
1 
 

Spatial Dependence and Real Estate Returns 

STANIMIRA MILCHEVA* AND BING ZHU ** 

THIS VERSION: 22/12/2017 

Abstract 

We estimate a spatial factor model (SFM) by accounting for spatial linkages across returns 

of real estate companies using the physical distance between their properties. We show 

that the spatial factor model can better account for the cross-sectional variation across 

residuals as compared to a Fama-French-type factor model. Proximity across property 

holdings of pairs of firms can be used to model returns in addition to size, style, 

momentum and sector factors. Accounting for spatial linkages within an asset pricing 

model enhances the informational set and improves the model fit. The SFM can be used 

to disentangle spillover risks from market and idiosyncratic risks. The results show that 

the spillover risk varies considerably across regions and across time, rising sharply during 

the global financial crisis and being most pronounced in the US. While market risk can 

be low, implying good diversification potential, spillover risk may exist, neglecting of 

which, overstates the diversification benefits. Our results imply that investors looking for 

diversification should consider expose to firms with low market risk and low spillover 

risk, such as euro area real estate firms.  
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I Introduction 

While equilibrium spatial models can be used to account for unobservable characteristics 

of property prices by accounting for spatial linkages, they do not account for the stochastic 

nature of real estate returns. When analysing real estate markets, it is important to account 

for the demand stemming from investors and the associated risk premiums included in the 

real estate prices. In turn, in the investment literature, asset pricing models have been 

widely used to determine the required rate of return given the systematic risk but do not 

take into account the spatial dynamics of the underlying assets. When analyzing asset 

prices in isolation, the classical asset pricing models only account for the time-series 

variation of the asset with the factors. However, valuable information would be lost if 

some cross-sectional dependence exists across the residuals (Forni and Lippi, 2001; Kou 

et al., 2017). In a similar way, the assumption of mutually orthogonal idiosyncratic 

components can be violated, in particular during crisis periods. For example, the return of 

a pair of companies can show similar patterns and this comovement can be driven by the 

idiosyncratic component of the returns or their market premia. During turmoil periods, 

through spatial linkages, the effect of the market or idiosyncratic risk of companies in 

close proximity can be reinforced and lead to spillovers. Wieand (1999) develops a spatial 

equilibrium model under uncertainty in which the decision about the price and quantity 

of housing consumed is determined in a two-period asset-pricing context.1 Some initial 

attempts are made to empirically show that spatial linkages matter in asset pricing, such 

as the papers by Fernandez (2011) and Kou et al. (2017). Fernandez (2011) estimates a 

‘spatial asset pricing model’ using spatial matrices to account for the same information 

contained in the Fama and French factors instead of the using the factors directly. In other 

words, weights are defined using the variable value of Fama and French factors (e.g., firm 

size and market-to-book ratio). The empirical estimation is based on conventional spatial 

models, rather than spatial factor models. Fernandez (2011) reports strong evidence for 

the use of spatial indices instead. Kou et al. (2017) propose a spatial capital asset pricing 

model (S-CAPM) and a spatial arbitrage pricing theory (S-APT) using a spatial term in 

                                                   
1  Wieand (1999) leaves the empirical assessment of expected returns, variances and covariances of 
locational payoffs for further research. 
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addition to the factors. They show an application of the models using regional stock 

indices and future contracts on S&P Case-Shiller home price indices. The weights are 

based on the geographic distance between regions of the respective regional indices, as 

this is an easy way to capture the spatial linkages between the assets. The authors find that 

the spatial interaction can explain the cross-sectional correlation. Our study follows on 

from Kou et al. (2017) and estimates a spatial factor model (SFM) for listed real estate 

companies accounting for the spatial dependence between single firms rather than indices. 

We demonstrate how a spatial factor model improves the model fit and also helps to 

disentangle spillover risks from market risks and idiosyncratic risks. This is in so far 

important as avoiding assets with high market risk is not enough for a good diversification 

strategy. Investors need to assess the spillover risks embodied in the total asset risk as 

those provide additional hurdle to diversification.  

The cross-sectional dependence is captured by using techniques from spatial econometrics. 

The spatial approach presents the structure of a cross-sectional dependence in relation to 

the location and distance among units using a spatial weight matrix. The spatial weights 

are used to explicitly relate each unit to its neighbours. One of the challenges which also 

explains why a SFM has not been considered is the difficulty to associate a financial asset 

with a specific location. Fernandez (2011) uses firm characteristics, such as market 

capitalization (relative to firm size), the market-to-book, the dividend yield and the debt 

maturity ratios, to quantify the ‘distance’ between firms. Kou et al. (2017) try to overcome 

this problem by using regional indices instead – regional stock and house price indices. 

When it comes to company level data, Pirinsky and Wang (2006) were among the first to 

account for location in the context of an asset pricing model. They use the location of the 

company’s headquarter. Bernile et al. (2015) construct a locational dispersion factor using 

the locations associated with a firm which have been mentioned in the company’s 

financial reports. Becker et al. (2011) use the location of the large shareholders of a 

company to relate to the firm’s performance. However, the above measures are far away 

from really capturing the spatial effects associated with the locations of the assets and can 

thus pain an incomplete picture of the link between firm performance and location and 

spatial interaction. We aim to address this issue by using companies whose performance 

is strongly related to the geographic location of their assets as is the case for real estate 
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companies.2 Such companies can function as funds who invest in real estate or can be run 

as operating companies. Most of the property companies are real estate investment trusts 

(REITs) which must derive a large proportion of their income (80%) from the operation 

of real estate assets and should pay out at least 90% of their taxable income to shareholders, 

and in exchange benefit from tax reductions. Since the performance of such companies is 

largely driven by the income (the rent) and the capital growth of the underlying assets, the 

location of the properties and the spatial interactions can be regarded as a key factor in 

company’s valuation. 

We use monthly data from 1998 to 2015 and estimate a spatial factor model as a panel 

using a Bayesian estimation. We find that the spatial factor model is not rejected and the 

spatial parameters are significant. Proximity across the property holdings of real estate 

companies can predict higher return correlation across the firms, controlling for size, 

book-to-market, momentum and sector characteristics. We show that adding spatial 

linkages across firms’ holdings within an asset pricing model enhances the informational 

set and improves the model fit. Moreover, we perform a variance decomposition and show 

that while relatively low, the spillover risks strongly increase during the global financial 

crisis and explains up to 21% of total asset risk. We show that spillover risk varies 

considerably across regions and over time. US firms are most exposed to spillover risks 

while UK firms are exposed to market risk implying that investors should look for 

companies outside of the US and UK in order to better diversify their portfolios. The euro 

area provides the best destination when it comes to reducing the effects of spillover risks.  

