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Abstract

Consider a strategic trader who dynamically chooses when to acquire costly in-

formation about an asset’s payoff, instead of being endowed with this information.

Whether the market maker observes acquisition is critical. Without observability, we

show that an equilibrium with smooth trading and a pure acquisition strategy cannot

exist. We also rule out the existence of a natural class of mixed-strategy equilibria.

With observability, however, there exists an equilibrium in which optimal acquisition

follows a pure strategy and generally exhibits delay. Our results suggest that many

strategic trading equilibria considered in the literature are difficult to reconcile with

dynamic information acquisition.
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1 Introduction

An investor’s incentive to acquire private information changes over time and with economic

conditions. For instance, rising oil prices may trigger traders to research whether airlines

are hedged against fuel price fluctuations. A falling real estate market may lead investors to

acquire loan-level data on their mortgage-backed securities in order to revalue their positions.

A consolidation wave in a particular industry may lead market participants to investigate

remaining firms as potential targets. Following Grossman and Stiglitz (1980), a large litera-

ture has studied how investors choose to acquire information, and what their decisions imply

for financial markets. However, despite the inherently dynamic nature of the information

acquisition decision, the existing literature treats it as a static problem by requiring that

investors make their information choices before the start of trading.

We study the dynamic information acquisition decision of a strategic trader. In contrast

to prior work, we allow her to choose the timing of information acquisition in response to

the evolution of a public signal. We find that whether or not the market maker observes the

trader’s acquisition decision plays a crucial role.1 When the trader’s acquisition decision is

not observable, we show that there cannot exist equilibria in which information acquisition

follows a pure strategy. Moreover, we rule out existence of mixed strategy equilibria under a

standard set of regularity conditions. In sharp contrast, when the trader’s acquisition decision

is observable, there is an equilibrium in which optimal acquisition follows a pure strategy.

We show that the optimal decision exhibits delay beyond what would be predicted by a

naive “NPV” rule. Furthermore, implications for the likelihood of information acquisition,

price dynamics, and announcement effects are qualitatively different from those in settings in

which the strategic trader is either endowed with private information or can acquire it only

before the financial market opens. Taken together, our analysis suggests that the standard

equilibrium in strategic trading models does not arise naturally in a setting with dynamic,

costly information acquisition.

We begin with a continuous-time Kyle (1985) framework that builds on Back and Baruch

(2004) and Caldentey and Stacchetti (2010). There is a single risky asset, traded by a

risk-neutral, strategic trader and a mass of noise traders. We introduce a set of publicly

observable signals, which affect the expected value of the asset and evolve stochastically over

time. A risk-neutral market maker competitively sets the asset’s price, conditional on the

public signals and aggregate order flow. The asset payoff is publicly revealed at a random

time.2 The trader and the market maker share a common prior about the random variables

1Note that observability refers to whether the market maker can observe the fact that the trader has
acquired information, not whether the market maker can observe the trader’s information itself.

2The assumption of a random horizon is largely for tractability and is not qualitatively important for
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in the economy. In contrast to much of the literature, we do not assume the strategic trader

is endowed with private information or is required to commit to her information acquisition

decision before trading begins. Instead, we allow her to pay a cost at any point in time to

determine the asset value, and her optimal decision reflects the time-varying value of this

information.

For concreteness, consider the following example. Suppose an airline’s fuel hedging posi-

tions are not publicly known, but will be revealed at some random future time. The strategic

trader can pay a cost to investigate whether the airline is exposed to oil price fluctuations.

Importantly, the value of this information depends on the evolution of oil prices (a public

signal). When oil prices are relatively stable, whether or not the airline is hedged does not

have a large effect on the value of the firm. However, when oil prices have changed dramati-

cally, the impact on firm value is much larger. Moreover, acquiring information immediately

need not be optimal; instead, the strategic trader might prefer to wait until uncertainty is

sufficiently high.

