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1 Introduction

Return co-movement, typically measured by correlation, is one of the most fundamental con-

cepts in financial economics and plays a crucial role in portfolio choice, risk management, and

asset pricing. Importantly, correlations tend to increase during market crashes,1 so that the

instability of correlations, or correlation risk, negatively affects investor welfare by making di-

versification more difficult in expensive states of nature. Related and widely used in finance

are linear factor models of returns implying a specific correlation matrix between the assets.

Typically, the direct estimation of a correlation matrix or its estimation through a linear factor

model entails the use of historical data and may not reflect current market expectations.

This paper addresses two major issues: First, we construct an ex ante covariance (cor-

relation) matrix from option prices without using historical information, which allows us to

identify and estimate a linear factor model implied by current option prices. Second, our study

questions, through which channel implied correlation predicts market returns.

Throughout the whole paper, we make options the main source of information. That is, as

it was already documented, current option prices subsume current market expectations about

future investment opportunities (e.g., Vanden (2008)), hence, option-implied information often

works well in predicting the future asset dynamics (see Poon and Granger (2003), Christoffersen,

Jacobs, and Chang (2011) for review). However, while a number of variables can be easily

extracted from options, constructing an implied correlation matrix is a daunting task: there

are many degrees of freedom (as all pairwise correlations have to be pinned down), and only one

identifying restriction that equates the index variance to the variance of the portfolio of index

components. To overcome this problem, one can either assume the equal correlations as in

Driessen, Maenhout, and Vilkov (2005) and Skinzi and Refenes (2005), or rely on the historical

correlation structure and adjust it by a parametric correlation premium, as in Buss and Vilkov

(2012). We propose a new method that allows for extracting a block-diagonal heterogeneous

1E.g., Roll (1988), Jorion (2000), and Longin and Solnik (2001).
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correlation matrix exclusively from option prices on the S&P500, on economic sector ETFs,

and on index (and hence, ETF) components.

Our main results can be summarized as follows: (i) variance and correlation risk premiums

vary across different sectors of the economy, that is, stocks in sectors have heterogeneous ex-

posure to underlying factors; (ii) implied correlations predict market factor realizations, and,

interestingly, even implied correlations constructed from only nine sectors perform comparable

to implied correlations based on all S&P500 constituents; (iii) implied correlations predict not

the future correlations per se, but a more dense clustering of market betas around the mean, and

a non-diversifiable market component of the portfolio variance; and (iv) an option-implied co-

variance matrix based on implied correlations within and between economic sectors can be used

to extract statistical factors that explain more of the stock return dynamics than traditional

Fama and French (1993, 2015), and Carhart (1997) factors.

More specifically, we document the magnitudes of implied correlations, correlation and vari-

ance risk premiums for major U.S. indices, economic sectors, and their individual components.

We find that there is a significant correlation risk premium for stocks in major indices, which

tends to increase with time to maturity. Smaller indices show higher levels of correlations but

similar levels of correlation risk premiums. There is also a visible heterogeneity in the levels

of average correlation among economic indices: health, consumer discretionary, and technology

show the three lowest correlations (0.42, 0.42, and 0.44 for 30 days), while energy, finance,

and materials show the three top ones (0.70, 0.63, and 0.52 for 30 days). Consumer staples,

however, demonstrate the largest correlation risk premium of 0.10 for 30 days, followed by fi-

nance and technology (0.08 and 0.08). A sector rotation investment strategy is based on the

fact that sectors behave differently across various stages of business cycles (e.g., Beber, Brandt,

and Kavajecz (2011))—some sectors are more protective (like consumer staples) in expensive

states of nature, while some sectors (like technology and finance) are more exposed to business

cycle risk. The diversification in and between economic sectors is valued quite differently from
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general diversification over a broad universe, while the size of this universe is not crucial—it is

more important that it contains assets representing all sectors of the economy.

The literature has already shown that, from many option-based variables, two stand out in

predicting market return: variance risk premium, and implied correlation. Evidence shows

that variance risk premium has the best performance at a quarterly horizon (e.g., Boller-

slev, Tauchen, and Zhou (2009)), and implied correlation works at horizons up to a year (e.g,

Driessen, Maenhout, and Vilkov (2005), Bernales and Valenzuela (2016), Faria, Kosowski, and

Wang (2016), among others). It is established that both correlation and variance risks con-

tribute to the market variance risk, and hence to the variance risk premium,2 but these two

variables are not redundant, and it is not clear through which channel implied correlation pre-

dicts future risk, and how it is different from the channel of variance risk premium. Variance

risk premium is shown to be related to tail risk (e.g., Bollerslev and Todorov (2011), and Trojani

and Schneider (2015)). Correlations are linked to uncertainty: Buraschi, Trojani, and Vedolin

(2014) show that the correlation risk premium is positively related to the disagreement risk;

Faria, Kosowski, and Wang (2016) document the dependence of the correlation risk premium

on macroeconomic uncertainty and related variables. Intuitively, an increasing correlation re-

duces diversification, and if it really constitutes the risk channel through which correlation is

linked to the equity risk premium, implied correlation is supposed to predict levels of realized

correlation better than other variables. We find that implied correlation does not do a good

job in predicting future realized correlation for horizons longer than a quarter, and that the

historical correlation considerably outperforms the implied one as a predictor. We find, how-

ever, that implied correlation predicts the dispersion of factor betas in the future, specifically, a

high implied correlation predicts a lower dispersion of betas at horizons from one to 12 months,

and hence a higher non-diversifiable portfolio risk. Lower dispersion of market betas makes it

hard to find “a place to hide” from the market risk (similar to “no place to hide” from the

2Driessen, Maenhout, and Vilkov (2009) show that pricing of index variance risk depends on the pricing
of individual variance risk and correlation risk, Cosemans (2011) presents evidence that the predictive power
of the market variance risk premium is mainly driven by the correlation risk premium and the systematic
component of the average variance risk premium in individual constituents. Pollet and Wilson (2010) study the
predictive qualities of realized correlations and show that the realized correlation provides more information on
true aggregate risk than the market variance.
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correlation risk in Buraschi, Kosowski, and Trojani (2014)), hence requiring the market factor

exposure be compensated by a higher risk premium. Thus, implied correlation predicts not just

any diversification, but specifically a systematic diversification.

Ait-Sahalia and Xiu (2016) show that a covariance matrix of a large portfolio of U.S. equities

is well represented by a low rank common structure with a sparse (block-diagonal) residual

matrix from factors explaining sector dynamics. Their starting point is a positive-definite

matrix, which is used as input for the factor identification procedure, so that the covariance

matrix is rebuilt from a small number of common factors and a number of sector-specific

ones. We do not rebuild a covariance matrix from extracted factors—it’s the opposite; we

extract factors from a covariance matrix constructed using a block-diagonal correlation matrix

of implied correlations in and between economic sectors in the S&P500, and individual stock

volatilities. A covariance matrix with reduced structure inferred from option prices provides

plenty of information about expected joint stock dynamics—the extracted factors explain more

variability in future individual stock returns than statistical factors from a historical covariance

matrix or even from a heterogenous implied covariance matrix of Buss and Vilkov (2012).

The remainder of the paper is structured as follows: Section 2 contains the economic mo-

tivation and reasoning for our analysis and introduces the identification of various implied

correlation matrices. Section 3 discusses data preparation procedures, and in Section 4 the

properties of implied correlations and variance risk premiums for different indices, economic

sectors, and individual stocks are analyzed. Section 5 shows that one can extract a factor

structure from a full sector-based covariance matrix and that it improves the out-of-sample

linear factor model fit for individual stocks. Section 6 contains a number of robustness tests,

and Section 7 concludes the analysis.

2 Model and Identification of Implied Correlations

In finance one often starts from specifying a return-generating process as a linear factor model

with a number of systematic factors and an idiosyncratic noise, so that for each asset i the
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return is

ri,t+1 = µi,t +
K∑
k=1

βik,tFk,t+1 + εi,t+1, (1)

where µi,t is the asset’s expected return, each Fk,t+1 denotes a mean zero systematic factor,

βik,t denotes the sensitivity of the return on asset i to the innovations in factor k, and εi,t+1 is

the “nonsystematic” risk component with E[εi,t+1|Fk,t+1] = 0,∀k. One then looks for potential

factors, either economically or statistically motivated, and tests the pricing of these factors

using a number of traditional routines—portfolio sorting, two-stage Fama and MacBeth (1973)

regressions, and others. The recent hunt for factors has resulted in a large number of asset

pricing findings, which might be false (see Harvey, Liu, and Zhu (2015)) or redundant (Kogan

and Tian (2012)).

One of the tools for factor identification is the factor analysis, which also started as a linear

model (e.g., a brief history of factor analysis in Mulaik (2009)) and can be explained in very

simple terms: it assumes that linear dependencies (that is, correlations) between variables are

generated by the exposure to a set of common factors. Thus, a result of factor analysis applied

to asset returns, for example, is the mathematical structure describing the rules that govern

the composition of the returns of their components.

The maximum number of identifiable factors equals the rank of the covariance or the cor-

relation matrix used as an input; however, one typically considers only “important” factors

explaining the largest part of the total variance, and demotes the rest of components to idiosyn-

cratic noise (Bartlett (1950, 1951)). Idiosyncratic noise is also a “factor,” though explaining

only the residual variance of one given stock. The task of estimating a covariance matrix from

a factor model is well-specified:

Σ = BΣFB> +D, (2)

where B is the N × K matrix of K factor betas for N stocks, ΣF is the covariance matrix

of factors, and D is the diagonal matrix of residual variances. The inverse problem, that is,

finding the factor betas and factor variances from an estimated covariance matrix, is slightly
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more complicated, and depends on the approach taken. For the principal component analysis

(PCA) based on eigen-decomposition of a (symmetric and well-defined) covariance matrix, the

answer will be unique up to the set of basis factors, explaining the joint variance in a descending

order.

It is assumed that residuals in model (1) are not correlated and hence all covariances are

formed by systematic factors affecting several assets. Moreover, the largest part of the joint

dependency is typically isolated into a “market factor,” which represents just the average di-

rectional movement of the asset universe. Taking the factor model to heart, we thus know that

the correlation is induced by the exposure of assets to common factors, that is, derived from

systematic covariance BΣFB>. Consider the market model, in which the market is the only

factor, and the factor covariance ΣF is equal to market variance σ2M . The correlation between

any two stocks i, j is created by the interaction of betas, namely

ρi,j = σ2M
βM,iβM,j

σiσj
, (3)

where σi =
√
β2M,iσ

2
M + ε2i is the total volatility of stock i. The (value-weighted) mean market

beta is equal to one by definition, and keeping the volatilities in (3) constant we expect that the

average correlation between assets is decreasing in the dispersion of betas around their mean:

E[ρi,j ] ∝ E[βM,iβM,j ] = E[(1 + εM,i)(1 + εM,j)] = 1 + cov(εM,i, εM,j) = 1− σ2ε ,

where we assumed that market betas are distributed around their mean with the same variance,

that is, βM ∼ Dist(1, σ2ε ). Moreover the covariance between the deviation of betas from the

mean is expected to be negative, because their mean does not change, and an increasing beta is

necessarily compensated by a decreasing one. We label the effect of the factor beta distribution

on the correlation by systematic diversification effect. The correlations can also change due to a

change in the total stock volatility, or, rather, due to changes in the stock volatility composition

in terms of how much of it is due to an idiosyncratic component. When the σ2ε diminishes to

zero, the pairwise correlation converges to one, and it does not depend on the distribution

of the betas anymore. The effect of the volatility composition on correlation is labeled by

diversification effect.
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We aim at extracting correlation matrices from option prices, full or partially, under different

assumptions about the structure of a correlation matrix, and analyze what is important to take

into account in such a procedure not to lose information contained in correlations.

Correlations are constructed using several methods: (i) equicorrelations under the assump-

tion that at every time period all pairwise correlations are equal; we use the terms “implied

correlation” (IC) for the risk-neutral, and “realized correlation” (RC) for the realized equicor-

relations;3 (ii) sector-based correlations under the assumption that pairwise correlations are all

equal for stocks in the same economic sector, and that pairwise correlations between any two

stocks belonging to different sectors are all equal as well; and (iii) heterogenous correlations

under the assumption that the pairwise correlation risk premium is proportional to the distance

between the maximum correlation of one and the expected pairwise correlation under the objec-

tive measure (as in Buss and Vilkov (2012)). The first method always gives a positive-definite

matrix when correlation is non-negative; the second method leads to a block-diagonal correla-

tion matrix, which is positive-definite when the correlation between sectors is low enough, and

the third one leads to a positive definite correlation matrix if the input expected correlation

matrix under the P measure is positive definite. Later, in Section 5 we discuss option-implied

factor structure and also suggest how one can adjust covariance matrix from sector-based or

heterogenous correlation matrices to make it positive-definite.

Identification for all three methods is based on the same restriction that the variance of a

basket I is equal to the variance of the portfolio, which this basket represents:

σ2I (t) =
N∑
i=1

N∑
j=1

wiwjσi(t)σj(t)ρij(t). (4)

This restriction holds under both objective P and risk-neutral Q measures. For the first method,

given the time-series of variances for an index (or a sector) σ2I (t) and its components σ2i (t), i =

1 . . . N , as well as the index weights {wi}, the equicorrelation ρij(t) = ρ (t) is calculated for

3One of the first references using this type of correlations under physical probability measure is Elton and
Gruber (1973), while under the risk-neutral measure the option-implied correlations between multiple stocks
were introduced in Driessen, Maenhout, and Vilkov (2009) and Skinzi and Refenes (2005); later literature also
used the term “equicorrelation.”
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each day t as

ρ (t) =

σ2I (t)−
N∑
i=1

w2
i σ

2
i (t)

N∑
i=1

∑
j 6=iwiwjσi (t)σj (t)

, (5)

and the resulting correlation matrix at time t is

ΩEC =


1 ρ . . . ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ ρ . . . 1

 .

