indicated on the x-axis. The dashed connected line

plots the counterfactual, while the vertical dashed lines mark the lower limit of the bunching

region ($975, 000) and the upper limit of the bunching region ($1, 020, 000) as described in

Section 6.1.2. Note that the width of the estimation widow ($75,000 dollars around the

threshold), the order of the polynomial (quartic), and the width of the excluded region were

chosen based on the cross-validation procedure outlined above.

The pattern shown in the figure is striking. Consistent with Prediction 1, the empirical

distribution exhibits a sharp discontinuity at the $1M threshold: moving from the $995, 000

bin to the $1M bin leads to a 0.45% increase in the mass of homes listed. In contrast, the

increase in the counterfactual distribution between these two bins is minor — only about

0.03%. Thus much of the bunching we observed at the $1M is driven by the MI policy.

Figure 8 further presents a graphical test of Prediction 1 based on the difference in densi-

ties. The spike in homes listed at the $1M is accompanied by dips in homes listed to the right

of and to the left of $1M. The spike reflects excess of homes listed in [$995, 000, $1, 000, 000]

22We do not claim that this method for model selection is necessarily optimal. In the literature on
bunching estimation, the excluded region is sometimes selected by visual inspection (?) in combination with
an iterative procedure (?) that selects the smallest width consistent with adding-up constraints. Often,
high-order global polynomials are used in estimation and robustness to alternative polynomial orders are
shown. In the closely related regression discontinuity literature, free parameters are sometimes chosen by
cross-validation (Lee and Lemieux, 2010). In a recent paper by ?, the authors are faced with many different
regions and time periods where bunching occurs, and so visual inspection is impractical. They develop a
k-fold cross-validation procedure to choose the width of the manipulation region and polynomial order. Our
approach closely follows theirs. However, we do consider a series of robustness checks to assess the sensitivity
of our estimates to the choice of parameters (L,R,W, p). In practice, we find that our estimates are quite
robust to reasonable deviations in the parameters selected by our cross-validation procedure.
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after the implementation of the MI. The dips reflect missing homes that would have been

listed away from the $1M in the absence of the MI.

Column (1) of Table 7 reports the bunching estimates. Standard errors are calculated

via bootstrap.23 Overall, we find that approximately 94 homes that would have otherwise

been listed away from $1M were shifted to the $1M bin. In other words, the MI policy

increased the number of homes listed in the million dollar price bin by 44% compared to the

counterfactual. Among these additional listings, about 60% are shifted from below $995, 000.

The remaining 40% come from above $1M. Both estimates are significant at the five-percent

level. Interpreting these estimates in the context of our model, this means that the MI

induces some sellers, who would have otherwise listed homes below $1M, to increase their

asking prices towards the $1M mark. By doing so, these sellers extract more surplus in the

bilateral situation, which compensates for the losses that they would have incurred in the

multiple offer situation when the MI is imposed. On the other hand, the MI also induces

some other sellers who would have otherwise listed homes above $1M to lower their asking

price to $1M. Doing so allows these sellers to attract both constrained and unconstrained

buyers.

Columns (2)-(8) provide a variety of robustness checks. Column (2) expands the sample

window to 20 bins on each side of $1M. Column (3) narrows the sample window to 10 bins

on each side of $1M. Column (4) includes a fourth-order, rather than third-order polynomial

used in the baseline specification. Column (5) expands the exclusive region on each side

of $1M. Column (6) imposes the constraints in equations (10) and (11) during estimation.

Column (7) includes a set of indicators for asking price at the round-numbers that are

multiples of 25, 000 and 50, 000. Reassuringly, the bunching estimates are extremely robust,

suggesting that our results are not driven by the selection of the size of the estimation

window, order of the polynomial, or the width of the excluded region. We discuss column 8

in section 6.1.5 below.

