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Abstract 

Researchers commonly use fictional applicants to measure discrimination.  However, such 

experiments can confound discrimination against an individual’s characteristics with employers’ 

responses to the composition of the applicant pool.  Such confounding occurs when one applicant’s 

characteristics affect another applicant’s likelihood of success.  I find evidence of such spillovers 

using data from several existing experiments.  Applicants randomly assigned to compete against 

higher quality applicant pools receive more callbacks. Under one reasonable set of assumptions, 

adjusting for applicant pool composition increases measured discrimination by 19% on average.  

Such confounding can be eliminated by avoiding experimental designs that stratify treatment 

assignment by vacancy. 
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1. Introduction 

 Researchers frequently measure discrimination with fictional applications to real vacancies 

in employment and rental housing.  Such experiments control and randomly assign all observed 

characteristics of a résumé.  Applicants treated with a characteristic of interest, e.g. a black-

sounding name, appear otherwise similar to applicants without the characteristic.  Measuring 

discrimination reduces to a simple comparison of callback rates: which group of fictional applicants 

is more likely to be called in for a job interview or apartment showing?  The simplicity and rigor of 

such correspondence experiments make these studies perhaps the most convincing, common 

method for measuring discrimination.  Experimenters have exploited this research design to 

measure discrimination by ethnicity (Bertrand and Mullainathan, 2004; Oreopoulos, 2011; Booth, 

et. al., 2011; Hanson and Hawley, 2011; Arceo-Gomez and Campos-Vazquez, 2014; Ewens et. al., 

2014; Baert, et. al., 2015), age (Lahey, 2008, Neumark, et. al., 2015), residential location (Phillips, 

2015), ongoing unemployment duration (Kroft, et. al., 2013; Eriksson and Rooth, 2014), post-

secondary credential (Deming, et. al. 2016), and many other dimensions.  Existing critiques (e.g. 

Heckman, 1998) have identified potential flaws in interpreting the results of correspondence 

experiments as clear evidence of discrimination, though the literature has generally responded with 

methods robust to such well-documented critiques (e.g. Neumark, 2012; Neumark and Rich, 2016).  

In the present study, I develop a new critique.  I show that differences in callback rates from 

correspondence experiments can confound the direct effect of discrimination with employer 

responses to the composition of the applicant pool.  I test empirically for this phenomenon in 

several existing studies and find it to be significant, affecting the interpretation of existing results 

and warranting changes to optimal experimental design in future studies. 

Experiments confound discrimination with applicant pool composition when simple and 

common experimental design choices interact with spillovers across applicants.  In early studies, 
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researchers created “matched pairs” of real applicants who were similar on all characteristics except 

the treatment.  Modern experiments use fictional people, large samples, and electronic 

correspondence but often maintain a similar design.  They send 2 or more applications to each 

vacancy with treatment and control split evenly within the vacancy, i.e. stratifying treatment by 

vacancy.  However, such designs mechanically correlate treatment of a given applicant with the 

characteristics of the applicant pool.  In an experiment sending 2 white names and 2 black names to 

each job, a candidate with a black name will compete against 2 white names while a candidate with 

a white name will compete against only 1 white name.  If an employer’s perception of the quality of 

the other applicants matters for one’s own callback rate, then simple differences in callback rates 

will include applicant pool composition effects.  Formally, I show that simple differences in 

callback rates will not identify the direct effect of discrimination when three conditions all hold: 

researchers send multiple applicants to each vacancy, researchers stratify treatment (e.g. use 

“matched pairs”), and an employer’s evaluation of one applicant depends on the characteristics of 

other applicants. Many experiments meet the first two characteristics; hence, the interpretation of 

existing experiments hinges on the third condition, whether spillovers exist in practice.  

Simple theory can motivate both positive and negative spillovers across applicants.  

Negative spillovers may occur if one good applicant crowds a second candidate out of a congested 

interview schedule.  Positive spillovers may arise if employers infer the quality of one applicant 

from another applicant’s characteristics.  For instance, a prejudiced employer may wish to avoid 

interacting with black applicants but cannot observe race perfectly before the interview.  The 

presence of one application with a black-sounding name may cause concern about the racial 

composition of the entire pool, leading the employer to re-post the ad later.  I develop a simple, 

formal model including both negative spillovers from displacement and positive information 

spillovers.  Theory rationalizes both negative and positive spillovers across applicants. 
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As my main contribution, I establish the empirical importance of spillovers across 

applicants. Estimating the effect of applicant pool quality on the success of any one applicant 

provides an empirical challenge.  The well-known reflection problem biases simple estimates of 

peer effects (Manski, 1993).  Also, an experiment with sufficient statistical power to detect main 

treatment effects will not be powered to detect spillovers.  Spillover effects should be smaller than 

direct effects, and average applicant pool quality varies less than individual quality.  Both of these 

features reduce statistical power.  Thus, I pool data across several existing correspondence studies 

and exploit random variation in applicant pool quality generated by these experiments to estimate 

unbiased, precise spillover effects.  I typically cannot test for spillovers using the original treatment 

variables, e.g. race, because stratification of treatment mechanically and perfectly correlates 

treatment of one applicant with non-treatment of another applicant.  However, some recent 

experiments assign other characteristics on the application randomly and independently of the 

characteristics of other applicants to the same job.  These ancillary applicant characteristics provide 

random variation in the quality of the applicant pool that is unrelated to the characteristics of a 

given applicant.  Because I exploit experimental random assignment, I can estimate the causal effect 

of one applicant’s characteristics on another applicant’s success rather than the effect of fixed 

vacancy characteristics, such as employers that choose to interview many applicants.  I use this 

variation and detect large, positive spillovers across applicants.  When an experiment randomly 

assigns one applicant to have higher quality characteristics, the response rate of other applicants to 

the same job increases.  Averaging across 7 existing experiments, improving one applicant’s quality 

increases the other applicants’ response rates by 31% of the benefit to the original applicant.   
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Large positive spillovers affect the performance of different experimental designs.  Common 

measures of discrimination will be biased2 in the presence of spillovers.  Calculating bias directly 

through a new study comparing experimental designs would require a prohibitively large sample.  

Bias can be measured in existing data with stronger parametric assumptions.  If spillovers scale 

linearly in proportion to the direct importance of an application characteristic, stratified designs 

underestimate racial discrimination by 19%, on average.  Stratified experimental designs do provide 

some benefits by creating better balance and hence greater statistical efficiency, but Monte Carlo 

simulations indicate these benefits are small relative to the bias.  These bias estimates depend on 

parametric assumptions which are difficult to test.  Banerjee, et. al. (2016) argue that randomized 

experiments prove valuable precisely because they provide evidence robust to audiences with 

skeptical prior beliefs.  This lens can help interpret the bias estimates: I identify reasonable beliefs 

under which a skeptical observer can expect large bias given the observed magnitude of spillovers.  

An experimenter facing a skeptical audience would thus avoid stratified and matched pair designs, 

which can generate large bias under reasonable assumptions. 

I provide guidance on how to improve experimental design in the presence of spillovers.  

Most simply, an experimenter can send one application to each job (e.g. Ewens, et. al., 2014) or 

multiple applications with treatment assigned independently (e.g. Kroft, et. al. 2013).  For a 

researcher who has already conducted an experiment using stratification, I demonstrate how to 

bound bias by adding a sub-sample with a non-stratified experimental design.  Such bounding can 

be informative with large samples.  Finally, I consider the possibility of correcting measured 

discrimination using bias approximations as above.  However, I find suggestive evidence that the 

                                                 
2 Throughout the paper, I take the point of view of an experimenter who wishes to estimate the direct effect of some 

applicant characteristic holding the applicant pool constant; hence, I interpret any applicant pool composition effect as 

bias.  This perspective matches the interpretive language employed in most correspondence studies. 
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parametric assumptions required to estimate bias do not always hold.  The actual direction and 

magnitude of bias may be difficult to predict in practice. 

In the remainder of the paper, I further develop this argument.  Section 2 describes the 

literature on correspondence studies of discrimination, provides a simple theory to motivate 

spillovers in the context of correspondence studies, and formally defines the empirical problem that 

spillovers pose for measures of discrimination.  Section 3 describes my empirical strategy, the data, 

and how that strategy maps to the data.  Section 4 presents results on the extent and magnitude of 

spillovers across applicants in existing studies.  Section 5 estimates the extent of bias caused by 

spillovers and the tradeoff with efficiency.  Section 6 provides guidance on designing experiments 

robust to spillovers.  Section 7 concludes. 

2. Correspondence Experiments in the Context of Spillovers 

2.1. Background on Correspondence Experiments 

 Discrimination proves difficult to measure because so many unobservable or difficult to 

measure characteristics correlate with race.  Audit experiments were created to fill this void.  Earlier 

studies (Yinger, 1995; Riach and Rich, 2002) as well as recent additions (e.g. Pager, et. al. 2009) 

recruit pairs of actual people, give them fictional identities, and have them apply to actual jobs or 

apartments.  Researchers match pairs to be similar on various characteristics except one dimension, 

e.g. one white and one black tester who otherwise appear similar and are given similar fictional 

credentials.  One can then compare differences in positive outcomes, such as being called back for 

an interview, to measure discrimination.  By making pairs similar, matched-pair audits help 

eliminate many concerns about unobservable variables.   

However, audit studies may fail to measure discrimination if testers differ on some 

unmatchable dimension (Heckman, 1998).  Correspondence studies (e.g. Bertrand and 

Mullainathan, 2004) solve this concern by using fictional applicants applying to vacancies 
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electronically or by mail.  Applying from a distance allows experimenters to control all information 

seen by the vacancy, and large samples combined with randomization of fictional applicant 

characteristics allow experimenters to balance all observed characteristics between treatment and 

control groups.  Given its attractive features, a large number of recent studies use this method, 

measuring discrimination as the difference in the probability of receiving a positive communication 

for applicants with different apparent ethnicity (Bertrand and Mullainathan, 2004; Oreopoulos, 

2011; Booth, et. al., 2011; Hanson and Hawley, 2011; Arceo-Gomez and Campos-Vazquez, 2014; 

Ewens et. al., 2014), age (Lahey, 2008; Neumark, et. al. 2015), residential location (Phillips, 2015), 

ongoing unemployment duration (Kroft, et. al., 2013; Eriksson and Rooth, 2014), and more.   

While correspondence studies allow experimenters to better match applicants, some 

critiques remain.  These studies cannot in general distinguish taste-based discrimination from 

statistical discrimination based on either the mean or variance of unobservable characteristics 

(Heckman, 1998).  This critique, though, is widely known and some statistical tests (Neumark, 

2012) and clever experimental designs (Ewens, et. al., 2014) have been developed to address this 

concern.  Correspondence experiments have become a prominent empirical tool for detecting 

discrimination, but few, if any, studies have considered whether spillovers across applicants affect 

the correct interpretation of results from such experiments.  

2.2. An Illustrative Theory of Spillovers in Correspondence Experiments 

 A very large literature discusses the theory (Pissaridies, 2000; Hosios, 1990) and empirics 

(Blundell, et. al. 2004; Dahlberg and Forslund, 2005; Ferracci, et. al. 2014; Pallais, 2014; Gautier, 

et. al. 2012; Lalive, et. al. 2015; Albrecht, et. al. 2009; Crépon, et. al. 2013) of search externalities 

and peer effects (Manski, 1993).  I build a simple theoretical model to frame my empirical analysis, 

describing reasons for spillovers across applicants in the context of correspondence studies.  I will 

focus on the extent to which the characteristics of one applicant to a job can affect the probability 
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that another applicant to the same employer receives an interview request.  For clarity, I define and 

interpret a specific model with few formal details.  The appendix provides a formal exposition, and 

the end of this section considers how other spillover theories can fit into the stated model.   

Suppose that an employer wishes to interview applicants for vacancy 𝑗.  With increasing 

costs of interviewing the marginal applicant, interview space becomes scarce and applicants will 

compete based on their characteristics.  For concreteness, suppose that marginal costs rise very 

quickly. The employer schedules at most one interview.3  Any given applicant receives an interview 

only if he4 is the best applicant and if the employer views the value of interviewing him as greater 

than the cost of doing so.  Formally, let 𝑌𝑖𝑗 indicate whether applicant 𝑖 receives an interview from 

job 𝑗.  The probability of receiving an interview is: 

Pr[𝑌𝑖𝑗 = 1|𝑿𝒋] = Γ(𝑿𝒋) ∗ Ψ(𝑿𝒋)           (1) 

𝑋𝑖𝑗 is a characteristic of interest (e.g. racial connotation of the name), 𝑿𝒋 is the vector of this 

characteristic for all applicants to job 𝑗, Γ(𝑿𝒋) is the probability that person 𝑖 is the best applicant in 

the pool, and Ψ(𝑿𝒋) is the probability that the value of applicant 𝑖 exceeds the cost of the interview, 

i.e. that the employer interviews anyone.  Consider a characteristic 𝑋𝑖𝑗 that employers view 

positively.  An applicant assigned a high value of 𝑋𝑖𝑗 will receive more callbacks both because he is 

more likely to be the best applicant, 
𝜕Γ(𝐗𝐣)

𝜕𝑋𝑖𝑗
> 0, and because his good characteristic makes the 

interview more likely to be worth the cost for the employer, 
𝜕Ψ(𝐗𝐣)

𝜕𝑋𝑖𝑗
> 0.   

However, changing the characteristics on one person′s application may also affect other 

applicants to the same job.  There are two main spillovers onto person 𝑖 if we improve the 

                                                 
3 Any number 𝑛 less than the total number of applicants gives similar comparative statics. 
4 For clarity, I will refer to the employer with female pronouns and the applicant with male pronouns.  
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 characteristic 𝑋𝑘𝑗 for some other person 𝑘 ≠ 𝑖.  First, there is a displacement effect: 

𝜕Γ(𝐗𝐣)

𝜕𝑋𝑘𝑗
< 0,   ∀   𝑘 ≠ 𝑖        (2) 

Improving a competing applicant’s characteristic 𝑋𝑘𝑗 potentially displaces applicant 𝑖 out of a fixed 

number of interview slots.  While intuitive, crowd out may be less likely in correspondence 

experiments if employers refill the interview spots vacated by high quality, fictional applicants who 

disappear.  Second, a higher quality pool may increase the employer’s likelihood of interviewing at 

all:   

𝜕Ψ(𝐗𝐣)

𝜕𝑋𝑘𝑗
> 0,   ∀   𝑘 ≠ 𝑖        (3) 

More generally, a higher quality pool may induce an employer to schedule more interviews for 

marginal applicants.  See the appendix for a more formal treatment. 

Consider a concrete example.  Suppose an employer views residence in one particular 

neighborhood as a signal of unreliability.  When the employer receives applications from that 

neighborhood in response to a particular job ad, the employer conducts classic statistical 

discrimination (Phelps, 1972) and discounts such applicants.  The presence of these other applicants 

from ‘bad’ neighborhoods may also spillover onto our applicant of interest.  First, he faces weaker 

opponents, which improves the odds of ranking high enough to obtain an interview slot.  On the 

other hand, the employer may view the presence of applicants from ‘bad’ neighborhoods as a 

negative signal about the entire applicant pool, including our applicant of interest.  Perhaps a temp 

agency near the ‘bad’ neighborhood has directed many low quality clients to apply, only some of 

whom can be identified by their addresses.  Given these concerns, the employer discards the current 
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pool and re-posts the ad at a different time or on a different job board.5  In summary, improving a 

positive characteristic for one applicant may positively or negatively affect other applicants.   

In the empirical section I find evidence of positive spillovers.  The exposition above and in 

the appendix provides one simple rationalization of the results: an employer with limited 

information about any given applicant uses the quality of other applicants in the pool to generate a 

more accurate evaluation.  However, the above model provides predictions identical to various other 

mechanisms of positive spillovers. Different specifications of how an employer evaluates an 

individual’s productivity based on group information could represent either rational statistical 

learning (e.g. Banerjee, 1992) or behavioral responses to the same data, such as priming and halo 

effects.  If one reinterprets the option to not hire an applicant as a decision to hire from another 

source or at a different time, the model becomes a theory of a rational employer who searches 

across sources or dynamically.  If one allows not just the quality but also the quantity of the 

applicant pool to vary, then positive spillovers can result from the “market thickness” effect found 

in canonical labor market search and matching models (Pissarides, 2000).  Many simple and 

standard theories predict positive spillovers in correspondence studies. 

