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Abstract

Centralized markets reduce the costs of search for buyers and sellers. Their

`thickness' increases the chance of order execution at competitive prices. In

spite of the incentives to consolidate, some markets, securities markets and on-

line advertising, being the most notable, are fragmented into multiple trading

venues. We argue that fragmentation is an inevitable feature of any centralized

market except in certain special circumstances.1
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1 Introduction

A centralized market reduces the costs of clearing, settlement and search compared to

one consisting of multiple trading venues. Were these costs to decline because of tech-

nological innovation, a centralized market should still dominate a fragmented market

because traders would prefer the venue that o�ers the highest probability of order

execution and the most competitive prices. Each additional trader on an exchange

reduces the execution risk for other potential traders, attracting more traders. This

positive feedback should encourage trade to be concentrated in a single exchange.

In spite of the incentives to consolidate, many markets have spawned multiple

trading venues. Securities markets are the most well known example. Traditional

stock exchanges face a host of competitors such as ECNSs (electronic communication

networks), ATSs (alternative trading systems) and the trading desks of broker-dealer

�rms. These alternative trading venues are not restricted to non-standardized assets

and have large trading volumes. Securities markets are not unique in this respect. In

on-line advertising there are 5 major exchanges that are `open' and numerous others

that are `private'. These venues use a variety of pricing rules, need not broadcast the

bids they receive, and, in some cases allow traders to restrict who they will transact

with.2 Madhavan (2000) calls this the network externality puzzle and writes: �Despite

strong arguments for consolidation, many markets are fragmented and remain so for

long periods of time.�

A variety of explanations (not entirely mutually exclusive), summarized below,

have been o�ered for why centralized markets fragment.

1. Regulation: Fragmentation enhances e�ciency because competition between

exchanges forces them to narrow their bid-ask spreads (e.g., Pagano (1989);

Biais, Martimort, and Rochet (2000)). Fragmentation in securities markets can

be traced to regulation in the 80s and 90s designed to limit the abuse of market

power by operators of centralized exchanges.3 Fragmentation can also enhance

e�ciency (total welfare) by limiting the market power of participants (Malamud

and Rostek (2014)).4

2For fragmentation in labor markets see Roth and Xing (1994).
3Regulation National Market System in the US and the Market in Financial Instruments Directive

(MiFID) in Europe.
4Malamud and Rostek (2014) provide examples where a market fracture can increase the total

welfare of market participants, however, the payo� of some agents may be lower post fracture. We
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2. Heterogenous Preferences: Alternative trading venues arise to cater to traders

who di�er in their preferences for order size, anonymity and likelihood of exe-

cution (Harris (1993), Ambrus and Argenziano (2009) and Petrella (2009)).

3. Congestion: As a market becomes thicker, the time to select, evaluate, and

process o�ers lengthens, during which time prices may change. This encourages

participants to transact earlier, fragmenting the market in time (see Roth and

Xing (1994)).5

4. Informational: Traders seek out alternative venues so as to conceal private in-

formation (see Madhavan (1995)), other venues spring up to attract uninformed

traders from the incumbent exchange (Easley (1996)) or competing venues a�ect

the incentives to acquire information (Glode and Opp (2016)).

We don't consider the reasons listed above to be fundamental, because they can all

be eliminated, in principle, by a suitable (but possibly impractical) mechanism. In

the �rst case, the operator could be mandated to implement the constrained e�cient

mechanism. In the remaining cases, a mechanism that allowed agents to use a richer

message space to communicate preferences could be employed. In addition, the par-

ticular explanations given are tied to the institutional details of the setting in which

the asset is being traded.

This paper argues that centralized markets are inherently unstable and this is

the cause of fragmentation. Instability is caused by the violation of the price taking

assumption. Within the model in which we make this point, the reasons for fragmen-

tation just enumerated don't apply. Our setting is the standard model of bilateral

trade (Myerson and Satterthwaite (1983)) where each seller has one unit of a homo-

geneous good and each buyer is interested in purchasing at most one unit of the same

good. The private type of each buyer is their marginal value for the good and the

private type of each seller is the opportunity cost of their endowment. Thus, agents

are all interested in the same order size. Holding prices equal, they are indi�erent

about who they trade with. There is no common values component in the private

information of agents making them equally informed (or uninformed). Trade takes

place in a single time period, so the timing of trades is irrelevant. Our argument does

focus on the incentives for a group of agents to break o� from the centralized market.
5Congestion can cause fragmented markets to persist as agents tradeo� thickness in one venue for

less competition in another (Ellison and Fudenberg (2003), Ellison, Fudenberg and Mobius (2004)).
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not rely on the institutional details of either securities or advertising, in this sense we

are making a universal claim.

Trade within the incumbent exchange is modeled as being conducted via an in-

dividually rational, weakly budget balanced and incentive compatible mechanism.

The �rst condition is true of almost all observed trading mechanisms. The second

prevents the operator of the incumbent exchange from subsidizing trades. The third

recognizes that trading agents will act strategically. Even if the mechanism in the

incumbent exchange were not incentive compatible, by the revelation principle, there

would be a corresponding incentive compatible direct mechanism that would repli-

cate the outcome of the mechanism in the incumbent exchange. We are interested

in when the incumbent mechanism is stable, in the sense that no subset of agents

has an incentive to deviate and trade among themselves using a di�erent mechanism,

called the blocking mechanism. Our message is that budget balance and incentive

compatibility conspire to make this di�cult if not impossible. Given that individual

rationality, incentive compatibility, budget balance and e�ciency are incompatible,

we interpret this to mean that it is the violation of the price taking assumption that

makes an exchange vulnerable to fragmentation.

Formalizing the idea of blocking raises two conceptual di�culties. First, the de-

cision to participate in the blocking mechanism reveals something about one's type

which should be incorporated into the beliefs of potential counterparties. Second,

payo�s in the incumbent mechanism will depend on the equilibrium played in that

mechanism, which can be a�ected by the presence of a blocking mechanism. For this

reason, we consider two related notions of blocking that depend on the equilibrium

being �played� in the incumbent mechanism. The �rst, from Peivandi (2013), assumes

that agents in the incumbent mechanism play a dominant strategy equilibrium. The

second, new to this paper, assumes that the agents play a Bayesian equilibrium of the

incumbent mechanism. We distinguish between them by calling the �rst D-blocking

and the second B-blocking. They di�er from prior notions of blocking used in the

theory of cooperative games by allowing agents to condition their beliefs about coun-

terparties based on which mechanism they are participating in. Roughly speaking,

an incumbent mechanism is blocked by a coalition of agents and a blocking mecha-

nism if the blocking mechanism gives to each member of the blocking coalition, for

a critical subset of their types, at least as much surplus as they would obtain if they

remained in the incumbent mechanism. Furthermore, no agent with a type outside of
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their critical subset of types will participate in the blocking mechanism. One feature

of this notion of blocking di�erentiate it from prior notions (see Section 5) is that

each agent recognizes that a decision by a counterparty to defect from the incumbent

mechanism (or not) reveals some information about the counterparty's type, which

should be used. We argue that the conditions under which a mechanism is immune

to blocking are both restrictive and fragile. From this, we conclude that centralized

markets are unstable.