Our analysis reveals that whether or not the market maker observes the trader’s infor-

mation acquisition decision plays a key role in determining the nature, and indeed the very

existence, of equilibrium. Section 3 considers the case where the strategic trader’s decision

to acquire information is not observable by the market maker. First, we explore whether

there exist equilibria in which information acquisition follows a pure strategy. One can im-

mediately rule out any equilibrium in which the strategic trader delays acquisition (or does

not acquire at all). In any such equilibrium, the market maker should rationally set the

price impact to zero before the anticipated acquisition time. But since acquisition is not

observable, the uninformed strategic trader can deviate by acquiring information, trading

against the unresponsive market maker, and making unbounded profits.

Next, we rule out pure-strategy equilibria in which the strategic trader acquires infor-

mation immediately. In this case, the trader has another profitable deviation: instead of

acquiring information immediately, the strategic trader can wait for a short interval of time,

during which she does not trade, and then acquire information. Since future periods are

discounted (due to the random horizon) the trader benefits by delaying the cost of acquisi-

tion; however, she forgoes trading gains over the interval. We establish that while the cost

benefits are of order equal to the delay interval, the trading losses are of a smaller order of

magnitude, so the deviation is strictly profitable for the trader.3

our primary results. What is key is that a random horizon induces the trader to discount future profits.
We expect our results to carry over to settings with fixed horizon that feature discounting for other reasons
(e.g., if the trader has a subjective discount factor or the risk-free rate is nonzero).

3As we discuss further in Section 3, the deviation is not a pathological feature of continuous time. We
show in Appendix B that a similar deviation is profitable in an analogous discrete time setting when the
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We show that analogous arguments rule out a natural class of mixed strategy equilibria.

These include equilibria that involve “discrete” mixing in which the trader acquires at a

countable collection of times and “continuous” mixing in which the trader acquires infor-

mation with a given intensity over some interval of time. Intuitively, without observability,

the strategic trader cannot commit to the equilibrium strategy because she always finds it

profitable to deviate (by delaying acquisition or pre-empting it). While our results do not

necessarily rule out all conceivable equilibria, our analysis implies that common strategic

trading equilibria do not naturally arise as a consequence of dynamic, endogenous infor-

mation acquisition, when the acquisition decision is unobservable and future payoffs are

discounted.4

Note that unobservability of acquisition is key for the above arguments: the proposed

deviations are no longer profitable when the market maker observes the acquisition decision,

and can respond accordingly. Motivated by this, we consider a tractable specification of

our general framework in Section 4 in which the market maker can observe the acquisition

decision.5 In this case, we show there exists an equilibrium where information acquisition is

uniquely pinned down and follows a pure strategy. Appealing to standard results on optimal

stopping, we characterize the trader’s optimal strategy and show that it follows a cutoff rule:

she chooses to acquire information only when the public uncertainty reaches a threshold.

Intuitively, the ability to decide when to acquire information endows the trader with a call

option on the expected profits from being privately informed, and she chooses to exercise the

option only when the uncertainty about the asset payoff is sufficiently high (and therefore the

expected profits from being informed are sufficiently large). Moreover, we show that optimal

information acquisition exhibits delay — the strategic trader chooses to wait beyond the

threshold that would be prescribed by an “NPV” rule. As such, the standard assumption

that the trader can only choose to acquire information at the initial date is restrictive if she

can condition her acquisition decision on the evolution of public news.

Consistent with the intuition from real option decisions, we show that the benefit from

waiting to acquire information increases in the cost of information and the volatility of the

public signal, but decreases in the prior uncertainty about the payoff. We show that the

time between trading rounds is sufficiently small.
4In particular, our results do not necessarily rule out equilibria in which the trading strategy is non-

smooth. Back (1992) establishes that non-smooth trading strategies are not optimal when the strategic
trader is exogenously informed. As such, if they were to exist in our setting, such equilibria would be
qualitatively different from those considered in existing work.