2.3. What Do Differences in Callback Rates Measure in the Presence of Spillovers? 

The interpretation of differences in callback rates changes in the presence of spillovers.  

Studies typically measures a difference in response rates with a simple dummy variable regression: 

𝑌𝑖𝑗 = 𝛼 + 𝜃𝑇𝑖𝑗 + 𝑣𝑖𝑗    (4) 

where 𝑌𝑖𝑗 measures a positive response by employer 𝑗 to the application of person 𝑖 (e.g. a dummy 

for whether the applicant receives an interview offer or other positive response), 𝑇𝑖𝑗 is a treatment 

                                                 
5 Similarly, a prejudiced employer may wish to avoid interacting with black applicants but cannot observe race perfectly 

before interviews.  The presence of a stereotypically black name on one application may lead the employer to re-post 

the ad elsewhere. 
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dummy (e.g. a black-sounding name), and 𝑣𝑖𝑗 is an error term.  In this context, OLS measures the 

difference in callback rates between treated and control, 𝜃 = 𝑌̅𝑇 − 𝑌̅𝐶.  Given that the experiment 

balances other observable variables across treatment and control, the literature typically interprets 

the size and significance of 𝜃 as evidence of discrimination.6 

However, in the presence of spillovers across applicants, differences in callback rates may 

combine the direct effect of treatment on the treated applicant with the effect of changing the 

composition of the applicant pool.  For equation (4) to measure only the direct effect of treatment, 

the researcher must make the standard stable unit treatment value assumption (Cox, 1958) that the 

effects of treatment do not spill over onto the controls.  However, for practical reasons most 

experiments send multiple fictional job applications to the same vacancy, and as shown in the 

theory section above, the characteristics of one applicant may affect another applicant’s success 

rate.  Suppose that while (4) represents the model estimated by the researcher, a model with 

spillovers represents the true model:   

𝑌𝑖𝑗 = 𝛼 + 𝛽𝑇𝑖𝑗 + 𝛿𝛽(𝐾 − 1)𝑇̅(𝑖)𝑗 + 𝜖𝑖𝑗    (5) 

Callbacks respond to both the applicant’s own characteristics and the mean of other applicants’ 

characteristics.  For a racial name treatment, the term 𝑇̅(𝑖)𝑗 counts the proportion of other applicants 

to vacancy 𝑗 other than person 𝑖 who list a black-sounding name.  In the appendix, I show formally 

that a simple statistical discrimination model with correlated unobservable characteristics across 

applicants implies equation (5).  I will refer to 𝛽 as the “direct effect” of treatment and 𝛿 as the 

parameter determining the relative direction of “spillover effects” or “applicant pool composition 

                                                 
6 Such studies do not generally distinguish between taste-based and statistical discrimination, and this fact complicates 

interpretation of audit studies.  But this point has already been well-documented in the literature (Heckman, 1998; 

Neumark, 2012). 
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effects.”  𝐾 is the number of applicants per job.  In the language of Manski (1993), 𝛿𝛽(𝐾 − 1) 

measures “exogenous” peer effects.   

In an experiment that randomly and independently assigns treatment status, a simple 

difference in callback rates measures only the direct effect of treatment.  Suppose that the 

researchers find a sample of vacancies and randomly assign one applicant to each vacancy.  In this 

context the difference in callback rates measures: 

𝐸[𝑌𝑖𝑗|𝑇𝑖 = 1, 𝑇̅(𝑖)𝑗 = 𝑇̅] − 𝐸[𝑌𝑖𝑗|𝑇𝑖 = 0, 𝑇̅(𝑖)𝑗 = 𝑇̅] = 𝛽 

where 𝑇̅ is the average proportion of treated applicants other than person 𝑖 in the population.  Thus, 

differences in callback rates estimate the direct effect of treatment when the experimental design 

sends only one applicant to each vacancy.  This fact remains true if the experiment assigns multiple 

applications to each vacancy but selects the treatment status of each application independently. 

 However, in common research designs differences in callback rates combine the direct effect 

of treatment with an applicant pool composition effect.  Many experiments send “matched pairs” or 

more generally randomize treatment status but stratify by vacancy.  For instance, Bertrand and 

Mullainathan (2004) send 4 applications to each job.  They randomly assign which applications 

receive black or white names, but each job receives exactly two black and two white names.  As a 

result, simple differences in callback rates measure the effect of switching an applicant from white 

to black while also switching another member of the applicant pool from black to white.  For a 

vacancy receiving 𝐾 applications, the difference in callback rates measures: 

𝐸[𝑌𝑖𝑗|𝑇𝑖 = 1, 𝑇̅(𝑖)𝑗 = 𝑇̅] − 𝐸 [𝑌𝑖𝑗|𝑇𝑖 = 0, 𝑇̅(𝑖)𝑗 = 𝑇̅ +
1

𝐾 − 1
] = 

(𝐸[𝑌𝑖𝑗|𝑇𝑖 = 1, 𝑇̅(𝑖)𝑗 = 𝑇̅] − 𝐸[𝑌𝑖𝑗|𝑇𝑖 = 0, 𝑇̅(𝑖)𝑗 = 𝑇̅])

+ (𝐸[𝑌𝑖𝑗|𝑇𝑖 = 0, 𝑇̅(𝑖)𝑗 = 𝑇̅] − 𝐸 [𝑌𝑖𝑗|𝑇𝑖 = 0, 𝑇̅(𝑖)𝑗 = 𝑇̅ +
1

𝐾 − 1
]) 

= 𝛽 − 𝛿𝛽 

When experiments use a stratified design to compare callback rates, they combine the direct effect 

of treatment, 𝛽, with the effect of changing the applicant pool, 𝛿𝛽. 
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Such confounding occurs under three conditions.  First, the experiment sends multiple 

applications to each vacancy (𝐾 > 1).  Second, the experiment uses stratified randomization of 

treatment by vacancy.  Third, spillovers across applicants to the same vacancy exist (𝛿 ≠ 0).  Most 

correspondence studies meet the first two conditions.  However, researchers frequently attribute 

differences in callback rates to the direct effect of treatment rather than applicant pool composition 

effects.  This interpretation implicitly assumes that no spillovers exist, 𝛿 = 0.  If spillovers do exist, 

this will lead to a misinterpretation.  Suppose that employers view treatment negatively (𝛽 < 0).  If 

giving a negative attribute to a competitor improves one’s own chances by making room on the 

interview list, 𝛿 < 0, then experiments will overestimate the direct effect of treatment.  On the other 

hand, if a negative change to another applicant sours the employer on all applicants from the 

interview source used by the experiment, 𝛿 > 0, then experiments will underestimate the direct 

effect of treatment.  Thus, the importance of the present critique and the interpretation of 

correspondence studies hinges on an empirical question, whether the characteristics of one applicant 

affect responses to other applicants.  

3. Empirical Strategy 

3.1. Reduced Form Model for Measuring Spillovers 

 I test for the existence and extent of spillovers across applicants using random variation in 

the composition of applicant pools created by correspondence experiments.  I cannot directly 

estimate equation (5) because stratified randomization assigns treatment such that 𝑇𝑖𝑗 and 𝑇̅(𝑖)𝑗 are 

perfectly collinear.  However, many experiments assign at least one applicant characteristic, 𝑍𝑖𝑗, 

randomly and independently, that is without stratifying randomization.  This allows me to test for 

the existence of spillovers with respect to 𝑍𝑖𝑗.  For example, Bertrand and Mullainathan (2004) 

randomly assign addresses to résumés and provide data on log median household income of the 

listed address’s census tract.  Because they do not stratify randomization of this variable, the 
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composition of addresses in the applicant pool randomly varies from job to job.  I can test whether 

this random variation in other applicants’ quality affects a particular applicant’s callback 

probability: 

𝑌𝑖𝑗 = 𝛼 + 𝜓𝑍𝑖𝑗 + 𝛿𝜓(𝐾 − 1)𝑍̅(𝑖)𝑗 + 𝜁𝑋𝑖𝑗 + 𝜖𝑖𝑗         (6) 

As noted above, 𝑍𝑖𝑗 is some applicant characteristic that experimenters assign randomly and 

independently.  We are interested in the coefficient on 𝑍̅(𝑖)𝑗 which measures spillovers of other 

applicants’ characteristics onto applicant 𝑖 with the direction of spillovers determined by 𝛿.  𝑍̅(𝑖)𝑗  is 

the mean7 of the characteristic 𝑍𝑖𝑗 for other applicants to the same job.  I also include 𝑍𝑖𝑗 in the 

regression.  Because 𝑍𝑖𝑗 is chosen to be uncorrelated with 𝑍̅(𝑖)𝑗, including 𝑍𝑖𝑗 is not strictly 

necessary, but 𝜓 measures whether employers view 𝑍𝑖𝑗 positively or negatively which helps 

interpret the spillover coefficient.  Finally, I also include a vector of control variables 𝑋𝑖𝑗 because 

some experiments randomly assign 𝑍𝑖𝑗 conditional on some controls.  For instance, Bertrand and 

Mullainathan (2004) randomly assign addresses conditional on city (Boston or Chicago).  In this 

regression, I focus on the parameter 𝛿.  Provided that the experiment assigns 𝑍𝑖𝑗 randomly and 

independently across applicants, a non-zero 𝛿 implies that spillovers across applicants exist. 

3.2. Instrumental Variables Model for Measuring Spillovers 

 At times, I will interpret equation (6) as a reduced form test for the existence of spillovers 

across applicants that corresponds to an instrumental variables specification.  Consider the 

following two-stage IV specification:  

First stage:   𝑌̅(𝑖)𝑗 = 𝜙0 + 𝜙1𝑍̅(𝑖)𝑗 + 𝜙2𝑋𝑖𝑗 + 𝜙3𝑍𝑖𝑗 + 𝑣𝑖𝑗    (7) 

Second stage: 𝑌𝑖𝑗 = 𝛼 + 𝛿𝐼𝑉𝑌̅(𝑖)𝑗 + 𝜙4𝑍𝑖𝑗 + 𝜙5𝑋𝑖𝑗 + 𝜖𝑖𝑗    (8) 

                                                 
7 In a previous version of this paper, I use the sum rather than the mean and obtain similar results.  The two options give 

identical results (subject to re-scaling) if the number of experimental applicants does not vary across vacancies. 
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The term 𝑌̅(𝑖)𝑗 in the second stage, which is the callback rate to other applicants to job 𝑗, allows one 

applicant’s success in receiving a response to affect another applicant’s probability of receiving a 

response.  OLS using equation (8) likely estimates 𝛿𝐼𝑉 with bias, either positive bias because some 

vacancies simply call back more applicants or negative bias because stratified experimental designs 

create negative correlation between the quality of two applicants to the same vacancy.  Thus, I 

instrument call backs to other applicants, 𝑌̅(𝑖)𝑗, with random variation in those applicants’ quality, 

𝑍̅(𝑖)𝑗, as in equation (7).  Most literally, this IV model measures the effect of other applicants’ 

success on the present applicant’s success.  In the language of Manksi (1993), 𝛿𝐼𝑉 measures an 

“endogenous peer effect.”  The sign of 𝛿𝐼𝑉 indicates the direction of spillovers.   However, I will 

interpret spillovers in the IV model as a simple rescaling of the reduced form results rather than as a 

structural parameter.  In the appendix, I demonstrate that the sign of 𝛿𝐼𝑉 in the IV specification 

versus 𝛿 in the reduced form are the same, which is a particular case of a well-known general result 

linking treatment effects measured by reduced form and IV.  Likewise, the literature notes that, in 

general, exogenous and endogenous peer effects cannot be separately identified (Manski, 1993). 

 The IV model rescales spillover estimates to have intuitive units that are easily comparable 

across different studies.  By the usual two-stage least squares logic, estimating equation (8) by OLS 

while substituting predicted callback rates, 𝑌̅̂(𝑖)𝑗, from equation (7) will give the same estimate for 

𝛿𝐼𝑉 as 2SLS.  In the correspondence experiment literature (e.g. Bertrand and Mullainathan, 2004), 

predicted call back rates measure applicant quality.  Thus, 𝛿𝐼𝑉 can be interpreted as the response of 

one applicant’s callback rate to the quality of other applicants rates.  Since all studies use a callback 

outcome, 𝛿𝐼𝑉 measures spillovers in common units across studies.  

The IV specification also clarifies the conditions under which my instrument of other 

applicants’ quality  is valid.  The instrument must be relevant such that 𝑍̅(𝑖)𝑗 is correlated with 
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callbacks to other jobs.  It must be exogenous, which is satisfied by random assignment of 𝑍𝑖𝑗.  It 

must not be collinear with 𝑍𝑖𝑗, i.e. not assigned by stratified randomization.  These conditions will 

prove useful in interpreting the reduced form.   

The data from some studies provides multiple valid instruments that are randomly assigned 

without stratification.  With multiple exogenous options, I wish to choose the strongest/most 

relevant instrument.  Belloni, Chernozkuhov, and Hansen (2014) provide a procedure for 

systematically selecting strong instruments.  They select instruments out of a set of exogenous 

instruments using an estimator of the first stage relationship that penalizes model complexity 

(LASSO).  I cannot directly apply their method to the first stage in equation (7).  A strong first stage 

in (7) will mechanically select for a characteristic that affects the applicant listing the characteristic 

and other applicants to the same job in the same direction.8  However, I can apply a similar 

procedure designed to identify the characteristics to which employers most strongly respond.  

Formally, I apply a LASSO estimator to equation (9): 

 𝑌𝑖𝑗 = 𝛼 + 𝜓𝑍𝑖𝑗 + 𝜁𝑋𝑖𝑗 + 𝜖𝑖𝑗   (9) 

From a vector of exogenous potential instruments 𝑍𝑖𝑗, I select the variable that most strongly 

predicts employers’ responses to the applicant listing the characteristic.  I can then test for spillovers 

across applicants with the strongest available instrument. 

3.3. Inference across Multiple Studies 

Pooling spillover estimates across studies will prove useful.  Spillovers will typically be of 

smaller magnitude than direct effects, and average quality 𝑍̅(𝑖)𝑗 will vary much less than individual 

                                                 
8 Consider a job receiving applications from persons A, B, C, and D who all list a characteristic that employers view 

positively.  If person A is person 𝑖, then the first stage relates callbacks to B, C, and D and the characteristic for B, C, 

and D.  The employers view the characteristic positively, then callbacks to B and the characteristic for B are positively 

related.  But the relationship across all three people will be strongest if the characteristic for person B also spills over to 

callbacks for C and D.  In this way, selecting strong instruments based on equation (7) will bias one toward selecting 

instruments that have direct and spillover effects in the same direction. 
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quality 𝑍𝑖𝑗.  Hence, sample sizes chosen to detect direct effects will have limited power to detect 

spillovers in any given study.  In practice, pooling yields more precise spillover estimates. 