IC and RC use risk-neutral and realized variances, respectively, and both are computed for all

indices and all economic sectors. To construct the block-diagonal correlation matrix we first

estimate the sector equicorrelations by applying equation (5) to each sector:

Ωsect =


1 ρsect . . . ρsect

ρsect 1 . . . ρsect
...

...
. . .

...
ρsect ρsect . . . 1

 ,

and then use the identifying restriction (4) with known within-sector equicorrelations to deter-

mine the remaining correlation ρoff−diag(t) between stocks from different sectors:

σ2I (t) =
Nsect∑
sect=1

∑
i∈sect

∑
j∈sect

wiwjσi (t)σj (t) ρsect(t) +
N∑
i=1

∑
j:sect(i) 6=sect(j)

wiwjσi (t)σj (t) ρoff−diag(t),

which leads to the desired off-diagonal correlation:

ρoff−diag =
σ2I (t)−

∑Nsect
sect=1

∑
i∈sect

∑
j∈sectwiwjσi (t)σj (t) ρsect(t)∑N

i

∑
j:sect(i)6=sect(j)wiwjσi (t)σj (t)

. (6)

Combining sector equicorrelations and correlation ρoff−diag between sectors gives a full sector-

based (FSB) correlation matrix:

ΩQ
FSB =


ΩQ
sect1 ρoff−diag . . . ρoff−diag

ρoff−diag ΩQ
sect2 . . .

...
...

...
. . .

...

ρoff−diag . . . . . . ΩQ
sectN

 .
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We also construct the reduced sector-based correlations for the S&P500 index using not all of

its individual components, but only nine sector ETFs, that is, using (5) directly. The sector

weights are set equal to the weights of all their individual components relative to the weight of

all stocks in the S&P500.

The third method uses the following parametric form for implied correlations ρQij(t):

ρQij(t) = ρPij(t)− α(t)(1− ρPij(t)), (7)

where ρPij(t) is the expected correlation under the objective measure, and α(t) denotes the

parameter to be identified. Substituting the implied correlations (7) into restriction (4), one

can compute α(t) in closed form:

αt = −
(σQI (t))2 −

N∑
i=1

N∑
j=1

wiwjσ
Q
i (t)σQj (t)ρPij(t)

N∑
i=1

N∑
j=1

wiwjσ
Q
i (t)σQj (t)(1− ρPij(t))

,

and then use equation (7) to identify the implied correlation matrix ΩQ(t), with elements ρQij(t).

Thus, correlation matrices used in further analysis are equicorrelations ΩM
EC under two

measures M ∈ {P,Q}; heterogeneous correlations ΩP estimated as traditional correlation under

the P measure and adjusted for the risk premium ΩQ
BV as in Buss and Vilkov and two versions

of implied sector-based correlations, ΩQ
RSB for the reduced sector-based matrix, and ΩQ

FSB for

the full sector-based matrix. The corresponding covariance matrices Σ follow from pre- and

post-multiplying the correlation matrices by the diagonal matrices of volatilities, either realized

(physical P measure), or implied (risk-neutral Q measure) ones.

3 Data and Preparation of Variables

Implied correlations are estimated by comparing the index variance with the variance of the

portfolio of index components. We work with a number of major indices, and their constituents,

namely, S&P500, S&P100, DJ Industrial Average (DJ30), and economic sector indices based on

the S&P500. We obtain the composition of all the indices and economic sectors from Compustat
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and merge it with CRSP through the CCM Linking Table using GVKEY and IID to link to

PERMNO, following the second best method from Dobelman, Kang, and Park (2014). We then

group stocks to correspond to the composition of nine Select Sector SPDR ETFs, as shown in

the Table 1. The data on returns and market capitalization are obtained from CRSP, and as a

proxy for index weights on each day, we use the relative market cap (for S&P500 and S&P100)

or price (for DJ30) of each stock in an index from the previous day. A market weight within

each sector in the S&P500 is calculated as a value weight as well, in which the total market cap

of the sector equals to the aggregate market cap of all its available constituents.

Matching the historical data with options happens through the historical CUSIP link pro-

vided by OptionMetrics. S&P500, S&P100, and DJ Industrial Average indices are directly

used as underlying for options, while SPDR ETFs serve as proxy for nine economic sectors.

PERMNO is used as the main identifier in our merged database, and the data availability statis-

tics is provided in Table 1. For computing the option-based variables we rely on the Surface

File from OptionMetrics, selecting for each underlying the options with 30, 91 and 365 days to

maturity and (absolute) delta lower or equal to 0.5. While the surface data is not suitable for

testing trading rules due to extensive inter- and extrapolations of the market data, it proved

to be a valuable source of information that can be used in asset pricing tests or in generating

signals for trading (e.g., DeMiguel, Plyakha, Uppal, and Vilkov (2013), Driessen, Maenhout,

and Vilkov (2005), among others).

Option-implied second moments are computed as model-free implied variance (Dumas (1995),

Britten-Jones and Neuberger (2000), Bakshi, Kapadia, and Madan (2003)) and as simple vari-

ance swap (Martin (2013)). The simple variance swaps are used in the main analysis, and the

log contracts are checked out in robustness exercises. The options for S&P500 and S&P100 are

available from 1996, while for DJ30 they become available from October 1997, and for Sector

SPDRs from mid-December 1998. The data on options are available until April 2016.

For realized variances we use daily returns for a window length of a month, a quarter, or

a year. The variance risk premium (VRP) is computed in an ex ante version as risk-neutral
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variance observed at the end of day t minus realized variance from t − ∆t to t. The implied

correlations and covariance matrices are constructed following methods discussed in Section 2.

The correlation risk premium (CRP) is constructed also in an ex ante version as an implied

correlation at the end of day t minus the corresponding realized correlation from t−∆t to t.

4 Properties of Correlations

4.1 The Price of Variance and Correlation Risks

The correlations and risk premiums for 30, 90, and 365 days, estimated for major indices as

equicorrelations and for S&P500 also as full and reduced sector-based correlations are provided

in Table 2. The correlations and correlation risk premiums for S&P500 sectors are shown in Ta-

ble 3. With small deviations, two main messages emerge: first, there is a significant correlation

risk premium for stocks in major indices, and, second, this risk premium tends to grow with

time to maturity. Smaller indices typically show higher levels of correlations, but similar levels

of correlation risk premiums. Reduced sector-based correlations for S&P500 are seemingly too

high (almost two times higher than the corresponding S&P500 equicorrelations or full sector-

based correlations). There is also a visible heterogeneity in the levels of average correlation

among economic indices, which may be a sign of different average levels of idiosyncratic (that

is, firm-specific) noise across sectors. Health, consumer discretionary, and technology show the

three lowest correlations (0.42, 0.42, and 0.44 for 30 days), while energy, finance, and mate-

rials show the three top ones (0.70, 0.63, and 0.52 for 30 days). Consumer staples, however,

demonstrate the largest correlation risk premium of 0.10 for 30 days, followed by finance and

technology (0.08 and 0.08). Consumer staples is traditionally a safe sector used by conserva-

tive investors, and intra-sector diversification is highly valued; finance and technology are more

aggressive areas, and diversification is important for hedging the tails. For utilities a 30-day

implied correlation is even lower than a realized one, although it looks more like an outlier,

because for longer maturities we regain status quo.
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The joint dynamics of implied and realized equicorrelations for S&P500 and other major

indices and sectors in Table 4 reveal that in major indices the correlations tend to co-move

extremely closely (with an exception of reduced sector-based correlations); however, within the

S&P500 the correlations in the sectors are linked less strongly, and demonstrate a great amount

of heterogeneity in dynamics. The correlations between 30-day IC for S&P500 and major indices

are all above 0.96, while for S&P500 and sectors the correlations between IC’s range from 0.31

to 0.80. Other maturities and realized correlations demonstrate a similar picture.

Thus, the diversification in and between economic sectors is valued quite differently from

general diversification over a broad universe, while the size of this universe does not matter

so much—more important is that it contains stocks representing all sectors of the economy.

The documented heterogeneity in the correlation matrix increases our chances at extracting

option-implied factors directly from a sector-based approach.

Tables 5 and 6 provide a complementary view on the variance risk premiums for individual

stocks within a number of indices and sectors and for the indices and sectors themselves. As

shown in previous studies (e.g., Driessen, Maenhout, and Vilkov (2005)), the variance risk

premium at the individual level is typically not significantly different from zero, while at the

index level the implied variance is always greater than the realized one, and the difference is

highly significant with p-values ranging from less than 0.01 to 0.09 - exceeding 0.05 only twice.

It is consistent with the evidence on the correlation risk premium for a broad stock universe.

For the individual sectors the results are mixed, and we observe a lot of heterogeneity in the

variance risk premium sign and significance. For example, for individual stocks within the

finance sector (fin) the average realized variance is higher than the implied one, while for the

sector as a whole the VRP is not significant. The difference is absorbed by the correlation risk

premium as seen above. A more detailed analysis of implications of the variance risk premium

heterogeneity across sectors, and its link to the observed correlation risk premium is left for

further research.

12



4.2 Predictability of Risks and Returns by Implied Correlation

A number of option-implied variables are able to predict future stock returns, especially in

the cross-section of assets (e.g., Christoffersen, Jacobs, and Chang (2011) for a review), but

two variables stand out in predicting market risk premium—variance risk premium and im-

plied correlations. We retest this claim using the market factor as computed in the Kenneth

French data library compounded over 30, 91, and 365 calendar days, and applying just three

regressors, namely lagged realized (historical RC) correlations and implied correlation from

the major indices (computed as equicorrelations for all index components, and as correlations

between sectors for S&P500 sample, both reduced and full sector-based ones), and variance

risk premium for the same indices.4 Note that in these regressions we do not explicitly control

for traditional predictors of market return—it has been shown in previous research that both

implied correlation and variance risk premiums are robust to including a large number of such

traditional estimators.5 The results in Table 7 do not only confirm past results about RC,

VRP, and IC predictability (e.g., Driessen, Maenhout, and Vilkov (2005), Faria, Kosowski, and

Wang (2016) for implied variables, and Pollet and Wilson (2010) for realized correlation), but

also deliver two new facts. First, for predicting returns one does not need to work out IC for a

very large index (in terms of number of constituents) using all underlying stocks—it is enough

to have a “small” index with broad economic coverage (like DJ30 with 30 stocks); moreover,

it is even enough to consider sectors as underlying standalone assets within the scope of the

S&P500 index, that is, work with a “large” index of only nine sectors. Second, working with

longer-maturity IC and VRP in predictive regressions, IC alone always delivers better results

than VRP, and it is always significant in stand-alone and joint regressions. VRP, however,

loses significance in stand-alone regressions predicting 365-day market factor realizations, and

in joint regressions its sign turns to to be significantly negative. IC delivers an impressive R2

of more than 22% for the annual horizon. Moreover, for the DJ30-based IC, the R2 grows to

over 32%, and for the S&P500 reduced sector-based IC, the R2 stays at about the same level of

4We include an intercept in each regression but do not report it in the table for lack of space.
5See, for example, Driessen, Maenhout, and Vilkov (2005), Faria, Kosowski, and Wang (2016), among others.
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29%. Thus, it is the average correlation between different sectors of the economy that matters,

and not just the average level of correlation between stocks. Realized equicorrelations perform

worse than implied ones in all cases but two: a reduced sector-based RC for an S&P500 sample

performs slightly better than the corresponding IC for longer-term market factor realizations

(R2’s of 0.117 vs. 0.115 for 91 days and 0.307 vs. 0.291 for 365 days, respectively).

The results lead us to pose another question: through which channel does the IC predict the

market return? We know from Bollerslev, Tauchen, and Zhou (2009), for example, that VRP

can be linked to long-run consumption risk, and that market risk and variance risk premiums

share a common component. Bollerslev and Todorov (2011), Trojani and Schneider (2015),

Andersen, Fusari, and Todorov (2016), among others, show that the VRP is largely due to

the tail risk, and thus tail risk is a predictability channel for market excess returns by VRP.

Conventional wisdom tells us that correlation is linked to diversification, and hence implied

correlation should be a forward-looking indicator of diversification risk. In this case, IC should

be able to predict the future realized correlation between stocks in the economy.

We have tested a hypothesis that IC predicts future risks for horizons of 30, 91, and 365

days, where risks are formulated in different forms. First, we put the RC for a given index

(corresponding to the predictors) on the left-hand side, anticipating that hight IC predicts

increasing risk in the form of higher RC and thus lower diversification benefits. Second, we

take the average R2 from a one factor model, and we expect that high IC reflects a higher

systematic risk, that is, a better fit of a factor model on individual stock level, so that the IC

coefficient should be positive again. Third, we look at the cross-sectional dispersion of market

betas, hypothesizing that lower diversification is related to how all stocks move together, and

especially how they become aligned with the market factor. A higher IC should lead to lower

dispersion of market betas. It is similar to the “no place to hide” story of Buraschi, Kosowski,

and Trojani (2014), but instead of hedge funds we analyze individual stocks, and instead of

the correlation factor we just see how market betas behave. Last but not least, we test if the

realized variance (RV) can be predicted by one of our risk measures. In all the regressions we
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compare the predictive abilities of lagged RC, current IC, and ex ante VRP for the corresponding

horizons.