5This is consistent with the standard framework, where the market maker knows with certainty whether
there is an informed trader in the market. Entry into new markets or asset classes, addition of star analysts
or traders, and regulatory position and capital reporting requirements, can serve as public, albeit noisy,
signals of whether or not an institutional investor has acquired information.
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likelihood of information acquisition need not always increase with volatility of the public

signal. While higher signal volatility increases the likelihood that the option to acquire

information ends up “in the money,” it also increases the value of waiting. In fact, we show

that when acquisition costs are sufficiently low, the likelihood of acquisition decreases with

news volatility.

We also find that the likelihood of information acquisition need not be higher when the

trading horizon is longer. When the payoff is expected to be revealed quickly, the value from

being informed is very low since there is little time over which to profit at the expense of

noise traders, and so the acquisition threshold is high. However, as the expected trading

horizon increases, there are two offsetting effects. On the one hand, the value from being

informed increases with the horizon since the trader expects her information advantage to

last longer. On the other hand, the cost of waiting decreases with the horizon, since the

likelihood that the payoff is revealed before acquisition is low. We find that initially the first

effect dominates, while eventually the second one does. As a result, the trader is less likely

to acquire information when the trading horizon is very long or very short.

The dynamic nature of the trader’s information acquisition decision leads to novel impli-

cations on price dynamics and announcement returns. For instance, we show that informa-

tion acquisition triggers a jump in instantaneous volatility and price impact, and following

acquisition, both evolve stochastically. Notably, these jumps are not driven by jumps in

fundamentals (or noise trading), but arise endogenously due to the trader’s acquisition de-

cision and the market maker’s learning problem.6 Next, we show that the announcement

effect, defined as the average absolute price change at the time the asset payoff is publicly

announced, need not be smaller when the strategic trader is informed. One might find this

surprising, since the price is more informative about the asset payoff when the strategic

trader is informed and intuition would suggest it should therefore be closer to the asset

value.7 However, when information acquisition is endogenous, there is an offsetting effect:

the strategic trader only chooses to acquire information when uncertainty is sufficiently high.

As a result, when the cost of information acquisition is high, the public signal volatility is

high, or the expected trading horizon is extreme (i.e., sufficiently short or sufficiently long),

6Although not the focus of their analysis, the model in Back and Baruch (2004) also features stochastic
volatility and price impact, but not jumps in volatility. However, our results are distinct from Collin-
Dufresne and Fos (2016), where stochastic volatility and price impact are driven by stochastic volatility in
noise trading.

7For instance, as Back (1992) establishes, the corresponding announcement effect must be zero in the
analogous, finite horizon model where the announcement is perfectly anticipated and the trader is endowed
with information. When the announcement is stochastic and the trader is endowed with information, as in
Back and Baruch (2004), the announcement effect is smaller when the strategic trader is present than when
she is not.
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we show that the expected announcement effect is larger with information acquisition than

without.

Our paper relates to the large literature on asymmetric information models with endoge-

nous information acquisition that was initiated by Grossman and Stiglitz (1980). While a

number of papers extend this basic setting to allow for dynamic trading (e.g., Mendelson

and Tunca (2004), Avdis (2016)), to allow traders to condition their information acquisi-

tion decision on a public signal (e.g., Foster and Viswanathan (1993)), to allow traders to

pre-commit to receiving signals at particular dates (e.g., Back and Pedersen (1998), Holden

and Subrahmanyam (2002)), to incorporate a time-cost (as opposed to a monetary cost) of

information (e.g., Kendall (2017)), or to incorporate a sequence of one-period information

acquisition decisions (e.g., Veldkamp (2006)), the information acquisition decision remains

essentially static — investors make their information acquisition decision before the start

of trade.8 The unobservable acquisition case of our model is related to a recent literature

that studies markets in which some participants face uncertainty about the existence or

informedness of others (e.g., Li (2013), Banerjee and Green (2015), Back, Crotty, and Li

(2016), Wang and Yang (2016)). To the best of our knowledge, however, our model is the

first to allow for dynamic information acquisition in that the strategic trader can choose

to become privately informed at any point in time. Our analysis implies that allowing for

dynamic information acquisition has economically important consequences and highlights

the fact that observability of the acquisition decision plays a critical role.