 A fully interacted model can test for spillovers jointly across studies.  Consider modifying 

equations (6), (7), and (8) to be fully interacted models estimated on a pooled sample: 

𝑌𝑖𝑗 = ∑𝐼𝑠 ∗ [𝛿𝑠𝜓𝑠(𝐾𝑠 − 1)𝑍̅(𝑖)𝑗
𝑠 + 𝜓𝑠𝑍𝑖𝑗

𝑠 + 𝜁𝑠𝑋𝑖𝑗
𝑠 + 𝑤𝑠]

𝑠

+ 𝜖𝑖𝑗         (6′) 

𝑌̅(𝑖)𝑗
𝑠 = ∑𝐼𝑠 ∗ [𝜙1

𝑠𝑍̅(𝑖)𝑗
𝑠 + 𝜙3

𝑠𝑍𝑖𝑗
𝑠 + 𝜙2

𝑠𝑋𝑖𝑗
𝑠 + 𝑤𝑠]

𝑠

+ 𝑣𝑖𝑗    (7′) 

𝑌𝑖𝑗 = ∑𝐼𝑠 ∗ [𝛿𝐼𝑉
𝑠 𝑌̅(𝑖)𝑗

𝑠 + 𝜙4
𝑆𝑍𝑖𝑗

𝑠 + 𝜙5
𝑠𝑋𝑖𝑗

𝑠 + 𝑤𝑠] 

𝑠

+ 𝜖𝑖𝑗    (8′) 

Equations (6’), (7’), and (8’) differ from the single-study specification in three ways.  First, I 

combine the samples from all studies and denote variables from a particular study with superscript 

𝑠, e.g. 𝑋𝑖𝑗
𝑠  indicates the control variables from study 𝑠.  Second, I include study dummies 𝐼𝑠 with 

coefficients 𝑤𝑆.  Third, I interact the study dummies with all other variables, allowing for study-

specific coefficients.9  These fully-interacted models exactly replicate the study-by-study 

coefficients but can also test for spillovers jointly across the studies. 

 With slight modifications, the regressions above can also average spillovers across studies: 

𝑌𝑖𝑗 = 𝛿𝜓(𝐾 − 1)𝑍̅(𝑖)𝑗 + 𝜓𝑍𝑖𝑗 + ∑𝐼𝑠 ∗ [𝜁𝑠𝑋𝑖𝑗
𝑠 + 𝑤𝑠]

𝑠

+ 𝜖𝑖𝑗         (6′′) 

𝑌̅(𝑖)𝑗 = 𝜙1𝑍̅(𝑖)𝑗 + 𝜙3𝑍𝑖𝑗 + ∑𝐼𝑠 ∗ [ 𝜙2
𝑠𝑋𝑖𝑗

𝑠 + 𝑤𝑠]

𝑠

+ 𝑣𝑖𝑗    (7′′) 

𝑌𝑖𝑗 = 𝛿𝐼𝑉𝑌̅(𝑖)𝑗 + 𝜙4𝑍𝑖𝑗 + ∑𝐼𝑠 ∗ [𝜙5
𝑠𝑋𝑖𝑗

𝑠 + 𝑤𝑠] 

𝑠

+ 𝜖𝑖𝑗    (8′′) 

These specifications retain study fixed effects and their interactions with all study controls; thus, 

they continue to identify spillovers within each study.  Two changes appear.  First, I combine each 

of the study specific quality instruments 𝑍𝑖𝑗
𝑠  into a standardized variable 𝑍𝑖𝑗.  I transform the study-

                                                 
9 This sets control variables to zero when they come from a different study than the observation of interest. Because I 

include study fixed effects, choosing a different value from zero leads to identical estimates on all parameters of 

interest. 
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specific quality instruments into a “standard deviations above the mean” z-score within each study 

so that they have comparable magnitudes.  For instruments that are negative signals (e.g. smokers 

applying to housing), I reverse the sign.  Second, I restrict the spillovers coefficients to take a 

common value across studies.  As in a typical study of heterogeneous effects, a common coefficient 

measures a weighted average of the study-specific effects.  Averaging over a variety of contexts 

estimates spillovers with greater precision and external validity than any one study. 

3.4. Data 

I use data from several correspondence experiments.  I focus on collecting high-quality 

studies for which data is available.  Two research assistants completed separate literature searches.  

These searches included examining articles on Google Scholar citing Bertrand and Mullainathan 

(2004) and searching for the terms “audit experiment,” “résumé experiment,” “discrimination 

experiment,” “correspondence experiment,” “correspondence study,” and “audit study” using the 

search functions of several top journals’ websites10 and Google.  I include studies resulting from 

these searches only if I can implement my empirical strategy.  I require that the study has publicly 

available data (or data that I collected), sends multiple applications to each vacancy, and has some 

instrument 𝑍𝑖 which the researchers assign randomly without vacancy stratification.  These criteria 

limit the sample significantly.  For example, I exclude many studies without public data, Ewens, et. 

al. (2014) because they only send one application per vacancy, and Arceo-Gomez and Campos-

Vazquez (2014) because all randomly-assigned variables in the available data are stratified. 

Appendix Table 1 alphabetically lists the studies from which I draw data.  Each study sends 

fictional applicants to actual vacancies and uses the standard outcome variable: whether the vacancy 

positively responds to the application by phone or e-mail.  Beyond this common framework, 

                                                 
10 American Economic Review, Journal of Economic Perspectives, all four American Economic Journals, 

Econometrica, Review of Economic Studies, Journal of Political Economy, Quarterly Journal of Economics, Review of 

Economics and Statistics, Journal of Labor Economics, and Journal of Human Resources. 
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individual studies can differ in minor ways.  The first row describes the Bertrand and Mullainathan 

(2004) study of racial discrimination in Boston and Chicago.  The main treatment of interest in this 

study was whether the application was assigned a stereotypically black or white name.  They send 2 

or 4 applications to each job vacancy.  As discussed above, treatment was stratified such that half of 

the applications to a given job received black names and half white, inducing a correlation between 

an application having a black name and other applications to the same job having a white name.  I 

use nearly their entire sample, excluding 324 observations which have missing data.  The remaining 

4,546 job applications represent my sample for analysis.  The empirical framework summarized in 

equations (6) through (9) requires that in each study I identify instrumental variables for the number 

of callbacks to other applications. Bertrand and Mullainathan (2004) assign log median 

neighborhood income of the listed address and a female name dummy randomly and without 

stratification.  They randomly assign these variables conditional on city of the job (Boston or 

Chicago) and type of job (administrative or sales).  Hence, female names and neighborhood income 

provide valid instruments, but I must control for city and job type dummies.  I also control for the 

number of applications sent to ensure that I identify spillovers off variation in the instrument 𝑍𝑖 

rather than the number of applications.  Finally, as described above, I apply a LASSO estimator to 

equation (9) to select the instrument with the strongest relationship between the value of instrument 

and callbacks to that same application.  In this case, the log median neighborhood income provides 

a stronger instrument than a female name. 

The remainder of Appendix Table 1 displays similar information for the other six studies, 

and I discuss these details further in an appendix. Each included study sends multiple applications 

to each job, at least partially stratifies treatment assignment, and includes at least one valid 

instrument.  Given these facts, I can implement my empirical strategy using 7 different datasets 

spanning 15 years, 4 countries, and various types of labor and housing markets. 
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4. Results: Measuring Spillovers in Existing Experiments 

4.1. An Extended Example with Data from One Labor Market Experiment  

 I find evidence of positive job search externalities in the classic Bertrand and Mullainathan 

(2004) study.  I test for whether randomly assigning an applicant to have an address in a high 

income neighborhood helps not only the applicant listing the address but also other applicants to the 

same job.  Table 1 shows the empirical results. 

Recall that a valid instrument must be valued by employers, exogenous, and not stratified.  

Column (1) of Table 1 tests whether log median neighborhood income of the applicant is a strong 

instrument, i.e. whether employers value it by calling back applicants with high income addresses 

more frequently.  I estimate the first-stage relationship between the callback rate to other applicants 

to the same job and average neighborhood income of other applicants.  The positive and statistically 

significant coefficient of 0.048 indicates that doubling the neighborhood income11 of all other 

applicants increases the callback rate to those same applicants by 4.8 percentage points.   

I also confirm that that the neighborhood income instrument appears to be randomly 

assigned.  Column (2) demonstrates that income of the job applicant’s neighborhood does not 

correlate with neighborhood income of the job location.  Bertrand and Mullainathan (2004) set 

addresses of applicants randomly.  A 1 percent increase in income in the employer’s neighborhood 

is associated with a statistically insignificant 0.005% decrease in income in the applicant’s 

neighborhood.  In a non-experimental sample, applicants would tend to apply to jobs in 

neighborhoods similar to their own, generating a positive coefficient, but random assignment of 

applicant addresses eliminates this selection problem.   

                                                 
11 Because of residential sorting, neighborhood median incomes have a very wide range.  In Bertrand and Mullainathan 

(2004) median household income ranges from $7,000 to $49,000 at the 1st and 99th percentiles of neighborhoods, 

respectively.  Doubling neighborhood income is a large change but within the sample, for instance moving from the 

median of $25,000 to the 99th percentile of $49,000. 
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The experiment also does not stratify the random assignment of addresses by job.  Column 

(3) demonstrates that neighborhood income of one applicant does not correlate with neighborhood 

income of other applicants to the same job.  This fact differs from how the minority name treatment 

is determined.  Bertrand and Mullainathan (2004) assign names to applications randomly, but they 

stratify this process by job vacancy so that an application with a black name competes with 1 black 

name while an application with a white name competes with 2 black names.  Column (4) confirms 

this fact, demonstrating that the proportion of experimental applicants to the same job with a black 

name is 39 percentage points lower when the application of interest receives a black name.  Unlike 

the original black name treatment, the experiment assigns neighborhood income of the applicant 

both randomly and without stratification, providing a valid instrument with which to test for 

spillovers across applications. 

 In columns (5) and (6) of Table 1, I use the neighborhood income instrument to identify job 

search externalities. Column (5) estimates the reduced form relationship, testing whether callbacks 

to a given applicant depend on the neighborhood income randomly assigned to other applicants to 

the same job.  The coefficient of 0.046 indicates that doubling the neighborhood income of all other 

applicants to the same job would increase the current applicant’s callback rate by 4.6 percentage 

points.  The measured effect is large, positive, and statistically significant at the 5% level.  Column 

(6) shows similar results using an IV framework with column (1) serving as the first stage.  The IV 

estimation yields a positive and statistically significant coefficient of 0.95 for the spillovers 

coefficient.  This value indicates that if the experiment increases the quality of other applicants such 

that they all receive one additional callback, the present applicant receives 0.95 more callbacks.  

This roughly 1-to-1 increase indicates very large spillovers; improving the quality of one applicant 

helps other applicants to the same job nearly as much as the applicant actually listing the 
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characteristic.  Overall, I find that an applicant’s callback rate responds significantly when the 

experiment randomly alters the quality of other applicants to the same job. 

4.2. Spillovers in Several Studies: Relevance of the Instruments 

I implement the same empirical strategy using data from 7 different experiments.  Testing 

for spillovers in multiple studies provides two main advantages.  First, spillover tests in one study 

sample may have low power or weak instruments.  Some correspondence experiments generate 

limited random variation in applicant pool composition, and spillover effects may be much smaller 

than the main effects that drive sample size calculations.  Pooling results across several studies 

increases precision.  Second, applying the same identification strategy to many settings tests 

whether positive spillovers hold relevance for correspondence experiments in general rather than 

just one example.  

I first test for the strength of the selected instruments pooling across the 7 datasets.  In the 

present context, weak instruments could be a major concern.  In a study with a weak instrument, the 

IV model in equations (7) and (8) may provide an upward biased estimate of the extent of 

spillovers.12  A strong first stage will be particularly important in a context with positive spillovers.  

Table 2 indicates a strong first stage.  The first column of Table 2 pools the first stage relationship 

across all 7 studies, measuring the relationship between callbacks to other applicants and the 

average of the instrument for those applicants.  Applicants receive 2.4 percentage points more 

callbacks if an experiment randomly assigns them a quality characteristic one standard deviation 

above the mean.  This coefficient is statistically significant at the 1% level indicating that employers 

respond as expected to a positive quality attribute.  The first stage F-statistic of 77.4 easily exceeds 

the rule-of-thumb cutoff of 10, indicating a strong instrument.  The instruments I use also match 

                                                 
12 IV with weak instruments is biased toward the OLS estimates (Angrist and Pischke, 2009).  OLS applied to equation 

(8) yields positive spillovers when call backs are positively correlated across applicants to the same job. 
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those the literature identifies as theoretically and empirically important.13  One possible weak 

instruments concern remains.  I construct the instrument by selecting the strongest of several 

candidate instruments.  If the set of candidates is large enough, selecting empirically strong 

instruments could mechanically generate strong first stage F-statistics from random noise.  In an 

appendix, I demonstrate with simulations that the variable selection procedure I use does not 

mechanically generate strong instruments in the present context.  Overall, the quality instrument 

passes all standard weak instrument tests in the pooled sample.   

Comparing the strength of the instrument in the pooled sample versus individual studies 

demonstrates the advantage of pooling into a larger sample.  The remaining columns of Table 2 

show the first stage for individual studies.  I have clearly strong instruments in the case of Eriksson 

and Rooth (2014) and the housing experiment.  In both cases F-statistics exceed 10.  The remaining 

studies may have weak instruments when analyzed in isolation.  F-statistics for these studies are all 

above 4 but below 10.  Thus, spillovers measured in one particular study could be subject to bias 

from weak instruments and should be interpreted with care.  However, pooling several studies 

increases statistical power, allowing me to construct a strong instrument and test for spillovers in 

the full sample. 

4.3. Spillovers in Several Studies: Validity of the Instruments 

Next, I test for the exogeneity of the instruments using baseline balance tests.  If randomly 

assigned, the value of the instrument for other applicants to the same job should not correlate with 

other applicant or firm characteristics.  I focus on whether the instrument correlates with the 

applicant having a minority name because several studies include this variable, allowing for 

                                                 
13 A non-exhaustive list of studies using these instruments as a fundamental part of a correspondence study: age (Lahey, 

2008; Neumark, et. al. 2015); credit/smoking (Ewens, et. al. 2014); ethnic names (Bertrand and Mullainathan, 2004; 

Booth, et. al. 2011); extroversion (Carlsson, et. al. 2014); neighborhood income (Bertrand and Mullainathan, 2004; 

Phillips, 2015).   
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comparison across studies.  Table 3 shows the results of regressing a minority name dummy on the 

mean value of the instrument for other applicants to the same job.  For the Bertrand and 

Mullainathan (2004) study, the coefficient of -0.001 indicates that when the experiment doubles the 

neighborhood income of other applicants to the same job, the probability that the applicant lists a 

black name decreases by only 0.1 percentage points, a difference which is very small and 

statistically insignificant.  I find very similar results in data from Eriksson and Rooth (2014), 

Phillips (2015), and the housing study.14  I only use instruments described by the original papers as 

randomly assigned, and baseline balance tests confirm that these instruments are in fact exogenous. 

4.4. Spillovers in Several Studies: Measuring Spillovers 

 Averaging across all 7 studies, I find evidence of positive spillovers.  I test whether callback 

rates respond to changing a quality characteristic for other experimental applicants to the same job.  

Table 4 shows the reduced form estimates.  The first column pools over all 7 studies.  Applicants 

benefit from reporting higher quality characteristics on their own applications.  Increasing the 

quality of the instrument by 1 standard deviation raises callback rates by 2.0 percentage points.   

One applicant’s quality then spills onto other applicants to the same job.  Raising the quality of 

other applicants to the same vacancy increases the present applicant’s callback rate by 0.7 

percentage points. The positive spillover effect is large, about 1/3 of the direct effect on the original 

applicant, and statistically significant at the 1% level. 

 The pooled findings reflect the results of individual studies.  As before, I find in the 

Bertrand and Mullainathan (2004) data that doubling neighborhood income of other applicants 

increases the present applicant’s callback rate by 4.6 percentage points.  The Eriksson and Rooth 

                                                 
14 I cannot apply this test to the three remaining studies because they either do not include variation in name ethnicity 

(Lahey, 2008) or because the instrument I happen to select is only exogenous conditional on name ethnicity (Booth, et. 

al. 2011; Oreopoulos, 2011).  However, in these three cases I use an instrument based on the original treatment variable 

of the study.  I can use functions of the treatment variables as instruments in these three studies because they do not 

fully stratify treatment (see Appendix).  The original studies clearly establish exogeneity of their treatment variables, 

and I am able to verify this using other baseline characteristics in the data.  Results available on request. 



25 

 

(2014) study shows the most similar results.  An applicant benefits from being extroverted.  

