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Abstract

We study stability of two-sided many-to-one matching in which firms’ preferences

for workers may exhibit complementarities. Although such preferences are known to

jeopardize stability in a finite market, we show that a stable matching exists in a

large market with a continuum of workers, provided that each firm’s choice is con-

vex and changes continuously as the set of available workers changes. We also study

the existence and the structure of stable matchings under preferences exhibiting sub-

stitutability and indifferences in a large market. Building on these results, we show

that an approximately stable matching exists in large finite economies. We extend our

framework to ensure a stable matching with desirable incentive and fairness properties

in the presence of indifferences in firms’ preferences.
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1 Introduction

Since the celebrated work by Gale and Shapley (1962), matching theory has emerged as a

central tool for analyzing the design of matching markets. A key concept of the theory is

“stability”—the requirement that there be no incentives for participants to “block” (i.e.,

side-contract around) a prescribed matching. Eliminating blocks keeps markets robust and

promotes their long-term sustainability.1 Even when strategic blocking is not a concern, as

in the case of public school matching where schools systems exercise direct control, stability

is desirable from the fairness standpoint because it eliminates so-called justified envy: given

stability, an agent has no envy toward another unless the latter’s partner prefers the envied.

In the school choice application, if schools’ preferences are determined by test scores or other

priorities that a student feels entitled to, eliminating justified envy appears to be important.

Unfortunately, a stable matching exists only under restrictive conditions. It is well known

that in two-sided many-to-one matching, stability is not guaranteed unless the preferences

of participants—for example, firms—are substitutable.2 In other words, failure of substi-

tutability, or complementarity, can lead to instability. This is a serious problem given the

pervasiveness of complementary preferences. Firms often seek to hire workers with com-

plementary skills. For instance, in professional sports leagues, teams demand athletes that

complement one another in skills and roles, etc. Some public schools in New York City

seek diversity in their student bodies with respect to their skill levels.3 US colleges tend to

assemble classes that are complementary and diverse in terms of their aptitudes, life back-

grounds, and demographics. To better organize such markets, one must understand the

extent to which stability can be achieved in the presence of such complementarities, or else

the applicability of matching theory will remain severely limited.4

This paper takes a step forward in accommodating complementarities and other forms

1Table 1 in Roth (2002) shows that unstable matching algorithms tend to die out while stable algorithms

survive the test of time.
2Substitutability here means that a firm’s demand for a worker never grows when more workers are

available. More precisely, if a firm does not wish to hire a worker from a set of workers, then it never prefers

to hire that worker from a larger (in the sense of set inclusion) set of workers. The existence of a stable

matching under substitutable preferences is established by Kelso and Crawford (1982), Roth (1985), and

Hatfield and Milgrom (2005), while substitutability was shown to be a maximal domain for existence by

Sönmez and Ünver (2010), Hatfield and Kojima (2008), and Hatfield and Kominers (2017).
3 The so-called Educational option programs in NYC high schools seek to fill 16% of of their seats with

high reading performers (as measured by the score on the 7th grade standardized reading test), 68% of the

seats with middle reading performers and the 16% remaining seats with the low reading performers (see

Abdulkadiroğlu, Pathak, and Roth (2005)).
4In particular, this limitation is important for many decentralized markets that might otherwise benefit

from centralization, such as the markets for college and graduate admissions. Decentralized college admissions

may entail inefficiencies and lack of fairness (see Che and Koh (2016)). But to centralize such college

admissions, one must know how to deal with potential instability arising from complementary preferences

by colleges.
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of general preferences. In light of the general impossibility, this requires us to weaken the

notion of stability in some way. Our approach is to consider a large market. Specifically, we

consider a market that consists of a continuum of workers/students on one side and a finite

number of firms/colleges with continuum of capacities on the other. We then ask whether

stability can be achieved in an “asymptotic” sense—i.e., whether participants’ incentives for

blocking disappear as the economy grows large and approaches the continuum economy in

the limit. Such a weakening preserves the original spirit of stability: as long as the incentive

for blocking is sufficiently weak, the instability and fairness concerns will not be serious

enough to jeopardize the mechanism.

Large market models are also of interest since many real world matching markets are

large. School choice in a typical urban setting involves tens of thousands of students. Med-

ical matching involves about 35,000 and 9,000 doctors in the US and Japan, respectively.

Aside from complementary preferences, a large market model also allows us to address some

outstanding issues in finite markets. One such issue is multiplicity of stable matchings.

While the set of stable matchings can be large in finite economies, there is a sense in which

the set shrinks as the market grows large. Indeed, Azevedo and Leshno (2016) establish that

a stable matching is generically unique in a continuum economy when firms have so-called

responsive preferences, a special case of substitutable preferences. To what extent such a

result generalizes to more general preferences is an interesting issue that can be explored in

a large market setting.

Our main model considers a continuum economy with a finite number of firms and a

continuum of workers. Each worker may match with at most one firm and has strict prefer-

ence orders over alternative firms. Firms may match with a group (or mass) of workers, and

we assume general preferences over groups of workers. Importantly, their preferences may

exhibit complementarities. Our model includes the setup of Azevedo and Leshno (2016) as

a special case, which assumes that firms have responsive preferences. In addition, we allow

firms to be indifferent over different groups of workers. Indifferences may arise from firms’

limited observation about workers’ characteristics or their unwillingness/inability by law to

distinguish workers based on some characteristics. Indifferences are particularly common in

school choice, for schools apply coarse priorities to ration their seats,5 in which case school

preferences encoding the priorities will exhibit indifference over students. Formally, we rep-

resent a firm’s preferences by a choice correspondence defined over measures of worker types

that may be potentially infinite. A matching is then defined as measures of worker types

assigned to alternative firms and is said to be stable if it is not blocked by any firms or

workers by themselves or via a coalition.

5In the public school choice program in Boston prior to 2005, for instance, a student’s priority at a

school was based only on broad criteria, such as the student’s residence and whether any siblings were

currently enrolled at that school. Consequently, at each school, many students were assigned the same

priority (Abdulkadiroğlu, Pathak, Roth, and Sönmez, 2005).
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Our first result is to characterize a stable matching as a fixed point of a suitably defined

correspondence over measures of workers available to firms. The characterizing correspon-

dence is reminiscent of the tâtonnement process, in that it iterates each profile of worker

types (in measure) available to firms to a new profile of available workers after processing

firms’ optimal choice on the former profile. While a fixed point characterization is standard

in matching theory, our characterization is distinguished by the domain as well as the form

of the characterizing correspondence. Our correspondence is defined over measure space, a

rich functional space, unlike the standard approach. Further, the indifferences allowed for

within and across worker types present subtle issues in its construction, which causes the

construction to differ from those used in the existing matching literature, including Adachi

(2000), Hatfield and Milgrom (2005) and Echenique and Oviedo (2006).

Using our characterization, we establish existence of a stable matching in general environ-

ments. First, we show that a stable matching exists if firms’ preferences exhibit continuity,

more precisely if each firm’s choice correspondence is upper hemicontinuous and convex-

valued. This result is quite general because these conditions are satisfied by a rich class of

preferences—including those exhibiting complementarities.6 The existence is established by

means of the Kakutani-Fan-Glicksberg fixed point theorem—a generalization of Kakutani’s

fixed point theorem to functional spaces—which is new to the matching literature to the

best of our knowledge.

Second, we obtain existence under the assumption of substitutable preferences for firms.

The logic of this result is familiar. Namely, substitutability means that firms reject more

workers as more workers become available to them. This feature gives rise to monotonicity

of our characterization map. While such monotonicity is known to admit a fixed point,

the generality of our model with choice correspondence makes it nontrivial to identify the

exact forms of substitutable preferences required for existence.7 We identify two different

types of substitutable preferences with indifferences—a weak form leading to existence of a

stable matching and a strong form leading to existence of side-optimal (i.e., firm-optimal and

worker-optimal) stable matchings. We also identify a condition under which a side-optimal

stable matching can be found via a generalized Gale-Shapley algorithm. Finally, we also find

a condition, richness, that guarantees uniqueness of the stable matching, thus generalizing

the uniqueness result of Azevedo and Leshno (2016) beyond the special case of responsive

preferences. The richness delivers uniqueness under a full support assumption when firms

have responsive preferences but face general forms of group-specific quotas (e.g., affirmative

6For instance, it allows for Leontief-type preferences with respect to alternative types of workers, in

which firms desire to hire each type of workers in equal size.
7If a firm’s preferences are responsive, an arbitrary resolution of indifferences—or tie-breaking—preserves

responsiveness and thus implies existence. For more general preferences, however, a random or arbitrary

tie-breaking of indifferences does not necessarily lead to a choice function that possesses necessary properties

for existence.
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actions).

We next draw implications of our results from a continuum economy for “nearby” large

finite economies, assuming that each firm has a continuous utility function over the mea-

sure of workers it matches with. Specifically, we show that any large finite economy that is

sufficiently close to our continuum economy (in terms of the distribution of worker types) ad-

mits a matching that is approximately stable in the sense that the incentives for blocking are

arbitrarily small. The converse also holds: namely, if any approximately stable matchings de-

fined over a sequence of large finite economies converge to a matching in the limit continuum

economy, then the limit matching constitutes an (exact) stable matching in the continuum

economy. In addition, the structure of approximately stable matchings—side-optimal stable

matchings as well as uniqueness—in large finite economies are well approximated by that of

the stable matchings in the continuum economy. Our results thus suggest the usefulness of

the continuum economy as a tool for studying large finite economies.

Finally, we study fairness and incentive properties of matching. Stability eliminates

justified envy and as such protects workers from being discriminated by a firm against the

workers it perceives as less desirable. But stability alone is silent on how fair a matching is in

treating workers that are perceived by a firm as equivalent. This issue is particularly relevant

in school choice since schools evaluate students based on coarse priorities. Kesten and Ünver

(2014) show that, given responsive preferences by schools (i.e., firms in our model), it is

possible to implement a matching that eliminates discrimination among students enjoying

the same priority. We show that this stronger notion of fairness can be achieved even with

general preferences, either in a large economy or in a finite but “time-share” model in which

schools/firms and students/workers can share time or match probabilistically in a stable

manner in a finite economy (see Sotomayor (1999), Alkan and Gale (2003), and Kesten and

Ünver (2014), among others).

The remainder of this paper is organized as follows. Section 2 presents an example to

illustrate our main contributions. Section 3 describes a matching model in the continuum

economy. Section 4 provides a fixed-point characterization of stable matchings in the contin-

uum economy. Sections 5 and 6 provide the existence of a stable matching under continuous

and substitutable preferences, respectively. In Section 7, we explore implications of our exis-

tence results for approximately stable matchings in large finite economies. In Section 8, we

investigate fairness and strategy-proofness. In Section 9, we discuss the related literature.

Section 10 concludes.

2 Illustrative Example

Before proceeding, we illustrate the main contribution of our paper with an example. We

first illustrate how complementary preferences may lead to the non-existence of a stable
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matching when there is a finite number of agents. To this end, suppose that there are two

firms, f1 and f2, and two workers, θ and θ1. The agents have the following preferences:

θ : f1 ą f2; f1 : tθ, θ1u ą ø;

θ1 : f2 ą f1; f2 : tθu ą tθ1u ą ø.

In other words, worker θ prefers f1 to f2, and worker θ1 prefers f2 to f1; firm f1 prefers

employing both workers to employing neither, which the firm in turn prefers to employing

only one of the workers; and firm f2 prefers worker θ to θ1, which it in turn prefers to

employing neither. Firm f1 has a “complementary” preference, which creates instability.

To illustrate this, recall that stability requires that there be no blocking coalition. Due to

f1’s complementary preference, it must employ either both workers or neither in any stable

matching. The former case is unstable because worker θ1 prefers firm f2 to firm f1, and f2

prefers θ1 to being unmatched, so θ1 and f2 can form a blocking coalition. The latter case

is also unstable because f2 will only hire θ in that case, which leaves θ1 unemployed; this

outcome will be blocked by f1 forming a coalition with θ and θ1 that will benefit all members

of the coalition.

Can stability be restored if the market becomes large? If the market remains finite, the

answer is no. To illustrate this proposition, consider a scaled-up version of the above model:

there are q workers of type θ and q workers of type θ1, and they have the same preferences as

previously described. Firm f2 prefers type-θ workers to type-θ1 workers and wishes to hire

in that order but at most a total of q workers. Firm f1 has a complementary preference for

hiring identical numbers of type-θ and type-θ1 workers (with no capacity limit). Formally,

if x and x1 are the numbers of available workers of types θ and θ1, respectively, then firm f1

would choose mintx, x1u workers of each type.

When q is odd (including the original economy, where q “ 1), a stable matching does

not exist.8 To illustrate this, first note that if firm f1 hires more than q{2 workers of each

type, then firm f2 has a vacant position to form a blocking coalition with a type-θ1 worker,

who prefers f2 to f1. If f1 hires fewer than q{2 workers of each type, then some workers will

remain unmatched (because f2 hires at most q workers). If a type-θ worker is unmatched,

then f2 will form a blocking coalition with that worker. If a type-θ1 worker is unmatched,

then firm f1 will form a blocking coalition by hiring that worker and a θ worker (possibly

matched with f2).

Consequently, “exact” stability is not guaranteed, even in a large finite market. Nev-

ertheless, one may hope to achieve approximate stability. This is indeed the case with the

above example; the “magnitude” of instability diminishes as the economy grows large. To

illustrate this, let q be odd and consider a matching in which f1 hires q`1
2

workers of each

8We sketch the argument here; Section S.1 of Supplementary Material provides the argument in fuller

form. When q is even, a matching in which each firm hires q
2 of each type of workers is stable.
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type, whereas f2 hires q´1
2

workers of each type. This matching is unstable because f2 has

one vacant position it wants to fill, and there is a type-θ1 worker who is matched to f1 but

prefers f2. However, this is the only possible block of this matching, and it involves only one

worker. As the economy grows large, if the additional worker becomes insignificant for firm

f2 relative to its size, which is what the continuity of a firm’s preference captures, then the

payoff consequence of forming such a block must also become insignificant, which suggests

that the instability problem becomes insignificant as well.

This can be seen most clearly in the limits of the above economy. Suppose there is a

unit mass of workers, half of whom are type θ and the other half of whom are type θ1. Their

preferences are the same as described above. Suppose firm f1 wishes to maximize mintx, x1u,

where x and x1 are the measures of type-θ and type-θ1 workers, respectively. Firm f2 can

hire at most 1
2

of the workers, and it prefers to fill as much of this quota as possible with

type-θ workers and fill the remaining quota with type-θ1 workers. In this economy, there

is a (unique) stable matching in which each firm hires exactly one-half of the workers of

each type. To illustrate this, note that any blocking coalition involving firm f1 requires

taking away a positive—and identical—measure of type-θ1 and type-θ workers from firm f2,

which is impossible because type-θ1 workers will object to it. Additionally, any blocking

coalition involving firm f2 requires that a positive measure of type-θ workers be taken away

from firm f1 and replaced by the same measure of type-θ1 workers in its workforce, which

is impossible because type-θ workers will object to it. Our analysis below will demonstrate

that the continuity of firms’ preferences, which will be defined more clearly, is responsible for

guaranteeing the existence of a stable matching in the continuum economy and approximate

stability in the large finite economies in this example.

3 Model of a Continuum Economy

Agents and their measures. There is a finite set F “ tf1, . . . , fnu of firms and a mass

of workers. Let ø be the null firm, representing the possibility of workers not being matched

with any firm, and define F̃ :“ F Y tøu. The workers are identified with types θ P Θ, where

Θ is a compact metric space with metric dΘ. Let Σ denote a Borel σ-algebra of space Θ. Let

X be the set of all nonnegative measures such that for any X P X , XpΘq ď 1. Assume that

the entire population of workers is distributed according to a nonnegative (Borel) measure

G P X on pΘ,Σq. In other words, for any E P Σ, GpEq is the measure of workers belonging

to E. For normalization, assume that GpΘq “ 1. To illustrate, the limit economy of the

example from the previous section is a continuum economy with F “ tf1, f2u, Θ “ tθ, θ1u,

and Gptθuq “ Gptθ1uq “ 1{2.9 In the sequel, we shall use this as our leading example for

9Henceforth, given any measure X, Xpθq will denote a measure of the singleton set tθu to simplify

notation.
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purposes of illustrating the various concepts we develop.

Any subset of the population or subpopulation is represented by a nonnegative measure

X on pΘ,Σq such that XpEq ď GpEq for all E P Σ.10 Let X Ă X denote the set of all

subpopulations. We further say that a nonnegative measure X̃ P X is a subpopulation of

X P X , denoted as X̃ Ă X, if X̃pEq ď XpEq for all E P Σ. We let XX denote the set of all

subpopulations of X. Note that pX ,Ăq is a partially ordered set.11

Given the partial order Ă, for any X, Y P X , we define X _ Y (join) and X ^ Y (meet)

to be the supremum and infimum of X and Y , respectively.12 Also, for any X 1 Ă X , let
Ž

X 1 and
Ź

X 1 denote the supremum and infimum of X 1, which exist according to the next

lemma.

Lemma 1. The partially ordered set pX ,Ăq is a complete lattice.

Proof. See Section S.2.1 of Supplementary Material.

The join and meet of X and Y in X can be illustrated with examples. Let X “ px, x1q and

Y “ py, y1q be two measures in our leading example, where x and x1 are the measures of types

θ and θ1, respectively, under X, and likewise y and y1 under Y . Then, their join and meet are

respectively measures X_Y “ pmaxtx, yu,maxtx1, y1uq and X^Y “ pmintx, yu,mintx1, y1uq.

Next, consider a continuum economy with type space Θ “ r0, 1s and suppose the measure

G admits a bounded density g for all θ P r0, 1s. In this case, it easily follows that for

X, Y Ă G, their densities x and y are well defined.13 Then, their join Z “ pX _ Y q

and meet Z 1 “ pX ^ Y q admit densities z and z1 defined by zpθq “ maxtxpθq, ypθqu and

z1pθq “ mintxpθq, ypθqu for all θ, respectively. As usual, for any two measures X, Y P X ,

X ` Y and X ´ Y denote their sum and difference, respectively.

Consider the space of all (signed) measures (of bounded variation) on pΘ,Σq. We endow

this space with a weak-˚ topology and its subspace X with the relative topology. Given a

sequence of measures pXkq and a measure X on pΘ,Σq, we write Xk
w˚
ÝÑ X to indicate that

pXkq converges to X as k Ñ 8 under weak-˚ topology and simply say that pXkq weakly

converges to X.14

10In case of finitely many types, we will use “measure” and “mass” interchangeably.
11Reflexivity, transitivity and antisymmetry of the order are easy to check.
12For instance, X _ Y is the smallest measure of which both X and Y are subpopulations. It can be

shown that, for all E P Σ,

pX _ Y qpEq “ sup
DPΣ

XpE XDq ` Y pE XDcq.

13|Xpr0, θ1sq ´Xpr0, θsq| ď |Gpr0, θ1sq ´Gpr0, θsq| ď ḡ|θ1 ´ θ|, where ḡ :“ sups gpsq. Thus, X is Lipschitz

continuous, and its density is well defined.
14We use the term “weak convergence” because it is common in statistics and mathematics, although

weak-˚ convergence is a more appropriate term from the perspective of functional analysis. As is well known,

Xk
w˚
ÝÑ X if

ş

Θ
hdXk Ñ

ş

Θ
hdX for all bounded continuous functions h. See Theorem 12 in Appendix A for

some implications of this convergence.

8



Agents’ preferences. We now describe agents’ preferences. Each worker is assumed to

have a strict preference over F̃ . Let a bijection P : t1, ..., n ` 1u Ñ F̃ denote a worker’s

preference, where P pjq denotes the identity of the worker’s j-th best alternative, and let P
denote the (finite) set of all possible worker preferences.

We write f ąP f 1 to indicate that f is strictly preferred to f 1, according to P . (We

sometimes write f ąθ f
1 to express the preference of a particular type θ.) For each P P P , let

ΘP Ă Θ denote the set of all worker types whose preference is given by P , and assume that ΘP

is measurable andGpBΘP q “ 0, where BΘP denotes the boundary of ΘP .15 Because all worker

types have strict preferences, Θ can be partitioned into the sets in PΘ :“ tΘP : P P Pu.
We next describe firms’ preferences. We do so indirectly by defining a firm f ’s choice

correspondence Cf : X Ñ X , where Cf pXq Ă XX is a nonempty set of subpopulations

of X for any X P X .16 We assume that Cf satisfies the revealed preference property:

for any X,X 1 P X with X Ă X 1, if Cf pX
1q X XX ‰ H, then Cf pXq “ Cf pX

1q X XX .17

Let Rf : X Ñ X be a rejection correspondence defined by Rf pXq :“ tY P X |Y “

X ´X 1 for some X 1 P Cf pXqu. By convention, we let CøpXq “ tXu, @X P X , meaning that

RøpXqpEq “ 0 for all X P X and E P Σ. We will call Cf (resp,. Rf ) a firm f ’s choice (resp.,

rejection) function if |Cf pXq| “ 1 for all X P X . In this case, we slightly abuse notation

to write a unique outcome of function without the set notation.

In our leading example, the choice functions of firms f1 and f2 are given respectively by

Cf1px1, x
1
1q “ pmintx1, x

1
1u,mintx1, x

1
1uq (1)

Cf2px2, x
1
2q “

`

x2,min
 

1
2
´ x2, x

1
2

(˘

, (2)

when xi P r0,
1
2
s of type-θ workers and x1i P r0,

1
2
s of type-θ1 workers are available to firm fi,

i “ 1, 2.

In sum, a continuum economy is summarized as a tuple Γ “ pG,F,PΘ, CF q.

Matchings, and their efficiency and stability requirements. A matching is M “

pMf qfPF̃ such that Mf P X for all f P F̃ and
ř

fPF̃ Mf “ G. Firms’ choice correspondences

15This is a technical assumption that facilitates our analysis. The assumption is satisfied if, for each

P P P, ΘP is an open set such that GpYPPPΘP q “ GpΘq: all agents, except for a measure-zero set, have

strict preferences, a standard assumption in matching theory literature. The assumption that GpBΘP q “ 0

is also satisfied if Θ is discrete. To see it, note that BE :“ E X Ec, where E and Ec are the closures of E

and Ec, respectively. Then, we have E “ E and Ec “ Ec, so EXEc “ EXEc “ H. Hence, the assumption

is satisfied.
16 Taking firms’ choices as a primitive offers flexibility with regard to the preferences over alternatives

that are not chosen. This approach is also adopted by other studies in matching theory, which include Alkan

and Gale (2003) and Aygün and Sönmez (2013), among others.
17This property must hold if the choice is made by a firm optimizing with a well-defined preference

relation. The property is often invoked in the matching theory literature (see Hatfield and Milgrom (2005),

Fleiner (2003), and Alkan and Gale (2003)). Recently, Aygün and Sönmez (2013) have clarified the role of

this property in the context of matching with contracts.
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can be used to define a binary relation describing firms’ preferences over matchings. For any

two matchings, M and M 1, we say that firm f prefers M 1
f to Mf if M 1

f P Cf pM
1
f _Mf q, and

write M 1
f ľf Mf .

18 We also say that f strictly prefers M 1
f to Mf if M 1

f ľf Mf holds while

Mf ľf M
1
f does not, and write M 1

f ąf Mf . The resulting preference relation amounts to

taking a minimal stance on the firms’ preferences, limiting attention to those revealed via

their choices. Given this preference relation, we denote M 1 ľF M if M 1
f ľf Mf for all f P F .

Also, M 1 ąF M if M 1 ľF M and M 1
f ąf Mf for some f P F .

To discuss workers’ welfare, fix any matching M and any firm f . Let

Dľf
pMq :“

ÿ

PPP

ÿ

f 1PF̃ :f 1ľP f

Mf 1pΘP X ¨q and Dĺf
pMq :“

ÿ

PPP

ÿ

f 1PF̃ :f 1ĺP f

Mf 1pΘP X ¨q (3)

denote the measure of workers assigned to firm f or better (according to their preferences)

and the measure of workers assigned to firm f or worse (again, according to their preferences),

respectively, where Mf 1pΘP X¨q denotes a measure that takes the value Mf 1pΘP XEq for each

E P Σ. Starting from M as a default matching, the latter measures the number of workers

who would rather match with f . Meanwhile, the former measure is useful for characterizing

the workers’ overall welfare. For any two matchings M and M 1, we say that M 1 ľΘ M if

Dľf pMq Ă Dľf pM 1q, @f P F̃ and M 1 ąΘ M if M 1 ľΘ M and Dľf pMq ‰ Dľf pM 1q for some

f P F̃ .19 In other words, for each firm f , if the measure of workers assigned to f or better is

larger in one matching than in the other, then we can say that the workers’ overall welfare

is higher in the former matching.

Equipped with these notions, we can define Pareto efficiency and stability.

Definition 1. A matching M is Pareto efficient if there is no matching M 1 ‰ M such

that M 1 ľF M and M 1 ľΘ M , and weakly Pareto efficient if there is no matching M 1

such that M 1 ąF M and M 1 ąΘ M .20

Definition 2. A matching M is stable if

1. (Individual Rationality) For each f P F , Mf P Cf pMf q; for each P P P , Mf pΘP q “

0, @f ăP ø; and

2. (No Blocking Coalition) No f P F and M 1
f P X exist such that M 1

f Ă Dĺf pMq and

M 1
f ąf Mf .

18This is known as the Blair order in the literature. See Blair (1984).
19Note that this comparison is made in the aggregate matching sense, without keeping track of the

identities of workers who get better off with M 1.
20In the definition of Pareto efficiency, the condition that M 1 ľΘ M and M 1 ‰ M implies that at least

some workers are strictly better off under M 1 since workers have strict preferences, and hence M 1 Pareto

dominates M (though all firms may be indifferent between M and M 1).

10



Condition 1 requires that no firm wish to unilaterally drop any of its matched workers

and that each matched worker prefer being matched to being unmatched.21 Condition 2

requires that there be no firm and no set of workers who are not matched together but prefer

to be. When Condition 2 is violated by f and M 1
f , we say that f and M 1

f block M .

Remark 1 (Equivalence to group stability). We say that a matching M is group stable if

Condition 1 of Definition 2 holds and,

2’. There are no F 1 Ď F and M 1
F 1 P X |F

1| such that M 1
f ąf Mf and M 1

f Ă Dĺf pMq for all

f P F 1.

This definition strengthens our stability concept because it requires that matching be im-

mune to blocks by coalitions that potentially involve multiple firms. Such stability concepts

with coalitional blocks are analyzed by Sotomayor (1999), Echenique and Oviedo (2006),

and Hatfield and Kominers (2017), among others.22 It is easy to see in our context that a

matching is stable if and only if it is group stable.23

As in the standard finite market, stability implies Pareto efficiency:

Proposition 1. Any stable matching is weakly Pareto efficient, and Pareto efficient if each

Cf is a choice function.

Proof. See Section S.2.2 of Supplementary Material.

4 A Characterization of Stable Matching

This section characterizes stable matchings, which will serve as a tool for establishing their

existence in the subsequent sections. Stability exhausts the opportunities for blocking for

21We note that the first part of Condition 1 (namely Mf P Cf pMf q for each f P F ) is implied by Condition

2. To see this, suppose Mf R Cf pMf q. Let M 1
f P Cf pMf q. Then, M 1

f Ă Mf Ă Dĺf pMq, and also M 1
f ąf Mf ,

violating Condition 2. We opted to write that condition to follow the convention in the literature and ease

the exposition.
22By requiring M 1

f Ă Dĺf pMq for all f P F 1 in Condition 2’, our group stability concept implicitly assumes

that workers who consider joining a blocking coalition with f P F 1 use the current matching pMf 1qf 1‰f as

a reference point. This means that workers are available to firm f as long as they prefer f to their current

matching. However, given that a more preferred firm f 1 P F 1 may be making offers to workers in Dĺf pMq as

well, the set of workers available to f may be smaller. Such a consideration would result in a weaker notion

of group stability. Any such concept, however, will be equivalent to our notion of stability because, as shown

in footnote 23, even the most restrictive notion of group stability—the concept using Dĺf pMq in Condition

2’—is equivalent to stability, while stability is weaker than any group stability concept described above.
23Clearly, any group stable matching is stable, because if Condition 2 is violated by a firm f and M 1

f ,

then Condition 2’ is violated by a singleton set F 1 “ tfu and M 1
tfu. The converse also holds. To see why,

note that if Condition 2’ is violated by F 1 Ď F and M 1
F 1 , then Condition 2 is violated by any f P F 1 and M 1

f

because M 1
f ąf Mf and M 1

f Ă Dĺf pMq, by assumption.
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all firms, which requires each firm to choose optimally from the workers “available” to that

firm. Hence, to identify a stable matching, one must identify the set of workers available to

each firm. But this is inherently of “fixed-point” character, since the availability of a worker

to a firm depends on the set of firms willing to match with her, but that set depends in turn

on firms’ optimization given the workers “available” to them.

The preceding logic suggests that a stable matching is associated with a fixed point of

a mapping—or more intuitively, a stationary point of a process that repeatedly revises the

set of available workers to the firms based on the preferences of the workers and the firms.

Formally, we define a map T : X n`1 Ñ X n`1 such that for each X P X n`1,

T pXq :“
!

X̃ P X n`1
ˇ

ˇ

ˇ
there exists pYf qfPF̃ with Yf P Rf pXf q, @f P F̃ , such that

X̃f p¨q “
ÿ

P :P p1q“f

GpΘP X ¨q `
ÿ

P :P p1q‰f

YfP´ pΘP X ¨q, @f P F̃
)

, (4)

where fP´ P F̃ , called the immediate predecessor of f at P , is a firm that is ranked

immediately above firm f according to P .24 This mapping takes a profile X of available

workers as input and returns a nonempty set of profiles of available workers. For each

X P X n`1, T pXq is nonempty because Rf pXq is nonempty for each f P F̃ by assumption.

To explain, fix a firm f . Consider first the worker types ΘP who rank f as their first-best

choice (i.e., f “ P p1q). All such workers are available to f , which explains the first term

of (4). Consider next the worker types ΘP who rank f as their second-best choice (i.e.,

f “ P p2q). Within this group, only the workers rejected by their top-choice firm P p1q “ fP´
are available to f , which explains the second term of (4). Now, consider the worker types

ΘP who rank f as their third-best choice (i.e., f “ P p3q). Within this group, only the

workers rejected by both their first- and second-choice firms, that is, P p1q and P p2q, would

be available to f . To calculate the measure of these workers, however, one may focus on

those available to and rejected by P p2q “ fP´ , since, by the previous observation, the workers

available to P p2q are those who are already rejected by P p1q. This explanation analogously

applies to all the firms going down workers’ rank order lists.

The map T can be interpreted as a tâtonnement process in which an auctioneer iteratively

quotes firms’ “budgets” (in terms of the measures of available workers). As in a classical

Walrasian auction, the budget quotes are revised based on the preferences of the market

participants, reducing the budget for firm f (i.e., making a smaller work force available)

when more workers are demanded by the firms ranked above f and increasing the budget

otherwise. Once the process converges, one reaches a fixed point, having found the workers

who are “truly” available to firms—those who are compatible with the preferences of all

market participants.