2 Model

Our framework is based on the continuous-time Kyle (1985) model with random hori-

zon in Back and Baruch (2004) and Caldentey and Stacchetti (2010). Fix a probabil-

ity space (Ω,F ,P) on which is defined an (n + 1)-dimensional standard Brownian motion

W̄ = (W1, . . . ,Wn,WZ) with filtration FWt , independent random variables ξ and T and inde-

pendent m-dimensional random vector N0. Let Ft denote the augmentation of the filtration

σ(N0, {W̄s}{0≤s≤t}). Suppose that the random variable T is exponentially distributed with

rate r, and that ξ and N0 have finite second moments. Finally, let W = (W1, . . . ,Wn) denote

the first n elements of W̄ .

There is an m ≥ 0 dimensional vector of publicly-observable Markovian signals Nt =

8While Kendall (2017) studies whether or not investors wait for better quality information when there is
no explicit monetary cost, the information acquisition decision is implicitly (i) publicly observable, and (ii)
made prior to trading.
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(N1t, . . . , Nmt) with initial value N0 and which follows

dN = µ(t, N) dt+ Σ(t, N) dWt,

where µ(t, N) = (µ1(t, N), . . . , µm(t, N)) and Σ(t, N) = (Σ1(t, N)′, . . . ,Σm(t, N)′) denote the

vector of drifts and matrix of diffusion coefficients. Suppose that µ(·) and Σ(·) are such that

there exists a unique strong solution to this set of stochastic differential equations (SDEs).9

There are two assets: a risky asset and a risk-free asset with interest rate normalized to

zero. The risky asset pays off a terminal value at random time T . We assume that, given

knowledge of ξ and the history of Nt, the conditional expected value vt of this payoff as of

time t is

vt = f(t, ξ, Nt)

for some function f . There is a single, risk-neutral strategic trader who can pay a fixed cost

c at any time τ to observe ξ.10

Let Xt denote the cumulative holdings of the trader, and suppose the initial position

X0 = 0. Further, suppose Xt is absolutely continuous and let θ(·) be the trading rate (so

dXt = θ(·)dt).11 There are noise traders who hold Zt shares of the asset at time t, where

dZt = σZdWZt, (1)

with σZ > 0 a constant.

Finally, there is a competitive, risk neutral market maker who sets the price of the risky

asset equal to the conditional expected payoff given the public information set. Let FPt
denote the public information filtration, which we describe formally below for the observable

and unobservable cases. In either case, the public information set always includes at least

the aggregate order flow process Yt = Xt + Zt and the public news Nt. The price at time

t < T is thus given by

Pt = E
[
vt
∣∣FPt ] . (2)

Let T denote the set of FPt stopping times. We require that the trader’s information

acquisition time τ ∈ T . That is, we require acquisition to depend only on public information

9See for instance Theorem 5.2.9 in Karatzas and Shreve (1998) who present Lipschitz and growth condi-
tions on the coefficients that are sufficient to deliver this result.

10Because all market participants are risk-neutral, it is without loss of generality, economically, that vt
represents the conditional expected value of the asset rather than the value itself.

11Back (1992) shows that it is optimal for the trader to follow strategies of this form in a model in which
she is exogenously informed.
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up to that point. Let F It denote the augmentation of the filtration σ(FPt ∪ σ(ξ)). Thus, F It
represents the trader’s information set, post-information acquisition. We require the trader’s

pre-acquisition trading strategy to be adapted to FPt and her post-acquisition strategy to be

adapted to F It .

Our definition of equilibrium is standard, but modified to account for endogenous infor-

mation acquisition.