We o�er two sets of results. In the �rst, we restrict attention to deterministic

mechanisms that are ex-post (weakly) budget balanced (EBB), features enjoyed by

many observed trading rules. We do not specify a particular mechanism but consider

all mechanisms that are robust to the beliefs of agents. Like Hagerty and Rogerson

(1987) we model this by requiring the mechanism to be dominant strategy incen-

tive compatible (DSIC). This is often touted as a desirable feature for mechanisms.

Dominant strategy incentive compatibility does not exclude the possibility that the

mechanism can depend on the designer's beliefs. For example, the designer could

select a single price at which all trade must take place a priori, which depends on

the designer's beliefs about the distribution of types of the agents. We show that

for any EBB, and DSIC mechanism, there is a distribution over types, for which this

mechanism can be �D-blocked� by another ex-post individually rational (EIR), EBB,

and DSIC mechanism.

D-blocking is accomplished by a particularly simple mechanism called a positive

spread posted price mechanism. In this mechanism, two prices p1 ≤ p2 are posted.

If buyer and seller agree to trade, the seller is paid p1 and the buyer pays p2. The

spread of a posted price mechanism is p2 − p1, and this is what the designer pockets.

Thus, every EBB, and DSIC mechanism can be D-blocked by a mechanism that gives

the operator of the blocking mechanism positive expected pro�t. In fact, the blocking

mechanism can be implemented with one of the agents making a take it or leave it

o�er to a subset of agents. Thus, blocking does not rely on the presence of another

party who is more informed than the operator of the incumbent mechanism.

If we restrict attention to the case of just one buyer and seller, we provide a char-

acterization of all EIR, EBB and DSIC mechanisms that are immune to D-blocking.

It gives rise to an easily interpretable su�cient conditions for immunity to D-blocking.

For example, if the distribution of buyer and seller types satis�es the monotone haz-

ard rate condition, there is only one EIR, EBB, and DSIC mechanism immune to
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D-blocking. It is a posted price mechanism: a price p is �xed a priori, and a pair of

buyer and seller who wish to transact do so at price p.6 However, any �xed price p

will not su�ce. It must lie between the optimal monopsony price set by the highest

type buyer and the optimal monopoly price set by the lowest type seller. Therefore,

the only EIR, EBB and DSIC mechanisms immune to D-blocking must be sensitive

to the underlying distribution of types. If one desires a mechanism to be independent

of the beliefs of the designer as well, then, no mechanism (within the class considered)

is immune to D-blocking.

Our second result focuses on the double bid auction. With one buyer and seller,

the price is set between the bid and ask (provided they cross). It is observed in

practice, satis�es EIR and EBB, but is not DSIC. It is not even Bayesian incentive

compatible (BIC). It does satisfy a di�erent notion of robustness: the mechanism's

rules do not depend on the beliefs of the agents or designer. We show that there is a

Bayesian equilibrium of the double auction that cannot be B-blocked by any positive

spread posted price mechanism. This shows that the rules of the mechanism alone

do not determine its stability but the equilibrium played. The intuition carries to

the case of many buyers and sellers. Some Bayesian equilibria of the double auction

feature no trade for some agents and these non-trading agents may form a block. We

also furnish an example of a constrained e�cient equilibrium of a double auction that

can be blocked. This shows that maximizing e�ciency does not, in general, prevent

instability.

In the next section of this paper we introduce notation and give a precise de�nition

of D-blocking. The subsequent section states and proves the main results concerning

D-blocking. In section 4 we introduce B-blocking and its application to the double

bid auction. We contrast D and B-blocking with prior notions of the core of games

with incomplete information in section 5. Section 6 concludes.

2 D-blocking

Let N = {1, 2, 3, ..., n} be the set of agents. The value of agent i for a unit of the

good is vi ∈ Vi where Vi ⊂ R+ is bounded. Each vi is the private information of agent

i∈ N and is independently distributed. Each agent i has an endowment ωi ∈ {0, 1}
6One can interpret this as a reason for why posted price mechanisms are widely used in practice,

see Einav et al. (2013).
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of the good, which is common knowledge. If ωi = 1, then agent i is a seller, and if

ωi = 0, agent i is a buyer. Preferences are quasilinear; that is, buyer (seller) i's payo�

from receiving (giving up) a quantity q of the good (interpret as probability) for a

monetary payment (compensation) of t is qvi − t (t− qvi).
A direct mechanism is de�ned by an allocation rule and a payment rule. The

allocation rule maps pro�les of reports of the private information of agents to an

allocation of the good. If Q is the allocation rule, denote the component of Q that

corresponds to agent i's allocation by qi. Thus, qi :
∏

i∈N Vi → R+. As agent i has

an endowment of ωi, we require that an allocation rule be feasible in the sense that

for all i ∈ N and all pro�les v ∈
∏

i∈N Vi that

1. 1 ≥ qi(v) + ωi ≥ 0, and,

2.
∑

i∈N qi(v) = 0.

The payment rule maps each pro�le v ∈
∏

i∈N Vi to a per-unit price each agent must

pay. If P is the payment rule, the component of P that corresponds to agent i's

per-unit payment is denoted pi. Thus, pi :
∏

i∈N Vi → R+.

We now de�ne dominant strategy incentive compatibility. Let v = (vi, v−i) and

v̂ = (v̂i, v−i) be two pro�les of valuations in
∏

i∈N Vi . Observe that v̂ di�ers from v

in that agent i only changes the report of his marginal value. Agents can misreport

their marginal value or opportunity cost but not their role as buyer or seller. Note

that we only need to impose incentive compatibility on deviations from pro�les that

result in feasible outcomes. The mechanism (Q,P ) is DSIC if for all v and v̂:

qi(v)(vi − pi(v)) ≥ qi(v̂)(vi − pi(v̂)).

Mechanism (Q,P ) is EIR if for all pro�les v ∈
∏

i∈N Vi and all i ∈ N

qi(v)(vi − pi(v)) ≥ 0.

Mechanism (Q,P ) is EBB if for all v ∈
∏

i∈N Vi∑
i∈N

pi(v)qi(v) ≥ 0.
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In mechanism (Q,P ), the utility that agent i ∈ N under pro�le v enjoys is

ui(v, Q, P ) = qi(v)(vi − pi(v)).

The expected utility that agent i ∈ N enjoys when her type is vi is

Ev−i
[ui({vi, v−i}, Q, P )].