24Formally, fP´ ąP f and f 1 ľP f
P
´ for any f 1 ąP f .
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Remark 2. The mapping T can be seen as mimicking Gale and Shapley’s deferred accep-

tance algorithm (DA), in particular the worker-proposing one. To see this, consider the case

in which each Cf is a choice function. Then, we can write T as a profile pTf qfPF̃ , where, for

each X P X n`1,

Tf pXq “
ÿ

P :P p1q“f

GpΘP X ¨q `
ÿ

P :P p1q‰f

RfP´
pXfP´

qpΘP X ¨q. (5)

For each firm f , this mapping returns the workers who are rejected by an immediate predeces-

sor of f . These are analogous to the workers who propose to firm f in the worker-proposing

DA algorithm, since they are those rejected by the immediate predecessor. Indeed, this anal-

ogy becomes precise when the firms’ preferences are substitutable (that is, each Rf is mono-

tonic): each iteration of the mapping T (starting from zero subpopulations) coincides with

the cumulative measures of workers proposing at a corresponding step of worker-proposing

DA. This result is shown in Section S.3 of Supplementary Material. Our fixed-point mapping

resembles those developed in the context of finite matching markets (e.g., see Adachi (2000),

Hatfield and Milgrom (2005), and Echenique and Oviedo (2006)), but the construction here

differs since a continuum of workers draw their types from a very rich space and they are

treated in aggregate terms without being distinguished by their identities.

We now present our main characterization theorem.

Theorem 1. There exists a stable matching M with Xf “ Dĺf pMq, @f P F̃ if and only if

pXf qfPF̃ is a fixed point of T (i.e., X P T pXq).

Proof. See Appendix A.

This characterization identifies the measures of workers available to firms as a fixed point

of T . A stable matching is then obtained as firms’ optimal choices from these measures.25

This process is illustrated in the next example.

Example 1. Consider our leading example with a continuum of workers in Section 2.

The candidate measures of available workers are denoted by a tuple X “ pXf1 , Xf2q “

px1, x
1
1, x2, x

1
2q P r0,

1
2
s4, where Xfi “ pxi, x

1
iq is the measures of type θ and type θ1 workers

available to fi. Since f1 is the top choice for θ and f2 is the top choice for θ1, according to

our T mapping, all of these workers are available to the respective firms. Thus, without loss

we can set x1 “ Gpθq “ 1
2

and x12 “ Gpθ1q “ 1
2

and consider p1
2
, x11, x2,

1
2
q as our candidate

25Importantly, an arbitrary selection from Cf pXf q for each f P F at the fixed point X need not lead to a

matching, let alone a stable one. Care is needed to construct a stable matching. Equation (13) in Appendix

A provides a precise formula to obtain a stable matching M from a fixed point X of T . We thank a referee

for raising a question that led us to clarify this issue.
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measures. The firms’ choice functions are then given by (1) and (2) while the fixed-point

mapping in (5) is given by

Tf1pXq “
`

1
2
, Rf2px2,

1
2
qpθ1q

˘

“
`

1
2
, x2

˘

(6)

Tf2pXq “
`

Rf1p
1
2
, x11qpθq,

1
2

˘

“
`

1
2
´ x11,

1
2

˘

. (7)

Thus, px1, x
1
1;x2, x

1
2q is a fixed point of T if and only if px1, x

1
1;x2, x

1
2q “ p

1
2
, x2; 1

2
´ x11,

1
2
q, or

x1 “ x12 “
1
2

and x11 “ x2 “
1
4
. The optimal choice by each firm from the fixed point then

gives a matching

M “

ˆ

f1 f2
1
4
θ ` 1

4
θ1 1

4
θ ` 1

4
θ1

˙

,

where the notation here indicates that each of the firms f1 and f2 is matched to a mass 1
4

of

worker types θ and θ1 (we will use an analogous notation throughout). This matching M is

stable.

In light of Theorem 1, existence of a stable matching reduces to the existence of a fixed

point of T . The next two sections identify two sufficient conditions for the latter.

5 The Existence of a Stable Matching in the Contin-

uum Economy

Based on our characterization result, we now present the main existence result under the

standard continuity assumption on the firms’ choice correspondences. We say that firm f ’s

choice correspondence Cf is upper hemicontinuous if, for any sequences pXkqkPN and

pX̃kqkPN in X such that Xk w˚
ÝÑ X, X̃k w˚

ÝÑ X̃, and X̃k P Cf pX
kq, @k, we have X̃ P Cf pXq.

26

As suggested by the name, the upper hemicontinuity means that a firm’s choice changes

continuously with the distribution of available workers. We say that Cf is convex-valued

if Cf pXq is a convex set for any X P X .27

Definition 3. Firm f P F has a continuous preference if Cf is upper hemicontinuous

and convex-valued.

Many complementary preferences are compatible with continuous preferences. Recall

Example 1, for instance, in which firm f1 has a Leontief-type preference: it wishes to hire an

equal number of workers of types θ and θ1 (specifically, the firm wants to hire type-θ workers

26This definition is often referred to as the “closed graph property,” which implies (the standard definition

of) upper hemicontinuity and closed-valuedness if the range space is compact, as is true in our case.
27By the familiar observation based on Berge’s maximum theorem (see Ok (2011) for instance), an upper

hemicontinuous and convex-valued choice correspondence arises when a firm has a utility function u : X Ñ R
that is continuous (in weak-˚ topology) and quasi-concave.
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only if type-θ1 workers are also available, and vice versa). As Example 1 shows, a stable

matching exists despite the extreme complementarity. Also note that firm’s preferences are

clearly continuous. This is not a mere coincidence, as we now show that continuity of firms’

preferences implies the existence of a stable matching:

Theorem 2. If each firm f P F has a continuous preference, then a stable matching exists.

Proof. See Appendix A.

Given the fixed-point characterization of stable matchings in Theorem 1, our proof ap-

proach is to show that T has a fixed point. To this end, we first demonstrate that the upper

hemicontinuity of firm preferences implies that the mapping T is also upper hemicontinu-

ous. We also verify that X is a compact and convex set. Upper hemicontinuity of T and

compactness and convexity of X allow us to apply the Kakutani-Fan-Glicksberg fixed point

theorem to guarantee that T has a fixed point.28 Then, the existence of a stable matching

follows from Theorem 1, which shows the equivalence between the set of stable matchings

and the set of fixed points of T .

Although the continuity assumption is quite general, including preferences not allowed

for in the existing literature, it is not without a restriction, as we illustrate next.

Example 2 (Role of upper hemicontinuity). Consider the following economy modified from

Example 1: There are two firms f1 and f2, and two worker types θ and θ1, each with measure

1{2. Firm f1 wishes to hire exactly measure 1{2 of each type and prefers to be unmatched

otherwise. Firm f2’s preference is responsive subject to the capacity of measure 1/2: it

prefers type-θ to type-θ1 workers, and prefers the latter to leaving a position vacant. Given

this, Cf1 violates upper hemicontinuity while Cf2 does not. As before, we assume

θ : f1 ą f2;

θ1 : f2 ą f1.

No stable matching exists in this environment, as shown in Section S.4 of Supplementary

Material.

The upper hemicontinuity assumption is important for the existence of a stable matching;

this example shows that nonexistence can occur even if the choice function of only one firm

violates upper hemicontinuity. This example also suggests that non-existence can reemerge

when some “lumpiness” is reintroduced into the continuum economy (i.e., one firm can only

hire a minimum mass of workers). However, this kind of lumpiness may not be very natural

28For the Kakutani-Fan-Glicksberg fixed point theorem, refer to Theorem 16.12 and Corollary 16.51 in

Aliprantis and Border (2006).
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in a continuum economy, which is unlike a finite economy where lumpiness is a natural

consequence of the indivisibility of each worker.

By comparison, the convex-valuedness may rule out some realistic case:

Example 3 (Role of convex-valuedness). Let us modify again Example 1 as follows. The

preferences of the firm f1 as well as those of the two worker types remain the same, while

the masses of type-θ and type-θ1 workers are 0.6 and 0.4, respectively. Firm f2 specializes

in only one type of workers and prefers hiring as many workers as possible: If x and x1 are

the available masses of the two types, then the firm only hires mass x of type θ if x ą x1

and only mass x1 of type θ1 if x ă x1, but never wishes to mix the two types. If x “ x1,

the firm is indifferent between hiring either type of mass x (again without mixing types). It

is straightforward to verify that the choice correspondence corresponding to this preference

is upper hemicontinuous. However, it is not convex-valued since, for any x “ x1 ą 0, the

firm’s choice set contains px, 0q and p0, xq but not any (strict) convex combination of them.

Consequently, a stable matching does not exist in this case (see Section S.4 of Supplementary

Material).

Remark 3 (Algorithm to find a fixed point of T ). It will be useful to have an algorithm to

find or at least approximate a stable matching, which is equivalent to approximating a fixed

point of T . One such algorithm is the tâtonnement process, that is, to apply T iteratively

starting from an initial point X0 P X n`1. Unfortunately, this algorithm does not always

work. To see this, consider the mapping T in (6) and (7), and let φ1px2q :“ Rf2px2,
1
2
qpθ1q “

x2 and φ2px
1
1q :“ Rf1p

1
2
, x11qpθq “

1
2
´ x11. Then, T is effectively reduced to a mapping:

px11, x2q ÞÑ pφ1px2q, φ2px
1
1qq, which is depicted as in Figure 1(a). While its fixed point exists

(i.e, the intersection in Figure 1(a)), if one starts anywhere else, say a point X0 in that

figure, the algorithm gets trapped in a cycle.

The map T could work for other situations, however. For instance, modify Example 1

yet again so that, keeping the “Leontief” style of choice function, the firm f1 would now like

to hire mass a ă 1 of type-θ workers per unit mass of type-θ1 workers. Then, the mapping

pφ1, φ2q changes to the one in Figure 1(b), where the tâtonnement process converges to a

unique fixed point irrespective of the starting point, as can be seen in Figure 1(b).29 In fact,

the composite mapping T 2 “ T ˝ T in this modified example is a contraction mapping, so

the convergence result can be understood by invoking the following generalized version of

contraction mapping theorem (see Ch. 3 of Ok (2017) for instance):

Proposition 2. Suppose that T is singleton-valued, and let T̃ “ Tm denote a function

obtained from iterating T by m times. If T̃ is a contraction mapping, then, starting with any

X0 P X n`1, Xk :“ T̃ pXk´1q converges to a unique fixed point of T as k Ñ 8.

29See Section S.4 of Supplementary Material for detailed analysis.
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Figure 1: Fixed Point of Mapping T

While the contraction mapping theorem provides a condition for our mapping T to serve

as an algorithm for finding its fixed point, it need not be the only condition. We will later

see another convergence result when firms have substitutable preferences (see Part (ii) of

Theorem 4).

6 Substitutable Preferences

In this section, we study another class of preferences known as substitutable preferences in

the framework of continuum economy. Although substitutable preferences have been stud-

ied extensively before, there are at least three reasons to study them in our context. First,

substitutable preferences yield useful results beyond existence, such as side-optimal stable

matchings and a constructive algorithm, and it is interesting to see if these results gen-

eralize to a large market. Further, as will be seen, substitutable preferences need not be

continuous, so existence of a stable matching is not implied by Theorem 2. Second, most ex-

isting studies on substitutable preferences are confined to the domain of strict preferences.30

However, indifferences are a prevalent feature of many markets (see for instance, Abdulka-

diroğlu, Pathak, and Roth (2009)), and yet little is known on whether existence and other

useful properties such as side-optimal stable matchings hold under substitutable preferences

30Sotomayor (1999) is a notable exception.
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with indifferences.31 Third, the large market setting raises another important question—

uniqueness. Azevedo and Leshno (2016) offer sufficient conditions for a stable matching to

be unique in the large economy. Their striking result is obtained in the restricted prefer-

ence domain of “responsive” preferences, however, and it is interesting to ask if uniqueness

extends to general substitutable preferences.

6.1 Existence and Side-Optimality

To define substitutable preferences in our general domain, we need a few definitions. Given

a partial order Ă, a correspondence h : X Ñ X is said to be weak-set monotonic if it satisfies

the following: (i) for any X Ă X 1 and Z P hpXq, there is Z 1 P hpX 1q with Z Ă Z 1; (ii) for

any X Ă X 1 and Z 1 P hpX 1q, there is Z P hpXq with Z Ă Z 1.32

Definition 4. Firm f ’s preference is weakly substitutable if Rf is weak-set monotonic.

The current definition preserves the well-known property of a firm becoming more selec-

tive as more workers are available. The novelty here is that substitutability is defined for

a rejection correspondence (instead of a rejection function, as in the literature). Indeed, it

can be seen as a generalization of the standard notion: if Cf pXq is singleton-valued for all

X P X , this notion collapses to the requirement that Rf be monotonic in the underlying

order Ă: Rf pXq Ă Rf pX
1q whenever X Ă X 1.

We now establish the existence result in the domain of weakly substitutable preferences:

Theorem 3. If each firm’s preference is weakly substitutable and each Cf is closed-valued,

then a stable matching exists.33

Proof. See Appendix B.

As before, this result rests on the existence of a fixed point of the correspondence T

defined earlier. One can see that if firms have weakly substitutable preferences, then T is

weak-set monotonic. While Zhou (1994) extends Tarski’s well-known theorem to the case

of correspondences, his monotonicity condition is stronger than ours, so we instead apply

a recent result due to Li (2014) to prove the existence of a fixed point. The weakening of

the required condition is not merely for generality. Weakly substitutable preferences allow

31Existence for the general substitutable preferences is not clear, unlike the case of responsive preferences.

In the latter case, an arbitrary tie breaking (e.g., random tie breaking) preserves responsiveness, leading to

existence. To our knowledge, there is no straightforward generalization of this method to the general class

of substitutable preferences.
32The weak-set monotonicity is weaker than the strong-set monotonicity often used in the monotone

comparative statics (e.g., Milgrom and Shannon (1994)).
33The closed-valuedness is a mild condition that may hold even if the choice correspondence fails to be

upper hemicontinuous, as demonstrated by the example in footnote 34.

18



for indifferences that arise most naturally: for instance, consider a firm with a fixed quota

which can be filled with any mixture of multiple types, as featured in the next example.

Example 4 (Weak Substitutability). Suppose that there are three firms, f1, f2, and f3, and

two worker types, θ and θ1, and that the capacity of each firm and the mass of each worker

type are all equal to 1
2
. The workers’ preferences are

θ :f1 ą f2 ą f3

θ1 :f1 ą f3 ą f2.

Firms f2 and f3 have responsive preferences: they both prefer θ to θ1 (i.e., they wish to hire

in that order up to the quota of 1
2
). Firm f1 is indifferent between the two types of workers:

its preference is described by a choice correspondence:

Cf1px, x
1
q “ tpy, y1q P r0, xs ˆ r0, x1s | y ` y1 “ mintx` x1, 1

2
uu.

This choice correspondence satisfies the weak substitutability, as one can easily check. There

exists a continuum of stable matchings34: for any z P r0, 1
2
s, it is a stable matching for firm

f1 to hire mass z of type-θ workers and 1
2
´z of type-θ1 workers, for firm f2 to hire mass 1

2
´z

of type-θ workers and for firm f3 to hire mass z of type-θ1 workers. Clearly, the higher z is,

the worse off firm f2 is and the better off firm f3 is. Hence, the firm-optimal stable matching

does not exist. Neither does the worker-optimal stable matching since firm f1 hires type-θ

and type-θ1 workers in different proportions across different stable matchings.

We next introduce a stronger notion of substitutability that would restore side optimality.

We say a set X 1 Ă X of subpopulations is a complete sublattice if X 1 contains both
Ž

Z and
Ź

Z for every set Z Ă X 1.35

Definition 5. Firm f ’s preference is substitutable if (i) Rf is weak-set monotonic and (ii)

for any X P X , Rf pXq is a complete sublattice.36

34In this example, firms’ preferences satisfy the conditions of Theorem 2, so Theorem 3 is not needed

for showing existence of a stable matching. However, one can easily obtain an example where the latter

theorem applies while the former does not. In Example 4, suppose firm f1 is instead endowed with a choice

correspondence defined as follows: for some x̄ P r0, 1{2s,

Cf1px, x
1q “

#

tpx, x1qu if x1 ă x̄

tp0, y1q | y1 P rx̄, x1su if x1 ě x̄
.

This correspondence fails to be upper-hemicontinuous, rendering Theorem 2 inapplicable, but the conditions

of Theorem 3 are satisfied, as can be checked easily.
35Authors use different terminologies for the same property: Topkis (1998) calls it subcomplete sublattice

and Zhou (1994) calls it closed sublattice.
36This condition is weaker than Zhou (1994)’s which requires strong-set monotonicity in place of (i). Our

substitutability guarantees side optimality but not a complete lattice, which Zhou’s condition guarantees.

See Example S1 in Section S.5 of Supplementary Material for the case in which our substitutability condition

holds while the strong-set monotonicity fails, causing the lattice structure to fail.
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When Cf is singleton-valued, the condition reduces to the standard notion of substi-

tutability, so the distinction between the two different versions of substitutability disappears.

Nevertheless, the requirements for substitutable preferences are stronger in the current weak

preference domain. In particular, (ii) is a strong requirement that preferences such as those

described by Cf1 in Example 4 fail.37

At the same time, substitutable preferences do accommodate some types of indifferences.

Imagine, for instance, a school which has a selective program with limited quota and a

general program with flexible quotas. For the selective program, the school admits students

in the order of their scores up to its quota. Once the quota is reached, the school may

admit students for the general program with flexible quotas and without consideration of

their scores. To our knowledge, the next result is the first to establish the existence of

side-optimal stable matchings in the weak preference domain38:

Theorem 4. Suppose that each firm’s preference is substitutable. Then, the following results

hold: letting M˚ denote the set of stable matchings,

(i) (Side-Optimal Stable Matching) There exist stable matchings, M,M P M˚, that are

respectively firm-optimal/worker-pessimal and firm-pessimal/worker-optimal in the fol-

lowing senses: If M PM˚, then M ľΘ M ľF M and M ĺΘ M ĺF M .

(ii) (Generalized Gale-Shapley) If, in addition, Cf is order continuous for each f ,39 then

the limit of the algorithm that iteratively applies T starting with Xf “ G, @f P F̃ ,

produces a firm-optimal stable matching, and the limit of the algorithm that iteratively

applies T starting with Xf “ 0, @f P F̃ , produces a worker-optimal stable matching,

where T pXq :“
Ž

T pXq and T pXq :“
Ź

T pXq for any X P X n`1.

Proof. See Appendix B.

While the existence of firm-optimal and worker-optimal stable matchings is well-known

for the strict preference domain, no such result is previously known for the case in which

the firms’ preferences involve indifferences. In fact, the received wisdom is that firms’ indif-

ferences are incompatible with the presence of side-optimal stable matchings even in a more

restrictive domain such as responsive preferences. Theorems 3 and 4, taken together, clarify

37To see this, note Z “ tp 1
2 , 0q, p0,

1
2 qu Ă Rf1p

1
2 ,

1
2 q, but

Ž

Z “ p 1
2 ,

1
2 q R Rf1p

1
2 ,

1
2 q, so Rf1 is not a

sublattice (let alone a complete one).
38Theorem 4 does not require closed-valuedness of the choice correspondences, which Theorem 3 requires.

It is often the case, however, that part (ii) of the substitutability (i.e., the complete sublattice property)

implies the closed-valuedness. For instance, the relation holds if there are finitely many worker types so X
is a subset of a finite dimensional Euclidean space.

39A correspondence C is order-continuous if CpXkq
w˚
ÝÑ CpXq for any increasing sequence Xk

w˚
ÝÑ X,

and CpXkq
w˚
ÝÑ CpXq for any decreasing sequence Xk

w˚
ÝÑ X, where CpXq “

Ž

CpXq and CpXq “
Ź

CpXq

for any X P X .
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the types of indifferences that permit the existence of side-optimal stable matchings and

those that do not. In particular, responsive preferences with indifferences (studied by Ab-

dulkadiroğlu, Pathak, and Roth (2009) and Erdil and Ergin (2008) for instance) satisfy weak

substitutability but fail substitutability and, consistent with Theorems 3 and 4, guarantee

the existence of a stable matching but not a side-optimal one.

The second part of Theorem 4 shows that a generalized version of Gale-Shapley’s deferred

acceptance algorithm finds a side-optimal stable matching, but only with the additional

(order) continuity assumption.40 Without this continuity property, the algorithm may get

“stuck” at an unstable matching. (Example S2 in Section S.5 of Supplementary Material

illustrates this point.)

Next, we adapt another well-known condition to our context:

Definition 6. Firm f ’s preference exhibits the law of aggregate demand (or LoAD) if

for any X,X 1 P X with X Ă X 1, supCf pXqpΘq ď inf Cf pX
1qpΘq.41

Given LoAD and substitutability, we show that the total measure of workers employed

by each firm in any stable matching is uniquely pinned down:

Theorem 5 (Rural Hospital). If each firm’s preference is substitutable and satisfies LoAD,

then, for any M PM˚, we have Mf pΘq “M f pΘq, @f P F and Mø “Mø.

Proof. See Appendix B.

Remark 4 (Finite economy). While the results are established for our continuum economy

model, they apply to finite economy models with little modification. (Note for instance,

the order-continuity required for Theorem 4-(ii) would be satisfied vacuously for the finite

economy.) To the extent that these results were obtained in the extant literature for strict

preferences, the current results would amount to their extensions to more general preferences

in the finite-economy context.

6.2 Uniqueness of Stable Matching

Azevedo and Leshno (2016) established the uniqueness of a stable matching in a continuum

economy when firms have responsive preferences. We now investigate the extent to which

the uniqueness result extends to the general substitutable preferences environment. The

uniqueness question is important not only for the continuum economy but also for the large

40This result is reminiscent of the well-known property of a supermodular game whereby, given the

order continuity property, iterative deletion of strictly dominated strategies starting from the “largest” and

“smallest” strategies produces largest and smallest Nash equilibria, respectively. See Milgrom and Roberts

(1990) and Milgrom and Shannon (1994).
41This property is an adaptation of a property that appears in the literature such as Hatfield and Milgrom

(2005), Alkan (2002), and Fleiner (2003).
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finite one, as will be shown in the next section. Expanding the domain beyond responsive

preferences helps to identify the underlying condition that drives uniqueness.

To begin, we assume each firm’s choice is unique, i.e., each Cf is a choice function, and,

for any matching M , firm f , and subset F 1 of firms, we let M f
F 1 be a subpopulation of workers

defined by

M f
F 1pEq :“

ÿ

PPP

ÿ

f 1:fąP f 1,f 1RF 1

Mf 1pΘP X Eq for each E P Σ.

In words, this is the measure of workers who are matched outside firms F 1 and available to

firm f under M (excluding those matched with f).42 Consider the following property:

Definition 7 (Rich preferences). The preferences are rich if for any individually rational

matching M̂ ‰M such that M̂ ľF M , there exists f˚ P F such thatM f˚ ‰ Cf˚ppM f˚ ` M̂
f˚

F̄
q ^Gq,

where F̄ :“ tf P F |M̂f ąf M fu.

The condition is explained as follows. Consider any individually rational matching M̂

that is preferred to the worker-optimal stable matching M by all firms, strictly so by firms

in F̄ Ă F . Then, the richness condition requires that, at matching M , there must exist a

firm f˚ that would be happy to match with some workers who are not hired by the firms in

F̄ and are willing to match with f˚ under M̂ . Since firms are more selective at M̂ than at

M , it is intuitive that a firm would demand in the latter matching some workers that the

more selective firms would not demand in the former matching. The presence of such worker

types requires richness of the preference palette of firms as well as workers—hence the name.

This point will be seen more clearly in the next section when one considers (a general class

of) responsive preferences.

Theorem 6. Suppose that each firm’s preference is substitutable and satisfies LoAD. If the

preferences are rich, then a unique stable matching exists.

Proof. See Appendix B.

Both richness and substitutability are necessary for the uniqueness result, as one can con-

struct counterexamples without much difficulty. LoAD is also indispensable for the unique-

ness, as demonstrated by Example S3 in Supplementary Material. (Recall the LoAD is

trivially satisfied by the responsive preferences of Azevedo and Leshno (2016).)

While rich preference may not be easy to check, one can show that the condition is

implied by a full-support condition in a general class of environments that nests Azevedo

and Leshno (2016) as a special case, as demonstrated below.

42Note that this is a valid subpopulation, or a measure, since it is the sum of a finite number of measures.
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Responsive Preferences with Submodular Quotas. Suppose firms have responsive

preferences but may face quotas on the number of workers they can hire from different

groups of workers. Such group-specific quotas, typically based on socio-economic status

or other characteristics, may arise from affirmative action or diversity considerations. The

resulting preferences (or choice functions) may violate responsiveness but they nonetheless

satisfy substitutability.

Assume that there is a finite set T of “ethnic types” that describe characteristics of a

worker such as ethnicity, gender, and socio-economic status, such that type θ is assigned an

ethnic type τpθq via some measurable function τ : Θ Ñ T . For each t P T , a (measurable) set

Θt :“ tθ P Θ|τpθq “ tu of agents has an ethnic type t. Each firm f faces a quota constraint

given by function Qf : 2T Ñ R` such that for each T 1 Ă T , Qf pT 1q is a maximum quota

(in terms of the measure of workers) the firm f can hire from the ethnic types in T 1. We

assume that Qf pHq “ 0, Qf pT q ą 0, and Qf is submodular: for any T 1, T 2 Ă T ,

Qf pT 1q `Qf pT 2q ě Qf pT 1 Y T 2q `Qf pT 1 X T 2q.

Submodularity allows for the most general form of group-specific quotas that encompasses

all existing models: for instance, it holds if the firm faces arbitrary quotas on a hierarchi-

cal family of subsets of T .43 This case includes a familiar case studied by many authors

(Abdulkadiroğlu and Sönmez (2003), for instance) in which the family forms a partition of

T . Subject to the quotas, each firm has responsive preferences given by a score function

sf : Θ Ñ r0, 1s such that f prefers type-θ to type-θ1 worker if and only if sf pθq ą sf pθ
1q. For

simplicity, we assume that no positive mass of types has an identical score.44

Clearly, this class of preferences subsumes pure responsive preferences considered by

Azevedo and Leshno (2016) as a special case, but includes preferences that fail their condi-

tion. We can show that these preferences satisfy both substitutability and LoAD:

Lemma 2. A firm f with responsive preferences facing submodular quotas exhibits a choice

function that satisfies substitutability and LoAD.45

Proof. See Section S.6.2 of Supplementary Material.

Specifically, Section S.6 of Supplementary Material provides an algorithm that finds the

choice function for a firm with this type of preferences, and shows that the choice function

satisfies substitutability and LoAD. Given the prevalence of group-specific constraints, this

lemma, which is highly nontrivial, may be of interest in its own right. For instance, because

43A family of sets is hierarchical if, for any sets T 1, T 2, either T 1 X T 2 “ H, T 1 Ă T 2, or T 2 Ă T 1. See

Che, Kim, and Mierendorff (2013) for the proof of this result.
44This assumption is maintained by Azevedo and Leshno (2016), for instance.
45Section S.6.4 of Supplementary Material presents an example in which the substitutability fails due to

the quota constraints which is not submodular.
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the choice of each firm is a function, substitutability implies that the set of a stable matchings

has a lattice structure, a conclusion that does not hold under general choice correspondence,

even with substitutability.

Next, we generalize the full support condition of Azevedo and Leshno (2016) to the

current setup:

Definition 8. The worker population has a full support if for each preference P P P , any

ethnic type t P T , and for any non-empty open cube set S Ă r0, 1sn, the worker types

Θt
P pSq :“ tθ P ΘP XΘt

| psf pθqqfPF P Su

have a positive measure, i.e., GpΘt
P pSqq ą 0.

Note that this condition boils down to that of Azevedo and Leshno (2016) if T is a

singleton set.

Proposition 3. Suppose each firm f P F has responsive preferences and faces submodular

quotas. Then, the full support condition implies the richness condition.

Proof. See Section S.6.3 of Supplementary Material.

Combining Lemma 2, Proposition 3, and Theorem 6, we conclude:

Corollary 1. Suppose each firm f P F has responsive preferences and faces submodular

quotas. If the full support condition holds, then a unique stable matching exists.

7 Approximate Stability in Finite Economies

In Section 2, we have observed that a finite economy, however large it is, may not possess

a stable matching while a large finite economy admits a matching that is stable in an ap-

proximate sense. Motivated by this and building on our findings in the continuum economy,

we here formalize the notion of approximate stability and demonstrate that the set of ap-

proximately stable matchings in large finite economies inherits the desirable properties of

stable matching in a continuum economy. Specifically, the set is nonempty, contains (ap-

proximately) firm-optimal and worker-optimal matchings, and consists of virtually unique

matching, whenever the corresponding property is true for the continuum economy. This

suggests that a continuum economy provides a good framework for analyzing large finite

economies, which is useful since a continuum economy often permits a more tractable anal-

ysis, as demonstrated by Azevedo and Leshno (2016).

To analyze economies of finite sizes, we consider a sequence of economies pΓqqqPN indexed

by the total number of workers q P N. In each economy Γq, there is a fixed set of n firms,

f1, . . . , fn, that does not vary with q. As before, each worker has a type in Θ. The worker
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distribution is normalized with the economy’s size. Formally, let the (normalized) population

Gq of workers in Γq be defined so that GqpEq represents the number of workers with types

in E divided by q. A (discrete) measure Xq is feasible in economy Γq if Xq Ă Gq, and it is

a measure whose value for any E is a multiple of 1{q. Let X q denote the set of all feasible

subpopulations in Γq. Note that Gq, and thus every Xq P X q, belongs to X , although it need

not be a subpopulation of G and thus may not belong to X . Let us say that a sequence of

economies pΓqqqPN converges to a continuum economy Γ if Gq w˚
ÝÑ G.

To formalize approximate stability, we first represent each firm f ’s preference by a cardi-

nal utility function uf : X Ñ R defined over normalized distributions of workers it matches

with. And, this utility function represents a firm’s preference for each finite economy Γq as

well as for the continuum economy.46 We assume that uf is continuous in weak-˚ topology.47

Then, firm f chooses a feasible subpopulation that maximizes uf in the respective economies:

in the continuum economy Γ, the firm’s choice correspondence is given by

Cf pXq “ arg max
X 1ĂX

uf pX
1
q, @X P X ; (8)

in each finite economy Γq, it is given by

Cq
f pXq :“ arg max

X 1ĂX,X 1PX q

uf pX
1
q, @X P X q. (9)

All our results in this section rely on the existence of stable matching in the continuum

economy, which holds if each uf is such that Cf defined in (8) satisfies the conditions in

Theorem 2 or in Theorem 3. For instance, the conditions in Theorem 2 are satisfied if each

uf is quasi-concave in addition to being continuous, since Cf is then convex-valued and upper

hemicontinuous.48

A matching in finite economy Γq is M q “ pM q
f qfPF̃ such that M q

f P X q for all f P F̃ and
ř

fPF̃ M
q
f “ Gq. The measure of available workers for each firm f at matching M q P pX qqn`1

is Dĺf pM qq, where Dĺf p¨q is defined as in (3).49 Note that because each M q
f is a multiple of

1{q, Dĺf pM qq is feasible in Γq. We now define ε-stability in finite economy Γq.