Definition 1. An equilibrium with pure strategy information acquisition is an acquisition

time τ ∈ T and admissible trading strategy θ for the trader and a price process Pt such that,

given the trader’s strategy the price process satisfies (2) and, given the price process, the

trading strategy and acquisition time maximize the expected profit

E
[∫ T

0

θ(f(u, ξ,Nu)− Pu) du
]
.

For now, we focus on pure acquisition strategies. We go into further detail on mixed

strategy acquisition when we consider unobservable acquisition below. Also, implicit in

the definition of equilibrium is that the trader’s expected profit is well-defined. In general,

given a particular payoff structure, if an equilibrium exists one must introduce admissibility

conditions on trading strategies to rule out strategies that first incur infinite losses by driving

the price away from vt and then reap infinite profits, leaving the expected profit undefined.

We return to this point when we construct equilibria with observable information acquisition

in Section 4.

Finally, note that our model nests a number of existing models of the literature. For

example, Back and Baruch (2004) consider the case in which ξ ∈ {0, 1} has a binomial

distribution and there are no publicly observable signals, so vt = f(t, ξ, Nt) = ξ. Similarly,

the special case of Caldentey and Stacchetti (2010) in which time is continuous and there is

no ongoing flow of private information, ξ ∼ N(0,Σ0) and vt = f(t, ξ, Nt) = ξ.12 In contrast

to these earlier models, in which the insider is endowed with private information about the

asset value, our focus is on allowing her to acquire information at a time of her choosing.

12Note that because the strategic trader receives only a lump of private information, our model is not
subject to the Caldentey and Stacchetti (2010) critique that the continuous-time equilibrium is not the limit
of the corresponding discrete time equilibria. However, all of the results below easily extend to time-varying
ξt when “acquiring information” entails paying c to perfectly observe ξt from time τ forward.
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3 Unobservable information acquisition

To begin, we study the case in which the strategic trader’s decision to acquire information

is not observable by the market maker. First, we show in a very general sense that there

cannot exist pure strategy equilibria in which acquisition occurs after the beginning of the

game. Intuitively, given a proposed equilibrium acquisition date, the strategic trader finds

it optimal to deviate by pre-emptively acquiring information earlier and trading against

an unresponsive pricing rule. Second, under typical regularity conditions on the trader’s

value function and market maker’s beliefs, we also rule out pure strategy equilibrium in

which acquisition occurs at the beginning of the game. We show that instead of acquiring

information at the start, the strategic trader can profitably deviate by waiting — while her

trading gains are unaffected, she benefits by delaying the cost of acquisition. Given the non-

existence of pure strategy equilibria, we then entertain the possibility of equilibrium in which

acquisition follows a mixed strategy. However, we also demonstrate that an economically

important class of mixed strategy equilibria cannot exist when information acquisition is

unobservable. The intuition for this result is essentially the same as that which rules out

pure strategy acquisition at the beginning of the game.

Before presenting the results, we briefly describe the public information environment.

When information acquisition is unobservable, the public information filtration FPt is the

augmentation of the filtration σ({Nt, Yt}). That is, the mere fact that the trader has (or has

not) acquired information is not directly observable; rather, as part of updating her beliefs

about the asset value, the market maker must also use the public signals and the order flow

to update about whether the trader has, in fact, acquired information.

3.1 Pure strategy equilibria

We begin by considering equilibria in which information acquisition follows a pure strategy.

Our first observation is immediate: never acquiring information cannot be an equilibrium.

Lemma 1. There does not exist an equilibrium in which the trader follows a pure acquisition

strategy that, with probability 1, never acquires information That is, in which P(τ =∞) = 1.

Proof. In an equilibrium in which the strategic trader never acquires information, the price

is insensitive to order flow at all times. But this allows the trader to deviate from the

conjectured equilibrium strategy by acquiring information, trading at an arbitrarily large

rate with zero price impact, and generating unboundedly large profits. Since acquisition is

unobservable by the market maker, she cannot respond to the deviation by adjusting the

price impact.
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A similar argument rules out pure strategy equilibria in which information is acquired

with some delay.

