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Abstract

We study stability of two-sided many-to-one matching in which firms’ preferences
for workers may exhibit complementarities. Although such preferences are known to
jeopardize stability in a finite market, we show that a stable matching exists in a
large market with a continuum of workers, provided that each firm’s choice is con-
vex and changes continuously as the set of available workers changes. We also study
the existence and the structure of stable matchings under preferences exhibiting sub-
stitutability and indifferences in a large market. Building on these results, we show
that an approximately stable matching exists in large finite economies. We extend our
framework to ensure a stable matching with desirable incentive and fairness properties
in the presence of indifferences in firms’ preferences.
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1 Introduction

Since the celebrated work by Gale and Shapley (1962), matching theory has emerged as a
central tool for analyzing the design of matching markets. A key concept of the theory is
“stability” —the requirement that there be no incentives for participants to “block” (i.e.,
side-contract around) a prescribed matching. Eliminating blocks keeps markets robust and
promotes their long-term sustainability.! Even when strategic blocking is not a concern, as
in the case of public school matching where schools systems exercise direct control, stability
is desirable from the fairness standpoint because it eliminates so-called justified envy: given
stability, an agent has no envy toward another unless the latter’s partner prefers the envied.
In the school choice application, if schools’ preferences are determined by test scores or other
priorities that a student feels entitled to, eliminating justified envy appears to be important.

Unfortunately, a stable matching exists only under restrictive conditions. It is well known
that in two-sided many-to-one matching, stability is not guaranteed unless the preferences
of participants—for example, firms—are substitutable.? In other words, failure of substi-
tutability, or complementarity, can lead to instability. This is a serious problem given the
pervasiveness of complementary preferences. Firms often seek to hire workers with com-
plementary skills. For instance, in professional sports leagues, teams demand athletes that
complement one another in skills and roles, etc. Some public schools in New York City
seek diversity in their student bodies with respect to their skill levels.> US colleges tend to
assemble classes that are complementary and diverse in terms of their aptitudes, life back-
grounds, and demographics. To better organize such markets, one must understand the
extent to which stability can be achieved in the presence of such complementarities, or else
the applicability of matching theory will remain severely limited.*

This paper takes a step forward in accommodating complementarities and other forms

!Table 1 in Roth (2002) shows that unstable matching algorithms tend to die out while stable algorithms
survive the test of time.

2Substitutability here means that a firm’s demand for a worker never grows when more workers are
available. More precisely, if a firm does not wish to hire a worker from a set of workers, then it never prefers
to hire that worker from a larger (in the sense of set inclusion) set of workers. The existence of a stable
matching under substitutable preferences is established by Kelso and Crawford (1982), Roth (1985), and
Hatfield and Milgrom (2005), while substitutability was shown to be a maximal domain for existence by
Sénmez and Unver (2010), Hatfield and Kojima (2008), and Hatfield and Kominers (2017).

3 The so-called Educational option programs in NYC high schools seek to fill 16% of of their seats with
high reading performers (as measured by the score on the 7th grade standardized reading test), 68% of the
seats with middle reading performers and the 16% remaining seats with the low reading performers (see
Abdulkadiroglu, Pathak, and Roth (2005)).

4In particular, this limitation is important for many decentralized markets that might otherwise benefit
from centralization, such as the markets for college and graduate admissions. Decentralized college admissions
may entail inefficiencies and lack of fairness (see Che and Koh (2016)). But to centralize such college
admissions, one must know how to deal with potential instability arising from complementary preferences
by colleges.



of general preferences. In light of the general impossibility, this requires us to weaken the
notion of stability in some way. Our approach is to consider a large market. Specifically, we
consider a market that consists of a continuum of workers/students on one side and a finite
number of firms/colleges with continuum of capacities on the other. We then ask whether
stability can be achieved in an “asymptotic” sense—i.e., whether participants’ incentives for
blocking disappear as the economy grows large and approaches the continuum economy in
the limit. Such a weakening preserves the original spirit of stability: as long as the incentive
for blocking is sufficiently weak, the instability and fairness concerns will not be serious
enough to jeopardize the mechanism.

Large market models are also of interest since many real world matching markets are
large. School choice in a typical urban setting involves tens of thousands of students. Med-
ical matching involves about 35,000 and 9,000 doctors in the US and Japan, respectively.
Aside from complementary preferences, a large market model also allows us to address some
outstanding issues in finite markets. One such issue is multiplicity of stable matchings.
While the set of stable matchings can be large in finite economies, there is a sense in which
the set shrinks as the market grows large. Indeed, Azevedo and Leshno (2016) establish that
a stable matching is generically unique in a continuum economy when firms have so-called
responsive preferences, a special case of substitutable preferences. To what extent such a
result generalizes to more general preferences is an interesting issue that can be explored in
a large market setting.

Our main model considers a continuum economy with a finite number of firms and a
continuum of workers. Each worker may match with at most one firm and has strict prefer-
ence orders over alternative firms. Firms may match with a group (or mass) of workers, and
we assume general preferences over groups of workers. Importantly, their preferences may
exhibit complementarities. Our model includes the setup of Azevedo and Leshno (2016) as
a special case, which assumes that firms have responsive preferences. In addition, we allow
firms to be indifferent over different groups of workers. Indifferences may arise from firms’
limited observation about workers’ characteristics or their unwillingness/inability by law to
distinguish workers based on some characteristics. Indifferences are particularly common in
school choice, for schools apply coarse priorities to ration their seats,” in which case school
preferences encoding the priorities will exhibit indifference over students. Formally, we rep-
resent a firm’s preferences by a choice correspondence defined over measures of worker types
that may be potentially infinite. A matching is then defined as measures of worker types
assigned to alternative firms and is said to be stable if it is not blocked by any firms or
workers by themselves or via a coalition.

5In the public school choice program in Boston prior to 2005, for instance, a student’s priority at a
school was based only on broad criteria, such as the student’s residence and whether any siblings were
currently enrolled at that school. Consequently, at each school, many students were assigned the same
priority (Abdulkadiroglu, Pathak, Roth, and Sénmez, 2005).



Our first result is to characterize a stable matching as a fixed point of a suitably defined
correspondence over measures of workers available to firms. The characterizing correspon-
dence is reminiscent of the tatonnement process, in that it iterates each profile of worker
types (in measure) available to firms to a new profile of available workers after processing
firms’ optimal choice on the former profile. While a fixed point characterization is standard
in matching theory, our characterization is distinguished by the domain as well as the form
of the characterizing correspondence. Our correspondence is defined over measure space, a
rich functional space, unlike the standard approach. Further, the indifferences allowed for
within and across worker types present subtle issues in its construction, which causes the
construction to differ from those used in the existing matching literature, including Adachi
(2000), Hatfield and Milgrom (2005) and Echenique and Oviedo (2006).

Using our characterization, we establish existence of a stable matching in general environ-
ments. First, we show that a stable matching exists if firms’ preferences exhibit continuity,
more precisely if each firm’s choice correspondence is upper hemicontinuous and convex-
valued. This result is quite general because these conditions are satisfied by a rich class of
preferences—including those exhibiting complementarities.® The existence is established by
means of the Kakutani-Fan-Glicksberg fixed point theorem—a generalization of Kakutani’s
fixed point theorem to functional spaces—which is new to the matching literature to the
best of our knowledge.

Second, we obtain existence under the assumption of substitutable preferences for firms.
The logic of this result is familiar. Namely, substitutability means that firms reject more
workers as more workers become available to them. This feature gives rise to monotonicity
of our characterization map. While such monotonicity is known to admit a fixed point,
the generality of our model with choice correspondence makes it nontrivial to identify the
exact forms of substitutable preferences required for existence.” We identify two different
types of substitutable preferences with indifferences—a weak form leading to existence of a
stable matching and a strong form leading to existence of side-optimal (i.e., firm-optimal and
worker-optimal) stable matchings. We also identify a condition under which a side-optimal
stable matching can be found via a generalized Gale-Shapley algorithm. Finally, we also find
a condition, richness, that guarantees uniqueness of the stable matching, thus generalizing
the uniqueness result of Azevedo and Leshno (2016) beyond the special case of responsive
preferences. The richness delivers uniqueness under a full support assumption when firms
have responsive preferences but face general forms of group-specific quotas (e.g., affirmative

SFor instance, it allows for Leontief-type preferences with respect to alternative types of workers, in
which firms desire to hire each type of workers in equal size.

If a firm’s preferences are responsive, an arbitrary resolution of indifferences—or tie-breaking—preserves
responsiveness and thus implies existence. For more general preferences, however, a random or arbitrary
tie-breaking of indifferences does not necessarily lead to a choice function that possesses necessary properties
for existence.



actions).

We next draw implications of our results from a continuum economy for “nearby” large
finite economies, assuming that each firm has a continuous utility function over the mea-
sure of workers it matches with. Specifically, we show that any large finite economy that is
sufficiently close to our continuum economy (in terms of the distribution of worker types) ad-
mits a matching that is approximately stable in the sense that the incentives for blocking are
arbitrarily small. The converse also holds: namely, if any approximately stable matchings de-
fined over a sequence of large finite economies converge to a matching in the limit continuum
economy, then the limit matching constitutes an (exact) stable matching in the continuum
economy. In addition, the structure of approximately stable matchings—side-optimal stable
matchings as well as uniqueness—in large finite economies are well approximated by that of
the stable matchings in the continuum economy. Our results thus suggest the usefulness of
the continuum economy as a tool for studying large finite economies.

Finally, we study fairness and incentive properties of matching. Stability eliminates
justified envy and as such protects workers from being discriminated by a firm against the
workers it perceives as less desirable. But stability alone is silent on how fair a matching is in
treating workers that are perceived by a firm as equivalent. This issue is particularly relevant
in school choice since schools evaluate students based on coarse priorities. Kesten and Unver
(2014) show that, given responsive preferences by schools (i.e., firms in our model), it is
possible to implement a matching that eliminates discrimination among students enjoying
the same priority. We show that this stronger notion of fairness can be achieved even with
general preferences, either in a large economy or in a finite but “time-share” model in which
schools/firms and students/workers can share time or match probabilistically in a stable
manner in a finite economy (see Sotomayor (1999), Alkan and Gale (2003), and Kesten and
Unver (2014), among others).

The remainder of this paper is organized as follows. Section 2 presents an example to
illustrate our main contributions. Section 3 describes a matching model in the continuum
economy. Section 4 provides a fixed-point characterization of stable matchings in the contin-
uum economy. Sections 5 and 6 provide the existence of a stable matching under continuous
and substitutable preferences, respectively. In Section 7, we explore implications of our exis-
tence results for approximately stable matchings in large finite economies. In Section 8, we
investigate fairness and strategy-proofness. In Section 9, we discuss the related literature.
Section 10 concludes.

2 Illustrative Example

Before proceeding, we illustrate the main contribution of our paper with an example. We
first illustrate how complementary preferences may lead to the non-existence of a stable



matching when there is a finite number of agents. To this end, suppose that there are two
firms, f; and fs, and two workers, # and €. The agents have the following preferences:

0: f1 > fo f1:{0,0'} > o;
6/2f2>f1; f2{9}>{9/}>@

In other words, worker 6 prefers f; to fs, and worker @ prefers fy to fi; firm f; prefers
employing both workers to employing neither, which the firm in turn prefers to employing
only one of the workers; and firm f, prefers worker 6 to ', which it in turn prefers to
employing neither. Firm f; has a “complementary” preference, which creates instability.
To illustrate this, recall that stability requires that there be no blocking coalition. Due to
f1’s complementary preference, it must employ either both workers or neither in any stable
matching. The former case is unstable because worker ¢’ prefers firm f; to firm f1, and f,
prefers 6’ to being unmatched, so §' and f, can form a blocking coalition. The latter case
is also unstable because fy will only hire # in that case, which leaves # unemployed; this
outcome will be blocked by f; forming a coalition with 6 and ¢’ that will benefit all members
of the coalition.

Can stability be restored if the market becomes large? If the market remains finite, the
answer is no. To illustrate this proposition, consider a scaled-up version of the above model:
there are ¢ workers of type 6 and ¢ workers of type 6, and they have the same preferences as
previously described. Firm f, prefers type-0 workers to type-6’ workers and wishes to hire
in that order but at most a total of ¢ workers. Firm f; has a complementary preference for
hiring identical numbers of type-6 and type-6’ workers (with no capacity limit). Formally,
if z and 2’ are the numbers of available workers of types 6 and 6, respectively, then firm f;
would choose min{x, '} workers of each type.

When ¢ is odd (including the original economy, where ¢ = 1), a stable matching does
not exist.® To illustrate this, first note that if firm f; hires more than ¢/2 workers of each
type, then firm f, has a vacant position to form a blocking coalition with a type-8’ worker,
who prefers fy to fi. If fi hires fewer than ¢/2 workers of each type, then some workers will
remain unmatched (because f, hires at most ¢ workers). If a type-6 worker is unmatched,
then f, will form a blocking coalition with that worker. If a type-6’ worker is unmatched,
then firm f; will form a blocking coalition by hiring that worker and a 6 worker (possibly
matched with f5).

Consequently, “exact” stability is not guaranteed, even in a large finite market. Nev-
ertheless, one may hope to achieve approximate stability. This is indeed the case with the

above example; the “magnitude” of instability diminishes as the economy grows large. To

1
g 1L

5 workers of each

illustrate this, let ¢ be odd and consider a matching in which f; hire

8We sketch the argument here; Section S.1 of Supplementary Material provides the argument in fuller

form. When ¢ is even, a matching in which each firm hires Z of each type of workers is stable.



type, whereas f5 hires q;21 workers of each type. This matching is unstable because f, has
one vacant position it wants to fill, and there is a type-6’ worker who is matched to f; but
prefers fo. However, this is the only possible block of this matching, and it involves only one
worker. As the economy grows large, if the additional worker becomes insignificant for firm
fa relative to its size, which is what the continuity of a firm’s preference captures, then the
payoff consequence of forming such a block must also become insignificant, which suggests
that the instability problem becomes insignificant as well.

This can be seen most clearly in the limits of the above economy. Suppose there is a
unit mass of workers, half of whom are type 6 and the other half of whom are type ¢’. Their
preferences are the same as described above. Suppose firm f; wishes to maximize min{z, 2},
where z and 2’ are the measures of type-0 and type-0’ workers, respectively. Firm f; can
hire at most % of the workers, and it prefers to fill as much of this quota as possible with
type-0 workers and fill the remaining quota with type-6’ workers. In this economy, there
is a (unique) stable matching in which each firm hires exactly one-half of the workers of
each type. To illustrate this, note that any blocking coalition involving firm f; requires
taking away a positive—and identical-—measure of type-6’ and type-0 workers from firm f5,
which is impossible because type-6’ workers will object to it. Additionally, any blocking
coalition involving firm f; requires that a positive measure of type-6 workers be taken away
from firm f; and replaced by the same measure of type-0’ workers in its workforce, which
is impossible because type-6 workers will object to it. Our analysis below will demonstrate
that the continuity of firms’ preferences, which will be defined more clearly, is responsible for
guaranteeing the existence of a stable matching in the continuum economy and approximate
stability in the large finite economies in this example.

3 Model of a Continuum Economy

Agents and their measures. There is a finite set F' = {f1,..., f,} of firms and a mass
of workers. Let ¢ be the null firm, representing the possibility of workers not being matched
with any firm, and define F' := F U {¢}. The workers are identified with types # € ©, where
O is a compact metric space with metric d®. Let ¥ denote a Borel o-algebra of space ©. Let
X be the set of all nonnegative measures such that for any X € X', X(0) < 1. Assume that
the entire population of workers is distributed according to a nonnegative (Borel) measure
G e X on (6,%). In other words, for any E € ¥, G(E) is the measure of workers belonging
to E. For normalization, assume that G(0©) = 1. To illustrate, the limit economy of the
example from the previous section is a continuum economy with F = {fi, fo}, © = {0,60'},
and G({0}) = G({#'}) = 1/2.% In the sequel, we shall use this as our leading example for

9Henceforth, given any measure X, X () will denote a measure of the singleton set {#} to simplify
notation.



purposes of illustrating the various concepts we develop.

Any subset of the population or subpopulation is represented by a nonnegative measure
X on (6,%) such that X(E) < G(E) for all E € ¥.1° Let X < X denote the set of all
subpopulations. We further say that a nonnegative measure X € X is a subpopulation of
X € X, denoted as X = X, if X(E) < X(FE) for all E € ¥. We let Xx denote the set of all
subpopulations of X. Note that (X, =) is a partially ordered set.!!

Given the partial order =, for any X,Y € X, we define X v Y (join) and X A Y (meet)
to be the supremum and infimum of X and Y, respectively.!? Also, for any X’ < X, let
\V X" and A\ X’ denote the supremum and infimum of X”, which exist according to the next
lemma.

Lemma 1. The partially ordered set (X, =) is a complete lattice.
Proof. See Section S.2.1 of Supplementary Material. |

The join and meet of X and Y in X can be illustrated with examples. Let X = (x,2’) and
Y = (y,vy') be two measures in our leading example, where x and 2’ are the measures of types
0 and ', respectively, under X, and likewise y and ¥’ under Y. Then, their join and meet are
respectively measures X vY = (max{z, y}, max{2’,¢y'}) and X AY = (min{zx, y}, min{z’, y'}).

Next, consider a continuum economy with type space © = [0, 1] and suppose the measure
G admits a bounded density ¢ for all # € [0,1]. In this case, it easily follows that for
X,Y © G, their densities z and y are well defined.!® Then, their join Z = (X v Y)
and meet Z' = (X A Y) admit densities z and 2’ defined by z(0) = max{x(6),y(0)} and
Z'(0) = min{z(0),y(0)} for all 6, respectively. As usual, for any two measures X,Y € X,
X +Y and X — Y denote their sum and difference, respectively.

Consider the space of all (signed) measures (of bounded variation) on (0, ). We endow
this space with a weak-= topology and its subspace X with the relative topology. Given a
sequence of measures (Xj) and a measure X on (0, X)), we write X % X to indicate that
(X)) converges to X as k — oo under weak-= topology and simply say that (X) weakly
converges to X .

10T case of finitely many types, we will use “measure” and “mass” interchangeably.

HReflexivity, transitivity and antisymmetry of the order are easy to check.

2For instance, X v Y is the smallest measure of which both X and Y are subpopulations. It can be
shown that, for all £ € ¥,

(X VY)(E)=sup X(EnD)+Y(En D).
Dex.

B1X([0,0']) — X([0,0])] < |G([0,0]) — G([0,0])] < g|¢' — 0], where g := sup, g(s). Thus, X is Lipschitz
continuous, and its density is well defined.

14\We use the term “weak convergence” because it is common in statistics and mathematics, although
weak-* convergence is a more appropriate term from the perspective of functional analysis. As is well known,

X wr X if S@ hdXy — S@ hdX for all bounded continuous functions h. See Theorem 12 in Appendix A for
some implications of this convergence.



Agents’ preferences. We now describe agents’ preferences. Each worker is assumed to
have a strict preference over F. Let a bijection P : {1,...,n + 1} — F denote a worker’s
preference, where P(j) denotes the identity of the worker’s j-th best alternative, and let P
denote the (finite) set of all possible worker preferences.

We write f >p f’ to indicate that f is strictly preferred to f’, according to P. (We
sometimes write f >4 f’ to express the preference of a particular type 6.) For each P € P, let
Op < O denote the set of all worker types whose preference is given by P, and assume that ©p
is measurable and G(00p) = 0, where 0O p denotes the boundary of ©p.'> Because all worker
types have strict preferences, © can be partitioned into the sets in Pg := {Op : P € P}.

We next describe firms’ preferences. We do so indirectly by defining a firm f’s choice
correspondence Cy : X 3 X, where C;(X) < Xx is a nonempty set of subpopulations
of X for any X € X.'® We assume that C; satisfies the revealed preference property:
for any X, X’ € X with X = X', if Cp(X') n Xx # &, then Cp(X) = Cp(X') n Xx.1"
Let Ry : X 3 X be a rejection correspondence defined by Rf(X) := {Y € X|Y =
X — X' for some X' € Cy(X)}. By convention, we let Cy(X) = {X},VX € X, meaning that
Ry(X)(E) =0forall X € X and £ € ¥. We will call Cy (resp,. Ry) afirm f’s choice (resp.,
rejection) function if |C¢(X)| = 1 for all X € X. In this case, we slightly abuse notation
to write a unique outcome of function without the set notation.

In our leading example, the choice functions of firms f; and f5 are given respectively by

Cr, (w1, 7y) = (min{ay, 21}, min{ay, 21}) (1)

Ct, (2, 2h) = (:vg,min{% — :UQ,:L"Q}) , (2)

when z; € [0, 2] of type-0 workers and o/ € [0, 2] of type-6’ workers are available to firm f;,

2 2
i=1,2.
In sum, a continuum economy is summarized as a tuple I' = (G, F, Pg, Cr).

Matchings, and their efficiency and stability requirements. A matching is M =
(My) sep such that My e X for all f e Fand } ;. My = G. Firms’ choice correspondences

15This is a technical assumption that facilitates our analysis. The assumption is satisfied if, for each
P € P, Op is an open set such that G(Upep©Op) = G(O): all agents, except for a measure-zero set, have
strict preferences, a standard assumption in matching theory literature. The assumption that G(0©p) = 0
is also satisfied if © is discrete. To see it, note that 0F := E n E¢, where E and E¢ are the closures of E
and E°, respectively. Then, we have E = E and E¢ = E¢,so En E¢ = En E° = (J. Hence, the assumption
is satisfied.

16 Taking firms’ choices as a primitive offers flexibility with regard to the preferences over alternatives
that are not chosen. This approach is also adopted by other studies in matching theory, which include Alkan
and Gale (2003) and Aygiin and Sénmez (2013), among others.

1TThis property must hold if the choice is made by a firm optimizing with a well-defined preference
relation. The property is often invoked in the matching theory literature (see Hatfield and Milgrom (2005),
Fleiner (2003), and Alkan and Gale (2003)). Recently, Aygiin and Sénmez (2013) have clarified the role of
this property in the context of matching with contracts.



can be used to define a binary relation describing firms’ preferences over matchings. For any
two matchings, M and M’', we say that firm f prefers M} to My if M} € Cy(M} v My), and
write M} > M;.'® We also say that f strictly prefers M} to My it M} > My holds while
My >y M } does not, and write M } > My. The resulting preference relation amounts to
taking a minimal stance on the firms’ preferences, limiting attention to those revealed via
their choices. Given this preference relation, we denote M’ >p M if M} >; My for all f € F.
Also, M" >p M if M’ >r M and M]’c > My for some f e F.
To discuss workers” welfare, fix any matching M and any firm f. Let

D (M):=> > Mp©pn)and D (M):= > > My(©pn-) (3)

PEP fref:f'=pf PEP fref:f'<pf

denote the measure of workers assigned to firm f or better (according to their preferences)
and the measure of workers assigned to firm f or worse (again, according to their preferences),
respectively, where M (©p n-) denotes a measure that takes the value My (Op N E) for each
E € 3. Starting from M as a default matching, the latter measures the number of workers
who would rather match with f. Meanwhile, the former measure is useful for characterizing
the workers’ overall welfare. For any two matchings M and M’, we say that M’ >g M if
D=/ (M) c D=/(M"),Yf e F and M" >¢ M if M’ =g M and D=/ (M) # D=/ (M") for some
f e F.19 In other words, for each firm f, if the measure of workers assigned to f or better is
larger in one matching than in the other, then we can say that the workers’ overall welfare
is higher in the former matching.
Equipped with these notions, we can define Pareto efficiency and stability.

Definition 1. A matching M is Pareto efficient if there is no matching M’ # M such
that M" > M and M’ >¢ M, and weakly Pareto efficient if there is no matching M’
such that M’ >r M and M’ >¢g M.2°

Definition 2. A matching M is stable if

1. (Individual Rationality) For each f € F, M; € Cy(My); for each P € P, M;(Op) =
0,Vf <p @; and

2. (No Blocking Coalition) No f € F and M} € X exist such that M; = D=/(M) and
M]/c >f Mf.

18This is known as the Blair order in the literature. See Blair (1984).

9Note that this comparison is made in the aggregate matching sense, without keeping track of the
identities of workers who get better off with M’.

20In the definition of Pareto efficiency, the condition that M’ >g M and M’ # M implies that at least
some workers are strictly better off under M’ since workers have strict preferences, and hence M’ Pareto
dominates M (though all firms may be indifferent between M and M’).

10



Condition 1 requires that no firm wish to unilaterally drop any of its matched workers
and that each matched worker prefer being matched to being unmatched.?! Condition 2

requires that there be no firm and no set of workers who are not matched together but prefer
to be. When Condition 2 is violated by f and M}, we say that f and M} block M.

Remark 1 (Equivalence to group stability). We say that a matching M is group stable if
Condition 1 of Definition 2 holds and,

2'. There are no F' < F and M}, € X'l such that M} >; My and M} = D=/(M) for all
fer.

This definition strengthens our stability concept because it requires that matching be im-
mune to blocks by coalitions that potentially involve multiple firms. Such stability concepts
with coalitional blocks are analyzed by Sotomayor (1999), Echenique and Oviedo (2006),
and Hatfield and Kominers (2017), among others.?? It is easy to see in our context that a
matching is stable if and only if it is group stable.?

As in the standard finite market, stability implies Pareto efficiency:

Proposition 1. Any stable matching is weakly Pareto efficient, and Pareto efficient if each
Cy is a choice function.

Proof. See Section 5.2.2 of Supplementary Material. ||

4 A Characterization of Stable Matching

This section characterizes stable matchings, which will serve as a tool for establishing their
existence in the subsequent sections. Stability exhausts the opportunities for blocking for

21'We note that the first part of Condition 1 (namely My € C¢(M;) for each f € F) is implied by Condition
2. To see this, suppose My ¢ Cy(My). Let M} € C(My). Then, M = My = D=/(M), and also M} >; My,
violating Condition 2. We opted to write that condition to follow the convention in the literature and ease
the exposition.

22By requiring M = D=/ (M) for all f € F"in Condition 2’, our group stability concept implicitly assumes
that workers who consider joining a blocking coalition with f € F” use the current matching (M) .5 as
a reference point. This means that workers are available to firm f as long as they prefer f to their current
matching. However, given that a more preferred firm f’ € I’ may be making offers to workers in D=/ (M) as
well, the set of workers available to f may be smaller. Such a consideration would result in a weaker notion
of group stability. Any such concept, however, will be equivalent to our notion of stability because, as shown
in footnote 23, even the most restrictive notion of group stability—the concept using D=/ (M) in Condition
2’—is equivalent to stability, while stability is weaker than any group stability concept described above.

23(Clearly, any group stable matching is stable, because if Condition 2 is violated by a firm f and M JQ,
then Condition 2’ is violated by a singleton set F’ = {f} and M,: - The converse also holds. To see why,
note that if Condition 2’ is violated by F’ € F and M., then Condition 2 is violated by any f € F’ and M}
because M} >; My and M} = D=/(M), by assumption.
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all firms, which requires each firm to choose optimally from the workers “available” to that
firm. Hence, to identify a stable matching, one must identify the set of workers available to
each firm. But this is inherently of “fixed-point” character, since the availability of a worker
to a firm depends on the set of firms willing to match with her, but that set depends in turn
on firms’ optimization given the workers “available” to them.

The preceding logic suggests that a stable matching is associated with a fixed point of
a mapping—or more intuitively, a stationary point of a process that repeatedly revises the
set of available workers to the firms based on the preferences of the workers and the firms.
Formally, we define a map T : X"t = X! such that for each X € X",

T(X):= {f( e xnt! ‘there exists (Yy) e With Yy € Ry(Xy),Vf € F, such that

X0= > Gern)+ Y Yff(@Pm-),erF}, (4)

P:P(1)=f P:P(1)#£f

where fP € I, called the immediate predecessor of f at P, is a firm that is ranked
immediately above firm f according to P.?* This mapping takes a profile X of available
workers as input and returns a nonempty set of profiles of available workers. For each
X € X" T(X) is nonempty because R;(X) is nonempty for each f € F by assumption.