Now suppose an alternative feasible, DSIC, EIR mechanism (Q̂, P̂ ):

p̂i :
∏
i∈A

Vi → R+

q̂i :
∏
i∈A

Vi → R+ ∀i ∈ A

We will give a de�nition of what it means for (Q̂, P̂ ) to D-block the incumbent mech-

anism (Q,P ) by a subset A ⊆ N of the agents. Imagine that before participating

in the mechanism (Q,P ), each agent in A (and only A) is invited to participate in

(Q̂, P̂ ). If at least one of the agents in A declines the invitation, all agents are required

to participate in (Q,P ); in this case we say the D-block is unsuccessful. If every agent

in A accepts the invitation, this becomes common knowledge among them, and they

enjoy the outcome delivered by (Q̂, P̂ ). The agents now face a Bayesian game in which

they must �rst decide which of the two mechanisms to participate in and subsequently

what to report in their chosen mechanism. As each mechanism is DSIC, we assume

truthful reporting. We say the set A D-blocks (Q,P ) if there is Bayesian equilibrium

of the game, where with positive probability all agents in A choose (Q̂, P̂ ). Formally,

we need for each i ∈ A, a positive measure subset V ′i ⊆ Vi and an equilibrium where

each i ∈ A chooses (Q̂, P̂ ) if their type is in V ′i and (Q,P ) otherwise. Call V ′i the

critical set of types for agent i and for each i ∈ A let Ti be the event that each agent

j ∈ A \ {i} has a type in V ′j . The set A D-blocks (Q,P ) with respect to Πi∈AV
′
i if the

�ve conditions listed below hold.

1. If vi ∈ V ′i , then,

E−i[ui({vi, v−i}, Q, P )|Ti] ≤ E−i[ui({vi, vA\{i}}, Q̂, P̂ )|Ti] ∀i ∈ A (1)
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2. If vi /∈ V ′i then,

E−i[ui({vi, v−i}, Q, P )|Ti] ≥ E−i[ui({vi, vA\{i}}, Q̂, P̂ )|Ti] ∀i ∈ A. (2)

3. For all v̄ ∈
∏

i∈A V
′
i ∑

i∈A

q̂i(v̄) = 0. (3)

4.

∀v̄ ∈
∏
i∈A

V ′i
∑
i∈A

q̂i(v̄)p̂i(v̄) ≥ 0 (4)

5.

E[
∑
i∈A

q̂i(v̄)p̂i(v̄)|v̄ ∈
∏
i∈A

V ′i ] > 0. (5)

Condition (1) states that if each i ∈ A has a type in V ′i , then every agent in

A choosing to participate in (Q̂, P̂ ) is a best response to the other agents in A

doing so. Condition (2) states that if i ∈ A is the only member with a type

not in V ′i , then choosing to participate in (Q,P ) is a best response for agent

i. Condition (3) ensures that the sum of the net trades is zero. Condition (4)

states that the mechanism is weakly ex-post budget balanced. Condition (5)

requires that, on some pro�le, the D-blocking mechanism generates a positive

surplus. There is a technical and a substantive reason for this condition. The

strict inequality means that there is a strict incentive for someone to o�er the

D-blocking mechanism. In prior notions of blocking, the analogue of inequality

(1) holds strictly for some agent ito prevent a mechanism from blocking itself.

We eliminate the possibility of an exactly budget balanced mechanism being D-

blocked by itself by imposing a strict budget balanced condition on the blocking

mechanism.

We have assumed that if any agent in A declines the invitation, all agents must

participate in the incumbent mechanism. This makes D-blocking harder. To see

why, suppose one buyer and one seller only. If any agent who accepts the invitation

must trade in the alternative mechanism, there would be two pure strategy equilibria:

one where both agents always choose the incumbent mechanism and one where both

always choose the alternative. We also assumed that once the agents choose the

blocking mechanism, and this becomes common knowledge, the choice is irrevocable.
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This is not essential because the incumbent mechanism is DSIC. Allowing agents to

return to the incumbent mechanism after observing the participants in the blocking

mechanism does not alter subsequent results.

We have considered the Bayesian equilibrium for the agent's decision game rather

than a dominant strategy equilibrium. This is because the agents unlike the incum-

bent mechanism designer, share a common prior about the distribution of types.

3 Vulnerability to D-blocking

To provide some intuition, we restrict attention to one buyer and seller. In this case,

the set A of agents that could possibly D-block an incumbent mechanism will be the

set of all agents. We focus on positive (or zero) spread posted price mechanisms for

the reason stated below.

Observation 1. In the case of one buyer and one seller, every deterministic, dom-

inant strategy incentive compatible, (weakly) ex-post budget balanced, and ex-post in-

dividually rational mechanism that generates positive expected pro�ts can be imple-

mented as a positive spread posted price mechanism.

The proof follows Hagerty and Rogerson (1987) and can be found in Kuzmic and

Steg (2016). We give two su�cient conditions on the distribution of types such that

the only EIR, EBB and DSIC mechanism immune to D-blocking is a posted price

mechanism. One of these will follow from a characterization of mechanisms immune

to D-blocking. As the characterization is hard to interpret we do not emphasize it.

3.1 Bilateral Trade

Consider a positive spread posted price mechanism. It is easy to see that such a

mechanism can always be D-blocked by a positive spread posted price mechanism

with a smaller spread. Thus, the only mechanisms (within the class considered) that

might be immune to D-blocking are posted price mechanisms. But, what should the

posted price be? Let agent 1 be the seller with an opportunity cost of c ∈ [0, 1] and

ω1 = 1 and agent 2 the buyer with a value of v ∈ [0, 1] and ω2 = 0. Assume c and v

are private information distributed independently with atomless density functions g(c)

and f(v) respectively. Denote the corresponding cumulative distribution functions by

G and F . Endowments are common knowledge.
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Theorem 2. If x(1 − F (x)) and (1 − x)G(x) are concave and argmaxx∈[0,1] x(1 −
F (x)) ≥ arg maxx∈[0,1](1− x)G(x), then, any posted price mechanism with a price

p ∈ [arg max
x∈[0,1]

(1− x)G(x), arg max
x∈[0,1]

x(1− F (x))]

is immune to D-blocking. The left-hand endpoint of this interval is the optimal posted

price set by a buyer whose value is 1; the optimal monopsony price of the highest type

buyer. The right-hand endpoint is the optimal monopoly price set by the lowest type

seller.