Lemma 2. There does not exist an equilibrium in which the trader follows a pure acquisition

strategy that acquires information after time t = 0 with positive probability. That is, in which

τ ≥ 0 with P(τ > 0) > 0.

Proof. Again, suppose that there does exist such an equilibrium. Then in equilibrium, the

order flow is completely uninformative about ξ prior to time τ and therefore the pricing rule

is insensitive to order flow before τ . But in the event {τ > 0} (which occurs with strictly

positive probability), the strategic trader can once again profitably deviate by unobservably

acquiring information prior to τ and trading at an arbitrarily large rate with zero price

impact, thereby generating unbounded profits.

Intuitively, the previous two results follow from the fact that when acquisition cannot

be detected, the strategic trader cannot commit to acquiring information at a future date:

she always finds it profitable to deviate by pre-empting herself and acquiring information

earlier. The inability to commit to the equilibrium strategy is reminiscent of the durable-

good monopolist’s inability to commit to high prices in the future (see Coase (1972) and Gul,

Sonnenschein, and Wilson (1986)). However, in our setting, the lack of commitment leads

to non-existence of pure-strategy equilibria with delay in information acquisition. Moreover,

this incentive to pre-emptively acquire information is likely to apply more generally, e.g., in

settings with multiple investors, in discrete time, and in settings with a fixed terminal date.

The above results imply that with unobservable acquisition, the only remaining candidate

for a pure strategy equilibrium is one in which the trader acquires information immediately.

To analyze this scenario, we need to introduce some additional structure and notation.

Denote the types of informed strategic trader by i ∈ Support(ξ), corresponding to a trader

informed of ξ = i. Following the literature, we will restrict attention to equilibria in which

the asset price is a function of the exogenous public signals Nt, as well as a finite number `

of endogenous state variables pt that follow a Markovian diffusion and which keep track of

the market maker’s beliefs about ξ. We formalize this in the following.

Assumption 1. The asset price takes the form Pt = g(t, Nt, pt) for some function g that

is continuously differentiable in t and twice continuously differentiable in (N, p). There are

` > 0 endogenous state variables pt with dynamics

dp = µp(t, N, p) dt+ Λp(t, N, p)dY, (3)

where µp and Λp are `-dimensional vector functions such that there exists a strong solution

to this SDE when dY = θ dt+ σZdWZt and θ takes its equilibrium value.
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As suggested by the notation Λp is a vector of price-impact coefficients.13 We emphasize

that the function g and the coefficients µp and Λp are equilibrium objects that, given an

equilibrium trading strategy, are pinned down by the rationality of the pricing rule.

We require conditions on the informed trader types’ value functions.

Assumption 2. For i ∈ support(ξ), the value function J i(t, N, p) is continuously differen-

tiable in t, twice continuously differentiable in (N, p), and satisfies the HJB equation:

0 = sup
θ

{
−rJ i + J it + J iN · µ+ J ip · (µp + Λpθ) + 1

2
tr (ΣΣ′J iNN) + 1

2
tr
(
ΛpΛ

′
pJ

i
pp

)
+θ (f (t, i, Nt)− Pt)

}
. (4)

Note that Assumptions 1 and 2 apply to the pricing rule and value function in existing

models in the literature (e.g., Back and Baruch (2004), the continuous-time case of Caldentey

and Stacchetti (2010)). Under these assumptions, we show that there cannot exist an equi-

librium with immediate acquisition.

Lemma 3. Suppose that Assumptions 1 and 2 hold. There does not exist an equilibrium in

which the trader follows a smooth trading strategy and a pure acquisition strategy where she

acquires immediately, P(τ = 0) = 1.