To explain, fix a firm f. Consider first the worker types ©p who rank f as their first-best
choice (i.e., f = P(1)). All such workers are available to f, which explains the first term
of (4). Consider next the worker types Op who rank f as their second-best choice (i.e.,
f = P(2)). Within this group, only the workers rejected by their top-choice firm P(1) = f¥
are available to f, which explains the second term of (4). Now, consider the worker types
©p who rank f as their third-best choice (i.e., f = P(3)). Within this group, only the
workers rejected by both their first- and second-choice firms, that is, P(1) and P(2), would
be available to f. To calculate the measure of these workers, however, one may focus on
those available to and rejected by P(2) = fT, since, by the previous observation, the workers
available to P(2) are those who are already rejected by P(1). This explanation analogously
applies to all the firms going down workers’ rank order lists.

The map T can be interpreted as a tatonnement process in which an auctioneer iteratively
quotes firms’ “budgets” (in terms of the measures of available workers). As in a classical
Walrasian auction, the budget quotes are revised based on the preferences of the market
participants, reducing the budget for firm f (i.e., making a smaller work force available)
when more workers are demanded by the firms ranked above f and increasing the budget
otherwise. Once the process converges, one reaches a fixed point, having found the workers
who are “truly” available to firms—those who are compatible with the preferences of all
market participants.

2Formally, f© >p f and f' >p fF for any f' >p f.
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Remark 2. The mapping 7" can be seen as mimicking Gale and Shapley’s deferred accep-
tance algorithm (DA), in particular the worker-proposing one. To see this, consider the case

in which each Cy is a choice function. Then, we can write T as a profile (7') ei» Where, for
each X e At

Ty(X) = Z GOpn )+ Z Ry (Xr)(©p 0 ). (5)

P:P(1)=f P:P(1)#£f

For each firm f, this mapping returns the workers who are rejected by an immediate predeces-
sor of f. These are analogous to the workers who propose to firm f in the worker-proposing
DA algorithm, since they are those rejected by the immediate predecessor. Indeed, this anal-
ogy becomes precise when the firms’ preferences are substitutable (that is, each Ry is mono-
tonic): each iteration of the mapping T (starting from zero subpopulations) coincides with
the cumulative measures of workers proposing at a corresponding step of worker-proposing
DA. This result is shown in Section S.3 of Supplementary Material. Our fixed-point mapping
resembles those developed in the context of finite matching markets (e.g., see Adachi (2000),
Hatfield and Milgrom (2005), and Echenique and Oviedo (2006)), but the construction here
differs since a continuum of workers draw their types from a very rich space and they are
treated in aggregate terms without being distinguished by their identities.

We now present our main characterization theorem.

Theorem 1. There exists a stable matching M with X; = D=/(M),Yf € F if and only if
(Xf) i 15 a fived point of T (i.e., X € T(X)).

Proof. See Appendix A. |

This characterization identifies the measures of workers available to firms as a fixed point
of T. A stable matching is then obtained as firms’ optimal choices from these measures.?

This process is illustrated in the next example.

Example 1. Consider our leading example with a continuum of workers in Section 2.
The candidate measures of available workers are denoted by a tuple X = (X, Xy,) =
(1,2}, x2,2%) € [0,1
available to f;. Since f; is the top choice for 8 and f; is the top choice for &', according to

14, where Xy, = (z;,2}) is the measures of type 6 and type 6" workers

our T" mapping, all of these workers are available to the respective firms. Thus, without loss

we can set 21 = G(0) = 5 and 25, = G(0') = 3 and consider (3,

/ 1 :
5 =3 ¥, T2, 3) as our candidate

ZImportantly, an arbitrary selection from C;(Xy) for each f € F at the fixed point X need not lead to a
matching, let alone a stable one. Care is needed to construct a stable matching. Equation (13) in Appendix
A provides a precise formula to obtain a stable matching M from a fixed point X of T. We thank a referee
for raising a question that led us to clarify this issue.
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measures. The firms’ choice functions are then given by (1) and (2) while the fixed-point
mapping in (5) is given by

Tfl(X) = (%7Rf2(x2>%>(‘9,)) = (%>$2) (6)
Th(X) = (Rp(5,29)(0),5) = (5 — 1. 3) - (7)

Thus, (x1,2;xq, x5) is a fixed point of T"if and only if (1, z}; xe, 2)) = (%,xg; % — 1z, %), or
% and | = zy = i. The optimal choice by each firm from the fixed point then
gives a matching

Ty =ah =

_ ( fi f2 )
=1 1 1 1 )
30+ 30" 20+ 30
where the notation here indicates that each of the firms f; and f5 is matched to a mass ;11 of

worker types 6 and ¢’ (we will use an analogous notation throughout). This matching M is
stable.

In light of Theorem 1, existence of a stable matching reduces to the existence of a fixed
point of T. The next two sections identify two sufficient conditions for the latter.

5 The Existence of a Stable Matching in the Contin-

uum Economy

Based on our characterization result, we now present the main existence result under the
standard continuity assumption on the firms’ choice correspondences. We say that firm f’s
choice correspondence C; is upper hemicontinuous if, for any sequences (X*).ey and
(X*)pen in X such that X* SR X, X* SR X, and X* € C;(X*),Vk, we have X € Cf(X).20
As suggested by the name, the upper hemicontinuity means that a firm’s choice changes
continuously with the distribution of available workers. We say that Cy is convex-valued
if C¢(X) is a convex set for any X € X.27

Definition 3. Firm f € F has a continuous preference if C is upper hemicontinuous
and convex-valued.

Many complementary preferences are compatible with continuous preferences. Recall
Example 1, for instance, in which firm f; has a Leontief-type preference: it wishes to hire an
equal number of workers of types 6 and ¢’ (specifically, the firm wants to hire type-6 workers

26T his definition is often referred to as the “closed graph property,” which implies (the standard definition
of) upper hemicontinuity and closed-valuedness if the range space is compact, as is true in our case.

2TBy the familiar observation based on Berge’s maximum theorem (see Ok (2011) for instance), an upper
hemicontinuous and convex-valued choice correspondence arises when a firm has a utility function v : X - R
that is continuous (in weak-* topology) and quasi-concave.
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only if type-0’ workers are also available, and vice versa). As Example 1 shows, a stable
matching exists despite the extreme complementarity. Also note that firm’s preferences are
clearly continuous. This is not a mere coincidence, as we now show that continuity of firms’
preferences implies the existence of a stable matching:

Theorem 2. If each firm f € F' has a continuous preference, then a stable matching exists.

Proof. See Appendix A. |

Given the fixed-point characterization of stable matchings in Theorem 1, our proof ap-
proach is to show that 7" has a fixed point. To this end, we first demonstrate that the upper
hemicontinuity of firm preferences implies that the mapping 7' is also upper hemicontinu-
ous. We also verify that X is a compact and convex set. Upper hemicontinuity of T" and
compactness and convexity of X allow us to apply the Kakutani-Fan-Glicksberg fixed point
theorem to guarantee that T has a fixed point.2® Then, the existence of a stable matching
follows from Theorem 1, which shows the equivalence between the set of stable matchings
and the set of fixed points of T'.

Although the continuity assumption is quite general, including preferences not allowed
for in the existing literature, it is not without a restriction, as we illustrate next.

Example 2 (Role of upper hemicontinuity). Consider the following economy modified from
Example 1: There are two firms f; and f,, and two worker types 6 and €', each with measure
1/2. Firm f; wishes to hire ezactly measure 1/2 of each type and prefers to be unmatched
otherwise. Firm fy’s preference is responsive subject to the capacity of measure 1/2: it
prefers type-0 to type-0’ workers, and prefers the latter to leaving a position vacant. Given
this, C, violates upper hemicontinuity while C, does not. As before, we assume

0:f1> fo
0/1f2>f1.

No stable matching exists in this environment, as shown in Section S.4 of Supplementary
Material.

The upper hemicontinuity assumption is important for the existence of a stable matching;
this example shows that nonexistence can occur even if the choice function of only one firm
violates upper hemicontinuity. This example also suggests that non-existence can reemerge
when some “lumpiness” is reintroduced into the continuum economy (i.e., one firm can only
hire a minimum mass of workers). However, this kind of lumpiness may not be very natural

28For the Kakutani-Fan-Glicksberg fixed point theorem, refer to Theorem 16.12 and Corollary 16.51 in
Aliprantis and Border (2006).
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in a continuum economy, which is unlike a finite economy where lumpiness is a natural
consequence of the indivisibility of each worker.
By comparison, the convex-valuedness may rule out some realistic case:

Example 3 (Role of convex-valuedness). Let us modify again Example 1 as follows. The
preferences of the firm f; as well as those of the two worker types remain the same, while
the masses of type-6 and type-8’ workers are 0.6 and 0.4, respectively. Firm f5 specializes
in only one type of workers and prefers hiring as many workers as possible: If x and x’ are
the available masses of the two types, then the firm only hires mass x of type 0 if x > 12
and only mass 2’ of type ¢ if x < 2/, but never wishes to mix the two types. If z = 2/,
the firm is indifferent between hiring either type of mass = (again without mixing types). It
is straightforward to verify that the choice correspondence corresponding to this preference
is upper hemicontinuous. However, it is not convex-valued since, for any x = 2’ > 0, the
firm’s choice set contains (z,0) and (0,z) but not any (strict) convex combination of them.
Consequently, a stable matching does not exist in this case (see Section S.4 of Supplementary
Material).

Remark 3 (Algorithm to find a fixed point of T"). It will be useful to have an algorithm to
find or at least approximate a stable matching, which is equivalent to approximating a fixed
point of T'. One such algorithm is the tatonnement process, that is, to apply T iteratively
starting from an initial point X° € X"*!. Unfortunately, this algorithm does not always
work. To see this, consider the mapping 7" in (6) and (7), and let ¢ (x2) := Ry, (22, 3)(0) =
zy and ¢o(2)) = Ry (3,21)(0) = 3 — ). Then, T is effectively reduced to a mapping:
(2, x2) ¥ (P1(x2), P2(x])), which is depicted as in Figure 1(a). While its fixed point exists
(i.e, the intersection in Figure 1(a)), if one starts anywhere else, say a point X° in that
figure, the algorithm gets trapped in a cycle.

The map T could work for other situations, however. For instance, modify Example 1
yet again so that, keeping the “Leontief” style of choice function, the firm f; would now like
to hire mass a < 1 of type-0 workers per unit mass of type-6’ workers. Then, the mapping
(¢1, ¢2) changes to the one in Figure 1(b), where the tatonnement process converges to a
unique fixed point irrespective of the starting point, as can be seen in Figure 1(b).? In fact,
the composite mapping 7% = T o T in this modified example is a contraction mapping, so
the convergence result can be understood by invoking the following generalized version of
contraction mapping theorem (see Ch. 3 of Ok (2017) for instance):

Proposition 2. Suppose that T is singleton-valued, and let T = T™ denote a function
obtained from iterating T by m times. If T is a contraction mapping, then, starting with any
X0 e xntt Xk .= T(X* 1) converges to a unique fized point of T as k — .

29Gee Section S.4 of Supplementary Material for detailed analysis.
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Figure 1: Fixed Point of Mapping T

While the contraction mapping theorem provides a condition for our mapping 7" to serve
as an algorithm for finding its fixed point, it need not be the only condition. We will later
see another convergence result when firms have substitutable preferences (see Part (ii) of
Theorem 4).

6 Substitutable Preferences

In this section, we study another class of preferences known as substitutable preferences in
the framework of continuum economy. Although substitutable preferences have been stud-
ied extensively before, there are at least three reasons to study them in our context. First,
substitutable preferences yield useful results beyond existence, such as side-optimal stable
matchings and a constructive algorithm, and it is interesting to see if these results gen-
eralize to a large market. Further, as will be seen, substitutable preferences need not be
continuous, so existence of a stable matching is not implied by Theorem 2. Second, most ex-
isting studies on substitutable preferences are confined to the domain of strict preferences.
However, indifferences are a prevalent feature of many markets (see for instance, Abdulka-
diroglu, Pathak, and Roth (2009)), and yet little is known on whether existence and other
useful properties such as side-optimal stable matchings hold under substitutable preferences

30Sotomayor (1999) is a notable exception.
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31 Third, the large market setting raises another important question—

with indifferences.
uniqueness. Azevedo and Leshno (2016) offer sufficient conditions for a stable matching to
be unique in the large economy. Their striking result is obtained in the restricted prefer-
ence domain of “responsive” preferences, however, and it is interesting to ask if uniqueness

extends to general substitutable preferences.

6.1 Existence and Side-Optimality

To define substitutable preferences in our general domain, we need a few definitions. Given
a partial order =, a correspondence h : X 3 X is said to be weak-set monotonic if it satisfies
the following: (i) for any X = X’ and Z € h(X), there is Z’ € h(X') with Z = Z’; (ii) for
any X = X’ and Z' € h(X"), there is Z € h(X) with Z = Z'.32

Definition 4. Firm f’s preference is weakly substitutable if R; is weak-set monotonic.

The current definition preserves the well-known property of a firm becoming more selec-
tive as more workers are available. The novelty here is that substitutability is defined for
a rejection correspondence (instead of a rejection function, as in the literature). Indeed, it
can be seen as a generalization of the standard notion: if C¢(X) is singleton-valued for all
X € X, this notion collapses to the requirement that ¢y be monotonic in the underlying
order =: R¢(X) = R¢(X’) whenever X = X'

We now establish the existence result in the domain of weakly substitutable preferences:

Theorem 3. If each firm’s preference is weakly substitutable and each Cy is closed-valued,
then a stable matching ewists.

Proof. See Appendix B. |

As before, this result rests on the existence of a fixed point of the correspondence T
defined earlier. One can see that if firms have weakly substitutable preferences, then T' is
weak-set monotonic. While Zhou (1994) extends Tarski’s well-known theorem to the case
of correspondences, his monotonicity condition is stronger than ours, so we instead apply
a recent result due to Li (2014) to prove the existence of a fixed point. The weakening of
the required condition is not merely for generality. Weakly substitutable preferences allow

31Existence for the general substitutable preferences is not clear, unlike the case of responsive preferences.
In the latter case, an arbitrary tie breaking (e.g., random tie breaking) preserves responsiveness, leading to
existence. To our knowledge, there is no straightforward generalization of this method to the general class
of substitutable preferences.

32The weak-set monotonicity is weaker than the strong-set monotonicity often used in the monotone
comparative statics (e.g., Milgrom and Shannon (1994)).

33The closed-valuedness is a mild condition that may hold even if the choice correspondence fails to be
upper hemicontinuous, as demonstrated by the example in footnote 34.
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for indifferences that arise most naturally: for instance, consider a firm with a fixed quota
which can be filled with any mixture of multiple types, as featured in the next example.

Example 4 (Weak Substitutability). Suppose that there are three firms, fi, f2, and f3, and
two worker types, 6 and ', and that the capacity of each firm and the mass of each worker
type are all equal to % The workers’ preferences are

O:fi > fo> f3
0" :f1 > fs > fa

Firms f, and f3 have responsive preferences: they both prefer 6 to 6 (i.e., they wish to hire
in that order up to the quota of %) Firm f; is indifferent between the two types of workers:
its preference is described by a choice correspondence:

Ofl(I,ZL’,) = {(y7y,) € [O,ZE] X [va/] |y + y/ = min{x + :L',, %}}

This choice correspondence satisfies the weak substitutability, as one can easily check. There
exists a continuum of stable matchings®**: for any z € [0, %], it is a stable matching for firm
f1 to hire mass z of type-0 workers and % — z of type-0’ workers, for firm f5 to hire mass % —z
of type-0 workers and for firm f3 to hire mass z of type-8’ workers. Clearly, the higher z is,
the worse off firm f, is and the better off firm f3 is. Hence, the firm-optimal stable matching
does not exist. Neither does the worker-optimal stable matching since firm f; hires type-6
and type-6’ workers in different proportions across different stable matchings.

We next introduce a stronger notion of substitutability that would restore side optimality.
We say a set X' < X' of subpopulations is a complete sublattice if X’ contains both \/ Z and
N Z for every set Z < X'.3°

Definition 5. Firm f’s preference is substitutable if (i) Ry is weak-set monotonic and (ii)
for any X € X, Ry(X) is a complete sublattice.*®

34In this example, firms’ preferences satisfy the conditions of Theorem 2, so Theorem 3 is not needed
for showing existence of a stable matching. However, one can easily obtain an example where the latter
theorem applies while the former does not. In Example 4, suppose firm f; is instead endowed with a choice
correspondence defined as follows: for some Z € [0,1/2],

{(z,2")} ife! <z

(0,9) ]y €[z,2]} ifa' =7

Ofl (I’,SE’) = {

This correspondence fails to be upper-hemicontinuous, rendering Theorem 2 inapplicable, but the conditions
of Theorem 3 are satisfied, as can be checked easily.

35 Authors use different terminologies for the same property: Topkis (1998) calls it subcomplete sublattice
and Zhou (1994) calls it closed sublattice.

36This condition is weaker than Zhou (1994)’s which requires strong-set monotonicity in place of (i). Our
substitutability guarantees side optimality but not a complete lattice, which Zhou’s condition guarantees.
See Example S1 in Section S.5 of Supplementary Material for the case in which our substitutability condition
holds while the strong-set monotonicity fails, causing the lattice structure to fail.
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When O is singleton-valued, the condition reduces to the standard notion of substi-
tutability, so the distinction between the two different versions of substitutability disappears.
Nevertheless, the requirements for substitutable preferences are stronger in the current weak
preference domain. In particular, (ii) is a strong requirement that preferences such as those
described by C/, in Example 4 fail .3

At the same time, substitutable preferences do accommodate some types of indifferences.
Imagine, for instance, a school which has a selective program with limited quota and a
general program with flexible quotas. For the selective program, the school admits students
in the order of their scores up to its quota. Omnce the quota is reached, the school may
admit students for the general program with flexible quotas and without consideration of
their scores. To our knowledge, the next result is the first to establish the existence of

side-optimal stable matchings in the weak preference domain?®:

Theorem 4. Suppose that each firm’s preference is substitutable. Then, the following results
hold: letting M* denote the set of stable matchings,

(i) (Side-Optimal Stable Matching) There exist stable matchings, M, M € M*, that are
respectively firm-optimal /worker-pessimal and firm-pessimal/worker-optimal in the fol-
lowing senses: If M € M*, then M >¢ M >p M and M <o M <p M.

(i) (Generalized Gale-Shapley) If, in addition, C} is order continuous for each f*° then
the limit of the algorithm that iteratively applies T starting with X; = G,Vf € F,
produces a firm-optimal stable matching, and the limit of the algorithm that iteratively
applies T starting with Xy = 0,Vf € F, produces a worker-optimal stable matching,
where T(X) :=\/T(X) and T(X) := ANT(X) for any X € X"*L.

Proof. See Appendix B. |

While the existence of firm-optimal and worker-optimal stable matchings is well-known
for the strict preference domain, no such result is previously known for the case in which
the firms’ preferences involve indifferences. In fact, the received wisdom is that firms’ indif-
ferences are incompatible with the presence of side-optimal stable matchings even in a more
restrictive domain such as responsive preferences. Theorems 3 and 4, taken together, clarify

37To see this, note Z = {(3,0),(0,3)} = Ry (3,3), but \VZ = (3,3) ¢ Ry (3.3), so Ry, is not a
sublattice (let alone a complete one).

38Theorem 4 does not require closed-valuedness of the choice correspondences, which Theorem 3 requires.
It is often the case, however, that part (ii) of the substitutability (i.e., the complete sublattice property)
implies the closed-valuedness. For instance, the relation holds if there are finitely many worker types so X
is a subset of a finite dimensional Euclidean space.

39A correspondence C' is order-continuous if C(Xy) wh C(X) for any increasing sequence Xy wh X,
and C(Xy) w C(X) for any decreasing sequence Xy w X, where C(X) = \/ C(X) and C(X) = A C(X)
for any X € X.
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the types of indifferences that permit the existence of side-optimal stable matchings and
those that do not. In particular, responsive preferences with indifferences (studied by Ab-
dulkadiroglu, Pathak, and Roth (2009) and Erdil and Ergin (2008) for instance) satisfy weak
substitutability but fail substitutability and, consistent with Theorems 3 and 4, guarantee
the existence of a stable matching but not a side-optimal one.

The second part of Theorem 4 shows that a generalized version of Gale-Shapley’s deferred
acceptance algorithm finds a side-optimal stable matching, but only with the additional
(order) continuity assumption.?® Without this continuity property, the algorithm may get
“stuck” at an unstable matching. (Example S2 in Section S.5 of Supplementary Material
illustrates this point.)

Next, we adapt another well-known condition to our context:

Definition 6. Firm f’s preference exhibits the law of aggregate demand (or LoAD) if
for any X, X' € X with X = X', sup C;(X)(©) < inf Cp(X')(0).4

Given LoAD and substitutability, we show that the total measure of workers employed
by each firm in any stable matching is uniquely pinned down:

Theorem 5 (Rural Hospital). If each firm’s preference is substitutable and satisfies LoAD,
then, for any M € M*, we have M;(©) = M(©),Yf € F and M, = M,.

Proof. See Appendix B. |

Remark 4 (Finite economy). While the results are established for our continuum economy
model, they apply to finite economy models with little modification. (Note for instance,
the order-continuity required for Theorem 4-(ii) would be satisfied vacuously for the finite
economy.) To the extent that these results were obtained in the extant literature for strict
preferences, the current results would amount to their extensions to more general preferences
in the finite-economy context.

6.2 Uniqueness of Stable Matching

Azevedo and Leshno (2016) established the uniqueness of a stable matching in a continuum
economy when firms have responsive preferences. We now investigate the extent to which
the uniqueness result extends to the general substitutable preferences environment. The
uniqueness question is important not only for the continuum economy but also for the large

40This result is reminiscent of the well-known property of a supermodular game whereby, given the
order continuity property, iterative deletion of strictly dominated strategies starting from the “largest” and
“smallest” strategies produces largest and smallest Nash equilibria, respectively. See Milgrom and Roberts
(1990) and Milgrom and Shannon (1994).

41This property is an adaptation of a property that appears in the literature such as Hatfield and Milgrom
(2005), Alkan (2002), and Fleiner (2003).
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finite one, as will be shown in the next section. Expanding the domain beyond responsive
preferences helps to identify the underlying condition that drives uniqueness.

To begin, we assume each firm’s choice is unique, i.e., each Cy is a choice function, and,
for any matching M, firm f, and subset F’ of firms, we let M 1{:/ be a subpopulation of workers
defined by

ML (E) = 2 Z My (©p n E) for each E € 3.
PeP fl:f>pf',f'¢F’
In words, this is the measure of workers who are matched outside firms F’ and available to
firm f under M (excluding those matched with f).#> Consider the following property:

Definition 7 (Rich preferences). The preferences are rich if for any individually rational
matching M # M such that M >p M, there exists f* € F such that M i # Cpa (Mg + Mb’:*
where F:= {f € F|M; >; M},

~—

The condition is explained as follows. Consider any individually rational matching M
that is preferred to the worker-optimal stable matching M by all firms, strictly so by firms
in F < F. Then, the richness condition requires that, at matching M, there must exist a
firm f* that would be happy to match with some workers who are not hired by the firms in
F and are willing to match with f* under M. Since firms are more selective at M than at
M, it is intuitive that a firm would demand in the latter matching some workers that the
more selective firms would not demand in the former matching. The presence of such worker
types requires richness of the preference palette of firms as well as workers—hence the name.
This point will be seen more clearly in the next section when one considers (a general class
of) responsive preferences.

Theorem 6. Suppose that each firm’s preference is substitutable and satisfies LoAD. If the
preferences are rich, then a unique stable matching exists.

Proof. See Appendix B. |

Both richness and substitutability are necessary for the uniqueness result, as one can con-
struct counterexamples without much difficulty. LoAD is also indispensable for the unique-
ness, as demonstrated by Example S3 in Supplementary Material. (Recall the LoAD is
trivially satisfied by the responsive preferences of Azevedo and Leshno (2016).)

While rich preference may not be easy to check, one can show that the condition is
implied by a full-support condition in a general class of environments that nests Azevedo
and Leshno (2016) as a special case, as demonstrated below.

42Note that this is a valid subpopulation, or a measure, since it is the sum of a finite number of measures.
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Responsive Preferences with Submodular Quotas. Suppose firms have responsive
preferences but may face quotas on the number of workers they can hire from different
groups of workers. Such group-specific quotas, typically based on socio-economic status
or other characteristics, may arise from affirmative action or diversity considerations. The
resulting preferences (or choice functions) may violate responsiveness but they nonetheless
satisfy substitutability.

Assume that there is a finite set 7 of “ethnic types” that describe characteristics of a
worker such as ethnicity, gender, and socio-economic status, such that type 6 is assigned an
ethnic type 7(6) via some measurable function 7: © — 7. For each t € T, a (measurable) set
0! := {0 € O|7(0) = t} of agents has an ethnic type t. Each firm f faces a quota constraint
given by function Q; : 27 — R, such that for each 77 = T, Q;(7") is a maximum quota
(in terms of the measure of workers) the firm f can hire from the ethnic types in 7. We
assume that Q(J) =0, Q¢(T) > 0, and Q; is submodular: for any 7/, 7" < T,

Qp(T") + Qs(T") 2 QT v T") + Qp(T' N T").

Submodularity allows for the most general form of group-specific quotas that encompasses
all existing models: for instance, it holds if the firm faces arbitrary quotas on a hierarchi-
cal family of subsets of 7.4% This case includes a familiar case studied by many authors
(Abdulkadiroglu and Sénmez (2003), for instance) in which the family forms a partition of
T. Subject to the quotas, each firm has responsive preferences given by a score function
sy © — [0,1] such that f prefers type-6 to type-6’ worker if and only if s¢(6) > s¢(#'). For
simplicity, we assume that no positive mass of types has an identical score.**

Clearly, this class of preferences subsumes pure responsive preferences considered by
Azevedo and Leshno (2016) as a special case, but includes preferences that fail their condi-
tion. We can show that these preferences satisfy both substitutability and LoAD:

Lemma 2. A firm [ with responsive preferences facing submodular quotas exhibits a choice
function that satisfies substitutability and LoAD.*

Proof. See Section S.6.2 of Supplementary Material. |

Specifically, Section S.6 of Supplementary Material provides an algorithm that finds the
choice function for a firm with this type of preferences, and shows that the choice function
satisfies substitutability and LoAD. Given the prevalence of group-specific constraints, this
lemma, which is highly nontrivial, may be of interest in its own right. For instance, because

43A family of sets is hierarchical if, for any sets 77, 7", either 7' nT" = &, T' = T", or T" < T'. See
Che, Kim, and Mierendorff (2013) for the proof of this result.

4 This assumption is maintained by Azevedo and Leshno (2016), for instance.

45Section S.6.4 of Supplementary Material presents an example in which the substitutability fails due to
the quota constraints which is not submodular.
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the choice of each firm is a function, substitutability implies that the set of a stable matchings
has a lattice structure, a conclusion that does not hold under general choice correspondence,
even with substitutability.

Next, we generalize the full support condition of Azevedo and Leshno (2016) to the
current setup:

Definition 8. The worker population has a full support if for each preference P € P, any
ethnic type ¢t € T, and for any non-empty open cube set S < [0, 1]", the worker types

OL(S) = 18 Op 1 O | (31(6))per € 5}
have a positive measure, i.e., G(0%(S)) > 0.

Note that this condition boils down to that of Azevedo and Leshno (2016) if 7 is a
singleton set.