Extroverted applicants receive 3.3 percentage points more callbacks.  The spillovers coefficient is 

also positive.  If all other experimental applicants list themselves as being extroverted, the original 

applicant receives 4.5 percentage points more callbacks.  This spillover effect is statistically 

significant at the 5% level.  Four other studies show statistically insignificant coefficients but with 

point estimates indicating positive and reasonably large spillovers.  In Lahey (2008), Oreopoulos 

(2011), Phillips (2015), and the housing study the own applicant and other applicant coefficients 

have the same sign, indicating positive though statistically insignificant point estimates for 

spillovers.  Many statistically insignificant but economically meaningful estimates are not 

surprising given limited statistical power at the level of the individual study.  Booth, et. al. (2011) 

provides the one exception to positive spillovers with own applicant and other applicant coefficients 

of opposite sign, though the estimated spillovers are very small.  Altogether, the reduced form 

framework yields point estimates indicating positive spillovers in 6 of 7 studies with 2 of 7 showing 

statistically significant positive spillovers at the level of the individual study.  Pooling results from 

individual studies provides strong evidence of positive spillovers on average. 

 I also estimate spillovers using instrumental variables, which allows me to generate 

comparable estimates across studies.  Table 5 shows the results of implementing the IV framework 

of equations (7) and (8).  I instrument the callback rate to other applicants with the average of the 

quality variable for other applicants.  Pooling across all 7 studies yields a coefficient of 0.31.  

Improving the quality of other applicants such that they move from none getting callbacks to all 

getting callbacks leads the original applicant to receive 0.31 callbacks.  The positive coefficient 

indicates positive spillovers, and the magnitude of 0.31 indicates spillovers about one third of the 

direct effect on the applicant actually listing the characteristic.  This spillovers coefficient has a 

standard error of 0.09, and a 95% confidence interval from 0.13 to 0.49.  In the IV estimation, 
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Bertrand and Mullainathan (2004), Eriksson and Rooth (2014), and Phillips (2015) show larger and 

statistically significant coefficients.  Data from Lahey (2008), Oreopoulos (2011), and the housing 

study generate positive but smaller and statistically insignificant estimates.  Meanwhile the results 

from Booth, et. al. (2011) provide a negative but small coefficient.  In the full sample, spillovers are 

large and positive. 

 These results provide the most pertinent information on spillovers for the literature on racial 

discrimination.  I find spillovers using a wide range of variables including age, extroversion, name, 

and neighborhood income.  To gain sufficient statistical power, I average spillovers across these 

different contexts.  If several existing experiments provided data in which race was independently 

assigned, I could apply the same identification strategy to measure applicant pool effects specific to 

race.  However, the vast majority of existing studies of racial discrimination use stratified designs.  

In theory, a researcher could conduct a new experiment independently assigning race, but spillover 

effects tend to be smaller than direct effects, requiring large samples to detect.  Random 

independent assignment of treatment also generates far less variation in group composition than 

individual characteristics, which makes standard errors for spillover effects large.  A housing study 

using the methodology I employ above to measure racial spillovers would require about 100,000 

fictional applications.15  An alternative design could indirectly measure spillovers by using only 

applications with black names and randomly selecting vacancies to receive either 1 or 4 

applications.  Such a study could not separately identify spillovers from quantity versus quality of 

                                                 
15 The main effect of race in the housing study is -0.053 (see below), leading to an expected spillover effect one-third of 

that magnitude: -0.017.  The actual data provide an estimate of the standard error: restricting the housing experiment to 

the portion using independent assignment of treatment and 4 applications per landlord, there are 456 observations with a 

standard error on the spillover effect of 0.089.  Thus, the required sample is 456 ∗ (
2.8∗0.089

0.017
)

2

= 97,986.  A carefully 

constructed experiment might maximize variation in the composition of the applicant pool rather than independently 

assigning treatment.  Simulations suggest such a design can reduce the required sample size to 76,266. 
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other applicants but would require a sample closer to 20,000.16  Even that value exceeds sample 

sizes in nearly all correspondence studies, and such an experiment is beyond the scope of the 

present study.  A cautious experimenter would thus be well-served by judging the importance of 

spillovers using currently available data.  In 7 experiments spanning 15 years, 4 countries, and 

various types of labor and housing markets, I find evidence of large, positive spillovers on average. 

4.5. Applicant Pool Size and Plausible Magnitudes of Spillovers 

Could a few experimental applicants affect real-world applicant pools enough to generate 

spillovers? Employers likely respond to the quality of the entire pool, but I can only observe and 

measure the average quality of a subset of fictional applicants.  More generally, the size of the 

applicant pool could matter if a large pool dilutes the effect of any one applicant on another.  The 

theory appendix formalizes this intuition.  In a context with positive spillovers driven by employer 

statistical learning, appendix equation (A.4) indicates that the spillover coefficient will decrease as 

the pool of non-experimental applicants increases.  Hence, the size of applicant pools may matter. 

 Existing studies indicate that applicant pools for relevant jobs range from a couple dozen to 

a couple hundred applicants.  Correspondence experiments use a wide variety of online job sites, 

and representative statistics on the number of applicants on these sites are difficult to obtain.  Some 

studies suggest quite small applicant pools.  Horton (forthcoming) reports that a sample of computer 

technical jobs posted on the online labor market oDesk receive only 17 applicants on average.  

Hoffman et. al. (2015) find a hiring rate of 19% for applications to a set of low-skilled service jobs.  

The inverse of the hiring rate, i.e. 5 applicants per job in this case, provides a rough measure of the 

applicant pool.  Behaghel et. al. (2015) finds that jobs hiring from French employment agencies 

                                                 
16 This study moves applicant pool composition half as much, comparing adding black applicants to nothing rather than 

black to white.  So, I would expect spillovers 1/6 of the main effect of race in the housing study, -0.053/6=0.008.  If I 

restrict the housing experiment to the portion with either 1 or 4 applications per landlord, there are 1,377 observations.  

A regression on a number of applications dummy yields a standard error of 0.011.  Thus, the required sample is 1377∗

(
2.8∗0.011

0.008
)

2

= 20,411. 
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interview at a rate of 0.10 per application and hire at a rate of 0.02, implying about 50 applicants per 

job. The data for the present study appears similar; applicants receive a positive response from 

employers with probability 0.15.  Hence, 50 applicants provides a useful benchmark. 

 In the theoretical model, a handful of fictional applicants can generate meaningful spillovers 

for jobs with reasonable applicant pools.  Consider appendix equation (A.5).  With a set of plausible 

parameters,17 this equation implies a direct effect of the applicant’s own characteristics, 𝛽, at about 

0.062.  With a pool of 50 applicants, the model implies spillovers onto other applicants of 0.018, or 

29% of the direct effect.  Spillovers range from 36% to 13% of the direct effect as the applicant 

pool increases from 25 to 200 ‘real’ applicants.  A simple model can rationalize spillovers similar to 

those observed empirically. 

5. The Magnitude of Bias from Spillovers 

5.1. Ideal Experiments to Measure Bias 

 Given the presence of spillovers, simple differences in callback rates calculated in stratified 

experiments will confound direct discrimination with changes in the applicant pool.  Measuring the 

magnitude of this bias directly will prove difficult.  Bias could be calculated by comparing racial 

name effects from two experiments, one with a stratified design and one without.  However, such an 

experiment would require a prohibitively large sample.  Sample sizes rise with the square of the 

minimum detectable effect.  Detecting even a large bias equal to 25% of the measured treatment 

effect would multiply the required sample by 16.   Also, comparing treatment effects across 

experiments requires interaction effects, which further increases the required sample.  While direct, 

measuring bias through an explicit experiment will prove underpowered or cost prohibitive. 

                                                 
17 Suppose that 𝜎(𝑇)𝑇 = 𝜇𝜎𝑇𝜔/2, 𝜎(𝑇)𝜔 = 𝜇𝜎𝑇𝜔/3, and 𝜇𝜎𝑇𝜔 = 1.  Beyond the parameter restrictions in the text, 

𝜎(𝑇)𝜔 < 𝜎(𝑇)𝑇 implies that treatment correlates more with another applicant’s treatment than with the other applicant’s 

unobservables.  This assumption pushes in the direction of smaller spillovers.  Finally, I then pick 𝜎𝑇
2 = 30 to match the 

direct treatment effect 𝛽 ≈0.06.  I assume 4 fictional applicants sent to each job. 
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5.2. Approximating Bias with Simple OVB Calculations 

Since additional experimentation is not practical, I quantify bias by pairing stronger 

assumptions with existing data.  In the analysis above, I have required that the empirical 

specifications in equations (5) and (6) be true insofar as the data meets typical reduced form 

assumptions about the instrument, e.g. exogeneity.  Measuring the magnitude of spillovers does not 

require strict assumptions about functional form.  However, measuring bias does require stronger 

assumptions.  I will not attempt to measure bias exactly based a claim of correct assumptions.  

Instead, consider a simple question: “Given the magnitude of measured spillovers, could a skeptical 

observer believe measures of discrimination in the literature include large bias?”  As argued 

formally by Banerjee, et. al. (2016), randomized experiments prove useful precisely because they 

provide evidence that can convince skeptical audiences with a variety of prior beliefs.  I show that 

an observer with a simple, plausible set of beliefs will infer large bias in estimates of discrimination 

when observing the magnitude of spillovers measured above. 

Suppose that the econometrician runs a stratified experiment but incorrectly specifies a 

simple difference model as in equation (4) above.  I will consider an observer who believes 

equations (5) and (6) from above, which include spillovers, represent the exact, true model of the 

world. An econometrician who estimates simple differences using data from a stratified experiment 

measures direct discrimination with bias equal to 𝛿𝛽.  An observer can measure this bias using two 

key assumptions embedded in a literal belief in equations (5) and (6).  First, spillovers follow a 

simple linear form.  Second, all variables spillover proportional to their direct effect.  Of course, 

these assumptions may be false.  The functional form of spillovers may not be linear, or different 

variables may not share the same spillover coefficient 𝛿.  Neighborhood income, age, and 

extroversion may generate positive spillovers at 1/3 the magnitude of the direct effect, but racially 

charged names may spillover at a higher fraction, lower fraction, or even negatively.  Simply 
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detecting spillovers does not require such assumptions, but measuring bias in existing estimates 

does require commitment to a functional form.  Thus, I consider an observer who holds simple 

beliefs in linear, proportional spillovers. 

Under these assumptions, an observer can calculate bias using the omitted variable bias 

(OVB) formula.  First, define a “stratification coefficient,” 𝛾1, measuring the link between applicant 

pool composition and treatment: 

𝑇̅(𝑖)𝑗 = 𝛾0 + 𝛾1𝑇𝑖𝑗 + 𝑣𝑖𝑗    (10) 

Then, bias can be approximated as: 

𝐵𝑖𝑎𝑠 = 𝛿𝛽(𝐾 − 1) ∗ 𝛾1 = [𝛿𝜓(𝐾 − 1)] ∗
𝛽

 𝜓
∗ 𝛾1 ≈ [𝛿𝜓(𝐾 − 1)] ∗

𝜃

 𝜓
∗ 𝛾1   (11) 

The first equality is the OVB formula applied to equations (4), (5), and (10).  The second equality 

replaces treatment spillovers, 𝛿𝛽(𝐾 − 1), which cannot be estimated due to the collinearity of 𝑇𝑖𝑗 

and 𝑇̅(𝑖)𝑗, with rescaled spillovers of the instrument.  The approximation at the end results from the 

fact that |𝜃| < |𝛽| in the presence of positive spillovers, which gives a conservative estimate of 

bias.  The final expression can be computed using four regression coefficients already estimated in 

this paper. 

5.3. Results 

Table 6 applies this framework to the various datasets.  The second column provides the 

calculations for Bertrand and Mullainathan (2004).  The instrument, neighborhood income, spills 

over with a coefficient of 0.046.   A 100% increase in the neighborhood income of other applicants 

increases the present applicant’s callback rate by 4.6 percentage points.  To obtain the spillovers 

coefficient for race rather than neighborhood income, we need to re-scale according to the ratio of 

the direct effects, 
𝜃

 𝜓
, as in equation (11).  The direct effect of living in a ‘good’ neighborhood, 𝜓, is 

2.9 percentage points.  The direct effect of a black-sounding name, 𝜃, is -3.1 percentage points.  
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Hence, the scaling ratio is −
0.031

0.029
, and the spillovers coefficient for black names can be 

approximated by −
0.031

0.029
∗ 0.046 = −0.049.  The stratification coefficient was already estimated in 

the fourth column of Table 1.  It is -0.39.  This value is between −
1

3
  and −1 because they send 

either 2 or 4 applications to each job.  Finally, the omitted variable bias formula calculates bias as: 

𝐵𝑖𝑎𝑠 ≈ [𝛿𝜓(𝐾 − 1)] ∗
𝜃

 𝜓
∗ 𝛾1 = 0.046 ∗ (−

0.031

0.029
) ∗ −0.39 = 0.019 

This coefficient implies that a simple difference in callback rates underestimates discrimination 

against black names by 1.9 percentage points, or 38% relative to the true effect of -0.050. 

 Approximating bias in all studies and pooling the estimates, I find evidence consistent with 

large biases on average.  The first column of Table 6 reports the pooled results.  Studies of 

stereotypically minority names report an average racial name penalty of 6 percentage points.  These 

values underestimate discrimination by 2 percentage points, on average, leading to average bias of 

19%.  This average value includes significant heterogeneity with 2 studies recording bias near 40%, 

1 study showing bias near the average, and 3 studies indicating small biases.  Calculating these 

values requires parametric assumptions that may fail.  But a reasonable observer with a simple 

model of the world may expect large bias in the presence of spillovers. 

5.4. Optimal Experimental Design: Simulating the Bias-Variance Tradeoff 

 The present results imply a tradeoff for the experimenter who wishes to estimate the direct 

treatment effect of an applicant characteristic separate from changes in applicant pool composition.  

Experimenters who use stratified designs to estimate the direct effect parameter, 𝛽, will instead 

measure a combination of direct and spillover effects, 𝛽 − 𝛿𝛽, and thus obtain a biased estimate.  

However, stratified designs are popular because they increase precision by ensuring balance of 

vacancy characteristics across treatment and control groups.  Suppose the experimenter wishes to 

minimize mean squared error (MSE) in the process of estimating 𝛽: 
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𝑀𝑆𝐸 = 𝐸 [(𝛽̂ − 𝛽)
2
] = (𝐸[𝛽̂] − 𝛽)

2
+ 𝐸 [(𝛽̂ − 𝛽)

2
] = 𝐵𝑖𝑎𝑠(𝛽̂)

2
+ 𝑉𝑎𝑟(𝛽̂) 

Stratified designs increase MSE due to bias but decrease MSE via efficiency gains.  Optimal 

experimental design depends on the magnitudes of these competing effects. 

I use the bias estimates described above and Monte Carlo simulations to test whether 

stratified designs generate sufficient efficiency gains to outweigh any bias.  An appendix provides 

the technical details.  Figure 1 shows the results, plotting the estimated ratio of mean squared error 

for non-stratified versus stratified designs.  In a sample of 1,237 vacancies equal to the original 

sample size in Bertrand and Mullainathan (2004), a non-stratified design generates MSE roughly 

1/6 of the stratified design.  The non-stratified design similarly outperforms a stratified design 

averaging over all available studies.  Stratification does provide greater efficiency benefits in small 

samples, and stratified designs become MSE-preferred for studies sampling fewer than 100 

vacancies.  However, reasonably powered studies, including all of the datasets I use, use samples 

much larger than 100 vacancies.  Stratified designs may still be preferred for small-scale initial 

pilots and small sample audit studies using real people as testers, but researchers should expect 

lower MSE from non-stratified designs at the sample sizes used in reasonably-powered, modern 

correspondence experiments.  The bias generated by stratifying appears to outweigh any potential 

efficiency gains. 