The argument relies on the following deviation: instead of acquiring information imme-

diately, the strategic trader can wait for a short amount of time (∆), during which she does

not trade, and then acquire information. Given that future periods are discounted (due to

the stochastic horizon T ), she benefits from delaying the cost of acquisition, but forgoes the

trading gains over ∆. As we show, while the discounted trading costs are of order ∆, the

loss in trading gains are smaller, and so the deviation leaves the trader strictly better off.

Proof. Suppose that there exists an equilibrium in which the trader acquires with probability

one at t = 0. Let θi denote the equilibrium trading rate of a trader who has observed ξ = i,

and let

J i (t, Nt, pt) = E
[∫ ∞

t

e−r(u−t)θi(·) (f(u, ξ,Nu)− Pu) du|F It
]

denote the expected profit from time t onward for a type i trader. By assumption, the J i

are all solutions of the HJB equation (4). Because this equation is linear in θ, and θ is

unconstrained, it follows that the sum of the coefficients on θ must be identically zero and

13Note that there is no loss in excluding a dW term in (3). Under independence of ξ and Nt, only the
order flow is informative about ξ, not Nt directly. However, as the trader’s strategy can in general depend
on N we cannot similarly suppress N from the drift and price impact coefficients.
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therefore the sum of the remaining terms must also equal zero i.e.,

−rJ i + J it + J iN · µ+ J ip · µp +
1

2
tr(ΣΣ′J iNN) +

1

2
tr(ΛpΛ

′
pJ

i
pp) = 0. (5)

As first noted by Back (1992), the above reveals a key feature of continuous time Kyle models:

over any finite interval of time, the trader is indifferent between playing her equilibrium

trading strategy or refraining from trade over that interval and then trading optimally from

that time forward. Economically, this result arises because an equilibrium pricing rule must

be such that the trader does not perceive any predictability in the price level or price impact

if she refrains from trading. Otherwise, she would have a profitable deviation from her

conjectured equilibrium trading strategy.

Let J̄(t, Nt, pt) denote the gross expected profit from acquiring information as of time t

given that one has not acquired information previously

J̄(t, Nt, pt) = E
[
Jξ (t, Nt, pt) |FPt

]
= E

[∫ ∞
t

e−r(u−t)θξ(·)(f(u, ξ,Nu)− Pu) du|FPt
]
,

Consider the following deviation by the trader: do not acquire information at t = 0, do

not trade or acquire over the next small interval [0,∆) with ∆ > 0, and then acquire at

t = ∆ and follow the conjectured equilibrium trading strategy from that point forward. The

expected profit from this deviation is

Π̄d0 ≡ e−r∆E[J̄(∆, N∆, p∆)− c]− (J̄(0, N0, p0)− c)

= (1− e−r∆)c+ E[e−r∆J̄(∆, N∆, p∆)− J̄(0, N0, p0)]. (6)

Hence, by deviating the trader benefits by paying the cost later, which is valuable due to

discounting, but she forgoes trading profits in the interim.

Applying Ito’s Lemma to e−rtJ̄ under the assumption that θ = 0 on [0,∆), integrating,

and taking the expectation implies

E
[
e−∆rJ̄(∆, N∆, p∆)− J̄(0, N0, p0)

]
= E

[∫ ∆

0

(
−rJ̄ + J̄t + J̄N · µ+ J̄p · µp +

1

2
tr(ΣΣ′J̄NN) +

1

2
tr(ΛpΛ

′
pJ̄pp)

)
du

]
. (7)

Suppose that we can interchange the order of integration and differentiation when calculating

derivatives of J̄ with respect to its arguments.14 Then, eq. (5) also holds for J̄ since J̄ is

14A simple sufficient condition on primitives would be that ξ is bounded. Technically, this would prevent
consideration of the case of normally distributed ξ and no news processes as in Caldentey and Stacchetti
(2010); however, one can use the explicit solutions for the value functions from their paper to show that this
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simply a linear combination of the J i. Hence, (7) reduces to zero, and substituting back into

eq. (6) yields

Π̄d0 = (1− e−r∆)c > 0,

which shows that the deviation is strictly profitable.