Proof. Let p ∈ [arg maxx∈[0,1](1 − x)G(x), arg maxx∈[0,1] x(1 − F (x))] be the posted

price of the incumbent mechanism. Consider a positive spread posted price mecha-

nism (p′, p′′) with p′ < p′′ as a possible D-blocking mechanism. As there are only two

agents (one buyer and one seller), the D-blocking coalition will consist of just these

two agents. It remains to identify a critical set of types. We can do this by �reverse�

engineering. There are three cases:

1. Case 1: p′ < p′′ < p : A buyer with type v ≥ p′′ strictly prefers the D-blocking

mechanism conditioned on a seller being present. Thus, the critical set of types

of the buyer will be [1, p′′]. Now, we �nd the critical set of types for the seller

that would make them prefer the D-blocking mechanism. A seller with type

c < p′ will join the D-blocking mechanism only if:

(p− c)Pr(v ≥ p|v ≥ p′′) ≤ (p′ − c) ⇒ 1− F (p)

1− F (p′′)
≤ p′ − c
p− c

.

The right-hand side is maximized at c = 0; therefore, the posted price p can-

not be D-blocked by the positive spread posted price mechanism (p′, p′′) if the

following holds:
1− F (p)

1− F (p′′)
>
p′

p
.

This is equivalent to p(1− F (p)) > p′(1− F (p′′)). Therefore, if for all p′ < p,

p(1− F (p)) > p′(1− F (p′)), (6)

the posted price mechanism cannot be blocked with prices lower than p. This

is clearly true given the choice of p.
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2. Case 2: p < p′ < p′′ : In this case, the seller with opportunity cost c < p′ joins

the D-blocking mechanism conditional on a buyer being present. A buyer with

type v > p′′ joins the D-blocking mechanism if

(v − p)Pr(c ≤ p|c ≤ p′) ≤ v − p′′.

As in Case 1 this does not happen if:

∀ p′ > p (1−G(p)) > (1− p′)G(p′). (7)

3. Case 3: p′ < p < p′′ : In this case no agent will join the D-blocking mechanism.

Our second su�cient condition is based on the hazard rates of the distribution

of types and is based on a characterization of the EIR, EBB, and DSIC mechanisms

immune to D-blocking. Recall that the hazard rate of the buyer is de�ned as v− 1−F (v)
f(v)

while the hazard rate of the seller is de�ned as c+ G(c)
g(c)

.

Theorem 3. Assume that the hazard rate of both buyer and seller are increasing.

Suppose there exists p ∈ [0, 1] such that p − 1−F (p)
f(p)

and 1 − p − G(p)
g(p)

are both non-

positive. Then, a posted price mechanism with price p is immune to D-blocking by a

positive spread posted price mechanism.

Proof. Let M be any EBB and DSIC mechanism for the case of bilateral trade.

Denote by ub(v, c) and us(v, c) the buyer's and seller's payo�, respectively underM.

We �rst identify conditions under which M is immune to D-blocking by a positive

spread posted price mechanism.

Lemma 4. M is immune to D-blocking by a positive spread posted price mechanism

if and only if for all 0 ≤ y < x ≤ 1 the following holds:

E[ub(x, c)|c ≤ y] + E[us(v, y)|v ≥ x] ≥ x− y. (8)

If for some 0≤ y < x ≤ 1 inequality (8) is violated, we construct a posted

price blocking mechanism. Let Vb = [x, 1] and Vs = [0, y] be the critical set of

types for buyer and the seller respectively. As inequality (8) is violated, there exists
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0 ≤ p1 < p2 ≤ 1 such that the following holds:

E[ub(x, c)|c ≤ y] = x− p2, (9)

E[us(v, y)|v ≥ x] = p1 − y. (10)

For a candidate D-blocking mechanism we choose the positive spread posted price

mechanism with prices (p1, p2). This mechanism is clearly dominant strategy incentive

compatible and budget balanced. We now verify that all types in the critical set

weakly prefer the D-blocking mechanism to the mechanismM.

Let a(v, c) be the probability of trade in M when the the pro�le of types is

(v, c). Recall, from Myerson and Satterthwaite (1983) that ub(α, β) =
∫ α
0
a(t, β)dt

and us(α, β) =
∫ 1

β
a(α, t)dt. Therefore, for all 1 ≥ v′ ≥ x and y ≥ c′ ≥ 0 the following

holds:

E[ub(v
′, c)|c ≤ y] = E[ub(x, c)|c ≤ y] +

∫ v′

x

E[a(v, c)|c ≤ y]dv

≤ E[ub(x, c)|c ≤ y] + (v′ − x) = v′ − p2, (11)

E[us(v, c
′)|v ≥ x] = E[us(v, y)|v ≥ x] +

∫ y

c′
E[a(v, c)|v ≥ x]dc

≤ E[us(v, y)|v ≥ x] + (y − c′) = p1 − c′. (12)

Equations (11) and (12) ensure that all types in the critical set weakly prefer the

D-blocking mechanism to M. It is straightforward to check that when an agent's

type is outside the critical set, this agent does not prefer the blocking mechanism to

M.

To prove the reverse we show that if there is a positive spread posted price D-

blocking mechanism, inequality (8) is violated for some 0 ≤ y < x ≤ 1 . Let

0 ≤ p1 < p2 ≤ 1 be the prices in the D-blocking mechanism and Vb and Vs be

the associated critical set of types. As the sets Vb and Vs have positive measure, there

exists x ≥ p2 and y ≤ p1 such that x ∈ Vb and y ∈ Vs. For all such x, y the following

must hold:

E[ub(x, c)|c ∈ Vs] ≤ E[(x− p2)I{c≤p1}|c ∈ Vs]. (13)

The left-hand side of (13) is the expected payo� to the buyer when she participates

inM knowing that the seller has a type in the critical set Vs. The right-hand side is

the expected payo� to the buyer when she chooses to participate in the D-blocking
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mechanism conditional on the seller's type being in the critical set and the seller

participating in the D-blocking mechanism. A similar observation yields:

E[us(v, y)|v ∈ Vb] ≤ E[(p1 − y)I{v≥p2}|v ∈ Vb]. (14)

Thus, rewriting inequality (13) yields:∫
c∈Vs ub(x, c)g(c)dc

Pr(c ∈ Vs)
≤ (x− p2)Pr(Vs ∩ [0, p1])

Pr(c ∈ Vs)

⇐⇒
∫
c∈Vs ub(x, c)g(c)dc

Pr(Vs ∩ [0, p1])
≤ x− p2

⇐⇒

∫
c∈Vs∩[0,p1] ub(x, c)g(c)dc

Pr(Vs ∩ [0, p1])
≤ x− p2

⇐⇒ E[ub(x, c)|c ∈ Vs ∩ [0, p1]] ≤ x− p2 (15)

Similarly, the following inequality holds:

E[us(v, y)|v ∈ Vb ∩ [p2, 1]] ≤ p1 − y. (16)

Inequalities (15) and (16) allow us to assume Vb ⊆ [p2, 1] and Vs ⊆ [0, p1]. Let

x∗ = inf Vb and y
∗ = supVs. As the distribution of types is atomless, we may assume

x∗ ∈ Vb and y∗ ∈ Vs. The following inequalities hold:

E[ub(x
∗, c)|c ∈ Vs] ≤ x∗ − p2, (17)

E[us(v, y
∗)|v ∈ Vb] ≤ p1 − y∗. (18)

Note that the payo� to a seller with type c ∈ Vs ∩ [p1, 1] is zero in the D-blocking

mechanism. Therefore, if a seller has type in c ∈ Vs ∩ [p1, 1], it must receive a payo�

of zero inM, i.e., almost surely ∀v ∈ Vb us(v, c) = 0.This is similar to a buyer whose

type is in Vb ∩ [p2, 1]. If a(x∗, y) is constant for all y ≤ y∗, then ub(x
∗, c) = ub(x

∗, c′)

for any two c, c′ ∈ Vs. It follows from (17) that ub(x
∗, c) = x∗ − p2 for all c ≤ y∗.