Definition 9. For any ε ą 0, a matching M q P pX qqn`1 in economy Γq is ε-stable if (i)

for each f P F , M q
f P Cq

f pM
q
f q; (ii) for each P P P , M q

f pΘP q “ 0, @f ăP ø; and (iii)

46The assumption that the same utility function applies to both finite and limit economies is made

for convenience. The results in this section hold if, for instance, the utilities in finite economies converge

uniformly to the utility in the continuum economy.
47To guarantee the existence of such a utility function, we may assume, as in Remark 16, that each firm

is endowed with a complete, continuous preference relation. Then, because the set of alternatives X is a

compact metric space, such a preference can be represented by a continuous utility function according to the

Debreu representation theorem (Debreu, 1954).
48The upper hemicontinuity is an implication of Berge’s maximum theorem.
49To be precise, Dĺf pMqq is given as in (3) with G and M being replaced by Gq and Mq, respectively.
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uf pM̃
qq ă uf pM

q
f q ` ε for any f P F and M̃ q P X q with M̃ q Ă Dĺf pM qq.50

Conditions (i) and (ii) of this definition are analogous to the corresponding conditions for

exact stability, so ε-stability relaxes stability only with respect to condition (iii). Specifically,

an ε-stable matching could be blocked, but if so, the gain from blocking must be small for any

firm.51 An ε-stable matching will be robust against blocks if a rematching process requires

cost (at least of ε) for the firm initiating a block, which seems sensible when there are some

frictions in the market.

Remark 5. For ε ą 0, we say that matching M is ε-Pareto efficient if there is no matching

M 1 ‰M and firm f P F such that M 1 ľF M , M 1 ľΘ M , and uf pM
1
f q ě uf pMf q ` ε. By an

argument analogous to the Pareto efficiency of a stable matching presented in Section 3, it

is easy to see that any ε-stable matching is ε-Pareto efficient.

Our main result follows:

Theorem 7. Fix any sequence of economies pΓqqqPN that converges to a continuum economy

Γ which admits a stable matching M . For any ε ą 0, there exists Q P N such that for all

q ą Q, there is an ε-stable matching M q in Γq.52

Proof. See Appendix C.

This result implies that a large finite market admits an approximately stable matching

even with non-substitutable preferences. Interestingly, a converse of Theorem 7 also holds:

50Approximate stability might be defined slightly differently. Say a matching Mq is ε-distance stable if

(i) and (ii) of Definition 9 hold and (iii’) dpM̃q
f ,M

q
f q ă ε for any coalition f and M̃q

f P X q that blocks Mq in

the sense that M̃q
f Ă Dĺf pMqq and uf pM̃

q
f q ą uf pM

q
f q, where dp¨, ¨q is the Lévy-Prokhorov metric (which

metrizes the weak-˚ topology). In other words, if a matching Mq is ε-distance stable, then the distance of

any alternative matching a firm proposes for blocking must be within ε from the original matching. One

advantage of this concept is that it is ordinal, i.e., we need not endow the firms with cardinal utility functions

to formalize the notion. Note that the notion also requires the ε bound for any blocking coalition, not just

the “optimal” blocking coalition as defined in Definition 2-2, making the notion of ε-distance stability more

robust. In Section S.7.2 of Supplementary Material, we prove the existence of ε-distance stable matching

(under an additional mild assumption).
51Notice that the conditions (i) and (iii) are asymmetric in the sense that the matching should be precisely

optimal against the blocking by an individual firm alone and only approximately optimal against the blocking

by a coalition. We adopt this asymmetry because blocking with workers outside the firm is presumably harder

for a firm to implement than retaining or firing its own workers.
52We note that Mq need not converge to M . In fact, there can be a stable matching in Γ that does not have

any nearby approximate stable matching in large finite economy Γq (refer to Section S.7.3 of Supplementary

Material for an example), meaning that the (approximately) stable matching correspondence is not “lower

hemicontinuous.” This is because the exact individual rationality, that is, condition (i) of Definition 9, can

make a firm’s choice in finite economy never close to a certain stable matching in the continuum economy.

If this condition is relaxed analogously to the condition (iii), then any stable matching in the continuum

economy can be approximated by ε-stable matchings in large finite economies.
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Theorem 8. Let pM qqqPN be a sequence of matchings converging to M with the property that

for every ε ą 0, there exists Q P N such that for all q ą Q, M q is ε-stable in Γq. Then, M

is stable in Γ.53

Proof. See Appendix C.

This result implies that the behavior of large finite economies is well approximated by

the continuum economy in the sense that by studying the latter, we will not “miss” any

approximately stable matching in the former.

Example 5. Recall the finite economy in Section 2, where there are q workers of each type.54

Recall its limit economy admits a unique stable matching p1
4
, 1

4
, 1

4
, 1

4
q. If the index q is odd,

then a stable matching does not exist. As we have already seen, the following matching is

ε-stable in Γq for sufficiently large q and converges to the (unique) stable matching in Γ55:

˜

f1 f2
q`1
4q
θ ` q`1

4q
θ1 q´1

4q
θ ` q´1

4q
θ1

¸

.

Also, as Theorem 8 indicates, any ε-stable matching in Γq for sufficiently large q must be

close to the stable matching in Γ. For instance, any matching where f1’s hiring of each type

is bounded away from 1
4

will be subject to a block that increases either firm’s utility by more

than a small ε.

An approximately stable matching established in Theorem 7 can be shown to possess

other properties inherited from the structure of stable matchings in the continuum economy.

To this end, we relax the notion of side optimality.

Definition 10. For ε ą 0, a matching M q in Γq is an ε-firm-optimal stable matching if

there is δ P p0, εq such that

1. M q is δ-stable in Γq, and

2. for any matching M̂ q which is δ-stable in Γq, uf pM
q
f q ě uf pM̂

q
f q ´ ε, @f P F .

Definition 11. For ε ą 0, a matching M q in Γq is an ε-worker-optimal stable matching

if there is δ P p0, εq such that

53This result is reminiscent of the upper hemicontinuity of Nash equilibrium correspondence (see Fuden-

berg and Tirole (1991) for instance). But Theorem 8 establishes a more robust result in the sense that the

convergence occurs even for “approximately” stable matchings in nearby economies.
54With a slight abuse of notation, this example assumes that there are a total of 2q workers (q workers

of θ and θ1 each) rather than q. Of course, this is done for purely expositional purposes.
55This matching is also ε-distance stable since the only profitable block involves f2 taking a single worker

of type θ1 away from firm f1.
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1. M q is δ-stable in Γq, and

2. for any matching M̂ q which is δ-stable in Γq,

Dľf
pM q

qpEε
q ě Dľf

pM̂ q
qpEq ´ ε, @f P F, @E P Σ,

where Eε :“ tθ P Θ|Dθ1 P E such that dΘpθ, θ1q ă εu is the ε-neighborhood of E.

The ε-firm-optimality requires that the matching itself be approximately stable and that

there be no other approximately stable matching which makes any firm better off by more

than ε. The ε-worker-optimality can be seen as a natural extension of worker optimality—i.e.,

M q ĺΘ M̂ q—, for the concept collapses to the latter if ε “ 0. We now prove the existence

of approximately side-optimal matchings in large finite economies.56

Theorem 9. Suppose that a sequence of finite economies pΓqqqPN converges to a continuum

economy Γ. Fix any ε ą 0.

(i) If there is a firm-optimal stable matching in Γ, then there is Q P N such that for all

q ą Q, an ε-firm-optimal stable matching in Γq exists.

(ii) If there is a worker-optimal stable matching M in Γ and Cf pM f q “ tM fu, @f P F

(i.e., for each firm f , M f is its unique choice at M), then there is Q P N such that for

all q ą Q, an ε-worker-optimal stable matching in Γq exists.57

Proof. See Appendix C.

Finally, we show that if there is a unique stable matching in the limit economy Γ, then

the approximately stable matching is virtually unique in any sufficiently large finite economy.

Theorem 10. Suppose that a sequence of finite economies pΓqqqPN converges to a continuum

economy Γ which has a unique stable matching M . Then, the approximately stable matching

of large finite economy is “virtually unique” in the following sense: for any ε ą 0, there are

56This result will be particularly useful when preferences are substitutable in a continuum economy but

not in finite economies that converge to that economy. Delacrétaz, Kominers, and Teytelboym (2016) offer

one such example in their study of refugee resettlement. Translated into our setup, there are three types,

θ, θ1, and θ2, and a firm f with capacity κ (or κ units of seats) which has a responsive preference with

θ ą θ1 ą θ2. Each of types θ and θ2 occupies one seat while type θ1 occupies two seats. As Delacrétaz,

Kominers, and Teytelboym (2016) show, the firm f ’s preference is not substitutable in finite economies,

which is largely due to the integer problem that disappears in continuum economy. To see it, suppose that a

continuum of workers X “ px, x1, x2q is available. Then, the firm f ’s choice function is given by Cf pXqpθq “

mintx, κu, Cf pXqpθ
1q “ mintx1,

κ´Cf pXqpθq
2 u, and Cf pXqpθ

2q “ mintx2, κ ´ Cf pXqpθq ´ 2Cf pXqpθ
1qu. It is

straightforward to check that this choice function represents a substitutable preference.
57Section S.7.3 of Supplementary Material presents an example in which the result does not hold without

the extra assumption, Cf pMf q “ tMfu,@f P F̃ .
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Q P N and δ P p0, εq such that for every q ą Q and for every δ-stable matching M̂ q in Γq,

we have dpM, M̂ qq ă ε.58

Proof. See Appendix C.

This result, together with Theorem 6, leads to the following generalization of the conver-

gence result (Theorem 2) in Azevedo and Leshno (2016).

Corollary 2. Suppose that in the continuum economy Γ, the firm preferences are substi-

tutable and satisfy LoAD while the preferences are rich. Then, the approximately stable

matchings of any large finite economy Γq that converges to Γ are virtually unique.

8 Strong Stability and Strategy-Proofness

Stability promotes fairness by eliminating justified envy for workers. However, stability alone

may not guarantee fair treatment of workers if a firm is indifferent over worker types that are

unobservable or regarded as indistinguishable by the firm. The following example illustrates

the point.

Example 6. There are two firms f1 and f2, and a unit mass of workers with the following

types:

θ : f1 ą f2 ą ø;

θ1 : f2 ą f1 ą ø;

θ2 : f2 ą ø ą f1.

The type distribution is given by Gpθq “ 1{2 and Gpθ1q “ 1{4 “ Gpθ2q. (Note that this

example is the same as our leading example except that a mass of 1{4 of type-θ1 workers

now have a new preference P 2.)

Both firms are indifferent between type-θ1 and type-θ2 workers; they differ only in their

own preferences for firms. Firm f1 wishes to maximize mintx, x1 ` x2u, where x, x1 and x2

are the measures of workers with types θ, θ1 and θ2, respectively. Firm f2 has a responsive

preference with a capacity of 1{2 and prefers type θ to type θ1 or θ2.

Consider first a mechanism that maps G to matching

M “

ˆ

f1 f2
1
4
θ ` 1

4
θ1 1

4
θ ` 1

4
θ2

˙

.

This matching is stable, which can be seen by the fact that the firms are matched with

the same measures of productivity types as in the stable matching in Example 1. Observe,

58This implies that all stable matchings in any sufficiently large finite economy are also close to one

another.
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however, that this matching treats the type-θ1 and type-θ2 workers differently—the former

workers match with f1 and the latter workers match with f2 (which they both prefer)—

despite the fact that the firms perceive them as equivalent. This lack of “fairness” leads to

an incentive problem: type-θ1 workers have an incentive to (mis)report their type as θ2 and

thereby match with f2 instead of f1.

These problems can be addressed by another mechanism that maps G to a matching

M̄ “

ˆ

f1 f2
1
6
θ ` 1

6
θ1 1

3
θ ` 1

12
θ1 ` 1

12
θ2

˙

.

Like M , this matching is stable, but in addition, firm f2 treats type-θ1 and type-θ2 workers

identically in this matching. Further, neither type-θ1 nor type-θ2 workers have incentives to

misreport.

The fairness issue illustrated in this example is particularly relevant in school choice, for

schools evaluate students based on coarse priorities. Fairness demands that students enjoying

the same priorities be treated equally without any discrimination. This calls for what Kesten

and Ünver (2014) labeled strong stability, a condition satisfied by the second matching in

the above example. As illustrated, strong stability is closely related to strategy-proofness

for workers in a large economy. We thus address both issues here.

8.1 Strong Stability and Strategy-Proofness in a Large Economy

We begin by adapting our model to address the issues at hand. First, we denote the type of

each worker as a pair θ “ pa, P q, where a denotes the worker’s productivity or skill and P

describes her preferences over firms and the outside option, as above. We assume that worker

preferences do not affect firm preferences and are private information, whereas productivity

types may affect firm preferences and are observable to the firms (and to the mechanism

designer). Let A and P be the sets of productivity and preference types, respectively, and

Θ “ A ˆ P . We assume that A is a finite set, which implies that Θ is a finite set, so the

population G of worker types is a discrete measure.59 We continue to assume that there is

a continuum of workers.

The preferences of firms are also adapted for our environment. For each firm f P F ,

worker types Θ are partitioned into Pf :“ tΘ1
f , ...,Θ

Kf
f u such that f is indifferent across

59The finiteness of A is necessitated by our use of weak-˚ topology as well as the construction of strong

stability and strategy-proof mechanisms below. To illustrate the difficulty, suppose that A is a unit interval

and G has a well defined density. Our construction below would require that the density associated with

firms’ choice mappings satisfy a certain population proportionality property. Convergence in our weak-˚

topology does not preserve this restriction on density. Consequently, the operator T may violate upper

hemicontinuity, which may result in the failure of the nonempty-valuedness of our solution. It may be

possible to address this issue by strengthening the topology, but whether the resulting space satisfies the

conditions that would guarantee the existence of a stable matching remains an open question.
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all types within each indifference class Θk
f Ă Θ, for k P If :“ t1, ..., Kfu. Since a firm

differentiates workers based only on their productivity types, we require that if pa, P q P Θk
f

for some P P Pf , then pa, P 1q P Θk
f for all P 1 P Pf . At the same time, a firm can be indifferent

across multiple productivity types, in ways that are arbitrary and may differ across firms.

We assume that each firm has a unique optimal choice in terms of the measure of workers in

each indifference class, and let Λkf : X Ñ R` denote firm f ’s unique choice of total measure

of workers in each indifference class Θk
f , k P If ,

60 which induces a choice correspondence

Cf pXq “ tY Ă X |
ÿ

θPΘkf

Y pθq “ Λkf pXq, @k P Ifu (10)

for each X P X . Continuity and substitutability of preferences can be defined in terms of

Λkf . If Λkf p¨q is continuous for each k P If (in the Euclidean topology), then the induced

correspondence Cf is upper hemicontinuous and convex valued. In that case, we simply say

a firm f ’s preference is continuous. Another case of interest is when
ř

θPΘkf
Xpθq ´ Λkf pXq

is nondecreasing in pXpθqqθPΘ for each k P If . In this case, the induced correspondence Cf is

weakly substitutable, and we simply call a firm f ’s preference to be weakly substitutable.

As before, a matching is described by a profile M “ pMf qfPF̃ of subpopulations of

workers matched with alternative firms or the outside option. We assume that all workers

of the same (reported) type are treated identically ex ante. Hence, given matching M , a

worker of type pa, P q in the support of G is matched to f P F̃ with probability
Mf pa,P q

Gpa,P q
. Note

that
ř

fPF̃
Mf pa,P q

Gpa,P q
“ 1 holds by construction, giving rise to a valid probability distribution

over F̃ . A mechanism is a function ϕ that maps any G P X to a matching.

We now introduce a strong notion of stability proposed by Kesten and Ünver (2014):

Definition 12. A matching M is strongly stable if (i) it is stable and (ii) for any f P F ,

k P If , and θ, θ1 P Θk
f , if

Mf pθq

Gpθq
ă

Mf pθ
1q

Gpθ1q
, then

ř

f 1PF̃ :f 1ăθf
Mf 1pθq “ 0.

In other words, strong stability requires that, if a worker of type θ is assigned a firm f

with strictly lower probability than another type θ1 in the same indifference class for firm f ,

then the type-θ worker should never be assigned any firm f 1 that the worker ranks below f .

In that sense, discrimination among workers in the same priority class should not occur.

Strategy-proofness can be defined via a stochastic dominance order, as proposed by Bo-

gomolnaia and Moulin (2001).

Definition 13. A mechanism ϕ is strategy-proof for workers if, for each (reported)

population G P X , productivity type a P A, preference types P and P 1 in P such that both

60Specifically, we assume that for each X Ă G, Λkf pXq P r0,
ř

θPΘk
f
Xpθqs and Λkf pX

1q “ Λkf pXq whenever
ř

θPΘk1

f
X 1pθq “

ř

θPΘk1

f
Xpθq for all k1 P If . We also assume that Λkf pX

1q “ Λkf pXq whenever Λk
1

f pXq ď
ř

θPΘk1

f
X 1pθq ď

ř

θPΘk1

f
Xpθq for all k1 P If , which captures the revealed preference property.
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pa, P q and pa, P 1q are in the support of G, and f P F̃ , we have

ÿ

f 1:f 1ľP f

ϕf 1pGqpa, P q

Gpa, P q
ě

ÿ

f 1:f 1ľP f

ϕf 1pGqpa, P
1q

Gpa, P 1q
. (11)

In words, strategy-proofenss means that a truthful reporting induces a random assign-

ment for each worker that first-order stochastically dominates any random assignment that

would result from untruthful reporting. Note that a worker can misreport only her prefer-

ence type and not her productivity type (recall that a worker’s productivity type determines

firms’ preferences regarding her).61

We are now ready to state our main result. Our approach is to demonstrate the existence

of a stable matching that satisfies an additional property. Say a matching M is population-

proportional if, for each f P F and k P If , there is some αkf P r0, 1s such that

Mf pθq “ mintDĺf
pMqpθq, αkfGpθqu, @θ P Θk

f . (12)

In other words, the measure of workers hired by firm f from the indifference class Θk
f is

given by the same proportion αkf of Gpθq for all θ P Θk
f , unless the measure of worker types

θ available to f is less than the proportion αkf of Gpθq, in which case the entire available

measure of that type is assigned to that firm. In short, a population-proportional matching

seeks to match a firm with workers of different types in proportion to their population

sizes at G whenever possible, if they belong to the same indifference class of the firm. The

stability and population proportionality of a mechanism translate into the desired fairness

and incentive properties, as shown by the following result.

Lemma 3. (i) If a matching is stable and population-proportional, then it is strongly sta-

ble.

(ii) If a mechanism ϕ implements a strongly stable matching for every measure in X , then

the mechanism is strategy-proof for workers.

Proof. See Section S.8 of Supplementary Material.

We now present the main result of this section.

61Note also that unlike in finite population models, the worker cannot alter the population G by uni-

laterally misreporting her preferences because there is a continuum of workers. Further, we only impose

restriction (11) for types pa, P q and pa, P 1q that are in the support of G. For the true worker type pa, P q, this

is the same assumption as in the standard strategy-proofness concept for finite markets. We do not impose

any condition for misreporting a measure zero type because if ϕ is individually rational (which is the case

for stable mechanisms), then the incentives for misreporting as a measure zero type can be eliminated by

specifying the mechanism to assign a worker reporting such a type to the null firm with probability one.
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Theorem 11. If each firm’s preference is continuous or if each firm’s preference is weakly

substitutable, then there exists a matching that is stable and population-proportional. There-

fore, given the domain satisfying either property, there exists a mechanism that admits a

strongly stable matching and is strategy-proof.

Proof. See Section S.8 of Supplementary Material.

Recall that the workers of the same reported type receive the same ex ante assignment.

By Lemma 3, strong stability and strategy-proofness will be achieved if each firm’s choice

were to respect population proportionality. A key step of proof is therefore to select an

optimal choice C̃f P Cf that induces population proportionality for each f . The selection

C̃f is then shown to satisfy the conditions of Theorems 2 and 3 given the continuity or

substitutability conditions. Thus, a stable matching exists in the hypothetical continuum

economy in which firms have preferences represented by the choice functions C̃f . The final

step is to show that the stable matching of the hypothetical economy is stable in the original

economy and satisfies population proportionality.

This result establishes the existence of a matching mechanism that satisfies strong sta-

bility and strategy-proofness for workers in a large economy environment.62 In contrast

to the existing literature, our result holds under general firm preferences that may involve

indifferences and/or complementarities.

8.2 Applications to Time Share/Probabilistic Matching Models

Our model introduced in Section 8.1 has a connection with time share and probabilistic

matching models. In these models, a finite set of workers contracts with a finite set of firms

for time shares or for probabilities with which they match. Probabilistic matching is often

used in allocation problems without money, such as school choice, while time share models

have been proposed as a solution to labor matching markets in which part-time jobs are

available (see Biró, Fleiner, and Irving (2013) for instance).

Our model in Section 8.1 can be reinterpreted as a time share model. Let Θ be the

finite set of workers whose shares firms may contract for, as opposed to the finite types of

a continuum of workers. The measure Gpθq represents the total endowment of time or the

probability that a worker θ has available for matching. A matching M describes the time or

probability Mf pθq that a worker θ and a firm f are matched.

The partition Pf then describes firm f ’s set of indifference classes, where each class de-

scribes the set of workers that the firm considers equivalent. The function Λf “ pΛkf qkPIf
describes the time shares that firm f wishes to choose from available time shares in al-

ternative indifference classes. On the worker side, for each worker θ P ΘP , the first-order

62Even with a continuum of workers, no stable mechanism is strategy-proof for firms. See an example in

Section S.8.2 of Supplementary Material.
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stochastic dominance induced by P describes the preference of the worker in evaluating lot-

teries. With this reinterpretation, Definition 12 provides an appropriate notion of a strongly

stable matching.63 The following result is immediate:

Corollary 3. The (reinterpreted) time share model admits a strongly stable—and thus

stable—matching if either each firm’s preference is continuous or it is weakly substitutable.64

This result generalizes the existence of a strongly stable matching in the school choice

problem studied by Kesten and Ünver (2014), where schools may regard multiple students

as having the same priority. They show their existence of a strongly stable probabilistic

matching (which they call strong ex ante stability) under the assumption that schools have

responsive preferences with ties. Our contribution is to extend the existence to general

preferences that may violate responsiveness. Our result might be useful for school choice en-

vironments in which schools may need a balanced student body in terms of gender, ethnicity,

income, or skill (recall footnote 3).

9 Relationship with the Literature

The present paper is connected with several strands of literature. Most importantly, it

is related to the growing literature on matching and market design. Since the seminal

contributions of Gale and Shapley (1962) and Roth (1984), stability has been recognized as

the most compelling solution concept in matching markets.65 As argued and demonstrated

by Sönmez and Ünver (2010), Hatfield and Milgrom (2005), Hatfield and Kojima (2008),

and Hatfield and Kominers (2017) in various situations, the substitutability condition is

necessary and sufficient to guarantee the existence of a stable matching with a finite number

of agents. Our paper contributes to this line of research by showing that substitutability is

not necessary for the existence of a stable matching when there is a continuum of agents on

one side of the market, and that an approximately stable matching exists in a large finite

market.
63The notion of strong stability in Definition 12 requires the proportion of time spent with a firm out of

total endowment to be equalized among workers that the firm considers equivalent. This notion is sensible

in the context of a time share model, particularly when Gpθq is the same across all workers, as with school

choice (where each student has a unit demand). When Gpθq is different across θs, however, one could consider

an alternative notion, such as one that equalizes the absolute amount of time (not divided by Gpθq) that

a worker spends with a firm. Our analysis can be easily modified to prove the existence of matching that

satisfies this alternative notion of strong stability.
64Unlike the continuum model, population proportionality does not guarantee strategy-proofness. As

is shown by Kesten and Ünver (2014), strategy-proofness is generally impossible to attain in the time

share/probabilistic models with finite numbers of workers.
65See Roth (1991) and Kagel and Roth (2000) for empirical and experimental evidence on the importance

of stability in labor markets and Abdulkadiroğlu and Sönmez (2003) for the interpretation of stability as a

fairness concept in school choice.
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Our study was inspired by recent research on matching with a continuum of agents by

Abdulkadiroğlu, Che, and Yasuda (2015) and Azevedo and Leshno (2016).66 As in the

present study, these authors assume that there are a finite number of firms and a continuum

of workers. In particular, Azevedo and Leshno (2016) show the existence and uniqueness of

a stable matching in that setting. However, as opposed to the present study, these authors

assume that firms have responsive preferences—which is a special case of substitutability.

Our contribution is to show that the almost universally invoked restrictions on preferences

(such as responsiveness or even substitutability) are not necessary for the existence of a

stable matching in the continuum economy.

An independent and contemporaneous study by Azevedo and Hatfield (2015) (hence-

forth, AH) also analyzes matching with a continuum of agents.67 Consistent with our study,

these authors find that a stable matching exists even when not all agents have substitutable

preferences. However, the two studies have several notable differences. First, AH consider a

continuum of firms each employing a finite number of workers; thus, they consider a contin-

uum of agents on both sides of the market. By contrast, the present paper considers a finite

number of firms each employing a continuum of workers. These two models thus provide

complementary approaches for studying large markets, and they are applicable to different

environments.68

Second, AH assume that there is a finite number of both firm and worker types, which

enables them to use Brouwer’s fixed point theorem to demonstrate the existence of a stable

matching. By contrast, we place no restriction on the number of workers’ types and thus

allow for both finite and infinite numbers of types, and this generality in type spaces requires

a topological fixed point theorem from functional analysis. To the best of our knowledge,

this type of mathematics has never been applied to two-sided matching, and we view the

introduction of these tools into the matching literature as one of our methodological con-

tributions. Our model also has the advantage of subsuming the previous work by Azevedo

and Leshno (2016) as well as many of the other studies mentioned above that assume a

continuum of worker types. Finally, the substantive issues studied in these papers are sig-

66Various recent studies on large matching markets are also related but formally different, such as Roth

and Peranson (1999), Immorlica and Mahdian (2005), Kojima and Pathak (2009), Kojima and Manea (2010),

Manea (2009), Che and Kojima (2010), Lee (2017), Liu and Pycia (2013), Che and Tercieux (2017, 2015),

Ashlagi, Kanoria, and Leshno (2017), Miralles (2008), Miralles and Pycia (2017), Kojima, Pathak, and Roth

(2013), and Hatfield, Kojima, and Narita (2016).
67Although not as closely related, our study is also analogous to Azevedo, Weyl, and White (2013), who

demonstrate the existence of competitive equilibrium in an exchange economy with a continuum of agents

and indivisible objects.
68For example, in the context of school choice, many school districts consist of a small number of schools

that each admit hundreds of students, which fits well with our approach. However, in a large school district

such as New York City, the number of schools admitting students is also large, and the AH model may offer

a good approximation.
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nificantly different. Indifferences in preferences, substitutable preferences, incentives, and

fairness are studied only by the present paper, while many-to-many matching, core, and

general equilibrium are studied only by AH. While they focus on the existence of various

solution concepts under complementarities, we offer a comprehensive study of a variety of

large matching markets. Overall, these points make the two papers substantially different.

Our methodological contribution is also related to another recent advance in matching

theory based on the monotone method. In the context of one-to-one matching, Adachi (2000)

defines a certain operator whose fixed points are equivalent to stable matchings. His work

has been generalized in many directions by Fleiner (2003), Echenique and Oviedo (2004,

2006), Hatfield and Milgrom (2005), Ostrovsky (2008), and Hatfield and Kominers (2017),

among others, and we also define an operator whose fixed points are equivalent to stable

matchings. However, these previous studies also impose restrictions on preferences (e.g.,

responsiveness or substitutability) so that the operator is monotone, and utilize Tarski’s

fixed point theorem to ensure a stable matching. By contrast, a significant part of our paper

does not impose responsiveness or substitutability restrictions on preferences; instead, we

rely on the continuum of workers—along with continuity in firms’ preferences—to guarantee

the continuity of the operator (in an appropriately chosen topology). This approach allows

us to use a generalization of the Kakutani fixed point theorem, a more familiar tool in

traditional economic theory that is used in existence proofs of general equilibrium and Nash

equilibrium in mixed strategies. Even for substitutable preferences, we are able to weaken

the condition for existence and other properties of interest by accommodating indifferences.

The present paper is related to the literature on general equilibrium, especially models

with clubs. To our knowledge, the closest contributions are two related papers by Ellickson,

Grodal, Scotchmer, and Zame (1999, 2001).69 Like the present paper, these papers consider

large finite economies as well as continuum economies. They show the existence of a general

equilibrium in large markets using Kakutani’s fixed point theorem. Despite these similarities,

there are also a number of notable differences. First, Ellickson, Grodal, Scotchmer, and Zame

(1999, 2001) assume the existence of private goods and those private goods are divisible, while

our model does not presume the existence of a private good. Second, they assume that it

is possible to make transfer among club members. Third, in their model, the size of clubs

(groups) as well as the number of agents’ types are finite. In this respect, their model is closer

to the large matching market models in which a continuum of firms each hire finite number

of workers as in AH. By contrast, in our model a finite number of firms each hire a continuum

of workers, which makes the analysis quite different. Due to these differences, our results

and theirs are logically unrelated, and it seems impossible to make a direct comparison.

The current paper is also related to the literature on matching with couples. Like a firm

69Although not as closely related to our paper, other notable contributions include Ellickson (1979),

Scotchmer and Wooders (1987), Gilles and Scotchmer (1997), and Scotchmer and Shannon (2015). See

Sandler and Tschirhart (1997) for a survey.
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in our model, a couple can be seen as a single agent with complementary preferences over

contracts. Roth (1984) and unpublished work by Sotomayor show that a stable matching

does not necessarily exist in the presence of a “couples” problem. Klaus and Klijn (2005)

provide a condition for the existence of stable matchings in such a context. Pycia (2012)

and Echenique and Yenmez (2007) study many-to-one matching with complementarities as

well as with peer effects. These papers allow for complementarities like our paper, but they

do not study large economies.

Closer to our study, several recent papers study couples problem in the context of large

economies. Kojima, Pathak, and Roth (2013) provide conditions under which the proba-

bility that a stable matching exists even in the presence of couples converges to one as the

market becomes infinitely large. Similar conditions have been further analyzed by Ashlagi,

Braverman, and Hassidim (2014). Nguyen and Vohra (2014) study how one can minimally

modify firms’ quotas to guarantee a stable matching in a problem with couples.70 Like our

paper, these studies suggest finding a stable matching becomes easier in a large market even

in the presence of complementarities. However, there is an important difference. It is cru-

cial for their results that the only complementarity is caused by couples, meaning that the

complementarity is between only two positions.71 In other words, their results are relevant

primarily for cases in which the magnitude of complementarities is small. By contrast, we

allow for firms to have complementarity over arbitrarily large groups of workers.