Table 8 shows the results of risk predictive regressions for 30, 91, and 365 calendar days in

Panels A, B, and C, respectively. The major insights are that with increasing predictability

horizon the lagged RC does a progressively better job in predicting R2 form the one factor

model, and in predicting future realized correlations (RC), and that while for 30-day horizon

IC results in a higher (or similar) R2’s compared to the lagged RC, for 90-day horizon the RC

mostly outperforms IC with a large gap. For 30 days there is one case where IC is taking a

significant lead—it is the full sector-based IC. At the annual horizon (365 days) lagged RC

dominates in predicting the fit of factor model and the level of realized correlations; and hence,

a superior performance of IC in predicting future market factor realizations does not come

through its predicting diversification benefits. However, IC excels in predicting the cross-

sectional dispersion of market betas, and except for the DJ30 sample, we fail to reject a negative

relationship between the level of IC and future σ2(βM ). The relationship is especially strong for

longer horizons, where the R2 in univariate regressions of dispersion in betas on an intercept

and IC goes up to 0.55 for reduced sector-based IC (it is 0.41 for full sector-based IC, and

0.29 for just S&P500 IC). Thus, IC predicts not just the level of diversification, and not just

the fit of the factor models, but it predicts the level of “systematic” diversification. Higher

IC indicates closer clustering of market betas around the mean for a given sample, and higher

correlation due to market exposure. In extreme cases the market betas of all stocks converge

to one, which can interfere with plans of keeping target market exposure (e.g., market-neutral

strategies or long-only strategies with reduced market risk).6 As already conjectured RV can

be predicted well for all indices by the V RP for a 30-day horizon but explains less in terms of

R2 for horizons longer 91 days.

6VRP is related to the future factor model fit and RC only marginally, so its risk predictive qualities work
though a different channel.

15



5 Implied Factors and Factor Exposures

There are several important take-aways from the previous sections: (i) implied correlations

predict future market factor realizations, and by constructing the implied correlation proxy it

is crucial to take into account the structure of the economy, that is, identify correlations between

sectors and not just as many components as possible; (ii) implied correlations predict not the

diversification risk, but the systematic diversification risk (or the level of the non-diversifiable

part of portfolio risk) though the negative link to the future cross-sectional dispersion of market

betas; and (iii) variance and correlation risk premiums vary a lot across different sectors of the

economy, that is, stocks in the sectors have heterogenous exposure to the underlying driving

factors.

These results inspire us to work more with our correlation (covariance) matrices, first, to see

how well they can predict future market exposure, and, second, to extract from them statistical

factors and see how well these factors can predict future joint stock dynamics. While Buss

and Vilkov (2012) use an option-implied covariance matrix constructed by combining historical

and option-based inputs to predict market betas, we go one step further and exclude historical

component from the estimation. Further analysis concentrates on using a traditional historical

covariance matrix ΣP , a heterogenous implied covariance matrix ΣQ
BV by Buss and Vilkov

(2012), and a full sector-based (option-implied and hence ex ante) covariance matrix ΣQ
FSB

in two applications: (i) infer factor structure of returns in the form of principal components

and see how well these factors fit the future individual return dynamics and (ii) estimate and

compare market factor betas.

At the end of each month we construct three covariance matrices; the historical covariance

matrix is based on daily returns for the last 251 trading days, ΣQ
BV is based on the historical

covariance matrix and on 30-, 91-, or 365-day options, and ΣQ
FSB is based only on data from

options of respective maturities.7

7Note that all three matrices are not necessarily positive definite by construction, although one can make
them positive definite, by taking longer time series for estimation of ΣP , by using a positive definite matrix as

16



Following Ait-Sahalia and Xiu (2016) who identified three to five statistical factors in similar

settings, from each matrix we extract five leading principal components (i.e., with highest

eigenvalues) and normalize them to add up to one, so that we can treat them as factor weights.

Using daily stock returns, we create the daily realizations of each factor for the next month.

The first principal component-based factor from any of the matrices is typically a long-only

and well diversified portfolio of all stocks that roughly corresponds to the U.S. market factor.

Its time-series correlation to the S&P500 return and to the market factor are about 0.95, with

values slightly increasing from ΣP to ΣQ
BV and to ΣQ

FSB-based principal components. The time-

series average of the L2 norm of the difference between the market (value-based) and statistical

factor weights is approximately 0.08 for all three methods and maturities of options used. The

first factors from all three matrices are also very highly correlated. One can treat the first

statistical factor as a market factor adjusted to be orthogonal to the other “sector-specific”

ones.

Statistical factors beyond the first one are harder to interpret. We extract them at the

end of each month, and the order of importance in terms of explained variance (eigenvalue of

each factor) changes in time, for example, factor #2, explaining materials and consumer staples

sectors today may not be factor #2 in a month. Thus, we cannot easily attribute each factor

for each month to a particular place, and the exploration of such a procedure is left for later.

The matrices give us statistical factors, and comparing the explanatory power of these factors

with respect to stock returns, we can judge if option-implied correlations help to identify the

future factor structure of returns. Moreover, comparing a historical with a hybrid and then

with a factor-based matrices we can see if using only option-implied information about sectors is

enough for pinning down the dynamics of asset returns. After getting daily factor realizations,

each month we regress daily returns for each stock in CRSP on the constant and a set of factors,

starting with the first (market-alike) one, and sequentially adding the next ones. The adjusted

R2’s for regressions are averaged cross-sectionally each month, and then the time-series average

input for ΣQ
BV , and by shrinking the full sector-based correlation matrix toward identity matrix (e.g., Ledoit and

Wolf (2003, 2004)).
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R2 is reported for each combination of factors. To compare with the traditional approach, we

carry out the same procedure with Fama and French (1993, 2015) and Carhart (1997) factors,

adding them sequentially to the monthly regressions. The results are provided in Table 9.

The most striking result is that using the historical structure of the covariance matrix

either by itself or enriched by option-implied information, is not essential for inferring the

factor structure of returns. Having the ex ante covariance with the structure implied by the

correlations in and between sectors, however, is enough for extracting factor structure that

improves the factor model fit of future stock returns. Compared to factors from ΣP or ΣQ
BV ,

the principal components from full sector-based matrix ΣQ
FSB deliver up to 2.3% higher adjusted

R2 with one factor and up to 2.1% higher R2 with five factors.

Consistent with Ait-Sahalia and Xiu (2016) we observe that leading factors uncovered by

PCA explain a larger fraction of the total variation of asset returns than that explained by

traditional economically-motivated factors. Five Fama-French factors and momentum explain

26.1% of variation, while five statistical factors show R2 of up to 32.8%.

Note that a full sector-based covariance matrix is not necessarily positive-definite, and hence

a number of factors with positive eigenvalues may be smaller than the number of assets in our

universe. To construct the positive-definite matrix as required for portfolio allocation and other

similar applications, a number of solutions is available. For example, one can use decomposition

(2) and after computing the systematic part of the covariance BΣFB> (with a selected number

of factors), replace the diagonal elements with the total variance, in effect adding the residual

stock variance D to the systematic part. Another way would be to use the regularization method

of Zumbach (2009a,b), that is, to reconstruct a covariance matrix using all eigenvectors, but

replacing the value of all eigenvalues below a specified threshold by the threshold itself. A

simpler shrinkage approach (e.g., Ledoit and Wolf (2003, 2004)) is also a well-accepted option.

These experiments as well as possible applications of the resulting covariance matrix are left

for further research.
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6 Robustness Tests

We carry out a number of robustness tests to see how sensitive our analysis is regarding assump-

tions about computational procedures, inputs, and sample periods. Specifically, we look at the

following: (i) instead of applying index weights for computing the correlations in formulas (5)

and (6), use equal weights for underlying assets; (ii) for computing implied correlations use not

the simple variance swap as in Martin (2013), which are especially well suited for estimating

implied correlations, according to Ian Martin, but log contract (model-free implied variance as

in Britten-Jones and Neuberger (2000), Bakshi, Kapadia, and Madan (2003)), (iii) check the

validity of the major results for subperiods. All tables for robustness tests are collected in the

(Internet) Appendix A1.

We can expect large discrepancies in the results by using equal weights assumption, while

the model free implied variance should not have much an effect. As evident from Table 4,

the time-series correlations between the base version of IC and equal-weighted IC are between

0.95 (for 30 days) and 0.72 (for 365 days), while the correlations between base and model free

implied variance versions are all above 0.97.

The results for equal weights assumption are provided in Tables A101 to A104. Our interest

here is to see if a much simpler procedure for computing the equicorrelations with equal instead

of true index weights results in correlations with comparable qualities. The equal weighting

produces similar correlation risk premiums across indices and sectors, with a slight change in

the magnitude of the correlations. The differences are seemingly lower for correlations based

on a larger number of assets, such as S&P500 with all individual assets involved. For reduced

sector-based correlations, that is, IC and RC based on nine sector ETFs used as assets, the bias

from using equal weights is large. The worst news is that the performance of IC and RC in

predicting future market return and risk deteriorates significantly for all indices and horizons

of predictability, more so for longer horizons.
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The results for using log variance swaps (MFIV) as a proxy for integrated risk-neutral

variance are provided in Tables A105 to A111. Most results on the dynamics and on magnitudes

of correlations, variances, and the respective risk premiums come through the choice of variance

swaps, and there are no particularly interesting discoveries. Important messages come from the

tables on returns and risk predictability: the SMFIV-based IC works much better in predicting

both market returns and risks, and the improvement is especially large for longer horizons. For

example, the R2 in regressing annual market return on IC is reduced by 2− 3% for all indices

and methods when MFIV is used; the reduction in performance in predicting risk measures is

even larger for most regression specifications. Thus, as Martin (2013) claimed, using simple

variance swaps indeed delivers a more informative implied correlations.

7 Conclusion

Implied correlation uses forward-looking information from option markets, and it is typically

interpreted as an indicator of uncertainty and diversification risk in the future. We study

implied correlations inferred from major U.S. stock indices and economic sectors.

We show that by constructing an implied correlation proxy it is crucial to use the structure

of the economy, that is, one shall identify correlations between economic sectors and not just

between as many assets as possible. Only nine sector ETFs and S&P500 options are enough

to obtain an implied correlation, which works well as a predictor of future market return and

systematic diversification risk. The latter can be thought of as a heterogeneity or dispersion

of market betas, and it represents the channel though which implied correlation is linked to

future risk. Note that implied correlation predicts the average realized correlation (that is, total

diversification benefits) worse compared to past realized correlation.

Sector option data reveal sector-specific implied correlations and risk premiums, and they are

vastly heterogenous. Their analysis can be helpful in understanding premiums for diversification

risk along different stages of a business cycle. Heterogeneity of sector-based correlations also

allows for construction of a sector-based covariance matrix for S&P500 components, and for
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extracting statistical factors from it. These factors explain future return dynamics of individual

stocks better than traditional economic factors, and also better than statistical factors extracted

from a historical covariance matrix, or from a heterogenous option-implied covariance matrix

(Buss and Vilkov (2012)).

Implied correlation from any broad index (in terms of coverage of different sectors) predicts

future market returns, and its predictability horizon (up to a year) is longer than that of the

market variance risk premium (about a quarter). We show that an implied correlation is related

to future systematic diversification risk and not just to a level of future realized correlations.

High implied correlation significantly predicts lower dispersion in market betas for all studies

horizons, thus making risk in individual names more concentrated around the market factor.
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Table 1: Index Data Composition Summary

In this table, we report the statistics on the composition of major indices and economic sectors. “Data/ options”
columns contain information on underlying instruments for option data from OptionMetrics (OM). “Data/
CCM” columns show the economic sector designation for sector-type securities, and index identifier (Gvkeyx)
from Compustat. “#, total” gives minimum and median (mdn) number of assets in each index after our matching
procedure, “#, w/options” gives the number of components with available option data, and “w w/options” shows
the weight of components with options data for a given index.

Sample Data/ OM Data/ CCM #, total #, w/options w w/options
Type Ticker Secid Sector Gvkeyx min mdn min mdn min mdn

Indices
SP500 Index SPX 108105 - 000003 498 500 405 491 0.832 0.978
SP100 Index OEX 109764 - 000664 99 100 92 98 0.921 0.974
DJ30 Index DJX 102456 - 000005 26 30 24 29 0.839 0.980

S&P500 Sectors
Materials (mat) SPDR XLB 110007 15 128798 27 33 26 31 0.831 0.987
Hlth Care (hea) SPDR XLV 110008 35 128859 27 51 26 51 0.779 1.000
Cons Stapl (cst) SPDR XLP 110009 30 128898 33 41 31 40 0.806 0.997
Cons Discr (cdi) SPDR XLY 110010 25 128940 77 87 69 84 0.804 0.982
Energy (ene) SPDR XLE 110011 10 129001 23 29 22 29 0.830 0.997
Finance (fin) SPDR XLF 110012 40 129021 55 80 56 79 0.831 0.990
Industr (ind) SPDR XLI 110013 20 129039 51 64 51 61 0.869 1.000
Inf Tech (tec) SPDR XLK 110014 45, 50 129059 33 71 40 71 0.765 0.917
Utilities (utl) SPDR XLU 110015 55 129218 29 35 27 33 0.826 1.000
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Table 2: Index Implied and Realized Correlations: Summary
The table reports summary statistics (time-series mean, p-value for the mean, median, and the standard devia-
tion) for the implied correlation (IC), realized correlation (RC), and for the difference between them (IC-RC),
for three samples of stocks—components of S&P500, S&P100 and DJ30 indices, for the sample period from
1996 to 04/2016, and from 10/1997 to 04/2016, respectively, and for three different maturities—30, 91, and 365
(calendar) days. IC(t) (RC(t)) are calculated from daily observations of model-free implied (realized) variances
for the index and for all index components, using (5). Full sector-based correlations for SP500 sample are corre-
lations between economic sectors in the index, computed using equation (6). Reduced sector-based are estimated
from using sectors as underlying assets directly from equation (5). Model-free implied variances are computed
as simple variance swaps Martin (2013). The p-values for significance of the means are computed with Newey
and West (1987) adjustments for autocorrelation.