23We calculate standard errors for all estimated parameters by bootstrapping both step 1 and 2 of the
estimation procedure. We draw 399 random samples with replacement from the house-hold level data, and
calculate the standard deviation of our estimates for each of these samples.
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Turning to Prediction 3, we report the bunching estimates for the sales price in Table

7, with a visualization of the estimates shown in Figures 9 and 10. Despite sharp bunching

of the asking price, we do not find any bunching of the sales price at the million dollar

segment; the evidence is robust across different specifications. In light of Prediction 3, the

finding here suggests that the policy impact on the asking price is completely offset by the

intensified biddings among unconstrained buyers. To facilitate this interpretation, we will

directly estimate the policy effect on bidding intensities in Subsection 6.2.

6.1.4 Robustness Checks

In this section, we present two “placebo” tests as an additional check. First, we designate two

years prior to the implementation of the MI as “placebo” years. Specifically, we estimate

the counterfactual CDF of house price for July 2011 - June 2012 relative to the CDF in

the prior year and then compare this counterfactual CDF difference to the observed CDF

difference. The middle row of Table 4 presents the results. The total observed jump of at

$1M is 0.0018 for the asking price and −0.0012 for the sales price, both are statistically

insignificant. Thus, we do not find any significant discontinuity in the difference of CDF

prior to the implementation of the MI, as expected.

Second, we designate each alternative cut-off point that is well below or above $1M as a

“placebo” threshold. The idea is that since the MI policy was targeted at the $1M segment, it

should not affect houses priced well below or above the million dollar threshold and therefore

home buyers in those segments face no changes in their financial constraints. To investigate

this, for each alternative cut-off point at $25,000 intervals from $700,000 to $1,400,000, we

repeat our bunching estimation using this alternative cut-off as a threshold.

Table 7 reports the estimates of the total observed jump at the cut-off from 48 placebo

regressions where we repeat our main analysis for either a placebo year and/or a placebo

threshold. Out of the 48 bunching estimates, only 5 are statistically significant and only

1 is economically large. Most of estimates are statistically insignificant and economically

small. Taken individually, each estimate alone may not be sufficient to rule out the concern
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about psychology bias or other non-MI related factors. But taken together, the weight of the

evidence provides compelling evidence that the bunching estimates in Section 6.1.3 provide

an accurate measure of the effect of the MI policy on the asking and sales price.

6.1.5 Extensive Margin Responses

As mentioned above, the counterfactual distribution is estimated by fitting a flexible polyno-

mial through the empirical distribution, excluding an area around the $1M threshold. The

behavioural responses that we estimate stem from comparing the fitted polynomial coun-

terfactual estimate to the observed distribution. Because our approach uses data above the

threshold in the counterfactual estimation it may be affected by extensive margin responses.

That is, if the introduction of the MI policy caused potential sales above the threshold not

to occur, our estimated counterfactual distribution would not reflect the distribution that

would occur if the MI policy were removed. This is an issue that is common in the bunching

literature (Best et al., 2015; Best and Kleven, 2017; Kopczuk and Munroe, 2015).

We confront this issue in two ways. First, as suggested in Kleven (2016), we construct

the counterfactual using only data below $1M under the assumption that the distribution

below the threshold is not affected by potential extensive margin responses. These results

are presented in column 8 of Table 3, where we use the same excluded region and polynomial

order as in column (1), but extend the estimation window leftward in order to have enough

bins to identify the coefficients in (8). These results are similar to the other columns of the

table, and suggest that any extensive margin responses are minimal.

Our second approach expands on this approach. We assume that the pre-policy house

sales distribution is not affected by the policy and we continue to assume that the post-

period distribution below $1M is not affected by potential extensive margin responses. In

principle, we would like to compare the pre- and post-policy distribution above $1M in order

to estimate extensive margin responses. However, due to other macro-forces affecting the

housing market, this simple comparison will not identify an extensive margin response of the

MI policy. Recall from Figure 3 that the entire post-period distribution is shifted leftward,

34



indicating fewer sales at any given price. We assume that any shift in the pre- and post-

distributions below $1M is due to factors unrelated to the MI policy. We use this simple

location shift below $1M to create a counterfactual post-policy distribution that is shifted

such that it coincides with the pre-policy distribution. Any extensive margin response could

be visually detected by a bending in the post-policy counterfactual CDF above the policy

threshold. We present the results of this exercise in Figure XX. As can be seen from the

figure, there is very little evidence of an extensive margin response.