 

II Literature Review 

This paper is related to three separate strands of literature. First, by accounting for 

spatial linkages across returns, the study is linked to the vast literature on spatial 

econometrics which explains asset prices by measures of proximity such as geographic 

                                                   
2 Looking at direct real estate asset returns may be suboptimal when estimating an asset pricing model as 
real estate has different properties compared to the traditional investment assets, such as stocks and bonds. 
Real estate is characterized by high transaction costs, little liquidity, indivisibility, inability of short sales, 
etc. Therefore, the conventional asset pricing models may not be suitable to fully capture those risks. In 
order to overcome some of the above problems, we use listed real estate companies since their returns are 
known to capture the underlying real estate market fluctuations but also provide more liquidity, reduce 
transaction costs and mitigate indivisibility and short-selling issues. 
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distance. Second, the paper is closely related to the literature on asset pricing models 

accounting for locational factors. Third, the paper combines above techniques in one 

model and hence relates to the ideas in research accounting for the correlation across 

residuals.  

While equilibrium spatial models can explain how prices of real estate in different 

locations are connected, they abstract from the stochastic nature of real estate returns, 

from the demand for real estate stemming from investors and the associated risk premiums 

included in the real estate prices. In turn, in the investment literature asset pricing models 

have been widely used to determine the required rate of return given the systematic risk 

but does not take into account the spatial dynamics of the underlying assets. Wieand 

(1999) develops a spatial equilibrium model under uncertainty in which the decision about 

the price and quantity of housing consumed is determined in a two-period asset-pricing 

context. The bid price of a house is a function of the homeowner's portfolio risk, including 

the risk associated with the site, and the market risk. More recently, Ortalo-Magne and 

Prat (2010) construct a spatial equilibrium model with a portfolio choice in an asset 

pricing context. The authors show how spatial decisions about where to buy a house can 

be seen as an expanded portfolio model in which the cross-sectional distribution of real 

estate dividends (i.e. rents) is endogenous and depends on the location-specific factors 

and the systematic risk. A house buyer chooses a certain location when he or she is 

indifferent to such factors as the benefits of a location associated with access to local 

amenities, income perspectives, the costs of the house price, and so on. As the agent is 

exposed to local productivity shocks, the location choice will depend on their income 

minus the rent – as is the case in spatial equilibrium models – but also on the correlation 

of their income with that of the other residents in the same location. The decision of how 

to allocate funds across different countries determines the expected returns everywhere, 

their volatility and covariance with the other assets, and the weight of assets from each 

country in the global market portfolio that is relevant for the pricing of all assets in the 

economy.3 In spatial econometrics, the idea is to capture the effect of a shock at a specific 

                                                   
3 Ortalo-Magne and Prat (2010) argue that the country REIT index is a suitable measure to track the housing 
demand in the model, which is the same for all agents, as it does not include the properties which are owned 
by local residents for hedging purposes. 
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point in space, in another place (Haining, 2003). The most common spatial dependence 

widely studied in the literature is through geographic proximity (Fingleton, 2001 and 

2008).4 The reason is that neighboring regions often keep close economic relationships. 

Therefore, as Fazio (2007) and Orlov (2009) argue, geographically closer regions would 

have as a result stronger economic linkages too. Miao et al. (2011) explore correlations 

among real estate returns in 16 US metropolitan areas and find that the strongest 

correlation appears to be in geographically adjacent regions. A similar result has been 

found for stock returns by Flavin et al. (2002). Ling et al. (2017) find a significant positive 

impact on REITs’ returns stemming from the exposure to the so called ‘Gateway’ markets.   

Given that we use spatial linkages in an asset pricing model, our paper relates to 

the studies that account for locational factors as drivers of returns. On the one hand, there 

is the vast literature looking at international CAPM and how the inclusion of global factors 

or factors of other regions can add to the model.5  The rapid pace of financial market 

liberalization has highlighted the role of global shocks for the pricing of local assets since 

foreign investors can access the market more easily. Asset pricing models which include 

global factors instead of local factors have been presented by Karolyi and Stulz (2003), 

Bekaert et al. (2009), Hou et al. (2011) and Fama and French (2012) among others. 

Karolyi and Stulz (2003) show that modelling asset prices to account for domestic market 

variations only would underestimate the returns of those assets whose residual is 

positively correlated with the global market portfolio. Griffin (2002) instead argues that 

this should not necessarily be the case as there are mainly firm-level characteristics that 

explain the comovements in stock returns. Hou et al. (2011) examine the effect on firm-

level characteristics on the cross-sectional and time-series variation in stock returns 

internationally compared to global and foreign components, using various factor models. 

They find that the local as well as the combination of local and foreign factor models 

produce lower pricing errors than their purely global counterparts. On the other hand, 

there is some scarce research on the role of locational factors for asset returns. A study by 

                                                   
4 More recent literature explores the use of other measures of proximity such as financial and economic 
integration (Zhu et al., 2013; Milcheva and Zhu, 2016). 
5 Merton (1973), Solnik (1974), Grauer et al. (1976), Sercu (1980), Stulz (1981), and Errunza and Losq 
(1985) present an international asset pricing model accounting for other regions to which the local assets 
can be related. 
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Pirinsky and Wang (2006) look at the role of the location of the headquarters of the 

company for its stock returns in an asset pricing context. They find strong comovement 

across returns of companies located in the same geographic area. Hong et al. (2008) 

explain the difference in stock prices of companies located in different areas by the 

aggregate book value of the firms located and the aggregate risk tolerance of investors in 

that region. Bernile et al. (2015) develop a more sophisticated measure of local firm 

exposure using the company’s annual 10-K fillings financial reports. They construct the 

measure of firm location by using the number of times a state is mentioned in a given 

report. They find that including a local market index, measured as described above, 

explains more of the time-series variation of the returns as compared to only using 

national market factors. The authors show that international portfolio decision and 

performance are affected by the information asymmetries created through spatially 

distributed information. Therefore investors prefer to invest in companies with greater 

local economic exposure and, overall, such assets perform better.  