10 Conclusion

Complementarity, although prevalent in matching markets, has been known as a source

of difficulties for designing desirable mechanisms. The present paper took a step toward

addressing the difficulties by considering large economies. We find that complementarity

need not jeopardize stability in a large market. First, as long as preferences are continuous

or substitutable, a stable matching exists in a limit continuum economy. Second, with such

preferences, there exists an approximately stable matching in a large finite economy. We

used this framework to show that there is a stable mechanism that is strategy-proof for

workers and satisfies an additional fairness property, strong stability.

The scope of our analysis can be extended in a couple of directions. First, we can

introduce “contracts,” namely to allow each firm-worker pair to match under alternative

contracts, as has been done by Hatfield and Milgrom (2005) in the context of substitutable

preferences. Just as in our baseline model, we focus on the measures of workers matched with

70Nguyen, Peivandi, and Vohra (2016) also study preference complementarity. Their contribution is not

as close to our study, however, as they study (stochastic) object-allocation problems rather than two-sided

matching.
71These papers study more general complementarities as well, but their results become weaker under

general complementarities.
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alternative firms as basic unit of analysis. But unlike our main model, a vector of measures

of workers matches with a firm under alternative contract terms. With this enrichment of

the underlying space, our method can be extended to yield existence in this setup.72 This

result is provided in Section S.9 of the Supplementary Material.

Second, while we have considered the model in which a finite number of “large” firms

match with a continuum of workers, we can extend our framework to study a model in which

a continuum of “small” firms match with a continuum of workers, as has been studied by

AH. Take their main model and for simplicity consider the pure matching case (i.e., without

contracts) in which each worker demands at most one position. Assume as have been by

AH that the set of firm types is finite. Then, one can interpret the entire mass of firms of

each given type as a single “large” firm and “build” an aggregate choice correspondence for

that fictitious large firm from optimal choices of infinitesimal firms (of the same type), say

by maximizing their aggregate welfare. The aggregate choice correspondence constructed in

this way is shown to satisfy the continuity condition required for the existence of a stable

matching in Theorem 2. Therefore, our model can recover the existence result for a certain

special case of AH. The specific result is described in Section S.10 of Supplementary Material.

To the best of our knowledge, this paper is the first to analyze matching in a continuum

economy with the level of generality presented here. As such, our paper may pose as many

questions as it answers. One issue worth pursuing is the computation of a stable matching.

The existence of a stable matching, as established in this paper, is clearly necessary to find a

desired mechanism, but practical implementation requires an algorithm. Although our fixed

point mapping provides one such algorithm in the case it is contractionary or monotonic

(i.e., preferences are substitutable), studying the computationally efficient and generally

applicable algorithms to find stable matchings would be an interesting and challenging future

research topic.

Appendix A Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. (“Only if” part): Suppose that M is a stable matching, and let

X “ pXf qfPF̃ with Xf “ Dĺf pMq, @f P F̃ . We prove that X is a fixed point of T . Let us first

show that for each f P F̃ , Xf P X . It is clear that as each Mf 1pΘP X ¨q is nonnegative and

countably additive, so is Xf p¨q. It is also clear that since pMf qfPF̃ is a matching, Xf Ă G.

Thus, we have Xf P X .

We next claim that Mf P Cf pXf q for all f P F̃ . This is immediate for f “ ø since

Mø Ă Xø “ CøpXøq. To prove the claim for f ‰ ø, suppose for a contradiction that

72Nevertheless, the generalization is more than mechanical. Since the measure of workers a firm matches

with under a contract term depends on the measure of workers the same firm matches with under a different

contract term, special care is needed to define the choice function as well as the measure of available workers

to a firm under a particular contract term.
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Mf R Cf pXf q, which means that there is some M 1
f P Cf pXf q such that M 1

f ‰ Mf . Note

that Mf Ă Xf and thus pM 1
f _Mf q Ă Xf . Then, by revealed preference, we have Mf R

Cf pM
1
f _Mf q and M 1

f P Cf pM
1
f _Mf q or M 1

f ąf Mf , which means that M is unstable since

M 1
f Ă Xf “ Dĺf pMq, yielding the desired contradiction.

We next prove X P T pXq. The fact that Mf P Cf pXf q, @f P F̃ means that Xf ´Mf P

Rf pXf q, @f P F̃ . We set Yf “ Xf ´Mf for each f P F̃ and obtain for any E P Σ
ÿ

P :P p1q“f

GpΘP X Eq `
ÿ

P :P p1q‰f

YfP´ pΘP X Eq

“
ÿ

P :P p1q“f

GpΘP X Eq `
ÿ

P :P p1q‰f

´

XfP´
pΘP X Eq ´MfP´

pΘP X Eq
¯

“
ÿ

P :P p1q“f

GpΘP X Eq `
ÿ

P :P p1q‰f

¨

˝

ÿ

f 1PF̃ :f 1ĺP f
P
´

Mf 1pΘP X Eq ´MfP´
pΘP X Eq

˛

‚

“
ÿ

PPP

ÿ

f 1PF̃ :f 1ĺP f

Mf 1pΘP X Eq “ Xf pEq,

where the second and fourth equalities follow from the definition of XfP´
and Xf , respectively,

while the third from the fact that fP´ is an immediate predecessor of f and
ř

f 1PF̃ :f 1ĺPP p1q
Mf 1pΘPX

Eq “ GpΘP X Eq. The above equation holds for every firm f P F̃ , so we conclude that

X P T pXq, i.e. X is a fixed point of T .

(“If” part): Let us first introduce some notation. Let fP` denote an immediate suc-

cessor of f P F̃ at P P P : that is, fP` ăP f , and for any f 1 ăP f , f 1 ĺP f
P
` . Note that for

any f, f̃ P F̃ , f “ f̃P´ if and only if f̃ “ fP` .

Suppose now that X P X n`1 is a fixed point of T . For each firm f P F̃ and E P Σ, define

Mf pEq “ Xf pEq ´
ÿ

P :P pn`1q‰f

XfP`
pΘP X Eq, (13)

where P pn` 1q is the least preferred firm according to P .

We first verify that for each f P F̃ , Mf P X . First, it is clear that for each f P F̃ , Mf

is countably additive as both Xf p¨q and XfP`
pΘP X ¨q are countably additive. It is also clear

that for each f P F̃ , Mf Ă Xf . To see that Mf pEq ě 0, @E P Σ, observe from (13) that

Mf pEq “
ÿ

P :PPP
Xf pΘP X Eq ´

ÿ

P :P pn`1q‰f

XfP`
pΘP X Eq

ě
ÿ

P :P pn`1q‰f

`

Xf pΘP X Eq ´XfP`
pΘP X Eq

˘

ě 0,

where the inequality holds since X P T pXq means that there is some Yf P Rf pXf q such that

XfP`
pΘP X ¨q “ Yf pΘP X ¨q for each P P P , and thus XfP`

pΘP X ¨q Ă Xf pΘP X ¨q.
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Let us next show that for all f P F̃ , P P P , and E P Σ,

Xf pΘP X Eq “
ÿ

f 1PF̃ :f 1ĺP f

Mf 1pΘP X Eq, (14)

which means that Xf “ Dĺf pMq. To do so, fix any P P P and consider first a firm

f “ P pn ` 1q (i.e., a firm ranked lowest at P ). By (13), Mf pΘP X Eq “ Xf pΘP X Eq and

thus (14) holds for such f . Consider next any f ‰ P pn ` 1q, and assume for an inductive

argument that (14) holds true for fP` , so XfP`
pΘP XEq “

ř

f 1PF̃ :f 1ĺP f
P
`
Mf 1pΘP XEq. Then,

by (13), we have

Xf pΘP X Eq “Mf pΘP X Eq `XfP`
pΘP X Eq “Mf pΘP X Eq `

ÿ

f 1PF̃ :f 1ĺP f
P
`

Mf 1pΘP X Eq

“
ÿ

f 1PF̃ :f 1ĺP f

Mf 1pΘP X Eq,

as desired.

To show that M “ pMf qfPF̃ is a matching, let f “ P p1q and note that by definition of

T , if X̃ P T pXq, then X̃f pΘP X ¨q “ GpΘP X ¨q. Since X P T pXq, we have for any E P Σ

GpΘP X Eq “ Xf pΘP X Eq “
ÿ

f 1PF̃ :f 1ĺP f

Mf 1pΘP X Eq “
ÿ

f 1PF̃

Mf 1pΘP X Eq,

where the second equality follows from (14). Since the above equation holds for every P P P ,

M is a matching.

We now prove that pMf qfPF̃ is stable. As noted by footnote 21, the first part of Condition

1 is implied by Condition 2, which we check below. To prove the second part of Condition 1

of Definition 2, note first that CøpXøq “ tXøu and thus Rø “ 0. Fix any P P P and assume

ø ‰ P pn ` 1q, since there is nothing to prove if ø “ P pn ` 1q. Consider a firm f such that

fP´ “ ø. Then, X being a fixed point of T means Xf pΘP q “ RfP´
pΘP q “ 0, which implies by

(14) that 0 “ Xf pΘP q “
ř

f 1:f 1ĺP f
Mf 1pΘP q “

ř

f 1:f 1ăP øMf 1pΘP q, as desired.

It only remains to check Condition 2 of Definition 2. Suppose for a contradiction that it

fails. Then, there exist f and M 1
f such that

M 1
f Ă Dĺf

pMq, M 1
f P Cf pM

1
f _Mf q, and Mf R Cf pM

1
f _Mf q. (15)

So M 1
f Ă Dĺf pMq “ Xf . Since then Mf Ă pM 1

f _Mf q Ă Xf and Mf P Cf pXf q, the revealed

preference property implies Mf P Cf pM
1
f _Mf q, contradicting (15). We have thus proven

that M is stable.

Proof of Theorem 2. We establish the compactness of X and the upper hemicontinuity

of T in Lemma 4 and Lemma 5 below. To do so, recall that X is endowed with weak-˚
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topology. The notion of convergence in this topology, i.e. weak convergence, can be stated

as follows: A sequence of measures pXkqkPN in X weakly converges to a measure X P X ,

written as Xk
w˚
ÝÑ X, if and only if

ş

Θ
hdXk Ñ

ş

Θ
hdX for all h P CpΘq, where CpΘq is the

space of all continuous functions defined on Θ. The next result provides some conditions

that are equivalent to weak convergence.

Theorem 12. Let X and pXkqkPN be finite measures on Σ.73 The following conditions are

equivalent:74

(a) Xk
w˚
ÝÑ X;

(b)
ş

Θ
hdXk Ñ

ş

Θ
hdX for all h P CupΘq, where CupΘq is the space of all uniformly contin-

uous functions defined on Θ;

(c) lim infkXkpAq ě XpAq for every open set A Ă Θ, and XkpΘq Ñ XpΘq;

(d) lim supkXkpAq ď XpAq for every closed set A Ă Θ, and XkpΘq Ñ XpΘq;

(e) XkpAq Ñ XpAq for every set A P Σ such that XpBAq “ 0 (BA denotes the boundary of

A).

Lemma 4. The space X is convex and compact. Also, for any X P X , XX is compact.

Proof. Convexity of X follows trivially. To prove the compactness of X , let CpΘq˚ denote

the dual (Banach) space of CpΘq and note that CpΘq˚ is the space of all (signed) measures

on pΘ,Σq, given Θ is a compact metric space.75 Then, by Alaoglu’s Theorem, the closed

unit ball of CpΘq˚, denoted U˚, is weak-˚ compact.76 Clearly, X is a subspace of U˚ since

for any X P X , }X} “ XpΘq ď GpΘq “ 1. The compactness of X will thus follow if X is

shown to be a closed set. To prove this, we prove that for any sequence pXkqkPN in X and

73We note that this result can be established without having to assume that X is nonnegative, as long as

all Xk’s are nonnegative.
74This theorem is a modified version of “Portmanteau Theorem” that is modified to deal with any finite

(i.e. not necessarily probability) measures. See Theorem 2.8.1 of Ash and Doléans-Dade (2009) for this

result, for instance.
75More precisely, CpΘq˚ is isometrically isomorphic to the space of all signed measures on pΘ,Σq according

to the Riesz Representation Theorem (see Royden and Fitzpatrick (2010) for instance).
76The closed unit ball is defined as U˚ :“ tX P C˚pΘq : }X} ď 1u, where }X} is the dual norm, i.e.,

}X} “ supt
ˇ

ˇ

ş

Θ
hdX

ˇ

ˇ : h P CpΘq and max
θPΘ

|hpθq| ď 1u.

If X is a nonnegative measure, then the supremum is achieved by taking h ” 1, and thus }X} “ XpΘq. It

is well known (see Royden and Fitzpatrick (2010) for instance) that if CpΘq˚ is infinite dimensional, then

U˚ is not compact under the norm topology (i.e., the topology induced by the dual norm). On the other

hand, U˚ is compact under the weak-˚ topology, which follows from Alaoglu’s Theorem (see Royden and

Fitzpatrick (2010) for instance).
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X P CpΘq˚ such that Xk
w˚
ÝÑ X, we must have X P X , which will be shown if we prove that

0 ď XpEq ď GpEq for any E P Σ. Let us first make the following observation: every finite

(Borel) measure X on the metric space Θ is normal,77 which means that for any set E P Σ,

XpEq “ inftXpOq : E Ă O and O P Σ is openu (16)

“ suptXpF q : F Ă E and F P Σ is closedu. (17)

To show first that XpEq ď GpEq, consider any open set O P Σ such that E Ă O. Then,

since Xk P X for every k, we must have XkpOq ď GpOq for every k, which, combined with

(c) of Theorem 12 above, implies that XpOq ď lim infkXkpOq ď GpOq. Given (16), this

means that XpEq ď GpEq.

To show next that XpEq ě 0, consider any closed set F P Σ such that F Ă E. Since

Xk P X for every k, we must have XkpF q ě 0, which, combined with (d) of Theorem 12

above, implies that XpF q ě lim supkXkpF q ě 0. Given (17), this means XpEq ě 0.

The proof for the compactness of XX is analogous and hence omitted.

Lemma 5. The map T is a correspondence from X n`1 to itself. Also, it is nonempty- and

convex-valued, and upper hemicontinuous.

Proof. To show that T maps from X n`1 to itself, observe that for any X P X n`1 and

X̃ P Tf pXq, there is Yf P Rf pXf q for each f P F̃ such that for all E P Σ,

X̃pEq “
ÿ

PPP
YfP´ pΘP X Eq ď

ÿ

PPP
XfP´

pΘP X Eq ď
ÿ

PPP
GpΘP X Eq “ GpEq,

which means that X̃ P X , as desired.

As noted earlier, the correspondence T is nonempty-valued. To prove that T is convex-

valued, it suffices to show that for each f P F̃ , Rf is convex-valued. Consider any X P X and

Y 1, Y 2 P Rf pXq. There are some X 1, X2 P Cf pXq satisfying Y 1 “ X ´X 1 and Y 2 “ X ´X2.

Then, the convexity of Cf pXq implies that for any λ P r0, 1s, λX 1 ` p1 ´ λqX2 P Cf pXq so

λY 1 ` p1´ λqY 2 “ X ´ pλX 1 ` p1´ λqX2q P Rf pXq.

To establish the upper hemicontinuity of T , we first establish the following claim:

Claim 1. For any sequence pXkqkPN Ă X that weakly converges to X P X , a sequence

pXkpΘP X ¨qqkPN also weakly converges to XpΘP X ¨q for all P P P.

Proof. Let XP and XP
k denote XpΘP X ¨q and XkpΘP X ¨q, respectively. Note first that for

any X P X , we have XP P X for all P P P . Due to Theorem 12, it suffices to show that

XP and pXP
k qkPN satisfy the condition (c) of Theorem 12. To do so, consider any open set

O Ă Θ. Then, letting Θ˝
P denote the interior of ΘP ,

lim inf
k
XP
k pOq “ lim inf

k
XkpΘ

˝
P XOq `XkpBΘP XOq

77See Theorem 12.5 of Aliprantis and Border (2006).
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“ lim inf
k
XkpΘ

˝
P XOq ě XpΘ˝

P XOq “ XP
pOq,

where the second equality follows from the fact thatXkpBΘPXOq ď XkpBΘP q ď GpBΘP q “ 0,

the lone inequality from Xk
w˚
ÝÑ X, (c) of Theorem 12, and the fact that BΘ˝

P XO is an open

set, and the last equality from repeating the first two equalities with X instead of Xk. Also,

we have

XP
k pΘq “ XkpΘP q Ñ XpΘP q “ XP

pΘq,

where the convergence is due to Xk
w˚
ÝÑ X, (e) of Theorem 12, and the fact that XpBΘP q ď

GpBΘP q “ 0. Thus, the two requirements in condition (c) of Theorem 12 are satisfied, so

XP
k

w˚
ÝÑ XP , as desired.

It is also straightforward to observe that if Cf is upper hemicontinuous, then Rf is also

upper hemicontinuous.

We now prove the upper hemicontinuity of T by considering any sequences pXkqkPN and

pX̃kqkPN in X n`1 weakly converging to some X and X̃ in X n`1, respectively, such that

X̃k P Tf pXkq for each k. To show that X̃ P T pXq, let Xk,f and X̃k,f denote the components

of Xk and X̃k, respectively, that correspond to f P F̃ . Then, we can find Yk,f P Rf pXk,f q

for each k and f such that X̃k,f p¨q “
ř

PPP Yk,fP´ pΘP X ¨q, which implies that for all f P F̃

and P P P , X̃k,fP`
pΘP X ¨q “ Yk,f pΘP X ¨q since f is the immediate predecessor of fP` at P .

As X̃k,f
w˚
ÝÑ X̃f , @f P F̃ , by assumption, we have X̃k,fP`

pΘP X ¨q
w˚
ÝÑ X̃fP`

pΘP X ¨q by Claim

1, which means that Yk,f pΘP X ¨q
w˚
ÝÑ X̃fP`

pΘP X ¨q for all f P F̃ . This in turn implies that

Yk,f p¨q “
ř

PPP Yk,f pΘP X ¨q
w˚
ÝÑ

ř

PPP X̃fP`
pΘP X ¨q. Now let Yf p¨q “

ř

PPP X̃fP`
pΘP X ¨q.

We then have X̃f pΘP X ¨q “ YfP´ pΘP X ¨q and thus X̃f p¨q “
ř

PPP YfP´ pΘP X ¨q. Also, since

Xk,f
w˚
ÝÑ Xf and Yk,f

w˚
ÝÑ Yf , we must have Yf P Rf pXf q by the upper hemicontinuity of

Rf , which means X̃ P T pXq, as desired.

Lemmas 4 and 5 show that T is nonempty- and convex-valued, and upper hemicontinuous

while it is a mapping from convex, compact space X n`1 into itself, which implies that T is

also closed-valued. Thus, we can invoke Kakutani-Fan-Glicksberg’s fixed point theorem to

conclude that the mapping T has a nonempty set of fixed points.

Appendix B Proofs for Section 6

Proof of Theorem 3. Recall from Lemma 1 that the partially ordered set pX ,Ăq, and

thus partially ordered set pX n`1,ĂF̃ q, is a complete lattice, where XF̃ ĂF̃ X 1

F̃
if Xf Ă X 1

f

for all f P F̃ . If each Cf is closed-valued, so are each Rf and T , as one can easily verify.

Also, if each Rf is weak-set monotonic, so is T in the ordered set pX n`1,ĂF̃ q. Note also
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that X n`1 is a compact set due to Lemma 4. Thus, if all firms have weakly substitutable

preferences with closed-valued choice correspondences, then T has a fixed point according to

Corollary 3.7 of Li (2014), which implies existence of a stable matching due to Theorem 1.

Proof of Theorem 4. Proof of Part (i): Note first that by substitutability, each Rf is

weak-set monotonic while Rf pXq is a complete sublattice for any X P X , and that these

properties are inherited by T . Given this, the proof of Theorem 1 in Zhou (1994) shows

that the set of fixed points of T , denoted X ˚, contains the largest and smallest elements,

X “ supĂF̃
X ˚ and X “ infĂF̃

X ˚.78 Let M and M be the stable matchings associated

with X and X, respectively, given by Theorem 1. We only establish that M is firm-optimal

and worker-pessimal, since the result for M can be established analogously. Recall from our

characterization theorem that for any stable matching M , there is some X P X ˚ such that

Xf “ Dĺf pMq and Mf P Cf pXf q for all f P F̃ . We thus have Mf Ă Xf Ă Xf , which implies

that M f P Cf pMf _M f q by revealed preference since M f P Cf pXf q and pMf _M f q Ă Xf .

Thus, M f ľf Mf for each f P F , as desired. To show that M ĺΘ M, @M P M˚, fix any

M PM˚ and consider X P X ˚ such that Xf “ Dĺf pMq for all f P F̃ . Then, for each P P P
and E P Σ,

XfP`
pΘP X Eq “ DĺfP` pMqpΘP X Eq “

ÿ

f 1PF̃ :f 1ăP f

Mf 1pΘP X Eq,

where fP` is an immediate successor of f P F̃ at P P P , as defined earlier. Similarly, for X,

we have XfP`
pΘP X Eq “

ř

f 1PF̃ :f 1ăP f
M f 1pΘP X Eq. Given this and the fact that X ĂF̃ X,

ÿ

f 1PF̃ :f 1ľP f

M f 1pΘP X Eq “GpΘP X Eq ´XfP`
pΘP X Eq

ďGpΘP X Eq ´XfP`
pΘP X Eq “

ÿ

f 1PF̃ :f 1ľP f

Mf 1pΘP X Eq (18)

for all P P P , E P Σ, and f P F̃ , as desired.

Proof of Part (ii): Note that for any X P X , each Rf pXq, and thus T pXq, is a complete

sublattice. Then, T must be monotonic since, for any X Ă X 1, we have T pXq P T pXq

and T pX 1q P T pX 1q, which implies by upper weak-set monotonicity that there exits Y P

T pX 1q such that T pXq Ă Y , and then T pXq Ă T pX 1q by definition of T pX 1q. Now let

X0 “ pX0
f qfPF̃ with X0

f “ G, @f P F̃ . Define recursively Xn “ T pXn´1q for each n ě 1.

The sequence pXnqnPN is decreasing since X1 Ă X0 and X2 “ T pX1q Ă T pX0q “ X1

and so on, which implies that it has a limit point, denoted X˚. Because each Cf is oder-

continuous, we have Rf pX
n
f q “ Xn

f ´ Cf pX
n
f q

w˚
ÝÑ X˚

f ´ Cf pX
˚
f q “ Rf pX

˚
f q, which implies

78Zhou (1994)’s theorem requires the strong set monotonicity, but some inspection of its proof reveals

that the weak-set monotonicity is sufficient for existence of largest and smallest fixed points.
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that Xn`1 “ T pXnq
w˚
ÝÑ T pX˚q. Since Xn`1 w˚

ÝÑ X˚, we must have T pX˚q “ X˚. To show

that X˚ “ X, consider any X P X ˚. Then, X Ă X0 and thus X Ă T pXq Ă T pX0q “ X1.

Repeating this way, we obtain X Ă Xn, @n, which implies that X Ă X˚ and thus X˚ “ X.

By the proof of part (i), a stable matching associated with X is firm-optimal. The proof for

worker optimal stable matching is analogous and thus omitted.

Proof of Theorem 5. Let M be any stable matching. Then, by Theorem 1, there exists

X P X ˚ such that Mf P Cf pXf q for each f P F . Since X ĂF̃ X, LoAD implies

M f pΘq ě inf Cf pXf qpΘq ě supCf pXf qpΘq ěMf pΘq, @f P F. (19)

Next since M is worker pessimal, (18) holds for any f P F̃ . Let wP :“ øP´ be the

immediate predecessor of ø (i.e., the worst individually rational firm) for types in ΘP . Then,

setting f “ wP in (18), we obtain
ÿ

f 1PF

M f 1pΘP X Eq “
ÿ

f 1PF̃ :f 1ľPwP

M f 1pΘP X Eq

ď
ÿ

f 1PF̃ :f 1ľPwP

Mf 1pΘP X Eq “
ÿ

f 1PF

Mf 1pΘP X Eq, @E P Σ,

or equivalently
ÿ

f 1PF

M f 1pEq ď
ÿ

f 1PF

Mf 1pEq, @E P Σ. (20)

Since this inequality must hold with E “ Θ, combining it with (19) implies that Mf pΘq “

M f pΘq for all f P F , as desired.

Further, we must have
ř

fPF M f “
ř

fPF Mf . Otherwise, by (20), we must have
ř

f 1PF M f 1pEq ă
ř

f 1PF Mf 1pEq for some E P Σ. Also, by (20),
ř

f 1PF M f 1pE
cq ď

ř

f 1PF Mf 1pE
cq. Combining

these two inequalities, we obtain
ř

f 1PF M f 1pΘq ă
ř

f 1PF Mf 1pΘq, which contradicts (19).

Lastly, that
ř

fPF M f “
ř

fPF Mf means Mø “Mø.

Proof of Theorem 6. Suppose otherwise. Then there exists a stable matching M that

differs from the worker-optimal stable matching M . Let X and X be respectively fixed

points of T such that Mf “ Cf pXf q, M f “ Cf pXf q and Xf Ă Xf , for each f P F .

First of all, since Xf Ă Xf for each f P F , we have pM f_Mf q Ă Xf . Revealed preference

then implies that, for each f P F ,

Mf “ Cf pM f _Mf q

or M ľF M . Moreover, since M ‰ M , the set F̄ :“ tf P F |Mf ąf M fu is nonempty. But

then by the rich preferences, there exists f˚ P F such that

M f˚ ‰ Cf˚ppM f˚ `M
f˚

F̄
q ^Gq.
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For each f P F zF̄ , Mf “M f , by definition of F̄ , and Theorem 5 guarantees that Mø “Mø.

Consequently, we have for each E P Σ, that

M f˚

F̄
pEq “

ÿ

PPP

ÿ

f 1:f˚ąP f 1,f 1RF̄

Mf 1pΘP X Eq “
ÿ

PPP

ÿ

f 1:f˚ąP f 1,f 1RF̄

M f 1pΘP X Eq “M f˚

F̄
pEq.

It then follows that pM f˚ `M f˚

F̄
q ^ G “ pM f˚ `M f˚

F̄
q ^ G “ M f˚ `M f˚

F̄
(since M is a

matching), so

M f˚ ‰ Cf˚pM f˚ `M
f˚

F̄
q. (21)

Letting M̂f˚ :“ Cf˚pM f˚ `M
f˚

F̄
q, we have M̂f˚ Ă pM f˚ _ M̂f˚q Ă pM f˚ `M

f˚

F̄
q. Revealed

preference then implies that

M̂f˚ “ Cf˚pM f˚ _ M̂f˚q.

Then, by (21), we have M̂f˚ ąf˚ M f˚ . Further, M̂f˚ Ă pM f˚ `M f˚

F̄
q Ă Dĺf˚pMq. We

therefore have a contradiction to the stability of M .

Appendix C Proofs for Section 7

Proof of Theorem 7. Let Γ be the limit continuum economy which the sequence pΓqqqPN
converges to. For any population G, fix a sequence pGqqqPN of finite-economy populations

such that Gq w˚
ÝÑ G. Let Θq “ tθq1, θ

q
2, . . . , θ

q
q̄u Ă Θ be the support for Gq.79 For each firm

f P F̃ , define Θf to be the set of types that find firm f acceptable, i.e., Θf :“ YPPP:fąP øΘP

(let Θø “ Θ by convention). Let Θf denote the closure of Θf with respect to the topology

on Θ. We first prove a few preliminary results, whose proofs are provided in Section S.7.1

of Supplementary Material.

Lemma 6. For any r ą 0, there is a finite number of open balls, B1, . . . , BL, in Θ that have

radius smaller than r with a boundary of zero measure (i.e. GpBB`q “ 0, @`) and cover Θf

for each f P F .

Lemma 7. Consider any X, Y P X such that XpΘzΘf q “ 0 for some f P F̃ and X Ă Y ,

and consider any sequence pY qqqPN such that Y q P X q and Y q w˚
ÝÑ Y .80 Then, there exists a

sequence pXqqqPN such that Xq P X q, Xq w˚
ÝÑ X, Xq Ă Y q, and XqpΘzΘf q “ 0 for all q.

Lemma 8. For any two sequences pXqqqPN and pY qqqPN such that Xq, Y q P X q, Xq Ă Y q, @q,

Xq w˚
ÝÑ X, and Y q w˚

ÝÑ Y , we have X Ă Y .

Using these lemmas, we establish the following two lemmas:

79Note that we allow for the possibility that there are more than one worker of the same type even in

finite economies, so q̄ may be strictly smaller than q.
80Note that if f “ ø, then ΘzΘf “ H. Thus, the restriction that XpΘzΘf q “ 0 becomes vacuous.

46



Lemma 9. For any stable matching M in Γ and ε ą 0, there is Q P N such that for any

q ą Q, one can construct a matching M q “ pM q
f qfPF̃ that is feasible and individually rational

in Γq, and satisfies

uf pMf q ă uf pM
q
f q `

ε

2
, @f P F. (22)

Proof. In any finite economy Γq, let us construct a matching M̃ q “ pM̃ q
f qfPF̃ as follows: order

the firms in F by f1, . . . , fn, and

1. define M̃ q
f1

as Xq in Lemma 7 with X “Mf1 , Y “ G, and Y q “ Gq;81

2. define M̃ q
f2

as Xq in Lemma 7 with X “Mf2 , Y “ G´Mf1 , and Y q “ Gq ´ M̃ q
f1

(this

is possible since Gq ´ M̃ q
f1

w˚
ÝÑ G´Mf1);

3. in general, for each fk P F̃ , define inductively M̃ q
fk

as Xq in Lemma 7 with X “ Mfk ,

Y “ G´
ř

k1ăkMfk1
, and Y q “ Gq ´

ř

k1ăk M̃
q
fk1

;

and define M̃ q
ø “ Gq ´

ř

fPF̃ M̃
q
f .

By Lemma 7, M̃ q is feasible in Γq and individually rational for workers while M̃ q w˚
ÝÑM .

To ensure the individual rationality for firms, we construct another matching M q “ pM q
f qfPF̃

as follows: for each f P F , select any M q
f P C

q
f pM̃

q
f q, and then set M q

ø “ Gq ´
ř

fPF M
q
f . By

revealed preference, we have M q
f P C

q
f pM

q
f q and thus M q is individually rational for firms.

Also, the individual rationality of M q for workers follows immediately from the individual

rationality of M̃ q and the fact that M q
f Ă M̃ q

f for all f P F . By the continuity of uf ’s and

the fact M̃ q
f

w˚
ÝÑMf , we can find sufficiently large Q P N such that for all q ą Q,

uf pMf q ă uf pM̃
q
f q `

ε

2
ď uf pM

q
f q `

ε

2
, @f P F,

where the second inequality holds since M q
f P C

q
f pM̃

q
f q.