6.2 Prediction 2: The Policy Effects on Sale Premium and Time on the Market

The evidence uncovered so far is consistent with the model’s main predictions that the

MI led to a sharp bunching in the million dollar segment, with a lack of bunching for the

sales price. The lack of bunching for the sales price, according to the model, is due to the

mitigation by increased bidding intensity. In particular, Prediction 2 indicates that the MI

drives up market tightness just below the million dollar, leading to a discrete decline in

bidding intensity at the million dollar. In other words, we would expect that MI creates a

hot market for houses listed right below the $1M, reflected by higher probability of being

sold above asking and shorter time on the market.

We test this prediction by employing a regression discontinuity design. The variables of

interest are (1) the probability a house being sold above asking price conditional on being

listed at p = yAj ; and (2) the probability a house was on the market for more than two weeks

condition on being listed at p = yAj , where two weeks is the median time on the market in

the sample. We construct these two variables in three steps.

First, using the approach described in Section 6.1.1, we estimate the survivor function,

ŜY 〈1|1〉(y
A
j ) = 1− F̂Y 〈1|1〉(yAj ), which represents probability of a house being listed for at least

yAj . Holding the distribution of housing characteristics the same as the pre-policy period

using the reweighting method, we then estimate the counterfactual probability ŜY 〈1|0〉(y
A
j ) =

1− F̂Y 〈1|0〉(yAj ).

Second, we estimate the rescaled survivor function, RSY 〈1|1〉(y
A
j , y

S ≥ yA), which gives
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the joint probability that a house being listed for at least yAj and being sold above asking

price. Similarly, we estimate R̂SY 〈1|0〉(y
A
j , y

S ≥ yA), the counterfactual joint probability,

holding the distribution of housing characteristics the same as the pre-policy period.

Finally, using the estimated probabilities above and Bayes, we derive the conditional

probability that a house is sold above asking conditional on being listed at least yAj in the

pre-policy period:

ŜY 〈0|0〉(y
S ≥ yA|yAj ) =

R̂SY 〈0|0〉(y
A
j , y

S ≥ yA)

ŜY 〈0|0〉(yj)

and a counterfactual post-policy conditional probability:

ŜY 〈1|0〉(y
S ≥ yA|yAj ) =

R̂SY 〈1|0〉(y
A
j , y

S ≥ yA)

ŜY 〈1|0〉(yj)

Using this three-step procedure, we impute the two variables of interest: (1) ŜY 〈1|0〉(y
S ≥

yA|yAj ) − ŜY 〈0|0〉(y
S ≥ yA|yAj ), the change in the probability of being sold above asking;

and (2) ŜY 〈1|0〉(D ≥ 14|yAj ) − ŜY 〈0|0〉(D ≥ 14|yAj ), the change of in the probability of being

on the market for more than two weeks. Both are constructed relative to the pre-policy

period, conditional on being listed for at least yAj and holding the distribution of the housing

characteristics constant.

To test Prediction 2, we plot each of the two constructed variables above as a function

of the asking price, along with a third order polynomial fits separately to each side of the

$1M. Figures 11 and 12 show clear visual evidence that is consistent with Prediction 2. The

probability of being sold above asking exhibits a discrete downward jump at the $1M, with

an upward sloping curve to the left of the $1M. The probability of being on the market

for more than two weeks exhibits a discrete upward jump at the $1M, with a downward

sloping curve to the left of the $1M. Together, they reflect higher bidding intensity right

below $1M induced by the MI, consistent with sellers’ listing strategy and buyers’ pooling

response predicted by the theory.
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6.3 Cross-Market Analysis

Although not explicitly shown, the model also implies that the financial constraint effects on

the asking and sales price should be stronger for markets where prospective buyers are more

constrained by the policy. Given that we do not have the micro-level data on financial con-

straints, we do not aim to test this prediction formally. Instead, we provide some suggestive

evidence in this subsection.