6. A Toolbox for Designing Experiments in the Presence of Spillovers 

 The results above suggest that correspondence experiments using stratified treatment can 

generate large spillovers that bias estimates of discrimination.  The cautious researcher will thus 

consider alternative strategies for experimental design.  Moving from most to least robust in 

addressing spillovers, these strategies include sending one application to each vacancy or multiple 

applications without stratifying, using a non-stratified sub-sample to bound bias, and ex-post 

approximating bias using the OVB formula. 
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6.1. Sending One Application per Vacancy or Multiple Applications without Stratifying 

 The simplest and most robust response to spillovers is to send one application per vacancy 

or send multiple applications while independently assigning the treatment to each application.  As 

discussed above, these strategies alleviate the bias from spillovers identified in this paper.  Both of 

these options will impose a loss of statistical precision, necessitating a larger sample size.  Sending 

only one application per vacancy will also incur a large time cost.  Hence, switching to a non-

stratified design with multiple applications per vacancy will likely be the most cost-effective choice 

if the only concern is spillovers across applicants.  However, sending multiple applications to a job 

can cause other problems, such as increasing the likelihood of detection by the employer (e.g. 

Weichselbaumer, 2014), which should be considered depending on the context.   

6.2. Bounding Discrimination by Measuring Spillovers in a Sub-Sample Experiment 

 In some cases, experimenters may already have data from a stratified experiment which 

would be costly to replicate.  In this context, the experimenter can measure spillovers rigorously by 

adding a sub-sample in which some vacancies receive stratified treatment assignment and others 

receive independent treatment assignment (or one application).  The researcher can then bound 

estimates of discrimination in the larger stratified sample with this measure of spillovers.  This 

bounding exercise will typically require a large sample to be informative. 

Returning to the notation of equations (4) and (5), suppose the researcher has an estimate of 

discrimination from a stratified experiment, 𝛽(1 − 𝛿)̂ , that potentially confounds direct 

discrimination and spillovers from applicant pool composition.  However, the researcher has also 

conducted an auxiliary experiment on a separate sample within which she randomly assigns 

vacancies to stratified or independent treatments.  The researcher then estimates: 

𝑌𝑖𝑗 = 𝛼 + 𝜃𝑇𝑖𝑗 + 𝜉𝐼𝑗 + 𝜔𝐼𝑗 ∗ 𝑇𝑖𝑗 + 𝑣𝑖𝑗    (12) 
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where 𝐼𝑗 is a dummy for vacancies with treatment assigned independently, i.e. not stratified.   The 

interaction coefficient 𝜔̂ consistently estimates the difference between discrimination in the non-

stratified and stratified vacancies, which measures spillovers: 𝜔̂ ~ 𝑁(𝛽𝛿, 𝑉𝑎𝑟(𝜔̂)).  Adding this 

estimate to the full stratified sample estimate nets out spillovers, yielding a consistent estimate of 

discrimination only: 

𝛽(1 − 𝛿)̂ + 𝜔̂ ~ 𝑁 (𝛽, 𝑉𝑎𝑟(𝛽(1 − 𝛿)̂ ) + 𝑉𝑎𝑟(𝜔̂) + 2𝐶𝑜𝑣(𝛽(1 − 𝛿), 𝜔̂)) 

Consider how this method would work in the context of the housing experiment used in the 

analysis above.  As described in an appendix, I stratify randomization of a name treatment for some 

apartments but not others.  I can then measure and compare racial discrimination in these two sub-

experiments.  The first three columns of Table 7 show these results.  The sample using stratified 

randomization measures a statistically significant 6.7 percentage point decrease in positive response 

rates to messages with black names.  However, the non-stratified sample measures an effect of 3.1 

percentage points that is statistically insignificant and roughly half as large.  As shown in the final 

column, the difference between these two estimates in not statistically significant due to limited 

power. 

 This comparison of experimental designs can be used to bound treatment effects in a larger 

stratified experiment.  Suppose that the experimenter has already conducted an experiment with 

20,000 applications that stratifies a racial name treatment by vacancy.  Suppose this experiment 

finds that applicants with black-sounding names receive 7.0 percentage points fewer callbacks with 

a standard error of 0.6 percentage points.  Concerned about spillovers, the experimenter conducts a 

post-test on a new sample that randomly assigns some vacancies to stratified treatment and others to 

independent treatment.  This post-test yields the analysis shown in Table 7.  The interaction term in 

column (3) measures bias from spillovers to be 3.7 percentage points.  Adjusting for these 

spillovers, applicants with black names receive 3.3 percentage points fewer callbacks.  This 
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estimate has a standard error of √0.0062 + 0.0392 + 2 ∗ −0.00065 = 0.016 or 1.6 percentage 

points.18  Thus, the researcher would conclude that discrimination still exists, even accounting for 

spillovers.  The 95% confidence interval for the gap between white and black names would be 

3.3 ± 1.96 ∗ 1.6.  Such bounding exercises will be most informative for experiments with large 

samples, but they do provide a less drastic response than abandoning data from a large-scale, 

stratified experiment. 

6.3.  Ex-Post Approximating Bias Using the OVB Formula 

 If the researcher cannot implement a subsample with non-stratified treatment, he may use 

the method from the present paper exploiting a quality instrument and the omitted variable bias 

formula.  The method can be implemented exactly as in the present study.  It requires data on some 

ancillary characteristic from each application that is randomly assigned, not stratified, and valued by 

employers.  Spillovers can be measured as in equation (6).  If this method detects spillovers, then 

the researcher can adjust estimates for bias as in equation (11). 

However, adjusting for bias using instrumental variables requires additional, untestable 

assumptions that may not hold in any given sample.  Consider the housing experiment.  The OVB 

formula implies that standard experiments underestimate treatment effects in the presence of 

positive spillovers, as shown in Table 6.  However, the first three columns of Table 7 

experimentally measure bias from spillovers and find the opposite result; the stratified experiment 

appears to overestimate discrimination.  These conflicting results could reflect noise caused by low 

power.  However, it is possible that at least one assumption of equations (5) and (6) are violated.  

This model of the world assumes that the treatment variable and the instrumental variable spillover 

                                                 
18 The first term is the squared standard error of the treatment effect in the larger experiment. The second term of the 

variance is the squared standard error of the interaction term in column (3) of Table 7, and the final term is the 

covariance of the interaction coefficient and the treatment coefficient, which is computed as part of the regression in 

column (3). 
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in the same direction and proportional to their direct effect.  Since race is not fully stratified in the 

housing experiment, I can test this assumption directly, seeing whether spillovers by race are similar 

to those of the chosen instrument.  The final column of Table 7 provides some evidence to this end, 

showing a reduced form regression of a positive response dummy on the low credit/smoking 

instrument and racial name variables.  As above, having a low credit/smoking message on one’s 

application leads to a large reduction in callback rates of 27 percentage points.  Having that negative 

signal in the e-mail of all other applicants to the same apartment also hurts the present applicant, 

reducing callback rates by 4 percentage points.  In terms of point estimates, race spills over in the 

opposite direction.  Listing a black-sounding name on one’s own application reduces callbacks by 

3.9 percentage points, but having all other experimental applicants list a black name increases the 

callback rate by 3.9 percentage points.  These results are not statistically significant, and real 

differences cannot be separated from statistical noise.  However, the point estimates provide an 

illustration of how adjusting for spillovers using a parametric formulation could fail.  In general, 

racially-charged names may spillover differently from available instruments.  Thus, a cautious 

experimenter would need to take care when adjusting measured discrimination ex-post based on 

spillovers measured with an instrument.  In most cases, a sound experimental design will prove 

better than this technical fix. 

7. Conclusion 

 I document a simple but surprisingly common flaw in interpreting correspondence studies of 

discrimination.  Most studies use gaps in callback rates to measure how identical people will 

experience different levels of success in the same application process if they differ on only one 

attribute, e.g. race.  However, common experimental designs alter the composition of the applicant 

pool differently for applicants with and without the attribute of interest.  Matched pair and stratified 

experimental designs assign a fixed proportion of applicants from each vacancy to the treatment 
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group.  In such designs, differences in callback rates measure how employers will respond if we 

change one applicant’s name to signal a minority group and change a second competing applicant’s 

name to stop signaling the minority group.  If an employer’s response to one applicant depends on 

other applicants’ attributes, stratified designs will confound the direct effect of a trait with changes 

in the applicant pool. 

 Empirically, spillovers across applicants commonly occur.  I detect spillovers by exploiting 

random variation in the quality of the applicant pool generated by the designs of several existing 

correspondence experiments.  I test whether one applicant’s response rate changes when the 

experiment randomly assigns another applicant to have higher quality.  Across seven studies, I find 

strong evidence of positive spillovers; on average, giving one applicant a high quality attribute 

raises the callback rate to other applicants to the same job by 31% of the effect on the original 

applicant.  When I use one simple parameterization to remove applicant pool composition effects, 

measured discrimination based on the applicant’s name increases by 19%. 

 The sensitivity of measured discrimination to spillovers complicates efforts to interpret 

existing correspondence studies.  Most researchers interpret correspondence experiments as direct 

discrimination against an individual’s attribute rather than the effect of changing the composition of 

the applicant pool.  A clearer interpretation would recognize that differences in callback rates 

combine the response of an employer to the applicant’s credentials and the credentials of the 

applicant pool overall.  Spillovers also make comparisons between studies challenging.  For 

example, Bertrand and Mullainathan (2004) and Booth, et. al. (2011) both study racial 

discrimination using employer responses to names.  As shown above, the former study fully 

stratifies treatment, shows signs of significant spillovers, and thus combines the direct effect of 

discrimination with applicant pool composition effects.  The latter study only partially stratifies 

treatment, shows no signs of spillovers, and thus measures only the direct effect of discrimination.  
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A researcher wishing to summarize the literature or compare studies will face a significant 

challenge because many apparently similar studies do not estimate the same parameter. 

 The present problem has a simple solution.  Researchers designing correspondence 

experiments can abandon stratified experimental designs, including the matched pairs design.  

Stratifying does create noticeable efficiency gains, but a risk of very large bias makes non-stratified 

designs better on average.  Using simple Monte Carlo simulations, I find that the bias caused by 

stratified experimental designs in the presence of spillovers outweighs any efficiency gains.  While 

efficiency gains become more important in very small samples, I estimate that studies applying to as 

few as 100 vacancies will be better served by non-stratified designs.  I also find the bias caused by 

stratification to be unpredictable.  Overall, a researcher wishing to estimate how employers respond 

to two otherwise identical individuals engaging in an identical job search should avoid the 

stratified/matched pairs design.   

Several feasible options remain.  The experimenter can still send multiple applications to 

each vacancy while independently assigning treatment for each applicant (e.g. Kroft, et. al. 2013) or 

simply send one application to each vacancy (e.g. Ewens, et. al. 2014).  Alternatively, researchers 

can test for and bound spillover bias in an existing dataset by implementing a smaller sample post-

test that compares estimates from stratified and non-stratified designs.  These options will generally 

perform better than ex-post bias adjustment based on simple parametric assumptions that may not 

generally hold.  Overall, spillovers across applicants significantly complicate the interpretation and 

comparison of correspondence studies, but such problems can be fixed in future studies with 

straightforward changes to experimental design.   
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Figure 1: Mean Squared Error in Non-Stratified vs. Stratified Designs 

 

Notes: See appendix for details on MSE calculations. 
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Table 1. Spillovers in Bertrand and Mullainathan (2004) 

 (1) (2) (3) (4) (5) (6) 

       

 First Stage 

Baseline 

Balance 

Stratification 

Test 

Stratification 

Test 

Spillovers 

(Reduced 

Form) 

Spillovers

(IV) 

Dependent Variable: 

Fraction of 

Other 

Applications 

Receiving 

Callbacks 

Log Median 

Income of 

Applicant's 

Neighborhood 

Log Median 

Income of 

Applicant's 

Neighborhood 

Fraction of 

Other 

Applications 

with Black 

Names 

Callback 

Dummy 

Callback 

Dummy 

Log Median Income - Mean 

Over Other Applications 

0.048** -- -0.005 -- 0.046** -- 

(0.021)  (0.033)  (0.023)  

Log Median Income of 

Employer's Neighborhood 

-- -0.005 -- -- -- -- 

  (0.017)     

Black name 
-- -- -- -0.39*** -- -- 

   (0.004)   

Log Median Income 0.019** -- -- -- 0.029*** 0.011 

 (0.009)    (0.011) (0.015) 

Callback – Fraction of Other 

Applications 

-- -- -- -- -- 0.95*** 

      (0.27) 

Control Variables YES YES YES YES YES YES 

Sample size 4,546 1,760 4,546 4,546 4,546 4,546 

Statistical significance at the 1, 5, and 10 percent levels is denoted by ***, **, and * respectively.  Applicant controls include 

a city dummy, sales job dummy, and a dummy for only 2 applications sent.  Standard errors are clustered at the job vacancy 

level.  The second column has a smaller sample because some employer neighborhood income is missing. 
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Table 2. Spillovers in Several Correspondence Studies, First Stage 

Study Pooled 

Bertrand and 

Mullainathan 

Booth, et. 

al. 

Eriksson 

and Rooth Lahey Oreopoulos Phillips Housing 

Estimation Method: OLS OLS OLS OLS OLS OLS OLS OLS 

Dependent Variable: 

Callback 

Rate to 

Other 

Applicants 

Callback 

Rate to 

Other 

Applicants 

Callback 

Rate to 

Other 

Applicants 

Callback 

Rate to 

Other 

Applicants 

Callback 

Rate to 

Other 

Applicants 

Callback 

Rate to 

Other 

Applicants 

Callback 

Rate to 

Other 

Applicants 

Callback 

Rate to 

Other 

Applicants 

Instrument – Others 0.024*** 0.048** 0.097** 0.055*** -0.0009*** 0.067** -0.0031** -0.30*** 

(0.003) (0.021) (0.43) (0.017) (0.0003) (0.031) (0.0015) (0.04) 

Instrument – Own  0.004*** 0.019** -0.00 0.022** -0.0002 0.005 -0.0008 -0.04 

 (0.002) (0.009) (0.02) (0.009) (0.0003) (0.010) (0.0005) (0.03) 

First Stage F Statistic 76.8 5.4 4.9 11.1 7.6 4.6 4.2 72.7 

Cragg-Donald Statistic 142.6 10.5 11.6 21.1 10.6 13.6 10.6 79.6 

Stock-Yogo 10% Cutoff 16.4 16.38 16.38 16.38 16.38 16.38 16.38 16.38 

Stock-Yogo 15% Cutoff 9.0 8.96 8.96 8.96 8.96 8.96 8.96 8.96 

Control Variables YES YES YES YES YES YES YES   YES 

Control Group Callback 

Rate 0.15 0.10 0.35 0.28 0.06 0.14 0.21   0.46 

Sample size 40,947 4,546 4,210 6,873 7,932 12,906 2,260   2,681 

Statistical significance at the 1, 5, and 10 percent levels is denoted by ***, **, and * respectively.  Applicant controls and instruments used 

are listed in Appendix Table 1.  Pooled column includes study dummies, specifies the instrument as a z-score, and sets control variables 

from other studies to a value of zero.  Standard errors are clustered at the job vacancy level. 
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Table 3. Spillovers in Several Correspondence Studies, Baseline Balance 

 

Study 

Bertrand and 

Mullainathan 

Booth, et. 

al. 

Eriksson and 

Rooth Lahey Oreopoulos Phillips Housing 

Estimation Method: OLS -- OLS -- -- OLS OLS 

Dependent Variable: 

Minority 

Name 

Dummy 

-- 

Minority 

Name 

Dummy 

-- -- 

Minority 

Name 

Dummy 

Minority 

Name 

Dummy 

Instrument – Others -0.001 -- 0.002 -- -- -0.0014 0.001 

(0.025)  (0.011)   (0.0011) (0.039) 

Control Variables YES -- YES -- -- YES YES 

Control Group Callback Rate 0.10 -- 0.28 -- -- 0.21 0.46 

Sample size 4,546 -- 6,873 -- -- 2,260 2,681 

Statistical significance at the 1, 5, and 10 percent levels is denoted by ***, **, and * respectively.  Applicant controls and 

instruments used are listed in Appendix Table 1.  Standard errors are clustered at the job vacancy level.  I exclude Lahey (2008), 

Booth et al (2011) and Oreopoulos (2011) from this table for lack of a minority name variable or because the instrument I use is 

exogenous only conditional on the minority name variable.  In all three cases, my instrument is derived from the original study’s 

treatment variable for which exogeneity is clearly established in the original study 
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Table 4. Spillovers in Several Correspondence Studies, Reduced Form 

Study Pooled 

Bertrand and 

Mullainathan 

Booth, et. 

al. 