Lemma 10. The matching M q constructed in Lemma 9 is ε-stable in Γq for all q ą Q, where

Q is identified in Lemma 9.

Proof. Let Dĺf pM qq be the subpopulation of workers in economy Γq who weakly prefer f

to their match in M q.82 Since M q w˚
ÝÑ M , we have Dĺf pM qq

w˚
ÝÑ Dĺf pMq.83 Choose any

M̃ q
f P Cf pD

ĺf pM qqq. In words, M̃ q
f is the most profitable block of M q for f in the continuum

economy, that is, the optimal deviation in a situation where the current matching is M q, but

81Note that Mf pΘzΘf q “ 0 for all f P F since M is individually rational, so Lemma 7 can be applied.
82To be precise, Dĺf pMqq is given as in (3) with G and X being replaced by Gq and Mq, respectively.
83This convergence can be shown using an argument similar to that which we have used to establish the

continuity of Ψ in the proof of Lemma 5.
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the firm can deviate to any subpopulation, not just a discrete distribution. Then, we must

have

uf pM̃
q
f q ă uf pMf q `

ε

2
, (23)

for any sufficiently large q. Otherwise, we could find some subsequence pM̂ q
f qqPN of sequence

pM̃ q
f qqPN for which

uf pM̂
q
f q ě uf pMf q `

ε

2
, @q. (24)

We can assume that pM̂ q
f qqPN is converging to some M̂f (by choosing further subsequence

if necessary). Then, the above-mentioned property that Dĺf pM qq
w˚
ÝÑ Dĺf pMq and upper

hemicontinuity of Cf imply M̂f P Cf pD
ĺf pMqq and thus uf pM̂f q “ uf pMf q since Mf P

Cf pD
ĺf pMqq (due to stability of M), which contradicts (24).

Now let M 1
f be the most profitable block of M q for f in economy Γq. Then, M 1

f is the

optimal deviation facing the same population Gq and matching M q as when computing M̃ q
f

but with an additional restriction that the deviation is feasible in Γq (multiples of 1{q), so

uf pM
1
f q ď uf pM̃

q
f q. This and inequality (23) imply

uf pM
1
f q ă uf pMf q `

ε

2
. (25)

Combining inequalities (22) and (25), we get uf pM
1
f q ă uf pM

q
f q ` ε, completing the proof.

Theorem 7 then follows from the existence of stable matching M in Γ and Lemmas 9 and

10.

Proof of Theorem 8. The proof that M is a matching in Γ is straightforward and thus

omitted. We first show that M is individually rational. First of all, since M q is individually

rational for workers, we have M q
f pΘP q “ 0 for all f P F and P P P such that ø ąP f ,

which implies that Mf pΘP q “ 0 since M q
f

w˚
ÝÑ Mf and Mf pBΘP q ď GpBΘP q “ 0. Thus, M

is also individually rational for workers. To show that M is individually rational for firms,

suppose for a contradiction that there are some f P F and M̂f P X such that M̂f Ă Mf and

uf pM̂f q ´ uf pMf q “ 3ε for some ε ą 0. We then prove the following claim:

Claim 2. For all sufficiently large q, there exists a subpopulation M̂ q
f in Γq such that M̂ q

f Ă

Dĺf pM qq and uf pM̂
q
f q ą uf pM̂f q ´ ε.

Proof. We use Lemma 7 with Y “ Dĺf pMq, Y q “ Dĺf pM qq, and X “ M̂f . By the

continuity of Dĺf p¨q and the assumption that M q w˚
ÝÑM , we have Y q w˚

ÝÑ Y . Also, we have

X “ M̂f Ă Mf Ă Dĺf pMq “ Y . Lemma 7 then implies that there exists a sequence pM̂ q
f qqPN

such that M̂ q
f P X q, M̂ q

f
w˚
ÝÑ X “ M̂f , and M̂ q

f Ă Y q “ Dĺf pM qq. Then, by the continuity

of uf , we have uf pM̂
q
f q ą uf pM̂f q ´ ε for all sufficiently large q.
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Since M q w˚
ÝÑM and uf is continuous, we have that, for all sufficiently large q,

uf pM
q
f q ă uf pMf q ` ε “ uf pM̂f q ´ 2ε ă uf pM̂

q
f q ´ ε, (26)

where the second inequality follows from Claim 2. This contradicts ε-stability of M q in Γq.

To prove that there is no blocking coalition, suppose for a contradiction that there exist

a firm f P F and subpopulation M̂f such that M̂f Ă Dĺf pMq and uf pM̂f q ´ uf pMf q “ 3ε

for some ε ą 0. By Claim 2, for all sufficiently large q, there exists a subpopulation M̂ q
f in

Γq such that M̂ q
f Ă Dĺf pM qq and uf pM̂

q
f q ą uf pM̂f q ´ ε. Then, the same inequality as in

(26) establishes the desired contradiction.

Let us here state a variant of Theorem 8 for later use, whose proof is essentially the same

as that of Theorem 8:

Theorem 8’. Let pM qkqkPN be a sequence of matchings converging to M such that for every

ε ą 0, there exists K P N such that for all k ą K, M qk is ε-stable in Γqk . Then, M is stable

in Γ.

Proof of Theorem 9. First let us state a mathematical fact:

Lemma 11 (Heine-Cantor Theorem). Let h : AÑ B be a continuous function between two

metric spaces A and B, and suppose A is compact. Then, h is uniformly continuous.

Since the space of all subpopulations of G is metrizable by the Lévy-Prokhorov metric,

and it is compact, the Heine-Cantor theorem applies to our setting.

We also need the following result:

Lemma 12. For every ε ą 0, there exist δ P p0, εq and Q1 P N such that for every q ą Q1

and every matching M q that is δ-stable in Γq, there exists a stable matching M in Γ such

that dpM q,Mq ă ε, where dp¨, ¨q is the product Lévy-Prokhorov metric.84

Proof. Suppose for contradiction that the conclusion of the statement does not hold. Then

there exists ε ą 0 with the following property: for every δ P p0, εq and Q1 P N, there

exist q ą Q1 and M q that is δ-stable in Γq such that dpM q,Mq ě ε for every M that is

stable in Γ. This implies there exists a decreasing sequence pδkqk which converges to 0 and

pM qkqk such that M qk is δk-stable in Γq
k
, dpM qk ,Mq ě ε for every stable matching M in Γ,

and limk q
k “ 8. Without loss of generality, assume M qk converges to some matching M̂

84The Lévy-Prokhorov metric on space X is defined as follows: for any X,Y P X ,

dpX,Y q :“ inf tε ą 0 | XpEq ď Y pEεq ` ε and Y pEq ď XpEεq ` ε for all E P Σu ,

where Eε :“ tθ P Θ|Dθ1 P E such that dΘpθ, θ1q ă εu with dΘ being a metric for the space Θ. Here, we abuse

notation since d is used to denote both the Lévy-Prokhorov metric and its product metric. Note that the

choice of product metric is inconsequential since it is defined on a finite-dimensional space.
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(because the sequence lies in a sequentially compact space). Then dpM̂,Mq ě ε for every

stable matching M P Γ, so M̂ is not stable in Γ. This is a contradiction to Theorem 8’.

Proof of Part (i): Given an arbitrary ε ą 0, let η ą 0 be a constant such that, for any

two matchings M and M 1, dpM,M 1q ă η implies |uf pMf q ´ uf pM
1
f q| ă ε{2 for every f P F .

(Recall that uf is continuous. Therefore it is uniformly continuous by the Heine-Cantor

theorem.) Without loss, one can assume η ă ε.

For η ą 0 defined in the last paragraph, choose δ P p0, ηq and Q1 as described in the

statement of Lemma 12. (Note that δ ă ε since δ ă η ă ε.) More precisely, δ and Q1 have

the property that for every q ą Q1 and every matching M̂ q that is δ-stable in Γq, there exists

a stable matching M in Γ such that dpM̂ q,Mq ă η. Given this δ, by Lemma 9 and Lemma

10, there is Q ą Q1 such that for all q ą Q, there exists a matching M q in Γq which is

δ-stable in Γq and satisfies

uf pM
q
f q ą uf pM f q ´

δ

2
ą uf pM f q ´

ε

2
. (27)

Claim 3. uf pM f q ą uf pM̂
q
f q ´ ε{2 for any δ-stable matching M̂ q in Γq.

Proof. By the argument in the last paragraph, there exists a stable matching M in Γ with

dpM̂ q,Mq ă η. So, by construction of η (and uniform continuity of uf ), we obtain uf pMf q ą

uf pM̂
q
f q ´ ε{2. Meanwhile, by firm optimality of M̄ , we have uf pMf q ď uf pM f q. Combining

these inequalities, we obtain the desired inequality.

Then, the desired conclusion holds for any q ą Q since, by (27) and Claim 3, we have

uf pM
q
f q ą uf pM f q ´ ε{2 ą uf pM̂

q
f q ´ ε.

Proof of Part (ii): Note first that each mapping Dľf p¨q is continuous, and hence

uniformly continuous (see footnote 83). Thus, given an arbitrary ε ą 0, one can choose

η P p0, εq such that for any M,M 1 P X n`1, dpM,M 1q ă η implies dpDľf pMq, Dľf pM 1qq ă ε
2

for all f P F̃ . By Lemma 12, for the chosen η, one can find δ P p0, ηq and Q1 P N such that

for every q ą Q1 and every δ-stable matching M̂ q in Γq, there is a stable matching M̃ q in Γ

such that dpM̂ q, M̃ qq ă η. By definition of η, we must have dpDľf pM̃ qq, Dľf pM̂ qqq ă ε
2
.

Next, given that Cf pM f q “ tM fu for each f P F , Lemma S4 of Supplementary Material

implies that there is a sequence pM qqqPN such that M q w˚
ÝÑ M , where M q is a feasible and

individually rational matching in Γq. Choose now εδ ą 0 such that for any subpopulations

M,M 1 P X , dpM,M 1q ă εδ implies |uf pMq ´ uf pM
1q| ă δ. By Lemma S5 of Supplementary

Material, one can find Q2 P N such that for all q ą Q2, M q is εδ-distance stable: that is,

for any M 1 P X q such that M 1 Ă Dĺf pM qq and uf pM
1q ą uf pM

q
f q, we have dpM 1,M q

f q ă εδ.

This implies by the definition of εδ that uf pM
q
f q`δ ą uf pM

1q. In other words, M q is δ-stable

for all q ą Q2, as required by condition 1 of Definition 11. To satisfy condition 2, using the
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fact that M q converges to M , we can choose Q ą maxtQ1, Q2u such that for all q ą Q, we

have dpDľf pM qq, Dľf pMqq ă ε
2

for all f P F̃ , which implies

Dľf
pMqpEq ď Dľf

pM q
qpE

ε
2 q `

ε

2
, @E P Σ, @f P F̃ , (28)

by the fact that d is the Lévy-Prokhorov metric (refer to footnote 84 for the definition of d

and Eε). Then, for any q ą Q and for any f P F̃ and E P Σ,

`

Dľf
pM̂ q

qpEq ´
ε

2

˘

´
ε

2
ďDľf

pM̃ q
qpE

ε
2 q ´

ε

2

ďDľf
pMqpE

ε
2 q ´

ε

2
ď Dľf

pM q
qppE

ε
2 q

ε
2 q ď Dľf

pM q
qpEε

q,

where the first inequality follows since dpDľf pM̃ qq, Dľf pM̂ qqq ă ε
2
, the second inequality

from the worker-optimality of M and stability of M̃ q in Γ, the third inequality from (28),

and the last inequality from the fact that pE
ε
2 q

ε
2 Ă Eε (which can be easily verified).

Proof of Theorem 10. Suppose not for contradiction. Then, there must be a sequence

pδk, qkqkPN with δk Œ 0 and qk Õ 8 such that M̂ qk is δk-stable and dpM, M̂ qkq ě ε for all k.

Then, one can find a subsequence pqkmqmPN such that M̂ qkm converges to some M̂ (since the

sequence lies in a sequentially compact space), which must be stable in Γ due to Theorem

8’. Since dpM, M̂ qkm q ě ε for all m, we must have dpM, M̂q ě ε, which contradicts the

uniqueness of stable matching in Γ.
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Abdulkadiroğlu, A., P. A. Pathak, A. E. Roth, and T. Sönmez (2005): “The

Boston Public School Match,” American Economic Review Papers and Proceedings, 95,

368–372.
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S.1 Analysis of the Example in Section 2

Let r be the number of workers with each of the two types who are matched to f . We

consider the following cases:

1. Suppose r ą q{2. For any such matching, at least one position is vacant at firm f 1

because f 1 has q positions, but strictly more than q workers are matched to f out of

the total of 2q workers. Thus such a matching is blocked by f 1 and a type θ1 worker

who is currently matched to f .

2. Suppose r ă q{2. Consider the following cases.

(a) Suppose that there exists a type θ worker who is unmatched. Then such a

matching is unstable because that worker and firm f 1 block it (note that f 1

prefers θ most).

(b) Suppose that there exists no type θ worker who is unmatched. This implies that

there exists a type θ1 worker who is unmatched (because there are 2q workers in

total, but firm f is matched to strictly fewer than q workers by assumption, and

f 1 can be matched to at most q workers in any individually rational matching).

Then, since f is the most preferred by all θ workers, a θ1 worker prefers f to ø,

and there is some vacancy at f because r ă q{2, the matching is blocked by a

coalition of a type θ worker, a type θ1 worker, and f .

1



S.2 Preliminaries for the Continuum Economy Model

S.2.1 Proof of Lemma 1

For any subset Y Ă X , define

Y pEq :“ supt
ÿ

i

YipEiq | tEiu is a finite partition of E in Σ and

tYiu is a finite collection of measures in Y , @iu, @E.

and Y analogously (by replacing “sup” with “inf”). We prove the lemma by showing that

Y “ supY P Y and Y “ inf Y P X .

First of all, note that Y and Y are monotonic, i.e. for any E Ă D, we have Y pDq ě Y pEq

and Y pDq ě Y pEq, whose proof is straightforward and thus omitted.

We next show that Y and Y are measures. We only prove the countable additivity of

Y , since the other properties are straightforward to prove and also since a similar argument

applies to Y . To this end, consider any countable collection tEiu of disjoint sets in Σ and

let D “ YEi. We need to show that Y pDq “
ř

i Y pEiq. For doing so, consider any finite

partition tDiu of D and any finite collection of measures tYiu. Letting Eij “ Ei XDj, for

any i, the collection tEijuj is a finite partition of Ei in Σ. Thus, we have
ÿ

i

YipDiq “
ÿ

i

ÿ

j

YipEijq ď
ÿ

i

Y pEiq.

Since this inequality holds for any finite partition tDiu of D and collection tYiu, we must

have Y pDq ď
ř

i Y pEiq. To show that the reverse inequality also holds, for each Ei, we

consider any finite partition tEijuj of Ei in Σ and collection of measures tYijuj in Y . We

prove that Y pDq ě
ř

i

ř

j YijpEijq, which would imply Y pDq ě
ř

i Y pEiq as desired since

the partition tEijuj and collection tYijuj are arbitrarily chosen for each i. Suppose not for

contradiction. Then, we must have Y pDq ă
řk
i“1

ř

j YijpEijq for some k. Letting E :“

Yki“1pYjEijq, this implies Y pDq ă
řk
i“1

ř

j YijpEijq ď Y pEq, where the second inequality

holds by the definition of Y . This contradicts with the monotonicity of Y since E Ă D.

We now show that Y and Y are the supremum and infimum of Y , respectively. It is

straightforward to check that for any Y P Y , Y Ă Y and Y Ă Y . Consider any X,X 1 P X
such that for all Y P Y , Y Ă X and X 1 Ă Y . We show that Y Ă X and X 1 Ă Y . First,

if Y Ć X to the contrary, then there must be some E P Σ such that Y pEq ą XpEq. This

means there are a finite partition tEiu of E and a collection of measures tYiu in Y such that

Y pEq ě
ř

YipEiq ą XpEq “
ř

XpEiq. Thus, for at least one i, we have YipEiq ą XpEiq,

which contradicts the assumption that for all Y P Y , Y Ă X. An analogous argument can

be used to show X 1 Ă Y .
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S.2.2 Proof of Proposition 1

Suppose that matching M is not weakly Pareto efficient. Then, by definition of weak Pareto

efficiency, there exists M 1 and f P F such that M 1 ąΘ M and M 1
f ąf Mf .

Next, since M 1 ąΘ M , for each f̃ , we have Dľf̃ pM 1q Ą Dľf̃ pMq, or
ÿ

f 1:f 1ľP f̃

M 1
f 1pΘP X Eq ě

ÿ

f 1:f 1ľP f̃

Mf 1pΘP X Eq, @E P Σ.

This implies that
ÿ

f 1:f 1ľP f
P
´

M 1
f 1pΘP X Eq ě

ÿ

f 1:f 1ľP f
P
´

Mf 1pΘP X Eq, @E P Σ,

where fP´ refers to the firm that is ranked immediately above f according to P (whenever

it is well defined),1 or equivalently
ÿ

f 1:f 1ąP f

M 1
f 1pΘP X Eq ě

ÿ

f 1:f 1ąP f

Mf 1pΘP X Eq, @E P Σ.

This in turn implies that, for each P ,
ÿ

f 1:f 1ĺP f

M 1
f 1pΘP X Eq ď

ÿ

f 1:f 1ĺP f

Mf 1pΘP X Eq, @E P Σ,

or equivalently,

Dĺf
pM 1

q Ă Dĺf
pMq.

By definition, M 1
f Ă Dĺf pM 1q, so we have M 1

f Ă Dĺf pMq.

Collecting the observations so far, we conclude that f and M 1
f block M , implying that

M is not stable. We have thus established that stability implies weak Pareto efficiency.

Suppose now that each Cf is a choice function and that a stable matching M is not

Pareto efficient. Then, there is another matching M 1 ‰ M such that M 1 ľF M and

M 1 ľΘ M . Choose any firm f P F with Mf ‰ M 1
f and note that since Cf is a choice

function, we have Cf pMf _ M 1
f q “ M 1

f ‰ Mf , which means M 1
f ąf Mf . Given this, a

contradiction can be drawn following the same argument as above.

S.3 Equivalence with Worker-Proposing DA

In this section, we establish the equivalence between a repeated application of our fixed

point mapping and the worker-proposing DA process when firms have substitutable pref-

erences. To do so, we assume that each firm’s choice is always unique, i.e., Cf is a choice

1This is defined later as an immediate predecessor. Formally, fP´ ąP f and if f 1 ąP f , then f 1 ľP fP´ .
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function. Then, the substitutability of firm f ’s reference becomes

Rf pXq Ă Rf pX
1
q whenever X Ă X 1. (SUB)

Let X̂ t
f denote the cumulative measure of workers proposing to the firm f from round

1 through t of the worker-proposing DA process. Let Âtf denote the measure of workers

(tentatively) accepted by f in round t. Let pX̂0
f , Â

0
f q “ p0,0q. In the first round, all workers

propose to their most preferred firms, which means that for any P P P and E Ă ΘP ,

X̂1
f pEq “

$

&

%

GpEq if f ąP f
1, @f 1 ‰ f

0 otherwise.
(S1)

Given this,

Â1
f “ Cf pX̂

1
f q. (S2)

For t ě 2, the pair pX̂ t
f , Â

t
f q is recursively defined as follows: For any P P P and E Ă ΘP ,

X̂ t
f pEq “

$

&

%

GpEq if f ąP f
1, @f 1 ‰ f

RfP´

´

X̂ t´1
fP´
´ X̂ t´2

fP´
` Ât´2

fP´

¯

pEq ` X̂ t´1
f pEq otherwise

(S3)

Âtf “ Cf

´

X̂ t
f ´ X̂

t´1
f ` Ât´1

f

¯

. (S4)

The first expression in (S3) is straightforward, given that all workers who most prefer

f propose to f in the first round. To understand the second expression, the cumulative

measure of workers proposing to f (which is not most preferred according to P ) from round

1 through t is obtained by adding to X̂ t´1
f —that is, measure of workers proposing to f from

round 1 through t ´ 1—the measure of workers who newly propose to f in round t. The

latter workers then coincide with those rejected by f ’s immediate predecessor (i.e., fP´ ) in

round t´ 1, whose measure is equal to RfP´

´

X̂ t´1
fP´
´ X̂ t´2

fP´
` Ât´2

fP´

¯

. To see this, note that

in round t´ 1, the firm fP´ considers and accepts/rejects among those tentatively accepted

by fP´ in round t´ 2 (their measure being equal to Ât´2
fP´

) and those newly proposing to fP´

in round t´ 1 (their measure being equal to X̂ t´1
fP´
´ X̂ t´2

fP´
). The expression in (S4) can be

understood similarly.

Let X̃0 denote a profile of zero measures (that is, the profile has one zero measure for

each firm in F̃ ). Define iteratively X̃ t “ T pX̃ t´1q for each t ě 1, where T is our fixed-point

mapping.

Proposition S1. If (SUB) holds for all f P F , then X̂ t
f “ X̃ t

f in each round t ě 1.

4



Before starting the proof, we establish the following lemma:

Lemma S1. Given RP, (SUB) is equivalent to the path independence:

Cf pX
1
q “ Cf pCf pXq `X

1
´Xq, @X Ă X 1. (PI)

Proof. That (PI) implies (SUB) follows immediately from noting that

Cf pX
1
q “ Cf pCf pXq `X

1
´Xq Ă Cf pXq `X

1
´X,

and thus X ´ Cf pXq Ă X 1 ´ Cf pX
1q or Rf pXq Ă Rf pX

1q.

To prove the converse, for any subpopulations X and X 1 with X Ă X 1, let Z “ Cf pXq`

X 1´X. Then, by SUB, we have Cf pX
1q Ă Z. Since Z Ă X 1, RP implies Cf pZq “ Cf pX

1q,

which is equivalent to (PI), as desired.

Proof of Proposition S1. We need to show that for each s ě 1 and for each P P P and

E Ă ΘP ,

X̂s
f pEq “ X̃s

f pEq “ Tf pX̃
s´1
qpEq “

$

&

%

GpEq if f ąP f
1, @f 1 ‰ f

RfP´
pX̃s´1

fP´
qpEq otherwise.

(S5)

Let us first establish that for all s ě 1, Âsf “ Cf pX̂
s
f q. This holds for s “ 1 due to (S2).

Assuming inductively that this holds for all s ď t´ 1, we have

Âtf “ Cf

´

X̂ t
f ´ X̂

t´1
f ` Ât´1

f

¯

“ Cf

´

X̂ t
f ´ X̂

t´1
f ` Cf pX̂

t´1
f q

¯

“ Cf pX̂
t
f q,

where the last equality holds due to (PI) and the fact that X̂ t´1
f Ă X̂ t

f .

To show (S5), consider s “ 1 and note that if f is not most preferred according to P ,

then

X̃1
f pEq “ Tf pX̃

0
qpEq “ RfP´

pX̃0
fP´
qpEq “ RfP´

p0qpEq “ 0

while, if f is most preferred, then X̃1
f pEq “ GpEq. This means that X̃1

f coincides with X̂1
f

given in (S1), so (S5) holds for s “ 1. Assume inductively that (S5) holds for all s ď t´ 1.

To show that it holds for s “ t, for any P P P and E Ă ΘP , letting g “ fP´ (to simplify

notation), we have

X̂ t
f pEq “ Rg

´

X̂ t´1
g ´ X̂ t´2

g ` Ât´2
g

¯

pEq ` X̂ t´1
f pEq

“ Rg

´

X̂ t´1
g ´ X̂ t´2

g ` CgpX̂
t´2
g q

¯

pEq ` X̂ t´1
f pEq

“ X̂ t´1
g pEq ´ X̂ t´2

g pEq ` CgpX̂
t´2
g qpEq ´ Cg

´

X̂ t´1
g ´ X̂ t´2

g ` CgpX̂
t´2
g q

¯

pEq ` X̂ t´1
f pEq

5



“ X̂ t´1
g pEq ´ X̂ t´2

g pEq ` CgpX̂
t´2
g qpEq ´ CgpX̂

t´1
g qpEq ` X̂ t´1

f pEq

“ RgpX̂
t´1
g qpEq ´RgpX̂

t´2
g qpEq ` X̂ t´1

f pEq

“ RgpX̂
t´1
g qpEq ´RgpX̂

t´2
g qpEq `RgpX̃

t´2
g qpEq “ RgpX̃

t´1
g qpEq

as desired, where the fourth equality holds due to Lemma S1 while the last two equalities

hold due to the inductive assumption that for all s ď t ´ 1, X̂s
f pEq “ RfP´

pX̃s´1
fP´
qpEq and

X̂s
g “ X̃s

g .

S.4 Analysis of the Examples in Section 4

S.4.1 Example for Remark 3

Let us modify Example 1 by assuming that f1 has a “Leontief” preference and would

like to hire mass a ă 1 of type-θ workers per unit mass of type-θ1 workers, while keeping

preferences of all other players unchanged. Thus, f1’s choice function becomes

Cf1pXf1q “
`

amintx1

a
, x11u,mintx1

a
, x11u

˘

, (S6)

where Xf1 “ px1, x
1
1q is the measures of type θ and type θ1 workers available to f1. As in

Example 1, without loss, we can set x1 “ Gpθq “ 1
2

and x12 “ Gpθ1q “ 1
2
, and consider

X “ p1
2
, x11, x2,

1
2
q as our candidate measures. Using this with (5), (S6), and (2), the

fixed-point mapping is given as follows: for any X “ p1
2
, x11, x2,

1
2
q,

Tf1pXq “
`

1
2
, Rf2px2,

1
2
qpθ1q

˘

“
`

1
2
, x2

˘

(S7)

Tf2pXq “
`

Rf1p
1
2
, x11qpθq,

1
2

˘

“
`

1
2
´ ax11,

1
2

˘

. (S8)

Letting φ1px2q “ x2 and φ2px
1
1q “

1
2
´ ax11 and assuming q ď 1

4
, the mapping px11, x2q ÞÑ

pφ1px2q, φ2px
1
1qq can be depicted as in Figure S1. The unique fixed point of T is given as

x11 “ x2 “
1

2pa`1q
, which yields the corresponding stable matching

M “

˜

f1 f2

a
2pa`1q

θ ` 1
2pa`1q

θ1 1
2pa`1q

θ ` a
2pa`1q

θ1

¸

.

To show that the tâtonnement process with any initial point converges to the fixed point,

it suffices to show that T 2 “ T ˝ T is a contraction mapping, and to invoke Proposition

2. To do so, consider any X “ p1
2
, x11, x2,

1
2
q and Y “ p1

2
, y11, y2,

1
2
q. Then, T 2pXq “

p1
2
, 1

2
´ ax11,

1
2
´ ax2,

1
2
q and T 2pY q “ p1

2
, 1

2
´ ay11,

1
2
´ ay2,

1
2
q. Thus,

}T 2
pXq ´ T 2

pY q} “ }p0,´apx11 ´ y
1
1q, apx2 ´ y2q, 0q} “ a}X ´ Y },

which implies that T 2 is a contraction mapping, since a ă 1.
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x2

x11

1
2pa`1q

1
2pa`1q

1
2

φ1

φ2

x˚

0

Figure S1: Fixed Point of Mapping T

S.4.2 Analysis of Example 2

Consider the following two cases:

1. Suppose f1 hires measure 1{2 of each type of workers (i.e., all workers). In such a

matching, none of the capacity of f2 is filled. Thus, such a matching is blocked by f2

and type-θ1 workers (note that every type-θ1 worker is currently matched with f1, so

they are willing to participate in the block).

2. Suppose f1 hires no worker. Then, the only candidate for a stable matching is one

in which f2 hires measure 1{2 of the type-θ workers (otherwise f2 and unmatched

workers of type θ would block the matching). Then, because f1 is the top choice of

all type-θ workers and type-θ1 workers prefer f1 to ø, the matching is blocked by a

coalition of 1{2 of the type-θ workers, 1{2 of the type-θ1 workers, and f1.

S.4.3 Analysis of Example 3

Consider first a matching in which f2 hires a positive mass of type-θ1 workers. Then, it

must hire type-θ1 workers only and hire all of them. (Recall that type θ1 prefers f2 while f2

has the capacity of 0.5.) Then, f1 hires no one, implying that mass 0.6 of type-θ workers are

all unmatched. Then, f2 could form a blocking coalition with mass 0.6 of type-θ workers.

7



Consider second a matching in which f2 hires zero mass of type-θ1 workers. Then, f1

must hire the entire type-θ1 workers and the same mass of type-θ workers (since all type-θ1

workers are available and the type-θ prefers f1 to f2.) This would only leave the mass 0.2

of type-θ workers for f2 to hire. Then, f2 could form a blocking coalition with the mass 0.4

of type-θ1 workers (since the type θ1 prefers f2 to f1).

S.5 Omitted Examples from Section 6:

Example S1. [Substitutable Preference] Consider Example 1 again and assume that the

preference of firm f2 as well as those of workers remains the same, but f1’s preference is

changed as follows: it has a capacity equal to 1 (which is large enough to hire the entire

workers); for the first quarter of its capacity, it hires workers according to the responsive

preference: θ ą θ1; for the remaining capacity, it is indifferent to hiring any number of

additional workers. The resulting choice correspondence is

Cf2px, x
1q “

$

’

’

’

&

’

’

’

%

tpx, x1qu if x` x1 ď 1
4

txu ˆ r1
4
´ x, x1s if x` x1 ą 1

4
and x ď 1

4

r1
4
, xs ˆ r0, x1s if x` x1 ą 1

4
and x ą 1

4
.

One can verify that this preference is substitutable, and the set of stable matchings is

M˚
“ tpxi, x

1
iqi“1,2 |x1 P r

1
4
, 1

2
s, x11 P r0,

1
2
´ x1s, and px2, x

1
2q “ p

1
2
´ x1, x1qu.

Observe M˚ contains side-optimal matchings: the firm-optimal/worker-pessimal matching

is px1, x
1
1q “ p

1
4
, 1

4
q and px2, x

1
2q “ p

1
4
, 1

4
q, and the worker-optimal/firm-pessimal matching

is px1, x
1
1q “ p

1
2
, 0q and px2, x

1
2q “ p0,

1
2
q. It can be seen easily, however, that M˚ is not a

lattice while Cf2 fails the strong-set monotonicity.