Among the most widely used asset pricing models is the CAPM which takes into account 

the price of systematic risk but ignores firm-specific risk. Laghi and Di Marcantonio 

(2016) extend the CAPM to quantify idiosyncratic risk related to firm characteristics such 

as firm size and value, operating costs, financial structure, etc. The authors show that the 

CAPM systematically underestimates the cost of equity of firms and accounting for above 

firm-specific features can capture unsystematic risks. Forni and Lippi (2001) argue that 

using a theoretical framework to model a large set of cross sections of time series data is 

hardly possible. They introduce the generalized dynamic factor model to account for serial 

correlation within and across individual processes and allow for non-orthogonal 

idiosyncratic terms. One way which has been used in the literature to model the 

dependence across variables is the use of vector autoregressive (VAR) models. However, 

such models are only suitable if we are dealing with a small number of time series 

variables. Forni and Lippi (2001) argue that using a theoretical framework to model a 

large set of cross sections of time series data is hardly possible. Pesaran and Tosetti (2011) 

expand the dynamic factor model in Forni and Lippi (2001) to a panel data model with 

common factors in which the idiosyncratic errors display spatial dependence. By 

including the spatial dimension, they account for both time-specific weak and strong 
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cross-section dependence across returns.6  They show that the part of the returns that 

display weak dependence can be fully diversified away when the portfolios are 

constructed using the spatial weights. The part of the asset returns that is strongly 

dependent can only be diversified away when the portfolios are constructed using the 

factor loadings as weights. Jourdain and Sbai (2012) present a model in which the local 

volatility of the index is first calibrated followed by the dynamics of each stock in a 

stochastic volatility model in a second step. 

 

III Methodology 

In finance, factor models are widely used to determine a theoretically appropriate 

required excess rate of return of an asset from the risk-free rate, if that asset is to be added 

to an already well-diversified portfolio, given the asset's sensitivity to macroeconomic 

factors. A factor model is given by: 

௧,௜ݎ̃               = ௜ߙ + ∑ ௜,௞ߚ ௧݂,௞
௄
௞ୀଵ + ௧,௜ݑ , (1) 

with ̃ݎ௧,௜, the excess return of asset i (i = 1,2.., N) in period t (t = 1,2.., T) calculated as 

௧,௜ݎ̃ = ௧,௜ݎ ௧ݎ	−
௥௙   with		ݎ௧

௥௙  , the risk-free rate in period t.  ௧݂,௞ 	 denotes the kth common 

factor such as the excess market return, etc., with k = 1,2.., K. ݑ௧,௜	is the error term with 

,௧,௜~ܰ(0ݑ  ௜,௞ is the sensitivity of theߚ represents the individual asset alphas and	௜ߙ .(௜ଶߥ

ith asset to the kth factor. The classic factor model explains the time-series variation in 

asset returns. To capture the effect of the spatial linkages on returns in a spatial factor 

model, we need to account for the cross-sectional variation across returns adding a spatial 

term so that:           

௧,௜ݎ̃                = ௜ߙ + ∑ߩ ௧,௜ݎ௧,௝,௜̃ݓ
ே
௝ୀଵ,௝ஷ௜ + ∑ ௜,௞ߚ ௧݂,௞

௄
௞ୀଵ + ݁௧,௜ , (2) 

where ݓ௝,௜.௧is the weight based on the ‘distance’ between each two assets j and i in year t, 

and ݓ௝,௜.௧ = 0  for i = j. ∑ ௧,௜ݎ௝,௜.௧̃ݓ
ே
௝ୀଵ,௝ஷ௜ 	 is the weighted sum of the contemporaneous 

excess returns of the remaining firms in the sample. ρ is the spatial autoregressive 

coefficient capturing the degree of comovement across the returns. ݁௧,௜	is the error term, 

                                                   
6  Weak dependence at a given point in time is when the weighted average of returns converges to the 
expected quadratic mean once the number of assets (the cross section dimension) is increased. Otherwise, 
strong dependence exists. 
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which is heterogeneous across the assets,	ݑ௧,௜~ܰ(0,ߪ௜ଶ). The spatial factor model can be 

represented as:  

቎
௧,ଵݎ̃
⋮
௧,ேݎ̃

቏ = ൥
௧,ଵߙ
⋮

௧,ேߙ

൩ + ߩ ቎
0 ⋯ ௧,ଵ,ேݓ
⋮ ⋱ ⋮

௧,ே,ଵݓ ⋯ 0
቏ ቎
௧,ଵݎ̃
⋮
௧,ேݎ̃

቏ + ቎
ଵ,ଵߚ ⋯ ଵ,௄ߚ
⋮ ⋱ ⋮

ே,ଵߚ ⋯ ே,௄ߚ

቏ ቎
௧݂,ଵ
⋮
௧݂,௄

቏+ ൥
݁௧,ଵ
⋮
݁௧,ே

൩. (3) 

Equation (3) can also be expressed as:  

௧ݎ̃              = ߙ + ߩ ௧ܹ,ே ௧ݎ̃ + Β ௧݂ + ݁௧, (4) 

where ̃ݎ௧ is an N×1 vector of excess returns of the N assets in period t. ௧݂ 	is a K×1 vector 

of K global factors, which are the same for all returns. ߙ is an N×1 coefficient vector of 

the asset alphas. Β is an N×K matrix of the asset betas. ݁௧	is an N ×1 vector of error terms.  

Since the model in Equation (4) has the dependent variable both on the left and 

right-hand side, we rewrite Equation (4) into its reduced form such as: 

ேܫ)	           − ߩ ௧ܹ,ே)̃ݎ௧ = ߙ + Β ௧݂ + ݁௧, (5) 

We define  (ܫே − ߩ ௧ܹ,ே)ିଵ = ܸ so that Equation (5) can be rewritten as: 

௧ݎ̃             = ߙܸ + ܸΒ ௧݂ + ܸ݁௧, (6) 

Since ௧ܸ = ேܫ) − ߩ ௧ܹ,ே)ିଵ = ேܫ + ߩ ௧ܹ,ே + ଶߩ ௧ܹ,ே
ଶ + ଷߩ ௧ܹ,ே

ଷ +⋯ , Equation (6) 

implies a spatial multiplier effect on the asset excess returns (see Anselin, 2006 and 

LeSage and Pace, 2009). Not only the ‘first-order neighbors’, ߩ ௧ܹ,ே, but also ‘neighbors’ 

neighbors’ are affected through the spatial multiplier effect, ߩଶ ௧ܹ,ே
ଶ ଷߩ	, ௧ܹ,ே

ଷ  , etc. In the 

end, the shock can have a feedback effect on the company of the origin of the spatial shock.  