Proposition 3. Suppose each firm f € F has responsive preferences and faces submodular
quotas. Then, the full support condition implies the richness condition.

Proof. See Section S.6.3 of Supplementary Material. |1
Combining Lemma 2, Proposition 3, and Theorem 6, we conclude:

Corollary 1. Suppose each firm f € F has responsive preferences and faces submodular
quotas. If the full support condition holds, then a unique stable matching exists.

7 Approximate Stability in Finite Economies

In Section 2, we have observed that a finite economy, however large it is, may not possess
a stable matching while a large finite economy admits a matching that is stable in an ap-
proximate sense. Motivated by this and building on our findings in the continuum economy,
we here formalize the notion of approximate stability and demonstrate that the set of ap-
proximately stable matchings in large finite economies inherits the desirable properties of
stable matching in a continuum economy. Specifically, the set is nonempty, contains (ap-
proximately) firm-optimal and worker-optimal matchings, and consists of virtually unique
matching, whenever the corresponding property is true for the continuum economy. This
suggests that a continuum economy provides a good framework for analyzing large finite
economies, which is useful since a continuum economy often permits a more tractable anal-
ysis, as demonstrated by Azevedo and Leshno (2016).

To analyze economies of finite sizes, we consider a sequence of economies (I'?) ;e indexed
by the total number of workers ¢ € N. In each economy I'?, there is a fixed set of n firms,
fi,---, fn, that does not vary with q. As before, each worker has a type in ©. The worker
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distribution is normalized with the economy’s size. Formally, let the (normalized) population
G of workers in I'? be defined so that GI(E) represents the number of workers with types
in F divided by ¢g. A (discrete) measure X7 is feasible in economy I'? if X7 = G?, and it is
a measure whose value for any F is a multiple of 1/q. Let X'? denote the set of all feasible
subpopulations in T'%. Note that G9, and thus every X7 € X9, belongs to X, although it need
not be a subpopulation of G' and thus may not belong to X. Let us say that a sequence of
economies (I'?) ey converges to a continuum economy I' if GY % G,

To formalize approximate stability, we first represent each firm f’s preference by a cardi-
nal utility function u; : X — R defined over normalized distributions of workers it matches
with. And, this utility function represents a firm’s preference for each finite economy I'? as
well as for the continuum economy.*® We assume that u; is continuous in weak-+ topology.*”
Then, firm f chooses a feasible subpopulation that maximizes u in the respective economies:
in the continuum economy I, the firm’s choice correspondence is given by

Ct(X) = argmaxus(X'), VX € X; (8)
X=X

in each finite economy I'?, it is given by

CHX) = argmax us(X'),VX e X7. (9)
X'=X,X'eXa
All our results in this section rely on the existence of stable matching in the continuum
economy, which holds if each us is such that C; defined in (8) satisfies the conditions in
Theorem 2 or in Theorem 3. For instance, the conditions in Theorem 2 are satisfied if each
uy is quasi-concave in addition to being continuous, since C/ is then convex-valued and upper
hemicontinuous.*8
A matching in finite economy I'? is M7 = (M{) ;. such that M7 e X for all f € F and
> e M = G The measure of available workers for each firm f at matching M9 e (X'4)"*!
is D=/(M¢9), where D=/(-) is defined as in (3).* Note that because each M{ is a multiple of
1/q, D=/(M?) is feasible in 9. We now define e-stability in finite economy I'Y.

Definition 9. For any ¢ > 0, a matching M? € (X%)"*! in economy I'? is e-stable if (i)
for each f e F, M} e C}{(M}); (ii) for each P € P, M}{(©p) = 0,Vf <p ¢; and (iii)

46The assumption that the same utility function applies to both finite and limit economies is made
for convenience. The results in this section hold if, for instance, the utilities in finite economies converge
uniformly to the utility in the continuum economy.

47To guarantee the existence of such a utility function, we may assume, as in Remark 16, that each firm
is endowed with a complete, continuous preference relation. Then, because the set of alternatives X is a
compact metric space, such a preference can be represented by a continuous utility function according to the
Debreu representation theorem (Debreu, 1954).

48The upper hemicontinuity is an implication of Berge’s maximum theorem.

4970 be precise, D=/ (M?) is given as in (3) with G and M being replaced by G? and M9, respectively.
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up(M7) < uy(M7) + € for any f € F and M e X9 with M? = D= ()M7).5

Conditions (i) and (ii) of this definition are analogous to the corresponding conditions for
exact stability, so e-stability relaxes stability only with respect to condition (iii). Specifically,
an e-stable matching could be blocked, but if so, the gain from blocking must be small for any
firm.5! An e-stable matching will be robust against blocks if a rematching process requires
cost (at least of €) for the firm initiating a block, which seems sensible when there are some
frictions in the market.

Remark 5. For € > 0, we say that matching M is e-Pareto efficient if there is no matching
M’ # M and firm f € I such that M’ >p M, M' >¢ M, and us(M}) = us(My) + €. By an
argument analogous to the Pareto efficiency of a stable matching presented in Section 3, it
is easy to see that any e-stable matching is e-Pareto efficient.

Our main result follows:

Theorem 7. Fiz any sequence of economies (I'"),en that converges to a continuum economy
I' which admits a stable matching M. For any e > 0, there exists Q € N such that for all
q > Q, there is an e-stable matching M9 in 1'9.52

Proof. See Appendix C. |

This result implies that a large finite market admits an approximately stable matching
even with non-substitutable preferences. Interestingly, a converse of Theorem 7 also holds:

50 Approximate stability might be defined slightly differently. Say a matching MY is e-distance stable if
(i) and (ii) of Definition 9 hold and (iii’) d(J\Z]?7 MY) < e for any coalition f and M}I € XY that blocks MY in
the sense that MJ? = D=f(MY) and uf(M;Z) > uy(M7), where d(-,-) is the Lévy-Prokhorov metric (which
metrizes the weak-+ topology). In other words, if a matching M7 is e-distance stable, then the distance of
any alternative matching a firm proposes for blocking must be within € from the original matching. One
advantage of this concept is that it is ordinal, i.e., we need not endow the firms with cardinal utility functions
to formalize the notion. Note that the notion also requires the € bound for any blocking coalition, not just
the “optimal” blocking coalition as defined in Definition 2-2, making the notion of e-distance stability more
robust. In Section S.7.2 of Supplementary Material, we prove the existence of e-distance stable matching
(under an additional mild assumption).

5INotice that the conditions (i) and (iii) are asymmetric in the sense that the matching should be precisely
optimal against the blocking by an individual firm alone and only approximately optimal against the blocking
by a coalition. We adopt this asymmetry because blocking with workers outside the firm is presumably harder
for a firm to implement than retaining or firing its own workers.

52We note that M9 need not converge to M. In fact, there can be a stable matching in I" that does not have
any nearby approximate stable matching in large finite economy I'? (refer to Section S.7.3 of Supplementary
Material for an example), meaning that the (approximately) stable matching correspondence is not “lower
hemicontinuous.” This is because the exact individual rationality, that is, condition (i) of Definition 9, can
make a firm’s choice in finite economy never close to a certain stable matching in the continuum economy.
If this condition is relaxed analogously to the condition (iii), then any stable matching in the continuum
economy can be approximated by e-stable matchings in large finite economies.
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Theorem 8. Let (M?),en be a sequence of matchings converging to M with the property that
for every € > 0, there exists () € N such that for all ¢ > QQ, M? s e-stable in I'Y. Then, M
is stable in T.%3

Proof. See Appendix C. |

This result implies that the behavior of large finite economies is well approximated by
the continuum economy in the sense that by studying the latter, we will not “miss” any
approximately stable matching in the former.

Example 5. Recall the finite economy in Section 2, where there are ¢ workers of each type.>*
Recall its limit economy admits a unique stable matching Gp }1, }l, }1) If the index ¢ is odd,
then a stable matching does not exist. As we have already seen, the following matching is
e-stable in T for sufficiently large ¢ and converges to the (unique) stable matching in I'*%:

fi I2
q+1 g+l q—1 q—1p7 | -
040 0+ 40

Also, as Theorem 8 indicates, any e-stable matching in I'? for sufficiently large ¢ must be
close to the stable matching in I'. For instance, any matching where f;’s hiring of each type
is bounded away from }l will be subject to a block that increases either firm’s utility by more
than a small e.

An approximately stable matching established in Theorem 7 can be shown to possess
other properties inherited from the structure of stable matchings in the continuum economy.
To this end, we relax the notion of side optimality.

Definition 10. For € > 0, a matching M? in I'? is an e-firm-optimal stable matching if
there is d € (0, €) such that

1. M1 is d-stable in I'?, and
2. for any matching M9 which is d-stable in T'Y, up(Myf) = uf(M]‘Z) —e,VfeF.

Definition 11. For ¢ > 0, a matching M7 in ['Y is an e-worker-optimal stable matching
if there is 0 € (0, €) such that

53This result is reminiscent of the upper hemicontinuity of Nash equilibrium correspondence (see Fuden-
berg and Tirole (1991) for instance). But Theorem 8 establishes a more robust result in the sense that the
convergence occurs even for “approximately” stable matchings in nearby economies.

54With a slight abuse of notation, this example assumes that there are a total of 2¢ workers (¢ workers
of 6 and ¢’ each) rather than ¢q. Of course, this is done for purely expositional purposes.

55This matching is also e-distance stable since the only profitable block involves f» taking a single worker
of type ¢ away from firm f.
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1. M1 is d-stable in I'?, and

2. for any matching M? which is é-stable in I,
D= (M)(E) = D=/ (M%) (E) —e,Vf e FYEe X,
where E° := {0 € ©]3¢' € E such that d®(0,0') < €} is the e-neighborhood of E.

The e-firm-optimality requires that the matching itself be approximately stable and that
there be no other approximately stable matching which makes any firm better off by more
than e. The e-worker-optimality can be seen as a natural extension of worker optimality—i.e.,
M7 <g M 79—, for the concept collapses to the latter if ¢ = 0. We now prove the existence
of approximately side-optimal matchings in large finite economies.?®

Theorem 9. Suppose that a sequence of finite economies (I'?) ey converges to a continuum
economy I'. Fiz any € > 0.

(i) If there is a firm-optimal stable matching in T, then there is Q € N such that for all
q > Q, an e-firm-optimal stable matching in 'Y exists.

it) If there is a worker-optimal stable matching M in T' and Cy(M,;) = {M,},Vf € F
S\ELf f
(i.e., for each firm f, M, is its unique choice at M), then there is Q € N such that for
all ¢ > Q, an e-worker-optimal stable matching in I'? exists.>”

Proof. See Appendix C. |

Finally, we show that if there is a unique stable matching in the limit economy I', then
the approximately stable matching is virtually unique in any sufficiently large finite economy.

Theorem 10. Suppose that a sequence of finite economies (I'?)en converges to a continuum
economy I' which has a unique stable matching M. Then, the approrimately stable matching
of large finite economy is “virtually unique” in the following sense: for any € > 0, there are

56This result will be particularly useful when preferences are substitutable in a continuum economy but
not in finite economies that converge to that economy. Delacrétaz, Kominers, and Teytelboym (2016) offer
one such example in their study of refugee resettlement. Translated into our setup, there are three types,
0, 0, and 0", and a firm f with capacity x (or s units of seats) which has a responsive preference with
0 > 0 > 0". Each of types 6 and 6" occupies one seat while type 6’ occupies two seats. As Delacrétaz,
Kominers, and Teytelboym (2016) show, the firm f’s preference is not substitutable in finite economies,
which is largely due to the integer problem that disappears in continuum economy. To see it, suppose that a
continuum of workers X = (z,2’,2") is available. Then, the firm f’s choice function is given by C¢(X)(0) =
min{z, k}, C¢(X)(¢') = min{a’, %(X)@}y and C(X)(0") = min{z", k — Cp(X)(0) —2C¢(X)(0")}. Tt is
straightforward to check that this choice function represents a substitutable preference.

57Section S.7.3 of Supplementary Material presents an example in which the result does not hold without
the extra assumption, Cy (M) = {M,},Vf € F.
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Q@ € N and § € (0,€) such that for every ¢ > Q and for every §-stable matching M4 in T4,
we have d(M, M?) < ¢.%8

Proof. See Appendix C. |

This result, together with Theorem 6, leads to the following generalization of the conver-
gence result (Theorem 2) in Azevedo and Leshno (2016).

Corollary 2. Suppose that in the continuum economy I, the firm preferences are substi-
tutable and satisfy LoAD while the preferences are rich. Then, the approximately stable
matchings of any large finite economy I'? that converges to I are virtually unique.

8 Strong Stability and Strategy-Proofness

Stability promotes fairness by eliminating justified envy for workers. However, stability alone
may not guarantee fair treatment of workers if a firm is indifferent over worker types that are
unobservable or regarded as indistinguishable by the firm. The following example illustrates
the point.

Example 6. There are two firms f; and f5, and a unit mass of workers with the following
types:

0: fr> f2>0
012f2>f1>®;
6//2f2>®>f1.

The type distribution is given by G(8) = 1/2 and G(¢') = 1/4 = G(0”). (Note that this
example is the same as our leading example except that a mass of 1/4 of type-6’ workers
now have a new preference P”.)

Both firms are indifferent between type-6’ and type-0” workers; they differ only in their
own preferences for firms. Firm f; wishes to maximize min{z, 2’ + 2"}, where z,2" and 2"
are the measures of workers with types 6,0 and 0", respectively. Firm f; has a responsive
preference with a capacity of 1/2 and prefers type 6 to type 6’ or 6”.

Consider first a mechanism that maps G to matching

fi I )
M: ( / 4 :
0430 10+ 10

This matching is stable, which can be seen by the fact that the firms are matched with
the same measures of productivity types as in the stable matching in Example 1. Observe,

58This implies that all stable matchings in any sufficiently large finite economy are also close to one
another.

29



however, that this matching treats the type-0’ and type-0” workers differently—the former
workers match with f; and the latter workers match with fy (which they both prefer)—
despite the fact that the firms perceive them as equivalent. This lack of “fairness” leads to
an incentive problem: type-0’ workers have an incentive to (mis)report their type as #” and
thereby match with f5 instead of f;.

These problems can be addressed by another mechanism that maps G to a matching

-, E )
= |1 1g 1 1 1 :
50+ 50 30+ 50"+ 50"
Like M, this matching is stable, but in addition, firm f5 treats type-6’ and type-8” workers

identically in this matching. Further, neither type-8’ nor type-8” workers have incentives to
misreport.

The fairness issue illustrated in this example is particularly relevant in school choice, for
schools evaluate students based on coarse priorities. Fairness demands that students enjoying
the same priorities be treated equally without any discrimination. This calls for what Kesten
and Unver (2014) labeled strong stability, a condition satisfied by the second matching in
the above example. As illustrated, strong stability is closely related to strategy-proofness
for workers in a large economy. We thus address both issues here.

8.1 Strong Stability and Strategy-Proofness in a Large Economy

We begin by adapting our model to address the issues at hand. First, we denote the type of
each worker as a pair § = (a, P), where a denotes the worker’s productivity or skill and P
describes her preferences over firms and the outside option, as above. We assume that worker
preferences do not affect firm preferences and are private information, whereas productivity
types may affect firm preferences and are observable to the firms (and to the mechanism
designer). Let A and P be the sets of productivity and preference types, respectively, and
O = A x P. We assume that A is a finite set, which implies that © is a finite set, so the
population G of worker types is a discrete measure.’® We continue to assume that there is
a continuum of workers.

The preferences of firms are also adapted for our environment. For each firm f € F,
worker types © are partitioned into Py := {@}, ...,@?f } such that f is indifferent across

59The finiteness of A is necessitated by our use of weak-* topology as well as the construction of strong
stability and strategy-proof mechanisms below. To illustrate the difficulty, suppose that A is a unit interval
and G has a well defined density. Our construction below would require that the density associated with
firms’ choice mappings satisfy a certain population proportionality property. Convergence in our weak-x
topology does not preserve this restriction on density. Consequently, the operator T may violate upper
hemicontinuity, which may result in the failure of the nonempty-valuedness of our solution. It may be
possible to address this issue by strengthening the topology, but whether the resulting space satisfies the
conditions that would guarantee the existence of a stable matching remains an open question.
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all types within each indifference class @’} c O, for k e Iy := {1,...,K;}. Since a firm
differentiates workers based only on their productivity types, we require that if (a, P) € @’}
for some P € Py, then (a, P’) € @'Ji for all P’ € P;. At the same time, a firm can be indifferent
across multiple productivity types, in ways that are arbitrary and may differ across firms.
We assume that each firm has a unique optimal choice in terms of the measure of workers in
each indifference class, and let A’; : X - R, denote firm f’s unique choice of total measure
of workers in each indifference class ©%, k € I;,% which induces a choice correspondence

CHX)={Y e X| Y Y(0) = A§(X),Vk e I} (10)
He@’;

for each X € X. Continuity and substitutability of preferences can be defined in terms of
A% If A%(-) is continuous for each k € Iy (in the Euclidean topology), then the induced
correspondence C is upper hemicontinuous and convex valued. In that case, we simply say
a firm f’s preference is continuous. Another case of interest is when Zee@’; X(0) — A5(X)

is nondecreasing in (X ())geo for each k € I;. In this case, the induced correspondence Cf is
weakly substitutable, and we simply call a firm f’s preference to be weakly substitutable.

As before, a matching is described by a profile M = (Mf>fe15 of subpopulations of
workers matched with alternative firms or the outside option. We assume that all workers
of the same (reported) type are treated identically ex ante. Hence, given matching M, a

worker of type (a, P) in the support of G is matched to f € F with probability G(( )) Note

that )] feF ]\éf = ];) = 1 holds by construction, giving rise to a valid probability distribution

over F. A mechanism is a function ¢ that maps any G € X to a matchmg

We now introduce a strong notion of stability proposed by Kesten and Unver (2014):

Definition 12. A matching M is strongly stable if (i) it is stable and (ii) for any f € F,

.o Me(6 M 9
kely, and 0,0 e OF, if T2 < T4 then Y p ., Mp(0) = 0.

In other words, strong stability requires that, if a worker of type 6 is assigned a firm f
with strictly lower probability than another type 6" in the same indifference class for firm f,
then the type-6 worker should never be assigned any firm f’ that the worker ranks below f.
In that sense, discrimination among workers in the same priority class should not occur.

Strategy-proofness can be defined via a stochastic dominance order, as proposed by Bo-
gomolnaia and Moulin (2001).

Definition 13. A mechanism ¢ is strategy-proof for workers if, for each (reported)
population G € X, productivity type a € A, preference types P and P’ in P such that both

9Specifically, we assume that for each X © G, A5(X) € [0, Zeeel; X ()] and A%(X’) = A%(X) whenever
Yoeor X'(0) = Ygeor X(0) for all k' € Iy. We also assume that AR(X') = A%(X) whenever A% (X) <
Zoe@’;/ X'(0) < Z(,E@;}/ X(0) for all k' € Iy, which captures the revealed preference property.
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(a, P) and (a, P') are in the support of G, and f € F, we have

or(@)a.P) _ < er(G)aP)

Gla. P) Gla.P) (11)

I f'=pf If'=pf

In words, strategy-proofenss means that a truthful reporting induces a random assign-
ment for each worker that first-order stochastically dominates any random assignment that
would result from untruthful reporting. Note that a worker can misreport only her prefer-
ence type and not her productivity type (recall that a worker’s productivity type determines
firms’ preferences regarding her).5!

We are now ready to state our main result. Our approach is to demonstrate the existence
of a stable matching that satisfies an additional property. Say a matching M is population-
proportional if, for each f € F' and k € I, there is some 045? € [0, 1] such that

M;(0) = min{ D=/ (M)(6), a;G(6)},V6 € OF. (12)

In other words, the measure of workers hired by firm f from the indifference class @’} is
given by the same proportion o/} of G(0) for all § € ©%, unless the measure of worker types
0 available to f is less than the proportion o/} of G(0), in which case the entire available
measure of that type is assigned to that firm. In short, a population-proportional matching
seeks to match a firm with workers of different types in proportion to their population
sizes at G whenever possible, if they belong to the same indifference class of the firm. The
stability and population proportionality of a mechanism translate into the desired fairness
and incentive properties, as shown by the following result.

Lemma 3. (i) If a matching is stable and population-proportional, then it is strongly sta-
ble.

(ii) If a mechanism ¢ implements a strongly stable matching for every measure in X, then
the mechanism is strategy-proof for workers.

Proof. See Section S.8 of Supplementary Material. |

We now present the main result of this section.

61Note also that unlike in finite population models, the worker cannot alter the population G by uni-
laterally misreporting her preferences because there is a continuum of workers. Further, we only impose
restriction (11) for types (a, P) and (a, P') that are in the support of G. For the true worker type (a, P), this
is the same assumption as in the standard strategy-proofness concept for finite markets. We do not impose
any condition for misreporting a measure zero type because if ¢ is individually rational (which is the case
for stable mechanisms), then the incentives for misreporting as a measure zero type can be eliminated by
specifying the mechanism to assign a worker reporting such a type to the null firm with probability one.
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Theorem 11. If each firm’s preference is continuous or if each firm’s preference is weakly
substitutable, then there exists a matching that is stable and population-proportional. There-
fore, given the domain satisfying either property, there exists a mechanism that admits a
strongly stable matching and is strategy-proof.

Proof. See Section 5.8 of Supplementary Material. |

Recall that the workers of the same reported type receive the same ex ante assignment.
By Lemma 3, strong stability and strategy-proofness will be achieved if each firm’s choice
were to respect population proportionality. A key step of proof is therefore to select an
optimal choice C~’f € Cy that induces population proportionality for each f. The selection
C'f is then shown to satisfy the conditions of Theorems 2 and 3 given the continuity or
substitutability conditions. Thus, a stable matching exists in the hypothetical continuum
economy in which firms have preferences represented by the choice functions C'f. The final
step is to show that the stable matching of the hypothetical economy is stable in the original
economy and satisfies population proportionality.

This result establishes the existence of a matching mechanism that satisfies strong sta-
bility and strategy-proofness for workers in a large economy environment.®? In contrast
to the existing literature, our result holds under general firm preferences that may involve
indifferences and/or complementarities.

8.2 Applications to Time Share/Probabilistic Matching Models

Our model introduced in Section 8.1 has a connection with time share and probabilistic
matching models. In these models, a finite set of workers contracts with a finite set of firms
for time shares or for probabilities with which they match. Probabilistic matching is often
used in allocation problems without money, such as school choice, while time share models
have been proposed as a solution to labor matching markets in which part-time jobs are
available (see Birg, Fleiner, and Irving (2013) for instance).

Our model in Section 8.1 can be reinterpreted as a time share model. Let © be the
finite set of workers whose shares firms may contract for, as opposed to the finite types of
a continuum of workers. The measure G(6) represents the total endowment of time or the
probability that a worker 6 has available for matching. A matching M describes the time or
probability M(6) that a worker § and a firm f are matched.

The partition P; then describes firm f’s set of indifference classes, where each class de-
scribes the set of workers that the firm considers equivalent. The function A; = (A’})kelf
describes the time shares that firm f wishes to choose from available time shares in al-
ternative indifference classes. On the worker side, for each worker # € ©p, the first-order

62Even with a continuum of workers, no stable mechanism is strategy-proof for firms. See an example in
Section S.8.2 of Supplementary Material.
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stochastic dominance induced by P describes the preference of the worker in evaluating lot-
teries. With this reinterpretation, Definition 12 provides an appropriate notion of a strongly
stable matching.%® The following result is immediate:

Corollary 3. The (reinterpreted) time share model admits a strongly stable—and thus
stable—matching if either each firm’s preference is continuous or it is weakly substitutable.5*

This result generalizes the existence of a strongly stable matching in the school choice
problem studied by Kesten and Unver (2014), where schools may regard multiple students
as having the same priority. They show their existence of a strongly stable probabilistic
matching (which they call strong ex ante stability) under the assumption that schools have
responsive preferences with ties. Our contribution is to extend the existence to general
preferences that may violate responsiveness. Our result might be useful for school choice en-
vironments in which schools may need a balanced student body in terms of gender, ethnicity,
income, or skill (recall footnote 3).

9 Relationship with the Literature

The present paper is connected with several strands of literature. Most importantly, it
is related to the growing literature on matching and market design. Since the seminal
contributions of Gale and Shapley (1962) and Roth (1984), stability has been recognized as
the most compelling solution concept in matching markets.®> As argued and demonstrated
by Sonmez and Unver (2010), Hatfield and Milgrom (2005), Hatfield and Kojima (2008),
and Hatfield and Kominers (2017) in various situations, the substitutability condition is
necessary and sufficient to guarantee the existence of a stable matching with a finite number
of agents. Our paper contributes to this line of research by showing that substitutability is
not necessary for the existence of a stable matching when there is a continuum of agents on
one side of the market, and that an approximately stable matching exists in a large finite
market.

63The notion of strong stability in Definition 12 requires the proportion of time spent with a firm out of
total endowment to be equalized among workers that the firm considers equivalent. This notion is sensible
in the context of a time share model, particularly when G(6) is the same across all workers, as with school
choice (where each student has a unit demand). When G(0) is different across s, however, one could consider
an alternative notion, such as one that equalizes the absolute amount of time (not divided by G(6)) that
a worker spends with a firm. Our analysis can be easily modified to prove the existence of matching that
satisfies this alternative notion of strong stability.

64Unlike the continuum model, population proportionality does not guarantee strategy-proofness. As
is shown by Kesten and Unver (2014), strategy-proofness is generally impossible to attain in the time
share/probabilistic models with finite numbers of workers.

65See Roth (1991) and Kagel and Roth (2000) for empirical and experimental evidence on the importance
of stability in labor markets and Abdulkadiroglu and Sénmez (2003) for the interpretation of stability as a
fairness concept in school choice.
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Our study was inspired by recent research on matching with a continuum of agents by
Abdulkadiroglu, Che, and Yasuda (2015) and Azevedo and Leshno (2016).% As in the
present study, these authors assume that there are a finite number of firms and a continuum
of workers. In particular, Azevedo and Leshno (2016) show the existence and uniqueness of
a stable matching in that setting. However, as opposed to the present study, these authors
assume that firms have responsive preferences—which is a special case of substitutability.
Our contribution is to show that the almost universally invoked restrictions on preferences
(such as responsiveness or even substitutability) are not necessary for the existence of a
stable matching in the continuum economy.

An independent and contemporaneous study by Azevedo and Hatfield (2015) (hence-
forth, AH) also analyzes matching with a continuum of agents.®” Consistent with our study,
these authors find that a stable matching exists even when not all agents have substitutable
preferences. However, the two studies have several notable differences. First, AH consider a
continuum of firms each employing a finite number of workers; thus, they consider a contin-
uum of agents on both sides of the market. By contrast, the present paper considers a finite
number of firms each employing a continuum of workers. These two models thus provide
complementary approaches for studying large markets, and they are applicable to different
environments.5

Second, AH assume that there is a finite number of both firm and worker types, which
enables them to use Brouwer’s fixed point theorem to demonstrate the existence of a stable
matching. By contrast, we place no restriction on the number of workers’ types and thus
allow for both finite and infinite numbers of types, and this generality in type spaces requires
a topological fixed point theorem from functional analysis. To the best of our knowledge,
this type of mathematics has never been applied to two-sided matching, and we view the
introduction of these tools into the matching literature as one of our methodological con-
tributions. Our model also has the advantage of subsuming the previous work by Azevedo
and Leshno (2016) as well as many of the other studies mentioned above that assume a
continuum of worker types. Finally, the substantive issues studied in these papers are sig-

66Various recent studies on large matching markets are also related but formally different, such as Roth
and Peranson (1999), Immorlica and Mahdian (2005), Kojima and Pathak (2009), Kojima and Manea (2010),
Manea (2009), Che and Kojima (2010), Lee (2017), Liu and Pycia (2013), Che and Tercieux (2017, 2015),
Ashlagi, Kanoria, and Leshno (2017), Miralles (2008), Miralles and Pycia (2017), Kojima, Pathak, and Roth
(2013), and Hatfield, Kojima, and Narita (2016).