IC RC IC-RC
30 91 365 30 91 365 30 91 365

SP500 Sample
Mean 0.387 0.423 0.459 0.327 0.326 0.327 0.060 0.097 0.133
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.375 0.423 0.464 0.298 0.308 0.308 0.060 0.094 0.142
StDev 0.126 0.113 0.099 0.145 0.125 0.115 0.103 0.084 0.076

SP100 Sample
Mean 0.423 0.463 0.498 0.356 0.357 0.358 0.067 0.106 0.140
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.412 0.466 0.509 0.331 0.344 0.341 0.066 0.103 0.144
StDev 0.130 0.114 0.101 0.152 0.129 0.116 0.114 0.090 0.093

DJ30 Sample
Mean 0.464 0.497 0.528 0.371 0.373 0.377 0.082 0.112 0.137
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.456 0.503 0.539 0.352 0.363 0.359 0.078 0.102 0.141
StDev 0.148 0.129 0.105 0.169 0.148 0.141 0.130 0.102 0.090

SP500 Sample (full sector-based)
Mean 0.358 0.396 0.436 0.314 0.314 0.320 0.044 0.082 0.116
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.349 0.403 0.449 0.289 0.302 0.302 0.046 0.085 0.122
StDev 0.137 0.125 0.114 0.151 0.131 0.117 0.100 0.077 0.071

SP500 Sample (reduced sector-based)
Mean 0.663 0.719 0.751 0.634 0.646 0.661 0.028 0.074 0.089
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
Median 0.701 0.762 0.789 0.658 0.672 0.696 0.028 0.068 0.095
StDev 0.195 0.167 0.156 0.186 0.166 0.147 0.159 0.115 0.094

27



Table 3: Sector Implied and Realized Correlations: Summary
The table reports summary statistics (time-series mean, p-value for the mean, median, and the standard devia-
tion) for the implied correlation (IC), realized correlation (RC), and for the difference between them (IC-RC), for
components of S&P500 sector indices and for sectors within S&P500, for the sample period from 1996 to 04/2016,
and from 10/1997 to 04/2016, respectively, and for three different maturities—30, 91, and 365 (calendar) days.
IC(t) (RC(t)) are calculated from daily observations of model-free implied (realized) variances for the index and
for all index components, using (5). Model-free implied variances are computed as simple variance swaps Martin
(2013). The p-values for significance of the means are computed with Newey and West (1987) adjustments for
autocorrelation.

IC RC IC-RC
30 91 365 30 91 365 30 91 365

Sector: mat
Mean 0.520 0.520 0.549 0.483 0.480 0.477 0.038 0.041 0.080
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.151 0.144 0.139 0.154 0.122 0.094 0.141 0.115 0.110

Sector: hea
Mean 0.415 0.397 0.433 0.367 0.363 0.359 0.048 0.035 0.075
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000
StDev 0.136 0.108 0.111 0.173 0.145 0.115 0.182 0.126 0.101

Sector: cst
Mean 0.476 0.445 0.491 0.375 0.364 0.359 0.102 0.081 0.135
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.141 0.108 0.106 0.163 0.118 0.086 0.207 0.132 0.106

Sector: cdi
Mean 0.416 0.438 0.475 0.384 0.376 0.377 0.038 0.065 0.102
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.123 0.107 0.093 0.147 0.119 0.097 0.137 0.103 0.081

Sector: ene
Mean 0.702 0.715 0.717 0.693 0.694 0.695 0.009 0.022 0.024
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.351 0.077 0.164
StDev 0.184 0.170 0.148 0.187 0.163 0.145 0.164 0.127 0.107

Sector: fin
Mean 0.628 0.643 0.680 0.551 0.551 0.552 0.078 0.092 0.130
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.136 0.103 0.090 0.146 0.113 0.095 0.144 0.107 0.101

Sector: ind
Mean 0.504 0.523 0.554 0.451 0.448 0.454 0.054 0.076 0.104
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.167 0.157 0.147 0.196 0.161 0.147 0.160 0.106 0.086

Sector: tec
Mean 0.441 0.463 0.501 0.366 0.362 0.366 0.075 0.099 0.129
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.146 0.119 0.096 0.151 0.124 0.117 0.165 0.121 0.105

Sector: utl
Mean 0.487 0.548 0.649 0.535 0.531 0.534 -0.049 0.016 0.111
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.131 0.000
StDev 0.166 0.157 0.164 0.179 0.155 0.136 0.187 0.114 0.128
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Table 4: Link between Correlations for S&P500 and other indices
The table reports time-series correlations between correlations (implied and realized) for the S&P500, and other
major indices, and sector subindices. We use components of the S&P500, S&P100 and DJ30 indices, for the sam-
ple period from 1996 to 04/2016, and from 10/1997 to 04/2016, respectively, and for three different maturities—
30, 91, and 365 (calendar) days. IC(t) (RC(t)) are calculated from daily observations of model-free implied
(realized) variances for the index and for all index components, using (5). Full sector-based correlations for
S&P500 sample are correlations between economic sectors in the index, computed using equation (6). Reduced
sector-based are estimated by using sectors as underlying assets directly from equation (5). Robustness contains
ICs for S&P500 index computer either under assumption of equal index weights, oder using MFIV (Bakshi,
Kapadia, and Madan (2003)) as a proxy of expected integrated variance.

IC RC
30 91 365 30 91 365

SP100 0.983 0.979 0.895 0.987 0.990 0.992
DJ30 0.963 0.974 0.963 0.958 0.972 0.991
SP500 Sample (reduced sector-based) 0.788 0.840 0.888 0.838 0.842 0.854
SP500 Sample (full sector-based) 0.993 0.992 0.992 0.995 0.995 0.997

Sector: mat 0.535 0.571 0.599 0.615 0.656 0.694
Sector: hea 0.619 0.837 0.844 0.613 0.614 0.739
Sector: cst 0.310 0.592 0.347 0.601 0.650 0.729
Sector: cdi 0.718 0.777 0.704 0.747 0.784 0.859
Sector: ene 0.331 0.366 0.469 0.369 0.365 0.467
Sector: fin 0.586 0.525 0.168 0.732 0.748 0.779
Sector: ind 0.797 0.843 0.896 0.770 0.827 0.874
Sector: tec 0.385 0.329 0.023 0.749 0.714 0.711
Sector: utl 0.490 0.621 0.620 0.455 0.565 0.682

Robustness
SP500, equal weights 0.953 0.943 0.717
SP500, model free implied variance 0.998 0.992 0.967
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Table 5: Individual and Index Variances, and Variance Risk Premiums

The table reports the time-series averages of realized (
√
RV ) and model-free implied variances (

√
MFIV ),

expressed in volatility terms, and the difference between them (V RP = MFIV −RV ), expressed as a difference
in variances, for three samples of stocks—components of S&P500, S&P100, and DJ30 indices, for the sample
period from 1996 to 04/2016, and from 10/1997 to 04/2016, respectively, and for three different maturities—30,
91, and 365 (calendar) days. For individual stocks the variances are equally-weighted cross-sectional averages
across all constituent stocks. Model-free implied variance (MFIV ) is computed on each day using out-of-the
money options with the respective maturity, and realized variance RV is calculated on each day from daily
returns over a respective window, corresponding to the maturity of MFIV . Model-free implied variances are
computed as simple variance swaps Martin (2013). All variances (volatilities) are expressed in annual terms.
The p-value is for the null hypothesis that implied and realized variances are on average equal; the p-values are
computed from standard errors with Newey and West (1987) adjustments for autocorrelation.

Individual Stocks Indices

Days
√
MFIV

√
RV V RP p− val

√
MFIV

√
RV V RP p− val

SP500 Sample
30 0.400 0.398 0.001 0.757 0.211 0.187 0.006 0.004
91 0.383 0.397 -0.011 0.144 0.211 0.186 0.006 0.044
365 0.367 0.395 -0.021 0.164 0.216 0.186 0.008 0.089

SP100 Sample
30 0.364 0.371 -0.005 0.333 0.211 0.188 0.005 0.004
91 0.351 0.368 -0.013 0.105 0.212 0.187 0.006 0.029
365 0.341 0.365 -0.017 0.204 0.218 0.187 0.009 0.061

DJ30 Sample
30 0.323 0.327 -0.002 0.434 0.207 0.177 0.007 0.000
91 0.311 0.325 -0.009 0.154 0.207 0.176 0.007 0.006
365 0.307 0.319 -0.008 0.461 0.213 0.176 0.010 0.038
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Table 6: Individual and Sector Variances, and Variance Risk Premiums

The table reports the time-series averages of realized (
√
RV ) and model-free implied variances (

√
MFIV ),

expressed in volatility terms, and the difference between them (V RP = MFIV −RV ), expressed as a difference
in variances, for nine samples of stocks—components of economic sectors based on S&P500 index, for the sample
period from 12/1998 to 04/2016 and for three different maturities—30, 91, and 365 (calendar) days. For individual
stocks the variances are equally-weighted cross-sectional averages across all constituent stocks. Model-free implied
variance (MFIV ) is computed on each day using out-of-the money options with the respective maturity, and
realized variance RV is calculated on each day from daily returns over a respective window, corresponding to
the maturity of MFIV . Model-free implied variances are computed as simple variance swaps Martin (2013). All
variances (volatilities) are expressed in annual terms. The p-value is for the null hypothesis that implied and
realized variances are on average equal; the p-values are computed from standard errors with Newey and West
(1987) adjustments for autocorrelation.

Individual Stocks Indices

Days
√
MFIV

√
RV V RP p− val

√
MFIV

√
RV V RP p− val

Sector:mat
30 0.385 0.377 0.006 0.147 0.264 0.250 0.005 0.055
91 0.369 0.375 -0.005 0.479 0.252 0.250 -0.000 0.923
365 0.359 0.372 -0.010 0.479 0.251 0.251 -0.001 0.903
Sector:hea
30 0.364 0.348 0.011 0.000 0.199 0.185 0.005 0.021
91 0.351 0.348 0.002 0.518 0.192 0.185 0.002 0.380
365 0.345 0.349 -0.002 0.696 0.198 0.185 0.004 0.186
Sector:cst
30 0.303 0.285 0.010 0.000 0.179 0.155 0.007 0.000
91 0.290 0.284 0.003 0.136 0.172 0.155 0.005 0.000
365 0.290 0.281 0.005 0.222 0.186 0.155 0.010 0.000
Sector:cdi
30 0.404 0.388 0.012 0.000 0.239 0.229 0.005 0.010
91 0.388 0.388 0.000 0.998 0.237 0.229 0.004 0.215
365 0.375 0.384 -0.007 0.562 0.243 0.230 0.005 0.385
Sector:ene
30 0.404 0.402 0.001 0.849 0.275 0.281 -0.005 0.374
91 0.390 0.400 -0.008 0.441 0.269 0.280 -0.007 0.367
365 0.377 0.393 -0.013 0.476 0.268 0.280 -0.007 0.518
Sector:fin
30 0.400 0.436 -0.030 0.036 0.308 0.313 -0.006 0.350
91 0.374 0.432 -0.046 0.051 0.293 0.311 -0.014 0.233
365 0.351 0.421 -0.055 0.189 0.286 0.313 -0.019 0.429
Sector:ind
30 0.366 0.352 0.010 0.001 0.233 0.216 0.007 0.000
91 0.351 0.352 -0.000 0.932 0.228 0.216 0.004 0.086
365 0.345 0.349 -0.003 0.741 0.233 0.217 0.006 0.236
Sector:tec
30 0.500 0.503 -0.004 0.498 0.286 0.265 0.010 0.011
91 0.484 0.504 -0.019 0.024 0.283 0.265 0.007 0.143
365 0.456 0.505 -0.047 0.029 0.285 0.266 0.006 0.493
Sector:utl
30 0.331 0.312 0.012 0.072 0.204 0.193 0.004 0.150
91 0.299 0.311 -0.007 0.367 0.194 0.193 -0.000 0.966
365 0.284 0.309 -0.015 0.322 0.209 0.193 0.006 0.143
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Table 7: Market Return Predictability: Correlations and VRP

The table shows the coefficients (and corresponding p-values) and the R2 of the market predictive regressions, for
the sample period from 10/1997 to 04/2016 for DJ30-based variables, and from 01/1996 to 04/2016 for S&P500
and S&P100. We regress overlapping market factor compounded over a specified horizon (30, 91, and 365 calendar
days) on a constant and a given set of explanatory variables, which are the realized (historical) equicorrelation
(RC) for 30, 91, and 365 calendar days, implied correlation (IC) for the same maturities, and the variance
risk premium, which equals to the difference between model-free implied variance and lagged realized variance
computed over the matching period (V RP ) of 30, 91, and 365 calendar days. Model-free implied variances are
computed as simple variance swaps Martin (2013). The p-values (under the coefficients) for the null hypothesis
that the coefficients are equal zero are computed using Newey and West (1987) standard errors.