Eriksson 

and Rooth Lahey Oreopoulos Phillips Housing 

Estimation Method: OLS OLS OLS OLS OLS OLS OLS OLS 

Dependent Variable: 

Callback 

Dummy 

Callback 

Dummy 

Callback 

Dummy 

Callback 

Dummy 

Callback 

Dummy 

Callback 

Dummy 

Callback 

Dummy 

Callback 

Dummy 

Instrument – Others 0.007*** 0.046** -0.003 0.045** -0.0002 0.011 -0.0023 -0.043 

(0.003) (0.023) (0.044) (0.017) (0.0003) (0.029) (0.0016) (0.041) 

Instrument – Own  0.020*** 0.029*** 0.10*** 0.033*** -0.0009*** 0.057*** -0.0016** -0.273*** 

 (0.002) (0.011) (0.02) (0.010) (0.0003) (0.017) (0.0007) (0.029) 

Others/Own 0.36 1.59 -0.03 1.46 0.11 0.19 1.44 0.16 

  Joint hypothesis test of no spillovers for all studies: 𝐹 = 2.03, 𝑝 = 0.05 

Control Variables YES YES YES YES YES YES YES YES 

Control Group 

Callback Rate 0.15 0.10 0.35 0.28 0.06 0.14 0.21 0.46 

Sample size 40,947 4,546 4,210 6,873 7,932 12,906 2,260 2,220 

Statistical significance at the 1, 5, and 10 percent levels is denoted by ***, **, and * respectively.  Applicant controls and instruments 

used are listed in Appendix Table 1.  The pooled column includes study dummies, specifies the instrument as a z-score, and sets control 

variables from other studies to a value of zero.  Standard errors are clustered at the job vacancy level.  A fully-interacted specification on 

the pooled sample replicates the individual study results and forms the basis of the joint test of whether the study-specific spillover 

coefficients in the first row are all zero. 
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Table 5. Spillovers in Several Correspondence Studies, 2SLS 

Study Pooled 

Bertrand and 

Mullainathan 

Booth, et. 

al. 

Eriksson 

and Rooth Lahey Oreopoulos Phillips Housing 

Estimation Method: 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 

Dependent Variable: 

Callback 

Dummy 

Callback 

Dummy 

Callback 

Dummy 

Callback 

Dummy 

Callback 

Dummy 

Callback 

Dummy 

Callback 

Dummy 

Callback 

Dummy 

Callback Rate to Other 

Applicants 
0.31*** 0.95*** -0.04 0.80*** 0.17 0.16 0.75*** 0.14 

(0.09) (0.27) (0.47) (0.17) (0.30) (0.37) (0.25) (0.13) 

Instrument – Own  0.019*** 0.011 0.10*** 0.015 -0.0009*** 0.056*** -0.001 -0.27*** 

 (0.002) (0.015) (0.02) (0.013) (0.0003) (0.016) (0.001) (0.03) 

  Joint hypothesis test of no spillovers for all studies: 𝜒2 = 44.40, 𝑝 = 0.00 

Control Variables YES YES YES YES YES YES YES YES 

Control Group  

Callback Rate 0.15 0.10 0.35 0.28 0.06 0.14 0.21 0.46 

Sample size 40,947 4,546 4,210 6,873 7,932 12,906 2,260 2,220 

Statistical significance at the 1, 5, and 10 percent levels is denoted by ***, **, and * respectively.  Applicant controls and instruments used are 

listed in Appendix Table 1.  Pooled column includes study dummies, specifies the instrument as a z-score, and sets control variables from 

other studies to a value of zero.  Standard errors are clustered at the job vacancy level. A fully-interacted specification on the pooled sample 

replicates the individual study results and forms the basis of the joint test of whether the study-specific spillover coefficients in the first row 

are all zero. 
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Table 6. Approximating the Magnitude of Bias in Discrimination Estimates 

 

Study Pooled 
Bertrand and 

Mullainathan 

Booth, et. 

al. 

Eriksson 

and Rooth 
Oreopoulos Phillips Housing 

Simple Treatment Effect - Instrument 0.072 0.029 0.100 0.033 0.057 0.002 0.273 

Spillovers Coefficient - Instrument 0.024 0.046 -0.003 0.045 0.011 0.002 0.043 

Simple Treatment Effect - Race -0.060 -0.031 -0.086 -0.106 -0.032 -0.061 -0.053 

Rescaled Spillovers Coefficient - Race -0.048 -0.049 0.003 -0.145 -0.006 -0.088 -0.008 

Stratification Coefficient -0.34 -0.39 -0.27 -0.50 -0.28 -0.25 -0.35 

Bias 0.020 0.019 -0.001 0.072 0.002 0.022 0.003 

% Bias -19% -38% 1% -41% -5% -26% -5% 

Sample size 40,947 4,546 4,210 6,873 12,906 2,260 2,220 

I complete all analysis within studies except the first column which averages across studies weighting by the square root of the sample size.  The treatment 

and spillover coefficients for the instrument come from Table 4.  For the simple treatment effect for race, I regress a callback dummy on a minority name 

dummy and study-specific control variables.  The re-scaled spillovers coefficient equals the instrument's spillovers coefficient multiplied by the ratio of the 

direct effects for race and the instrument.  For the stratification coefficient, I regress the proportion of other applicants with a minority name on a minority 

name treatment dummy and study-specific controls.  Bias equals the race spillovers coefficient multiplied by the stratification coefficient.  I exclude Lahey 

(2008) because it does not include a minority name treatment. 
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Table 7. Regressions Related to Toolbox 

Dataset: Housing Housing Housing Housing 

Estimation Method: OLS OLS OLS OLS 

Dependent Variable: 

Callback 

Dummy 

Callback 

Dummy 

Callback 

Dummy 

Callback 

Dummy 

Black Name -0.068*** -0.031 -0.068*** -0.039 

 (0.026) (0.029) (0.026) (0.025) 

Not Stratified -- -- -0.020 -- 

    (0.033)  

Black X Not Stratified -- -- 0.037 -- 

    (0.039)  

Black Name – Others  -- -- -- 0.039 

    (0.030) 

Bad Credit/Smoker -- -- -- -0.274*** 

    (0.029) 

Bad Credit/Smoker – Others  -- -- -- -0.041 

    (0.041) 

Control Variables YES YES YES YES 

Control Group Callback Rate 0.43 0.43 0.43 0.43 

Sample 

Stratified and 

At Least 2 

Apps 

Non-Stratified 

and At Least 2 

Apps 

At Least 2 

Apps 

At Least 2 

Apps 

Sample size 1,122 1,098 2,220 2,220 

 

Statistical significance at the 1, 5, and 10 percent levels is denoted by ***, **, and * respectively.  Control variables 

include a dummy for the second experimental phase in which more applications were sent per vacancy on average and a 

set of dummies for the number of applications sent.  Standard errors are clustered at the apartment  vacancy level. 

 

 

 

 

 

  



50 

 

For Online Publication Only 

 

Appendix 1. A Simple Formal Theory of Spillovers across Applicants 

Suppose that an employer observes applicants for vacancy 𝑗 and decides which applicants to 

interview.  The employer values applicant 𝑖 at value 𝑃𝑖𝑗: 

𝑃𝑖𝑗 = 𝜇𝑇𝑖𝑗 + 𝜔𝑖𝑗 + 𝑢𝑖𝑗 

𝑃𝑖𝑗 measures productivity of the worker as well as any preference the employer has for not hiring a 

particular worker, i.e. due to taste-based discrimination.  This summary measure of preference 

depends on an observable characteristic 𝑇𝑖𝑗.  Productivity also depends on a characteristic observed 

by the employer but not the econometrician 𝑢𝑖𝑗 and a characteristic 𝜔𝑖𝑗 observed by neither the 

employer nor the econometrician.  For simplicity, suppose that 𝑢𝑖𝑗 is a random, job-applicant 

specific shock uncorrelated with all other variables. 

The employer receives a batch of 𝐾 applications and observes characteristics for all 

applicants.  𝐾𝑅 of the applications come from real applicants and 𝐾𝐹 = 𝐾 − 𝐾𝑅 fictional applicants 

come from the experiment.  Define 𝑻𝒋 and 𝒖𝒋 as vectors containing characteristics observed by the 

employer for all applicants and 𝝎𝒋 as a vector of unobserved characteristics.  These vectors can be 

split into the characteristics of person 𝑖 and the characteristics of other applicants to job 𝑗, i.e. 𝑻𝒋 =

[𝑇𝑖𝑗 , 𝑻(𝒊)𝒋].  Given this information, the employer forms expectations regarding the value of each 

applicant: 

𝐸[𝑃𝑖𝑗|𝑻𝒋, 𝒖𝒋] = 𝜇𝑇𝑖𝑗 + 𝐸[𝜔𝑖𝑗|𝑻𝒋] + 𝑢𝑖𝑗   (𝐴. 1) 

The employer directly observes the applicant’s own characteristics 𝑇𝑖𝑗 and 𝑢𝑖𝑗 and includes them in 

the evaluation.  The employer also infers an expected value of the unobserved characteristic, 𝜔𝑖𝑗, 

based on observed information.  For concreteness, the employer believes that 𝝎𝒋 and 𝑻𝒋 have a joint 

normal distribution with the following moments:  

𝑉𝑎𝑟(𝜔𝑖𝑗) = 𝜎𝜔
2    ∀ 𝑖 

𝑉𝑎𝑟(𝑇𝑖𝑗) = 𝜎𝑇
2    ∀ 𝑖 

𝐶𝑜𝑣(𝑇𝑘𝑗 , 𝑇𝑖𝑗) = 𝜎(𝑇)𝑇    ∀ 𝑘 ≠ 𝑖 

𝐶𝑜𝑣(𝑇𝑖𝑗 , 𝜔𝑖𝑗) = 𝜇𝜎𝑇𝜔    ∀ 𝑖 

𝐶𝑜𝑣(𝑇𝑘𝑗 , 𝜔𝑖𝑗) = 𝜇𝜎(𝑇)𝜔    ∀ 𝑘 ≠ 𝑖 
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Assume all 𝜎 parameters to be strictly positive.  The inclusion of 𝜇 in the last two definitions 

implies that a productive treatment (𝜇 > 0) such as college completion implies more productive 

unobservables.  I will also make the mild assumptions that applicant characteristics are not perfectly 

correlated (𝜎𝑇
2 > 𝜎(𝑇)𝑇) and that an applicant’s own characteristic more highly correlates with his 

own unobserved productivity than do the characteristics of other applicants (𝜎𝑇𝜔 > 𝜎(𝑇)𝜔). 

Given this setup, standard results for the normal distribution imply: 

𝐸[𝜔𝑖𝑗|𝑻𝒋] = 𝑐𝑠𝑡. + [

𝜇𝜎𝑇𝜔

𝜇𝜎(𝑇)𝜔

…
𝜇𝜎(𝑇)𝜔

]

′

[
 
 
 

𝜎𝑇
2 𝜎(𝑇)𝑇 … 𝜎(𝑇)𝑇

𝜎(𝑇)𝑇 𝜎𝑇
2 … 𝜎(𝑇)𝑇

… … … …
𝜎(𝑇)𝑇 𝜎(𝑇)𝑇 … 𝜎𝑇

2 ]
 
 
 
−1

𝑻𝒋 

It can be shown that this is equivalent to: 

𝐸[𝜔𝑖𝑗|𝑻𝒋] = 𝜇Γ0Γ1𝑇𝑖𝑗 + 𝜇Γ0 [
𝜎(𝑇)𝜔

𝜎𝑇𝜔
𝜎𝑇

2 − 𝜎(𝑇)𝑇]∑ 𝑇𝑘𝑗

𝑘≠𝑖

+ 𝑐𝑠𝑡.   (𝐴. 2) 

where: 

Γ0 =
𝜎𝑇𝜔

[(𝐾 − 1)𝜎(𝑇)𝑇 + 𝜎𝑇
2][𝜎𝑇

2 − 𝜎(𝑇)𝑇]
> 0 

Γ1 = σT
2 + (K − 2)σ(𝑇)𝑇 −

𝜎(𝑇)𝜔

𝜎𝑇𝜔

(K − 1)σ(𝑇)𝑇 > 0 

Combining (A.1) and (A.2), the employer forecasts productivity to be: 

𝐸[𝑃𝑖𝑗|𝑻𝒋, 𝒖𝒋] = 𝜇(1 + Γ0Γ1)𝑇𝑖𝑗 + 𝜇Γ0 [
𝜎(𝑇)𝜔

𝜎𝑇𝜔
𝜎𝑇

2 − 𝜎(𝑇)𝑇]∑ 𝑇𝑘𝑗

𝑘≠𝑖

+ 𝑐𝑠𝑡.   (𝐴. 3) 

The coefficient on 𝑇𝑖𝑗 in equation (A.3) exhibits tasted-based (𝜇) and statistical (𝜇Γ0Γ1) 

discrimination by the employer.  Employers who see an applicant with a positive characteristic also 

infer that this person has more productive unobserved characteristics.   

More important for the present context, the employer’s evaluation of a given applicant also 

depends on other applicants through the coefficient on the characteristics of other applicants to the 

same job, ∑ 𝑇𝑘𝑗𝑘≠𝑖 .  Employers may look favorably on one applicant if other applicants signal 

productive characteristics.  These positive spillovers occur when [
𝜎(𝑇)𝜔

𝜎𝑇𝜔
𝜎𝑇

2 − 𝜎(𝑇)𝑇] is positive, i.e. 

the observed characteristics of the applicant pool provide information about another applicant’s 

unobserved characteristics (𝜎(𝑇)𝜔 > 0) beyond what can already be known from that applicant’s 

observable traits (−𝜎(𝑇)𝑇).    
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 Recall the example of a racial name treatment.  A prejudiced employer wishes to avoid 

applicants who are black, indicated by 𝜔𝑖𝑗, but can only observe a black-sounding name treatment, 

𝑇𝑖𝑗.  Suppose that job postings that attract one obviously black applicant tend to attract other black 

applicants with neutral names.  Then, the employer will gain information about whether one 

applicant is black from the name of another applicant, 𝜎(𝑇)𝜔 > 0.  Another applicant with an 

obviously black name may change the employer’s opinion of other applicants with observed but 

less informative names.  

 To take this model to the data, I make three adjustments.  First, I cannot observe real 

applicants, only the 𝐾𝐹 fictional experimental applicants and their data ∑ 𝑇𝑘𝑗𝑘∈𝐹,𝑘≠𝑖 . 

𝐸[𝑃𝑖𝑗|𝑻𝒋, 𝒖𝒋] = 𝜇(1 + Γ0Γ1)𝑇𝑖𝑗 + 𝜇Γ0 [
𝜎(𝑇)𝜔

𝜎𝑇𝜔

𝜎𝑇
2 − 𝜎(𝑇)𝑇] ∑ 𝑇𝑘𝑗

𝑘∈𝐹,𝑘≠𝑖

+ 𝑢𝑖𝑗 + 𝑐𝑠𝑡.  (𝐴. 4. ) 

The experiment balances the contribution of real applicants to pool quality, ∑ 𝑇𝑘𝑗𝑘∈𝑅,𝑘≠𝑖 , so this 

portion of ∑ 𝑇𝑘𝑗𝑘≠𝑖  can be grouped safely into the constant when estimating differences in means.  

Estimating (𝐴. 4. ) estimates the same parameters as (𝐴. 3. ).  Hence, in the main text I suppress any 

indication of only using fake applications.  However, the intensity of spillovers does depend 

separately on the number of real applicants.  Provided the employer believes that 𝑇𝑖𝑗 is correlated 

across applicants to the same job, the denominator of Γ0 depends on the total number of applicants, 

𝐾, including real applicants.  Thus, Γ0 and the entire spillovers coefficient falls as the applicant pool 

rises.  Intuitively, a small number of fictional applicants will have difficulty affecting the 

employer’s assessment of the entire applicant pool when mixed with many real applicants.  In the 

main text, I provide some evidence that applicant pools are sufficiently small to generate 

empirically important informational spillovers in this model. 