           With regards to the estimation, we use Bayesian estimation with heteroskedastic 

error terms following LeSage (1997). The Bayesian estimation is formalized in the 

Appendix. 

          In equilibrium, under the assumption of ܿݒ݋( ௞݂,௧ , ݁௧)=0, the variance of the returns 

in the spatial factor model can be decomposed into the market risk of the asset and the 

idiosyncratic risk (Kou et al., 2017): 

           Σ = തܸܤΨܤᇱ തܸ ′ + തܸ Ξ തܸ′, (7) 

where Σ is the covariance matrix of the returns which is the same as the covariance in the 

factor model. Ξ is the covariance matrix of the error terms in the spatial factor model. തܸ =
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ଵ
்
∑ ௧ܸ
்
௧ୀଵ = ଵ

்
∑ ൫ܫ௧ − ߩ ௧ܹ,ே൯

ିଵ்
௧ୀଵ .  

 

The spillover risk Θ is the part of the total asset risk in (7) which is associated with the 

spatial term ௧ܸ and is given by: 

           Θ = Σ − ᇱܤΨܤ + Ξ,  (8) 

 

The spatial weight matrix 

In order to construct the spatial weight matrix, we use listed property companies. 

They provide a suitable setting for the spatial factor model as such companies extract a 

large proportion of their income (80–90%) from real estate, mostly through rents. This 

enables us to use the locations of the underlying assets of the company and to construct 

spatial weights for each of the firms. The location of the properties of each company is 

identified using the SNL database. Figure 1 shows an example of how the distance 

between asset A and B is calculated as the average across the individual distances between 

the properties held by the two firms. Let us assume that company A is invested in three 

properties, A1, A2, A3. and company B has two properties, B1, B2. Then, the weight 

between firm A and firm B will be an average of the weights across all combinations of 

above buildings – a total of 6 linkages.  

Figure 1: Construction of the spatial weights between each pair of firms 

  

When any firms hold more than one property, the distance is measured as the average 

distance: 

௜,௝,௧ܦ          = ଵ
ேଵ೟ேଶ೟

∑ ݀௜,௝௜ୀଵ:ேଵ೟,௝ୀଵ:ேଶ೟  (9) 

         In the next step, we convert the D matrix to a corresponding continuity matrix C 

whose elements ,i jc  are defined as (Asgharian et al., 2013): 
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         ܿ௜,௝,௧ = ቊ
௠௔௫ೕ,೟ି஽೔,ೕ,೟

௠௔௫ೕ,೟ି௠௜௡ೕ,೟
						݂݅	݅ ≠ ݆

݁ݏ݅ݓݎℎ݁ݐ݋																					0
	 , (10) 

The shorter the average distance between the two firms is, the larger the value ܿ௜,௝,௧ has. 

The weight matrix W is then obtained from C through row standardisation, such that for 

each i,	∑ ௜,௝,௧ݓ = 1௝ .  

IV Data 

               The data regarding the individual companies is collected from SNL Financial. 

In order to account for the distance between individual companies we will use the location 

of the properties they are invested in. We collect data for 120 listed property companies 

from US, UK and the euro area during the period from 1998M7 to 2015M3 which focus 

on the domestic market and report their property location. The idea is that we want to have 

a more condensed measure of the location of the underlying assets. This is especially 

important in the US where a property in Europe can lead to overestimating the weights 

local properties. Hence why, we exclude real estate companies which invest abroad.7 

Figure 2 shows the average number of properties held by US, UK and euro area real estate 

firms over time. US firms hold a significantly larger amount of properties than UK and 

euro area firms, with the number of underlying properties varying between 123 and 153 

between 1998 and 2015.  For UK and euro area firms, the number of properties started 

with 20 and 40 respectively in 1998 and grew by over 50% up until 2014.  

 

Figure 2: Average number of properties held by real estate firms 

                                                   
7 For US and UK, only firms that invest in their domestic market are included. For the 
euro area, firms investing only in Europe are included.  
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            Table 1 shows the descriptive statistics of the listed real estate companies. On 

average, each US firm holds 139 properties, each British firm holds 27 properties, and 

each euro area company holds 54 properties. Over half of the companies (68) are based 

in the US, 21 firms are in the UK and 31 firms are in the euro area. The average total 

return of all firms is around 0.6% with a standard deviation between 11.7% and 9.5%. The 

highest volatility is observed in US.  

Table 1: Descriptive statistics for the real estate companies (country averages 1998–

2015)  

Countries 

Total 

return, 

mean 

Total 

return, 

std. dev. 

Total 

return, 

max 

Total 

return, 

min 

Average 

number of 

properties 

in a firm  

US 0.0062 0.117 1.984 -2.413 139 

UK 0.0063 0.095 0.954 -1.379 27 

Euro Area 0.0064 0.102 1.008 -1.031 54 

Explanatory variables include three Fama-French factors and the fourth factor is the 

Carhart momentum factor all obtained from Ken French’s website (French, 2016)8. The 

four factors include a market return index (MR), the difference between the returns on 

                                                   
8 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/  
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diversified portfolios of small stocks and big stocks (SMB), the difference between the 

returns on diversified portfolios of high book-to-market (value) stocks and low book-to-

market (growth) stocks (HML), and the difference between the month t returns on 

diversified portfolios of the winners and losers of the past year (WML). In addition, we 

follow Ling et al. (2017) and include the EPRA/NAREIT return index to account for the 

real estate market performance. 

Summary statistics of the factors are presented in Table 2. The average excess 

return of the market index over the sample period is 0.45% for US and 0.39% for Europe9. 

We can also see that the risk premium due to momentum effects is as high as 0.29% for 

US and 0.35% for Europe. Europe offers a large premium for value stocks of nearly 0.42% 

on average across the sample period. Instead, in the US, small stocks trade at a higher 

premium than in Europe (0.36%). The real estate index for US shows a higher average 

return of 0.37% and also a higher volatility of 8% than for the UK and the euro area. In 

the UK and euro area, the average REIT return is about 0.16%. 