Hence

E[ub(x
∗, c)|c ≤ y∗] ≤ x∗ − p2, (19)
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Similarly, if a(x, y∗) is constant for all x ≥ x∗ we deduce that

E[us(v, y
∗)|v ≥ x∗] ≤ p1 − y∗. (20)

Thus, if a(x, y) is constant in the relevant ranges, the proof is complete. Suppose,

for a contradiction, this is not true. Consider the case x > x∗ (a similar argument

applies when y < y∗). For all x > x∗ the following holds:

E[ub(x, c)|c ∈ Vc] = E[ub(x
∗, c)|c ∈ Vc] +

∫ x

x∗
E[a(s, c)|c ∈ Vc]ds

≤ (x∗ − p2) + (x− x∗) = x− p2 (21)

If inequality (21) holds with equality for any x̄ > x∗, it must be the case that for

all x > x∗ and almost all c ∈ Vc , a(x, c) = 1. To see why, note that equality for

x = x̄ implies that a(x, c) = 1 for all x∗ < x ≤ x̄. However, a(·, c) is monotone in its

�rst component by dominant strategy incentive compatibility. Therefore, a(x, c) = 1

for all x > x∗. This means that a(x, c) is constant and (19) applies.

Suppose then that inequality (21) is strict for all x > x∗. Therefore, E[ub(x, c)|c ∈
Vc] < x − p2 for all x > x∗. Hence, x ∈ Vb for all x > x∗. A similar argument shows

that y ∈ Vs for all y < y∗. This proves the lemma.

Consider a posted price mechanism that selects a price according to density h(p).

Lemma 8 implies that this mechanism is D-blocked by a positive spread posted price

mechanism if for all 1 ≥ x > y ≥ 0 the following holds:∫ x

y

(x− p)h(p)dp+

∫ y
0

∫ p
0

(x− p)g(c)h(p)dcdp

G(y)

+

∫ x

y

(p− y)h(p)dp+

∫ 1

x

∫ 1

p
(p− y)h(p)f(v)dvdp

1− F (x)

≥ x− y (22)

The right-hand side of inequality (22) can be rewritten as follows:

(x− y)(H(x)−H(y)) +

∫ 1

x

(p− y)
1− F (p)

1− F (x)
h(p)dp+

∫ y

0

(x− p)G(p)

G(y)
h(p)dp
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Using integration by parts inequality (22) can be written as follows:∫ y

0

∫ 1

x

H(v)(v − 1− F (v)

f(v)
− y)f(v)g(c)dvdc+∫ y

0

∫ 1

x

H(c)(c+
G(c)

g(c)
− x)f(v)g(c)dvdc ≥ (x− y)G(y)(1− F (x)) (23)

Inequality (23) provides a necessary and su�cient condition for immunity of a

trade mechanism to D-blocking by a positive spread posted price mechanism.

To prove this, consider a randomized posted price mechanism that randomizes

only over prices for which both hazard rates are negative. Note that if H(v) = 1 for

all v ≥ x and H(v) = 0 for all v ≤ y, then inequality (23) holds with equality. Such

a randomized posted price mechanism sets H(v) < 1 in the �rst part of the integral

only if v− 1−F (v)
f(v)

≤ 0 and it sets H(v) > 0 in the second integral only if G(c)
g(c)
− 1 ≥ 0.

Note that

v − 1− F (v)

f(v)
≤ 0⇒ v − 1− F (v)

f(v)
− y ≤ 0 and

G(c)

g(c)
− 1 ≥ 0⇒ G(c)

g(c)
− x ≥ 0.

Therefore, inequality (23) holds for this mechanism. This proves the theorem.

3.2 The General Case

We now allow for more than one buyer and seller.

Theorem 5. Fix a EBB and DSIC mechanism that is robust to the beliefs of the

designer. For this mechanism there is an atomless distribution over types under which

the mechanism can be D-blocked by a group of agents.

Proof. Suppose the mechanism cannot be D-blocked under any atomless distribution

over types. We show that such a mechanism must be ex-post e�cient. The theorem

follows from the fact that such a mechanism does not exist. Let I ⊂ N be the

set of sellers and J ⊂ N be the set of buyers. Consider a pro�le of valuations

x = (xI , xJ) ∈
∏

i∈N Vi. Let I
′ ⊆ I and J ′ ⊆ J be the subset of the sellers and buyer

that should trade in an e�cient allocation. Note that |I ′| = |J ′|. Let Wi be the event

that the types of the sellers in I ′ \ {i} are below the xI′\i and the type of buyers in
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J ′ \ i are below xJ ′\is for all agents in I
′ ∪ J ′. Formally,

Wi = {v ∈
∏
i∈N

Vi|∀k ∈ I ′ \ {i} vk ≤ xk and ∀k ∈ J ′ \ {i} vk ≥ xk}.

If the following inequality is violated one can construct a D-blocking mechanism as

in the proof of theorem (3).∑
i∈I′∪J ′

E[ui(xi, v−i)|Wi] ≥
∑
k∈J ′

xk −
∑
k∈I′

xk. (24)

Inequality (24) must hold for all possible atomless distributions. Consider a sequence

of the atomless distributions that converge to the distribution that puts probability

one on the event that the type pro�le is x. Therefore, the following must hold:∑
i∈I′∪J ′

E[ui(x)|Wi] ≥
∑
k∈J ′

xk −
∑
k∈I′

xk. (25)

Inequality (25) implies that the mechanism must be e�cient.

If we have the same number of buyers and sellers and choose the posted price p so

that 1−F (p) = G(p), as the number of agents increases we converge to the Walrasian

outcome. As the Walrasian outcome is in the core, this appears to contradict Theorem

5. It does not. As the number of agents increases, the expected pro�t of the blocking

mechanism will decrease but still be positive. It is only in the continuum limit that

the expected pro�t of a blocking mechanism falls to zero. We interpret this to mean

that D-blocking can only take place if the price-taking assumption is violated.