Example S2. [The role of order continuity in Theorem 4-(ii):] Consider our leading ex-

ample with two types of workers, each of mass 1
2
, with the same preferences as before. As

before, the measures of available workers can be described succinctly by px11, x2q, where x11
is the measure of type θ1 workers available to firm 1 and x2 is the measure of type θ workers

available to firm 2. (As before, the measure of type θ workers available to firm 1 and that

of type θ1 workers available to firm 2 are always 1
2
.) Suppose firms’ preferences are given

by two choice functions:

Cf1p
1
2
, x11q “

#

p1
4
, x11q if x11 ď

1
3
;

p1
4
´ 1

4
x11, x

1
1q if x11 ą

1
3
;

and Cf2px2,
1
2
q “

#

px2,
1
4
q if x2 ď

1
3
;

px2,
1
4
´ 1

4
x2q if x2 ą

1
3
,

8



where we set x1 “ x12 “ 1{2 as in other examples. As can be seen, the choice function

fails to be order-continuous. Letting φ1px2q “ Rf2px2,
1
2
q and φ2px

1
1q “ Rf1p

1
2
, x11q, Figure

S2 depicts φ1 and φ2 in px11, x2q plane, whose intersection gives a fixed point of T . As can

be seen, there exists a unique fixed point p1
4
; 1

4
q. Yet, if we iterate T from the largest point

of the space p1
2
, 1

2
q, the algorithm gets “stuck” at p1

3
, 1

3
q “ limkÑ8 T

kp1
2
, 1

2
q, which does not

correspond to a stable matching.

x2

x111
3

1
3

1
2

1
2

φ1

1
4

φ2

1
4

φ2

φ1

0

Figure S2: Order continuity fails at px11, x2q “ p1{3, 1{3q.

Example S3 (The role of LoAD for Theorem 6). Consider a continuum economy with

worker types θ1 and θ2 (each with measure 1/2) and firms f1 and f2. Preferences are as

follows:

1. Firm f1 wants to hire as many workers of type θ2 as possible if no worker of type θ1

is available, but if any positive measure of type-θ1 workers is available, then f1 wants

to hire only type-θ1 workers and no type-θ2 workers at all, and f1 wants to hire only

up to measure 1{3 of type-θ1 workers.

2. The preference of firm f2 is symmetric, changing the roles of worker types θ1 and

θ2. More specifically, Firm f2 wants to hire as many workers of type θ1 as possible

if no worker of type θ2 is available, but if any positive measure of type-θ2 workers is

available, then f2 wants to hire only type-θ2 workers and no type-θ1 workers at all,

and f2 wants to hire only up to measure 1{3 of type-θ2 workers.
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3. Worker preferences are as follows:

θ1 : f2 ą f1 ą ø,

θ2 : f1 ą f2 ą ø.

Clearly, the firm preferences are substitutable. Note also that the worker optimal stable

matching is

M “

˜

f1 f2

1
2
θ2

1
2
θ1

¸

,

where the notation is such that measure 1{2 of type-θ1 workers are matched to f2 and

measure 1{2 of type-θ2 workers are matched to f1.2 Given this, it is straightforward to check

the rich preferences hold.3 Finally, firm preferences violate LoAD because, for instance,

the choice of f1 from measure 1/2 of θ2 is to hire all of them, but even adding a measure

ε ă 1{2 of type-θ1 workers would cause f1 to reject all θ2 workers. As it turns out, there is

a firm-optimal stable matching that is different from M and given as follows:

M “

˜

f1 f2

1
3
θ1

1
3
θ2

¸

.

S.6 Analysis for Section 6

S.6.1 Preliminary Analysis

Throughout this section, we study the choice function of any individual firm with responsive

preference while omitting the firm index from all notations for simplicity.

We begin by characterizing the choice function induced by the preferences. To this end,

note first that, given a measure X of available workers, the quota constraint imposes the

following constraint on any choice X 1 Ă X:

X 1
pEq ď inf

E1ĂE,E1PΣ
XpEzE 1q `Qptt P T |E 1 XΘt

‰ Huq, @E P Σ. (S9)

2That this is a worker-optimal stable matching follows from the fact that the worker-proposing DA

ends after the first round where each worker applies to and is accepted by her preferred firm.
3Under any matching M̂ ‰M that satisfies M̂f “ Cf pM̂f _Mf q for all f , some firm, say f1, must be

matched with a positive measure of θ1 workers. Given that M̂ is individually rational, this implies that f1

is not matched with any θ2 workers. Also, since f2 is matched with no more than measure 1/3 workers of

θ2 under any individual rational matching, at least measure 1/6 of θ2 workers are unemployed under M̂ ,

which means that these workers belong to M̂f2
F̄

since they prefer f2 to ø and ø R F̄ . If they are available

to f2 in addition to Mf2
, then f2 would choose not to be matched with any θ1 workers, to whom it is

matched under Mf2
. Thus, the rich preference condition is satisfied.
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Then, the firm’s optimization problem becomes

rP s max
X 1

ż 1

0

sf pθqdX
1
pθq subject to (S9).

We identify a (unique) solution to rP s via Greedy Algorithm defined below, which con-

sists of multiple steps at each of which the firm hires workers with highest scores (among

remaining workers) until the quota constraint becomes binding for some subset of ethnic

types.

Greedy Algorithm (GA). Set T0 “ H. For each Step k ě 1, define Tk as a maximal

element (in the set inclusion sense) of

arg max
T 1ĂT zpYk´1

j“0Tjq
inf

!

s P r0, 1s
ˇ

ˇ

ˇ
Xptθ P Θ|τpθq P T 1 and sf pθq P rs, 1suq

ă Qf ppY
k´1
j“0Tjq Y T

1
q ´Qf pY

k´1
j“0Tjq

)

, (S10)

and sk as the resulting maximum.4 If Ykj“1Tj “ T , stop; otherwise iterate to Step k ` 1.

Each step iteratively identifies the cutoff score for a group of workers whose residual

quota is most binding. Let m denote the last step of this procedure, at which Ymj“1Tj “ T .

Below, we first show that GA yields a unique profile psk, Tkq
m
k“1 (Lemma S3), and use

this profile to identify a unique solution to rP s (Proposition S2).

To begin, from any subpopulation X, one can obtain a corresponding score distribution

for each ethnic type t P T , denoted Ft, as follows: for any (Borel) set S Ă r0, 1s,

FtpSq “ Xptθ P Θt
|spθq P Suq.

By abuse of notation, we denote for each s P r0, 1s

Ftpsq “ Ftpr0, ssq and F̄tpsq “ Ftprs, 1sq.

For any profile of sets pStqtPT Ă r0, 1s
|T | and T 1 Ă T , let ST 1 :“ pStqtPT 1 and

FT 1pST 1q :“
ÿ

tPT 1

FtpStq,

4We assume the infimum of an empty set is 1. Note that sk is strictly decreasing in k since otherwise

there would exist a k such that sk ě sk´1 and

F̄Tk
psk´1q ` F̄Tk´1

psk´1q ě F̄Tk
pskq ` F̄Tk´1

psk´1q “ QppYk´2
j“1Tjq Y Tk Y Tk´1q ´QpYk´2

j“1Tjq,

contradicting the fact that Tk´1 is the maximal element of the maximizer in Step k ´ 1.
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and, for each s P r0, 1s, let

FT 1psq :“
ÿ

tPT 1

Ftpsq and F̄T 1psq :“
ÿ

tPT 1

F̄tpsq.

Let FHp¨q “ F̄Hp¨q “ 0.

Given a measure X of available workers, any choice X 1 Ă X of the firm must satisfy

the following constraint:

X 1
pEq ď inf

E1ĂE,E1PΣ
XpEzE 1q `Qptt P T |E 1 XΘt

‰ Huq, @E P Σ. (S11)

Lemma S2. Let F “ pFtqtPT and F 1 “ pF 1t qtPT be the score distributions corresponding to

X and X 1 Ă X, respectively. Then, the constraint (S11) holds if and only if

F 1T pST q ď ΨF pST q :“ min
T 1ĂT

FT zT 1pST zT 1q `QpT 1q, @ST “ pStqtPT Ă r0, 1s
|T |. (S12)

Proof. To prove that (S11) implies (S12), for any ST “ pStqtPT , let Et “ s´1pStq X Θt for

each t P T . Fix T 1 Ă T and set E “ YtPTEt and E 1 “ YtPT 1Et in (S11). Then,

X 1
pEq “

ÿ

tPT
X 1
pEtq “

ÿ

tPT
F 1t pStq “ F 1T pST q (S13)

XpEzE 1q “
ÿ

tPT zT 1
XpEtq “

ÿ

tPT zT 1
FtpStq “ FT zT 1pST zT 1q. (S14)

That (S11) implies (S12) thus follows from observing that tt P T |E 1 XΘt ‰ Hu Ă T 1.

To prove the converse, if (S11) fails, then there must be E and E 1 Ă E such that

X 1
pEq ą XpEzE 1q `Qptt P T |E 1 XΘt

‰ Huq. (S15)

Let Et “ ΘtXE and St “ spEtq for each t P T , and T 1 “ tt P T |E 1XΘt ‰ Hu. Then, (S13)

easily holds. Also, (S14) holds since EzE 1 “ EXpYtPT zT 1Θ
tq “ YtPT zT 1pEXΘtq “ YtPT zT 1Et.

Thus, (S15) means that the inequality (S12) fails.

Given Lemma S2 and the fact that the firm’s preference depends only on the score of

workers, the firm’s optimization problem rP s can be rewritten as

rP 1s max
pF 1tqtPT

ż 1

0

sdF 1T psq subject to (S12).

Once the solution to rP 1s is obtained, it will be straightforward to find a corresponding

solution to the original problem rP s, as will be seen later.

Given the definition of F̄t, the set Tk in Greedy Algorithm is a maximal element of

arg max
T 1ĂT zpYk´1

j“0Tjq
inf

"

s P r0, 1s

ˇ

ˇ

ˇ

ˇ

F̄T 1psq ă QppYk´1
j“0Tjq Y T

1
q ´QpYk´1

j“0Tjq

*

, (S16)

while sk is the resulting maximum. (Recall T0 “ H.)
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Lemma S3. GA yields a unique profile psk, Tkq
m
k“1.

Proof. Suppose that there are two profiles given by the Greedy Algorithm: psk, Tkq
m
k“1 and

ps1k, T
1
kq
m1

k“1. Let s0 “ s10 “ 1 and T0 “ T 10 “ H. Assume wlog that m ď m1. For an

inductive argument, fix any k ď m and assume that psj, Tjq “ ps1j, T
1
jq, @j ă k. We aim

to show that psk, Tkq “ ps
1
k, T

1
kq. Given the inductive assumption and GA, it is clear that

sk “ s1k. Suppose for contradiction that Tk, T
1
k Ă T zpYk´1

j“0Tjq and Tk ‰ T 1k. By GA, letting

sk “ s1k “ s and T̃ “ Yk´1
j“1Tk, we have

ÿ

tPTk

F̄tpsq ď QpT̃ Y Tkq ´QpT̃ q and
ÿ

tPT 1k

F̄tpsq ď QpT̃ Y T 1kq ´QpT̃ q (S17)

with equality if k ă m. Also, we must have
ÿ

tPTkXT
1
k

F̄tpsq ď QpT̃ Y pTk X T 1kqq ´QpT̃ q. (S18)

By definition of Tk and the fact that Tk Ĺ Tk Y T
1
k, we have

ÿ

tPTkYT
1
k

F̄tpsq ă QpT̃ Y pTk Y T 1kqq ´QpT̃ q

ď QpT̃ Y Tkq ´QpT̃ q `QpT̃ Y T 1kq ´QpT̃ q `QpT̃ q ´QpT̃ Y pTk X T 1kqq
ď

ÿ

tPTk

F̄tpsq `
ÿ

tPT 1k

F̄tpsq `QpT̃ q ´QpT̃ Y pTk X T 1kqq,

where the weak inequality follows from submodularity of Q while the equality from (S17).

Rearranging this equation, we obtain

QpT̃ Y pTk X T 1kqq ´QpT̃ q ă
ÿ

tPTkXT
1
k

F̄tpsq,

which contradicts (S18).

Lastly, the inequality m ď m1 must hold as equality, since we have Ymk“1T
1
k “ Y

m
k“1Tk “

T by the above induction argument and the definition of m.

Using the profile psk, Tkq
m
k“1 obtained from GA, let us define F ˚ “ pF ˚t qtPT as follows:

for each t P Tk and S Ă r0, 1s,

F ˚t pSq “ FtpS X rsk, 1sq, (S19)

that is, the firm hires a worker of ethnic type t P Tk if and only if her score is above sk.

This score distribution can be generated by the following subpopulation: for any E P Σ

and t P Tk,

X˚
pE XΘt

q “ Xptθ P E | τpθq “ t and spθq P rsk, 1suq

13



and

X˚
pEq “

m
ÿ

k“1

ÿ

tPTk

X˚
pE XΘt

q. (S20)

Proposition S2. The subpopulation X˚ in (S20) is a unique solution to rP s.

Proof. We first prove that F ˚ “ pF ˚t qtPT is a solution to rP 1s, which means that X˚ is a

solution to rP s. Afterward, we prove the uniqueness.

We first show that F ˚ satisfies the feasibility constraint (S12), that is, for any ST “

pStqtPT ,

F ˚T pST q ď FT zT 1pST zT 1q `QpT 1q, @T 1 Ă T . (S21)

Fix any T 1 Ă T and let T 1k :“ T 1 X Tk. for each k “ 1, . . . ,m. Let st “ sk for each t P Tk.

Note first that

F ˚T zT 1pST zT 1q “
ÿ

tPT zT 1
FtpSt X rst, 1sq ď

ÿ

tPT zT 1
FtpStq “ FT zT 1pST zT 1q. (S22)

Next,

ÿ

tPT 1k

F ˚t pStq “
ÿ

tPT 1k

FtpSt X rsk, 1sq

ď
ÿ

tPT 1k

Ftprsk, 1sq ď QppYk´1
i“1 Tiq Y T

1
kq ´QpYk´1

i“1 Tiq

ď QppYk´2
j“1Tjq Y T

1
k´1 Y T

1
kq ´QppYk´2

j“1Tjq Y T
1
k´1q

¨ ¨ ¨

ď QpYkj“1T
1
jq ´QpYk´1

j“1T
1
jq, (S23)

where the second inequality holds since T 1k Ă Tk while the third to last inequalities hold

due to the submodularity. By (S22) and (S23), we get

F ˚T pST q “
ÿ

tPT zT 1
F ˚t pStq `

m
ÿ

k“1

ÿ

tPT 1k

F ˚t pStq

ď
ÿ

tPT zT 1
FtpStq `

m
ÿ

k“1

`

QpYkj“1T
1
jq ´QpYk´1

j“1T
1
jq
˘

14



“
ÿ

tPT zT 1
FtpStq `QpYmj“1T

1
kq “ FT zT 1pST zT 1q `QpT 1q,

which proves (S21).

To prove the optimality of F ˚, note first that (S19) implies

F̄ ˚T psq “

$

’

&

’

%

F̄T psq if s ě s1

F̄T zpYk´1
j“1Tjq

psq `QpYk´1
j“1Tjq if s P rsk, sk´1q, k “ 2, ...,m

QpT q if s ă sm,

(S24)

which in turn implies

F̄ ˚T psq “ ΨF prs, 1s
|T |
q, @s P r0, 1s, (S25)

that is, the constraint (S12) is binding with St “ rs, 1s for all t P T and s P r0, 1s. This

can be easily seen by setting T 1 in (S12) as follows: T 1 “ H if s ě s1; T 1 “ Y
k´1
j“1Tj if

s P rsk, sk´1q for some k P t2, . . . ,mu; and T 1 “ T if s ă sm. Now, (S25) implies that for

any F 1 “ pF 1t qtPT satisfying (S12), we have F̄ 1T psq ď F̄ ˚T psq, @s P r0, 1s. Using this, we obtain

ż 1

0

sdF ˚T psq “ ´sF̄
˚
T psq

ˇ

ˇ

1

s“0
`

ż 1

0

F̄ ˚T psqds

“

ż 1

0

F̄ ˚T psqds ě

ż 1

0

F̄ 1T psqds “

ż 1

0

sdF 1T psq, (S26)

which means that F ˚ is a solution to rP s.

To prove the uniqueness, let X 1 be any solution to rP s and F 1 “ pF 1t qtPT be the corre-

sponding score distribution, which must thus be a solution to rP 1s. Then, we must have

F̄ 1T psq “ F̄ ˚T psq “ ΨF prs, 1s
|T |q for all s P r0, 1s, since otherwise the inequality in (S26)

would hold strictly. Next, we prove the following claim:

Claim S1. For all k and t P Tk, F 1t prsk, 1sq “ Ftprsk, 1sq and F 1t pr0, sksq “ 0.

Proof. Assume that this statement is true up to k ´ 1. To show that it also holds for k,

observe first that

ÿ

tPT zpYk´1
j“1Tjq

F 1t prsk, 1sq “ F 1T prsk, 1sq ´
k´1
ÿ

j“1

F 1Tjprsk, 1sq

“ F ˚T prsk, 1sq ´
k´1
ÿ

j“1

FTjprsj, 1sq “
ÿ

tPT zpYk´1
j“1Tjq

Ftprsk, 1sq, (S27)
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where the second equality holds since F̄ 1T “ F̄ ˚ and since the induction hypothesis together

with the fact that sj ă sk, @j ă k implies F 1Tjprsk, 1sq “ F 1Tjprsj, 1sq “ FTjprsj, 1sq, @j ă k,

while the second equality holds since (S16) and (S24) imply

k´1
ÿ

j“1

F̄Tjpsjq “
k´1
ÿ

j“1

`

QpYji“0Tiq ´QpYj´1
i“0Tiq

˘

“ QpYk´1
i“1 Tiq “ F̄ ˚T pskq ´ F̄T zpYk´1

i“1 Tjq
pskq.

Since F 1t prsk, 1sq ď Ftprsk, 1sq, @t, the equality (S27) implies F 1t prsk, 1sq “ Ftprsk.1sq for all

t P Tk. Also, if F 1t pr0, sksq ą 0 for some t P Tk, then we have
ÿ

tPYk
j“1Tj

F 1t pr0, 1sq “
ÿ

tPYk
j“1Tj

F 1t pr0, sksq `
ÿ

tPYk
j“1Tj

F 1t prsk, 1sq

ą
ÿ

tPYk
j“1Tj

F 1t prsk, 1sq “
ÿ

tPYk
j“1Tj

Ftprsk, 1sq “ QpYkj“1Tjq,

which contradicts (S12).

For uniqueness, it suffices to prove that for any E P Σ and t P T , X 1pE X Θtq “

X˚pEXΘtq. Suppose not for contradiction, and suppose t P Tk. Then, since F 1t pr0, sksq “ 0

by Claim S1, we must have

X 1
pE XΘt

q ă Xptθ P E|τpθq “ t and spθq P rsk, 1suq “ X˚
pE XΘt

q. (S28)

Also,

X 1
pEc

XΘt
q ď Xptθ P Ec

|τpθq “ t and spθq P rsk, 1suq. (S29)

Adding up (S28) and (S29) side by side, we obtain

F 1t prsk, 1sq “ X 1
pΘt
q ă Xptθ P Θ|τpθq “ t and spθq P rsk, 1suq “ Ftprsk, 1sq,

which contradicts Claim S1.

S.6.2 Proof of Lemma 2

Consider any subpopulations X and Y with Y Ă X and corresponding score distributions

F “ pFtqtPT and G “ pGtqtPT . Note that for any t P T , Borel set S Ă r0, 1s, and s P r0, 1s,

we have FtpSq ě GtpSq and F̄tpsq ě Ḡtpsq. Let pstqtPT and ps1tqtPT be the cutoff profiles

from GA under F and G, respectively.

We first prove substitutability, for which it suffices to show that st ě s1t for all ethnic

types t P T . To show this suppose the contrary, i.e., there exists an ethnic type t P T such

that st ă s1t. Then the set T ˚ :“ tt P T : st ă s1tu is nonempty. Fix an ethnic type t˚ in

this set T ˚ that has the highest cutoff among those in T ˚, that is,
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1. t˚ P T ˚, and

2. s1t˚ ě s1t1 for every t1 P T ˚.

Now, let k be the step of GA such that t˚ P Tk under F , and k1 be the step of GA such that

t˚ P Tk1 under G, respectively. That is, k and k1 are the steps at which some constraint

related to type t˚ becomes binding under F and G, respectively (or the last step of the

algorithm if no constraint related to t˚ becomes binding in any step of the algorithm).

Now, note that because t˚ satisfies the property in (2) as described above, for every

ethnic type t whose constraint is already binding by the beginning of step k1 under G, a

constraint for that type t is also binding by the beginning of step k under F . More formally,

we have T̄ 1 Ď T̄ for T̄ :“ Yk´1
j“1Tj and T̄ 1 :“ Yk

1´1
j“1 T

1
j , where Tj and T 1j are the maximal sets

that solve the problem given as (S16) in step j of GA under F and G, respectively.5

Let T 1 be the set which is the maximal solution to (S16) at step k1 under G. Then,

s˚ :“ s1t˚ is strictly positive by our maintained assumption s˚ ą st˚ and the fact st˚ ě 0.

Thus, it follows that

ḠT 1ps
˚
q “ QpT̄ 1 Y T 1q ´QpT̄ 1q. (S30)

We also note that

ḠT 1XT̄ ps
˚
q ď QpT̄ 1 Y pT 1 X T̄ qq ´QpT̄ 1q, (S31)

because T 1 is a solution of the maximization problem described in (S16), and s˚ is the

associated time at which a constraint becomes binding in this step. Subtracting (S31) from

(S30), we obtain

ḠT 1ps
˚
q ´ ḠT 1XT̄ ps

˚
q ě QpT̄ 1 Y T 1q ´QpT̄ 1 Y pT 1 X T̄ qq. (S32)

Note that the left hand side of (S32) satisfies

ḠT 1ps
˚
q ´ ḠT 1XT̄ ps

˚
q “ ḠT 1zT̄ ps

˚
q

ď F̄T 1zT̄ ps
˚
q, (S33)

where the equality follows from modularity of Ḡ (with respect to sets of ethnic types) and

identity T 1zpT 1X T̄ q “ T 1zT̄ , while the inequality follows from the assumption that G Ď F .

Note also that the right hand side of (S32) satisfies

QpT̄ 1 Y T 1q ´QpT̄ 1 Y pT 1 X T̄ qq “ QprT̄ 1 Y pT 1 X T̄ qs Y pT 1zT̄ qq ´QprT̄ 1 Y pT 1 X T̄ qsq
5In case k “ 1 or k1 “ 1, we take T or T 1 to be an empty set.
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ě QpT̄ Y pT 1zT̄ qq ´QpT̄ q, (S34)

where the equality is an identity and the inequality follows from the fact that rT̄ 1 Y pT 1 X

T̄ qs Ď T̄ (which in tern follows from the fact that T̄ 1 is a subset of T̄ ) and submodularity

of Q.

Substituting (S33) and (S34) into (S32), we obtain

F̄T 1zT̄ ps
˚
q ě QpT̄ Y pT 1zT̄ qq ´QpT̄ q,

which implies st ě s˚ “ s1t, a contradiction.

To next prove LoAD, consider any subpopulations X and Y with Y Ă X and corre-

sponding score distributions F and G. Let F ˚ and G˚ denote the solution of rP 1s under F

and G, resp. The result is then immediate from observing that the total mass hired by the

firm is

ÿ

tPT
F ˚t pr0, 1sq “ F̄ ˚T p0q “ ΨF pr0, 1s

|T |
q ě ΨGpr0, 1s

|T |
q “ F̄ ˚T p0q “

ÿ

tPT
G˚t pr0, 1sq,

where the inequality follows from the definition of ΨF ,ΨG in (S12) and the fact that
ř

tPT zT 1 Ftpr0, 1sq ě
ř

tPT zT 1 Gtpr0, 1sq, @T
1 Ă T .

S.6.3 Proof of Proposition 3

To simplify notation, let M “ M , i.e., the worker-optimal matching. Fix any individually

rational matching M̂ such that M̂ ľF M and assume that F̄ :“ tf 1 P F |M̂f 1 ąf 1 Mf 1u

is nonempty. For any f, t, let M t
f :“ Mf pΘ

t X ¨q and M̂ t
f :“ M̂f pΘ

t X ¨q. Since G is

absolutely continuous, for any f, t, both M t
f and M̂ t

f , being its subpopulations, admit

densities, denoted respectively by mt
f and m̂t

f .

By Proposition S2 in Supplementary Material, Greedy Algorithm yields a unique opti-

mal choice for each firm. Given this and the fact that Mf “ Cf pMf q and M̂f “ Cf pMf _

M̂f q, we may let stf and ŝtf denote the cutoffs for each type t P T for Mf and M̂f in the sense

that stf “ inftsf pθq|θ P Θt and mt
f pθq ą 0u and ŝtf “ inftsf pθq|θ P Θt and m̂t

f pθq ą 0u.6

Because Cf satisfies LoAD by Lemma 2, M̂f “ Cf pM̂f _Mf q and Mf “ Cf pMf q imply

Mf pΘq ď M̂f pΘq for each f P F . Then, Proposition 3 follows from proving a sequence of

claims.

6These cutoffs are obtained from running Greedy Algorithm with Mf and Mf _ M̂f as measures of

available workers, respectively. More precisely, we have stf “ sk if t P Tk in Greedy Algorithm run with

Mf as measure of available workers, for instance.
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Claim S2. Mø “ M̂ø. Thus,
ř

fPF Mf “
ř

fPF M̂f and Mf pΘq “ M̂f pΘq, @f P F .

Proof. Suppose to the contrary that Mø ‰ M̂ø. Then, with their densities denoted by mø

and m̂ø, Eø “ tθ P Θ |møpθq ą m̂øpθqu must be a non-empty set of positive (Lebesgue)

measure, due to the fact that MøpΘq “ GpΘq ´
ř

fPF Mf pΘq ě GpΘq ´
ř

fPF M̂f pΘq “

M̂øpΘq. Also, letting Êf “ tθ P Θ | m̂f pθq ą mf pθqu, there must be at least one firm f

for which Eø X Êf is a non-empty set of positive measure, since otherwise we would have
ř

f 1PF̃ mf 1pθq ě
ř

f 1PF̃ m̂f 1pθq for all θ P Eø, a contradiction. Now fixing such a firm f and

letting Ẽ “ Eø X Êf , define

m̃f pθq “

$

&

%

mintmf pθq `møpθq, m̂f pθqu if θ P Ẽ

mf pθq otherwise.

and let M̃f denote the corresponding measure. Note that m̃f pθq ą mf pθq for all θ P Ẽ, and

also that pMf _ M̃f q “ M̃f ‰ Mf and M̃f Ă pMf _ M̂f q. Letting M 1
f “ Cf pM̃f q, we show

below that f and M 1
f are a blocking coalition for M , contradicting the stability of M .

First of all, it follows from revealed preference that Cf pMf _M
1
f q “M 1

f . To show that

M 1
f ‰Mf , note first that m̂f pθq ą mf pθq, @θ P Ẽ means pM̂f _Mf qpẼq “ M̂f pẼq, so

Rf pMf _ M̂f qpẼq “ pMf _ M̂f qpẼq ´ Cf pMf _ M̂f qpẼq “ M̂f pẼq ´ M̂f pẼq “ 0.

Then, since f has a substitutable preference and M̃f Ă pMf_M̂f q, we have Rf pM̃f qpẼq “ 0,

which means M 1
f pẼq “ Cf pM̃f qpẼq “ M̃f pẼq ‰ Mf pẼq. It only remains to show that

M 1
f Ă Dĺf pMq. For this, note that since M̂ is individually rational and m̂f pθq ą 0, @θ P Ẽ,

we have f ąθ ø, @θ P Ẽ. Given the definition of M̃f (i.e., only those added to f are

unmatched under M), this implies that M̃f Ă Dĺf pMq and thus M 1
f Ă M̃f Ă Dĺf pMq.

We then prove the next claim.

Claim S3. For each f P F̄ , there must be some t such that stf ă ŝtf .

Proof. Suppose to the contrary that ŝtf ď stf for all t P T . Since
ř

tPT M
t
f pΘq “ Mf pΘq “

M̂f pΘq “
ř

tPT M̂
t
f pΘq and Mf ‰ M̂f , there must exist t P T such that the set tθ P

Θt|sf pθq ą stf ě ŝtf and mt
f pθq ą m̂t

f pθqu has a positive measure. A contradiction then

arises since, due to the fact that Cf selects all workers of type t whose scores are above

the cutoff ŝtf and that M̂f “ Cf pM̂f _Mf q, the measure of workers of type θ P Θt selected

when M̂f _Mf is available is equal to m̂t
f pθq “ maxtm̂t

f pθq,m
t
f pθqu for all θ P Θt with

sf pθq ě ŝtf , which cannot be smaller than mt
f pθq.
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Claim S4. For any f P F̄ and t P T , if ŝtf “ 0, then M̂f pΘ
t X ¨q “Mf pΘ

t X ¨q.

Proof. Let us first observe that for any f P F̄ and t, if M̂f pΘ
tq ă Mf pΘ

tq, then we have

ŝtf ą stf since, as we argued in the proof of Claim S3, the fact that M̂f “ Cf pM̂f _Mf q

implies that m̂t
f pθq “ maxtm̂t

f pθq,m
t
f pθqu ě mt

f pθq for all θ P Θt with sf pθq ě ŝtf , so if

ŝtf ď stf , then we would have a contradiction..

Fix now any f P F̄ and t P T for which ŝtf “ 0. Since it means ŝtf ď stf , we must have

M̂f pΘ
tq ěMf pΘ

tq according to the above argument. We next show that M̂f pΘ
tq “Mf pΘ

tq.

Suppose to the contrary that M̂f pΘ
tq ą Mf pΘ

tq. Then, the fact that M̂f pΘq “ Mf pΘq by

Claim S2 implies that there must exist t1 such that M̂f pΘ
t1q ă Mf pΘ

t1q and no constraint

for t1 is binding at M̂f , i.e., ŝt
1

f “ 0. To show this, note first that for any k P t1, . . . ,m´ 1u,

ÿ

t2PTk

M̂f pΘ
t2
q “ QpYkj“0Tjq ´QpYk´1

j“0Tjq,

wherem and Tk are as defined in the Greedy Algorithm when f chooses M̂f (givenMf_M̂f ).

Adding up these equalities from k “ 1 to m´ 1, we obtain

ÿ

t2PT˚

M̂f pΘ
t2
q “ QpT ˚q, (S35)

where T ˚ :“ Ym´1
k“0 Tk represents the set of all ethnic types at least one of whose constraints is

binding at M̂f . Also note that, because Q gives upper-bound constraints for any matching

by assumption, we have

ÿ

t2PT˚

Mf pΘ
t2
q ď QpT ˚q, (S36)

so combining (S35) and (S36), we obtain

ÿ

t2PT˚

M̂f pΘ
t2
q ě

ÿ

t2PT˚

Mf pΘ
t2
q. (S37)

(S37) and the assumption that M̂f pΘ
tq ą Mf pΘ

tq, together with the fact that Mf pΘq “

M̂f pΘq by Claim S2, imply that

ÿ

t2PT˚˚

M̂f pΘ
t2
q ă

ÿ

t2PT˚˚

Mf pΘ
t2
q, (S38)

where T ˚˚ :“ T zpT ˚Yttuq represents the set of ethnic types other than t whose constraints

are not binding at M̂f . (S38) implies that there is at least one ethnic type t1 P T ˚˚ such

that

M̂f pΘ
t1
q ăMf pΘ

t1
q, (S39)
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as desired.