57 Although not as closely related, our study is also analogous to Azevedo, Weyl, and White (2013), who
demonstrate the existence of competitive equilibrium in an exchange economy with a continuum of agents
and indivisible objects.

68For example, in the context of school choice, many school districts consist of a small number of schools
that each admit hundreds of students, which fits well with our approach. However, in a large school district
such as New York City, the number of schools admitting students is also large, and the AH model may offer
a good approximation.
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nificantly different. Indifferences in preferences, substitutable preferences, incentives, and
fairness are studied only by the present paper, while many-to-many matching, core, and
general equilibrium are studied only by AH. While they focus on the existence of various
solution concepts under complementarities, we offer a comprehensive study of a variety of
large matching markets. Overall, these points make the two papers substantially different.
Our methodological contribution is also related to another recent advance in matching
theory based on the monotone method. In the context of one-to-one matching, Adachi (2000)
defines a certain operator whose fixed points are equivalent to stable matchings. His work
has been generalized in many directions by Fleiner (2003), Echenique and Oviedo (2004,
2006), Hatfield and Milgrom (2005), Ostrovsky (2008), and Hatfield and Kominers (2017),
among others, and we also define an operator whose fixed points are equivalent to stable
matchings. However, these previous studies also impose restrictions on preferences (e.g.,
responsiveness or substitutability) so that the operator is monotone, and utilize Tarski’s
fixed point theorem to ensure a stable matching. By contrast, a significant part of our paper
does not impose responsiveness or substitutability restrictions on preferences; instead, we
rely on the continuum of workers—along with continuity in firms’ preferences—to guarantee
the continuity of the operator (in an appropriately chosen topology). This approach allows
us to use a generalization of the Kakutani fixed point theorem, a more familiar tool in
traditional economic theory that is used in existence proofs of general equilibrium and Nash
equilibrium in mixed strategies. Even for substitutable preferences, we are able to weaken
the condition for existence and other properties of interest by accommodating indifferences.
The present paper is related to the literature on general equilibrium, especially models
with clubs. To our knowledge, the closest contributions are two related papers by Ellickson,
Grodal, Scotchmer, and Zame (1999, 2001).%% Like the present paper, these papers consider
large finite economies as well as continuum economies. They show the existence of a general
equilibrium in large markets using Kakutani’s fixed point theorem. Despite these similarities,
there are also a number of notable differences. First, Ellickson, Grodal, Scotchmer, and Zame
(1999, 2001) assume the existence of private goods and those private goods are divisible, while
our model does not presume the existence of a private good. Second, they assume that it
is possible to make transfer among club members. Third, in their model, the size of clubs
(groups) as well as the number of agents’ types are finite. In this respect, their model is closer
to the large matching market models in which a continuum of firms each hire finite number
of workers as in AH. By contrast, in our model a finite number of firms each hire a continuum
of workers, which makes the analysis quite different. Due to these differences, our results
and theirs are logically unrelated, and it seems impossible to make a direct comparison.
The current paper is also related to the literature on matching with couples. Like a firm

69 Although not as closely related to our paper, other notable contributions include Ellickson (1979),
Scotchmer and Wooders (1987), Gilles and Scotchmer (1997), and Scotchmer and Shannon (2015). See
Sandler and Tschirhart (1997) for a survey.
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in our model, a couple can be seen as a single agent with complementary preferences over
contracts. Roth (1984) and unpublished work by Sotomayor show that a stable matching
does not necessarily exist in the presence of a “couples” problem. Klaus and Klijn (2005)
provide a condition for the existence of stable matchings in such a context. Pycia (2012)
and Echenique and Yenmez (2007) study many-to-one matching with complementarities as
well as with peer effects. These papers allow for complementarities like our paper, but they
do not study large economies.

Closer to our study, several recent papers study couples problem in the context of large
economies. Kojima, Pathak, and Roth (2013) provide conditions under which the proba-
bility that a stable matching exists even in the presence of couples converges to one as the
market becomes infinitely large. Similar conditions have been further analyzed by Ashlagi,
Braverman, and Hassidim (2014). Nguyen and Vohra (2014) study how one can minimally
modify firms’ quotas to guarantee a stable matching in a problem with couples.” Like our
paper, these studies suggest finding a stable matching becomes easier in a large market even
in the presence of complementarities. However, there is an important difference. It is cru-
cial for their results that the only complementarity is caused by couples, meaning that the
complementarity is between only two positions.”™ In other words, their results are relevant
primarily for cases in which the magnitude of complementarities is small. By contrast, we
allow for firms to have complementarity over arbitrarily large groups of workers.

10 Conclusion

Complementarity, although prevalent in matching markets, has been known as a source
of difficulties for designing desirable mechanisms. The present paper took a step toward
addressing the difficulties by considering large economies. We find that complementarity
need not jeopardize stability in a large market. First, as long as preferences are continuous
or substitutable, a stable matching exists in a limit continuum economy. Second, with such
preferences, there exists an approximately stable matching in a large finite economy. We
used this framework to show that there is a stable mechanism that is strategy-proof for
workers and satisfies an additional fairness property, strong stability.

The scope of our analysis can be extended in a couple of directions. First, we can
introduce “contracts,” namely to allow each firm-worker pair to match under alternative
contracts, as has been done by Hatfield and Milgrom (2005) in the context of substitutable
preferences. Just as in our baseline model, we focus on the measures of workers matched with

"ONguyen, Peivandi, and Vohra (2016) also study preference complementarity. Their contribution is not
as close to our study, however, as they study (stochastic) object-allocation problems rather than two-sided

matching.
"I'These papers study more general complementarities as well, but their results become weaker under

general complementarities.
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alternative firms as basic unit of analysis. But unlike our main model, a vector of measures
of workers matches with a firm under alternative contract terms. With this enrichment of
the underlying space, our method can be extended to yield existence in this setup.” This
result is provided in Section S.9 of the Supplementary Material.

Second, while we have considered the model in which a finite number of “large” firms
match with a continuum of workers, we can extend our framework to study a model in which
a continuum of “small” firms match with a continuum of workers, as has been studied by
AH. Take their main model and for simplicity consider the pure matching case (i.e., without
contracts) in which each worker demands at most one position. Assume as have been by
AH that the set of firm types is finite. Then, one can interpret the entire mass of firms of
each given type as a single “large” firm and “build” an aggregate choice correspondence for
that fictitious large firm from optimal choices of infinitesimal firms (of the same type), say
by maximizing their aggregate welfare. The aggregate choice correspondence constructed in
this way is shown to satisfy the continuity condition required for the existence of a stable
matching in Theorem 2. Therefore, our model can recover the existence result for a certain
special case of AH. The specific result is described in Section S.10 of Supplementary Material.

To the best of our knowledge, this paper is the first to analyze matching in a continuum
economy with the level of generality presented here. As such, our paper may pose as many
questions as it answers. One issue worth pursuing is the computation of a stable matching.
The existence of a stable matching, as established in this paper, is clearly necessary to find a
desired mechanism, but practical implementation requires an algorithm. Although our fixed
point mapping provides one such algorithm in the case it is contractionary or monotonic
(i.e., preferences are substitutable), studying the computationally efficient and generally
applicable algorithms to find stable matchings would be an interesting and challenging future
research topic.

Appendix A Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. (“Only if” part): Suppose that M is a stable matching, and let
X = (Xy) jep with X; =~D3f(M), Vf e F. We prove that X is a fixed point of 7. Let us first
show that for each f e F, Xy e X. It is clear that as each My (©p N -) is nonnegative and
countably additive, so is X((-). It is also clear that since (My) . is a matching, X; = G.
Thus, we have X, e X

We next claim that M; € Cp(Xy) for all f e F. This is immediate for f = ¢ since
M, = X, = C4(X,). To prove the claim for f # ¢, suppose for a contradiction that

"2Nevertheless, the generalization is more than mechanical. Since the measure of workers a firm matches
with under a contract term depends on the measure of workers the same firm matches with under a different
contract term, special care is needed to define the choice function as well as the measure of available workers
to a firm under a particular contract term.
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My ¢ Cp(Xy), which means that there is some M} € Cf(Xy) such that M, # M;. Note
that My = Xy and thus (M} v My) = X;. Then, by revealed preference, we have M; ¢
Cr(Mj v My) and M} e Cp(Mj v Mg) or My >y My, which means that M is unstable since
M} = Xy = D=/(M), yielding the desired contradiction.

We next prove X € T'(X). The fact that M; € C¢(Xy),Vf € F means that X; — M; €
Ry (X;),Vf e F. Weset Y; = X; — M; for each f € F and obtain for any E € ¥

Z G(@pﬁE)—l— Z Yff(@pﬂE)

P:P(1)=f P:P(1)#f

||
R
«Q
@
e
>
=
+
[

(Xff(@P A E)— M;»(0p A E))

P:P(1)=f P:P(L)#f
= GOpnE)+ > Y. Mp(®pnE)— Mg (0pnE)
P:P(1)=f P:P()#Af \ freF:f'<pfr

_ > Mp(6pn E) = X(E),

where the second and fourth equalities follow from the definition of X ;r and Xy, respectively,
while the third from the fact that f¥ is an immediate predecessor of f and Y] pebfr<pP(1) My (©pn
E) = G(©p n E). The above equation holds for every firm f € F, so we conclude that

X eT(X),ie X is a fixed point of T

(“If” part): Let us first introduce some notation. Let f¥ denote an immediate suc-
cessor of f € F at P e P: that is, f <p f, and for any f' <p f, f' <p fI. Note that for
any f,f e F, f = fF if and onlyiffsz.

Suppose now that X € X"+ is a fixed point of T. For each firm f € F and F € ¥, define

My(E) = X;(E)—= >, Xp(0pnE), (13)
P:P(n+1)#f

where P(n + 1) is the least preferred firm according to P.
We first verify that for each f € F', My € X. First, it is clear that for each f € F', My
is countably additive as both X¢(-) and X;»(©p N -) are countably additive. It is also clear

that for each f € F, My = X;. To see that M;(E) = 0,YE € %, observe from (13) that

My(E)= > X;0pnE)— > Xpp(0pnE)

P:PeP P:P(n+1)#f
> > (X4(®pnE)-X;r(0pnE)) =0,
P:P(n+1)#f

where the inequality holds since X € T'(X) means that there is some Yy € R¢(X[) such that
X;p(Op n+) =Y (Op n ) for cach P € P, and thus X;r(©p 1) = Xp(Op 1 ).
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Let us next show that for all fe F, Pe P, and F € ¥,

X;OpnE)= > Mp©pnE), (14)

fer:f'<pf

which means that X; = D=/(M). To do so, fix any P € P and consider first a firm
f=P(n+1) (ie., a firm ranked lowest at P). By (13), M;(Op n E) = X¢(Op n E) and
thus (14) holds for such f. Consider next any f # P(n + 1), and assume for an inductive
argument that (14) holds true for f'] so Xpp(Opn E) = Zf’eﬁ‘:f’ﬁpff My (©p n E). Then,
by (13), we have

Xi(O©p N E) = My(Op N E)+ X;p(0p N E) = Mg(Op nE)+ >, Mp(6pn E)
freF:f'<pft
= ), Mp©rnE),
frleF:f'<pf

as desired.
To show that M = (My),.r is a matching, let f = P(1) and note that by definition of
T,if X e T(X), then X;(©pn-)=G(Opn-). Since X € T(X), we have for any F € 2

GOpnE)=Xi(OpnE)= Y MpOpnE)= > MpOpnE),

fleF:f'<pf fleF

where the second equality follows from (14). Since the above equation holds for every P € P,
M is a matching.

We now prove that (M) ser 1s stable. As noted by footnote 21, the first part of Condition
1 is implied by Condition 2, which we check below. To prove the second part of Condition 1
of Definition 2, note first that C,(X,) = {X,} and thus R, = 0. Fix any P € P and assume
¢ # P(n + 1), since there is nothing to prove if ¢ = P(n + 1). Consider a firm f such that
f£ = 9¢. Then, X being a fixed point of T means X;(©p) = R;»(0©p) = 0, which implies by
(14) that 0 = X;(©p) = X pre s Myp(OP) = Dpr -y Mp/(Op), as desired.

It only remains to check Condition 2 of Definition 2. Suppose for a contradiction that it
fails. Then, there exist f and M J’c such that

Mj; e D=I(M), Mje Cp(M} v My), and My ¢ Cp(Mj v My). (15)

So M} = D=/(M) = X;. Since then M; = (M} v My) = Xy and My e Cy(Xy), the revealed
preference property implies M; € Cp(M PV M ), contradicting (15). We have thus proven
that M is stable. ||

Proof of Theorem 2. We establish the compactness of X and the upper hemicontinuity
of T in Lemma 4 and Lemma 5 below. To do so, recall that X is endowed with weak-=
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topology. The notion of convergence in this topology, i.e. weak convergence, can be stated
as follows: A sequence of measures (Xj)gen in X weakly converges to a measure X € X,

written as Xj, 2> X, if and only if §o hd Xy, — §o hdX for all h e C(0), where C(0) is the
space of all continuous functions defined on ©. The next result provides some conditions
that are equivalent to weak convergence.

Theorem 12. Let X and (Xy)ren be finite measures on . The following conditions are

equivalent:™

(a) X 5 X;

(b) §ghdX), — §ghdX for all h e C,(0), where C,(©) is the space of all uniformly contin-

uous functions defined on ©;
(c) liminfy Xi(A) = X (A) for every open set A < O, and Xi(0) — X(O);
(d) limsup, Xi(A) < X(A) for every closed set A < ©, and X(©) — X (0);

(e) Xi(A) = X(A) for every set A € X such that X(0A) =0 (0A denotes the boundary of
A).

Lemma 4. The space X is convex and compact. Also, for any X € X, Xx is compact.

Proof. Convexity of X follows trivially. To prove the compactness of X, let C'(©)* denote
the dual (Banach) space of C'(©) and note that C(0)* is the space of all (signed) measures
on (©,%), given © is a compact metric space.” Then, by Alaoglu’s Theorem, the closed
unit ball of C(©)*, denoted U*, is weak-+ compact.”® Clearly, X is a subspace of U* since
for any X € X, |X| = X(0©) < G(©) = 1. The compactness of X will thus follow if X is
shown to be a closed set. To prove this, we prove that for any sequence (Xj)rey in X and

"3We note that this result can be established without having to assume that X is nonnegative, as long as
all X;’s are nonnegative.

"This theorem is a modified version of “Portmanteau Theorem” that is modified to deal with any finite
(i.e. not necessarily probability) measures. See Theorem 2.8.1 of Ash and Doléans-Dade (2009) for this
result, for instance.

">More precisely, C(©)* is isometrically isomorphic to the space of all signed measures on (0, X)) according
to the Riesz Representation Theorem (see Royden and Fitzpatrick (2010) for instance).

"The closed unit ball is defined as U* := {X € C*(0) : | X| < 1}, where | X| is the dual norm, i.e.,

| X || = sup{|SghdX| : h e C(©) and Igleagdh(@)\ <1}

If X is a nonnegative measure, then the supremum is achieved by taking h = 1, and thus | X| = X(0). It
is well known (see Royden and Fitzpatrick (2010) for instance) that if C(0)* is infinite dimensional, then
U* is not compact under the norm topology (i.e., the topology induced by the dual norm). On the other
hand, U* is compact under the weak-* topology, which follows from Alaoglu’s Theorem (see Royden and
Fitzpatrick (2010) for instance).
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X € C(O)* such that X, X , we must have X € X, which will be shown if we prove that
0 < X(F) < G(F) for any E € X. Let us first make the following observation: every finite
(Borel) measure X on the metric space © is normal,”” which means that for any set F € X,

X(F)=inf{X(0): Ec O and O € ¥ is open} (16)
=sup{X(F): F c F and F € X is closed}. (17)

To show first that X (F) < G(F), consider any open set O € ¥ such that £ < O. Then,
since X € & for every k, we must have X;(O) < G(O) for every k, which, combined with
(c) of Theorem 12 above, implies that X (0) < liminf; X;(0) < G(O). Given (16), this
means that X (F) < G(E).

To show next that X (FE) > 0, consider any closed set F' € 3 such that F' < E. Since
Xy € X for every k, we must have X;(F') = 0, which, combined with (d) of Theorem 12
above, implies that X (F') = limsup, Xx(F') = 0. Given (17), this means X (F) = 0.

The proof for the compactness of Xy is analogous and hence omitted. |

Lemma 5. The map T is a correspondence from X"! to itself. Also, it is nonempty- and
convez-valued, and upper hemicontinuous.

Proof. To show that T maps from X"*! to itself, observe that for any X € X"™! and
X € T§(X), there is Yy € Ry(Xy) for each f € F such that for all £ € X,

X(E)= Y Yr(0pnE)< Y Xpp(0p nE) < Y G(Op n E) = G(E),
PeP PeP PeP
which means that X € X, as desired.

As noted earlier, the correspondence T' is nonempty-valued. To prove that T is convex-
valued, it suffices to show that for each f € F, R ¢ is convex-valued. Consider any X € X and
YY" e R¢(X). There are some X', X" € Cf(X) satisfying Y/ = X — X' and V" = X — X".
Then, the convexity of C;(X) implies that for any A € [0,1], AX' 4+ (1 = A\) X" € Cf(X) so
AY' + (1 =-NY"=X—-AX"+(1-XNX") e R¢(X).

To establish the upper hemicontinuity of T', we first establish the following claim:

Claim 1. For any sequence (Xi)ren © X that weakly converges to X € X, a sequence
(Xk(©p N ))ken also weakly converges to X (Op ) for all P € P.

Proof. Let XT and X} denote X (0©p N -) and X;(Op n -), respectively. Note first that for
any X € X, we have X¥ € X for all P € P. Due to Theorem 12, it suffices to show that
XP and (XF)ren satisfy the condition (c) of Theorem 12. To do so, consider any open set
O < O. Then, letting ©% denote the interior of ©p,

lim inf X[ (0) = lim inf X4(05 1 0) + Xx(00p 0 O)

""See Theorem 12.5 of Aliprantis and Border (2006).
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= liminf X,(03 1 0) = X (6} 1 0) = X*(0),

where the second equality follows from the fact that X, (00pn0) < X3 (00p) < G(00p) =0,
the lone inequality from X} X , (c) of Theorem 12, and the fact that 00% N O is an open
set, and the last equality from repeating the first two equalities with X instead of Xj. Also,

we have

X,f(@) = X1(Op) - X(Op) = XP(9)>

where the convergence is due to X , X, (e) of Theorem 12, and the fact that X (00p) <
G(00p) = 0. Thus, the two requirements in condition (c¢) of Theorem 12 are satisfied, so

w* .
XP =5 X as desired. |

It is also straightforward to observe that if C'y is upper hemicontinuous, then Ry is also
upper hemicontinuous.

We now prove the upper hemicontinuity of 7" by considering any sequences (X )ren and
(f(k)keN in X" weakly converging to some X and X in X", respectively, such that
X, € Ty(X}) for each k. To show that X € T(X), let X ; and X} ; denote the components
of X, and X}, respectively, that correspond to f € F. Then, we can find Yir € Re(Xks)

for each k and f such that Xj ;(-) = Yipep Yi P (Op N +), which implies that for all f e F
and P € P, ijf(@p N ) =Y (Op n-) since f is the immediate predecessor of fI at P.
As Xy ¢ 7, X;,Vf € F, by assumption, we have thf(@p N -) i Xff(@P N -) by Claim
1, which means that Y ;(©p N -) , Xff(@p ~ -) for all f € F. This in turn implies that
Yir() = 2pep Yis(Op 0 ) s Ypep Xpp(Op 0 ). Now let Yy(-) = Xpep Xsr(©p ).
We then have X;(©p n ) = Y;r(Op n -) and thus X;(-) = > pep Yir(0p 1 -). Also, since

Xt o, Xy and Yy ¢ AN Y, we must have Yy € Ry(Xy) by the upper hemicontinuity of
Ry, which means X € T'(X), as desired. |

Lemmas 4 and 5 show that 7" is nonempty- and convex-valued, and upper hemicontinuous
while it is a mapping from convex, compact space X™*! into itself, which implies that T is
also closed-valued. Thus, we can invoke Kakutani-Fan-Glicksberg’s fixed point theorem to
conclude that the mapping T has a nonempty set of fixed points. |

Appendix B Proofs for Section 6

Proof of Theorem 3. Recall from Lemma 1 that the partially ordered set (X, =), and
thus partially ordered set (X"!, =), is a complete lattice, where X cp X & if Xp = X}
for all f € F. If each Cy is closed-valued, so are each Ry and T, as one can easily verify.

Also, if each R; is weak-set monotonic, so is T in the ordered set (X"*! =z). Note also
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that X"*! is a compact set due to Lemma 4. Thus, if all firms have weakly substitutable
preferences with closed-valued choice correspondences, then 7" has a fixed point according to
Corollary 3.7 of Li (2014), which implies existence of a stable matching due to Theorem 1. |

Proof of Theorem 4. Proof of Part (i): Note first that by substitutability, each R; is
weak-set monotonic while R;(X) is a complete sublattice for any X € X, and that these
properties are inherited by 7. Given this, the proof of Theorem 1 in Zhou (1994) shows
that the set of fixed points of T, denoted X*, contains the largest and smallest elements,
X = supc, A* and X = infc, X*™ Let M and M be the stable matchings associated
with X and X, respectively, given by Theorem 1. We only establish that M is firm-optimal
and worker-pessimal, since the result for M can be established analogously. Recall from our
characterization theorem that for any stable matching M, there is some X € X'* such that
Xy = D=I(M) and My e Cy(Xy) for all f € F. We thus have My = X; = X7, which implies
that M e Cp(My v My) by revealed preference since My e Cy(Xy) and (My v My) = Xy
Thus, Mf >; My for each f € F, as desired. To show that M <g M,YM € M*, fix any
M € M* and consider X € X* such that X; = D=/ (M) for all f € F. Then, for each P € P
and E € X,

X;p(Op 0 E) = DIFE(M)(OpnE)= >, Mp(©pnE),

freF:f'<pf

where fT is an immediate successor of f € F at P e P, as defined earlier. Similarly, for X,
we have Yff(@P NE)= Zf,eﬁ:f,<Pfo/(@p N E). Given this and the fact that X =z X,

Y, Mp(0pnE)=G(OpnE)=X;r(0pnE)
freF:f=pf
<GOpnE)=Xp(OpnE)= >  Mp©pnE) (18
f'eF:f'=pf

forall Pe P, E€ ¥, and f € F, as desired.

Proof of Part (ii): Note that for any X € X', each R¢(X), and thus T'(X), is a complete
sublattice. Then, 7" must be monotonic since, for any X = X', we have T(X) € T(X)
and T(X') € T(X'), which implies by upper weak-set monotonicity that there exits ¥ e
T(X') such that T(X) = Y, and then T(X) = T(X’) by definition of T(X’). Now let
X0 = (X9)ep with X9 = G, Vf € F. Define recursively X" = T(X""") for each n > 1.
The sequence (X™),en is decreasing since X' = X° and X2 = T(X') = T(X?) = X!
and so on, which implies that it has a limit point, denoted X*. Because each C} is oder-
continuous, we have Rp(X}) = X7 — C;(X7) o, X3 — C;(X}) = Rp(X}), which implies

"Zhou (1994)’s theorem requires the strong set monotonicity, but some inspection of its proof reveals
that the weak-set monotonicity is sufficient for existence of largest and smallest fixed points.
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that X"+ = T(X™) 25 T(X*). Since X! 5 X*, we must have T(X*) = X*. To show
that X* = X, consider any X € X*. Then, X = X° and thus X = T(X) = T(X°) = X%
Repeating this way, we obtain X — X", Vn, which implies that X — X* and thus X* = X.
By the proof of part (i), a stable matching associated with X is firm-optimal. The proof for
worker optimal stable matching is analogous and thus omitted. |

Proof of Theorem 5. Let M be any stable matching. Then, by Theorem 1, there exists
X € X* such that M; € C¢(Xy) for each f e F. Since X =z X, LoAD implies

M;(©) = inf C((X;)(©) = sup Cy(Xf)(©) = My(0),Vf € F. (19)

Next since M is worker pessimal, (18) holds for any f € F. Let wp := ¢ be the
immediate predecessor of ¢ (i.e., the worst individually rational firm) for types in ©p. Then,
setting f = wp in (18), we obtain

Y MpOpnE)= > Mp(©pnE)
f'eF f’eﬁ:f’zp’wp
< ), Mp©pnE)=) Mp©pnE)VEEY,
fleF:f'>pwp fleF

or equivalently

M Mp(E)< Y Mp(E),VEeX. (20)

fleF fleF
Since this inequality must hold with £ = ©, combining it with (19) implies that M;(©) =
M;(©) for all f € F, as desired.

Further, we must have ;- M; = Doger My Otherwise, by (20), we must have ¢/ - My(E) <

Yper Myp(E) for some E € . Also, by (20), D pep M p(E) < X pep Mp(E). Combining
these two inequalities, we obtain }, . . M (©) < Y per My(©), which contradicts (19).
Lastly, that >, . M; = 2 fer My means M, = M,. |

Proof of Theorem 6. Suppose otherwise. Then there exists a stable matching M that
differs from the worker-optimal stable matching M. Let X and X be respectively fixed
points of 1" such that My = C¢(Xy), M, = Cy(X;) and X, £ Xy, for each f € F.

First of all, since X ; = X for each f € F', we have (M ;v My) = X;. Revealed preference
then implies that, for each f € F,

My = Cp(My v My)

or M >p M. Moreover, since M # M, the set F := {f € F|M; >; M} is nonempty. But
then by the rich preferences, there exists f* € F' such that

M # Cpe(Mys + ML) A G).
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For each f e F\F, M; = M 7> by definition of F, and Theorem 5 guarantees that M, = M o
Consequently, we have for each E € X, that

MEE) =) Y Mp©pnE) =) > Mu(OpnE)=ML(E).

PeEP fr.f*>pf f'¢F PeEP fr.f*>pf f'¢F

It then follows that (M p« + MP{*) NG = (Mg +M§k) NG = M. +M§* (since M is a
matching), so

Mf* # Cpx (Mf* +Mj; ). (21)
Letting M« := Clps (M —|—Mf;), we have My« = (M s v M) = (M ps +Mf;) Revealed
preference then implies that

Mf* = Cf*(Mf* V Mf*)
Then, by (21), we have M« > p« M. Further, M © (M 4+ +Mf;) = D=I"(M). We

therefore have a contradiction to the stability of M. |

Appendix C Proofs for Section 7

Proof of Theorem 7. Let I' be the limit continuum economy which the sequence (I'?) jen
converges to. For any population G, fix a sequence (G?)en of finite-economy populations

such that G¢ % G. Let Q7 = {01,01,...,02} < © be the support for G¢.™ For each firm
fe F, define O to be the set of types that find firm f acceptable, i.e., O := Upep.f>,sOp
(let ©, = © by convention). Let O denote the closure of ©; with respect to the topology
on ©. We first prove a few preliminary results, whose proofs are provided in Section S.7.1
of Supplementary Material.

Lemma 6. For any r > 0, there is a finite number of open balls, By, ..., By, in © that have
radius smaller than r with a boundary of zero measure (i.e. G(0By) = 0,Y¢) and cover O
for each f e F.

Lemma 7. Consider any X,Y € X such that X(©\0;) = 0 for some f € F and X = Y,
and consider any sequence (Y9)en such that Y7 e X9 and Y1 2wty 80 Then, there exists a
sequence (X9)en such that X7 e X9, X1 A X, X1 Y and X9(©\Of) =0 for all q.