Market return, 30 days Market return, 91 days Market return, 365 days

SP500 Sample
RC 0.030 0.111 0.403

0.111 0.037 0.093
IC 0.067 0.072 0.255 0.259 0.851 0.849

0.000 0.000 0.000 0.000 0.000 0.000
VRP 0.210 0.228 0.444 0.478 -0.738 -0.699

0.003 0.001 0.001 0.000 0.231 0.186
R2 0.008 0.030 0.023 0.057 0.029 0.125 0.029 0.159 0.064 0.216 0.012 0.227

SP100 Sample
RC 0.027 0.087 0.332

0.134 0.089 0.209
IC 0.058 0.062 0.240 0.245 0.864 0.897

0.001 0.000 0.000 0.000 0.000 0.000
VRP 0.215 0.230 0.527 0.556 -0.589 -0.990

0.003 0.002 0.000 0.000 0.394 0.039
R2 0.007 0.024 0.023 0.050 0.019 0.113 0.037 0.153 0.045 0.232 0.008 0.254

DJ30 Sample
RC 0.026 0.089 0.531

0.126 0.058 0.000
IC 0.059 0.062 0.226 0.230 0.982 0.973

0.000 0.000 0.000 0.000 0.000 0.000
VRP 0.215 0.229 0.540 0.574 -1.253 -1.105

0.005 0.003 0.000 0.000 0.078 0.048
R2 0.008 0.032 0.019 0.053 0.025 0.125 0.033 0.162 0.158 0.329 0.029 0.351

SP500 Sample (reduced sector-based)
RC 0.049 0.170 0.700

0.000 0.000 0.000
IC 0.048 0.047 0.167 0.165 0.642 0.634

0.000 0.000 0.000 0.000 0.000 0.000
VRP 0.205 0.205 0.405 0.390 -1.550 -1.446

0.005 0.004 0.003 0.005 0.015 0.027
R2 0.034 0.035 0.024 0.059 0.117 0.115 0.027 0.140 0.307 0.291 0.058 0.342

SP500 Sample (full sector-based)
RC 0.040 0.138 0.730

0.039 0.011 0.000
IC 0.066 0.071 0.230 0.240 0.872 0.844

0.000 0.000 0.000 0.000 0.000 0.000
VRP 0.205 0.226 0.412 0.484 -1.468 -1.147

0.005 0.002 0.003 0.000 0.015 0.071
R2 0.015 0.034 0.024 0.063 0.049 0.123 0.028 0.161 0.219 0.296 0.054 0.328
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Table 8: Risk Predictability: Correlations and V RP

The table shows the coefficients (with corresponding p-values) and the R2 of the risk predictive regressions, for
the sample period from 10/1997 to 04/2016 for DJ30-based variables, and from 01/1996 to 04/2016 for S&P500
and S&P100. We regress risk measures for a specified horizon of 30, 91, and 365 calendar days (in Panels A,
B, and C, respectively) on a constant and a given set of explanatory variables, which are implied correlation
(IC) for 30, 91, and 365 calendar days, and the variance risk premium, which equals to the difference between
model-free implied variance and lagged realized variance computed over the matching period (V RP ) of 30, 91,
and 365 calendar days. The risk measures are the realized variance (RV ), the average 1-factor model R2 for all
stocks in a given index, cross-sectional variance of market betas σ2(βM ) for all stocks in an index, and realized
equicorrelation (RC), also defined for a given index. Model-free implied variances are computed as simple
variance swaps Martin (2013). The p-values (under the coefficients) for the null hypothesis that the coefficients
are equal zero are computed using Newey and West (1987) standard errors.

Panel A: 30-day horizon

RV 1-factor R2 σ2(βM ) RC

SP500 Sample
RC 0.150 0.507 -0.531 0.510

0.002 0.000 0.000 0.000
IC 0.143 0.616 -0.783 0.688

0.001 0.000 0.000 0.000
VRP -0.829 -0.690 0.188 -0.674

0.001 0.000 0.573 0.001
R2 0.110 0.074 0.200 0.303 0.335 0.033 0.066 0.107 0.000 0.260 0.354 0.027

SP100 Sample
RC 0.122 0.468 -0.315 0.470

0.003 0.000 0.000 0.000
IC 0.126 0.587 -0.422 0.647

0.001 0.000 0.000 0.000
VRP -0.761 -0.657 0.272 -0.628

0.004 0.001 0.403 0.013
R2 0.086 0.067 0.167 0.267 0.307 0.026 0.028 0.036 0.001 0.221 0.306 0.020

DJ30 Sample
RC 0.102 0.441 -0.089 0.522

0.005 0.000 0.368 0.000
IC 0.100 0.560 -0.153 0.671

0.001 0.000 0.175 0.000
VRP -0.638 -0.712 0.164 -0.847

0.014 0.000 0.520 0.000
R2 0.086 0.063 0.120 0.276 0.332 0.025 0.003 0.008 0.000 0.273 0.338 0.025

SP500 Sample (reduced sector-based)
RC 0.066 0.363 -0.610 0.365

0.049 0.000 0.000 0.000
IC 0.048 0.341 -0.585 0.369

0.014 0.000 0.000 0.000
VRP -0.871 -0.613 0.179 -0.665

0.001 0.000 0.593 0.002
R2 0.031 0.018 0.217 0.258 0.249 0.030 0.143 0.143 0.000 0.214 0.239 0.028

SP500 Sample (full sector-based)
RC 0.148 0.493 -0.576 0.513

0.004 0.000 0.000 0.000
IC 0.129 0.644 -0.811 0.696

0.002 0.000 0.000 0.000
VRP -0.873 -0.614 0.174 -0.665

0.001 0.000 0.604 0.002
R2 0.102 0.064 0.218 0.314 0.443 0.029 0.084 0.137 0.000 0.280 0.425 0.02833



...Table 8 continued

Panel B: 91-day horizon

RV 1-factor R2 σ2(βM ) RC

SP500 Sample
RC 0.099 0.591 -0.226 0.544

0.002 0.000 0.008 0.000
IC 0.044 0.549 -0.487 0.548

0.068 0.000 0.000 0.000
VRP -0.474 -0.807 -0.845 -0.646

0.000 0.000 0.000 0.000
R2 0.049 0.008 0.073 0.359 0.255 0.042 0.030 0.116 0.027 0.300 0.251 0.027

SP100 Sample
RC 0.081 0.558 -0.097 0.523

0.004 0.000 0.200 0.000
IC 0.033 0.527 -0.296 0.512

0.173 0.000 0.001 0.000
VRP -0.439 -0.720 -0.885 -0.580

0.000 0.000 0.000 0.003
R2 0.039 0.005 0.060 0.328 0.228 0.029 0.006 0.046 0.028 0.277 0.207 0.018

DJ30 Sample
RC 0.069 0.546 0.044 0.609

0.004 0.000 0.549 0.000
IC 0.036 0.508 -0.073 0.558

0.070 0.000 0.338 0.000
VRP -0.323 -0.830 -1.234 -0.920

0.000 0.000 0.000 0.000
R2 0.043 0.009 0.034 0.387 0.256 0.032 0.002 0.005 0.075 0.373 0.239 0.030

SP500 Sample (reduced sector-based)
RC -0.004 0.413 -0.510 0.372

0.900 0.000 0.000 0.000
IC -0.012 0.358 -0.470 0.344

0.502 0.000 0.000 0.000
VRP -0.510 -0.686 -0.837 -0.632

0.000 0.000 0.000 0.000
R2 -0.000 0.001 0.081 0.314 0.240 0.035 0.241 0.209 0.026 0.238 0.207 0.027

SP500 Sample (full sector-based)
RC 0.084 0.577 -0.342 0.553

0.015 0.000 0.001 0.000
IC 0.029 0.602 -0.534 0.575

0.249 0.000 0.000 0.000
VRP -0.505 -0.723 -0.814 -0.649

0.000 0.000 0.000 0.000
R2 0.034 0.003 0.080 0.377 0.376 0.038 0.068 0.151 0.025 0.327 0.324 0.029
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...Table 8 continued

Panel C: 365-day horizon

RV 1-factor R2 σ2(βM ) RC

SP500 Sample
RC 0.050 0.668 -0.231 0.514

0.007 0.000 0.008 0.000
IC -0.025 0.565 -0.643 0.440

0.066 0.000 0.000 0.000
VRP 0.099 -1.136 -0.183 -0.780

0.029 0.000 0.348 0.000
R2 0.022 0.004 0.005 0.426 0.228 0.071 0.049 0.286 0.002 0.286 0.157 0.038

SP100 Sample
RC 0.044 0.615 -0.055 0.440

0.020 0.000 0.495 0.000
IC -0.048 0.397 -0.414 0.267

0.001 0.000 0.000 0.000
VRP 0.099 -1.025 -0.218 -0.609

0.005 0.000 0.256 0.000
R2 0.020 0.017 0.005 0.367 0.116 0.058 0.003 0.150 0.003 0.216 0.060 0.023

DJ30 Sample
RC 0.023 0.531 0.022 0.577

0.095 0.000 0.731 0.000
IC -0.042 0.346 -0.179 0.354

0.001 0.000 0.008 0.000
VRP 0.152 -1.298 -0.038 -1.419

0.001 0.000 0.871 0.000
R2 0.008 0.017 0.012 0.354 0.091 0.071 0.001 0.050 -0.000 0.319 0.073 0.065

SP500 Sample (reduced sector-based)
RC -0.019 0.382 -0.434 0.258

0.098 0.000 0.000 0.000
IC -0.052 0.340 -0.613 0.233

0.000 0.000 0.000 0.000
VRP 0.126 -0.625 -0.160 -0.450

0.028 0.001 0.475 0.022
R2 0.004 0.038 0.007 0.255 0.225 0.026 0.246 0.547 0.001 0.117 0.106 0.014

SP500 Sample (full sector-based)
RC 0.029 0.594 -0.338 0.471

0.092 0.000 0.001 0.000
IC -0.040 0.587 -0.710 0.443

0.001 0.000 0.000 0.000
VRP 0.121 -0.788 -0.120 -0.589

0.026 0.000 0.580 0.002
R2 0.006 0.012 0.007 0.367 0.336 0.039 0.097 0.405 0.000 0.237 0.196 0.022

35



Table 9: Factor Models: Individual Stocks
The table shows the average market betas and the R2’s for one-, three, five-, and six-factor models (Fama and
French (1993, 2015), Carhart (1997)) and average betas on the first leading factor and R2’s for the explanatory
regressions of individual stock returns on one to five leading factors extracted from one of three covariance
matrices, namely, historical covariance matrix for S&P500 components ΣP estimated over the last 251 trading
days, heterogenous implied covariance matrix ΣQ

BV from Buss and Vilkov (2012) estimated using ΣP as input

and 30-/91-/365-day options, and full sector-based covariance matrix ΣQ
FSB constructed from 30-/91-/365-day

options as discussed in Section 2. Model-free implied variances are computed as simple variance swaps Martin
(2013). The principal components are extracted at the end of each month, and daily factor realizations for the
next month are constructed from daily stock returns and corresponding normalized eigenvectors. One regression
per stock in CRSP is then performed for the sample period from 01/1996 to 08/2016.

Factors βmkt R2

Economic factors
mkt 0.997 0.208
mkt+smb+hml 1.068 0.236
mkt+smb+hml+rmw+cma 1.043 0.253
mkt+smb+hml+rmw+cma+mom 1.042 0.261

30-day 91-day 365-day
Factors βPC1 R2 βPC1 R2 βPC1 R2

Covariance Matrix: ΣP

PC1 0.844 0.231 0.844 0.230 0.849 0.235
PC1-2 0.829 0.262 0.830 0.262 0.840 0.266
PC1-3 0.827 0.279 0.828 0.279 0.838 0.284
PC1-4 0.826 0.291 0.827 0.290 0.839 0.295
PC1-5 0.826 0.300 0.827 0.299 0.840 0.305

Covariance Matrix: ΣQ
BV

PC1 0.883 0.232 0.883 0.232 0.907 0.237
PC1-2 0.898 0.261 0.881 0.262 0.904 0.268
PC1-3 0.884 0.277 0.885 0.279 0.905 0.286
PC1-4 0.885 0.288 0.882 0.291 0.912 0.299
PC1-5 0.882 0.297 0.881 0.298 0.908 0.307

Covariance Matrix: ΣQ
FSB

PC1 0.878 0.247 0.875 0.247 0.910 0.260
PC1-2 0.887 0.272 0.882 0.274 0.919 0.289
PC1-3 0.875 0.287 0.870 0.288 0.917 0.305
PC1-4 0.865 0.297 0.870 0.300 0.913 0.317
PC1-5 0.873 0.306 0.877 0.310 0.924 0.328
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A1 Internet Appendix: Tables for Robustness Tests

Tables with IC/RC under assumption of equal index weights

Table A101: (Equal Weights) Index Implied and Realized Correlations: Summary
The table reports summary statistics (time-series mean, p-value for the mean, median, and the standard devia-
tion) for the implied correlation (IC), realized correlation (RC), and for the difference between them (IC-RC),
for three samples of stocks—components of S&P500, S&P100 and DJ30 indices, for the sample period from
1996 to 08/2015, and from 10/1997 to 08/2015, respectively, and for three different maturities—30, 91, and 365
(calendar) days. IC(t) (RC(t)) are calculated from daily observations of model-free implied (realized) variances
for the index and for all index components, using (5) under assumptions that all indices are equal-weighted
ones. Full sector-based correlations for SP500 sample are correlations between economic sectors in the index,
computed using equation (6) with equal asset weights. Reduced sector-based are estimated from using sectors as
underlying assets directly from equation (5) with equal sector weights. The p-values for significance of the means
are computed with Newey and West (1987) adjustments for autocorrelation.