4 Non-DSIC Mechanisms

In this section we examine two di�erent approaches to stability when the incumbent

mechanism is not DSIC. The �rst mimics D-blocking and is almost the same as the

credible core of Dutta and Vohra (2005).

4.1 C-blocking

The notion of blocking mimics D-blocking. Call it C-blocking. First, select a Bayesian

equilibrium of the incumbent mechanism, call it the chosen equilibrium. If a block
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fails, the agents in the putative blocking coalition A are assumed to play the chosen

equilibrium of the incumbent mechanism. This is analogous to the de�nition of D-

blocking where the agents in the putative blocking coalition continue to play the initial

truthful equilibrium of the incumbent mechanism. It di�ers slightly from blocking

in the credible core in that we continue to assume that the blocking mechanism be

DSIC. In the credible core, the blocking mechanism is BIC.

Denote the incumbent mechanism, not necessarily direct, by (M,P,Q) where

M =
∏

i∈N Mi is the message space. Denote the putative blocking mechanism by

(P̂ , Q̂). The payo� of agent i with type vi when all agents send message pro�le m is

denoted ui(vi, {m}, Q, P ). We use the notation (mi(vi))i∈N for the chosen Bayesian

Equilibrium of the incumbent mechanism. As in the case of D-blocking, before par-

ticipating in the incumbent mechanism (Q,P ), each agent in the putative blocking

coalition A (and only A) is invited to participate in (Q̂, P̂ ). If at least one of the

agents in A declines the invitation, all agents are required to participate in (Q,P ); in

this case the block fails. The de�nition of C-blocking is as follows:

The agents in A and a mechanism (P̂ , Q̂) block the incumbent mechanism with

equilibrium (mi(.))i∈N if there exists a non-zero measure subset of types (V ′i )i∈A (the

critical subset) such that the following inequalities hold,

1. For all i ∈ A, if vi ∈ V ′i , then,

E−i[ui(vi, {mi(vi), v−i)}, Q, P )|Ti] ≤ E−i[ui({vi, vA\{i}}, Q̂, P̂ )|Ti] (26)

Ti = {(vk)k∈A|vk ∈ V ′k , ∀k ∈ A \ {i}}(27)

2. For all i ∈ A, if vi /∈ V ′i then,

E−i[ui(vi, {mi(vi), v−i}, Q, P )|Ti] ≥ E−i[ui({vi, vA\{i}}, Q̂, P̂ )|Ti]. (28)

3. For all v̄ ∈
∏

i∈A V
′
i , ∑

i∈A

q̂i(v̄) = 0. (29)

4.

E[
∑
i∈A

q̂i(v̄)p̂i(v̄)|v̄ ∈
∏
i∈A

V ′i ] > 0. (30)
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A mechanism is immune to C-blocking if it has a Bayesian equilibrium for which no

blocking occurs.

A well studied and widely used instance of a non-DSIC mechanism is the buyer's

bid double auction. With m buyers and m sellers, buyers and sellers submit bids and

asks, and the mechanism designer sorts the bids and asks in an increasing order, the

price is the m + 1'th number in the order, sellers with an opportunity cost strictly

less than the price and buyers with a valuation greater or equal to the price trade.

Satterthwaite and Williams (1989) prove that the buyer's bid double auction has

an equilibrium in which the seller submits his opportunity cost and the buyer with

valuation v submits bid b(v), where b(v) is increasing and continuous in v.

Theorem 6. Assume there is one buyer and one seller and that types are drawn inde-

pendently from an atomless distribution with continuous probability density function.

Then, the Bayesian Nash Equilibrium of the buyer's bid double auction described in

Satterthwaite and Williams (1989) is immune to C-blocking by positive-spread posted

price mechanisms.

Proof. We show that this equilibrium cannot be blocked by any positive-spread posted

price mechanism. Assume, on the contrary, that a block exists. A similar argument

as in the proof of theorem (8) shows that the critical sets should be V ′b = [x, 1] and

V ′s = [0, y], for the buyer and the seller respectively, for some 1 ≥ x > y ≥ 0. Given

seller's opportunity cost c and buyer's valuation v and buyer's bid b, ub(v, {b, c}, Q, P ))

and us(c, {b, c}, Q, P ) denote the buyer's and seller's payo� from the double auction,

respectively. We show the following inequality holds, preventing a block from forming.

Es[ub(x, {b(x), c}, Q, P )|c ∈ [0, y]] +Ev[us(y, {b(v), y}, Q, P )|v ∈ [x, 1]] ≥ x−y. (31)

We show inequality (31) is violated. We consider two cases:

1. b(x) ≥ y:

Note that ub(x, {b(x), c}, Q, P )) is decreasing in c and us(y, {b(v), y}, Q, P ) is

increasing in v, therefore,

Ec[ub(x, {b(x), c}, Q, P )|c ∈ [0, y]] + Ev[us(y, {b(v), y}, Q, P )|v ∈ [x, 1]] ≥

ub(x, {b(x), y}, Q, P ) + us(y, {b(x), y}, Q, P ).
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Buyer with type x trades with seller with type y with price b(x), therefore,

ub(x, {b(x), y}, Q, P ) + us(y, {b(x), y}, Q, P ) = x− y.

2. b(x) < y:

Note that the buyer with valuation x does not trade with seller whose oppor-

tunity cost exceeds y. Therefore,

Ec[ub(x, {b(x), s}, Q, P )|c ∈ [0, y]] =
Ec[ub(x, {b(x), c}, Q, P )]

Pr(c ∈ [0, y])
. (32)

Note that a bid equal to b(x) maximizes the surplus of a buyer with valuation

x. In particular, the buyer weakly prefers to bid b(x) instead of y; therefore,

Ec[ub(x, {b(x), s}, Q, P )] ≥ (x− y)Pr(c ∈ [0, y]). (33)

Equations (32) and (33) imply:

Ec[ub(x, {b(x), s}, Q, P )|s ∈ [0, y]] ≥ x− y. (34)

Another class of well studied double bid auctions are the mid-point double auctions

de�ned as follows: Assume there are n buyers and m sellers. Each buyer i reports

bid, bi, and each seller j reports an ask, cj. Bids and asks are positive real numbers.

Index the agents so that b1 ≥ b2 ≥ b3 ≥ ... ≥ bn and c1 ≤ c2 ≤ c3 ≤ ... ≤ cm. Let

k be the largest index where bk ≥ ck. All buyers with bids larger or equal to bk and

all sellers with asks smaller or equal to ck trade at the price of
bk+ck

2
. Thus, the price

is allowed to depend on the pro�le of reported bids. If the number of trading buyers

(sellers) is more than the number of trading sellers (buyers), then sellers (buyers)

must be rationed.