Lemma 8. For any two sequences (X?)4en and (Y9)gen such that X9,Y7e X, X9 = Y9, Vq,
X4 w—*>X, and Y4 5 Y, we have X = Y.

Using these lemmas, we establish the following two lemmas:

™ Note that we allow for the possibility that there are more than one worker of the same type even in

finite economies, so ¢ may be strictly smaller than q.
80Note that if f = ¢, then ©\Of = ¢F. Thus, the restriction that X (0\0f) = 0 becomes vacuous.
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Lemma 9. For any stable matching M in " and € > 0, there is Q € N such that for any
q > @, one can construct a matching M9 = (M]?)fep that is feasible and individually rational
wn ', and satisfies

wp(My) < up (M) + %,Vf eF. (22)

Proof. In any finite economy I'?, let us construct a matching M9 = (MJ?) re> as follows: order
the firms in F' by fi,..., f,, and

1. define M{ as X7 in Lemma 7 with X = My, Y = G, and Y7 = G%;*

2. define ]\7[?2 as X9 in Lemma 7 with X = My, Y = G — My, and Y? = G — M}Jl (this
is possible since G — M}II iye My,);

3. in general, for each fj, € F, define inductively M}k as X7 in Lemma 7 with X = My, ,
Y=G- My, and Y7 = G — Dki<k M?kﬁ

and define MJ = G — Djef Z\7[J?.

By Lemma 7, M4 is feasible in I'? and individually rational for workers while M? % M.
To ensure the individual rationality for firms, we construct another matching M9 = (M) e
as follows: for each f € F', select any M{ e C{(M{), and then set Mg = G — 3, .» M}. By
revealed preference, we have MJ‘? € C’}(MJ‘?) and thus M1 is individually rational for firms.
Also, the individual rationality of M? for workers follows immediately from the individual
rationality of MY and the fact that M;;’ C M]‘Z for all f € F'. By the continuity of uy’s and

the fact M]? M 7, we can find sufficiently large @ € N such that for all ¢ > @,

up(My) < ws (M) + 5 < ug(Mf) + SV € F
where the second inequality holds since M} e C’;(MJ‘?). |

Lemma 10. The matching M? constructed in Lemma 9 is e-stable in I'? for all ¢ > @, where
Q is identified in Lemma 9.

Proof. Let D=/(M?) be the subpopulation of workers in economy I'? who weakly prefer f
to their match in M%.32 Since M7 25 M, we have D=f (M) 5> D=/(M).33 Choose any
]\;[]‘3 e C;(D=1(M?)). In words, ]\ZI}I is the most profitable block of M9 for f in the continuum
economy, that is, the optimal deviation in a situation where the current matching is M9, but

81Note that M +(©\Of) = 0 for all fe F since M is individually rational, so Lemma 7 can be applied.

82To be precise, D=/ (MY) is given as in (3) with G and X being replaced by G? and M4, respectively.

83This convergence can be shown using an argument similar to that which we have used to establish the
continuity of ¥ in the proof of Lemma 5.
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the firm can deviate to any subpopulation, not just a discrete distribution. Then, we must
have

up (V) <y (M) + 3, (23)

~

for any sufficiently large q. Otherwise, we could find some subsequence (M;f)qu of sequence
(M7)gen for which

- €
up(My) = up(My) + 5, ¥g. (24)

~

We can assume that (M;)qu is converging to some M ¢ (by choosing further subsequence
if necessary). Then, the above-mentioned property that D=/ (M) ¥, p=f (M) and upper
hemicontinuity of C; imply M; € Cp(D=/(M)) and thus us(M;) = us(M;) since M; €
Cy(D=/(M)) (due to stability of M), which contradicts (24).

Now let M }’c be the most profitable block of MY for f in economy I'?. Then, M J’c is t%le
optimal deviation facing the same population G¢ and matching M? as when computing M}‘Z
but with an additional restriction that the deviation is feasible in I'? (multiples of 1/q), so

up(Mp) < uf(M]?). This and inequality (23) imply

Uf(M}) < Uf(Mf) + —. (25)

N ™

Combining inequalities (22) and (25), we get us(M}) < us(M{) + €, completing the proof. |

Theorem 7 then follows from the existence of stable matching M in I" and Lemmas 9 and
10. 1

Proof of Theorem 8. The proof that M is a matching in I" is straightforward and thus
omitted. We first show that M is individually rational. First of all, since M is individually
rational for workers, we have M{(©p) = 0 for all f € ' and P € P such that ¢ >p f,
which implies that M;(©p) = 0 since Mj] o, My and M (00p) < G(0Op) = 0. Thus, M
is also individually rational for workers. To show that M is individually rational for firms,
suppose for a contradiction that there are some f € F' and M ¢ € X such that M 7= My and
uf(Mf) —us(My) = 3e for some € > 0. We then prove the following claim:

Claim 2. For all sufficiently large q, there exists a subpopulation M]? in ' such that M;Z =
D=/ (M) and ug(M}) > up(My) — €.

Proof. We use Lemma 7 with Y = D=/(M), Y9 = D=/(M%), and X = M;. By the
continuity of D=/(-) and the assumption that M? M , we have Y1 Ly Also, we have

~

X = My c My = D=/(M) =Y. Lemma 7 then implies that there exists a sequence (M) gen
such that M;? e X9, MJ‘Z AN g Mf, and MJ‘Z = Y9 = D=/(M?). Then, by the continuity

~

of uy, we have ug(Mf) > us(My) — e for all sufficiently large ¢. |
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Since M9 % M and u # is continuous, we have that, for all sufficiently large ¢,
up(M) < up(My) + € = ug(My) — 2e < up(M}) — e, (26)

where the second inequality follows from Claim 2. This contradicts e-stability of M? in I'7.

To prove that there is no blocking coalition, suppose for a contradiction that there exist
a firm f € F and subpopulation M such that M; = D=/ (M) and us(M;) — us(My) = 3e
for some € > 0. By Claim 2, for all sufficiently large ¢, there exists a subpopulation MJ‘? in
['? such that M]‘Z = D=/(M?) and uf(]\Zf]‘Z) > us(M;) — €. Then, the same inequality as in
(26) establishes the desired contradiction. |

Let us here state a variant of Theorem 8 for later use, whose proof is essentially the same
as that of Theorem 8:

Theorem 8. Let (M%* ),y be a sequence of matchings converging to M such that for every
€ > 0, there exists K € N such that for all £ > K, M% is e-stable in I'%. Then, M is stable
in I'.

Proof of Theorem 9. First let us state a mathematical fact:

Lemma 11 (Heine-Cantor Theorem). Let h: A — B be a continuous function between two
metric spaces A and B, and suppose A is compact. Then, h is uniformly continuous.

Since the space of all subpopulations of G is metrizable by the Lévy-Prokhorov metric,
and it is compact, the Heine-Cantor theorem applies to our setting.
We also need the following result:

Lemma 12. For every e > 0, there exist § € (0,€) and Q' € N such that for every q > Q'
and every matching M? that is d-stable in 'Y, there exists a stable matching M in I' such
that d(M9, M) < €, where d(-,-) is the product Lévy-Prokhorov metric.%!

Proof. Suppose for contradiction that the conclusion of the statement does not hold. Then
there exists ¢ > 0 with the following property: for every ¢ € (0,¢) and @’ € N, there
exist ¢ > )" and M7 that is 0-stable in I'? such that d(M9, M) > e for every M that is
stable in T'. This implies there exists a decreasing sequence (§*); which converges to 0 and
(M9"),, such that M9 is §*-stable in T'7", d(M?", M) > € for every stable matching M in T
and lim; ¢* = o0. Without loss of generality, assume M ¢ converges to some matching M

84The Lévy-Prokhorov metric on space X is defined as follows: for any X,Y € X,
dX,)Y):=inf{e>0]| X(E) <Y (E°)+eand Y(F) < X(E®) +¢ for all E € X},

where E€ := {# € ©|30' € E such that d®(6,60’') < ¢} with d® being a metric for the space ©. Here, we abuse
notation since d is used to denote both the Lévy-Prokhorov metric and its product metric. Note that the
choice of product metric is inconsequential since it is defined on a finite-dimensional space.
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(because the sequence lies in a sequentially compact space). Then d(M , M) = € for every
stable matching M € I', so M is not stable in I". This is a contradiction to Theorem &’. |

Proof of Part (i): Given an arbitrary € > 0, let n > 0 be a constant such that, for any
two matchings M and M’, d(M, M') < n implies |us(My) — up(M})| < €/2 for every f e F.
(Recall that uys is continuous. Therefore it is uniformly continuous by the Heine-Cantor
theorem.) Without loss, one can assume 7 < €.

For n > 0 defined in the last paragraph, choose § € (0,17) and @' as described in the
statement of Lemma 12. (Note that § < € since § < n < e.) More precisely, § and @’ have
the property that for every ¢ > @)’ and every matching M4 that is d-stable in I'?, there exists
a stable matching M in I' such that d(M¢9, M) < . Given this 0, by Lemma 9 and Lemma
10, there is Q@ > @’ such that for all ¢ > @, there exists a matching M? in 'Y which is
0-stable in I'? and satisfies

) S

ug(MF) > ug(My) — o > up(My) —

. (27)

NN e

Claim 3. u;(M;) > uf(M]?) — ¢/2 for any §-stable matching M® in TY.

Proof. By the argument in the last paragraph, there exists a stable matching M in I with
d(M9, M) < 1. So, by construction of 7 (and uniform continuity of uys), we obtain uy(My) >
uf(]\;.l;?) — €/2. Meanwhile, by firm optimality of M, we have u;(M;) < us(M ). Combining
these inequalities, we obtain the desired inequality. |

Then, the desired conclusion holds for any ¢ > @ since, by (27) and Claim 3, we have
uf(MJ?) >up(Mys) —€/2 > uf(M]?) — €.

Proof of Part (ii): Note first that each mapping D>/(-) is continuous, and hence
uniformly continuous (see footnote 83). Thus, given an arbitrary € > 0, one can choose
n € (0,€) such that for any M, M’ e X" d(M, M') < n implies d(D=/(M), D=/ (M")) < £
for all f € F. By Lemma 12, for the chosen 7, one can find ¢ € (0,7) and @’ € N such that
for every ¢ > @' and every d-stable matching M? in T'9, there is a stable matching M9 in T
such that d(M¢?, M?) < n. By definition of 5, we must have d(D=/(M?), D=/ (M?)) < .

Next, given that Cy(M ;) = {M,} for each f € F', Lemma S4 of Supplementary Material
implies that there is a sequence (M9),ey such that M¢ AR M, where M1 is a feasible and
individually rational matching in I'?. Choose now €5 > 0 such that for any subpopulations
M, M e X, d(M,M") < €5 implies |us(M) —us(M')] < . By Lemma S5 of Supplementary
Material, one can find Q" € N such that for all ¢ > Q”, MY is es-distance stable: that is,
for any M’ e X such that M’ = D=/(M9) and ug(M') > us(M}), we have d(M', M) < ¢s.
This implies by the definition of €5 that us(M7)+6 > ug(M’). In other words, M7 is 0-stable
for all ¢ > )", as required by condition 1 of Definition 11. To satisfy condition 2, using the
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fact that M? converges to M, we can choose () > max{Q’, Q"} such that for all ¢ > @, we
have d(D>/ (M%), D=/ (M)) < & for all f € F, which implies

D= (M)(E) < D=/ (M?)(E%) + % VEeX,VfeF, (28)

by the fact that d is the Lévy-Prokhorov metric (refer to footnote 84 for the definition of d
and E°). Then, for any ¢ > @ and for any f € F and E € X,

DM E _ € _EéDZf MO (E3 _€
(D= (1) ()~ §) — & <D= (1) (5%) - ¢
<D= (M)(E?) - 5 < D (M")((E?)?) < D=/ (M")(E"),
where the first inequality follows since d(D=f(M9), D=f(M9)) < 5, the second inequality
from the worker-optimality of M and stability of M? in I, the third inequality from (28),

and the last inequality from the fact that (£2)2 < E€ (which can be easily verified). |

Proof of Theorem 10. Suppose not for contradiction. Then, there must be a sequence
(Ok, qr )ken With 0 N\, 0 and g " o0 such that M9 is §j-stable and d(M, qu) > ¢ for all k.
Then, one can find a subsequence (gx,, )men such that M%n converges to some M (since the
sequence lies in a sequentially compact space), which must be stable in I" due to Theorem
8. Since d(M, M%m) > ¢ for all m, we must have d(M, M) > ¢, which contradicts the
uniqueness of stable matching in T". |

References

ABDULKADIROGLU, A., Y.-K. CHE, aND Y. YASUDA (2015): “Expanding Choice in School
Choice,” American Economic Journal: Microeconomics, 7, 1-42.

ABDULKADIROGLU, A., P. A. PATHAK, axD A. E. ROTH (2005): “The New York City
High School Match,” American Economic Review Papers and Proceedings, 95, 364-367.

ABDULKADIROGLU, A., P. A. PATHAK, anD A. E. ROTH (2009): “Strategy-proofness ver-
sus Efficiency in Matching with Indifferences: Redesigning the NYC High School Match,”
American Economic Review, 99, 1954-1978.

ABDULKADIROGLU, A., P. A. PATHAK, A. E. ROoTH, axp T. SONMEZ (2005): “The

Boston Public School Match,” American Economic Review Papers and Proceedings, 95,
368-372.

ABDULKADIROGLU, A.,; aND T. SONMEZ (2003): “School Choice: A Mechanism Design
Approach,” American Economic Review, 93, 729-747.

o1



ApAcHI, H. (2000): “On a Characterization of Stable Matchings,” FEconomics Letters, 68,
43-49.

AvrPrANTIS, C. D., anp K. C. BORDER (2006): Infinite Dimensional Analysis: A Hitch-
hiker’s Guide. Springer, Berlin.

ALKAN, A. (2002): “A Class of Multipartner Matching Markets with a Strong Lattice
Structure,” Economic Theory, 19, T37-746.

ALKAN, A., AND D. GALE (2003): “Stable Schedule Matching Under Revealed Preferences,”
Journal of Economic Theory, 112, 289-306.

AsH, R. B., anp C. A. DOLEANS-DADE (2009): Real Analysis and Probability. Academic
Press, San Diego.

AsHLAGI, I., M. BRAVERMAN, AND A. HAsSIDIM (2014): “Stability in Large Matching
Markets with Complementarities,” Operations Research, 62, 713-732.

AsHrAcI, 1., Y. KANORIA, anD J. LESHNO (2017): “Unbalanced Random Matching Mar-
kets: The Stark Effect of Competition,” Journal of Political Economy, 125, 69-98.

AYGUN, O., anp T. SONMEZ (2013): “Matching with Contracts: Comment,” American
Economic Review, 103, 2050-2051.

AzeVEDO, E. M., anp J. W. HATFIELD (2015): “Complementarity and Multidimensional
Heterogeneity in Large Matching Markets,” Discussion paper.

Azevepo, E. M., anp J. D. LESHNO (2016): “A Supply and Demand Framework for
Two-Sided Matching Markets,” Journal of Political Economy, 124, 1235-1268.

Azevepo, E. M., E. G. WEYL, anpD A. WHITE (2013): “Walrasian Equilibrium in Large,
Quasilinear Markets,” Theoretical Economics, 8, 281-290.

BIRO, P., T. FLEINER, AND R. IRVING (2013): “Matching Couples with Scarf’s Algorithm,”
Proceedings of the 8th Japanese-Hungarian Symposium on Discrete Mathematics and its
Applications, pp. 55—64.

BLAIR, C. (1984): “Every Finite Distributive Lattice Is a Set of Stable Matchings,” Journal
of Combinatorial Theory, 37, 353-356.

BoGcoMOLNAIA, A.; axD H. MouULIN (2001): “A New Solution to the Random Assignment
Problem,” Journal of Economic Theory, 100, 295-328.

CHE, Y.-K., J. Kim, anp K. MIERENDORFF (2013): “Generalized Reduced-Form Auc-
tions: A Network-Flow Approach,” Econometrica, 81, 2487-2520.

52



CHE, Y.-K., anp Y. KOH (2016): “Decentralized College Admissions,” Journal of Political
Economy, 124, 1295-1338.

CHE, Y.-K., anp F. KoJima (2010): “Asymptotic Equivalence of Probabilistic Serial and
Random Priority Mechanisms,” Fconometrica, 78, 1625-1672.

CHE, Y.-K., axnp O. TERCIEUX (2015): “Efficiency and Stability in Large Matching Mar-
kets,” forthcoming, Theoretical Economics.

(2017): “Payoff Equivalence of Efficient Mechanisms in Large Matching Markets,”
Discussion paper.

DEBREU, G. (1954): “Representation of a Preference Ordering by a Numerical Function,”
Decision Processes, pp. 159-165.

DELACRETAZ, D., S. D. KOMINERS, AND A. TEYTELBOYM (2016): “Refugee Resettle-
ment,” Discussion paper.

ECHENIQUE, F., anp J. OVIEDO (2004): “Core Many-to-One Matchings by Fixed Point
Methods,” Journal of Economic Theory, 115, 358-376.

(2006): “A theory of stability in many-to-many matching,” Theoretical Economics,
1, 233-273.

ECHENIQUE, F., anp M. B. YENMEZ (2007): “A Solution to Matching with Preferences
over Colleagues,” Games and Economic Behavior, 59, 46-71.

ELLICKSON, B. (1979): “Competitive equilibrium with local public goods,” Journal of Eco-
nomic Theory, 21(1), 46-61.

ELLICKSON, B., B. GRODAL, S. SCOTCHMER, AND W. R. ZAME (1999): “Clubs and the
Market,” Econometrica, 67, 1185—-1217.

l

(2001): “Clubs and the market: large finite economies,
Theory, 101, 40-77.

Journal of Economic

ErDIL, A., anpD H. ERGIN (2008): “What’s the matter with tie-breaking? Improving
efficiency in school choice,” American Economic Review, 98, 669—689.

FLEINER, T. (2003): “A Fixed-Point Approach to Stable Matchings and Some Applica-
tions,” Mathematics of Operations Research, 28, 103—126.

FUDENBERG, D., anp J. TIROLE (1991): Game Theory. MIT Press, Cambridge, Mas-
sachusetts.

93



GALE, D., anp L. S. SHAPLEY (1962): “College Admissions and the Stability of Marriage,”
American Mathematical Monthly, 69, 9-15.

GILLES, R. P., AND S. SCOTCHMER (1997): “Decentralization in replicated club economies
with multiple private goods,” Journal of Economic Theory, 72(2), 363-387.

HATFIELD, J. W., anD F. KoJimA (2008): “Matching with Contracts: Comment,” Amer-
1can Economic Review, 98, 1189-1194.

HATFIELD, J. W., F. KoJiMA, aND Y. NARITA (2016): “Improving schools through school
choice: A market design approach,” Journal of Economic Theory, 166, 186-211.

HATFIELD, J. W., anD S. D. KOMINERS (2017): “Contract Design and Stability in Many-
to-Many Matching,” Games and Economic Behavior, 101, 78-97.

HATFIELD, J. W., aND P. MILGROM (2005): “Matching with Contracts,” American Eco-
nomic Review, 95, 913-935.

IMMORLICA, N.; AND M. MAHDIAN (2005): “Marriage, Honesty, and Stability,” SODA
2005, pp. 53-62.

KAGEL, J. H., anp A. E. Rora (2000): “The Dynamics of Reorganization in Matching
Markets: A Laboratory Experiment Motivated by a Natural Experiment,” The Quarterly
Journal of Economics, 115, 201-235.

KELSO, A., anp V. CRAWFORD (1982): “Job matching, coalition formation, and gross
substitutes,” Econometrica, 50, 1483—-1504.

KESTEN, O., aNDp U. UNVER (2014): “A Theory of School Choice Lotteries,” forthcoming,
Theoretical Economics.

Kraus, B., anp F. KL1IJN (2005): “Stable Matchings and Preferences of Couples,” Journal
of Economic Theory, 121, 75-106.

KoJmva, F., anp M. MANEA (2010): “Incentives in the Probabilistic Serial Mechanism,”
Journal of Economic Theory, 145, 106-123.

Kojmva, F., anp P. A. PATHAK (2009): “Incentives and Stability in Large Two-Sided
Matching Markets,” American Economic Review, 99, 608—627.

Koimva, F., P. A. PATHAK, anxD A. E. RoTH (2013): “Matching with Couples: Stability
and Incentives in Large Markets,” Quarterly Journal of Economics, 128, 1585-1632.

LEE, S. (2017): “Incentive compatibility of large centralized matching markets,” Review of
Economic Studies, 84, 444-463.

o4



L1, J. (2014): “Fixed point theorems on partially ordered topological vector spaces and their
applications to equilibrium problems with incomplete preferences,” Fized Point Theory
and Applications, 2014, 192.

Liu, Q., anp M. Pycia (2013): “Ordinal Efficiency, Fairness, and Incentives in Large
Markets,” Discussion paper.

MANEA, M. (2009): “Asymptotic Ordinal Inefficiency of Random Serial Dictatorship,”
Theoretical Economics, 4, 165-197.

MirGgroMm, P., anp J. ROBERTS (1990): “Rationalizability, Learning, and Equilibrium in
Games with Strategic Complementarities,” Econometrica, 58, 1255—-1277.

MirLGgroMm, P.; aND C. SHANNON (1994): “Monotone Comparative Statics,” Econometrica,
62, 157-180.

MIRALLES, A. (2008): “School choice: The case for the Boston mechanism,” Discussion
paper.

MIRALLES, A., aND M. Pycia (2017): “Large vs. Continuum Assignment Economies,”
Discussion paper.

NcuYEN, T., A. PEIVANDI, AND R. VOHRA (2016): “Assignment problems with comple-
mentarities,” Journal of Economic Theory, 165, 209-241.

NGUYEN, T., aAND R. VOHRA (2014): “Near feasible stable matchings with couples,” Dis-
cussion paper.

Ok, E. (2011): Real Analysis with Economic Applications. Princeton University Press,
Princeton.

——— (2017): Applied Topology. mimeo.

OSTROVSKY, M. (2008): “Stability in Supply Chain Networks,” American Economic Re-
view, pp. 897-923.

Pycia, M. (2012): “Stability and Preference Alignment in Matching and Coalition Forma-
tion,” FEconometrica, 80, 323-362.

RoTH, A. E. (1984): “The Evolution of the Labor Market for Medical Interns and Residents:
A Case Study in Game Theory,” Journal of Political Economy, 92, 991-1016.

(1985): “The college admission problem is not equivalent to the marriage problem,”
Journal of Economic Theory, 36, 277-288.

95



RotH, A. E. (1991): “A Natural Experiment in the Organization of Entry-Level Labor
Markets: Regional Markets for New Physicians and Surgeons in the United Kingdom,”
American Economic Review, pp. 415-440.

RotH, A. E. (2002): “The Economist as Engineer: Game Theory, Experimentation, and
Computation as Tools for Design Economics,” Econometrica, 70, 1341-1378.

RotH, A. E., anp E. PERANSON (1999): “The Redesign of the Matching Market for
American Physicians: Some Engineering Aspects of Economic Design,” American Eco-
nomic Review, 89, 748-780.

ROYDEN, H., anp P. FIrrzPATRICK (2010): Real Analysis. Pearson, New Jersey.

SANDLER, T., aND J. TSCHIRHART (1997): “Club theory: Thirty years later,” Public
choice, 93(3-4), 335-355.

SCOTCHMER, S., AND C. SHANNON (2015): “Verifiability and group formation in markets,”
Discussion paper.

SCOTCHMER, S., AND M. H. WOODERS (1987): “Competitive equilibrium and the core in
club economies with anonymous crowding,” Journal of Public Economics, 34(2), 159-173.

SONMEZ, T., axp U. UNVER (2010): “Course Bidding at Business Schools,” International
Economic Review, 51, 99-123.

SOTOMAYOR, M. (1999): “Three Remarks on the Many-to-Many Stable Matching Prob-
lem,” Mathematical Social Sciences, 38, 55-70.

Topkis, D. M. (1998): Supermodularity and Complementarity. Princeton University,
Princeton, New Jersey.

Zuou, L. (1994): “The Set of Nash Equilibria of a Supermodular Game is a Complete
Lattice,” Games and Economic Behavior, 7, 295-300.

o6



Supplementary Material for “Stable Matching in Large
Economies”

(Not for Publication)

YEON-Koo CHE, JiNwoo KiMm, FuHITO KOJIMA

S.1 Analysis of the Example in Section 2

Let r be the number of workers with each of the two types who are matched to f. We

consider the following cases:

1. Suppose r > ¢/2. For any such matching, at least one position is vacant at firm f’
because f’ has ¢ positions, but strictly more than ¢ workers are matched to f out of
the total of 2¢ workers. Thus such a matching is blocked by f’ and a type 6’ worker

who is currently matched to f.
2. Suppose r < q/2. Consider the following cases.

(a) Suppose that there exists a type 6 worker who is unmatched. Then such a
matching is unstable because that worker and firm f’ block it (note that f

prefers 6 most).

(b) Suppose that there exists no type ¢ worker who is unmatched. This implies that
there exists a type ' worker who is unmatched (because there are 2q workers in
total, but firm f is matched to strictly fewer than ¢ workers by assumption, and
f’ can be matched to at most g workers in any individually rational matching).
Then, since f is the most preferred by all 8 workers, a 6’ worker prefers f to ¢,
and there is some vacancy at f because r < ¢/2, the matching is blocked by a

coalition of a type # worker, a type ¢’ worker, and f.



S.2 Preliminaries for the Continuum Economy Model

S.2.1 Proof of Lemma 1

For any subset ) < X, define
Y(E) := sup{Z Yi(E;) | {E;} is a finite partition of £ in ¥ and

{Y:} is a finite collection of measures in Y, Vi}, VE.

and Y analogously (by replacing “sup” with “inf”). We prove the lemma by showing that
Y =supYeYandY =infY e X.

First of all, note that Y and Y are monotonic, i.e. for any £ < D, we have Y (D) > Y (E)
and Y(D) = Y (FE), whose proof is straightforward and thus omitted.

We next show that Y and Y are measures. We only prove the countable additivity of
Y, since the other properties are straightforward to prove and also since a similar argument
applies to Y. To this end, consider any countable collection {E;} of disjoint sets in 3 and
let D = UE;. We need to show that Y(D) = >, Y(FE;). For doing so, consider any finite
partition {D;} of D and any finite collection of measures {Y;}. Letting E;; = E; n Dj, for

any 4, the collection {E;;}; is a finite partition of E; in ¥. Thus, we have
i i i

Since this inequality holds for any finite partition {D;} of D and collection {Y;}, we must
have Y(D) < >, Y(E;). To show that the reverse inequality also holds, for each E;, we
consider any finite partition {£;;}; of E; in ¥ and collection of measures {Y;;}; in . We
prove that Y(D) = 2., Yij(Eij), which would imply Y(D) = Y., Y(E;) as desired since
the partition {E;;}; and collection {Y;;}; are arbitrarily chosen for each i. Suppose not for
contradiction. Then, we must have Y (D) < 3, 2, Yij(Eij) for some k. Letting £ :=
U (U, Eyj), this implies Y(D) < 3F | 2, Yii(Eiy) < Y (E), where the second inequality
holds by the definition of Y. This contradicts with the monotonicity of Y since £ < D.

We now show that Y and Y are the supremum and infimum of ), respectively. It is
straightforward to check that for any Y € Y, Y =Y and Y = Y. Consider any X, X' € X
such that forall Y e Y, Y = X and X’ = Y. We show that Y — X and X’ = Y. First,
if Y & X to the contrary, then there must be some E € ¥ such that Y (E) > X(FE). This
means there are a finite partition {£;} of £ and a collection of measures {Y;} in ) such that
Y(E) = YY(E;) > X(E) =Y. X(E;). Thus, for at least one i, we have Y;(E;) > X (E;),
which contradicts the assumption that for all Y € ), Y = X. An analogous argument can
be used to show X' = Y.