IC RC IC-RC
30 91 365 30 91 365 30 91 365

SP500 Sample
Mean 0.305 0.347 0.404 0.263 0.259 0.262 0.041 0.088 0.142
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.290 0.340 0.399 0.245 0.245 0.261 0.040 0.081 0.144
StDev 0.106 0.104 0.105 0.111 0.090 0.079 0.090 0.083 0.089

SP100 Sample
Mean 0.365 0.408 0.463 0.306 0.305 0.307 0.058 0.103 0.156
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.357 0.411 0.461 0.288 0.292 0.304 0.056 0.097 0.153
StDev 0.118 0.112 0.117 0.127 0.104 0.094 0.101 0.088 0.103

DJ30 Sample
Mean 0.421 0.460 0.513 0.330 0.331 0.335 0.085 0.121 0.165
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.410 0.457 0.498 0.312 0.327 0.334 0.078 0.108 0.160
StDev 0.134 0.127 0.119 0.144 0.119 0.104 0.128 0.112 0.112

SP500 Sample (full sector-based)
Mean 0.278 0.318 0.381 0.247 0.244 0.252 0.030 0.075 0.129
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.267 0.319 0.374 0.229 0.235 0.250 0.032 0.072 0.130
StDev 0.102 0.093 0.100 0.110 0.089 0.078 0.086 0.072 0.082

SP500 Sample (reduced sector-based)
Mean 0.698 0.752 0.816 0.663 0.673 0.690 0.034 0.078 0.126
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.725 0.773 0.829 0.678 0.688 0.712 0.026 0.060 0.132
StDev 0.182 0.139 0.110 0.179 0.148 0.132 0.164 0.130 0.101
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Table A102: (Equal Weights) Sector Implied and Realized Correlations: Summary
The table reports summary statistics (time-series mean, p-value for the mean, median, and the standard devia-
tion) for the implied correlation (IC), realized correlation (RC), and for the difference between them (IC-RC), for
components of S&P500 sector indices and for sectors within S&P500, for the sample period from 1996 to 08/2015,
and from 10/1997 to 08/2015, respectively, and for three different maturities—30, 91, and 365 (calendar) days.
IC(t) (RC(t)) are calculated from daily observations of model-free implied (realized) variances for the index and
for all index components, using (5) under assumption that all indices are equal-weighted ones. The p-values for
significance of the means are computed with Newey and West (1987) adjustments for autocorrelation.

IC RC IC-RC
30 91 365 30 91 365 30 91 365

Sector: mat
Mean 0.479 0.501 0.524 0.449 0.445 0.449 0.031 0.057 0.082
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
StDev 0.154 0.150 0.141 0.152 0.122 0.093 0.145 0.117 0.120

Sector: hea
Mean 0.319 0.319 0.360 0.290 0.280 0.277 0.029 0.038 0.083
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
StDev 0.111 0.096 0.105 0.141 0.107 0.081 0.154 0.105 0.098

Sector: cst
Mean 0.377 0.376 0.427 0.307 0.292 0.288 0.070 0.084 0.139
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.123 0.088 0.087 0.138 0.095 0.061 0.179 0.115 0.096

Sector: cdi
Mean 0.352 0.384 0.428 0.335 0.325 0.331 0.026 0.065 0.099
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
StDev 0.098 0.089 0.079 0.130 0.103 0.082 0.127 0.107 0.099

Sector: ene
Mean 0.465 0.486 0.502 0.466 0.466 0.470 -0.000 0.021 0.036
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.953 0.044 0.033
StDev 0.137 0.126 0.112 0.151 0.131 0.108 0.122 0.098 0.088

Sector: fin
Mean 0.563 0.606 0.649 0.518 0.514 0.520 0.045 0.091 0.126
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.140 0.118 0.103 0.156 0.119 0.106 0.153 0.118 0.114

Sector: ind
Mean 0.422 0.458 0.502 0.389 0.383 0.390 0.033 0.075 0.115
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.146 0.145 0.142 0.162 0.139 0.133 0.133 0.091 0.090

Sector: tec
Mean 0.325 0.355 0.398 0.273 0.266 0.268 0.052 0.087 0.125
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.104 0.099 0.088 0.114 0.090 0.078 0.127 0.109 0.097

Sector: utl
Mean 0.420 0.513 0.583 0.493 0.486 0.484 -0.074 0.025 0.090
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.000
StDev 0.154 0.161 0.180 0.187 0.161 0.138 0.198 0.121 0.112
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Table A103: (Equal Weights) Market Return Predictability: Correlations and VRP

The table shows the coefficients (and corresponding p-values) and the R2 of the market predictive regressions,
for the sample period from 10/1997 to 08/2015 for DJ30-based variables, and from 01/1996 to 08/2015 for
S&P500 and S&P100. We regress overlapping market factor compounded over a specified horizon (30, 91, and
365 calendar days) on a constant and a given set of explanatory variables, which are the realized (historical)
equicorrelation (RC) for 30, 91, and 365 calendar days, implied correlation (IC) for the same maturities, and the
variance risk premium, which equals to the difference between model-free implied variance and lagged realized
variance computed over the matching period (V RP ) of 30, 91, and 365 calendar days. The p-values (under
the coefficients) for the null hypothesis that the coefficients are equal zero are computed using Newey and West
(1987) standard errors.

Market return, 30 days Market return, 91 days Market return, 365 days

SP500 Sample
RC 0.041 0.212 0.716

0.071 0.000 0.000
IC 0.084 0.078 0.286 0.270 0.632 0.760

0.000 0.000 0.000 0.000 0.000 0.000
VRP 0.227 0.207 0.469 0.226 -0.191 -1.313

0.002 0.005 0.001 0.128 0.599 0.001
R2 0.008 0.032 0.023 0.051 0.053 0.130 0.027 0.136 0.107 0.143 0.001 0.178

SP100 Sample
RC 0.035 0.155 0.410

0.047 0.000 0.000
IC 0.072 0.068 0.254 0.236 0.543 0.646

0.000 0.000 0.000 0.000 0.000 0.000
VRP 0.232 0.214 0.548 0.342 -0.001 -1.135

0.002 0.005 0.001 0.016 0.999 0.001
R2 0.008 0.029 0.022 0.048 0.038 0.119 0.032 0.131 0.049 0.131 -0.000 0.156

DJ30 Sample
RC 0.037 0.144 0.755

0.022 0.000 0.000
IC 0.075 0.069 0.237 0.220 0.604 0.717

0.000 0.000 0.000 0.000 0.000 0.000
VRP 0.248 0.208 0.580 0.249 -0.433 -1.617

0.004 0.010 0.001 0.113 0.328 0.001
R2 0.011 0.040 0.023 0.056 0.043 0.129 0.035 0.134 0.185 0.164 0.003 0.207

SP500 Sample (reduced sector-based)
RC 0.040 0.162 0.656

0.010 0.000 0.000
IC 0.043 0.040 0.173 0.161 0.568 0.639

0.000 0.001 0.000 0.000 0.000 0.000
VRP 0.222 0.205 0.436 0.301 -0.591 -1.165

0.004 0.006 0.003 0.030 0.132 0.002
R2 0.020 0.025 0.024 0.045 0.083 0.085 0.025 0.096 0.230 0.118 0.008 0.150

SP500 Sample (full sector-based)
RC 0.051 0.211 1.086

0.048 0.000 0.000
IC 0.100 0.096 0.334 0.318 0.739 0.882

0.000 0.000 0.000 0.000 0.000 0.000
VRP 0.221 0.206 0.441 0.248 -0.506 -1.526

0.004 0.007 0.002 0.094 0.187 0.000
R2 0.013 0.041 0.024 0.062 0.052 0.142 0.026 0.150 0.228 0.169 0.006 0.221
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Table A104: (Equal Weights) Risk Predictability: Correlations and VRP

The table shows the coefficients (with corresponding p-values) and the R2 of the risk predictive regressions, for
the sample period from 10/1997 to 08/2015 for DJ30-based variables, and from 01/1996 to 08/2015 for S&P500
and S&P100. We regress risk measures for a specified horizon of 30, 91, and 365 calendar days (in Panels A,
B, and C, respectively) on a constant and a given set of explanatory variables, which are implied correlation
(IC) for 30, 91, and 365 calendar days, and the variance risk premium, which equals to the difference between
model-free implied variance and lagged realized variance computed over the matching period (V RP ) of 30, 91,
and 365 calendar days. The risk measures are the average 4- and 1-factor model R2 for all stocks in a given index,
cross-sectional variance of market betas σ2(βM ) for all stocks in an index, and realized equicorrelation (RC),
also defined for a given index. The p-values (under the coefficients) for the null hypothesis that the coefficients
are equal zero are computed using Newey and West (1987) standard errors.

Panel A: 30-day horizon

4-factor R2 1-factor R2 σ2(βM ) RC

SP500 Sample
RC 0.420 0.516 -0.619 0.373

0.000 0.000 0.000 0.000
IC 0.430 0.568 -0.887 0.533

0.000 0.000 0.000 0.000
VRP -0.493 -0.515 0.014 -0.159

0.004 0.025 0.972 0.472
R2 0.177 0.171 0.022 0.184 0.205 0.016 0.053 0.100 -0.000 0.138 0.260 0.002

SP100 Sample
RC 0.389 0.481 -0.414 0.380

0.000 0.000 0.000 0.000
IC 0.447 0.592 -0.604 0.547

0.000 0.000 0.000 0.000
VRP -0.455 -0.467 0.252 -0.176

0.020 0.082 0.504 0.400
R2 0.192 0.217 0.017 0.200 0.260 0.012 0.031 0.057 0.001 0.144 0.255 0.002

DJ30 Sample
RC 0.335 0.436 -0.245 0.433

0.000 0.000 0.029 0.000
IC 0.324 0.451 -0.382 0.520

0.000 0.000 0.002 0.000
VRP -0.519 -0.545 0.180 -0.295

0.008 0.043 0.519 0.172
R2 0.185 0.145 0.020 0.202 0.182 0.014 0.020 0.040 0.000 0.188 0.227 0.004

SP500 Sample (reduced sector-based)
RC 0.226 0.294 -0.402 0.201

0.000 0.000 0.000 0.000
IC 0.180 0.244 -0.423 0.239

0.000 0.000 0.000 0.000
VRP -0.422 -0.445 0.043 -0.216

0.020 0.065 0.914 0.303
R2 0.141 0.093 0.019 0.156 0.112 0.014 0.056 0.065 -0.000 0.109 0.161 0.005

SP500 Sample (full sector-based)
RC 0.449 0.565 -0.715 0.394

0.000 0.000 0.000 0.000
IC 0.601 0.785 -1.097 0.600

0.000 0.000 0.000 0.000
VRP -0.423 -0.446 0.037 -0.216

0.020 0.065 0.925 0.304
R2 0.209 0.323 0.019 0.217 0.361 0.014 0.067 0.136 -0.000 0.157 0.316 0.005
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...Table A104 continued

Panel B: 91-day horizon

4-factor R2 1-factor R2 σ2(βM ) RC

SP500 Sample
RC 0.599 0.678 -0.304 0.404

0.000 0.000 0.003 0.000
IC 0.270 0.344 -0.521 0.343

0.001 0.000 0.000 0.000
VRP -0.553 -0.569 -0.970 0.033

0.004 0.010 0.000 0.855
R2 0.222 0.060 0.019 0.244 0.083 0.018 0.027 0.107 0.029 0.165 0.159 -0.000

SP100 Sample
RC 0.567 0.634 -0.152 0.476

0.000 0.000 0.060 0.000
IC 0.340 0.423 -0.393 0.412

0.000 0.000 0.000 0.000
VRP -0.435 -0.420 -0.930 0.059

0.057 0.116 0.000 0.766
R2 0.264 0.110 0.010 0.278 0.143 0.008 0.009 0.072 0.024 0.229 0.200 0.000

DJ30 Sample
RC 0.488 0.575 -0.114 0.484

0.000 0.000 0.130 0.000
IC 0.186 0.257 -0.286 0.306

0.008 0.001 0.000 0.000
VRP -0.498 -0.532 -1.060 0.234

0.013 0.019 0.002 0.223
R2 0.253 0.040 0.013 0.287 0.063 0.012 0.011 0.081 0.051 0.236 0.104 0.003

SP500 Sample (reduced sector-based)
RC 0.318 0.384 -0.302 0.224

0.000 0.000 0.000 0.000
IC 0.144 0.179 -0.156 0.172

0.010 0.003 0.070 0.000
VRP -0.440 -0.450 -0.986 -0.028

0.036 0.062 0.000 0.865
R2 0.180 0.032 0.014 0.214 0.041 0.012 0.065 0.015 0.029 0.141 0.073 -0.000

SP500 Sample (full sector-based)
RC 0.660 0.761 -0.429 0.445

0.000 0.000 0.001 0.000
IC 0.520 0.626 -0.672 0.417

0.000 0.000 0.000 0.000
VRP -0.479 -0.500 -0.954 -0.037

0.017 0.030 0.000 0.817
R2 0.277 0.186 0.017 0.300 0.220 0.015 0.047 0.126 0.027 0.201 0.192 -0.000
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...Table A104 continued