 Second, I estimate all models using the mean rather than the sum of applicant pool 

characteristics: 

𝐸[𝑃𝑖𝑗|𝑻𝒋, 𝒖𝒋] = 𝜇(1 + Γ0Γ1)𝑇𝑖𝑗 + 𝜇Γ0 [
𝜎(𝑇)𝜔

𝜎𝑇𝜔

𝜎𝑇
2 − 𝜎(𝑇)𝑇] (𝐾 − 1)𝑇̅(𝑖)𝑗 + 𝑢𝑖𝑗 + 𝑐𝑠𝑡.    (𝐴. 5. ) 

Studies sometimes non-randomly vary the number of applications sent to a particular vacancy.  

Using the mean rather than a sum ensures that I do not identify spillovers off non-random variation 

in the number of applications.  Means can also be more easily interpreted.  A prior version of this 

paper used sums while controlling for the number of applications with very similar results.    
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 Third, in the data we observe interview requests rather than expected productivity.  Suppose 

that an employer faces a constant cost 𝑐 of interviewing an applicant. Define 𝑌𝑖𝑗 as an indicator of 

whether employer 𝑗 requests an interview with applicant 𝑖.  If the employer interviews any applicant 

demonstrating positive expected net benefits,19 the probability of observing a callback is: 

Pr[𝑌𝑖𝑗 = 1|𝑻𝒋] = Pr [ 𝛼̃ + 𝜇(1 + Γ0Γ1)𝑇𝑖𝑗 + 𝜇Γ0 [
𝜎(𝑇)𝜔

𝜎𝑇𝜔
𝜎𝑇

2 − 𝜎(𝑇)𝑇] (𝐾 − 1)𝑇̅(𝑖)𝑗 + 𝑢𝑖𝑗 ≥ 𝑐] 

If 𝑢𝑖𝑗 has a symmetric distribution 𝐹(⋅), then 

Pr[𝑌𝑖𝑗 = 1|𝑻𝒋] = 𝐹[𝛼 + 𝛽𝑇𝑖𝑗 + 𝛿𝛽(𝐾 − 1)𝑇̅(𝑖)𝑗]       (𝐴. 6) 

where 𝛽 = 𝜇(1 + Γ0Γ1), 𝛼 =  𝛼̃ − 𝑐, and 𝛿 =
Γ0

1+Γ0Γ1
[
𝜎(𝑇)𝜔

𝜎𝑇𝜔
𝜎𝑇

2 − 𝜎(𝑇)𝑇].  Note that equation (A.6) 

corresponds to the reduced form empirical model in equations (5) and (6) if 𝐹[⋅] is linear.  The 

coefficient on the observed characteristic measures a combination of taste-based and statistical 

discrimination.  The coefficient on average characteristics of other applicants measures the strength 

of spillovers.  Even in a very simple model, the tendency of employers to fully use all available 

information can generate positive spillovers across applicants. 

 Negative spillovers can also be generated if employers face capacity constraints.  In the 

basic model, the employer faces no congestion.  The interviewing cost is constant; thus the only 

interaction between applicants is informational.  If employers instead face increasing costs of 

interviewing the marginal applicant, interview space becomes scarce and applicants will compete 

based on their characteristics.  For concreteness, suppose that marginal costs rise very quickly such 

that the employer schedules at most one interview.20  In addition to providing net positive benefits 

to the employer, an applicant must be the best applicant: 

𝛽𝑇𝑖𝑗 + 𝛿𝛽(𝐾 − 1)𝑇̅(𝑖)𝑗 + 𝑢𝑖𝑗 ≥ 𝛽𝑇𝑘𝑗 + 𝛿𝛽(𝐾 − 1)𝑇̅(𝑘)𝑗 + 𝑢𝑙𝑗    ∀  𝑘 ≠ 𝑖 

⇔ 𝛽(1 − 𝛿)(𝑇𝑖𝑗 − 𝑇𝑘𝑗) + 𝑢𝑖𝑗 ≥ 𝑢𝑘𝑗   ∀ 𝑘 ≠ 𝑖 

Applicants are in competition.  Improving 𝑘’s application will make 𝑖 less likely to be the best 

applicant, and applicant 𝑘 displaces applicant 𝑖.   

Thus, the overall probability of receiving a callback will depend on whether the negative 

displacement effect outweighs the positive information spillover.  Formally, the probability of 

obtaining a callback is 

                                                 
19 This implicitly models the employer as choosing between hiring the applicant and not hiring at all where not hiring 

has a value normalized to zero.  An identical but re-labelled model could allow the second option to be delaying hiring, 

hiring through an alternative source, or any other secondary option with a value not dependent on the data. 
20 Any number 𝑛 less than the total number of applicants gives similar comparative statics. 
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Pr[𝑌𝑖𝑗 = 1|𝑻𝒋] = 𝐹[𝛼 + 𝛽𝑇𝑖𝑗 + 𝛿𝛽(𝐾 − 1)𝑇̅(𝑖)𝑗]∏ Pr[𝛽(1 − 𝛿)(𝑇𝑖𝑗 − 𝑇𝑘𝑗) + 𝑢𝑖𝑗 ≥ 𝑢𝑘𝑗]𝑘≠𝑖  (𝐴.7) 

The effect of a second applicant on the original applicant depends on whether the positive 

information effect operating through the first term dominates the negative displacement effect in the 

second term.  Finally, note that equation (A.7) corresponds to equation (1) in the main text.  A 

simple model with correlated unobservable quality and congestion in interview schedules can 

rationalize either positive or negative spillovers across applicants.  

Appendix 2. Equivalence of Reduced Form and Instrumental Variables Specifications 

Consider the reduced form specification as in (6) where I have omitted 𝑋𝑖𝑗 for expositional 

simplicity. 

𝑌𝑖𝑗 = 𝛼 + 𝜓𝑍𝑖𝑗 + 𝛿𝜓(𝐾 − 1)𝑍̅(𝑖)𝑗 + 𝜖𝑖𝑗         (𝐴. 8) 

Summing over all 𝐾 applications to the same job: 

∑ 𝑌𝑖𝑗

𝑎𝑙𝑙 𝑘

= 𝛼 ∗ 𝐾 + 𝜓 ∑ 𝑍𝑖𝑗

𝑎𝑙𝑙 𝑘

+ 𝛿𝜓(𝐾 − 1) ∑ 𝑍𝑖𝑗

𝑎𝑙𝑙 𝑘

+ ∑ 𝜖𝑖𝑗

𝑎𝑙𝑙 𝑘

      (𝐴. 9) 

Subtracting (A.8) from (A.9) and re-arranging 

∑𝑌𝑖𝑗

𝑘≠𝑖

= 𝛼 ∗ (𝐾 − 1) + 𝛿𝜓(𝐾 − 1)𝑍𝑖𝑗 + 𝜓[1 + 𝛿(𝐾 − 2)]∑𝑍𝑖𝑗

𝑘≠𝑖

+ ∑𝜖𝑖𝑗

𝑘≠𝑖

      (𝐴. 10) 

Re-arranging: 

𝜓(𝐾 − 1)𝑍̅(𝑖)𝑗 = [
1

[1 + 𝛿(𝐾 − 2)]
] [∑𝑌𝑖𝑗

𝑘≠𝑖

− 𝛼 ∗ (𝐾 − 1) − 𝛿𝜓(𝐾 − 1)𝑍𝑖𝑗 − ∑𝜖𝑖𝑗

𝑘≠𝑖

] (𝐴. 11) 

Substituting (A.11) into (A.8) and grouping like terms: 

𝑌𝑖𝑗 = [𝛼 −
𝛿𝛼 ∗ (𝐾 − 1)

1 + 𝛿(𝐾 − 2)
] + 𝜓 [1 −

𝛿2(𝐾 − 1)

[1 + 𝛿(𝐾 − 2)]
] 𝑍𝑖𝑗 + [

𝛿(𝐾 − 1)

[1 + 𝛿(𝐾 − 2)]
] 𝑌̅𝑖𝑗

+ [𝜖𝑖𝑗 − [
𝛿

[1 + 𝛿(𝐾 − 2)]
]∑𝜖𝑖𝑗

𝑘≠𝑖

]        (𝐴. 12) 

Three features are worth noting.  First, (A.12) is identical to the instrumental variables specification 

defined in the main text with 𝛿𝐼𝑉 =
𝛿

[1+𝛿(𝐾−2)]
.  The original spillovers coefficient and the IV 

spillovers coefficient will have the same sign given the assumption that |𝛿| <
1

𝐾−1
, i.e. so long as 

direct effect of a characteristic on the individual holding that characteristic is greater than the 
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spillover effect on other applicants.  Given this assumption, the spillover coefficients in the reduced 

form and IV specifications test the same hypothesis.  Second, 𝑍̅(𝑖)𝑗 is a valid instrument for 𝑌̅𝑖𝑗 as 

long as it was exogenous in the original reduced form.  Third, the coefficient on 𝑍𝑖𝑗 will be of the 

appropriate sign but attenuated toward zero. 

Appendix 3. Data Description for Existing Studies 

Six other studies provide data which can be used to mirror the analysis of Bertrand and 

Mullainathan (2004).  Appendix Table 1 describes the relevant details of these datasets for the 

present study.  Booth, et. al. (2011) studies employer discrimination among Aboriginal, Anglo, 

Chinese, Italian, and Middle Eastern names in Australia.  For comparison with other studies, I will 

consider treatment in this study to be an Aboriginal, Chinese, or Middle Eastern name.  They 

partially stratify randomization of names, randomly choosing 4 out of the 5 categories for each 

vacancy.  Eriksson and Rooth (2014) focus on discrimination against the long-term unemployed in 

Sweden, but their experiment includes a name treatment that they indicate will be used in other 

studies.  Each job receives three applications with different name treatments: male native name, 

female native name, and foreign male name.  For comparison, I will consider the foreign name as 

the main treatment.  I exclude jobs receiving only 1 application (sent outside Stockholm and 

Gothenburg) as I cannot test for spillovers.  Lahey (2008) does not vary ethnicity of applicant 

names and focuses on discrimination based on age as signaled by high school graduation date for 

applicants in the US.  Each job receives two applications, and treatment is stratified less starkly, 

requiring only that the ages of the two applicants to the same job not be equal.  Again, I eliminate a 

small number of jobs to which only one application was sent.  Oreopoulos (2011) studies 

discrimination against high-skill job applicants in Toronto and Montreal listing immigrant names.  

He also studies the many sources of discrimination against immigrants by varying the location of 

education and experience for those with immigrant names.  To keep the analysis similar to other 

studies, I focus on the treatment effect measuring the difference between his “type 0” and “type 1” 

applications which differ only due to foreign names.  I include and control for his other treatments 

in my analysis but do not report the measured effects.  I eliminate a small number of vacancies 

which only receive one application.  I also include Phillips (2015).  This study does not yet have 

publicly available data, but I have access to the data and thus use it.  This study focuses on how 

low-wage employers in Washington, DC respond to the address listed on the job application but 

also includes a name treatment using the same assignment of “black names” as Bertrand and 

Mullainathan (2004).  Finally, I augment these existing studies with a dataset from an experiment I 
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conducted on discrimination in housing.  This study assigns white and black names to e-mail 

inquiries for apartments in Washington, DC.  The primary goal of this experiment was unrelated to 

the present paper; however, I was able to incorporate some treatments directly related to spillovers.  

I randomly vary both the number of applicants to each apartment and whether name assignment is 

stratified.  For the main analysis, I only consider apartments receiving more than one application.  

For greater detail on the first six studies, see the cited papers.  For greater detail on the housing 

study, see a full explanation of the experimental design in the next appendix.  Altogether, I can 

implement my empirical strategy using 7 different datasets spanning 15 years, 4 countries, and 

various types of housing and labor markets. 

 The empirical framework summarized in equations (6) through (8) requires that in each 

study I identify instrumental variables for the number of callbacks to other applications. Instruments 

must be assigned randomly but not stratified by job.  As shown in Appendix Table 1, each study 

provides at least one such instrument.21  In some studies, such instruments are easy to implement.  

Phillips (2015) randomly assigns work experience, age of applicant, and current unemployment 

duration independent of all other job and applicant characteristics.  Other studies require additional 

control variables.  For instance, Bertrand and Mullainathan (2004) assign addresses randomly 

conditional on the city of the job vacancy and female names randomly conditional on whether the 

job is a sales or administrative job.  Similarly, Eriksson and Rooth (2014), Oreopoulos (2011), and 

the new housing study each randomly assign a large number of variables conditional on similar 

occupational, location, and/or experiment phases dummies.  In some studies the treatment itself is 

the only instrument available.  Both Booth, et. al. (2011) and Lahey (2008) require that applicants to 

the same job have different values for the treatment but otherwise select treatment randomly from a 

set of potential values greater than the number of applicants per job.  Booth, et. al. (2011) randomly 

pick 4 out of 5 ethnicities to send to each job.  Lahey (2008) randomly picks 2 out of 5 ages to send 

to each job.  Thus, both studies set treatment randomly and only partially correlate treatment across 

applicants to the same job, which makes the treatment variable also a valid instrument.  Finally, for 

studies in which the number of applications per job can vary, I control for the number of 

applications sent to ensure that I identify spillovers off variation in the instrument 𝑍𝑖 rather than the 

number of applications, which is not set randomly except in the housing study.  Most importantly, 

                                                 
21 Some studies could not be included in my analysis for lack of an instrument (e.g. Arceo-Gomez and Campos-

Vazquez, 2014) 
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for each of the 7 studies listed I have at least one candidate instrument which can be used to 

implement the empirical strategy described above. 

 Careful attention to the details of each experiment’s design allows me to select exogenous 

and non-stratified instrument candidates; however, I also wish to select instruments that are 

important to employers.  As described above, I apply a LASSO estimator to equation (9) to select 

the instrument with the strongest relationship between the value of instrument and callbacks to that 

same application.  In Appendix Table 1, I list the selected instrument in italics.  The strongest 

instrument varies across studies.  In alphabetical order of the studies, the instruments are the log 

median household income of the applicant’s listed address, a dummy for having an Anglo name, a 

dummy for an extroverted personality, the age of the applicant, a dummy for listing the name 

“Carrie Martin,” the age of the applicant, and a dummy for including the statement “Just so you 

know, I am a smoker and my credit rating is below average” in the e-mail inquiry for housing.  

These variables have been identified empirically as important to employers.  In the above text, I will 

test whether changing the values of these instruments for one applicant spills over to other 

applicants. 

Appendix 4. Description of Housing Experiment 

 In addition to existing datasets, I occasionally make use of a correspondence experiment that 

I conducted in the housing market.  The housing market provides a useful contrast to the labor 

market as landlords’ ability to adjust the number or timing of apartments for rent may be less than 

employers’ ability to adjust the number or timing of job vacancies.  At the same time, housing 

markets involve a similar search process with one side of the market posting vacancies and the other 

side applying to these vacancies.  Thus, finding similar results in housing would suggest that 

positive spillovers are a general feature of search rather than just a feature of labor markets.  Finally, 

housing markets provide a convenient context in which to complete a correspondence experiment as 

in Hanson and Hawley (2011) and Ewens, et. al. (2014).  However, these previous studies have 

generally sent only one application per vacancy or have not made data publicly available.  As such, 

I make use of a new correspondence study of the housing market in Washington, DC.  This 

experiment was completed primarily for reasons unrelated to the present study but allows for some 

additional experimentation. 

 During May and June 2015, a research assistant applied to apartment vacancy listings from 

an online classified ad site.  Apartments were randomly chosen out of those listed within the 

previous 24 hours in the District of Columbia to which the experiment had not applied previously, 
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which were not obviously a scam, and which were monthly rentals.  For the purposes of a separate 

study, the sample focuses on housing for low-income individuals.  Apartments were restricted to 

those with rent below $1,500 per month and those that provided the location of the apartment.  