Assume one buyer and one seller with types selected from the uniform distribution

over [0, 1]. Consider the double bid auction that selects the mid-point between the

bid and the ask. There is a Bayesian equilibrium of this double bid auction that is

constrained e�cient. The buyer with valuation v bids b(v) = 2
3
v + 1

12
and the seller

with opportunity cost c asks a(c) = 2
3
c+ 1

4
.
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Proposition 7. When there is one buyer and one seller, the constrained e�cient

equilibrium of the mid-point double auction can be C-blocked by a randomized positive

spread posted price mechanism.

Proof. We design a randomized positive spread posted price mechanism with prices
1
2
−ε and 1

2
+ε, and probability of trade π. Set of types who participate in the blocking

mechanism is [1
2

+ ε, 5
8

+ δ] and [3
8
− δ, 1

2
− ε]. For the B-blocking to work, we �nd ε,

δ and π such that the following holds:

1. For v ∈ [1
2

+ ε, 5
8

+ δ],

E[ub(v, c)|c ∈ [
3

8
− δ, 1

2
− ε]] ≤ π(v − 1

2
− ε)].

2. For v /∈ [1
2

+ ε, 5
8

+ δ],

E[ub(v, c)|c ∈ [
3

8
− δ, 1

2
− ε]] ≥ π(v − 1

2
− ε)].

3. For c ∈ [3
8
− δ, 1

2
− ε],

E[us(v, c)|v ∈ [
1

2
+ ε,

5

8
+ δ]] ≤ π(

1

2
− ε− c)],

4. For c /∈ [3
8
− δ, 1

2
− ε],

E[us(v, c)|v ∈ [
1

2
+ ε,

5

8
+ δ]] ≤ π(

1

2
− ε− c)],

It is easy to check that ε = δ = 1
32

and π = 7
12

satisfy the above conditions above.

This example shows that constrained e�ciency is not an antidote to instability.

4.2 B-Blocking

When a block fails under C-blocking , the agents are assumed to play the chosen

equilibrium of the incumbent mechanism. However, failure of the block reveals infor-

mation to members of the putative blocking coalition that will change their beliefs
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about the types of the other agents. We assert that this should change the equilib-

rium played in the incumbent mechanism. Furthermore, the precise equilibrium will

depend on what information is revealed to which agent. Here we explore one such

possibility.

As before, if at least one of the agents in the putative blocking coalition A declines

the invitation, all agents must participate in (Q,P ); in this case the block fails. If

every agent in A accepts the invitation, this selection is revealed to all agents. At

this point, each agent in A is given the option of returning to (Q,P ). If any one

of them chooses to return, all agents in A must return. If all agents in A elect not

to return, they enjoy the outcome delivered by (Q̂, P̂ ). This return feature serves

to make the event that all agent's types are in their respective critical sets common

knowledge. Therefore, any Bayesian equilibrium of the incumbent mechanism should

be consistent with this updated belief and hence, must satisfy,

∀i ∈ N and vi ∈ V i mi(vi) = argmaxmi∈Mi
E[ui(vi, {mi,m−i(v−i)}, Q, P )|Ti].

The agents in A and a mechanism (P̂ , Q̂) B-block the incumbent mechanism for

a non-zero measure subset of types (V ′i )i∈A (the critical set) and consistent Bayesian

equilibrium of the incumbent mechanism, mi(vi) if the following conditions are satis-

�ed:

1. For al i ∈ A, if vi ∈ V ′i , then,

E−i[ui(vi, {mi(vi),mi(v−i))}, Q, P )|Ti] (35)

≤ E−i[ui({vi, vA\{i}}, Q̂, P̂ )|Ti] (36)

Ti = {(vk)k∈A|vk ∈ V ′k ,∀k ∈ A \ {i}} (37)

2. For al i ∈ A, if vi /∈ V ′i then,

max
mi∈Mi

E−i[ui(vi, {mi,mi(v−i)}, Q, P )|Ti] ≥ E−i[ui({vi, vA\{i}}, Q̂, P̂ )|Ti] ∀i ∈ A.
(38)

3. For all v̄ ∈
∏

i∈A V
′
i , ∑

i∈A

q̂i(v̄) = 0. (39)
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4.

E[
∑
i∈A

q̂i(v̄)p̂i(v̄)|v̄ ∈
∏
i∈A

V ′i ] > 0. (40)

We can interpret these conditions in terms of the following �exit� game: agents in A

simultaneously decide to join (P̂ , Q̂) or not. Equations (35) and (38) imply that the

�exit� game has a Bayesian equilibrium where agents in A choose the exit option if

their types are in their respective critical set of types. Equation (39) is the market

clearing condition. Finally, (40) requires that that the blocking mechanism generate

positive expected surplus (conditional on types being in the critical set). The dif-

ference between B-blocking (with return) and D-blocking is that agents may report

messages di�erent from those reported when there was no alternative mechanism.

When an agent with a type in the critical set learns that the block has failed, she or

he has no choice about which mechanism to participate in, therefore what strategy is

adopted in the incumbent mechanism is moot.

We extend the notion of B-blocking to allow the blocking mechanism to execute

trades even when a strict subset of the blocking coalition participate in the blocking

mechanism. Assume all agents have a null message such that when a buyer (seller)

sends that message, the incumbent mechanism does not give (get) the object to (from)

that buyer (seller). When agents participate in a blocking mechanism we assume a

null message is sent to the incumbent mechanism. Denote the null message by ∅. We

permit the blocking mechanism to execute trades between the subset of the blocking

coalition that participate in. Let A be the set of agents who are invited to block the

incumbent mechanism with blocking mechanism M̂. For each agent i ∈ A and subset

B ⊆ A, V B
i denotes the set of types who participate in the blocking mechanism when

i observes the set B of agents has participated in the blocking mechanism. Denote

by (mB
i (vi))i∈N the equilibrium of the incumbent mechanism when the type of agent

i ∈ B are in their respective critical sets and types of agents in A \ B are not. Set

ui({vi, vB\{i}},M̂B) to be the payo� of agent i from the blocking mechanism when

agents in B participate in the blocking mechanism. For a block to take place the

following must hold for all i ∈ A and sets B that satisfy i ∈ B ⊆ A:
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1. For al i ∈ A, if vi ∈ V ′i , then,

E−i[ui(vi, {mB
i (vi),m

B
−i(v−i)},M̂B)|TBi ] (41)

≤ E−i[ui({vi, vA\{i}},M̂B)|TBi ] (42)

TBi = {(vk)k∈A|vk ∈ V B
k , ∀k ∈ B \ {i}, vk /∈ V B

k , ∀k ∈ A \B} (43)

2. For al i ∈ A, if vi /∈ V ′i then,

max
mi∈Mi

E−i[ui(vi, {mi,m
B
−i(v−i)},M̂B)|TBi ] ≥ E−i[ui({vi, vA\{i}},M̂B)|TBi ].

(44)

3. For all v̄ ∈
∏

i∈B V
′
i , ∑

i∈B

q̂i(v̄) = 0. (45)

4.