Panel C: 365-day horizon

4-factor R2 1-factor R2 σ2(βM ) RC

SP500 Sample
RC 0.741 0.813 -0.225 0.417

0.000 0.000 0.043 0.000
IC 0.180 0.194 -0.445 0.213

0.024 0.030 0.000 0.000
VRP -0.309 -0.470 -0.263 -0.035

0.247 0.100 0.196 0.840
R2 0.293 0.028 0.006 0.306 0.029 0.011 0.022 0.144 0.003 0.199 0.085 -0.000

SP100 Sample
RC 0.692 0.742 -0.008 0.468

0.000 0.000 0.924 0.000
IC 0.193 0.219 -0.276 0.251

0.009 0.006 0.001 0.000
VRP -0.250 -0.362 -0.304 0.068

0.310 0.170 0.108 0.738
R2 0.363 0.041 0.003 0.356 0.045 0.006 -0.000 0.081 0.005 0.254 0.106 0.000

DJ30 Sample
RC 0.604 0.676 -0.080 0.543

0.000 0.000 0.237 0.000
IC -0.048 -0.066 -0.189 0.039

0.457 0.361 0.000 0.539
VRP -0.510 -0.762 0.164 -0.696

0.051 0.008 0.500 0.004
R2 0.298 0.002 0.012 0.314 0.004 0.023 0.009 0.065 0.002 0.291 0.002 0.028

SP500 Sample (reduced sector-based)
RC 0.314 0.363 -0.257 0.195

0.000 0.000 0.002 0.000
IC 0.281 0.314 -0.431 0.202

0.000 0.000 0.000 0.000
VRP 0.105 -0.030 -0.246 0.058

0.719 0.923 0.265 0.765
R2 0.160 0.082 0.001 0.182 0.088 -0.000 0.068 0.124 0.003 0.108 0.075 0.000

SP500 Sample (full sector-based)
RC 0.688 0.792 -0.369 0.448

0.000 0.000 0.005 0.000
IC 0.381 0.418 -0.600 0.267

0.000 0.000 0.000 0.000
VRP -0.035 -0.193 -0.213 -0.010

0.902 0.520 0.318 0.957
R2 0.259 0.118 -0.000 0.286 0.118 0.002 0.051 0.201 0.002 0.202 0.106 -0.000
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Tables with implied moments from MFIV

Table A105: (MFIV) Index Implied and Realized Correlations: Summary Statis-
tics
The table reports summary statistics (time-series mean, p-value for the mean, median, and the standard devia-
tion) for the implied correlation (IC), realized correlation (RC), and for the difference between them (IC-RC),
for three samples of stocks—components of S&P500, S&P100 and DJ30 indices, for the sample period from
1996 to 08/2015, and from 10/1997 to 08/2015, respectively, and for three different maturities—30, 91, and 365
(calendar) days. IC(t) (RC(t)) are calculated from daily observations of model-free implied (realized) variances
for the index and for all index components, using (5). Full sector-based correlations for SP500 sample are corre-
lations between economic sectors in the index, computed using equation (6). Reduced sector-based are estimated
from using sectors as underlying assets directly from equation (5). The p-values for significance of the means are
computed with Newey and West (1987) adjustments for autocorrelation.

IC RC IC-RC
30 91 365 30 91 365 30 91 365

SP500 Sample
Mean 0.393 0.432 0.483 0.325 0.323 0.325 0.069 0.110 0.158
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.380 0.434 0.489 0.296 0.306 0.306 0.065 0.104 0.162
StDev 0.131 0.120 0.114 0.143 0.124 0.115 0.104 0.092 0.100

SP100 Sample
Mean 0.429 0.474 0.526 0.354 0.354 0.356 0.075 0.120 0.170
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.419 0.479 0.531 0.331 0.342 0.339 0.071 0.115 0.174
StDev 0.134 0.119 0.115 0.150 0.127 0.116 0.114 0.096 0.114

DJ30 Sample
Mean 0.467 0.505 0.552 0.369 0.370 0.374 0.088 0.123 0.162
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.457 0.510 0.549 0.350 0.360 0.356 0.080 0.110 0.161
StDev 0.152 0.135 0.118 0.167 0.146 0.140 0.135 0.113 0.120

SP500 Sample (full sector-based)
Mean 0.362 0.400 0.455 0.311 0.310 0.318 0.051 0.091 0.138
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.352 0.409 0.466 0.286 0.296 0.298 0.050 0.092 0.146
StDev 0.141 0.127 0.122 0.150 0.130 0.119 0.100 0.082 0.090

SP500 Sample (reduced sector-based)
Mean 0.657 0.705 0.767 0.631 0.641 0.658 0.025 0.064 0.109
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000
Median 0.694 0.741 0.791 0.655 0.667 0.687 0.021 0.049 0.114
StDev 0.199 0.165 0.153 0.187 0.167 0.148 0.165 0.127 0.104
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Table A106: (MFIV) Sector Implied and Realized Correlations: Summary Statis-
tics
The table reports summary statistics (time-series mean, p-value for the mean, median, and the standard devia-
tion) for the implied correlation (IC), realized correlation (RC), and for the difference between them (IC-RC), for
components of S&P500 sector indices and for sectors within S&P500, for the sample period from 1996 to 08/2015,
and from 10/1997 to 08/2015, respectively, and for three different maturities—30, 91, and 365 (calendar) days.
IC(t) (RC(t)) are calculated from daily observations of model-free implied (realized) variances for the index and
for all index components, using (5). The p-values for significance of the means are computed with Newey and
West (1987) adjustments for autocorrelation.

IC RC IC-RC
30 91 365 30 91 365 30 91 365

Sector: mat
Mean 0.530 0.535 0.549 0.472 0.470 0.470 0.059 0.067 0.087
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.158 0.152 0.142 0.149 0.119 0.093 0.149 0.120 0.120

Sector: hea
Mean 0.420 0.405 0.434 0.360 0.356 0.353 0.060 0.049 0.081
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001
StDev 0.142 0.119 0.121 0.171 0.142 0.113 0.189 0.137 0.116

Sector: cst
Mean 0.494 0.467 0.494 0.371 0.360 0.354 0.123 0.108 0.143
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.151 0.119 0.111 0.163 0.117 0.085 0.216 0.139 0.112

Sector: cdi
Mean 0.425 0.452 0.486 0.382 0.375 0.377 0.049 0.081 0.110
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.128 0.117 0.107 0.147 0.120 0.099 0.141 0.111 0.097

Sector: ene
Mean 0.724 0.741 0.724 0.698 0.699 0.701 0.025 0.043 0.027
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.002 0.180
StDev 0.192 0.179 0.150 0.190 0.167 0.150 0.172 0.135 0.117

Sector: fin
Mean 0.632 0.655 0.675 0.546 0.546 0.548 0.085 0.108 0.128
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.134 0.106 0.089 0.145 0.112 0.095 0.149 0.114 0.112

Sector: ind
Mean 0.512 0.539 0.572 0.445 0.442 0.449 0.067 0.098 0.126
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.173 0.170 0.157 0.193 0.160 0.149 0.161 0.109 0.098

Sector: tec
Mean 0.443 0.472 0.512 0.357 0.353 0.359 0.086 0.118 0.147
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
StDev 0.149 0.118 0.102 0.150 0.124 0.117 0.166 0.127 0.130

Sector: utl
Mean 0.510 0.588 0.643 0.530 0.527 0.528 -0.022 0.059 0.109
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.061 0.000 0.000
StDev 0.182 0.179 0.183 0.180 0.157 0.135 0.197 0.123 0.118
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Table A107: (MFIV) Individual and Index Variances, and Variance Risk Premi-
ums
The table reports the time-series averages of realized (

√
RV ) and model-free implied variances (

√
MFIV ),

expressed in volatility terms, and the difference between them (V RP = MFIV −RV ), expressed as a difference
in variances, for three samples of stocks—components of S&P500, S&P100, and DJ30 indices, for the sample
period from 1996 to 8/2015, and from 10/1997 to 8/2015, respectively, and for three different maturities—30, 91,
and 365 (calendar) days. For individual stocks the variances are equally-weighted cross-sectional averages across
all constituent stocks. Model-free implied variance (MFIV ) is computed on each day using out-of-the money
options with the respective maturity, and realized variance RV is calculated on each day from daily returns
over a respective window, corresponding to the maturity of MFIV . All variances (volatilities) are expressed in
annual terms. The p-value is for the null hypothesis that implied and realized variances are on average equal;
the p-values are computed from standard errors with Newey and West (1987) adjustments for autocorrelation.

Individual Stocks Indices

Days
√
MFIV

√
RV V RP p− val

√
MFIV

√
RV V RP p− val

SP500 Sample
30 0.408 0.398 0.007 0.065 0.216 0.187 0.008 0.000
91 0.393 0.397 -0.003 0.621 0.219 0.186 0.009 0.000
365 0.375 0.395 -0.015 0.232 0.224 0.186 0.012 0.004

SP100 Sample
30 0.372 0.371 0.001 0.856 0.216 0.188 0.008 0.000
91 0.362 0.368 -0.004 0.461 0.220 0.187 0.010 0.000
365 0.348 0.365 -0.012 0.287 0.226 0.187 0.012 0.002

DJ 30 Sample
30 0.334 0.327 0.005 0.035 0.212 0.177 0.009 0.000
91 0.327 0.325 0.001 0.777 0.216 0.176 0.011 0.000
365 0.312 0.319 -0.005 0.599 0.221 0.176 0.013 0.001
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Table A108: (MFIV) Individual and Sector Variances, and Variance Risk Premi-
ums
The table reports the time-series averages of realized (

√
RV ) and model-free implied variances (

√
MFIV ),

expressed in volatility terms, and the difference between them (V RP = MFIV −RV ), expressed as a difference
in variances, for nine samples of stocks—components of economic sectors based on S&P500 index, for the sample
period from 12/1998 to 8/2015 and for three different maturities—30, 91, and 365 (calendar) days. For individual
stocks the variances are equally-weighted cross-sectional averages across all constituent stocks. Model-free implied
variance (MFIV ) is computed on each day using out-of-the money options with the respective maturity, and
realized variance RV is calculated on each day from daily returns over a respective window, corresponding to
the maturity of MFIV . All variances (volatilities) are expressed in annual terms. The p-value is for the null
hypothesis that implied and realized variances are on average equal; the p-values are computed from standard
errors with Newey and West (1987) adjustments for autocorrelation.

Individual Stocks Indices

Days
√
MFIV

√
RV V RP p− val

√
MFIV

√
RV V RP p− val

Sector:mat
30 0.392 0.378 0.011 0.006 0.275 0.254 0.011 0.000
91 0.378 0.376 0.002 0.747 0.266 0.253 0.006 0.045
365 0.365 0.375 -0.008 0.492 0.260 0.254 0.003 0.553
Sector:hea
30 0.368 0.349 0.014 0.000 0.202 0.187 0.006 0.001
91 0.357 0.349 0.006 0.050 0.198 0.186 0.005 0.020
365 0.346 0.351 -0.004 0.559 0.203 0.185 0.006 0.103
Sector:cst
30 0.308 0.285 0.014 0.000 0.184 0.157 0.009 0.000
91 0.294 0.284 0.006 0.002 0.179 0.156 0.008 0.000
365 0.289 0.283 0.004 0.399 0.188 0.156 0.010 0.000
Sector:cdi
30 0.415 0.390 0.020 0.000 0.247 0.233 0.009 0.000
91 0.403 0.389 0.011 0.002 0.249 0.233 0.009 0.001
365 0.387 0.387 0.000 0.978 0.254 0.233 0.010 0.090
Sector:ene
30 0.401 0.391 0.008 0.195 0.281 0.283 -0.000 0.926
91 0.390 0.389 0.001 0.920 0.279 0.281 -0.001 0.908
365 0.376 0.388 -0.009 0.521 0.275 0.281 -0.003 0.745
Sector:fin
30 0.420 0.441 -0.018 0.137 0.322 0.319 0.001 0.865
91 0.402 0.438 -0.030 0.116 0.314 0.317 -0.004 0.720
365 0.374 0.428 -0.044 0.229 0.301 0.319 -0.012 0.583
Sector:ind
30 0.375 0.354 0.015 0.000 0.242 0.219 0.010 0.000
91 0.362 0.354 0.006 0.072 0.240 0.219 0.010 0.000
365 0.351 0.352 -0.000 0.956 0.245 0.220 0.011 0.011
Sector:tec
30 0.511 0.510 0.002 0.769 0.295 0.270 0.013 0.000
91 0.497 0.510 -0.013 0.132 0.295 0.270 0.013 0.007
365 0.470 0.512 -0.041 0.037 0.294 0.271 0.010 0.275
Sector:utl
30 0.340 0.314 0.017 0.012 0.211 0.195 0.006 0.012
91 0.313 0.312 0.000 0.941 0.204 0.195 0.004 0.199
365 0.296 0.311 -0.009 0.443 0.210 0.194 0.006 0.092
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Table A109: (MFIV) Market Return Predictability: Correlations and VRP

The table shows the coefficients (and corresponding p-values) and the R2 of the market predictive regressions,
for the sample period from 10/1997 to 08/2015 for DJ30-based variables, and from 01/1996 to 08/2015 for
S&P500 and S&P100. We regress overlapping market factor compounded over a specified horizon (30, 91, and
365 calendar days) on a constant and a given set of explanatory variables, which are the realized (historical)
equicorrelation (RC) for 30, 91, and 365 calendar days, implied correlation (IC) for the same maturities, and the
variance risk premium, which equals to the difference between model-free implied variance and lagged realized
variance computed over the matching period (V RP ) of 30, 91, and 365 calendar days. The p-values (under
the coefficients) for the null hypothesis that the coefficients are equal zero are computed using Newey and West
(1987) standard errors.