S.2.2 Proof of Proposition 1

Suppose that matching M is not weakly Pareto efficient. Then, by definition of weak Pareto
efficiency, there exists M’ and f € F' such that M’ >¢ M and M} >y M;.
Next, since M’ >¢ M, for each f, we have D=/(M") = D=/ (M), or

> My(©pnE)> Y Mp©pnE)VEeX.
fif=pf fif=pf
This implies that

Y Mp(©pnE)> Y Mp(©pnE)VEEY,
frf'=pff frf=pff
where f refers to the firm that is ranked immediately above f according to P (whenever

it is well defined), or equivalently

Y Mp(OpnE)> > Mp©pnE)VEeS.
I f'>pf i f'>pf

This in turn implies that, for each P,

Y Mp(©pnE)< ) Mp(OpnE)VEeY,
Ifr<pf If'<pf
or equivalently,
DI(M") = D=I(M).

By definition, M} = D=/(M’), so we have M; = D=/(M).

Collecting the observations so far, we conclude that f and M} block M, implying that
M is not stable. We have thus established that stability implies weak Pareto efficiency.

Suppose now that each Cy is a choice function and that a stable matching M is not
Pareto efficient. Then, there is another matching M’ # M such that M’ >p M and
M' >¢ M. Choose any firm f € F with M; # M} and note that since Cy is a choice
function, we have Cy(M; v M};) = M} # My, which means M} >; M;. Given this, a

contradiction can be drawn following the same argument as above.

S.3 Equivalence with Worker-Proposing DA

In this section, we establish the equivalence between a repeated application of our fixed
point mapping and the worker-proposing DA process when firms have substitutable pref-

erences. To do so, we assume that each firm’s choice is always unique, i.e., Ct is a choice

IThis is defined later as an immediate predecessor. Formally, f¥ >p f and if f/ >p f, then f' >p L.



function. Then, the substitutability of firm f’s reference becomes
R¢(X) = Rp(X') whenever X = X" (SUB)

Let X} denote the cumulative measure of workers proposing to the firm f from round
1 through ¢ of the worker-proposing DA process. Let fl’} denote the measure of workers
(tentatively) accepted by f in round ¢. Let (X?, A‘}) = (0,0). In the first round, all workers
propose to their most preferred firms, which means that for any P € P and E < Op,
GE) i f>p [V #]

Xj(B) = | (51)
0 otherwise.

Given this,
A} = Cy(X}). (S2)

For ¢t > 2, the pair ()A(}, fl}) is recursively defined as follows: For any P € P and F < Op,

2 - [6® R S,
/ - St St At S .
Rp (X;fl — X;f? + A;i?) (E) + X} Y(E) otherwise

Ay =y (K5 = X+ A7), (S4)

The first expression in (S3) is straightforward, given that all workers who most prefer
f propose to f in the first round. To understand the second expression, the cumulative
measure of workers proposing to f (which is not most preferred according to P) from round
1 through ¢ is obtained by adding to X}_l—tha‘c is, measure of workers proposing to f from
round 1 through ¢ — 1—the measure of workers who newly propose to f in round t. The
latter workers then coincide with those rejected by f’s immediate predecessor (i.e., f£) in
round ¢ — 1, whose measure is equal to Rgr (X;}l — X;;}z + A;ED2> To see this, note that
in round ¢ — 1, the firm f considers and accepts/rejects among those tentatively accepted
by f¥ in round ¢ — 2 (their measure being equal to A;}Q) and those newly proposing to f%
in round ¢ — 1 (their measure being equal to X}}l - X;}Q) The expression in (S4) can be
understood similarly.

Let X° denote a profile of zero measures (that is, the profile has one zero measure for

each firm in F). Define iteratively X* = T(X*™1) for each ¢t > 1, where T is our fixed-point
mapping.

Proposition S1. If (SUB) holds for all f € F, then X} = X} in each round t > 1.
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Before starting the proof, we establish the following lemma:

Lemma S1. Given RP, (SUB) is equivalent to the path independence:
Ci(X") =CHC(X)+ X' — X),VX = X' (PT)

Proof. That (PI) implies (SUB) follows immediately from noting that

CrX)=CrCyX)+ X' - X)c Cp(X)+ X' - X,

and thus X — Cy(X) = X' — Cp(X') or Rp(X) = Rp(X').
To prove the converse, for any subpopulations X and X’ with X = X', let Z = Cf(X)+
X' — X. Then, by SUB, we have C¢(X') = Z. Since Z = X', RP implies C¢(Z) = C¢(X’),

which is equivalent to (PI), as desired. |

Proof of Proposition S1. We need to show that for each s > 1 and for each P € P and
Ec @p,

G(E) it f>p [V #F

XHE) = XGE) =THCE) =1 b 2oty 1) otherwi
P P otherwise.

(S5)

Let us first establish that for all s > 1, Ajc = Cf(Xj) This holds for s = 1 due to (52).
Assuming inductively that this holds for all s <t — 1, we have

A= cp (K= X+ AY) = O (X = X4 Gp(XEY) = Cr(KY),

where the last equality holds due to (PI) and the fact that )A(Jtc_l = )A(}Z
To show (S5), consider s = 1 and note that if f is not most preferred according to P,
then
Xi(E) = Ty(X")(E) = Ryr(Xpp)(E) = Ryr(0)(E) =0

while, if f is most preferred, then X #(E) = G(E). This means that X } coincides with X i
given in (S1), so (S5) holds for s = 1. Assume inductively that (S5) holds for all s <t — 1.
To show that it holds for s = ¢, for any P € P and E < Op, letting g = f¥ (to simplify

notation), we have
X}(B) = Ry (X471 = X072+ A472) (B) + X1(E)
= Ry (X7 = X724 C(X07)) (B) + X[ (B)

= X;_l(E) - X;_2(E) + CQ(X;_Q)(E) — Cg <X;_1 _ X;—2 + Cg(th]—Q)) (E) + X}tt_l(E)
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= X7 (E) = X;(E) + Cy(X,%)(B) — Cy(X7)(B) + X[7(E)
() + X;H(E)

= Ry(Xy7)(B) — Ry(X;7%)
= Ry(Xg)(B) = Ry(Xy)(E) + Ry(Xg*)(E) = Ry(Xy)(E)

ot —
g
o t—
g

as desired, where the fourth equality holds due to Lemma S1 while the last two equalities
hold due to the inductive assumption that for all s <t — 1, X;(E) = Ry (X';;l)(E) and

Xs=X:1

S.4 Analysis of the Examples in Section 4

S.4.1 Example for Remark 3

Let us modify Example 1 by assuming that f; has a “Leontief” preference and would
like to hire mass a < 1 of type-6 workers per unit mass of type-6’ workers, while keeping

preferences of all other players unchanged. Thus, f;’s choice function becomes
Cfl(Xfl) = (amin{%7$,1}7min{%7$,1}) ) (86)

where Xy, = (z1,2]) is the measures of type 6 and type 6’ workers available to f;. As in

Example 1, without loss, we can set z; = G(#) = 1 and 24, = G(#) = 1, and consider
X = (3,2}, 22,3) as our candidate measures. Using this with (5), (S6), and (2), the

fixed-point mapping is given as follows: for any X = (2, T, o, %)

Tf1<X) = (%7Rf2(x27 %)(9/)) = (27'7;2) (S7>
Th(X) = (R, (5,20)(0), 5) = (5 —az, 3). (S8)

Letting ¢1(z2) = z2 and ¢o(z}) = 1 — az and assuming ¢ < %, the mapping (z},z2) —
(p1(x2), gbg(a:’l)) can be depicted as in Figure S1. The unique fixed point of T is given as

which yields the corresponding stable matching

M:( efl ) efz 9/)
2(a+1 + a+1 2(a+1 + a+1

To show that the tatonnement process with any initial point converges to the fixed point,

A
Ty = 22 = (+1)’

it suffices to show that 7?2 = T o T is a contraction mapping, and to invoke Proposition
2. To do so, consider any X = (1,27,25,3) and Y = (3,9},92,3). Then, T?(X) =
(3,4 —az), i —axs, ) and T*(Y) = (3,1 —ay}, L — ays, ). Thus,

|7*(X) = T*(Y)]| = (0, —a(2} = 1), alz2 — 42),0)| = a| X — Y,

which implies that 72 is a contraction mapping, since a < 1.

6



2(a+1)

2(a+1)

Figure S1: Fixed Point of Mapping T’

S.4.2 Analysis of Example 2

Consider the following two cases:

1. Suppose f; hires measure 1/2 of each type of workers (i.e., all workers). In such a
matching, none of the capacity of f, is filled. Thus, such a matching is blocked by fs
and type-0’ workers (note that every type-6’ worker is currently matched with fi, so

they are willing to participate in the block).

2. Suppose f; hires no worker. Then, the only candidate for a stable matching is one
in which f; hires measure 1/2 of the type-6 workers (otherwise f, and unmatched
workers of type 6 would block the matching). Then, because f; is the top choice of
all type-0 workers and type-0’ workers prefer f; to ¢, the matching is blocked by a
coalition of 1/2 of the type-0 workers, 1/2 of the type-0" workers, and f;.

S.4.3 Analysis of Example 3

Consider first a matching in which f; hires a positive mass of type-0’ workers. Then, it
must hire type-0’ workers only and hire all of them. (Recall that type ¢ prefers f, while fo
has the capacity of 0.5.) Then, f; hires no one, implying that mass 0.6 of type-6 workers are

all unmatched. Then, f5 could form a blocking coalition with mass 0.6 of type-6 workers.



Consider second a matching in which f5 hires zero mass of type-6’ workers. Then, f;
must hire the entire type-6’ workers and the same mass of type-6 workers (since all type-6’
workers are available and the type-6 prefers f; to fs.) This would only leave the mass 0.2
of type-0 workers for f5 to hire. Then, f5 could form a blocking coalition with the mass 0.4

of type-0" workers (since the type ¢ prefers f; to fi).

S.5 Omitted Examples from Section 6:

Example S1. [Substitutable Preference| Consider Example 1 again and assume that the
preference of firm fy as well as those of workers remains the same, but f;’s preference is
changed as follows: it has a capacity equal to 1 (which is large enough to hire the entire
workers); for the first quarter of its capacity, it hires workers according to the responsive
preference: 6 > #'; for the remaining capacity, it is indifferent to hiring any number of

additional workers. The resulting choice correspondence is

{(z,2")} ifx+a2' <1
Cp(z,a') = {a} x [ —2,2/] fz+2’>Tandz<i
[$, 2] x [0, 2] ifv+2'>1and x> 1.

One can verify that this preference is substitutable, and the set of stable matchings is
M = {(z3,2})i=12 |1 € [, 3], 21 € [0, 5 — 2], and (29, 25) = (5 — 21, 71)}.

Observe M* contains side-optimal matchings: the firm-optimal /worker-pessimal matching

is (z1,7}) = (§,7) and (22,2%) = (5, 1), and the worker-optimal/firm-pessimal matching

is (z1,27) = (3,0) and (22,2%) = (0,3). It can be seen easily, however, that M* is not a

lattice while C}, fails the strong-set monotonicity.

Example S2. [The role of order continuity in Theorem 4-(ii):] Consider our leading ex-
ample with two types of workers, each of mass %, with the same preferences as before. As
before, the measures of available workers can be described succinctly by (2}, z3), where 2}
is the measure of type 6 workers available to firm 1 and x5 is the measure of type 6 workers

available to firm 2. (As before, the measure of type 6 workers available to firm 1 and that

1

of type 6 workers available to firm 2 are always 5.) Suppose firms’ preferences are given

by two choice functions:

1 / : / 1 1 : 1
s if 2 < %; To, & if 29 < 3
Crhapy =4 @) O MRSE gy = Y ey
(Z — Zl'l,l'l) if Ty > 3 (LCQ, i Zil’)z) if To > 3

8



where we set 1 = 2z, = 1/2 as in other examples. As can be seen, the choice function

fails to be order-continuous. Letting ¢;(z2) = Ry, (22, 1) and ¢o(2}) = Ry, (3, )), Figure

S2 depicts ¢1 and ¢9 in (2], x2) plane, whose intersection gives a fixed point of 7. As can

715 i) Yet, if we iterate T" from the largest point

), the algorithm gets “stuck” at (3, 3) = limy,_, T%(3, 5), which does not

be seen, there exists a unique fixed point (
11
272
correspond to a stable matching.

of the space (

=
-
[\V]

¢1

=
W=

Figure S2: Order continuity fails at (2, x2) = (1/3,1/3).

Example S3 (The role of LoAD for Theorem 6). Consider a continuum economy with
worker types 6; and 6, (each with measure 1/2) and firms f; and f;. Preferences are as

follows:

1. Firm f; wants to hire as many workers of type 6, as possible if no worker of type 6,
is available, but if any positive measure of type-6; workers is available, then f; wants
to hire only type-0; workers and no type-f workers at all, and f; wants to hire only

up to measure 1/3 of type-0; workers.

2. The preference of firm f5 is symmetric, changing the roles of worker types 6; and
0. More specifically, Firm f, wants to hire as many workers of type #; as possible
if no worker of type 6, is available, but if any positive measure of type-y workers is
available, then f, wants to hire only type-y workers and no type-6; workers at all,

and fo wants to hire only up to measure 1/3 of type-6y workers.

9



3. Worker preferences are as follows:

01: fo > f1 >0,
022f1>f2>@.

Clearly, the firm preferences are substitutable. Note also that the worker optimal stable

we (5 1)
2¥2 Y1

where the notation is such that measure 1/2 of type-6; workers are matched to f, and

matching is

measure 1/2 of type-f, workers are matched to f;.> Given this, it is straightforward to check
the rich preferences hold.?> Finally, firm preferences violate LoAD because, for instance,
the choice of f; from measure 1/2 of 65 is to hire all of them, but even adding a measure
€ < 1/2 of type-0; workers would cause f; to reject all f3 workers. As it turns out, there is

a firm-optimal stable matching that is different from M and given as follows:

g (h b

~ i e
S.6 Analysis for Section 6

S.6.1 Preliminary Analysis

Throughout this section, we study the choice function of any individual firm with responsive
preference while omitting the firm index from all notations for simplicity.

We begin by characterizing the choice function induced by the preferences. To this end,
note first that, given a measure X of available workers, the quota constraint imposes the

following constraint on any choice X’ = X:

X'(E)< inf X(E\E)+Q{teT|E'nO"+#J}),VEeX. (S9)

E'cE, E'eX

2That this is a worker-optimal stable matching follows from the fact that the worker-proposing DA
ends after the first round where each worker applies to and is accepted by her preferred firm.

3Under any matching M # M that satisfies Mf = C'f(Mf v M) for all f, some firm, say f1, must be
matched with a positive measure of 6; workers. Given that M is individually rational, this implies that f;
is not matched with any 6, workers. Also, since f5 is matched with no more than measure 1/3 workers of
02 under any individual rational matching, at least measure 1/6 of 65 workers are unemployed under M,
which means that these workers belong to M };2 since they prefer fy to ¢ and ¢ ¢ F. If they are available
to fo in addition to My, , then fo would choose not to be matched with any 6; workers, to whom it is

matched under M ;. Thus, the rich preference condition is satisfied.

10



Then, the firm’s optimization problem becomes
1

[P] n}?,XJ s¢(0)dX'(0) subject to (S9).
0

We identify a (unique) solution to [P] via Greedy Algorithm defined below, which con-
sists of multiple steps at each of which the firm hires workers with highest scores (among

remaining workers) until the quota constraint becomes binding for some subset of ethnic

types.

Greedy Algorithm (GA). Set T, = J. For each Step k > 1, define T} as a maximal

element (in the set inclusion sense) of

arg  max  inf {3 e [o, 1]‘X({0 e O|r(0) e T' and s;(0) € [s, 1]})
TeT\(U2iTy)

< QUSRT) uT) - QuUARTY S, (810)
and s; as the resulting maximum.* If u _1I; =T, stop; otherwise iterate to Step k + 1.

Each step iteratively identifies the cutoff score for a group of workers whose residual
quota is most binding. Let m denote the last step of this procedure, at which V7L, T; = T.

Below, we first show that GA yields a unique profile (sg, T;)7-, (Lemma S3), and use
this profile to identify a unique solution to [P] (Proposition S2).

To begin, from any subpopulation X, one can obtain a corresponding score distribution
for each ethnic type t € T, denoted Fy, as follows: for any (Borel) set S < [0, 1],

Fi(S) = X({0 € ©|s(0) € S}).
By abuse of notation, we denote for each s € [0, 1]
Fy(s) = F,([0,s]) and Fy(s) = F([s, 1]).
For any profile of sets (S;);er = [0,1]71 and T" = T, let Sy := (Sy)ser and

};F’ f;r/ = zi] }:% Eﬁ

teT”’

4We assume the infimum of an empty set is 1. Note that s, is strictly decreasing in k since otherwise

there would exist a k such that s, > s;_1 and
Fr,(sk—1) + Fr,_, (sk—1) = Fr,(st) + Pr_, (se-1) = QU(U}Z7T)) U Th U Tio1) — Q(USZETY),

contradicting the fact that Tj_; is the maximal element of the maximizer in Step k — 1.
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and, for each s € [0, 1], let

Fr(s) := Y] Fy(s) and Fri(s) := > Fy(s
teT’ teT’
Given a measure X of available workers, any choice X’ = X of the firm must satisfy

the following constraint:

X'(E)< inf X(E\E)+Q{teT|E' nO"+# J}),VEeX. (S11)

E'CE, E'es)
Lemma S2. Let F' = (F,)wer and F' = (F})er be the score distributions corresponding to
X and X' = X, respectively. Then, the constraint (S11) holds if and only if

Fr(S7) < Up(St) := min Fr(Sy) + Q(T"),¥S7 = (Si)eer < [0,1]7. (S12)

Proof. To prove that (S11) implies (S12), for any S7 = (S;)se7, let Ey = s71(S;) n ©' for
eachteT. Fix T" < T and set £ = Uje7Ey and E' = Uy By in (S11). Then,

"(E) = Y X'(E)) = Y F/(S)) = F}(Sr) (S13)
teT teT
X(E\E') = > X(E)= Y. F(S) = Fra(Sra). (514)
teT\T’ teT\T’

That (S11) implies (S12) thus follows from observing that {t € T|E' n ©' # &} < T".
To prove the converse, if (S11) fails, then there must be F and E’ < E such that

X'(E)> X(E\E') + Q({te T|E' n ©' = &1}). (S15)

Let B, = O'nEand S, = s(E;) foreach t € T, and T" = {t € T|E' n©" # &}. Then, (S13)
easily holds. Also, (S14) holds since E\E" = En(Uer170') = Uern (EnO') = Uer B
Thus, (S15) means that the inequality (S12) fails. |

Given Lemma S2 and the fact that the firm’s preference depends only on the score of
workers, the firm’s optimization problem [P] can be rewritten as
1

[P'] max J sdF(s) subject to (S12).

(F)eer Jo
Once the solution to [P’] is obtained, it will be straightforward to find a corresponding
solution to the original problem [P], as will be seen later.

Given the definition of F}, the set T}, in Greedy Algorithm is a maximal element of

arg ~ max inf {3 € [0,1]
TIeT\(UESATy)

Frls) < QUUET) uT) - Ui |, (510)
while sy, is the resulting maximum. (Recall Ty = &F.)

12



Lemma S3. GA yields a unique profile (sy, Tx)i-,

Proof. Suppose that there are two profiles given by the Greedy Algorithm: (s, T%)5-; and
(s, T, Let s9 = sh = 1 and Ty = T} = . Assume wlog that m < m/. For an
inductive argument, fix any & < m and assume that (s;,T}) = (s},75),Vj < k. We aim
to show that (sg,Tx) = (s, 7). Given the inductive assumption and GA, it is clear that
sk = s). Suppose for contradiction that T}, T) < T\(uf;éTj) and T}, # T}. By GA, letting

skfskfsandeu 1Ty, we have

D E()<QTuTy) - QT)and ) Fi(s) < QTuT) - QT)  (S17)

teT), teT]

with equality if & < m. Also, we must have

> F(s) <QTu(TunT))) - QT). (S18)

teTy, ﬂTI::

By definition of T} and the fact that T}, < T}, u T}, we have

> F(s) < QT u(ThuT)) - QT)

QT Vi)~ ()+@TUH) Q(T) +Q(T) = QT v (T N Ty))
ZF + > Fi(s) —O(T U (Ty N TY)),

teT]
where the weak inequality follows from submodularity of Q@ while the equality from (S17).

Rearranging this equation, we obtain

AT U (TinT)) - QT) < Y, Fils),
tGTk mTIQ
which contradicts (S18).
Lastly, the inequality m < m' must hold as equality, since we have U}* T} = UL, T}, =

T by the above induction argument and the definition of m. |

Using the profile (sg, Tk)j-, obtained from GA, let us define F* = (F}*);er as follows:
for each t € T}, and S < [0, 1],

FF(S) = F,(S n sk, 1]), (519)

that is, the firm hires a worker of ethnic type t € T} if and only if her score is above sy.
This score distribution can be generated by the following subpopulation: for any F € X
and t € Ty,

X*(EnOY=X({0e E|r(0) =t and s(0) € [sg, 1]})

13



and

:iz *(En o). (S20)

Proposition S2. The subpopulation X* in (S20) is a unique solution to [P].

Proof. We first prove that F* = (F*),er is a solution to [P’], which means that X* is a
solution to [P]. Afterward, we prove the uniqueness.
We first show that F* satisfies the feasibility constraint (S12), that is, for any Sy =

(St)te'Tv
F;(ST) < FT\T/(ST\T’) + Q(T’), VT < T. (821)

Fix any 77 < T and let T} :=T" n T}. for each k = 1,...,m. Let s; = s, for each t € T}.
Note first that

F;‘\T’(ST\T’) = Z Ft(St [St, ]) < Z Ft(St) = FT\T’(ST\T’)' <S22)
teT\T’ teT\T"
Next,

Z Ft*(St Z Et St N Sk‘7 )

teTy, teTy,

< 3 Fil[se 1)) < QKT U TY) — Q(UET))

teTy,

< QU TH — Q(uhlT)), (523)

where the second inequality holds since T}, < T} while the third to last inequalities hold
due to the submodularity. By (522) and (523), we get

Fp(Sr)= ), F(S)+ ), ) F(S)

teT\T" k=1teT]
< 3 FS)+ Y (QUiLT) - QMuiiTy))
teT\T" k=1
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- Z EFy(S) + QUi Ty) = Fro(Sm) + Q(T7),
teT\T"

which proves (521).
To prove the optimality of F** note first that (S19) implies

Fr(s) if s>
Fi(s) = FNU;C:TJ)(S) + Q(UNIT)) if s e sk, sp-1),k=2,...,m (S24)
Q(T) if s < sy,

which in turn implies
Fi(s) = Wp([s,1]"),¥s € [0,1], (525)

that is, the constraint (S12) is binding with S; = [s,1] for all ¢ € T and s € [0,1]. This
can be easily seen by setting 7" in (S12) as follows: 7" = ¥ if s = s9; T' = uk 1Ty if
s € [Sk, Sk—1) for some k€ {2,...,m}; and T" = T if s < s,,,. Now, (S25) implies that for
any F' = (F})er satisfying (S12), we have FJ-(s) < Fi%(s), Vs € [0, 1]. Using this, we obtain

1 1
J sdF7(s) = —st?(s)E:O —i—f Fi(s)ds
0 0
1

- [ Epis = [ Fras = [ sarro), (526)

0

which means that F'* is a solution to [P].

To prove the uniqueness, let X’ be any solution to [P] and F’ = (F});c7 be the corre-
sponding score distribution, which must thus be a solution to [P’]. Then, we must have
Fr(s) = Fi(s) = Up([s,1]]) for all s € [0, 1], since otherwise the inequality in (S26)
would hold strictly. Next, we prove the following claim:

Claim S1. For all k and t € Ty, F/([sk, 1]) = Fi([sk, 1]) and F/([0, sg]) = 0.

Proof. Assume that this statement is true up to £ — 1. To show that it also holds for k£,
observe first that

> Fl(lsk1]) = F([sk. 1 ZF’ [, 1

k—1
teT\(Ur21T))

= Sk, ZFT 3]7 = Z Ft([skal])v (827)

k—1
tET\(szlTj)
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where the second equality holds since F- = F* and since the induction hypothesis together
with the fact that s; < sy, Vj < k implies Fr, ([s, 1]) = Fr. ([s5,1]) = Fr;([s;,1]),Vj < k,
while the second equality holds since (S16) and (S24) imply

T

k—1 1
Z FTj(Sj) = (Q(U‘Z:OTi) - Q(Ug;&Ti)) = QUi Th) = F7(sg) — Fﬂ(u’?*llTj)(Sk)-
j=1

i=
1

<.
Il

Since F)([sk,1]) < Fi([sk, 1]), Vt, the equality (S27) implies F{([sk,1]) = Fi([sg.1]) for all
t € Ty. Also, if F/([0, s]) > 0 for some ¢ € T}, then we have

Y o= > F{os)+ Y Flse1))

tEU?lej tEU?lej tEU?ZlTj
> D Fsell) = Y Flse1]) = QUi Ty),
tEU?lej tEu?lej

which contradicts (S12). |

For uniqueness, it suffices to prove that for any £ € ¥ and t € T, X'(E n ©') =
X*(En©"). Suppose not for contradiction, and suppose t € Ty. Then, since F{([0, s]) = 0

by Claim S1, we must have
X'(En©OY < X({0eElr(0) =t and s(0) € [s,1]}) = X*(E O, (S28)
Also,
X'(E°~ ©') < X({0 € E°r () = t and s(0) € [sy, 1]}). (S29)
Adding up (528) and (S29) side by side, we obtain
F{([s1,1]) = X'(0") < X({0 € ©[7(0) = t and s(0) € [sx, 1]}) = Fi([sk, 1]),

which contradicts Claim S1. |

S.6.2 Proof of Lemma 2

Consider any subpopulations X and Y with Y = X and corresponding score distributions
F = (Fy)ier and G = (Gy)er. Note that for any t € T, Borel set S < [0,1], and s € [0, 1],
we have F(S) = G4(S) and Fy(s) = Gy(s). Let (st)wer and (s})ier be the cutoff profiles
from GA under F' and G, respectively.

We first prove substitutability, for which it suffices to show that s; > s; for all ethnic
types t € 7. To show this suppose the contrary, i.e., there exists an ethnic type ¢t € 7 such
that s; < sj. Then the set T := {t € T : s; < s}} is nonempty. Fix an ethnic type t* in
this set T that has the highest cutoff among those in 7%, that is,
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1. t*eT*, and
2. s = s, for every t' e T*.