E[
∑
i∈A

q̂i(v̄)p̂i(v̄)|v̄ ∈
∏
i∈A

V ′i ] > 0. (46)

Consider now any member of the class of double auctions. For clarity, it may be

helpful to focus on the midpoint double auction, but our results below hold for all

members of the class of double auctions.

Theorem 8. Assume there is one buyer and one seller, then for every positive-spread

posted price mechanism, there exists a consistent equilibrium for the midpoint double

auction and subset of types such that the midpoint double auction is immune to B-

blocking by that positive-spread posted price mechanisms.

Proof. Consider a potential positive-spread posted-price mechanism with prices p and

p′ such that p < p′. Suppose, for a contradiction, that it B-blocks the double auction.

We show the set of buyer types who visit the blocking mechanism is [x, 1] and the set

of seller types is [0, y] , for some x and y such that p′ < x and y < p. Set V ′b and V
′
s to

be the type of agents. Let x = inf{v|v ∈ V ′b} and y = sup{s|s ∈ V ′s}. If V ′b 6= [x, 1],

there exists x′ > x such that x′ /∈ V ′b . In that case, the following inequalities must

hold:

Es[ui(x, {mb(x),ms(s)}, Q, P )|s ∈ V ′s ] ≤ x− p′, (47)

Es[ui(x
′, {mb(x

′),ms(s)}, Q, P )|s ∈ V ′s ] > x′ − p. (48)
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Inequalities (47) and (48) imply:

Es[ui(x
′, {mb(x

′),ms(s)}, Q, P )|s ∈ V ′s ]− (49)

Es[ui(x, {mb(x),ms(s)}, Q, P )|s ∈ V ′s ] > x′ − x. (50)

Set a(v) to be the probability that buyer with type v trades when the seller's type is

in V ′s . The right-hand side of inequality (49) is equal to
∫ x′
x
a(v)dv. Note that since

a(v) ≤ 1,
∫ x′
x
a(v)dv ≤ x′ − x which contradicts with (49). The contradiction proves

V ′b = [x, 1], similar proof shows V ′s = [0, y].

Consider a Bayesian equilibrium where the buyer and the seller both report the

same bid p′′, such that p < p′′ < p′. Note that this equilibrium is consistent, however,

equation (35) is violated.

Theorem (8) and (6) show that despite Theorem (5), some equilibria of the double

auction are immune to B-blocking by positive-spread posted price mechanisms. The

incumbent mechanism is not immune to blocking if agents coordinate on the wrong

equilibrium. For example, if the no trade equilibrium is played, all agents prefer to

participate in the blocking mechanism. Thus, immunity to B-blocking depends on

the equilibrium selected in the incumbent mechanism. This means that the rules of

trade alone do not su�ce to tells us if an incumbent mechanism is stable or not.

5 Prior Notions of Blocking

Immunity to D-blocking (or B-blocking) can be interpreted as a notion of the core

of a cooperative game of incomplete information. Forges, Minelli, and Vohra (2002)

provides a brief survey of various notions of the core for cooperative games of in-

complete information. They di�er on two dimensions. First, is the decision to block

made at the ex-ante or interim stage? Second, are incentive constraints relevant? In

our case, the decision to block is made at the interim stage and incentive constraints

are certainly relevant. For this reason, we don't discuss either the ex-ante core or

the coarse core.7 The corresponding incentive versions of these core concepts and

their drawbacks are summarized in Dutta and Vohra (2005). In response to these

7The notion of durable decision rules due to Holmstrom and Myerson (1983) is concerned with
blocking by the grand coalition only.
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drawbacks, Dutta and Vohra (2005) propose the credible core and this is the notion

most relevant to this paper. We �rst contrast the credible core with the notion of

D-blocking.

In the credible core, the incumbent mechanism can be any BIC mechanism, not

just DSIC. By restricting ourselves to DSIC mechanisms we avoid a problem not

addressed in Dutta and Vohra (2005). Speci�cally, Bayesian incentive compatibility

is a function of the mechanism and the beliefs of the agents. When a block fails and

this event becomes known to the agents in the putative blocking coalition A, it changes

their beliefs about the types. Truthful reporting in the incumbent mechanism need not

be an equilibrium anymore. This issue does not arise when the incumbent mechanism

is DSIC. The second di�erence is that in Dutta and Vohra (2005) the alternative

mechanism is only BIC assuming types lie in their respective critical set. It is enforced

by barring participation by types not in the critical set. This is accomplished by

choosing `no-trade' in the event than an agent in A reports a type outside their

critical set. In our case the alternative mechanism does not rely on such restrictions

because it is DSIC.

We now discuss the di�erences between the credible core and B-blocking. In the

credible core, agents do not update their beliefs when a block fails. B-blocking, how-

ever, assumes that the event that a block fails becomes common knowledge. Agents

then play a Bayes equilibrium in the incumbent mechanism consistent with this com-

mon knowledge event. Therefore, agents in the putative blocking coalition compare

the payo� from the blocking mechanism with the payo� from a consistent equilibrium

of the incumbent mechanism. We also, allow for the possibility that trades will be

executed in the alternative mechanism even if if a strict subset of the putative block-

ing coalition show up. In this case all agents update their beliefs according to the

participation decision of agents in the putative blocking coalition.

Dutta and Vohra (2005) is not the last word on the subject. We brie�y sum-

marize subsequent contributions highlighting di�erences. Myerson (2007), using the

virtual utility construct, proposes a blocking notion that, in addition to the cred-

ibility requirements, considers random coalition formation and random allocations

for each coalition. Serrano and Vohra (2007) use coalitional voting in an incomplete

information environment to incorporate endogenous information transmission among

members of a coalition. Finally, Liu et al. (2014) study the implications of common

knowledge of stability of a two-sided match when one side of the market has incom-
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plete information about the other side. The literature on competing mechanisms

(common agency) has also focused on how agents will choose between two alternative

mechanisms. However, the setting is one-sided in that agents are all buyers (or all

workers), and they are choosing between alternative mechanisms in which to purchase

something. The need for budget balance, for example, is absent. See Peters (2014)

for a survey.

6 Conclusion

We have shown that only when a posted price is tailored to the distribution of types

and those distributions are well-behaved it is immune to D-blocks by a positive spread

posted price mechanism. When the type distributions are unknown, there is no mech-

anism that is robust against D-blocks by positive spread posted price mechanisms.

When we consider B-blocking, we show that double auctions are immune to B-blocks

by a positive spread posted price mechanism, however, the immunity is present only

if agents play the "right" Bayesian Equilibrium in the incumbent mechanism. Our

analysis shows that when the price taking assumption is violated, the conditions un-

der which a mechanism is immune to blocking are both restrictive and fragile. For

this reason we argue that centralized markets are unstable.
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