Market return, 30 days Market return, 91 days Market return, 365 days

SP500 Sample
RC 0.037 0.156 0.509

0.056 0.000 0.000
IC 0.073 0.071 0.269 0.259 0.725 0.801

0.000 0.000 0.000 0.000 0.000 0.000
VRP 0.227 0.220 0.469 0.330 -0.191 -1.147

0.002 0.002 0.001 0.015 0.599 0.001
R2 0.011 0.037 0.023 0.058 0.055 0.154 0.027 0.167 0.113 0.223 0.001 0.251

SP100 Sample
RC 0.034 0.137 0.436

0.059 0.000 0.000
IC 0.067 0.065 0.267 0.255 0.735 0.848

0.000 0.000 0.000 0.000 0.000 0.000
VRP 0.232 0.224 0.548 0.405 -0.001 -1.345

0.002 0.004 0.001 0.005 0.999 0.000
R2 0.010 0.032 0.022 0.053 0.045 0.148 0.032 0.165 0.084 0.236 -0.000 0.271

DJ30 Sample
RC 0.031 0.127 0.617

0.073 0.000 0.000
IC 0.065 0.062 0.245 0.232 0.797 0.866

0.000 0.000 0.000 0.000 0.000 0.000
VRP 0.248 0.228 0.580 0.397 -0.433 -1.431

0.004 0.004 0.001 0.005 0.328 0.001
R2 0.011 0.039 0.023 0.058 0.049 0.156 0.035 0.172 0.230 0.287 0.003 0.324

SP500 Sample (reduced sector-based)
RC 0.050 0.189 0.722

0.001 0.000 0.000
IC 0.050 0.047 0.181 0.174 0.620 0.652

0.000 0.000 0.000 0.000 0.000 0.000
VRP 0.222 0.204 0.436 0.311 -0.591 -1.119

0.004 0.006 0.003 0.020 0.132 0.002
R2 0.035 0.039 0.024 0.059 0.146 0.132 0.025 0.145 0.356 0.273 0.008 0.303

SP500 Sample (full sector-based)
RC 0.046 0.174 0.787

0.024 0.000 0.000
IC 0.074 0.073 0.257 0.251 0.784 0.841

0.000 0.000 0.000 0.000 0.000 0.000
VRP 0.221 0.218 0.441 0.366 -0.506 -1.226

0.004 0.003 0.002 0.006 0.187 0.001
R2 0.019 0.043 0.024 0.066 0.076 0.157 0.026 0.175 0.276 0.285 0.006 0.322
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Table A110: (MFIV) Risk Predictability: Correlations and VRP

The table shows the coefficients (with corresponding p-values) and the R2 of the risk predictive regressions, for
the sample period from 10/1997 to 08/2015 for DJ30-based variables, and from 01/1996 to 08/2015 for S&P500
and S&P100. We regress risk measures for a specified horizon of 30, 91, and 365 calendar days (in Panels A,
B, and C, respectively) on a constant and a given set of explanatory variables, which are implied correlation
(IC) for 30, 91, and 365 calendar days, and the variance risk premium, which equals to the difference between
model-free implied variance and lagged realized variance computed over the matching period (V RP ) of 30, 91,
and 365 calendar days. The risk measures are the average 4- and 1-factor model R2 for all stocks in a given index,
cross-sectional variance of market betas σ2(βM ) for all stocks in an index, and realized equicorrelation (RC),
also defined for a given index. The p-values (under the coefficients) for the null hypothesis that the coefficients
are equal zero are computed using Newey and West (1987) standard errors.

Panel A: 30-day horizon

4-factor R2 1-factor R2 σ2(βM ) RC

SP500 Sample
RC 0.425 0.524 -0.516 0.524

0.000 0.000 0.000 0.000
IC 0.449 0.587 -0.765 0.649

0.000 0.000 0.000 0.000
VRP -0.493 -0.515 0.014 -0.464

0.004 0.025 0.972 0.123
R2 0.302 0.282 0.022 0.316 0.332 0.016 0.061 0.112 -0.000 0.274 0.352 0.012

SP100 Sample
RC 0.385 0.482 -0.339 0.481

0.000 0.000 0.000 0.000
IC 0.423 0.568 -0.460 0.615

0.000 0.000 0.000 0.000
VRP -0.455 -0.467 0.252 -0.404

0.020 0.082 0.504 0.230
R2 0.262 0.253 0.017 0.279 0.309 0.012 0.029 0.043 0.001 0.231 0.301 0.007

DJ30 Sample
RC 0.352 0.452 -0.081 0.528

0.000 0.000 0.432 0.000
IC 0.386 0.517 -0.145 0.623

0.000 0.000 0.183 0.000
VRP -0.519 -0.545 0.180 -0.634

0.008 0.043 0.519 0.039
R2 0.272 0.265 0.020 0.290 0.307 0.014 0.003 0.007 0.000 0.279 0.313 0.013

SP500 Sample (reduced sector-based)
RC 0.276 0.367 -0.621 0.367

0.000 0.000 0.000 0.000
IC 0.233 0.320 -0.548 0.350

0.000 0.000 0.000 0.000
VRP -0.422 -0.445 0.043 -0.464

0.020 0.065 0.914 0.124
R2 0.231 0.184 0.019 0.268 0.229 0.014 0.148 0.129 -0.000 0.225 0.230 0.013

SP500 Sample (full sector-based)
RC 0.401 0.512 -0.583 0.530

0.000 0.000 0.000 0.000
IC 0.481 0.634 -0.814 0.677

0.000 0.000 0.000 0.000
VRP -0.423 -0.446 0.037 -0.465

0.020 0.065 0.925 0.125
R2 0.310 0.395 0.019 0.332 0.450 0.014 0.083 0.143 -0.000 0.299 0.432 0.013
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...Table A110 continued

Panel B: 91-day horizon

4-factor R2 1-factor R2 σ2(βM ) RC

SP500 Sample
RC 0.535 0.605 -0.210 0.551

0.000 0.000 0.019 0.000
IC 0.382 0.468 -0.481 0.473

0.000 0.000 0.000 0.000
VRP -0.553 -0.569 -0.970 -0.362

0.004 0.010 0.000 0.138
R2 0.338 0.161 0.019 0.371 0.207 0.018 0.025 0.122 0.029 0.309 0.212 0.007

SP100 Sample
RC 0.497 0.564 -0.100 0.520

0.000 0.000 0.221 0.000
IC 0.369 0.466 -0.347 0.444

0.000 0.000 0.000 0.000
VRP -0.435 -0.420 -0.930 -0.226

0.057 0.116 0.000 0.418
R2 0.306 0.146 0.010 0.333 0.197 0.008 0.006 0.063 0.024 0.275 0.173 0.002

DJ30 Sample
RC 0.469 0.540 0.066 0.603

0.000 0.000 0.369 0.000
IC 0.333 0.411 -0.077 0.452

0.000 0.000 0.255 0.000
VRP -0.498 -0.532 -1.060 -0.544

0.013 0.019 0.002 0.029
R2 0.350 0.149 0.013 0.379 0.186 0.012 0.006 0.006 0.051 0.366 0.174 0.010

SP500 Sample (reduced sector-based)
RC 0.337 0.416 -0.513 0.372

0.000 0.000 0.000 0.000
IC 0.251 0.323 -0.420 0.320

0.000 0.000 0.000 0.000
VRP -0.440 -0.450 -0.986 -0.350

0.036 0.062 0.000 0.160
R2 0.257 0.138 0.014 0.321 0.188 0.012 0.239 0.156 0.029 0.246 0.176 0.007

SP500 Sample (full sector-based)
RC 0.507 0.595 -0.334 0.565

0.000 0.000 0.001 0.000
IC 0.470 0.573 -0.541 0.544

0.000 0.000 0.000 0.000
VRP -0.479 -0.500 -0.954 -0.376

0.017 0.030 0.000 0.118
R2 0.353 0.285 0.017 0.396 0.345 0.015 0.062 0.153 0.027 0.346 0.301 0.008
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...Table A110 continued

Panel C: 365-day horizon

4-factor R2 1-factor R2 σ2(βM ) RC

SP500 Sample
RC 0.604 0.671 -0.227 0.510

0.000 0.000 0.012 0.000
IC 0.302 0.340 -0.508 0.268

0.000 0.000 0.000 0.000
VRP -0.309 -0.470 -0.263 -0.307

0.247 0.100 0.196 0.219
R2 0.408 0.095 0.006 0.435 0.105 0.011 0.047 0.222 0.003 0.290 0.075 0.005

SP100 Sample
RC 0.581 0.633 -0.080 0.443

0.000 0.000 0.349 0.000
IC 0.203 0.241 -0.386 0.150

0.005 0.002 0.000 0.016
VRP -0.250 -0.362 -0.304 -0.162

0.310 0.170 0.108 0.492
R2 0.386 0.046 0.003 0.392 0.055 0.006 0.007 0.159 0.005 0.223 0.025 0.001

DJ30 Sample
RC 0.466 0.520 0.033 0.555

0.000 0.000 0.609 0.000
IC 0.105 0.103 -0.099 0.117

0.107 0.155 0.055 0.148
VRP -0.510 -0.762 0.164 -0.786

0.051 0.008 0.500 0.016
R2 0.333 0.012 0.012 0.349 0.010 0.023 0.003 0.019 0.002 0.309 0.010 0.019

SP500 Sample (reduced sector-based)
RC 0.319 0.378 -0.430 0.256

0.000 0.000 0.000 0.000
IC 0.308 0.362 -0.612 0.264

0.000 0.000 0.000 0.000
VRP 0.105 -0.030 -0.246 -0.014

0.719 0.923 0.265 0.960
R2 0.211 0.191 0.001 0.251 0.226 -0.000 0.244 0.483 0.003 0.117 0.122 -0.000

SP500 Sample (full sector-based)
RC 0.512 0.598 -0.357 0.473

0.000 0.000 0.001 0.000
IC 0.430 0.495 -0.650 0.369

0.000 0.000 0.000 0.000
VRP -0.035 -0.193 -0.213 -0.152

0.902 0.520 0.318 0.574
R2 0.329 0.230 -0.000 0.374 0.254 0.002 0.110 0.362 0.002 0.244 0.148 0.001
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Table A111: (MFIV) Factor Models: Individual Stocks

The table shows the average market betas and the R2’s for one-, three, five-, and six-factor models (Fama and
French (1993, 2015), Carhart (1997)) and average betas on the first leading factor and R2’s for the explanatory
regressions of individual stock returns on one to five leading factors extracted from one of three covariance
matrices, namely, historical covariance matrix for S&P500 components ΣP estimated over the last 251 trading
days, heterogenous implied covariance matrix ΣQ

BV from Buss and Vilkov (2012) estimated using ΣP as input

and 30-/91-/365-day options, and full sector-based covariance matrix ΣQ
FSB constructed from 30-/91-/365-day

options as discussed in Section 2. The principal components are extracted at the end of each month, and daily
factor realizations for the next month are constructed from daily stock returns and corresponding normalized
eigenvectors. One regression per stock in CRSP is then performed for the sample period from 01/1996 to 08/2015.

Factors βmkt R2

Economic factors
mkt 0.997 0.208
mkt+smb+hml 1.068 0.236
mkt+smb+hml+rmw+cma 1.043 0.253
mkt+smb+hml+rmw+cma+mom 1.042 0.261

30-day 91-day 365-day
Factors βPC1 R2 βPC1 R2 βPC1 R2

Covariance Matrix: ΣP

PC1 0.844 0.231 0.844 0.230 0.849 0.235
PC1-2 0.829 0.262 0.830 0.262 0.840 0.266
PC1-3 0.827 0.279 0.828 0.279 0.838 0.284
PC1-4 0.826 0.291 0.827 0.290 0.839 0.295
PC1-5 0.826 0.300 0.827 0.299 0.840 0.305

Covariance Matrix: ΣQ
BV

PC1 0.881 0.232 0.882 0.232 0.899 0.236
PC1-2 0.879 0.260 0.880 0.261 0.894 0.267
PC1-3 0.881 0.278 0.886 0.278 0.901 0.284
PC1-4 0.873 0.290 0.883 0.290 0.903 0.297
PC1-5 0.873 0.297 0.885 0.298 0.903 0.305

Covariance Matrix: ΣQ
FSB

PC1 0.877 0.246 0.875 0.247 0.905 0.260
PC1-2 0.885 0.271 0.883 0.273 0.913 0.288
PC1-3 0.874 0.287 0.872 0.287 0.911 0.303
PC1-4 0.868 0.298 0.868 0.298 0.909 0.314
PC1-5 0.827 0.307 0.877 0.307 0.911 0.325
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