In particular, we compare two submarkets of the Greater Toronto Area: central Toronto

and suburban Toronto. As noted in the section 5, million dollar homes are at the median

of house price distribution in central Toronto and about the top 5th percentile of house

price distribution in suburban Toronto. It seems plausible to assume that average income

of million dollar homes are at the median of income distribution in central Toronto and are

at the top 5th percentile of the income distribution in suburban Toronto. Table ? confirms

that the former is about half of the size of the latter. Thus we would should expect that

the MI policy has less substantial impact on sellers’ asking price and the final sales price in

suburban Toronto.

Tables 5 and 6 present the estimates of the policy effects on the asking price and sales

price in central and suburban Toronto, respectively. For the asking price, the policy response

in suburban Toronto is about half of that in central Toronto. For the sales price, the policy

response is less than one third of that in central Toronto. This evidence, combined with

the fact that buyers in suburban markets are less constrained by MI limitation, is consistent

with what the model predicts.

7 Conclusion

In this paper we explore the price implications of financial constraints in a booming housing

market. This is of particular interest and relevance because mortgage financing is a channel

through which policymakers in many countries are implementing macroprudential regulation.

In Canada, one such macroprudential policy was implemented in 2012 that obstructed access

to high LTV mortgage insurance for homes purchased at a price of $1M or more. We exploit
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the policy’s $1M threshold by combining bunching estimation and distribution regression to

estimate the effects of the policy on prices and other housing market outcomes.

To facilitate interpretation of the empirical results, we first characterize a directed search

equilibrium in a setting with competing auctions and exogenous bidding limits. We model

the million dollar policy as an additional financial constraint affecting a subset of prospective

buyers. We show that sellers respond strategically to the policy by adjusting their asking

prices to $1M, which attracts both constrained and unconstrained buyers. Consequently,

the policy’s impact on final sales prices is dampened by the heightened bidding intensity.

Using housing transaction data from the city of Toronto, we find that the million dollar

policy results in a large degree of bunching at the $1M for asking price but lack of bunching for

sales price. These results, together with the evidence that the incidence of bidding wars and

below average time-on-the-market are relatively higher for homes listed just below the $1M

threshold, agree well with the theoretical predictions. Finally, although the policy fails to

cool the boom at the million dollar segment, it does help improve borrower creditworthiness

by reallocating homes to less constrained buyers.
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Figure 1: Distributions of Asking Prices, Examples 1 (left) and 2 (right)
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Figure 3: Tightness as a Function of the Asking Price, Examples 1 (left) and 2 (right)
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Table 1:

Pre-Policy Post-Policy

Asking Sales Asking Sales

All Homes

Mean 725910.18 726631.69 773706.53 763510.49
25th Pct 459900.00 465000.00 499000.00 495000.00
50th Pct 599000.00 610000.00 639900.00 638000.00
75th Pct 799000.00 810000.00 849000.00 848000.00

N 22333.00 22333.00 19337.00 19337.00
Median Duration 10.00 10.00 13.00 13.00

1M Percentile 0.87 0.86 0.85 0.84

Homes 0.9-1M
N 842.00 941.00 910.00 930.00

Median Duration 9.00 8.00 13.00 12.00
Mean Price 964459.06 942429.12 965717.95 946051.48

Homes 1-1.1M
N 375.00 532.00 426.00 536.00

Median Duration 10.00 9.00 13.00 11.50
Mean Price 1072005.01 1043719.95 1074124.55 1043931.75
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Table 2: Regression Buncing Estimates for Post policy period