Table 2: Descriptive statistics for the factors (averages 1998–2015) 

 

Total 

return, 

mean 

Total 

return, 

std. dev. 

Total 

return, 

max 

Total 

return, 

min 

Fama and French Factors 

US 

MR 0.0045 0.0468 0.1135 -0.1723 

SMB 0.0036 0.0335 0.1918 -0.1536 

HML 0.0016 0.0343 0.1391 -0.1311 

WML 0.0029 0.0303 0.1219 -0.1757 

RE (US) 0.0037 0.0800 0.3833 -0.4611 

Europe10 

MR 0.0039 0.0547 0.1367 -0.2202 

SMB 0.0017 0.0226 0.0877 -0.0734 

                                                   
9 The Fama and French factors only exist for Europe and the indices do not distinguish between the euro 
area and UK.  
 
10 The factors are for Europe, including both euro area countries and the UK. 
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HML 0.0042 0.0276 0.1133 -0.0912 

WML 0.0035 0.0161 0.0569 -0.0451 

RE (UK) 0.0016 0.0623 0.1714 -0.3198 

RE (Euro Area) 0.0016 0.0503 0.1257 –0.2867 

     

 

V Results 

             Table 3 shows the results for three separate regressions – US, UK and the euro 

area. If we use the Fama-French factors, the spatial coefficients are significant and range 

between 0.27 and 0.70. The significance of the spatial coefficients highlights the 

importance of the spatial linkages across listed real estate stocks for company returns. By 

adding the spatial component, the adjusted R-squared increases in all three specifications. 

In the US, the increase is the strongest, from 33% in the factor model to 39% in the spatial 

factor model. In the UK, the increase is from 35% to 37%. The lowest increase in observed 

in the euro area which may be because the properties’ locations are more widespread and 

the comovements are smaller. We can see from the Bayesian Information Criterion (BIC) 

that the spatial factor model is preferred to the factor model in all three cases as it has a 

lower BIC. Table 3 also reports the average absolute value of the intercept, or the alpha, 

which is the average of the absolute alphas of the individual returns. In addition to the 

alpha, we include its average standard error and a GRS F-test by Gibbons et al. (1989) for 

the joint significance of the individual alphas. The average absolute value of alpha 

decreases in the spatial factor model. The standard error of the intercept is also smaller in 

the spatial factor model. In particular, in the results for euro area, the GRS becomes 

insignificant when the spatial term is added which shows that the SFM can lead to a better 

fit. In all spatial models, the GRS tests suggest insignificant intercepts.  

 

Table 3: Model fit of the spatial factor model versus the factor model  
Note: The model is estimated from 1998M7 to 2015M3. The dependent variable is the log difference of the 

excess return of real estate stocks in each month. ρ is the coefficient for spatial dependence. Std(ρ) is the 

standard deviation of ρ. Adj. R2 is adjusted R-square, the average coefficient of determination in the panel 

model. BIC stands for the Bayesian Information Criteria. |α| stands for the absolute mean of the individual 

alphas. Std(α) stands for the average standard deviation of alpha. The GRS is a test for the joint significance 

of the firm alphas. For the US, the critical value at 10%, 5% and 1% significance level is 1.30,1.40, and 
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1.61 respectively. For the UK, the critical value at 10%, 5% and 1% significance level is 1.40,1.54, and 

1.83 respectively. For the euro area, the critical value at 10%, 5% and 1% significance level is 1.38,1.52, 

and 1.80 respectively.   

 ρ Std(ρ) Adj. R2 BIC | α| Std(α) GRS  

Panel A: US 

SFM 0.7002*** 0.0124 0.3879 -2.1700 0.0038 0.0039 0.5823 

FM   0.3329 -0.8395 0.0038 0.0071 0.5916 

Panel B: UK 

SFM 0.3477*** 0.0233 0.3468 -2.3150 0.0040 0.0040 1.1160 

FM   0.3237 -1.4180 0.0045 0.0057 1.4320* 

Panel C: Euro Area 

SFM 0.2724*** 0.0257 0.2175 -2.0140 0.0058 0.0046 1.2140 

FM   0.2124 -0.9963 0.0090 0.0071 1.8020*** 

 

          Table 4 reports the average coefficients across firms based on the Fama and French 

factors and the real estate factor. Real estate companies can be driven by factors specific 

to the real estate market such as location, sector, etc. This is reflected in the low and 

insignificant betas of the Fama and French factors and the high and significant coefficient 

for real estate factor. One of the reasons for the low synchronicity between real estate 

companies and the market, as argued by Chung et al (2011), can be due to spatial 

uniqueness of the underlying assets. If we compare the results with and without the spatial 

term, we can see that the beta of the real estate factor in the spatial factor model is lower 

than that for the factor model.  

 

Table 4: Estimation of factor models 
Note: RM stays for the average coefficient associated with the index return; SMB is the average coefficient 

of the return differential of small-minus-big portfolios; HML is the average coefficient of a return 

differential of high-minus-low portfolios; MOM is the average coefficient of the momentum return index. 

RE is the EPRA/NAREIT index comprising of listed real estate companies. Average t-statistics are provided 

in brackets.  

 RM SMB HML MOM RE 

   US   

SFM 0.0598 -0.0184 -0.1610 0.0652 0.2229 
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[0.6308] [-0.1537] [-1.2066] [0.3315] [3.7654] 

FM 0.1669 

[0.9796] 

-0.0944 

[-0.3841] 

-0.3969 

[-1.6314] 

0.1814 

[0.5177] 

0.7386 

[8.5535] 

   UK   

SFM 0.0646 

[0.7841] 

0.1352 

[0.7078] 

-0.0030 

[0.0477] 

0.0445 

[0.2071] 

0.3797 

[5.3270] 

FM 0.1268 

[1.1988] 

0.2480 

[1.0279] 

0.0076 

[0.0340] 

0.1266 

[0.3171] 

0.6362 

[7.1537] 

   Euro Area   

SFM 0.0119 

[0.1080] 

0.0875 

[0.4351] 

-0.0708 

[-0.3034] 

-0.0622 

[-0.1568] 

0.5196 

[5.0925] 

FM 0.0201 

[0.1502] 

0.0894 

[0.2942] 

-0.1673 

[-0.6078] 

-0.1284 

[-0.2596] 

0.7792 

[5.5248] 

         

  