Now, let k be the step of GA such that t* € T}, under F', and &’ be the step of GA such that
t* € Ty under G, respectively. That is, & and k' are the steps at which some constraint
related to type t* becomes binding under F' and G, respectively (or the last step of the
algorithm if no constraint related to t* becomes binding in any step of the algorithm).
Now, note that because t* satisfies the property in (2) as described above, for every
ethnic type ¢ whose constraint is already binding by the beginning of step &’ under G, a
constraint for that type t is also binding by the beginning of step k£ under F'. More formally,
we have T" = T for T := u?;llTj and T := uf:llTJf, where T; and T} are the maximal sets
that solve the problem given as (S16) in step j of GA under F' and G, respectively.”
Let T" be the set which is the maximal solution to (S16) at step k' under G. Then,
:= S}« is strictly positive by our maintained assumption s* > s+ and the fact s+ > 0.
Thus, it follows that

S*

G_’T/(s*) = Q(T/ uT') — Q(T'). (S30)
We also note that
G’Tlmf(s*) < Q(T’ u (T n T)) — Q(T'), (S31)

because 7" is a solution of the maximization problem described in (S16), and s* is the
associated time at which a constraint becomes binding in this step. Subtracting (S31) from
(S30), we obtain

Gri(s*) = Grap(s®) = QT T — QT v (T " T)). (S32)
Note that the left hand side of (S32) satisfies

Gr(s*) = Griar(s*) = Gpnp(s™)
< Fpogr(s") (533)
where the equality follows from modularity of G (with respect to sets of ethnic types) and

identity T"\(T" nT) = T"\T', while the inequality follows from the assumption that G = F.
Note also that the right hand side of (S32) satisfies

QT vT) = QT u(T'nT)) = Q[T v (T' " T)] u (T"\T)) = QT" v (T" n T)])

5In case k = 1 or k' = 1, we take T or T” to be an empty set.
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> (T u (T'\T)) - Q(T), (534)

where the equality is an identity and the inequality follows from the fact that [T" U (T' N
T)] < T (which in tern follows from the fact that T” is a subset of T') and submodularity
of 9.

Substituting (S33) and (S34) into (S32), we obtain

Frap(s*) = QT v (T'\T)) — QT),

which implies s, > s* = s}, a contradiction.

To next prove LoAD, consider any subpopulations X and Y with Y = X and corre-
sponding score distributions /' and G. Let [™* and G* denote the solution of [P’] under F
and G, resp. The result is then immediate from observing that the total mass hired by the

firm is

STE([0,1]) = F(0) = U ([0, 1)) > W ([0,1]7) = F3(0) = 3 G5 ([0,1]),
teT teT

where the inequality follows from the definition of Wp, Wy in (S12) and the fact that
ZtET\T' Ft([o’ 1]> = ZtET\T’ Gt([ov 1])7 V1" T.

S.6.3 Proof of Proposition 3

To simplify notation, let M = M, i.e., the worker-optimal matching. Fix any individually
rational matching M such that M >p M and assume that F := {f' € F|My >p My}
is nonempty. For any f,¢, let M} := M;(©"' n -) and M} = M;(©' ). Since G is
absolutely continuous, for any f,t, both M} and M}, being its subpopulations, admit
densities, denoted respectively by m/ and 7.

By Proposition S2 in Supplementary Material, Greedy Algorithm yields a unique opti-
mal choice for each firm. Given this and the fact that M; = C;(M;) and My = Cp(M; v
My), we may let s and 8 denote the cutoffs for each type ¢t € T for My and M; in the sense
that s} = inf{s;(0)|6 € © and m}(#) > 0} an(Ai 8 = infisf(9)|6’ € ©' and mf(#) > 0}.°

Because C satisfies LoAD by Lemma 2, My = Cy(M; v My) and My = C¢(My) imply
M;(©) < M;(©) for each f € F. Then, Proposition 3 follows from proving a sequence of

claims.

6These cutoffs are obtained from running Greedy Algorithm with M rand My v M + as measures of
available workers, respectively. More precisely, we have s‘} = si if t € T, in Greedy Algorithm run with

M/ as measure of available workers, for instance.
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Claim S2. M, = M,. Thus, Y;cp My = Y ;cp My and My (©) = M;(0),Vf € F.

Proof. Suppose to the contrary that M, # ]\7[¢. Then, with their densities denoted by m,
and my, B, = {0 € ©|my(0) > m,(0)} must be a non-empty set of positive (Lebesgue)
measure, due to the fact that My(0) = G(©) — X ;.p Mp(0) = G(O) — Xcp M (©) =
M,(©). Also, letting Ey = {6 € ©|ms(0) > ms(6)}, there must be at least one firm f
for which E, n Ef is a non-empty set of positive measure, since otherwise we would have
Dper My (0) = Dy (0) for all 0 € Ey, a contradiction. Now fixing such a firm f and
letting ¥ = E, n Ey, define

min{m(0) + my(#),m;(0)} iffeckE

my(6) otherwise.

my(0) =

and let M; denote the corresponding measure. Note that ivf(6) > m(6) for all € E, and
also that (M; v M) = My # My and My = (M; v M;). Letting M; = Cy(My), we show
below that f and M J’c are a blocking coalition for M, contradicting the stability of M.

First of all, it follows from revealed preference that Cy(My v M}) = M. To show that
M # My, note first that m(0) > my(0), V0 € E means (My v My)(E) = M;(E), so

Ry(My v My)(E) = (M v My)(E) = C¢(My v My)(E) = My(E) = My(E) = 0.

Then, since f has a substitutable preference and My = (M;v M;), we have R;(M;)(E) = 0,
which means M}(E) = Cy(My)(E) = My(F) # M;(E). Tt only remains to show that
M} = D=/(M). For this, note that since M is individually rational and ri(#) > 0,0 € E,
we have f >¢ ¢,V0 € E. Given the definition of M, (i.e., only those added to f are
unmatched under M), this implies that M; = D=/(M) and thus M} = M; = D=/(M). |

We then prove the next claim.
Claim S3. For each f € F, there must be some t such that s < &.

PAroof. Suppose to the contrary that %’} < sh forall t € T Since Y, M{(0) = M;(©) =
Mp(©) = Dp M{(©) and My # My, there must exist + € T' such that the set {0 e
O'lss(0) > s = 8% and m(0) > m%(0)} has a positive measure. A contradiction then
arises since, due to the fact that C} selects all workers of type ¢t whose scores are above
the cutoff 3? and that M F= Cf(M 7 v M), the measure of workers of type 6 € ©F selected
when My v M; is available is equal to m%(0) = max{m}(0), m}(0)} for all § € ©" with
s¢(0) = 5%, which cannot be smaller than m/(0). |
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Claim S4. For any f € F andt e T, if 8}, = 0, then MO ) = MO ).

Proof. Let us first observe that for any f € F and t, if M;(©") < M;(©"), then we have
8% > s% since, as we argued in the proof of Claim S3, the fact that Mf = C'f(Mf v My)
implies that m/(0) = max{m}(0), m(0)} = m}(0) for all 0 € O with s¢(0) > 8%, so if
8% < s, then we would have a contradiction..
Fix now any f € F' and t € T for which §} = (0. Since it means §} < Sl}, we must have
M (©") = M;(©") according to the above argument. We next show that M(©") = M(6").
Suppose to the contrary that M;(©') > M;(©"). Then, the fact that M;(©) = M;(0) by
Claim S2 implies that there must exist ¢’ such that M;(©") < M;(©") and no constraint
for ¢ is binding at ]\7[]», ie., §? = 0. To show this, note first that for any k € {1,...,m — 1},
D, My(0") = (Ui Ty) — QUi Ty),
t"eTy,
where m and T}, are as defined in the Greedy Algorithm when f chooses M 7 (given My VM 7)-
Adding up these equalities from k£ = 1 to m — 1, we obtain

> My(0) = Q(T), (535)

where T% := UZL_OlT . represents the set of all ethnic types at least one of whose constraints is
binding at M 7. Also note that, because Q gives upper-bound constraints for any matching

by assumption, we have
D, My(0") < QT), (S36)
teT*
so combining (S35) and (S36), we obtain
D Mp©") = Y My(e"). (S37)
e e

(S37) and the assumption that M;(©') > M;(©"), together with the fact that M;(©) =
Mf(@) by Claim S2, imply that

DMyO) < Y Mpe"), (38)

treT** treT**

where T%* := T\ (T™ u {t}) represents the set of ethnic types other than ¢ whose constraints
are not binding at M;. (S38) implies that there is at least one ethnic type #' € T** such
that

M (") < M(O"), (S39)
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as desired.

Since ¢ € T**, i.e., ¢’ is unconstrained at M, all workers of ethnic type ¢ who are
available to f at M are hired by f. Furthermore, the firm is faced with a weakly larger
measure of workers of ethnic type ¢ when choosing M than at M (recall M =5 Myg). So
(S39) cannot hold, a contradiction. Hence, M;(0") = M;(©").

Given 8} = 0 (i.e. the lowestApossible score), we must have max {1’ (), m’(0)} = m’(0)
for all € ©'. In order that M;(©') = M(©'), we must then have () = mf%(0) for
(almost) all 6 € ©°. |

Claim S5. For any t € T, if there is some f € F such that §’} > S’}, then we must have
8% >0,Yf e F.

Proof. Fix a firm f € F with §’3} > s?. Suppose to the contrary that the set Fy = {f’ €
F |§’}, = (0} is nonempty, and note that f ¢ Fy. Then, let us define ', = F\Fy and consider
the set

{0eO|f > " V" # f,sp(0) € (sl},é;), and sz (0) < sf, Ve F\{f}}.

Since M is stable, all worker types in this set must be matched with f under M, which
implies that they cannot be matched with any firm in F\F under M since M o= Mp
for each f' € F\F by assumption and also since ]\Zf(ZS = M, by Claim S2. Moreover, these
workers cannot be matched with any firm f’ € F, under M since their scores are below .§§c,.
It thus follows that they must be matched with firms in Fy under M while being matched
with f ¢ Fy under M, which contradicts Claim S4. |

Claim S6. Rich preferences hold.

Proof. Fix any f € F and t € T such that s’ < 8} (given by Claim S3), and let

@1} = {06 @|f >0 f/lavf” 7 f,Sf(e) € (S§c7§§‘)7 and Sf’( ) < Sf’vf € F\{f}}

be the set of ethnic type-t workers who prefer f to all other firms and have scores that will
make them employable at f under M but not under M and not employable at any other
firm in F under M. Let M’ := Y, G(C:)} N -) denote the measure of these workers. The
full support assumption and the fact (given by Claim S5) that §§c, > 0,Vf" € F implies that
M'(©) > 0.

We show that these workers are not employed by any firm in £ under either M or M.
It is easy to see that these workers are not employed by any firm in F' under M since their

scores are below the cutoffs of these firms at M. Since Y rer My = Yger M;, and since
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My = M for each f € F\F, we must have Diper My =X ser M;. Tt thus follows that these
workers are not employed by firms in F' under matching M either.

It follows that M’ measures the workers who are employed outside F' under M but
available to firm f. Hence, M’ = M }-: Since §§c > sﬁc, firm f will wish to replace some of
its workers with these workers under M. Hence, M; # Cy((My + M 1]?:> A G), so the rich

preferences property follows. |

The above claims complete the proof of the proposition.

S.6.4 (Counter)Example for Lemma 2: Role of Submodularity

Suppose that 7 = {t1,ts,t3} and that Q({t1,t3}) = Q({ta,t3}) = Q({t;}) = 1/2,Vi and
Q(T) = Q({t1,t2}) = 1. It is straightforward to check that this constraint violates the
submodularity. Suppose that the subpopulations of available workers are given such that F},
is uniform on [0, 1] for i = 1,3 while F}, = 0. Clearly, the optimal cutoffs are s;, = s;;, = 3/4
and s, = 0. Consider next larger subpopulations whose score distributions are uniform
on [0,1] for all three types. We argue that the optimal cutoffs are s;, = s, = 1/2 and
st, = 1, which means that the preference of the firm is not substitutable since the cutoft
sy, decreases from 3/4 to 1/2 as more workers of type ty become available. To prove this,

let us set up the firm’s optimization problem as

3 1
max Z f sds
(s) 27 s,

subject to

(1= st,) + (1= s¢) < 1/2 (540)
(1= s1,) + (1= s1,) < 1/2. (S41)

Note that we ignore all other constraints that can later be verified to be nonbinding. The

corresponding Langrangian is

3 1
ZJ sds + Ai[se, + St — 3/2] + Aa[se, + s, — 3/2],
i1=1vY5t

which yields the first-order conditions given as

—si, + i = (=)0 (if s, < 1) fori=1,2
— Sty + )\1 + )\2 = (:)O (lf Sts < 1) .
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Clearly, A1, Ay > 0 so (S40) and (S41) must be binding at the optimum. If s;; < 1, then

(S40) and (S41) being binding implies sy, = sy, = 3  and thus s, = A\ + Ay >
S, + S, > 1, a contradiction. So we must have s, = 1 and thus s;, = 54, = =1

— Sty >

3
Q_Stg_i-

S.7 Results for Section 7

S.7.1 Omitted Proofs for Section 7
Proof of Lemma 6. Let B(0,r) = {0 € ©|d®(#,0) <r}and S(0,r) = {0 € ©]d®(¢,0) =

r} (recall d® is a metric for the space ©). For all § € ©; and r > 0, there must be some
rg € (0,7) such that G(S(0,rs)) = 0.7 This means that dB(0,r4) = S(0,74) has a zero
measure. Consider now a collection {B(6,74) |6 € ©} of open balls that covers ©;. Since

@f is a closed subset of the compact set ©, it is compact and thus has a finite cover. |

Proof of Lemma 7. Consider a decreasing sequence (€ )gen of real numbers converging

,,,,,

such that for each ¢, B has a radius smaller than €; and G(0B}) = 0. Define A} = Bf n0;
and Af = (BF\(UL BE)) n Oy for each ¢ > 2. Then, {Af},_1 1, constitutes a partition
of ©;. It is straightforward to see that G(0A%) = 0,V¢, since G(0B}) = 0,V¢, and that
G(00;) = 0.5 This implies that Y (0A¥) = 0,V/. Given this and the assumption that
ye 2, Y, condition (e) of Theorem 12 implies that there exists sufficiently large ¢, denoted

Gk, such that for all ¢ > g
1
Sk and V(AR - YI(AR) < S v =1, L. (S42)
q Ly Ly

Let us choose (qx)ren to be a sequence that strictly increases with k.
We construct X? as follows: (i) X9(0) < Y4(0),V0 € ©%; (ii) for each ¢ € {qx, ..., qr+1 —

1}7

X1(AF) = max{@' m e N u {0} and ™ < min{X(A'g‘),Yq(Af)}} for each £ = 1,..., L.
q q

"To see this, note first that B(0,r) = Use[o,1S(0,7) and G(B(6,r)) < . Then, G(S(0,7)) > 0 for at
most countably many 7’s, since otherwise the set R,, = {7 € [0,7) | G(S(0,7)) = 1/n} has to be infinite for
at least one n, which yields G(B(0,7)) = G(uUser,S(0,7)) = %, a contradiction.

8The latter fact holds since O = Upep.f-,Op and thus 005 € Upep. £+ ;00 p, which implies

G(005) < G(Upep:f>pe@Op) < Y, G(0Op) = 0.
PeP:f>po
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It is straightforward to check the existence of X7 that satisfies both (i) and (ii). Note that
(i) ensures that X9 = Y4 and X9(©\0;) < Y(0\0;) = 0.
We show that for all ¢ € {qy, ..., qer1 — 1}, we have
X (4f) = X7(4p)| < - (343)
k
To see this, consider first the case where X (A}) < Y9(A}). Then, by definition of X9 and
(S42), we have 0 < X(A}) — X9(A}) < ¢ < {=. In the case where X (A}) > Y(A}), we

Ly,
have X9(AF) = Y(AF) < X(AF) < Y (A¥), which implies by (542)

X (Af) = X(AP)| <[V (Af) = Y(4f)] < -
k
Let us now prove that X? 2%, X. We do so by invoking (b) of Theorem 12, according
to which X¢ % X if and only if | {hdX9 — (hdX| — 0 as ¢ — oo, for any uniformly

continuous function h € C,(0).

Hence, to begin, fix any h € C,(0), and fix any € > 0. Next we define for each k£ and
qe {Qka---7Qk+1 _1}

ZGG@‘UNA? Xq(e)h(e) _ ZGE@‘U\A? Xq(e)h(e)

hoF =
‘ 2ipeounar X1(0) Xa(A)

if X9(A¥) > 0, and if X9(A%) = 0, then define h%* = h(f) for some arbitrarily chosen
0 e Al

Note that C,(0) is endowed with the sup norm |||, and ||h|s is finite for any h € C,,(©).
Thus, there exists sufficiently large K € N that for all £ > K and g € {qx, ..., qx+1 — 1},

(S44)

Ly,
€ - €
IPcer < 5 and ; ((sup (3¢ = h(6)]) X (4}) < 3.

=1 GEAIZ
where the latter inequality is possible since the expression in the parenthesis can be made
arbitrarily small by choosing sufficiently large k& due to the uniform continuity of A and the
fact that AY = BY while B} has a radius smaller than ¢, with ¢ — 0 as k — 0.

Then, for any ¢ > @ := qg, there exists k > K satisfying q € {qx,...,qe+1 — 1} such

that
Uthq—fth‘

J hdX9 — f hdX
0e©y 0cO
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Ly

= DI REEX(Af) — J th‘
Ge@f

/=1
Lk Lk

<|DIREE(XUAR) = X(AD)| + D hEEX(AF) - L . th‘
=1 =1 €Oy

Ly,
< IRl X9(AF) — X(A7)] +
(=1

Ly Ly,
RIFL d X — f hl g dX
;Leef £ oA ;1 0cO; &

Ly,

<[ hfer + ] sup [AE* — h(0)| X (Af)
/=1 9€A§

<

+ - =k

DN
N

where the first equality holds since X(©\0;) = X9(0\0) = 0 while the third and fourth
inequalities follow from (S43) and (S44), respectively. |

Proof of Lemma 8. Letting 79 =Y?— X%and Z =Y — X, we have Z¢ %, 7 because
of the fact that for any h e C,(0),

Jhquzj hdYq—f thq—>f hdY—f thzJ hdZ
C] C] C] C] ] ©

and (b) of Theorem 12. Since Z9 =Y? - X%e X, Z1 % 7, and X s compact, we have
Z € X, which implies that Z(E) = Y(E) — X(E) > 0 for all F € ¥, as desired. |

S.7.2 Proof for the Existence of e-Distance Stable Matching

Let us reiterate the definition of e-distance stability’: A matching M? € (X?)"*! in economy
' is e-distance stable if (i) for each f € F', M{ e C}{(M7); (ii) for each P e P, M{(Op) =
0,Vf <p ¢; and (iii) d(M;Z,M;Z) < € for any coalition f and M]? € X7 that blocks M? in
the sense that M]‘Z = D=/(M?) and uf(M;Z) > up(M7F).

Proposition S3. Suppose that there exists a stable matching in I' such that Cp(My) =
{M},VfeF. Then, for any € > 0, there is Q € N such that for all ¢ > Q, there exists an

e-distance stable matching.

This result follows directly from combining the following two lemmas.'”

9The definition of e-distance stability is introduced in footnote 50 of the main paper.
10T hese lemmas are also used to prove Theorem 9
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Lemma S4. Consider any stable matching M in I' such that Cp(My) = {M;},Vf € F.
Then, there exists a sequence (M9)en such that M9 % M while M7 = (Mf)jep 15 a

feasible and individually rational matching in I'9.

Proof. Given M, let us construct the matchings M? and M? as in the proof of Lemma 9.
It suffices to show that M]'? converges to My since M1 is feasible and individually rational
in I'?. To do so, we use the following fact: If every subsequence of sequence (MJ‘?)qu has
a further subsequence that converges to My, then M]‘f converges to M. Consider any
subsequence (M]]fm)meN, which must then have a further subsequence, denoted (M J{m>meN7
converging to some M ¢ since the sequence (Mjlf’”)meN lies in the compact space X. Suppose
for a contradiction that M; # M;. Note first that Mf’" = M;m,Vm e N (since M} €
CI(MY),Vq € N) and ME "> My, which implies by Lemma 8 that My = M. Thus, we
must have up(My) = ug(My) — € for some € > 0 since My # Cy(My) = M. By Lemma 9,
we can find ) € N such that for all ¢ > @,

ug(My) < g (Mf) + 3. (345)

Also, since Mﬁm %, Mf, we can find a sufficiently large ¢,, > @ such that uf(Mjfm) <
wp(My) + § =us(My) — §, which contradicts (545). |

Lemma S5. Consider the sequence (M?),en in Lemma S4. For any € > 0, there is Q € N
such that for all ¢ > Q, MY is an e-distance stable matching.

Proof. Let B;{ denote the set of all blocking coalitions involving f under M?: that is,
B} = {(MeX'|Mc D=/(MY) and up(M) > up(M9)}. Since B is finite for each ¢, the set
By := uquB;{ is countable. One can index the blocking coalitions in By to form a sequence
(M*)en such that for any M* e B} and M¥ e B;ﬁl with ¢ < ¢/, we have k' > k. Define q(k)
to be such that M* e B;’c(k). We show that M* % M . If not, there must be a subsequence
(Mkm)meN that converges to some M’ € X with M' # M;. To draw a contradiction, note
first that since D=/(-) is continuous and M? > M, we have D=/(M9) 5 D=/ (M).
Combining this with the fact that A% 5 M’ and M D=f(M3%*n)) and invoking
Lemma 8, we obtain M’ = D=/(M), which implies that u;(M;) —¢ > up(M')+ ¢ for some
€ > 0, since Cy chooses a uniquely utility-maximizing subpopulation. Since MEm 2 A
and M7 5 My, we can find sufficiently large m such that uf(M;?(k’")) > up(My) — € >
up(M') + € > up(M9%*n)), which contradicts with the fact that M9(m) e B}qc(km). This

establishes that M* 5 M 7. Using this and the fact that M]‘Z M 7, one can choose
sufficiently large K such that for all k > K, we have d(M*, M;) < 5 and d(Mj, M]?(k)) <3,
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which implies that d(]\;[k,M;f(k)) < d(M*, M) + d(Mf,M}](k)) < §+ § = e. This means
that for all ¢ > ¢(K) and M € quc, we have d(M, M]‘Z) < ¢, showing that M7 is an e-distance
stable matching. |

S.7.3 (Counter)Example for Theorem 9

In this section, we provide an example that shows the assumption, Cy(M ) = {M,},Vf € F,
is necessary for Part 2 of Theorem 9.
Assume that © = {01, 02,05} and that G?(6,) = G(0,) = 7* and G*(05) = 9220 where

q
n, is a positive integer satisfying % < % and lim,_,q, % = %, which implies G(6;) = %, Vi.
Assume also that in any finite economy 'Y and limit economy I, there is a single firm f

which is acceptable to all three types of workers and whose utility function is given as
ug(1, 9, v3) = max{ry, va} — 951332(% - 551)(% — Zg) + 3, (546)

where z; is the measure of type ¢;. Given this, we have M ;(0;) = %,Vi while Cy(M,) =
{(z1, 22, 23) | max{zy, w3} = x5 = 3 and x1, 25 > 0} so the assumption Cy(M,) = {M,}
fails. In the finite economy I'?, the d-stability requires that either

GI(0) + G(05) — & < MUBy) + M2(0s) < G9(6,) + G9(0) and MU(6) =0 (S47)
Gq(92> + Gq(eg) -0 < M?(&Q) + M}I(eg) < Gq(92) + Gq(93) and M;?(Gl) =0, (848)

while M{(6;) > 0,Vi. To see this, note that if both M7 (6,) and MF(6,) were positive, then
the firm could drop the entire mass of either type-6; or type-65 workers to (strictly) increase
the second term in (S46) without affecting any other terms. If, for instance, M}?(Ql) =0,
then the firm’s utility becomes M{(6:) + M{(63), so the d-stability requires (S47). Observe
now that for any d-stable matching M7 satisfying (S47), there is another J-stable matching
M satisfying (S48) such that M{(6,) = ]\Z]‘Z(é’g) and M{(03) = M]‘Z(Gg). However, for small
€, neither matching is e-worker optimal stable in I'? since the interests of types 6, and 6,

are sharply opposed across the two matchings.

S.8 Analysis for Section 8.1

S.8.1 Proofs

Proof of Theorem 3. To prove (i), suppose a matching M is stable and population-
proportional. We shall show that M satisfies the property (ii) of Definition 12. The
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population-proportionality of M, equivalently equality (12), implies that, if Aéng) M (0)

G(@)
for any 6,6 € ©%, then we must have M;(#) = D=/(M)(0), or else (g;) = o, but in that
case, we have a contradiction since o > Mf((e Then, by definition of D=/,

My(0) = D (M)(0) = > Mp(0) = My(0) + > Mp(0)
fleF:f1<f fref:fr<f

80 X e <y My (0) = 0. We have thus proven that M is strongly stable.

To prove (ii), fix any mechanism ¢ that implements a strongly stable matching for any
measure. Suppose for contradiction that inequality (11) fails for some measure G € X, for
some a, P, P', with (a, P) and (a, P") in the support of G, and for some f. Then, let f be
the most preferred firm (or the outside option) at P among those for which inequality (11)
fails. Then,

o (G) ‘Pf’ (a, P') s
Ut L) , 49)
/
pimey Gla P pimes Gl P

while

3 or(G)a, P) D vy (G)(a, P')

G(a, P) G(a,P")

frfr=pff frif'=pff

so it follows that

QOf(G)(av P) < pr(G)(a? Pl)

Gla, P) Gla, P') (850)

By the strong stability of ¢(G) and the fact that (a, P) and (a, P’) are in the same indiffer-
ence class for firm f by assumption, inequality (S50) holds only if ., » ¢ (G)(a, P) =

0. Thus, because Y % =1 as ¢(G) is a matching, we obtain

v (G)(a, P)

Ga.p) -

I f'=pf

This equality contradicts inequality (S49) because the right hand side of inequality (549)
cannot be strictly larger than 1 as ¢(G) is a matching, which completes the proof. |

Proof of Theorem 11 requires several lemmas.
Lemma S6. The correspondence defined in (10) is convex-valued and upper hemicontinu-

ous, and satisfies the revealed preference property.
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Proof. To first show that C} is convex-valued, for any given X, consider any X', X" e
Cr(X). Note first that X', X” = X implies AX' + (1 — A\)X” = X. Also, for any A € [0, 1]
and k € Iy,

DTOX +(1=NX")0) =X D X(0)+(1-X) > X"(0) = A}(X),

k k k
S 0eO} 0e07

where the second equality holds since the assumption that X', X” € C'¢(X) implies A5(X) =
Zeee'; X'(0) = Zeee'; X”(0). Thus, AX' + (1 = M) X" € C¢(X).

To next show the upper hemicontinuity, consider two sequences (X ¢ )een and (X ¢ ) ey CON-
verging to some X and X, respectively, such that for each £, X¢ € Cp(X?), i.e., X! = X and
A5(XE) = 2969;; X*(0),Vk € I. Since Ay is continuous, we have A%(X) = limy_o, A5(X*) =
limy_,o Zee@’; X40) = Zee@’; X (0), which, together with the fact that X = X, means that

X e Ct(X), establishing the upper hemicontinuity of Cy.'" To show the revealed prefer-
ence property, let X, X’ € X with X’ = X, and suppose C¢(X) n Xy, # . Consider any
Y e Cp(X) such that Y(0) < X'(0) for all §. Then, A}(X) = 29697 Y () < Zee@’; X'(0)
for all k € I;. By the revealed preference property of Ay, it follows that Af(X') = A;(X).
Therefore, Y satisfies 2969? Y(0) = A5(X) = AR(X') for all k € Iy, which implies that
Y € Cp(X’) and thus Cf(X) n Xx € Cp(X’). To show Cp(X) n Xx» 2 C¢(X'), consider
any Y € C;(X’) and X € Xy such that X € C;(X). By the previous argument, we have
X € Cf(X"), which implies that for each f € F and k € I, 2969? Y (0) = Zeee'; X(0).
Since X € Cf(X), this means that Y € Cp(X) and thus Y € C¢(X) n Xx/. Therefore, we
conclude that Cy(X') = C¢(X) n Xx as desired. |

From now, we establish a couple of lemmas (Lemmas S7 and S8) and use them to prove

Theorem 11. To do so, define a correspondence By from X to itself as follows:

B;(X) :={X'"= X| for each k € I}, there is some o* € [0, 1] such that
X'(0) = min{X(0),a"*G(6)} for all 6 € OF}. (S51)
We then modify the choice correspondence C in (10) to

Cr(X) = Cp(X) n B(X), (552)

for every f € F while we let C, = C,,.