Asking Price

(1) (2) (3) (4) (5) (6) (7) (8)

Jump at cut-off 0.0045∗ 0.0045∗ 0.0045∗ 0.0045∗ 0.0045∗ 0.0045∗ 0.0045∗ 0.0045∗

(0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011)

Total Response 0.0042∗ 0.0037∗ 0.0038∗ 0.0042∗ 0.0042∗ 0.0048∗ 0.0041∗ 0.0044∗

(0.0011) (0.00100) (0.00083) (0.0010) (0.0011) (0.0014) (0.0010) (0.0016)

From Below -0.0025∗ -0.0021∗ -0.0027∗ -0.0024∗ -0.0024∗ -0.0028∗ -0.0024∗ -0.0024∗

(0.00076) (0.00076) (0.00077) (0.00075) (0.00077) (0.00092) (0.00075) (0.0010)

From Above 0.0018∗ 0.0017∗ 0.0011∗ 0.0018∗ 0.0018∗ 0.0020∗ 0.0017∗ 0.0019
(0.00077) (0.00067) (0.00045) (0.00073) (0.00077) (0.00090) (0.00064) (0.0019)

Observations 41670 41670 41670 41670 41670 41670 41670 41670
Excluded Bins:

L 4 4 4 4 5 4 4 4
R 3 3 3 3 4 3 3 3

Tests of Fit:

B −
∑L

l β
L
B -.0024 -.0018 -.0029∗ -.0023 -.003 2.1e-17∗ -.0023 -8.3e-17

(.0014) (.0014) (.0013) (.0013) (.002) (.) (.0014) (1.6e-11)

A−
∑R

r β
r
A .000041 .00092 .00015 1.2e-06 .00059 4.2e-17 .00017 3.3e-16∗

(.00054) (.00069) (.00079) (.00047) (.001) (1.5e-11) (.0005) (.)
Joint p-val. 0.20 0.30 0.13 0.20 0.33 . 0.26 .

Impact:

∆ Houses at cutoff 94.3 83.7 85.7 93.9 93.7 107.1 92.4 97.2
%∆ at cutoff 43.7 36.9 38.2 43.4 43.3 49.5 42.4 41.9
% from Above 92.9 115.4 75.9 90.5 83.6 102.5 95.3 159.4
% from Below 25.6 22.0 28.1 25.4 19.3 29.5 24.9 25.8

Specifications:

Poly. Order 2 2 2 3 2 2 2 2
Window 15 20 10 15 15 15 15 15
Other Constrained No Round Number Extensive

Standard errors in parentheses
∗ p < 0.05
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Table 6: Regression Buncing Estimates for Post policy period

Sales Price

(1) (2) (3) (4) (5) (6) (7) (8)

Jump at cut-off 0.00089 0.00089 0.00089 0.00089 0.00089 0.00089 0.00089 0.00089
(0.00045) (0.00045) (0.00045) (0.00045) (0.00045) (0.00045) (0.00045) (0.00045)

Total Response 0.00050 0.00054 0.00046 0.00046 0.00050 0.00016 0.00050 0.00015
(0.00045) (0.00045) (0.00045) (0.00044) (0.00045) (0.00064) (0.00045) (0.0012)

From Below -0.000034 0.00014 -0.000075 -0.0000030 -0.00015 0.000063 -0.000034 0.00084
(0.00056) (0.00057) (0.00055) (0.00058) (0.00062) (0.00066) (0.00056) (0.0014)

From Above 0.00047 0.00068 0.00038 0.00046 0.00035 0.00022 0.00047 0.00099
(0.00058) (0.00058) (0.00057) (0.00058) (0.00064) (0.00058) (0.00058) (0.0024)

Observations 41670 41670 41670 41670 41670 41670 41670 41670
Excluded Bins:

J 3 3 3 3 4 3 3 3
K 2 2 2 2 3 2 2 2

Tests of Fit:

B −
∑J

j β
j
B .00016 .00018 .00027 .0003 -.00074 -2.1e-17∗ .00016 -1.0e-14∗

(.00087) (.0009) (.00082) (.00083) (.0013) (.) (.00087) (.)