VI Robustness checks              

           In order to see if our results depend on the choice of the factors, we perform 

robustness estimations to test whether the spatial matrix does a good job in capturing the 

comovement across the assets and make sure that this comovement is not associated with 

global variations driving all assets at the same time. If global shocks are the predominant 

reason for the cross-country comovement, the estimated spatial coefficient ρ can be very 

large, no matter what kind of weight matrix we choose. Therefore, we instead use a 

randomly generated weight matrix to assess whether the spatial dependence is captured 

by the physical distance between the properties or is due to common shocks. We estimate 

the equation: 

௧,௜ݎ̃ = ௜ߙ + ௥௔௡ௗ௢௠ߩ ∑ ௧,௝,௜ݓ
௥௔௡ௗ௢௠̃ݎ௧,௜

ே
௝ୀଵ,௝ஷ௜ + ∑ ௜,௞ߚ ௧݂,௞

௄
௞ୀଵ + ݁௧,௜. (11) 

 

The estimation is rerun 200 times. The spatial coefficient ߩ௥௔௡ௗ௢௠ for the random matrix 
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can be used to derive the confidence interval for the economic significance of ρ. A 

considerably larger spatial coefficient for the geographic distance matrix than that for the 

random matrix can reveal significant comovement effects not associated with global 

shocks. The results in Table 6 show that for all three regions, the confidence intervals for 

the spatial coefficient are lower than those for the baseline model. Thus, the variations in 

the stock returns can indeed be driven by geographic locations of the underlying properties 

and not by strong global comovements in the returns. This result also shows that the 

measure of distance of the underlying asset outperforms the majority of randomly 

generated weight matrices best capturing the spatial comovement. 

 

Table 6: Robustness analysis controlling for unobserved global factors for the 

baseline specification 
Note: The model is estimated from 1998M7 to 2015M3. The dependent variable is the log difference of the 

excess return of real estate stocks in each month. ρ is the contemporaneous spatial coefficient. 

 US UK Euro Area 

Random weight matrix ρ  [0.6643, 0.6815] [0.2763; 0.3223] [0.2115;0.2713] 

 

       The second issue is about spatial validation. Spatial models always assume that the 

co-movement between countries should depend on the strength of their linkages. Under 

this assumption, weights are constructed based on the strength of the linkages. However, 

this assumption has not been formally tested. In other words, it still needs to be checked 

whether countries with weaker financial or trade linkages do indeed have a lower degree 

of comovement than those countries with stronger linkages. Given this concern, we apply 

a distance decay model. This model explicitly checks whether the comovement decreases 

when the distance increases. We construct the weights according to the proportion of the 

properties locating within a certain range. We include five matrices into the regression. 

Matrix one is based on the range of within 50km. That means, each weight between a pair 

of firms reflects the proportion of properties of one firm that locates within 50km to any 

of the properties held by the other firm. Matrix two is defined in the same way as matrix 

one with the only difference being that the weight is defined based on the proportion of 

properties held by one firm that locates with a distance between 50 and 150km to any of 
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the properties held by the other firm. In the same way, we define matrix three, but the 

distance is 150 –300km.  Matrix four accounts for the proportion of the properties between 

two firms that locate between 300 – 450km. Matrix five accounts for the proportion of the 

properties between two firms that locate more than 450km away. For each matrix, the 

weight is defined as the proportion of the underlying properties within the respective 

distance. For the rest of the firms, the weights are set to zero. 

Table 7 reports the results. For US, the matrix based on 50 km bandwidth has the highest 

coefficient, which is 0.449. The matrix based on the bandwidth between 50km and 150km 

has a coefficient of 0.103, which is much smaller than the weight matrix based on 50km 

bandwidth, both statistically and economically. When the distance is more than 150km, 

the impact is below 10%. The decrease in the spatial dependence intensity with different 

bandwidths implies that the comovement in the excess returns declines with the distance 

of the properties. The same conclusion can also be drawn in UK and euro area. The 

coefficient decreases significantly when the bandwidth increases. When the range is larger 

than 50km, the coefficient drops from 0.449 to 0.103 for the US, from 0.207 to 0.133 in 

the UK, and from 0.152 to 0.06 in the euro area.  

          

 Table 7: Robustness analysis controlling for unobserved global factors for the 

baseline specification 
Note: The model is estimated from 1998M7 to 2015M3. The dependent variable is the log difference of the 

excess return of real estate stocks in each month. ρ is the contemporaneous spatial coefficient.  ρ_50 

represent the coefficient for weight matrix based on a bandwidth of within 50km.  ρ_50_150 is for the weight 

matrix based on the bandwidth of between 50 and 150km. ρ_150_300 is for the weight matrix based on the 

bandwidth of between 150 and 300km. ρ_300_450 is for the weight matrix based on the bandwidth of 

between 300 and 450km. ρ_450 is for the weight matrix based on weights according to proportion of 

properties locating more than 450km.    

 US UK Euro Area 

ρ_50 0.449 0.207 0.152 

 [0.400,0.494] [0.178,0.239] [0.114,0.193] 

ρ_50_150 0.103 0.133 0.060 

 [0.067,0.144] [0.089,0.172] [0.031,0.089] 
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ρ_150_300 0.035 0.018 0.039 

 [0.014,0.055] [-0.007,0.039] [0.009,0.067] 

ρ_300_450 0.073 0.016 0.075 

 [0.044,0.098] [-0.021,0.051] [0.038,0.114] 

ρ_450 0.030 0.010 0.017 

 [0.013,0.049] [-0.014,0.033] [-0.011,0.047] 

 

            The above models are estimated using a Bayesian estimation which accounts for 

heteroskedasticity in the error terms. Other estimators include the Maximum Likelihood 

(ML)11  estimator. Additionally, we estimate another specification of the spatial error 

model as suggested by Pesaran and Tosetti (2011) accounting for spatial dependence 

across the residuals. The spatial error model is given as: 

௧,௜ݎ̃ = ௜ߙ +∑ ௜,௞ߚ ௧݂,௞
௄
௞ୀଵ + ݁௧,௜, (12) 

with the error terms expressed as: 

 ݁௧,௜ = ߣ ∑ ௜,௝,௧݁௧,௜ݓ
ே
௝ୀଵ,௝ஷ௜ + ௧,௜ߝ . (13) 

Compared with the spatial error model in Equation (13), the spatial lag model in Equation 

(4), which we use as our baseline, can take into account the comovement in both the error 

terms and the common factors. The results are reported in Table 8. The spatial coefficients 

based on spatial error model are not different from the spatial lag model. Moreover, the 

results using the Bayesian estimator are not considerably different from the other 

estimators.  