The argument for X = X is that for each § € ©, X*(8) < X*(6), so taking the limit with respect to ¢
yields X (0) < X(6).
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Lemma S7. For any X = G, Cy(X) is nonempty and a singleton set (i.c., C; is a
function). Also, C'f satisfies the revealed preference property.

Proof. We first establish that for X, C(X) is a singleton set. To do so, for any X € X,
feF, kel and o € [0,1], define (f(a*) := ZeeG'; min{X (), a*G(6)}. From now
on, we assume C;(X) # {X} since, if C;(X) = {X}, then we have C;(X) = {X}, a
singleton set as desired. We show that there exists a unique 6* satisfying (j(&") = A%(X),
which means that C;(X) is a singleton set. First, we must have &* < maXycek X(0)
since otherwise (f(a%) = Zeee’; X(0) > A%(X) (which follows from the assumption that
Ct(z) # {X} and thus, for any X’ € Cp(X), X' = X and X’ # X). Next, observe that
(f(-) is strictly increasing in the range [0, maxgeet %). Then, the continuity of (f, along
with the fact that (§(0) = 0 and ¢ J’?(maxg(;@? %) > A}(X), implies that there is a unique
a* e |o, maXycek %) satisfying (F(a%) = A5(X).

To show the revealed preference property, consider any X, X', X” € X such that C(X) =
{X'} and X' = X” = X. Since we already know that C(-) satisfies the revealed preference
property, we have X’ € Cp(X"”). It suffices to show that X' € By(X"), since it means
Cr(X") = {X'}, from which the revealed preference property follows. To do so, note that
X' € By(X) means that X'(f) = min{X (), a*G(0)} for each k and § € ©%. Then, since

X(0) = X"(0) = X'(0) and o*G(0) = X'(0), we have
X'(0) = min{X (0), "G (#)} = min{X"(0),a"G(0)} = X'(0),
so X'(0) = min{X"(0), a*G(0)} as desired. |

Lemma S8. Any stable matching in the economy (G, F, Pe, é’p) 15 stable and population-
proportional in the economy (G, F, Pe,Cr)."

Proof. Consider a stable matching M = (My) .z in (G, F, Pe, Cr) and let X; = D=/(M)
for each f € F. We first show that M is stable in (G, F,Pg,Cr). It is straightforward,
thus omitted, to check the individual rationality. To check the condition of no blocking
coalition, suppose to the contrary that there is a blocking pair f and M J’c, which means that
M} = Xy, M} e Cp(Mj v My), and My ¢ C¢(M} v My). Given this, by Lemma S7, there
exists My such that C¢(M}; v My) = {M;}. First, by the revealed preference property of
Cy and the fact that My = (My v My) = (M} v My), we have My e C¢(My v My) and
My ¢ Cy(Myv My). Second, since My = Xy and M} = X, we have My = (M;v My) &= X;.
In sum, f and My form a blocking pair in (G, F, Pe, CF), which is a contradiction.

12The economy (G, F, Pe, C ) is a hypothetical economy that is identical to the original economy, except
that the firms’ choice correspondences Cp are replaced by Cr, which is defined in (S52).
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To show the population-proportionality of M, observe that since M is stable in the
economy (G, F, Pe, Cr), we have M; = Cp(D=/(M)) = C;(D=/(M)) n B;(D=!(M)) for
each f € F. Thus, M; € B;(D=/(M)), that is, there is some o for each k € I; such that
(12) holds. |

Proof of Theorem 11. First, consider the case in which each firm’s preference satisfies
continuity. Given Lemma S8, it suffices to establish the existence of stable matching in
the economy (G, F, Pe,Cr). For doing so, we prove the continuity of C’f and invoke The-
orem 2. The continuity of C'f = Cf n By follows if both C; and By are shown to be
upper hemicontinuous, since the intersection of a family of closed-valued upper hemicon-
tinuous correspondences, one of which is also compact-valued, is upper hemicontinuous (see
16.25 Theorem of Aliprantis and Border (2006) for instance), implying that C ¢, which is a
singleton-valued correspondence by Lemma S7, is continuous.

Since C is upper hemicontinuous by Lemma 56, it remains to show that By is upper
hemicontinuous. Consider sequences (X*)gen and (X¢)sen with X¢ € Bp(XY), V¢, converging
weakly to X and X , respectively. So, for each k € I, there is a sequence (o} )y such that
X4(0) = min{ X*(), akG(0)},V0 € ©%. For each k, let o* be a limit to which a subsequence
of the sequence (af)men converges. We claim that X () = min{X (6), a*G(6)},V0 € ok If
X (#) > min{X (#), a*G(0)}, then one can find sufficiently large £ to make X¢(#), X*(6), and
of close to X (#), X (), and o, respectively, so that X*(6) > min{X*(#), «G(#)}, which is
a contradiction. The same argument applies to the case where X () < min{X (6), a*G(6)}.

Second, consider the case in which each firm’s preference satisfies substitutability. Let
C ¢ be the augmented choice of f and Rf the corresponding augmented rejection function.
For each f € F' and k € Iy, let p? : X —> R, denote firm f’s rejection of total measure of
workers in the indifference class ©%. Formally, define p}(X) := Zee@’; X(0) — A5(X) for
each X.

Without loss of generality, fix k € I; and consider X, X’ with X = X’ and X # X' such
that X (0) = X'(6) for every 6 ¢ I}. First, consider &’ # k. Then, by substitutability of A,
we have p’}/(X) < p'fcl(X’). Because Zee@f;’ X(0) = Zee@’;’ X'(0) by assumption, it follows
that

AX) = D XO) - (X)) = Y X(0) - o (X)) = A (X).
peok’ feok

Hence, ozfcl € [0, 1] such that

AY(X) = > min{X(6),a§G(6)},
966’;/
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and 6/}' € [0, 1] such that

AY(X') = ) min{X'(6),a4G(6)},

have a relationship ocfc' > 6/}/ (to see this, recall X (0) = X'(0) for any 6 € @’]‘é' by assumption
and note that the right hand sides of these equations are nondecreasing in o/;/ and 6/}?/,
respectively). This implies R(X)(0) < R;(X')() for all § € @’Ji/, as desired.

Second, consider k£ and investigate the following cases.

1. Suppose AI}(X) = 2969? X (0). Then, clearly p’;(X) = Zee@’; X(0)— A’}(X) =0, and
thus R;(X)(0) = 0 < R(X')(0) for all § € O}, as desired.

2. Suppose A4(X) < Zee@’; X(0). Then,
Claim S7. A%(X) = A¥(X").

Proof. Suppose for contradiction that A%(X) # A%(X’). First, we cannot have A%(X") €
[0729(;9'; X(8)], since it would imply A¢(X) # A(X') < (Zeee’; X (0))ker,, violating
the revealed preference. So we must have A%(X’) e (Zee@’; X(‘%aZee@’; X'(0)]. We
can then define X' := tX’ + (1 — ¢)X and find t* € (0,1] such that 2969? X () =
AE(X7). Since X < X’ and Ap(X') < (Zee@’; X" (0))ker,, the revealed prefer-
ence implies A§(X"™) = A%(X’), which in turn implies pf(X"") = Zee@f, X (0) —
A’}(Xt*) =0< Zee@‘; X(0) — A5(X) = pj(X), contradicting the substitutability. |

Given Claim S7, it follows that o € [0, 1] such that

AEX) =Y min{X(0), a¥G(9)},

60k
and a% € [0, 1] such that

AE(XT) = 3 min{X'(0), a5G(0)},

have a relationship afc > o‘/} (recall X (0) < X'(0) for any 6 € @’} by assumption, and
the right hand side of these equations are nondecreasing in the first arguments of the
minimum operators). This implies R;(X)(0) < Rp(X')(0) for all § € ©%, as desired.
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S.8.2 Non-Strategy-Proofness for Firms

Even with a continuum of workers, no stable mechanism is strategy-proof for firms. Con-
sider the following example.”® Let F = {f1, fo}, © = {0,0'}, and G(0) = G(#') = 1/2.

Worker preferences are given as follows:

0:f2> f1 >0,

0 Ifl > f2 > Q.
Firm preferences are responsive; f; prefers 6 to 6’ to vacant positions and wants to be
matched with workers up to measure 1, while f5 prefers 6’ to 6 to vacant positions and

wants to be matched with workers up to measure 1/2.

Let ¢ be any stable mechanism. Given the above input, the following matching is the

fi [
M = .
(4 4)

Matching M is clearly stable because it is individually rational and every worker is matched

unique stable matching:

to her most preferred firm. To see the uniqueness, note first that in any stable matching,
every worker has to be matched to a firm (if there is a positive measure of unmatched
workers, then there is also a vacant position in firm f;, and they block the matching). All
workers of type 6’ are matched with fi; otherwise, f; and 6’ workers who are not matched
with f; block the matching (note that f; has vacant positions to fill with " workers). Given
this scenario, all workers of type 6 are matched with f5; otherwise, fo and # workers who
are not matched with f, block the matching (note that f, has vacant positions to fill with
type 0 workers).

Now, assume that f; misreports its preferences, declaring that € is the only acceptable
worker type, and it wants to be matched to them up to measure 1/2. Additionally, assume

that preferences of other agents remain unchanged. Then, it is easy to verify that the

/ fl f2
M = .
(%e %e')

Therefore, firm f; prefers its outcome at M’ to the one at M, proving that no stable

unique stable matching is

mechanism is strategy-proof for firms.

13This example is a continuum-population variant of an example in Section 3 of Hatfield, Kojima, and
Narita (2014). See also Azevedo (2014), who shows that stable mechanisms are manipulable via capacities,

even in markets with a continuum of workers.
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S.9 Matching with Contracts

Our paper has assumed that the terms of employment contracts are exogenously given. In
many applications, however, they are decided endogenously. To study such a situation, we
generalize our basic model by introducing a continuum-population version of the “matching
with contracts” model due to Hatfield and Milgrom (2005).

Let € denote a finite set of all available contracts with its typical element denoted as
w. Assume that (2 is partitioned into subsets, {Q¢} ., where Q is the set of contacts for
f € Fand Q, = {w,} (where w, denotes the option of not contracting with any firm). Each
contract w specifies contract terms a firm f may offer to a worker.!* Let f(w) e F denote
the firm associated with contract w (or the outside option if w = w,). Thus, f(w) = f
if and only if w € ;. We use P € P to denote workers’ preference defined over 2. Let
wP € Q) denote a contract that is an immediate predecessor of w according to preference P,
that is, w? is the contract with the property w? >p w and W’ >p w? for all W’ >p w. As
before, ©p denotes the subset of types in © whose preference is given by P.

In the current framework, the relevant unit of analysis is the measure of workers assigned
to a particular contract. We let X, € X denote the subpopulation assigned to contract
we Qand X; = (Xy)wen ; denote a profile of subpopulations contracting with firm f. For
any profiles X, X’ € X% we denote X =; X' if X, = X/, for all w € Q. Given a profile
Xy = (Xo)weq,, we use

XF()=> > Xu(®pn-), (S53)
PeP w'eQ ' <pw
to denote the measure of workers hired by f under contract w or worse; these are the
workers who are willing to work for f under w given their current contracts. We then let
X7 = (X79)weq; -
For any w € Qy, let X, € X denote the subpopulation of workers who are available to

firm f under the contract w. Given any profile Xy = (X, )uecq, € X 91 each firm f’s choice
is described by a map X +— Cy(Xy) = (Coy(Xy))wea, € Vi (Xf), where

Vi(Xy) = {Y; e XU Y £ X, Vw e Q).

For any profile of subpoulations in V¢(Xy), the measure of workers who are hired by f
under any contract w € {2y or worse cannot exceed the measure of workers, X,,, who are
available under w. The requirement that the output of C; should belong to V¢(X) is

4Note that the contract itself does not contain information about the associated worker type, and that

each firm’s preference is determined by what worker types it is matched with under what contracts.
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based on the premise that each firm f is aware of workers’ preferences and also believes
(correctly) that only those workers who are available under w € €y can be hired under the
contracts that are weakly inferior to w, and thus put an upper bound on the measure of
workers that can be hired under the latter contracts. As before, we let C,,, (X,,) = Xu,-
We then assume the revealed preference property that for any X, X’ € X1 with X’ F X
and for My = Cp(X), if My e Y;(X'), then M; = Cp(X").

An allocation is M = (M,).eq such that M, € X for all w € Q and >’ =G.
Let My = (M,)weq ; EX %41 denote a profile of subpopulations who are matched with
f. Given My = (My)ueq,, define M7* by (S53) and let M7 = (M7“)ueq,. Note that

M fi‘” corresponds to a subpopulation of workers already hired by firm f who are willing

wEQ

to work for f under w given their current contracts. In other words, M fﬁ does not include
the workers available to firm f who are currently matched with firms other than f. A
subpopulation of all workers—not only those hired by firm f—who are available to f € F

under contract w € €y is denoted as before by

D= =Y Y Mu(Opno).

PeP w'eQd:w'<pw
Let Dﬁf(M) = (Dﬁ“’(M))wle.
Definition S1. An allocation M = (M,).cq is stable if

. (Individual Rationality) M, (©p)
and for each f e I, My = Cy(M7), and

2. (No Blocking Coalition) There exist no f € F' and Mf € X'Qf‘,JV[f # My such that

My =Cy(M5 v M7) and M5 =y D=F(M).

Note that this definition reduces to the notion of stability in Definition 2 if each firm is
associated with exactly one contract.

Let us now define a map T = (T,,)weq : X1 — X1 by specifying, for each w € Q and
Eel,

T,(X)(E):= >, GOpnE) Z R,»(X;ur)(Op N E). (S54)
P:P(1)=w

Theorem S1. M = (M,)ucq is a stable allocation if and only if M; = Cy(X;),Vf € F,
where X = (X,,)weq 18 a fized point of mapping T
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Proof. (“Only if” part) Suppose M is a stable allocation in X, We prove that X =
(D=Y(M))ueq is a fixed point of T. Let us first show that for each w € Q, X, € X.
It is clear that as each M, is countably additive, so is M,(O©p N -), which implies that
Xu(1) = DZ(M)(") = 2pep Qe <pw Mw (Op N ) is also countably additive. It is also
clear that since (M, )weq is an allocation, X, = G. Thus, we have X, € X.

We next claim that M; = Cy(X;) for all f € F. This is immediate for f = ¢ since
M, = X, = C4(X,). To prove the claim for f # @, suppose for a contradiction that
M; # C¢(Xy), and let us denote Mf = C¢(Xy). Since Cp(Xy) € Y¢(Xy) by definition, we
have ]\Z[f Cf Xfwand thus (]\7[f v M7) £y X;. Given this and M;e yf(Mf v M7), we
have M y = C¢(M 3 v M7) by revealed preference, which means that M is not stable since
]\fo =; X; = D=/(M), yielding the desired contradiction.

We next prove X = T(X). The fact that M, = C,(Xfw)), Vw € {2 means that X, —
M, = R,(Xfw)),Vw € Q. Then, for each w e Q and E € X, we obtain

>, GOpnE)+ Z Rpr »)(Op N E)

P:P(1)=w
- Y GOrnE)+ Z (wa(@p A E)— M,r(0p A E))
P:P(1)=w P:P(1)#w
= > GOrnE)+ > > My(©pnE)—M,r(OpnE)
P:P(1)=w P:P(1)#w \weQuw' <pw?l
Z Y Mu(OpnE)+ Z Y Mu(OpnE) = X,(E),
1)=w w'ew'<pw 1)#w Ww'eQ:w' < pw

where the second and fourth equalities follow from the definition of X r and X, re-
spectively, while the third from the fact that w” is an immediate predecessor of w and
Yieaw=<pp() Mo (Op N E) = G(Op n E). The above equation holds for every contract
w € €, so we conclude that X = T'(X), i.e. X is a fixed point of 7.

(“If” part) Let us first introduce some notations. Let w! denote an immediate
successor of w € Q at P € P: that is, w! <p w, and for any o’ <p w, v’ <p w?. Note
that for any w,w € Q, w = & if and only if © = w¥.

Suppose now that X = (X,).ecq € X% is a fixed point of T. For each contract w € €
and E € X, define

M,(E)=X,(E)— >, X, (©pnE), (S55)
P:P(|Q])#w

where P(|Q2]) # w means that w is not ranked lowest at P.
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We first verify that for each w € 2, M, € X. First, it is clear that for each w € (), as
both X,,(-) and X,»(©p ) are countably additive, so is M,,. It is also clear that for each
we M, = X,.

Let us next show that for all we 2, Pe P, and F € X,

Xu(®pnE)= > My(©pnE), (S56)
W'eQiw’ < pw
which means that X, = D=¥(M). To do so, consider first a contract w that is ranked
lowest at P. By (555) and the fact that X,r(©p n ) = 0, we have M,(Op N E) =
X,(©p n E). Hence, (S56) holds for such w. Consider now any w € 2 which is not ranked
last, and assume for an inductive argument that (S56) holds true for w?, so X,r(OpnE) =
Zw'eg;w'gpwf M, (©p N E). Then, by (S55), we have

Xy(Op N E) = My(©p 0 E) + X,p(Op N E) = My(Opn E)+ Y. My(0pn E)

w’eﬂ:w’ﬁpwf

= ) My(®pnE),
WweQw' <pw
as desired.
To show that M = (M,,)weq is an allocation, let w = P(1). Then, the definition of T’
and the fact that X is a fixed point of 1" imply that for any F € ¥,

GOpnE)=X,(0pnE)= > My(OpnE)= > Ms(OpnE),
WEQW < pw w'eQ
where the second equality follows from (S56). Since the above equation holds for every
P e P, M is an allocation.

We now prove that (M,,),ecq is stable. To prove the first part of Condition 1 of
Definition S1, note first that C,, (X,,) = {X.,} and thus R, = 0. Fix any P € P
and assume ¢ # P(|Q]), since there is nothing to prove if ¢ is ranked lowest at P.
Consider a contract w such that w” = w,. Then, X being a fixed point of 7' means
X.(©p) = R,r(®p) = R,,(0p) = 0, which implies by (S56) that 0 = X,(Op) =
Yiret<pw M (OP) = 2 e < pw, M (Op), as desired.

To prove the second part of Condition 1 of Definition S1, we first show that M, =
Coo(Xf(w)), which is equivalent to showing X, —M,, = R, (Xy(.). Since X = T'(X), we have
Xu(O©p ) = Rp(Xjr)(Op ) forall w # P(1), or X,p(©p n-) = Ru(Xy))(©p 0 )
for all w # P(|€2]). Then, (S55) implies that for any w € (2,

Xo()=My() = D, XepOpn)= > Ru(Xpw)(Op n) = Ru(Xsw)(),
PP(2) 7 PP ()

37



as desired. The last equality here follows from the fact that R,(©p n-) = 0 if w = P(|92|).
To see this, note that if w = P(|Q]) = wy, then R,(Xfw)) = Ry, (Xy) = 0 by definition
of R,,, and that if w = P(|Q2|) <p w,, then the individual rationality of M for workers
implies that X,(©p n-) = M,(©p n-) = 0, which in turn implies R,,(Xf))(©pn:) =0
since Ry(Xfw))(Op n ) © X,(©p n-). Given that M, = C,(Xy,)) for all w € Q or
My = Cy(Xy) for all f e F, My = Cy(MF) follows from the revealed preference and the
fact that M7 =; X;.

It only remains to check Condition 2 of Definition S1. Suppose for a contradiction that
it fails. Then, there exist f and M # such that

My # My =Cp(M7 v M) and M7 =; D/ (M). (S57)

Then, we have My € V(M5 v M7), (M5 v M7) =y D=/(M) = X;, and M; = Cy(Xy),
which, by revealed preference, implies M, = Cf(M 7 v M7), contradicting (S57). We have
thus proven that M is stable. ||

Given this characterization result, the existence of stable allocation follows from assum-
ing that for each f € F, C; : X% — X%l is continuous, since it guarantees the continuity
of T: Xl — xI9.

Theorem S2. If each firm’s preference is continuous, then a stable allocation exists.

S.10 Continuum of Firms: AH Model

Following AH, suppose that there is a continuum of firms. Each firm is infinitesimal and
takes one of finitely many types, 1,...,n. Let N = {1,...,n} and N = N U {g}. For each
i € N, let m; denote the mass of type-i firms in the economy with m, = 0. Assume for
simplicity that there are finitely many types of workers so © = {#;,...,0x}. We assume
that each type-i firm has a strict preference over the sets in 2°, denoted >;, which gives
rise to a choice function ¢; : 2° — 2.5 For a null firm i = ¢, we let £ >, E’ for any
E' ¢ E and thus ¢,(E) = E,VE € 2°. We assume that >; satisfies the standard axioms:
completeness and transitivity. Each worker can be matched with only one firm (which may
be a null firm) and is indifferent over firms of the same type while having strict preferences

over different types of firms. We denote this economy as £. This model is exactly the same

15 An implicit assumption here is that each firm hires at most one worker per each worker type. However,
our model can be extended in a straightforward manner to allow each firm to hire multiple workers of the

same type.
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as AH, except that there is no contracting issue (a firm and worker can contract under only
one term) and we are considering a many-to-one matching environment.

A matching for type-i firms is a measure z; defined on 2° such that for each E e 2°,
zi(E) is the measure (or mass) of type-i firms matched with E. A profile (2;),.5 is a

matching if

4(E) = G(6),¥0 e © (958)
2 X

ieN Ee29:0eE
> %(E) =my,Vie N. (S59)
Ee2©
Definition S2. A matching z = (2;),. is stable for the economy & if the following prop-
erties hold:

1 (Individual rationality). z;(E) = 0 for any i € N and E € 2° such that there is some
0 € E with ¢ >4 i; For any i € N and E € 29, z;(E) > 0 implies ¢;(F) = E;

2 (No blocking coalition). there are no i € N and E,E’ € 2° with E n E' = (J such
that (i) B' < ¢;(E U E'); (ii) z;(E) > 0; and (iii) for each # € E’, there are j € N and
E" € 29 such that i >4 j, 0 € E”, and z;(E") > 0.

Individual rationality condition is straightforward. No blocking coalition condition re-
quires no positive mass of firms which can get better off by hiring workers away from their
less preferred firms. This notion of stability coincides with that of AH, once their model of
many-to-many matching with contracts is adapted to our setup.

To show the existence of stable matching, we map the current setting into our model of
continuum economy by introducing a large firm representing all type-i firms for each type
i € N and defining the aggregate choice correspondence for this firm, denoted C; : X =3 X.
To do so, suppose that X; € X' is a subpopulation of workers available to the large type-:
firm, which is a subpopulation defined on ©. We then allocate these workers efficiently
across type-i firms as follows: Endow each small type-: firm with an arbitrary utility

function v; : 2° — R, that represents >; and satisfies v;(¢f) = 0.1° And assign a set of

workers £ < © to the mass z;(E) of type-i firms for each E € 2° to solve

max v;(E)zi(E) (A)
zieR‘f@‘ Ee2©

16Existence of such v; is guaranteed because the firms’ preferences satisfy the standard axioms.
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subject to

> a(E) < Xi(0),90€© (S60)
E’e29:0eE’
> w(E) = m, (S61)
Ee20

where the constraint (S61) is dropped if i = ¢.!” That is, the aggregate (utilitarian) welfare
of type-7 firms is maximized under the constraint that for each type 6, the measure of type-i
firms hiring (some) type-0 workers cannot exceed the measure of available type-6 workers.
Letting S;(X;) denote the set of optimal solutions for (A), it is straightforward to see that
S;(X;) is nonempty.

The aggregate choice correspondence for the large firm 7 is then defined as

Ci(X;) = {X; € X[ 3z € Si(X,) such that X/(0) = Y. z(E).Voe @}.18
E'€20:0cE
It is worth noting that our method to build the aggregate choice differs from that of AH in
which firms of the same type choose workers following serial dictatorship. We let I' denote a
hypothetical economy that consists of large firms 1, ..., n, 8, whose choice correspondences
are given as (C;),.y, and workers whose population is given as G. Since (A) is linear,
and thus continuous, in z;, by Berge’s maximum theorem, each correspondence .S; is upper
hemicontinuous and convex-valued, so is C;. Hence, by Theorem 2, there exists a stable
matching in economy I', which implies the existence of a stable matching in the original

economy &, as is shown next:

Proposition S4. Let M = (M;),.x be a stable matching for the hypothetical economy
L. Then, there is a profile of solutions z = (2;),cx for (A) with X; = M;, Vi € N that

constitutes a stable matching for economy &.

Proof. First, there must be a solution of (A) with X; = M; that satisfies (560) as equality,
since otherwise M; would not be individually rational in economy I'. Now let z = (2;),cx
be a profile of such solutions. First of all, we check that z is a matching in economy &.
That (S60) is binding with X;(0) = M;(#) implies (S58) is satisfied since M is a matching
50 D .ow Mi(0) = G(0). Also, (S59) follows directly from (S61).

17Recall that m, = c0. Note that the constraint (S60) must always be binding for i = ¢ at any optimum

since vy (F) > vs() = 0 for any E # &, as implied by the earlier assumption.
18 Since each S;(X;) consists of optimal solutions, S; satisfies the revealed preference. Given this, C;
also satisfies the revealed preference property.
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Note next that since M is stable in economy I', we must have M; € Ci(f(l-) for X; =
D='(M), which implies that (z;),.x solves (A) with X; = X

To show the stability of z in economy &£, we first prove that it is individually rational.
To see the individual rationality for workers, observe that for any 8 € © and ¢ >4 ¢, we
have M;(0) = 0, which follows from the stability of M in economy I'. It therefore follows
from (S60) with X;(0) = M;(6) that z;(E) = 0 for any F containing 6. To see individual
rationality of (z;),. for firms, supppose not. Then, there must be some firm i € N and
E € 2° such that z;(E) > 0 and ¢;(F) < FE, which means that v;(E) < v;(¢;(E)). Given
this, consider another matching for type-i firms which assigns the set of workers ¢;(E) to
the type-i firms of mass z;(F) which are hiring E under z;, while assigning the same set
of workers to all other type-i firms in N. This alternative matching then achieves a higher
value for (A), which contradicts with the optimality of z;.

We next prove z satisfies the second requirement of stability in economy £. Suppose
for contradiction that (z;),.y admits a blocking coalition with the firm type ¢ and E, £’ as
in Condition 2 of Definition S2. Let for each 6 € E’

Z(0) = max {z;(E")|je N,0 € E", z;(E") > 0, and i >4 j}.

Then, at least z(6) of workers of type 6 € E’ is not matched with type-i firms under (2;),.5%
but available to them under X; = D=/(M). Consider now an alternative matching z, for
type-i firms given as follows: (1) mass min{mingeg» 2(0), 2;(E)} of type-i firms which were
matched with F under z; are now each matched with the set ¢;(E u E’) of workers; (2)
all other type-: firms are matched with the same set of workers as under z;. Note first
that the workers matched with type-i firms under 2] are a subpopulation of X;, satisfying
(S60) with X; = X;. Also, 2/ easily satisfies (S61). However, since ¢;(E U E') # E, we
have v;(¢;(E v E")) > v;(E), which means that the type-i firms in (1) above enjoy a higher
utility under 2/ than z; while the type-i firms in (2) enjoy the same utility. This contradicts
with the fact that (), solves (4) with X; = X;. |

Corollary S1. There ezists a stable matching for economy &.

Recall that the approach taken here to build the aggregate choice correspondence differs
from that of AH based on the serial dictatorship. One advantage of the current approach
is its extendability beyond finite types of workers. It is not difficult to extend (A) to allow
for continuum of worker types. Since (A) is linear, its solution set (or correspondences)
will satisfy the properties such as upper hemicontinuity and convex-valuedness (as long as

v; is a continuous function).

9Tn the functional space, a linearity need not imply continuity. But in our case, as long as v; is assumed
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