A−
∑K

k β
k
A -.00048 -.00045 -.00052 -.00052 -.00058 2.8e-17∗ -.00048 -2.7e-15

(.00048) (.00048) (.00048) (.00048) (.00089) (.) (.00048) (8.2e-11)
Joint p-val. 0.61 0.65 0.56 0.54 0.65 . 0.61 .

Impact:

∆ Houses at cutoff 11.2 12.1 10.2 10.3 11.2 3.57 11.2 3.41
%∆ at cutoff 26.2 29.0 23.5 23.8 26.4 8.10 26.2 7.27
% from Above 8.17 12.0 6.64 7.93 5.11 3.96 8.17 21.6
% from Below 0.39 1.63 0.86 0.035 1.49 0.75 0.39 10.8

Specifications:

Poly. Order 4 4 4 5 4 4 4 4
Window 20 25 15 20 20 20 20 20
Other Constrained No Round Number Extensive

Standard errors in parentheses
∗ p < 0.05
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Figure 5: Observed Distribution and Decomposition of Asking Prices
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Figure 6: Observed Distribution and Decomposition of Sales Prices
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Figure 7: Observed Cumulative Distribution and Decomposition of Asking Prices
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Note: A is the policy response from above, B is the policy response
from Below, and C is the counterfactual change. Vertical Dashed
lines indicate excluded region.

Figure 8: Observed Density Distribution of Asking Prices
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Figure 9: Observed Cumulative Distribution and Decomposition of Sales Prices
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Note: A is the policy response from above, B is the policy response
from Below, and C is the counterfactual change. Vertical Dashed
lines indicate excluded region.

Figure 10: Observed Density Distribution of Sales Prices
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Figure 11: Probability of Sales above Asking Conditional on Asking Price
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Figure 12: Probability of Being on Market for ≥ 2 weeks Conditional on Asking Price
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A Theory: Details and Derivations

A.1 Expected Payoffs

Expected payoffs are markedly different depending on whether the asking price, p, is above
or below buyers’ ability to pay. Consider each scenario separately.

Case I: p ≤ c. Expected payoffs in this case, denoted V i
I (p, λ, θ) for i ∈ {s, u, c}, are the

ones derived in Section 4.2.2.

Case II: c < p ≤ u. The seller’s expected net payoff is

V s
II(p, λ, θ) = −x+

∞∑
k=1

π(k)φk(1)p+
∞∑
k=2

π(k)
k∑
j=2

φk(j)u.

The closed-form expression is

V s
II(p, λ, θ) = −x+ (1− λ)θe−(1−λ)θp+

[
1− e−(1−λ)θ − (1− λ)θe−(1−λ)θ

]
u. (A.1)

The second term reflects the surplus from a transaction if she meets exactly one uncon-
strained buyer; the third term is the surplus when matched with two or more unconstrained
buyers.

The unconstrained buyer’s expected payoff is

V u
II(p, λ, θ) = π(0)(v − p) +

∞∑
k=1

π(k)

[
φk(0)(v − p) +

k∑
j=1

φk(j)
v − u
j + 1

]
.

The closed-form expression is

V u
II(p, λ, θ) =

1− e−(1−λ)θ

(1− λ)θ
(v − u) + e−(1−λ)θ(u− p). (A.2)

The first term is the expected surplus when competing for the house with other unconstrained
bidders; the second term reflects additional surplus arising from the possibility of being the
exclusive unconstrained buyer.