 

Table 8: Robustness analysis using alternative estimators and model speciation 
Note: The model is estimated from 1998M7 to 2015M3. The dependent variable is the log difference of the 

excess return of real estate stocks in each month. ρ is the coefficient for spatial dependence. Std(ρ) is the 

standard deviation of ρ. Adj. R2 is the adjusted R-square, the average coefficient of determination in the 

panel model. BIC stands for the Bayesian Information Criteria. |α| stands for the mean of absolute alphas 

                                                   
11 IV and GMM estimators are also widely used in solving spatial panel models (e.g., Baltagi, and Liu, 
2011). However, in a factor model, because the factor variables are the same for the cross section, the 
conventional instrument variables are not applicable. Finding suitable instrument variables remains for 
further research. 
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of the individual firms. Std(α) stands for the average standard deviation of the alphas. The GRS is a test for 

the joint significance of the firm alphas. ML stands for the maximum likelihood estimator. For US, the 

critical value at 10%, 5% and 1% significance level is 1.30,1.40, and 1.61 respectively. For UK, the critical 

value at 10%, 5% and 1% significance level is 1.40,1.54, and 1.83 respectively. For EU, the critical value 

at 10%, 5% and 1% significance level is 1.38,1.52, and 1.80 respectively.   

 ρ Std(ρ) Adj. R2 BIC | α| Std(α) GRS  

Panel A US 

ML – Spatial factor model 0.6570*** 0.0825 0.3867 -2.2750 0.0039 0.0067 0.5810 

Bayesian - Spatial error model 0.6879*** 0.0163 0.3879 -1.0820 0.0037 0.0061 0.5276 

Panel B UK 

ML – Spatial factor model 0.3650*** 0.0882 0.3475 -2.8230 0.0041 0.0055 1.4210* 

Bayesian - Spatial error model 0.3600*** 0.0320 0.3473 -1.4980 0.0044 0.0053 1.9730*** 

Panel C Euro Area 

ML – Spatial factor model 0.2020*** 0.1387 0.2169 -2.3620 0.0081 0.0069 1.7970* 

Bayesian - Spatial error model 0.2430*** 0.0377 0.2173 -1.0320 0.0084 0.0068 2.2040*** 

 

         To sum up, the results remain robust. We can show that the spatial matrix does a 

good job in capturing the comovement across the firms and the comovement is not 

associated with global variations driving all assets at the same time. Variations in the 

returns are driven by geographic locations of the properties and not by global shocks to 

the returns. Moreover, we see that the use of an alternative estimator, such as ML, and 

alternative model specification, such as a spatial error model, do not change the findings. 

 

VII Spillover Effects 

 

           One application of the spatial factor model is that it can serve to disentangle the 

spillover risk from the overall asset risk. We define the spillover risk as the variation in 

returns which is due to the spatial comovement. We calculate the total asset risk, the 

idiosyncratic risk and the systematic risk using the variances of the returns, the residuals 

and the market factors, respectively. The total asset risk as estimated under the spatial 

factor model, is by definition, equivalent to the total asset risk as estimated under the 

factor model. However, a part of this risk can be attributed to spatial comovement across 

the returns and can hence be associated with spillover effects. The spillovers are larger for 

companies whose underlying assets are spatially ‘closer’ to each other in the broader sense 
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as captured by the different weight matrices. Based on the estimated spillover intensity, 

we decompose the variance of the returns into three parts: market risk, idiosyncratic risk 

and spillover risk.  

  

          Table 9 shows the variance decomposition. The total variance is reported in the 

parentheses. The spillover risk is largest in the US with a share of 21% of total asset risk. 

In Europe, it seems that spillover risks play a less dominant role with 14% in the UK and 

7% in the euro area. It is surprising that the US has a high proportion of spillover risk than 

a smaller and more compact country like the UK where a large proportion of the property 

holdings of the firms are concentrated in one city, London.  However, the lower spillover 

risk in the UK as compared to the US may be explained with the sectoral specialisation 

of real estate companies. Most UK firms are specialised in one property sector and hence, 

little spillover through the location may occur. On the contrary, the majority of the US 

firms adopt a diversified portfolio strategy meaning that they invest in a variety of sectors. 

Hence there can be more correlation across the firms through the location of their 

properties. In the US, the average market risk is lowest across the three regions with 6% 

as compared to 17% in the UK and 14% in the euro area. The euro area has the highest 

share of idiosyncratic risk with 78% of total asset risk attributed to firm-specific variation. 

This may be due to the fact that firms’ properties in the euro area are further apart hence 

and less exposed to spillover risks. In the UK the idiosyncratic risk is lowest with 70% 

suggesting that there is less room for diversification among UK firms and a large exposure 

to market risks. US lies in-between with a share of an asset-specific risk of 72%.  

    

 Table 9: Variance decomposition for the entire sample period, 1998-2015 
This table reports the percentage variance of real estate equity return trigged by market risk, idiosyncratic 

risk and spillover risk based on Equation (8). The absolute value of the variance is reported in parenthesis.    

 
Market 

Risk 

Idiosyncratic 

Risk 
Spillover Risk 

Panel A: US 6.27% 72.70% 21.02% 

 (0.0007) (0.0086) (0.0025) 

Panel B: UK 16.50% 69.57% 13.92% 



22 
 

 (0.0012) (0.0052) (0.0010) 

Panel C: Euro Area 14.46% 78.23% 7.31% 

 (0.0015) (0.0082) (0.0008) 

 

In order to look at how the risks vary over time, we estimate the SFM using a rolling 

window of 60 months. The results are presented in Figure 3 and show the spatial 

coefficient over time along with the variance decomposition over time. In all three markets, 

idiosyncratic risk plays the most significant role in the majority of the time. In the US and 

the euro area, idiosyncratic risk takes up the largest proportion in every period. In the UK, 

this is also the case apart from the period between 2004 and 2007 in which market risk 

dominates. In the US, spillover risk is larger than the market risk in every period. Spillover 

risks was almost zero before 2007 and strongly increased in 2007 and remained high until 

2012 when in reversed back to close to zero. Looking at the spatial coefficient, we also 

see a sharp increase in 2007 up to 0.8 that remains high up until 2012 mirroring the 

dynamics in the spillover risk.  In the UK, the spillover risk has increased gradually 

between 2003 and 2007 but it takes up only a small proportion of total asset risk. The 

spatial coefficient has a similar dynamic, sharply rising to 0.45 in 2006 and then gradually 

falling to 0.15 in 2013. In the euro area, up until 2009 the spillover risk is close to zero 

and then slightly increases in 2010-2011. The spatial coefficient sharply rises starting in 

2006 up to 0.6 in 2011. The euro area is dominated by the idiosyncratic risk which peaks 

during the GFC and then falls sharply in 2011. This risk dynamics reflects the 

uncertainties associated with the underling direct real estate market. The observation that 

the idiosyncratic risk has gradually fallen in the US and UK prior to the crisis may be 

associated with increased transparency and liquidity on the real estate market and the 

increased sophistication of the listed real estate market.  