Since t1 P T ˚˚, i.e., t1 is unconstrained at M̂ , all workers of ethnic type t1 who are

available to f at M̂ are hired by f . Furthermore, the firm is faced with a weakly larger

measure of workers of ethnic type t1 when choosing M̂ than at M (recall M̂f ľf Mf ). So

(S39) cannot hold, a contradiction. Hence, M̂f pΘ
tq “Mf pΘ

tq.

Given ŝtf “ 0 (i.e. the lowest possible score), we must have maxtm̂t
f pθq,m

t
f pθqu “ m̂t

f pθq

for all θ P Θt. In order that M̂f pΘ
tq “ Mf pΘ

tq, we must then have m̂t
f pθq “ mt

f pθq for

(almost) all θ P Θt.

Claim S5. For any t P T , if there is some f P F̄ such that ŝtf ą stf , then we must have

ŝtf 1 ą 0, @f 1 P F̄ .

Proof. Fix a firm f P F̄ with ŝtf ą stf . Suppose to the contrary that the set F̄0 “ tf
1 P

F̄ |ŝtf 1 “ 0u is nonempty, and note that f R F̄0. Then, let us define F̄` “ F̄ zF̄0 and consider

the set

tθ P Θ|f ąθ f
2, @f2 ‰ f, sf pθq P ps

t
f , ŝ

t
f q, and sf 1pθq ă ŝtf 1 @f

1
P F̄`ztfuu.

Since M is stable, all worker types in this set must be matched with f under M , which

implies that they cannot be matched with any firm in F̃ zF̄ under M̂ since M̂f 1 “ Mf 1

for each f 1 P F zF̄ by assumption and also since M̂ø “ Mø by Claim S2. Moreover, these

workers cannot be matched with any firm f 1 P F̄` under M̂ since their scores are below ŝtf 1 .

It thus follows that they must be matched with firms in F̄0 under M̂ while being matched

with f R F̄0 under M , which contradicts Claim S4.

Claim S6. Rich preferences hold.

Proof. Fix any f P F̄ and t P T such that stf ă ŝtf (given by Claim S3), and let

Θ̃t
f :“ tθ P Θ|f ąθ f

2, @f2 ‰ f, sf pθq P ps
t
f , ŝ

t
f q, and sf 1pθq ă ŝtf 1 @f

1
P F̄ ztfuu

be the set of ethnic type-t workers who prefer f to all other firms and have scores that will

make them employable at f under M but not under M̂ and not employable at any other

firm in F̄ under M̂ . Let M 1 :“
ř

tPT GpΘ̃
t
f X ¨q denote the measure of these workers. The

full support assumption and the fact (given by Claim S5) that ŝtf 1 ą 0, @f 1 P F̄ implies that

M 1pΘq ą 0.

We show that these workers are not employed by any firm in F̄ under either M̂ or M .

It is easy to see that these workers are not employed by any firm in F̄ under M̂ since their

scores are below the cutoffs of these firms at M̂ . Since
ř

fPF Mf “
ř

fPF M̂f , and since
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Mf “ M̂f for each f P F zF̄ , we must have
ř

fPF̄ Mf “
ř

fPF̄ M̂f . It thus follows that these

workers are not employed by firms in F̄ under matching M either.

It follows that M 1 measures the workers who are employed outside F̄ under M but

available to firm f . Hence, M 1 Ă M̂ f

F̄
. Since ŝtf ą stf , firm f will wish to replace some of

its workers with these workers under M . Hence, Mf ‰ Cf ppMf ` M̂
f

F̄
q ^Gq, so the rich

preferences property follows.

The above claims complete the proof of the proposition.

S.6.4 (Counter)Example for Lemma 2: Role of Submodularity

Suppose that T “ tt1, t2, t3u and that Qptt1, t3uq “ Qptt2, t3uq “ Qpttiuq “ 1{2, @i and

QpT q “ Qptt1, t2uq “ 1. It is straightforward to check that this constraint violates the

submodularity. Suppose that the subpopulations of available workers are given such that Fti
is uniform on r0, 1s for i “ 1, 3 while Ft2 “ 0. Clearly, the optimal cutoffs are st1 “ st3 “ 3{4

and st2 “ 0. Consider next larger subpopulations whose score distributions are uniform

on r0, 1s for all three types. We argue that the optimal cutoffs are st1 “ st2 “ 1{2 and

st3 “ 1, which means that the preference of the firm is not substitutable since the cutoff

st1 decreases from 3{4 to 1{2 as more workers of type t2 become available. To prove this,

let us set up the firm’s optimization problem as

max
psti q

3
ÿ

i“1

ż 1

sti

sds

subject to

p1´ st1q ` p1´ st3q ď 1{2 (S40)

p1´ st2q ` p1´ st3q ď 1{2. (S41)

Note that we ignore all other constraints that can later be verified to be nonbinding. The

corresponding Langrangian is

3
ÿ

i“1

ż 1

sti

sds` λ1rst1 ` st3 ´ 3{2s ` λ2rst2 ` st3 ´ 3{2s,

which yields the first-order conditions given as

´sti ` λi ě p“q0 (if sti ă 1) for i “ 1, 2

´st3 ` λ1 ` λ2 ě p“q0 (if st3 ă 1) .
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Clearly, λ1, λ2 ą 0 so (S40) and (S41) must be binding at the optimum. If st3 ă 1, then

(S40) and (S41) being binding implies st1 “ st2 “
3
2
´ st3 ą

1
2

and thus st3 “ λ1 ` λ2 ě

st1 ` st2 ą 1, a contradiction. So we must have st3 “ 1 and thus st1 “ st2 “
3
2
´ st3 “

1
2
.

S.7 Results for Section 7

S.7.1 Omitted Proofs for Section 7

Proof of Lemma 6. LetBpθ, rq “ tθ1 P Θ | dΘpθ1, θq ă ru and Spθ, rq “ tθ1 P Θ | dΘpθ1, θq “

ru (recall dΘ is a metric for the space Θ). For all θ P Θf and r ą 0, there must be some

rθ P p0, rq such that GpSpθ, rθqq “ 0.7 This means that BBpθ, rθq “ Spθ, rθq has a zero

measure. Consider now a collection tBpθ, rθq | θ P Θu of open balls that covers Θf . Since

Θf is a closed subset of the compact set Θ, it is compact and thus has a finite cover.

Proof of Lemma 7. Consider a decreasing sequence pεkqkPN of real numbers converging

to 0. Fix any k. Then, by Lemma 6, we can find a finite cover tBk
` u`“1,...,Lk

of Θf for each k

such that for each `, Bk
` has a radius smaller than εk and GpBBk

` q “ 0. Define Ak1 “ Bk
1XΘf

and Ak` “
`

Bk
` zpY

`´1
`1“1B

k
`1q
˘

XΘf for each ` ě 2. Then, tAk` u`“1,...,Lk
constitutes a partition

of Θf . It is straightforward to see that GpBAk` q “ 0, @`, since GpBBk
` q “ 0, @`, and that

GpBΘf q “ 0.8 This implies that Y pBAk` q “ 0, @`. Given this and the assumption that

Y q w˚
ÝÑ Y , condition (e) of Theorem 12 implies that there exists sufficiently large q, denoted

qk, such that for all q ě qk

1

q
ă

εk
Lk

and |Y pAk` q ´ Y
q
pAk` q| ă

εk
Lk
, @` “ 1, . . . , Lk. (S42)

Let us choose pqkqkPN to be a sequence that strictly increases with k.

We construct Xq as follows: (i) Xqpθq ď Y qpθq, @θ P Θq; (ii) for each q P tqk, . . . , qk`1´

1u,

Xq
pAk` q “ max

"

m

q

ˇ

ˇ

ˇ

ˇ

m P NY t0u and
m

q
ď mintXpAk` q, Y

q
pAk` qu

*

for each ` “ 1, . . . , Lk.

7To see this, note first that Bpθ, rq “ Yr̃Pr0,rqSpθ, r̃q and GpBpθ, rqq ă 8. Then, GpSpθ, r̃qq ą 0 for at

most countably many r̃’s, since otherwise the set Rn ” tr̃ P r0, rq |GpSpθ, r̃qq ě 1{nu has to be infinite for

at least one n, which yields GpBpθ, rqq ě GpYr̃PRnSpθ, r̃qq ě
8
n , a contradiction.

8The latter fact holds since Θf “ YPPP:fąøΘP and thus BΘf Ă YPPP:fąP øBΘP , which implies

GpBΘf q ď GpYPPP:fąP øBΘP q ď
ÿ

PPP:fąP ø

GpBΘP q “ 0.
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It is straightforward to check the existence of Xq that satisfies both (i) and (ii). Note that

(i) ensures that Xq Ă Y q and XqpΘzΘf q ď Y qpΘzΘf q “ 0.

We show that for all q P tqk, . . . , qk`1 ´ 1u, we have

|XpAk` q ´X
q
pAk` q| ă

εk
Lk
. (S43)

To see this, consider first the case where XpAk` q ă Y qpAk` q. Then, by definition of Xq and

(S42), we have 0 ď XpAk` q ´ XqpAk` q ă
1
q
ă

εk
Lk

. In the case where XpAk` q ě Y qpAk` q, we

have XqpAk` q “ Y qpAk` q ď XpAk` q ď Y pAk` q, which implies by (S42)

|XpAk` q ´X
q
pAk` q| ď |Y pA

k
` q ´ Y

q
pAk` q| ă

εk
Lk
.

Let us now prove that Xq w˚
ÝÑ X. We do so by invoking (b) of Theorem 12, according

to which Xq w˚
ÝÑ X if and only if |

ş

hdXq ´
ş

hdX| Ñ 0 as q Ñ 8, for any uniformly

continuous function h P CupΘq.

Hence, to begin, fix any h P CupΘq, and fix any ε ą 0. Next we define for each k and

q P tqk, . . . , qk`1 ´ 1u

h̄q,k` ”

ř

θPΘqXAk
`
Xqpθqhpθq

ř

θPΘqXAk
`
Xqpθq

“

ř

θPΘqXAk
`
Xqpθqhpθq

XqpAk` q

if XqpAk` q ą 0, and if XqpAk` q “ 0, then define h̄q,k` ” hpθq for some arbitrarily chosen

θ P Ak` .

Note that CupΘq is endowed with the sup norm }¨}8 and }h}8 is finite for any h P CupΘq.

Thus, there exists sufficiently large K P N that for all k ą K and q P tqk, . . . , qk`1 ´ 1u,

}h}8εk ă
ε

2
and

Lk
ÿ

`“1

´

sup
θPAk

`

|h̄q,k` ´ hpθq|
¯

XpAk` q ă
ε

2
, (S44)

where the latter inequality is possible since the expression in the parenthesis can be made

arbitrarily small by choosing sufficiently large k due to the uniform continuity of h and the

fact that Ak` Ă Bk
` while Bk

` has a radius smaller than εk with εk Ñ 0 as k Ñ 8.

Then, for any q ą Q :“ qK , there exists k ą K satisfying q P tqk, . . . , qk`1 ´ 1u such

that
ˇ

ˇ

ˇ

ˇ

ż

hdXq
´

ż

hdX

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

θPΘf

hdXq
´

ż

θPΘf

hdX

ˇ

ˇ

ˇ

ˇ

ˇ
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“

ˇ

ˇ

ˇ

ˇ

ˇ

Lk
ÿ

`“1

h̄q,k` Xq
pAk` q ´

ż

θPΘf

hdX

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

Lk
ÿ

`“1

h̄q,k` pX
q
pAk` q ´XpA

k
` qq

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

Lk
ÿ

`“1

h̄q,k` XpAk` q ´

ż

θPΘf

hdX

ˇ

ˇ

ˇ

ˇ

ˇ

ď

Lk
ÿ

`“1

}h}8|X
q
pAk` q ´XpA

k
` q| `

ˇ

ˇ

ˇ

ˇ

ˇ

Lk
ÿ

`“1

ż

θPΘf

h̄q,k` 1Ak
`
dX ´

Lk
ÿ

`“1

ż

θPΘf

h1Ak
`
dX

ˇ

ˇ

ˇ

ˇ

ˇ

ď}h}8εk `
Lk
ÿ

`“1

sup
θPAk

`

|h̄q,k` ´ hpθq|XpAk` q

ď
ε

2
`
ε

2
“ ε,

where the first equality holds since XpΘzΘf q “ XqpΘzΘf q “ 0 while the third and fourth

inequalities follow from (S43) and (S44), respectively.

Proof of Lemma 8. Letting Zq “ Y q ´Xq and Z “ Y ´X, we have Zq w˚
ÝÑ Z because

of the fact that for any h P CupΘq,

ż

Θ

hdZq
“

ż

Θ

hdY q
´

ż

Θ

hdXq
Ñ

ż

Θ

hdY ´

ż

Θ

hdX “

ż

Θ

hdZ

and (b) of Theorem 12. Since Zq “ Y q ´Xq P X , Zq w˚
ÝÑ Z, and X is compact, we have

Z P X , which implies that ZpEq “ Y pEq ´XpEq ě 0 for all E P Σ, as desired.

S.7.2 Proof for the Existence of ε-Distance Stable Matching

Let us reiterate the definition of ε-distance stability9: A matching M q P pX qqn`1 in economy

Γq is ε-distance stable if (i) for each f P F , M q
f P C

q
f pM

q
f q; (ii) for each P P P , M q

f pΘP q “

0, @f ăP ø; and (iii’) dpM̃ q
f ,M

q
f q ă ε for any coalition f and M̃ q

f P X q that blocks M q in

the sense that M̃ q
f Ă Dĺf pM qq and uf pM̃

q
f q ą uf pM

q
f q.

Proposition S3. Suppose that there exists a stable matching in Γ such that Cf pMf q “

tMfu, @f P F . Then, for any ε ą 0, there is Q P N such that for all q ą Q, there exists an

ε-distance stable matching.

This result follows directly from combining the following two lemmas.10

9The definition of ε-distance stability is introduced in footnote 50 of the main paper.
10These lemmas are also used to prove Theorem 9
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Lemma S4. Consider any stable matching M in Γ such that Cf pMf q “ tMfu, @f P F .

Then, there exists a sequence pM qqqPN such that M q w˚
ÝÑ M while M q “ pM q

f qfPF̃ is a

feasible and individually rational matching in Γq.

Proof. Given M , let us construct the matchings M̃ q and M q as in the proof of Lemma 9.

It suffices to show that M q
f converges to Mf since M q is feasible and individually rational

in Γq. To do so, we use the following fact: If every subsequence of sequence pM q
f qqPN has

a further subsequence that converges to Mf , then M q
f converges to Mf . Consider any

subsequence pMkm
f qmPN, which must then have a further subsequence, denoted pM `m

f qmPN,

converging to some M̂f since the sequence pMkm
f qmPN lies in the compact space X . Suppose

for a contradiction that M̂f ‰ Mf . Note first that M `m
f Ă M̃ `m

f , @m P N (since M q
f P

Cq
f pM̃

q
f q, @q P N) and M̃ `m

f
w˚
ÝÑ Mf , which implies by Lemma 8 that M̂f Ă Mf . Thus, we

must have uf pM̂f q “ uf pMf q ´ ε for some ε ą 0 since M̂f ‰ Cf pMf q “ Mf . By Lemma 9,

we can find Q P N such that for all q ą Q,

uf pMf q ă uf pM
q
f q `

ε

2
. (S45)

Also, since M `m
f

w˚
ÝÑ M̂f , we can find a sufficiently large `m ą Q such that uf pM

`m
f q ă

uf pM̂f q `
ε
2
“ uf pMf q ´

ε
2
, which contradicts (S45).

Lemma S5. Consider the sequence pM qqqPN in Lemma S4. For any ε ą 0, there is Q P N
such that for all q ą Q, M q is an ε-distance stable matching.

Proof. Let Bqf denote the set of all blocking coalitions involving f under M q: that is,

Bqf “ tM̃ P X q | M̃ Ă Dĺf pM q
f q and uf pM̃q ą uf pM

qqu. Since Bqf is finite for each q, the set

Bf :“ YqPNBqf is countable. One can index the blocking coalitions in Bf to form a sequence

pM̃kqkPN such that for any M̃k P Bqf and M̃k1 P Bq
1

f with q ă q1, we have k1 ą k. Define qpkq

to be such that M̃k P Bqpkqf . We show that M̃k w˚
ÝÑMf . If not, there must be a subsequence

pM̃kmqmPN that converges to some M 1 P X with M 1 ‰ Mf . To draw a contradiction, note

first that since Dĺf p¨q is continuous and M q w˚
ÝÑ M , we have Dĺf pM qq

w˚
ÝÑ Dĺf pMq.

Combining this with the fact that M̃km w˚
ÝÑ M 1 and M̃km Ă Dĺf pM qpkmqq, and invoking

Lemma 8, we obtain M 1 Ă Dĺf pMq, which implies that uf pMf q´ ε
1 ą uf pM

1q` ε1 for some

ε1 ą 0, since Cf chooses a uniquely utility-maximizing subpopulation. Since M̃km w˚
ÝÑ M 1

and M q w˚
ÝÑ Mf , we can find sufficiently large m such that uf pM

qpkmq
f q ą uf pMf q ´ ε1 ą

uf pM
1q ` ε1 ą uf pM̃

qpkmqq, which contradicts with the fact that M̃ qpkmq P Bqpkmqf . This

establishes that M̃k w˚
ÝÑ Mf . Using this and the fact that M q

f
w˚
ÝÑ Mf , one can choose

sufficiently large K such that for all k ą K, we have dpM̃k,Mf q ă
ε
2

and dpMf ,M
qpkq
f q ă ε

2
,
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which implies that dpM̃k,M
qpkq
f q ă dpM̃k,Mf q ` dpMf ,M

qpkq
f q ă ε

2
` ε

2
“ ε. This means

that for all q ą qpKq and M̃ P Bqf , we have dpM̃,M q
f q ă ε, showing that M q is an ε-distance

stable matching.

S.7.3 (Counter)Example for Theorem 9

In this section, we provide an example that shows the assumption, Cf pM f q “ tM fu, @f P F̃ ,

is necessary for Part 2 of Theorem 9.

Assume that Θ “ tθ1, θ2, θ3u and that Gqpθ1q “ Gqpθ2q “
nq

q
and Gqpθ3q “

q´2nq

q
, where

nq is a positive integer satisfying nq

q
ă 1

3
and limqÑ8

nq

q
“ 1

3
, which implies Gpθiq “

1
3
, @i.

Assume also that in any finite economy Γq and limit economy Γ, there is a single firm f

which is acceptable to all three types of workers and whose utility function is given as

uf px1, x2, x3q “ maxtx1, x2u ´ x1x2p
1
3
´ x1qp

1
3
´ x2q ` x3, (S46)

where xi is the measure of type θi. Given this, we have M f pθiq “
1
3
, @i while Cf pM f q “

tpx1, x2, x3q | maxtx1, x2u “ x3 “
1
3

and x1, x2 ě 0u so the assumption Cf pM f q “ tM fu

fails. In the finite economy Γq, the δ-stability requires that either

Gq
pθ1q `G

q
pθ3q ´ δ ďM q

f pθ1q `M
q
f pθ3q ď Gq

pθ1q `G
q
pθ3q and M q

f pθ2q “ 0 (S47)

or

Gq
pθ2q `G

q
pθ3q ´ δ ďM q

f pθ2q `M
q
f pθ3q ď Gq

pθ2q `G
q
pθ3q and M q

f pθ1q “ 0, (S48)

while M q
f pθiq ě 0, @i. To see this, note that if both M q

f pθ2q and M q
f pθ1q were positive, then

the firm could drop the entire mass of either type-θ1 or type-θ2 workers to (strictly) increase

the second term in (S46) without affecting any other terms. If, for instance, M q
f pθ1q “ 0,

then the firm’s utility becomes M q
f pθ1q`M

q
f pθ3q, so the δ-stability requires (S47). Observe

now that for any δ-stable matching M q satisfying (S47), there is another δ-stable matching

M̃ q satisfying (S48) such that M q
f pθ1q “ M̃ q

f pθ2q and M q
f pθ3q “ M̃ q

f pθ3q. However, for small

ε, neither matching is ε-worker optimal stable in Γq since the interests of types θ1 and θ2

are sharply opposed across the two matchings.

S.8 Analysis for Section 8.1

S.8.1 Proofs

Proof of Theorem 3. To prove (i), suppose a matching M is stable and population-

proportional. We shall show that M satisfies the property (ii) of Definition 12. The
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population-proportionality of M , equivalently equality (12), implies that, if
Mf pθq

Gpθq
ă

Mf pθ
1q

Gpθ1q

for any θ, θ1 P Θk
f , then we must have Mf pθq “ Dĺf pMqpθq, or else

Mf pθq

Gpθq
“ αkf , but in that

case, we have a contradiction since αkf ě
Mf pθ

1q

Gpθ1q
. Then, by definition of Dĺf ,

Mf pθq “ Dĺf
pMqpθq “

ÿ

f 1PF̃ :f 1ĺf

Mf 1pθq “Mf pθq `
ÿ

f 1PF̃ :f 1ăf

Mf 1pθq,

so
ř

f 1PF̃ :f 1ăf Mf 1pθq “ 0. We have thus proven that M is strongly stable.

To prove (ii), fix any mechanism ϕ that implements a strongly stable matching for any

measure. Suppose for contradiction that inequality (11) fails for some measure G P X , for

some a, P, P 1, with pa, P q and pa, P 1q in the support of G, and for some f . Then, let f be

the most preferred firm (or the outside option) at P among those for which inequality (11)

fails. Then,

ÿ

f 1:f 1ľP f

ϕf 1pGqpa, P q

Gpa, P q
ă

ÿ

f 1:f 1ľP f

ϕf 1pGqpa, P
1q

Gpa, P 1q
, (S49)

while

ÿ

f 1:f 1ľP f
P
´

ϕf 1pGqpa, P q

Gpa, P q
ě

ÿ

f 1:f 1ľP f
P
´

ϕf 1pGqpa, P
1q

Gpa, P 1q
,

so it follows that

ϕf pGqpa, P q

Gpa, P q
ă
ϕf pGqpa, P

1q

Gpa, P 1q
. (S50)

By the strong stability of ϕpGq and the fact that pa, P q and pa, P 1q are in the same indiffer-

ence class for firm f by assumption, inequality (S50) holds only if
ř

f 1:fąP f 1
ϕf 1pGqpa, P q “

0. Thus, because
ř

f 1PF̃

ϕf 1 pGqpa,P q

Gpa,P q
“ 1 as ϕpGq is a matching, we obtain

ÿ

f 1:f 1ľP f

ϕf 1pGqpa, P q

Gpa, P q
“ 1.

This equality contradicts inequality (S49) because the right hand side of inequality (S49)

cannot be strictly larger than 1 as ϕpGq is a matching, which completes the proof.

Proof of Theorem 11 requires several lemmas.

Lemma S6. The correspondence defined in (10) is convex-valued and upper hemicontinu-

ous, and satisfies the revealed preference property.
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Proof. To first show that Cf is convex-valued, for any given X, consider any X 1, X2 P

Cf pXq. Note first that X 1, X2 Ď X implies λX 1 ` p1´ λqX2 Ď X. Also, for any λ P r0, 1s

and k P If ,

ÿ

θPΘk
f

pλX 1
` p1´ λqX2

qpθq “ λ
ÿ

θPΘk
f

X 1
pθq ` p1´ λq

ÿ

θPΘk
f

X2
pθq “ Λkf pXq,

where the second equality holds since the assumption that X 1, X2 P Cf pXq implies Λkf pXq “
ř

θPΘk
f
X 1pθq “

ř

θPΘk
f
X2pθq. Thus, λX 1 ` p1´ λqX2 P Cf pXq.

To next show the upper hemicontinuity, consider two sequences pX`q`PN and pX̃`q`PN con-

verging to some X and X̃, respectively, such that for each `, X̃` P Cf pX
`q, i.e., X̃` Ď X` and

Λkf pX
`q “

ř

θPΘk
f
X̃`pθq, @k P If . Since Λf is continuous, we have Λkf pXq “ lim`Ñ8 Λ

k
f pX

`q “

lim`Ñ8

ř

θPΘk
f
X̃`pθq “

ř

θPΘk
f
X̃pθq, which, together with the fact that X̃ Ď X, means that

X̃ P Cf pXq, establishing the upper hemicontinuity of Cf .
11 To show the revealed prefer-

ence property, let X,X 1 P X with X 1 Ă X, and suppose Cf pXq X XX 1 ‰ H. Consider any

Y P Cf pXq such that Y pθq ď X 1pθq for all θ. Then, Λkf pXq “
ř

θPΘk
f
Y pθq ď

ř

θPΘk
f
X 1pθq

for all k P If . By the revealed preference property of Λf , it follows that Λf pX
1q “ Λf pXq.

Therefore, Y satisfies
ř

θPΘk
f
Y pθq “ Λkf pXq “ Λkf pX

1q for all k P If , which implies that

Y P Cf pX
1q and thus Cf pXq X XX 1 Ď Cf pX

1q. To show Cf pXq X XX 1 Ě Cf pX
1q, consider

any Y P Cf pX
1q and X̃ P XX 1 such that X̃ P Cf pXq. By the previous argument, we have

X̃ P Cf pX
1q, which implies that for each f P F and k P If ,

ř

θPΘk
f
Y pθq “

ř

θPΘk
f
X̃pθq.

Since X̃ P Cf pXq, this means that Y P Cf pXq and thus Y P Cf pXq X XX 1 . Therefore, we

conclude that Cf pX
1q “ Cf pXq X XX 1 as desired.

From now, we establish a couple of lemmas (Lemmas S7 and S8) and use them to prove

Theorem 11. To do so, define a correspondence Bf from X to itself as follows:

Bf pXq :“ tX 1 Ă X | for each k P If , there is some αk P r0, 1s such that

X 1
pθq “ mintXpθq, αkGpθqu for all θ P Θk

fu. (S51)

We then modify the choice correspondence Cf in (10) to

C̃f pXq “ Cf pXq XBf pXq, (S52)

for every f P F while we let C̃ø “ Cø.

11The argument for X̃ Ď X is that for each θ P Θ, X̃`pθq ď X`pθq, so taking the limit with respect to `

yields X̃pθq ď Xpθq.
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Lemma S7. For any X Ă G, C̃f pXq is nonempty and a singleton set (i.e., C̃f is a

function). Also, C̃f satisfies the revealed preference property.

Proof. We first establish that for X, C̃f pXq is a singleton set. To do so, for any X P X ,

f P F , k P If , and αk P r0, 1s, define ζkf pα
kq :“

ř

θPΘk
f

mintXpθq, αkGpθqu. From now

on, we assume Cf pXq ‰ tXu since, if Cf pXq “ tXu, then we have C̃f pXq “ tXu, a

singleton set as desired. We show that there exists a unique α̂k satisfying ζkf pα̂
kq “ Λkf pXq,

which means that C̃f pXq is a singleton set. First, we must have α̂k ă maxθPΘk
f
Xpθq

since otherwise ζkf pα̂
kq “

ř

θPΘk
f
Xpθq ą Λkf pXq (which follows from the assumption that

Cf pzq ‰ tXu and thus, for any X 1 P Cf pXq, X
1 Ă X and X 1 ‰ X). Next, observe that

ζkf p¨q is strictly increasing in the range r0,maxθPΘk
f

Xpθq
Gpθq

q. Then, the continuity of ζkf , along

with the fact that ζkf p0q “ 0 and ζkf pmaxθPΘk
f

Xpθq
Gpθq

q ą Λkf pXq, implies that there is a unique

α̂k P r0,maxθPΘk
f

Xpθq
Gpθq

q satisfying ζkf pα̂
kq “ Λkf pXq.

To show the revealed preference property, consider anyX,X 1, X2 P X such that C̃f pXq “

tX 1u and X 1 Ă X2 Ă X. Since we already know that Cf p¨q satisfies the revealed preference

property, we have X 1 P Cf pX
2q. It suffices to show that X 1 P Bf pX

2q, since it means

C̃f pX
2q “ tX 1u, from which the revealed preference property follows. To do so, note that

X 1 P Bf pXq means that X 1pθq “ mintXpθq, αkGpθqu for each k and θ P Θk
f . Then, since

Xpθq ě X2pθq ě X 1pθq and αkGpθq ě X 1pθq, we have

X 1
pθq “ mintXpθq, αkGpθqu ě mintX2

pθq, αkGpθqu ě X 1
pθq,

so X 1pθq “ mintX2pθq, αkGpθqu as desired.

Lemma S8. Any stable matching in the economy pG,F,PΘ, C̃F q is stable and population-

proportional in the economy pG,F,PΘ, CF q.
12

Proof. Consider a stable matching M “ pMf qfPF̃ in pG,F,PΘ, C̃F q and let Xf “ Dĺf pMq

for each f P F̃ . We first show that M is stable in pG,F,PΘ, CF q. It is straightforward,

thus omitted, to check the individual rationality. To check the condition of no blocking

coalition, suppose to the contrary that there is a blocking pair f and M 1
f , which means that

M 1
f Ă Xf , M

1
f P Cf pM

1
f _Mf q, and Mf R Cf pM

1
f _Mf q. Given this, by Lemma S7, there

exists M̃f such that C̃f pM
1
f _Mf q “ tM̃fu. First, by the revealed preference property of

C̃f and the fact that M̃f Ă pM̃f _Mf q Ă pM 1
f _Mf q, we have M̃f P C̃f pM̃f _Mf q and

Mf R C̃f pM̃f_Mf q. Second, since Mf Ă Xf and M 1
f Ă Xf , we have M̃f Ă pM 1

f_Mf q Ă Xf .

In sum, f and M̃f form a blocking pair in pG,F,PΘ, C̃F q, which is a contradiction.

12The economy pG,F,PΘ, C̃F q is a hypothetical economy that is identical to the original economy, except

that the firms’ choice correspondences CF are replaced by C̃F , which is defined in (S52).
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To show the population-proportionality of M , observe that since M is stable in the

economy pG,F,PΘ, C̃F q, we have Mf “ C̃f pD
ĺf pMqq “ Cf pD

ĺf pMqq X Bf pD
ĺf pMqq for

each f P F . Thus, Mf P Bf pD
ĺf pMqq, that is, there is some αk for each k P If such that

(12) holds.

Proof of Theorem 11. First, consider the case in which each firm’s preference satisfies

continuity. Given Lemma S8, it suffices to establish the existence of stable matching in

the economy pG,F,PΘ, C̃F q. For doing so, we prove the continuity of C̃f and invoke The-

orem 2. The continuity of C̃f “ Cf X Bf follows if both Cf and Bf are shown to be

upper hemicontinuous, since the intersection of a family of closed-valued upper hemicon-

tinuous correspondences, one of which is also compact-valued, is upper hemicontinuous (see

16.25 Theorem of Aliprantis and Border (2006) for instance), implying that C̃f , which is a

singleton-valued correspondence by Lemma S7, is continuous.