Since constrained buyers are excluded from the auction, their payoff is zero:

V c
II(p, λ, θ) = 0. (A.3)

Case III: p > u. In this case, all buyers are excluded from the auction. Buyers’ payoffs
are zero, and the seller’s net payoff is simply the value of maintaining ownership of the home
(normalized to zero) less the listing cost, x:

V s
III(p, λ, θ) = −x, V u

III(p, λ, θ) = 0 and V c
III(p, λ, θ) = 0. (A.4)
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Using the expected payoffs in each of the different cases, define the following value func-
tions: for i ∈ {s, u, c},

V i(p, λ, θ) =


V i
III(p, λ, θ) if p > u,
V i
II(p, λ, θ) if c < p ≤ u,
V i
I (p, λ, θ) if p ≤ c.

(A.5)

A.2 Algorithm for Constructing Pre-Policy DSE

Solution to Problem P0: Assuming (for the moment) an interior solution, the solution to
problem P0 satisfies the following first-order condition with respect to θ and the free-entry
condition:

x = [1− e−θ∗u − θ∗ue−θ
∗
u ]v

x = θ∗ue
−θ∗up∗ + [1− e−θ∗u − θ∗ue−θ

∗
u ]u,

which combine to yield

p∗u =
[1− e−θ∗u − θ∗ue−θ

∗
u ](v − u)

θ∗ue
−θ∗u

. (A.6)

Now taking into account the constraint imposed by bidding limit u, the solution is p0 =
min{u, p∗u} and θ0 satisfying V s(p0, 0, θ0) = 0.

Algorithm: If Λ = 0, set P = {p0}, θ(p0) = θ0, σ(p0) = B/θ0 and V̄ u = V u(p0, 0, θ0).
For p ≤ u, set θ to satisfy V̄ u = V u(p, 0, θ(p)) or, if there is no solution to this equation, set
θ(p) = 0. For p > u set θ(p) = 0.

A.3 Algorithm for Constructing Post-Policy DSE

Solution to Problem P1: Assuming (for the moment) an interior solution, the solution to
problem P1 satisfies the two constraints with equality, V s(p∗c , λ

∗
c , θ
∗
c ) = 0 and V u(p∗c , λ

∗
c , θ
∗
c ) =

V̄ u, and the following first-order condition.

e−θ
∗
cp∗c =

(
1−

[
1− e−θ∗c − θ∗ce−θ

∗
c
]
v − x

(1− λ∗c)θ∗c
1

V̄ u − V̄ c

)

×
(

1− e−(1−λ∗c)θ∗c − (1− λ∗c)θ∗ce−(1−λ∗c)θ∗c

(1− λ∗c)θ∗c
(v − u) + (1− λ∗c)λ∗cθ∗ce−(1−λ∗c)θ∗c (u− c)

)
where V̄ c = V c(p∗c , λ

∗
c , θ
∗
c ) and V̄ u is set equal to the maximized objective of problem P0. Now

taking into account the constraint imposed by bidding limit c, the solution is p1 = min{c, p∗c}
with λ1 and θ1 satisfying V s(p1, λ1, θ1) = 0 and V u(p1, λ1, θ1) = V̄ u.

Algorithm: If 0 < Λ ≤ λ1, set P = {p0, p1}, λ(p0) = 0, θ(p0) = θ0, λ(p1) = λ1,
θ(p1) = θ1, σ(p0) = (λ1 − Λ)B/(λ1θ0) and σ(p1) = ΛB/λ1θ1. The equilibrium values are
V̄ u = V u(p0, 0, θ0) = V u(p1, λ1, θ1) and V̄ c = V c(p1, λ1, θ1). For p ≤ c, set λ and θ to satisfy
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V̄ u = V u(p, λ(p), θ(p)) and V̄ c = V c(p, λ(p), θ(p)). If there is no solution to these equations
with λ(p) > 0, set λ(p) = 0 and θ to satisfy V̄ u = V u(p, 0, θ(p)); or if there is no solution to
these equations with λ(p) < 1, set λ(p) = 1 and θ to satisfy V̄ c = V c(p, 1, θ(p)). If there is
still no solution with λ(p) ∈ [0, 1] and θ(p) ≥ 0, set λ(p) arbitrarily and set θ(p) = 0. For
p ∈ (c, u], set λ(p) = 0 and θ to satisfy V̄ u = V u(p, 0, θ(p)) or, if there is no solution to this
equation, set θ(p) = 0. Finally, for p > u, set λ(p) = 0 and θ(p) = 0.