Overall, the market risk and the spillover risk becomes noticeable only during more 

turbulent periods as is the case during the GFC. The increase in the spillover risks mostly 

during more volatile periods suggests that it can be seen as evidence of contagion effects.  

The three regions have very different pattern in terms of when the spillover risk emerges 

and how long it takes to decrease. US is clearly the country which is most exposed to 

spillover risk implying that investors should look for companies outside of the US in order 
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to better diversify their portfolios. The euro area provides the best destination when it 

comes to reducing the effects of spillover risks. What is also interesting is that the market 

risk in the UK is much higher than in any of the other countries during volatile periods 

meaning that UK investors should also consider getting exposure to other developed 

markets.   

 

 

Figure 3: Variance decomposition based on a Spatial Factor Model  

 
Figure 3.1 a: Estimated rho for US                          Figure 3.1.b: US Spillover risk, market 

                                                                                      risk and idiosyncratic risk 

  
 

Figure 3.2 a: Estimated rho for UK                          Figure 3.2.b: UK Spillover risk, market 

                                                                                      risk and idiosyncratic risk 

  
 

Figure 3.3 a: Estimated rho for Euro Area         Figure 3.3.b: Euro Area Spillover risk, market 
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                                                                                      risk and idiosyncratic risk 

  
 

VIII Conclusion 

 We extend the four-factor model in Fama and French (2012) to incorporate spatial 

linkages across companies’ underlying assets using firm-level data of listed real estate 

companies. We find that the spatial parameters in the spatial factor model are significant 

throughout the sample period and the model performs better than the factor model, 

considerably improving the model fit. Proximity across property holdings of pairs of firms 

can be used to model returns in addition to size, style, momentum and sector factors. The 

SFM can be used to disentangle spillover risks from market and idiosyncratic risks. We 

find that the spillover risk varies considerably across regions and across time with it rising 

sharply during the global financial crisis and being most dominant in the US. While 

market risks can be low implying good diversification potential, spillover risks also need 

to be accounted for as they can be high and mask the diversification benefits. Our results 

imply that investors looking for diversification should consider exposure to euro area 

firms which have low market risk and low spillover risk.  
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Appendix: Bayesian estimation of the spatial factor model 

 

               Following LeSage (1997 and 2009), we use a Bayesian estimation to estimate 

the spatial factor model.  

 

t t t tr Wr f e       ,  (A1) 

 

with t=1,2,..T. tr  is an N by 1 vector of dependent variables. W is an N by N matrix. tf  is 

a K by 1 vector of the common factors and te is a N by 1 vector of error terms.   is an N 

by 1 vector of intercept 1 2[ , ,..., ] 'N    . and B is an N by K matrix of coefficient and 
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 
 
 





 



.  

Equation (A1) can be written as: 

 

( )Ty W I y X e     .  (A2) 

 

where y is an (NT x 1) vector of returns stacked by time, and 

11 21 1, 12 2[ , ,..., ,..., ,..., ]N N NTy r r r r r r        . e is an (NT x 1) vector of normally distributed random 

variables with non-constant variance. 1 2[1 ]T K NX f f f I  , and   is a N(K+1) 

by 1 vector of the coefficient and 1 2 3 11 21 1 12, 2[ , , ..., , , ,..., , ..., ,..., ] 'N N NK          . 

 

The information prior for the heteroscedastic linear regression model can be written as: 
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.  

where V is the relative variance terms and is assumed to be fixed but unknown parameters 

that need to be estimated. The prior distribution for vi take the form of an independent 

distribution qq /)(2 .  

 

               We allow for an informative prior on the spatial autoregressive parameter ρ, the 

heteroscedastic control parameter q and the disturbance variance σ. The diffuse prior for 

ρ is implemented by setting the prior mean c to zero and prior mean c to zero and prior 

variance of L, which is set as 1e+12. The diffuse prior for σ is set to υ0 = 0, d0 = 0.  

 

             The parameter q allows the vi estimates to deviate from their prior means of unity. 

Small values for q allow for non-constant variance and are associated with a prior belief 

that outliers or non-constant variance exist. Large values for q would produce vi estimates 

that are all close to unity, forcing the model to take on a homoscedastic character. 

Following LeSage (1997 and 2009), q is set to be 4.  
 

The posterior distribution is based on the likelihood function: 

2 1/2 2 2

11

( , , , ; , ) ( ) exp ( / 2 )
NT NT

NT
NT T i i i

ii

L v y W I W I v e v      



 
    

 
 . (A3) 

 

The posterior density kernel function is 

 

( 3)/2 ( 1) 2 2

11

( , , , ) ln ( ) exp( / 2 ) exp ( ) / 2
NT NT

q n
NT T i i i i

ii

p V I W I v q v e q v         
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. 

 (A4) 
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The conditional distribution for parameter σ assuming that we know the parameters γ, ρ 

and V is: 

2 2 2

1

( / ) / ( , , ) ~ ( )
TN

i i
i

e v V N   


 
 
 
 . (A5) 

 

The conditional distribution for   assuming that we know σ, ρ and V would be: 
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 (A6) 

 

The posterior distribution of vi is set as: 
2 2 2( ) / ~ ( 1)i ie q v q    . (A7) 

 

Conditioning on σ, B, and vi , we have: 

 2 1( | , , ) ( ) exp (1/ 2 )( ' )NT Tp V I W I e V e         . (A8) 

The model is run with 2000 iterations. 