Since Cf is upper hemicontinuous by Lemma S6, it remains to show that Bf is upper

hemicontinuous. Consider sequences pX`q`PN and pX̃`q`PN with X̃` P Bf pX
`q, @`, converging

weakly to X and X̃, respectively. So, for each k P If , there is a sequence pαk` q`PN such that

X̃`pθq “ mintX`pθq, αk`Gpθqu, @θ P Θk
f . For each k, let αk be a limit to which a subsequence

of the sequence pαk` q`PN converges. We claim that X̃pθq “ mintXpθq, αkGpθqu, @θ P Θk
f . If

X̃pθq ą mintXpθq, αkGpθqu, then one can find sufficiently large ` to make X̃`pθq, X`pθq, and

αk` close to X̃pθq, Xpθq, and αk, respectively, so that X̃`pθq ą mintX`pθq, αk`Gpθqu, which is

a contradiction. The same argument applies to the case where X̃pθq ă mintXpθq, αkGpθqu.

Second, consider the case in which each firm’s preference satisfies substitutability. Let

C̃f be the augmented choice of f and R̃f the corresponding augmented rejection function.

For each f P F and k P If , let ρkf : X Ñ R` denote firm f ’s rejection of total measure of

workers in the indifference class Θk
f . Formally, define ρkf pXq :“

ř

θPΘk
f
Xpθq ´ Λkf pXq for

each X.

Without loss of generality, fix k P If and consider X,X 1 with X Ď X 1 and X ‰ X 1 such

that Xpθq “ X 1pθq for every θ R Ikf . First, consider k1 ‰ k. Then, by substitutability of Λ,

we have ρk
1

f pXq ď ρk
1

f pX
1q. Because

ř

θPΘk1
f
Xpθq “

ř

θPΘk1
f
X 1pθq by assumption, it follows

that

Λk
1

f pXq “
ÿ

θPΘk1
f

Xpθq ´ ρk
1

f pXq ě
ÿ

θPΘk1
f

X 1
pθq ´ ρk

1

f pX
1
q “ Λk

1

f pX
1
q.

Hence, αk
1

f P r0, 1s such that

Λk
1

f pXq “
ÿ

θPΘk1
f

mintXpθq, αkfGpθqu,
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and ᾱk
1

f P r0, 1s such that

Λk
1

f pX
1
q “

ÿ

θPΘk1
f

mintX 1
pθq, ᾱkfGpθqu,

have a relationship αk
1

f ě ᾱk
1

f (to see this, recall Xpθq “ X 1pθq for any θ P Θk1

f by assumption

and note that the right hand sides of these equations are nondecreasing in αk
1

f and ᾱk
1

f ,

respectively). This implies R̃f pXqpθq ď R̃f pX
1qpθq for all θ P Θk1

f , as desired.

Second, consider k and investigate the following cases.

1. Suppose Λkf pXq “
ř

θPΘk
f
Xpθq. Then, clearly ρkf pXq “

ř

θPΘk
f
Xpθq ´Λkf pXq “ 0, and

thus R̃f pXqpθq “ 0 ď R̃f pX
1qpθq for all θ P Θk

f , as desired.

2. Suppose Λkf pXq ă
ř

θPΘk
f
Xpθq. Then,

Claim S7. Λkf pXq “ Λkf pX
1q.

Proof. Suppose for contradiction that Λkf pXq ‰ Λkf pX
1q. First, we cannot have Λkf pX

1q P

r0,
ř

θPΘk
f
Xpθqs, since it would imply Λf pXq ‰ Λf pX

1q ď p
ř

θPΘk
f
XpθqqkPIf , violating

the revealed preference. So we must have Λkf pX
1q P p

ř

θPΘk
f
Xpθq,

ř

θPΘk
f
X 1pθqs. We

can then define X t :“ tX 1 ` p1 ´ tqX and find t˚ P p0, 1s such that
ř

θPΘk
f
X t˚pθq “

Λkf pX
1q. Since X t˚ ď X 1 and Λf pX

1q ď p
ř

θPΘk
f
X t˚pθqqkPIf , the revealed prefer-

ence implies Λkf pX
t˚q “ Λkf pX

1q, which in turn implies ρkf pX
t˚q “

ř

θPΘk
f
X t˚pθq ´

Λkf pX
t˚q “ 0 ă

ř

θPΘk
f
Xpθq ´ Λkf pXq “ ρkf pXq, contradicting the substitutability.

Given Claim S7, it follows that αkf P r0, 1s such that

Λkf pXq “
ÿ

θPΘk
f

mintXpθq, αkfGpθqu,

and ᾱkf P r0, 1s such that

Λkf pX
1
q “

ÿ

θPΘk
f

mintX 1
pθq, ᾱkfGpθqu,

have a relationship αkf ě ᾱkf (recall Xpθq ď X 1pθq for any θ P Θk
f by assumption, and

the right hand side of these equations are nondecreasing in the first arguments of the

minimum operators). This implies R̃f pXqpθq ď R̃f pX
1qpθq for all θ P Θk

f , as desired.
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S.8.2 Non-Strategy-Proofness for Firms

Even with a continuum of workers, no stable mechanism is strategy-proof for firms. Con-

sider the following example.13 Let F “ tf1, f2u, Θ “ tθ, θ1u, and Gpθq “ Gpθ1q “ 1{2.

Worker preferences are given as follows:

θ :f2 ą f1 ą ø,

θ1 :f1 ą f2 ą ø.

Firm preferences are responsive; f1 prefers θ to θ1 to vacant positions and wants to be

matched with workers up to measure 1, while f2 prefers θ1 to θ to vacant positions and

wants to be matched with workers up to measure 1{2.

Let ϕ be any stable mechanism. Given the above input, the following matching is the

unique stable matching:

M ”

˜

f1 f2

1
2
θ1 1

2
θ

¸

.

Matching M is clearly stable because it is individually rational and every worker is matched

to her most preferred firm. To see the uniqueness, note first that in any stable matching,

every worker has to be matched to a firm (if there is a positive measure of unmatched

workers, then there is also a vacant position in firm f1, and they block the matching). All

workers of type θ1 are matched with f1; otherwise, f1 and θ1 workers who are not matched

with f1 block the matching (note that f1 has vacant positions to fill with θ1 workers). Given

this scenario, all workers of type θ are matched with f2; otherwise, f2 and θ workers who

are not matched with f2 block the matching (note that f2 has vacant positions to fill with

type θ workers).

Now, assume that f1 misreports its preferences, declaring that θ is the only acceptable

worker type, and it wants to be matched to them up to measure 1/2. Additionally, assume

that preferences of other agents remain unchanged. Then, it is easy to verify that the

unique stable matching is

M 1
”

˜

f1 f2

1
2
θ 1

2
θ1

¸

.

Therefore, firm f1 prefers its outcome at M 1 to the one at M , proving that no stable

mechanism is strategy-proof for firms.

13This example is a continuum-population variant of an example in Section 3 of Hatfield, Kojima, and

Narita (2014). See also Azevedo (2014), who shows that stable mechanisms are manipulable via capacities,

even in markets with a continuum of workers.
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S.9 Matching with Contracts

Our paper has assumed that the terms of employment contracts are exogenously given. In

many applications, however, they are decided endogenously. To study such a situation, we

generalize our basic model by introducing a continuum-population version of the “matching

with contracts” model due to Hatfield and Milgrom (2005).

Let Ω denote a finite set of all available contracts with its typical element denoted as

ω. Assume that Ω is partitioned into subsets, tΩfufPF̃ , where Ωf is the set of contacts for

f P F̃ and Ωø “ tωøu (where ωø denotes the option of not contracting with any firm). Each

contract ω specifies contract terms a firm f may offer to a worker.14 Let fpωq P F̃ denote

the firm associated with contract ω (or the outside option if ω “ ωø). Thus, fpωq “ f

if and only if ω P Ωf . We use P P P to denote workers’ preference defined over Ω. Let

ωP´ P Ω denote a contract that is an immediate predecessor of ω according to preference P ,

that is, ωP´ is the contract with the property ωP´ ąP ω and ω1 ľP ω
P
´ for all ω1 ąP ω. As

before, ΘP denotes the subset of types in Θ whose preference is given by P .

In the current framework, the relevant unit of analysis is the measure of workers assigned

to a particular contract. We let Xω P X denote the subpopulation assigned to contract

ω P Ω and Xf “ pXωqωPΩf
denote a profile of subpopulations contracting with firm f . For

any profiles X,X 1 P X |Ωf |, we denote X Ăf X
1 if Xω Ă X 1

ω for all ω P Ωf . Given a profile

Xf “ pXωqωPΩf
, we use

Xĺω
f p¨q :“

ÿ

PPP

ÿ

ω1PΩf :ω1ĺPω

Xω1pΘP X ¨q, (S53)

to denote the measure of workers hired by f under contract ω or worse; these are the

workers who are willing to work for f under ω given their current contracts. We then let

Xĺ
f “ pX

ĺω
f qωPΩf

.

For any ω P Ωf , let Xω P X denote the subpopulation of workers who are available to

firm f under the contract ω. Given any profile Xf “ pXωqωPΩf
P X |Ωf |, each firm f ’s choice

is described by a map Xf ÞÑ Cf pXf q “ pCωpXf qqωPΩf
P Yf pXf q, where

Yf pXf q :“ tYf P X |Ωf | |Y ĺω
f Ă Xω, @ω P Ωfu.

For any profile of subpoulations in Yf pXf q, the measure of workers who are hired by f

under any contract ω P Ωf or worse cannot exceed the measure of workers, Xω, who are

available under ω. The requirement that the output of Cf should belong to Yf pXf q is

14Note that the contract itself does not contain information about the associated worker type, and that

each firm’s preference is determined by what worker types it is matched with under what contracts.
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based on the premise that each firm f is aware of workers’ preferences and also believes

(correctly) that only those workers who are available under ω P Ωf can be hired under the

contracts that are weakly inferior to ω, and thus put an upper bound on the measure of

workers that can be hired under the latter contracts. As before, we let CωøpXωøq “ Xωø .

We then assume the revealed preference property that for any X,X 1 P X |Ωf | with X 1 Ăf X

and for Mf “ Cf pXq, if Mf P Yf pX 1q, then Mf “ Cf pX
1q.

An allocation is M “ pMωqωPΩ such that Mω P X for all ω P Ω and
ř

ωPΩMω “ G.

Let Mf “ pMωqωPΩf
P X |Ωf | denote a profile of subpopulations who are matched with

f . Given Mf “ pMωqωPΩf
, define Mĺω

f by (S53) and let Mĺ
f “ pMĺω

f qωPΩf
. Note that

Mĺω
f corresponds to a subpopulation of workers already hired by firm f who are willing

to work for f under ω given their current contracts. In other words, Mĺ
f does not include

the workers available to firm f who are currently matched with firms other than f . A

subpopulation of all workers—not only those hired by firm f—who are available to f P F̃

under contract ω P Ωf is denoted as before by

Dĺω
pMqp¨q “

ÿ

PPP

ÿ

ω1PΩ:ω1ĺPω

Mω1pΘP X ¨q.

Let Dĺf pMq “ pDĺωpMqqωPΩf
.

Definition S1. An allocation M “ pMωqωPΩ is stable if

1. (Individual Rationality) MωpΘP q “ 0 for all P P P and ω P Ω satisfying ω ăP ωø;

and for each f P F , Mf “ Cf pM
ĺ
f q, and

2. (No Blocking Coalition) There exist no f P F and rM f P X |Ωf |, rM f ‰Mf such that

rM f “ Cf p rM
ĺ
f _M

ĺ
f q and rM ĺ

f Ăf D
ĺf
pMq.

Note that this definition reduces to the notion of stability in Definition 2 if each firm is

associated with exactly one contract.

Let us now define a map T “ pTωqωPΩ : X |Ω| Ñ X |Ω| by specifying, for each ω P Ω and

E P Σ,

TωpXqpEq :“
ÿ

P :P p1q“ω

GpΘP X Eq `
ÿ

P :P p1q‰ω

RωP
´
pXfpωP

´q
qpΘP X Eq. (S54)

Theorem S1. M “ pMωqωPΩ is a stable allocation if and only if Mf “ Cf pXf q, @f P F̃ ,

where X “ pXωqωPΩ is a fixed point of mapping T .
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Proof. (“Only if” part) Suppose M is a stable allocation in X |Ω|. We prove that X “

pDĺωpMqqωPΩ is a fixed point of T . Let us first show that for each ω P Ω, Xω P X .

It is clear that as each Mω is countably additive, so is MωpΘP X ¨q, which implies that

Xωp¨q “ DĺωpMqp¨q “
ř

PPP
ř

ω1PΩ:ω1ĺPω
Mω1pΘP X ¨q is also countably additive. It is also

clear that since pMωqωPΩ is an allocation, Xω Ă G. Thus, we have Xω P X .

We next claim that Mf “ Cf pXf q for all f P F̃ . This is immediate for f “ ø since

Mø “ Xø “ CøpXøq. To prove the claim for f ‰ ø, suppose for a contradiction that

Mf ‰ Cf pXf q, and let us denote rM f “ Cf pXf q. Since Cf pXf q P Yf pXf q by definition, we

have rM ĺ
f Ăf Xf and thus p rM ĺ

f _Mĺ
f q Ăf Xf . Given this and rM f P Yf p rM ĺ

f _Mĺ
f q, we

have rM f “ Cf p rM
ĺ
f _M

ĺ
f q by revealed preference, which means that M is not stable since

rM ĺ
f Ăf Xf “ Dĺf pMq, yielding the desired contradiction.

We next prove X “ T pXq. The fact that Mω “ CωpXfpωqq, @ω P Ω means that Xω ´

Mω “ RωpXfpωqq, @ω P Ω. Then, for each ω P Ω and E P Σ, we obtain

ÿ

P :P p1q“ω

GpΘP X Eq `
ÿ

P :P p1q‰ω

RωP
´
pXfpωP

´q
qpΘP X Eq

“
ÿ

P :P p1q“ω

GpΘP X Eq `
ÿ

P :P p1q‰ω

´

XωP
´
pΘP X Eq ´MωP

´
pΘP X Eq

¯

“
ÿ

P :P p1q“ω

GpΘP X Eq `
ÿ

P :P p1q‰ω

¨

˝

ÿ

ω1PΩ:ω1ĺPω
P
´

Mω1pΘP X Eq ´MωP
´
pΘP X Eq

˛

‚

“
ÿ

P :P p1q“ω

ÿ

ω1PΩ:ω1ĺPω

Mω1pΘP X Eq `
ÿ

P :P p1q‰ω

ÿ

ω1PΩ:ω1ĺPω

Mω1pΘP X Eq “ XωpEq,

where the second and fourth equalities follow from the definition of XωP
´

and Xω, re-

spectively, while the third from the fact that ωP´ is an immediate predecessor of ω and
ř

ω1PΩ:ω1ĺPP p1q
Mω1pΘP X Eq “ GpΘP X Eq. The above equation holds for every contract

ω P Ω, so we conclude that X “ T pXq, i.e. X is a fixed point of T .

(“If” part) Let us first introduce some notations. Let ωP` denote an immediate

successor of ω P Ω at P P P : that is, ωP` ăP ω, and for any ω1 ăP ω, ω1 ĺP ωP`. Note

that for any ω, ω̃ P Ω, ω “ ω̃P´ if and only if ω̃ “ ωP`.

Suppose now that X “ pXωqωPΩ P X |Ω| is a fixed point of T . For each contract ω P Ω

and E P Σ, define

MωpEq “ XωpEq ´
ÿ

P :P p|Ω|q‰ω

XωP
`
pΘP X Eq, (S55)

where P p|Ω|q ‰ ω means that ω is not ranked lowest at P .
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We first verify that for each ω P Ω, Mω P X . First, it is clear that for each ω P Ω, as

both Xωp¨q and XωP
`
pΘP X ¨q are countably additive, so is Mω. It is also clear that for each

ω P Ω, Mω Ă Xω.

Let us next show that for all ω P Ω, P P P , and E P Σ,

XωpΘP X Eq “
ÿ

ω1PΩ:ω1ĺPω

Mω1pΘP X Eq, (S56)

which means that Xω “ DĺωpMq. To do so, consider first a contract ω that is ranked

lowest at P . By (S55) and the fact that XωP
`
pΘP X ¨q ” 0, we have MωpΘP X Eq “

XωpΘP XEq. Hence, (S56) holds for such ω. Consider now any ω P Ω which is not ranked

last, and assume for an inductive argument that (S56) holds true for ωP`, so XωP
`
pΘPXEq “

ř

ω1PΩ:ω1ĺPω
P
`
Mω1pΘP X Eq. Then, by (S55), we have

XωpΘP X Eq “MωpΘP X Eq `XωP
`
pΘP X Eq “MωpΘP X Eq `

ÿ

ω1PΩ:ω1ĺPω
P
`

Mω1pΘP X Eq

“
ÿ

ω1PΩ:ω1ĺPω

Mω1pΘP X Eq,

as desired.

To show that M “ pMωqωPΩ is an allocation, let ω “ P p1q. Then, the definition of T

and the fact that X is a fixed point of T imply that for any E P Σ,

GpΘP X Eq “ XωpΘP X Eq “
ÿ

ω1PΩ:ω1ĺPω

Mω1pΘP X Eq “
ÿ

ω1PΩ

Mω1pΘP X Eq,

where the second equality follows from (S56). Since the above equation holds for every

P P P , M is an allocation.

We now prove that pMωqωPΩ is stable. To prove the first part of Condition 1 of

Definition S1, note first that CωøpXωøq “ tXωøu and thus Rωø “ 0. Fix any P P P
and assume ø ‰ P p|Ω|q, since there is nothing to prove if ø is ranked lowest at P .

Consider a contract ω such that ωP´ “ ωø. Then, X being a fixed point of T means

XωpΘP q “ RωP
´
pΘP q “ RωøpΘP q “ 0, which implies by (S56) that 0 “ XωpΘP q “

ř

ω1PΩ:ω1ĺPω
Mω1pΘP q “

ř

ω1PΩ:ω1ăPωø
Mω1pΘP q, as desired.

To prove the second part of Condition 1 of Definition S1, we first show that Mω “

CωpXfpωqq, which is equivalent to showing Xω´Mω “ RωpXfpωqq. Since X “ T pXq, we have

XωpΘP X ¨q “ RωP
´
pXfpωP

´q
qpΘP X ¨q for all ω ‰ P p1q, or XωP

`
pΘP X ¨q “ RωpXfpωqqpΘP X ¨q

for all ω ‰ P p|Ω|q. Then, (S55) implies that for any ω P Ω,

Xωp¨q ´Mωp¨q “
ÿ

P :P p|Ω|q‰ω

XωP
`
pΘP X ¨q “

ÿ

P :P p|Ω|q‰ω

RωpXfpωqqpΘP X ¨q “ RωpXfpωqqp¨q,
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as desired. The last equality here follows from the fact that RωpΘP X ¨q “ 0 if ω “ P p|Ω|q.

To see this, note that if ω “ P p|Ω|q “ ωø, then RωpXfpωqq “ RωøpXøq “ 0 by definition

of Rωø , and that if ω “ P p|Ω|q ăP ωø, then the individual rationality of M for workers

implies that XωpΘP X ¨q “ MωpΘP X ¨q “ 0, which in turn implies RωpXfpωqqpΘP X ¨q “ 0

since RωpXfpωqqpΘP X ¨q Ă XωpΘP X ¨q. Given that Mω “ CωpXfpωqq for all ω P Ω or

Mf “ Cf pXf q for all f P F , Mf “ Cf pM
ĺ
f q follows from the revealed preference and the

fact that Mĺ
f Ăf Xf .

It only remains to check Condition 2 of Definition S1. Suppose for a contradiction that

it fails. Then, there exist f and rM f such that

Mf ‰ rM f “ Cf p rM
ĺ
f _M

ĺ
f q and rM ĺ

f Ăf D
ĺf
pMq. (S57)

Then, we have Mf P Yf p rM ĺ
f _Mĺ

f q, p
rM ĺ
f _Mĺ

f q Ăf D
ĺf pMq “ Xf , and Mf “ Cf pXf q,

which, by revealed preference, implies Mf “ Cf p rM
ĺ
f _M

ĺ
f q, contradicting (S57). We have

thus proven that M is stable.

Given this characterization result, the existence of stable allocation follows from assum-

ing that for each f P F , Cf : X |Ωf | Ñ X |Ωf | is continuous, since it guarantees the continuity

of T : X |Ω| Ñ X |Ω|:

Theorem S2. If each firm’s preference is continuous, then a stable allocation exists.

S.10 Continuum of Firms: AH Model

Following AH, suppose that there is a continuum of firms. Each firm is infinitesimal and

takes one of finitely many types, 1, . . . , n. Let N “ t1, . . . , nu and N “ N Y tøu. For each

i P N , let mi denote the mass of type-i firms in the economy with mø “ 8. Assume for

simplicity that there are finitely many types of workers so Θ “ tθ1, . . . , θKu. We assume

that each type-i firm has a strict preference over the sets in 2Θ, denoted ľi, which gives

rise to a choice function ci : 2Θ Ñ 2Θ.15 For a null firm i “ ø, we let E ąø E
1 for any

E 1 Ĺ E and thus cøpEq “ E,@E P 2Θ. We assume that ľi satisfies the standard axioms:

completeness and transitivity. Each worker can be matched with only one firm (which may

be a null firm) and is indifferent over firms of the same type while having strict preferences

over different types of firms. We denote this economy as E . This model is exactly the same

15An implicit assumption here is that each firm hires at most one worker per each worker type. However,

our model can be extended in a straightforward manner to allow each firm to hire multiple workers of the

same type.
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as AH, except that there is no contracting issue (a firm and worker can contract under only

one term) and we are considering a many-to-one matching environment.

A matching for type-i firms is a measure zi defined on 2Θ such that for each E P 2Θ,

zipEq is the measure (or mass) of type-i firms matched with E. A profile pziqiPN is a

matching if

ÿ

iPN

ÿ

EP2Θ:θPE

zipEq “ Gpθq, @θ P Θ (S58)

ÿ

EP2Θ

zipEq “ mi, @i P N. (S59)

Definition S2. A matching z “ pziqiPN is stable for the economy E if the following prop-

erties hold:

1 (Individual rationality). zipEq “ 0 for any i P N and E P 2Θ such that there is some

θ P E with ø ąθ i; For any i P N and E P 2Θ, zipEq ą 0 implies cipEq “ E;

2 (No blocking coalition). there are no i P N and E,E 1 P 2Θ with E X E 1 “ H such

that (i) E 1 Ă cipE YE
1q; (ii) zipEq ą 0; and (iii) for each θ P E 1, there are j P N and

E2 P 2Θ such that i ąθ j, θ P E
2, and zjpE

2q ą 0.

Individual rationality condition is straightforward. No blocking coalition condition re-

quires no positive mass of firms which can get better off by hiring workers away from their

less preferred firms. This notion of stability coincides with that of AH, once their model of

many-to-many matching with contracts is adapted to our setup.

To show the existence of stable matching, we map the current setting into our model of

continuum economy by introducing a large firm representing all type-i firms for each type

i P N and defining the aggregate choice correspondence for this firm, denoted Ci : X Ñ X .

To do so, suppose that Xi P X is a subpopulation of workers available to the large type-i

firm, which is a subpopulation defined on Θ. We then allocate these workers efficiently

across type-i firms as follows: Endow each small type-i firm with an arbitrary utility

function vi : 2Θ Ñ R` that represents ľi and satisfies vipHq “ 0.16 And assign a set of

workers E Ă Θ to the mass zipEq of type-i firms for each E P 2Θ to solve

max
ziPR

|2Θ|
`

ÿ

EP2Θ

vipEqzipEq (A)

16Existence of such vi is guaranteed because the firms’ preferences satisfy the standard axioms.
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subject to

ÿ

E1P2Θ:θPE1

zipE
1
q ď Xipθq, @θ P Θ (S60)

ÿ

EP2Θ

zipEq “ mi, (S61)

where the constraint (S61) is dropped if i “ ø.17 That is, the aggregate (utilitarian) welfare

of type-i firms is maximized under the constraint that for each type θ, the measure of type-i

firms hiring (some) type-θ workers cannot exceed the measure of available type-θ workers.

Letting SipXiq denote the set of optimal solutions for (A), it is straightforward to see that

SipXiq is nonempty.

The aggregate choice correspondence for the large firm i is then defined as

CipXiq “

!

X 1
i P X | Dzi P SipXiq such that X 1

ipθq “
ÿ

E1P2Θ:θPE1

zipE
1
q, @θ P Θ

)

.18

It is worth noting that our method to build the aggregate choice differs from that of AH in

which firms of the same type choose workers following serial dictatorship. We let Γ denote a

hypothetical economy that consists of large firms 1, . . . , n, ø, whose choice correspondences

are given as pCiqiPN , and workers whose population is given as G. Since (A) is linear,

and thus continuous, in zi, by Berge’s maximum theorem, each correspondence Si is upper

hemicontinuous and convex-valued, so is Ci. Hence, by Theorem 2, there exists a stable

matching in economy Γ, which implies the existence of a stable matching in the original

economy E , as is shown next:

Proposition S4. Let M “ pMiqiPN be a stable matching for the hypothetical economy

Γ. Then, there is a profile of solutions z “ pziqiPN for (A) with Xi “ Mi, @i P N that

constitutes a stable matching for economy E.

Proof. First, there must be a solution of (A) with Xi “Mi that satisfies (S60) as equality,

since otherwise Mi would not be individually rational in economy Γ. Now let z “ pziqiPN
be a profile of such solutions. First of all, we check that z is a matching in economy E .

That (S60) is binding with Xipθq “ Mipθq implies (S58) is satisfied since M is a matching

so
ř

iPN Mipθq “ Gpθq. Also, (S59) follows directly from (S61).

17Recall that mø “ 8. Note that the constraint (S60) must always be binding for i “ ø at any optimum

since vøpEq ą vøpHq “ 0 for any E ‰ H, as implied by the earlier assumption.
18 Since each SipXiq consists of optimal solutions, Si satisfies the revealed preference. Given this, Ci

also satisfies the revealed preference property.
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Note next that since M is stable in economy Γ, we must have Mi P CipX̃iq for X̃i “

DĺipMq, which implies that pziqiPN solves (A) with Xi “ X̃i.

To show the stability of z in economy E , we first prove that it is individually rational.

To see the individual rationality for workers, observe that for any θ P Θ and ø ąθ i, we

have Mipθq “ 0, which follows from the stability of M in economy Γ. It therefore follows

from (S60) with Xipθq “ Mipθq that zipEq “ 0 for any E containing θ. To see individual

rationality of pziqiPN for firms, supppose not. Then, there must be some firm i P N and

E P 2Θ such that zipEq ą 0 and cipEq Ĺ E, which means that vipEq ă vipcipEqq. Given

this, consider another matching for type-i firms which assigns the set of workers cipEq to

the type-i firms of mass zipEq which are hiring E under zi, while assigning the same set

of workers to all other type-i firms in N . This alternative matching then achieves a higher

value for (A), which contradicts with the optimality of zi.

We next prove z satisfies the second requirement of stability in economy E . Suppose

for contradiction that pziqiPN admits a blocking coalition with the firm type i and E,E 1 as

in Condition 2 of Definition S2. Let for each θ P E 1

z̄pθq “ max
 

zjpE
2
q | j P N, θ P E2, zjpE

2
q ą 0, and i ąθ j

(

.

Then, at least z̄pθq of workers of type θ P E 1 is not matched with type-i firms under pziqiPN
but available to them under X̃i “ DĺipMq. Consider now an alternative matching z1i for

type-i firms given as follows: (1) mass mintminθPE2 z̄pθq, zipEqu of type-i firms which were

matched with E under zi are now each matched with the set cipE Y E 1q of workers; (2)

all other type-i firms are matched with the same set of workers as under zi. Note first

that the workers matched with type-i firms under z1i are a subpopulation of X̃i, satisfying

(S60) with Xi “ X̃i. Also, z1i easily satisfies (S61). However, since cipE Y E 1q ‰ E, we

have vipcipE YE
1qq ą vipEq, which means that the type-i firms in (1) above enjoy a higher

utility under z1i than zi while the type-i firms in (2) enjoy the same utility. This contradicts

with the fact that pziqiPN solves (A) with Xi “ X̃i.

Corollary S1. There exists a stable matching for economy E.

Recall that the approach taken here to build the aggregate choice correspondence differs

from that of AH based on the serial dictatorship. One advantage of the current approach

is its extendability beyond finite types of workers. It is not difficult to extend (A) to allow

for continuum of worker types. Since (A) is linear, its solution set (or correspondences)

will satisfy the properties such as upper hemicontinuity and convex-valuedness (as long as

vi is a continuous function).19

19In the functional space, a linearity need not imply continuity. But in our case, as long as vi is assumed

41



References

Aliprantis, C. D., and K. C. Border (2006): Infinite Dimensional Analysis: A Hitch-

hiker’s Guide. Springer, Berlin.

Azevedo, E. M. (2014): “Imperfect Competition in Two-Sided Matching Markets,”

Games and Economic Behavior, 83, 207–223.

Hatfield, J. W., F. Kojima, and Y. Narita (2014): “Many-to-Many Matching with

Max–Min Preferences,” Discrete Applied Mathematics, 179, 235–240.

Hatfield, J. W., and P. Milgrom (2005): “Matching with Contracts,” American

Economic Review, 95, 913–935.

to be continuous, the objective function of (A) is continuous in zi in the weak-˚ topology.

42


	Introduction
	Illustrative Example
	Model of a Continuum Economy
	A Characterization of Stable Matching
	The Existence of a Stable Matching in the Continuum Economy
	Substitutable Preferences
	Existence and Side-Optimality
	Uniqueness of Stable Matching

	Approximate Stability in Finite Economies
	Strong Stability and Strategy-Proofness
	Strong Stability and Strategy-Proofness in a Large Economy
	Applications to Time Share/Probabilistic Matching Models

	Relationship with the Literature
	Conclusion
	Proofs of Theorem 1 and Theorem 2
	Proofs for Section 6
	Proofs for Section 7
	Continuum_SP-rev.pdf
	Analysis of the Example in Section 2
	Preliminaries for the Continuum Economy Model
	Proof of Lemma 1
	Proof of Proposition 1

	Equivalence with Worker-Proposing DA
	Analysis of the Examples in Section 4
	Example for Remark 3
	Analysis of Example 2
	Analysis of Example 3

	Omitted Examples from Section 6:
	Analysis for Section 6
	Preliminary Analysis
	Proof of Lemma 2
	Proof of Proposition 3
	(Counter)Example for Lemma 2: Role of Submodularity

	Results for Section 7
	Omitted Proofs for Section 7
	Proof for the Existence of -Distance Stable Matching
	(Counter)Example for Theorem 9

	Analysis for Section 8.1
	Proofs
	Non-Strategy-Proofness for Firms

	Matching with Contracts
	Continuum of Firms: AH Model