A.4 Omitted Proofs

Proof of Proposition 1. Construct a DSE as per the algorithms in Appendix A.2. Condi-
tions 1(ii) and 2 of Definition 1 hold by construction. Condition 1(i) also holds for all p > u
because V s(p > u, λ, θ) = −x. To show that condition 1(i) holds for all p ≤ u, suppose
(FSOC) that there exists p ≤ u such that V s(p, 0, θ(p)) > 0, or

θ(p)e−θ(p)p+
[
1− e−θ(p) − θ(p)e−θ(p)

]
u > x. (A.7)

There exists p′ < p such that V s(p′, 0, θ(p)) = 0, or

θ(p)e−θ(p)p′ +
[
1− e−θ(p) − θ(p)e−θ(p)

]
u = x.

Note, however, that

V̄ u =
1− e−θ(p)

θ(p)
(v − u) + e−θ(p)(u− p)︸ ︷︷ ︸
V u(p,0,θ(p))

<
1− e−θ(p)

θ(p)
(v − u) + e−θ(p)(u− p′)︸ ︷︷ ︸
V u(p′,0,θ(p))

. (A.8)

The equality follows by construction since inequality (A.7) requires θ(p) > 0. The inequality
follows from the fact that V u is decreasing in the asking price and p′ < p. The pair {p′, θ(p)}
therefore satisfies the constraint set of problem (P0) and, according to (A.8), achieves a
higher value of the objective than {p0, θ0}: a contradiction.

Proof of Proposition 2. Construct a DSE as per the algorithm in Appendix A.3. Con-
ditions 1(ii), 1(iii) and 2 of Definition 1 hold by construction. Condition 1(i) also holds for
all p > u because V s(p > u, λ, θ) = −x. To show that condition 1(i) holds for all p ≤ u,
suppose (FSOC) that there exists a profitable deviation: either (1) there exists p ≤ u such
that λ(p) = 0 and V s(p, λ(p), θ(p)) > 0, or (2) there exists p ≤ c such that λ(p) > 0 and
V s(p, λ(p), θ(p)) > 0.

For case (1), the contradiction can be derived in the same manner as in the proof of Propo-
sition 1. For case (2), the profitable deviation under consideration is V s(p ≤ c, λ(p), θ(p)) >
0, or

θe−θp+
[
1− e−θ − θe−θ

]
c+

[
1− e−(1−λ)θ − (1− λ)θe−(1−λ)θ

]
(u− c) > x, (A.9)

where, for notational convenience, λ and θ refer to λ(p) and θ(p). There exists p′′ < p such
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that V s(p′′, λ, θ) = 0, or

θe−θp′′ +
[
1− e−θ − θe−θ

]
c+

[
1− e−(1−λ)θ − (1− λ)θe−(1−λ)θ

]
(u− c) = x.

Note, however, that

V̄ c =
e−(1−λ)θ − e−θ

λθ
(v − c) + e−θ(c− p)︸ ︷︷ ︸
V c(p,λ,θ)

<
e−(1−λ)θ − e−θ

λθ
(v − c) + e−θ(c− p′′)︸ ︷︷ ︸
V c(p′′,λ,θ)

(A.10)

The equality follows by construction since inequality (A.9) requires θ > 0 and, by assumption,
λ > 0. The inequality follows from the fact that V c is decreasing in the asking price and
p′′ < p. Similarly, V̄ u = V u(p, λ, θ) < V u(p′′, λ, θ). The triple {p′′, λ, θ} therefore satisfies
the constraint set of problem (P1) and, according to (A.10), achieves a higher value of the
objective than {p1, λ1, θ1}: a contradiction.
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