During the first half of the experiment, apartments were randomly selected to receive 1 or 2 

applications.  During the second half, this increased to 2 or 4 applications.  Altogether, the 

experimental sample includes 2,681 applications to 1,342 apartments. 

 An inquiry to a particular apartment included a randomly generated message largely using 

the same content as Hanson and Hawley (2011) and Ewens, et. al. (2014).  Appendix Figure 1 

displays an example of such a message as well as the general template.  Each e-mail includes a 

subject followed by a message consisting of a greeting, introductory statement including the 

applicant’s name, a request regarding the availability of the apartment, and a valediction finishing 

with the applicant’s name.  Names are chosen at random from the same list as Bertrand and 

Mullainathan (2004).  For comparison later, I randomly choose some apartments to have equal 

number of names of each race (i.e. stratified randomization) and other apartments to have the race 

of each name drawn independently.  As in Ewens, et. al. (2014) I also randomly and independently 

assign some applicants to include positive quality signals (professional employment, good 

references, and/or good credit) or negative signals (smoker and/or bad credit) and others to have no 

signal statement.  Given the focus on lower-rent housing, I also randomly and independently assign 

applicants to include a request about whether the apartment accepts Section 8 housing vouchers.  To 

avoid sending the same exact wording of a particular component to the same apartment, I compose 

4 possible versions of each element.  During the first phase, each apartment received up to 2 

messages randomly chosen without replacement from 2 possible versions of each element.  During 

the second phase, messages were randomly chosen from 4 possible versions without replacement.  

Once composed, a research assistant sends the messages from e-mail accounts matching the 

applicant’s name. 

 As in Ewens et. al. (2014), I focus on only positive responses, and I categorize a response as 

positive if the landlord invites the applicant to setup a showing of the apartment, explicitly provides 

a means for further contact (e.g. asks to call a particular phone number), or responds that the 

apartment is available while providing or requesting more information.  I do not include negative 

responses, primarily those stating that the unit is no longer available or that some stated trait of the 

applicant is incompatible with the apartment (“no Section 8” or “no smokers”).  Following Ewens 

et. al. (2014), I also do not include “disinterested” landlords who provide/request more information 
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without answering whether the apartment is available and landlords who simply state that the 

apartment is available and nothing else. 

 I apply the same instrumental variables framework as above (equations (7) and (8)) to this 

housing experiment to test for positive spillovers and bias.  As before, I will consider discrimination 

based on the apparent race of the applicant’s name the main treatment of interest.  I have many 

potential instruments available which are randomly assigned, affect the landlord’s response to a 

given message, and are not fully stratified.  To use all of this potential variation in other applicants’ 

quality, I construct dummies for whether any other applicant uses each possible greeting, 

introduction, quality statement, section 8 statement, and valediction as well as the total number with 

black names and total number with female names.  These variables are all randomly assigned.  

Additionally, whether other applicants to the same apartment list a black name, list a female name, 

request Section 8, or provide a positive or negative quality signal are not fully stratified.  The 

specific messages are partially stratified (two section 8 requests with the same text are not sent to 

the same landlord).  However, the specific content is sometimes chosen from a pool of potential 

sentences that is larger than the number of applications sent, providing variation in the applicant 

pool for a given housing vacancy.  As with existing studies these variables are randomly assigned 

but only conditional on a small number of covariates.  I control for a dummy for the second phase 

of the experiment (during which the pool of potential messages to be sent was expanded) and a set 

of dummies for the number of applications sent to a given vacancy. 

Appendix 5. Simulating Variable Selection on Known Weak Instruments 

In theory, the strength of the quality instrument could remain suspect due to the variable 

selection process; however, the available evidence allays this concern.  As described in the main 

text, a study sometimes provides multiple exogenous instruments from which I select the strongest 

instrument.  With a sufficiently large number of candidate instruments, the strongest instrument will 

provide large first-stage F-statistics in a given sample even if each candidate instrument has no first 

stage relationship in the population.  However, some simulations alleviate this concern that I 

mechanically generate a strong instrument.  I simulate whether random noise instruments can 

generate a first-stage F-statistic approaching 80 in the context of the present study.  For each 

simulation, I create a new ‘scrambled’ dataset.  I keep the outcome data 𝑌𝑖𝑗 and its group structure 

vis-à-vis the job unchanged.  I then randomly select (with replacement) the independent variables 

from some person 𝑚 in the same study sample, [𝑋𝑚𝑗, 𝑍𝑚𝑗], to pair with the outcome data of person 

𝑖.  Using this scrambled data, I select the strongest instrument and replicate the first stage from 
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Table 2.  The first stage now measures the relationship between person 𝑖’s outcome and randomly 

chosen person 𝑚’s covariates.  This “scrambled” first stage has a no true relationship by 

construction.  Person 𝑖 and person 𝑚 have no systematic connection.  Hence, a strong first stage 

could only result from selecting the instrument with the strongest chance relationship out of 

multiple noise variables.  Appendix Figure 2 displays the distribution of first stage F-statistics 

generated by simulating this scrambled first stage 1,000 times.  The variable selection process 

sometimes generates F-statistics above 10 from truly weak instruments; however, it never generates 

a first stage F-statistic above 40, let alone the value of 77.8 from the actual data.  While variable 

selection could mask weak instruments, the particular process I use does not present this problem. 

Appendix 6. Simulations and Estimation of MSE 

 To calculate mean squared error I need to quantify bias and variance of estimated treatment 

effects.  I estimate bias using omitted variable bias calculations from the main text.  I summarize 

these in the first column of Appendix Table 2, which matches bias in Table 6.  The second column 

of Appendix Table 2 then squares these differences as in the formula for MSE and multiplies the 

result by 1,000 for readability.  For example, a simple OLS model in Bertrand and Mullainathan 

(2004) estimates treatment effects that are 1.9 percentage points too small.  The first row of 

Appendix Table 2 takes the simple average across the six22 studies with a racial name treatment.  

On average, these studies underestimate treatment effects by 2.0 percentage points.  The square of 

bias (x1000) averaged across studies then contributes 1.01 to MSE (x1000).  On the other hand, 

non-stratified designs eliminate this bias; hence, I list a bias of zero for non-stratified designs. 

To measure the efficiency gains from stratified designs, I conduct a set of simple Monte 

Carlo simulations that generate a bootstrap measure of variance.  To simulate a stratified design for 

a particular study, I generate and randomly assign with stratification a fake treatment dummy, 𝑇̃𝑖𝑗, to 

each observation in the original data.  For vacancies with 4 applicants in the original data, I 

randomly assign exactly 2 to be “treated.”  For 2 or 3 applicants, I assign exactly 1 to be “treated.”  

To simulate a non-stratified design, I simple assign treatment randomly and independently across all 

applicants in the sample and choose the probability of treatment so that it equals that of the stratified 

                                                 
22 Again excluding Lahey (2008) because the age treatment generates effects with magnitudes that cannot be directly 

compared to race treatments. 
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simulation.23  In either case, I then run a simple OLS estimate of treatment effects using actual 

outcome data, actual control variables, and the new fictional treatment: 

 𝑌𝑖𝑗 = 𝛼 + 𝛽𝑇̃𝑖𝑗 + 𝜓𝑍𝑖 + 𝜁𝑋𝑖 + 𝜖𝑖𝑗     (𝐴. 13)  

I repeat this procedure 1,000 times, each time drawing a new sample with replacement, clustering 

by vacancy, and drawing the same number of vacancies as in the original data.  I measure 𝛽̂ across 

these repetitions and calculate its sample variance.24   

The third column of Appendix Table 2 shows the results of these simulations.  As expected, 

stratification improves precision by guaranteeing baseline balance on vacancy characteristics.  For 

example, in the Bertrand and Mullainathan (2004) study, the variance of the estimates (x1000) 

contributes 0.06 to MSE in a non-stratified design but only 0.04 in a stratified design.  Across the 

six studies with racial name treatments, stratifying treatment by vacancy decreases the variance 

(x1000) of the estimated treatment effects from 0.18 to 0.11, a decrease of 40%.  However, the bias 

generated by stratification in the presence of spillovers outweighs efficiency gains.  The fourth 

column of Appendix Table 2 shows this result.  A stratified design multiplies MSE (x1000) 6 times 

in the Bertrand and Mullainathan (2004) study from 0.06 to 0.40.  While stratifying treatment 

lowers the variance of measured treatment effects from 0.06 to 0.04, the increase in squared bias 

from 0.00 to 0.36 easily outweighs the efficiency gains.  Likewise, taking the mean across six 

studies, MSE (x1000) increases from 0.18 to 1.11.   

 Finally, I explore whether stratified designs can outperform non-stratified designs for small-

sample studies.  As the sample size shrinks, stratification generates greater efficiency gains, but bias 

does not vary with the sample size.  I implement the same Monte Carlo simulations drawing 

samples of 500, 300, 100, and 50 vacancies from the original datasets rather than sample sizes equal 

to those from the original studies.  All of these candidate sample sizes are smaller than the average 

(1,935) and minimum (565) actually used in the original studies.  Figure 2 displays the results 

graphically.  For the Bertrand and Mullainathan (2004) data, the non-stratified design continues to 

out-perform the stratified design for 500, 300 and 100 jobs, but efficiency gains from stratifying 

dominate for samples less than 100 jobs.  Similar results are true averaging across studies.  The 

right hand pane of Appendix Table 2 quantifies these results. 

                                                 
23 Suppose the original study sends 4 applicants to half of the jobs and 3 applicants to the other half.  The stratified 

simulation will assign 2 of 4 and 1of 3 applicants to the fake treatment.  Hence, the overall probability of treatment for 

the non-stratified simulation should be  
1

2
∗

1

2
+

1

2
∗

1

3
=

5

12
 to ensure comparability. 

24 Because the “treatment” does not involve any actual interaction with the world, the average of 𝛽̂ across the 

simulations is zero. 
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Appendix Figure 1: Message Example and Template for Housing Study 

 

Subject: Interested in Your Craigslist Ad 

Dear Sir: 

My name is Latoya Williams, and I saw the place on the internet for RENT AMOUNT/month. If 

you need them, I have good references and I could also send a recent credit report. I would also like 

to know if you accept Section 8 vouchers. Is the place still available? 

Sincerely, 

Latoya Williams 

 

 

…………………………………………………………………………………………………………

…………………………………… 

 

Subject: «Subject» 

«Greeting» 

«Introductorty Statement Including Name» «Quality Statement» «Section 8 Statement» 

«Availability Question» 

«Valediction» 

«Name» 
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Appendix Figure 2: First Stage F-Statistics from Simulated Weak Instruments Relative to 

Actual Value 

 

Notes: The histogram shows first stage F-statistics from 1,000 simulations. Each simulation regresses a first stage 

equation as in equation (7). Instead of using the actual data, the strongest instrument is chosen from noise variables with 

no true first stage.  I generate noise variables by matching the outcome data of one applicant to the independent 

variables of a different, randomly-chosen applicant. The dashed line provides the actual first-stage F-statistic for 

comparison. 
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Appendix Table 1. Description of Existing Labor Market Experiments 

 

Study 

Treatment 

Variables 

Treatment 

Stratified by 

Job? 

Applications 

per Vacancy Sample Size 

Sample 

Restrictions 

Candidate 

Instruments/Selected 

Instrument 

Control 

Variables 

Bertrand and 

Mullainathan 

(2004) 

Black name Yes 2 or 4 4,546/4,870 

Only jobs 

where all 

applications 

have 

neighborhood 

income values 

Log median household income 

of listed address; female name 

City dummy, 

sales job dummy, 

number of 

applications per 

job dummy 

Booth, et. al. 

(2011) 
Foreign name 

Somewhat (3 or 

4 of 5) 
3 or 4 4,212/4,212 None 

Name ethnicity dummies 

(Anglo dummy); name sex 
Name ethnicity 

Eriksson and 

Rooth (2014) 

Foreign 

name; female 

name 

Yes 3 6,873/8,466 

Only jobs with 

more than one 

application sent 

Work history variables, 

personality characteristics 

dummies (extroversion 

dummy), leisure activity 

dummies, US high school 

dummy, more education than 

required dummy, summer job 

dummy 

Occupational 

dummies, 

regional dummies 

Lahey (2008) Age 

Somewhat 

(ages cannot be 

equal) 

2 7,932/8,002 

Only jobs with 

more than one 

application sent 

Age Age 

Oreopoulos 

(2011) 
Foreign name Yes 2, 3, or 4 12,906/12,910 

Only jobs with 

more than one 

application sent 

Bachelor's degree quality, 

language skills dummy, 

master's degree dummy, high 

quality experience dummy, 

Canadian reference dummy, 

legal dummy, education 

accreditation dummy, 

Experiment phase 

dummies, city 

dummy, 

treatment type 

dummies, foreign 

education 

dummy, number 
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extracurricular activities 

dummy, set of dummies for 

each specific name (name = 

“Carrie Martin”) 

of applications 

per job dummy 

Phillips Black name Yes 4 2,260/2,260 None 
Years of work experience, age, 

current unemployment duration 
None 

New 

Housing 

Study 

Black name Sometimes 1, 2, or 4 2,220/2,681 

Only jobs with 

more than one 

application sent 

Black name, female name, 

subject dummies, and dummies 

for all possible greeting, 

introduction, apartment request, 

valediction, quality signal 

(smoker AND low credit 

message), and section 8 

statements 

Experimental 

phase dummy; 

number of 

applications 

dummy 
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Appendix Table 2. Simulating the Tradeoff between Bias and Efficiency in Stratified Designs 

Number of Clusters: All Clusters 500 300 100 50 

Statistic Displayed: Bias 

Bias 

Squared 

x 1000 

Variance 

x 1000 

MSE x 

1000 

MSE x 

1000 

MSE x 

1000 

MSE x 

1000 

MSE x 

1000 

Average Not Stratified 0.000 0.00 0.18 0.18 0.39 0.69 2.01 3.93 

 Stratified 0.020 1.01 0.11 1.11 1.26 1.42 2.30 3.30 

            

Bertrand and 

Mullainathan 

Not Stratified 0.000 0.00 0.06 0.06 0.15 0.26 0.81 1.45 

Stratified 0.019 0.36 0.04 0.40 0.45 0.51 0.82 1.24 

            

Booth et. al. Not Stratified 0.000 0.00 0.20 0.20 0.48 0.85 2.37 4.72 

 Stratified 0.001 0.00 0.12 0.12 0.32 0.50 1.68 2.86 

            

Eriksson and 

Rooth 

Not Stratified 0.000 0.00 0.11 0.11 0.53 0.97 2.71 5.07 

Stratified 0.072 5.18 0.07 5.25 5.50 5.69 6.92 8.28 

            

Lahey Not Stratified 0.000 0.00 0.02 0.02 0.19 0.32 0.93 1.68 

 Stratified 0.000 0.00 0.01 0.01 0.05 0.08 0.26 0.59 

            

Oreopoulos Not Stratified 0.000 0.00 0.03 0.03 0.17 0.32 0.92 1.90 

 Stratified 0.002 0.00 0.02 0.02 0.12 0.20 0.56 1.10 

            

Phillips Not Stratified 0.000 0.00 0.28 0.28 0.29 0.49 1.48 3.16 

 Stratified 0.022 0.48 0.17 0.65 0.66 0.79 1.38 2.22 

            

Housing Not Stratified 0.000 0.00 0.41 0.41 0.74 1.27 3.78 7.26 

 Stratified 0.003 0.01 0.27 0.28 0.52 0.82 2.44 4.12 

                    

 

Each pair of rows corresponds to a different dataset.  The “stratified” row shows bias from Table 6, and the “non-

stratified” row has bias of zero by definition.  The variance of the estimates comes from 1,000 Monte Carlo simulations 

randomly generating a fake treatment dummy (either stratified or not) and regressing actual callback outcomes on this 

treatment dummy.  In the left side of the table, I use a full sample drawn with replacement from the original data 

clustering by vacancy.  The right side of the table draws samples of smaller size where the number of clusters corresponds 

to the number of jobs drawn in the sample. 

 

 

 

 