While the above argument is particularly transparent in the present setting, it is im-

portant to note that the key ingredients for the deviation argument are (i) unobservable

information acquisition, (ii) discounting of future profits, and (iii) the fact that forgone trad-

ing profits are of order strictly smaller than ∆. Importantly, the result is not a pathology of

the continuous-time setting, and the deviation does not necessarily rely on the assumption

of smooth trading. For instance, we show in Appendix B that a similar deviation rules out

pure-strategy information acquisition in the discrete-time model of Caldentey and Stacchetti

(2010) when the time between trading rounds is sufficiently short. In discrete time, the ex-

pected loss from not trading over ∆ is not zero, but it is of order smaller than ∆. Since the

benefit from delaying the cost of acquisition is of order ∆, deviating over a sufficiently small

∆ is strictly profitable.

3.2 Mixed strategy equilibria

Next, we entertain the possibility that information acquisition follows a mixed strategy. A

mixed information acquisition strategy is a probability distribution over stopping times in T .
That is, at the beginning of the game, the trader randomly chooses a (pure) stopping time

according to some probability distribution, and follows the realized strategy for the duration

of the game.15 Importantly, note that such a strategy can involve both “continuous” mixing

in which the trader acquires information with a given intensity over an interval of times,

as well as “discrete” mixing in which the trader acquires at a countable collection of times.

Because the trader must be indifferent between any stopping time τ over which she mixes,

each such τ must also achieve the maximum in her optimization problem

max
{θi(·)}i∈{U}∪Support(ξ),τ∈T

E
[∫ τ

0

θU(f(s, ξ,Ns)− Ps) ds+

∫ T

τ

θξ(f(s, ξ,Ns)− Ps) ds
]
,

claim still holds in that case.
15There are multiple, equivalent ways of defining randomization over stopping times. Aumann (1964)

introduced the notion of randomizing by choosing a stopping time according to some probability distribution
at the start of the game. Touzi and Vieille (2002) treat randomization by identifying the stopping strategy
with an adapted, non-decreasing, right-continuous processes on [0, 1] that represents the cdf of the time
that stopping occurs. Shmaya and Solan (2014) show, under weak conditions, that these definitions are
equivalent.
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where U indexes a strategic trader who has not yet acquired information (i.e., “uninformed”).

Moreover, in any non-degenerate mixed strategy equilibrium there must be information

acquisition at date zero with positive probability. If not, the price sensitivity to order flow

at t = 0 is zero, but this implies the uninformed strategic trader can deviate by acquiring

information preemptively, as argued above in Lemma 2.

The following Lemma establishes that, under the same regularity conditions as Lemma

3, there does not exist an equilibrium in which the trader follows a mixed strategy.

Lemma 4. Suppose that Assumptions 1 and 2 hold. There does not exist an equilibrium in

which the trader follows a smooth trading strategy and a mixed acquisition strategy.

Proof. The intuition and proof for the result is essentially identical to that behind Lemma

3. Instead of acquiring with positive probability at t = 0, the trader benefits by instead

waiting for a short amount of time ∆, not trading, and then acquiring information.

The fact that any nondegenerate mixed strategy equilibrium must involve a strictly pos-

itive probability of acquisition at t = 0 implies

JU(0, N0, p0) = J̄(0, N0, p0)− c, (8)

since the trader only mixes when she is indifferent between remaining uninformed and ac-

quiring information immediately.

Suppose that instead of acquiring with positive probability at t = 0, the trader deviates

by not acquiring information over a short interval ∆ and then acquires at that time. The

expected profit from this deviation is

Π̄d0 = e−r∆E[J̄(∆, N∆, p∆)− c]− JU(0, N0, p0)

= e−r∆E[J̄(∆, N∆, p∆)− c]− (J̄(0, N0, p0)− c)

= (1− e−r∆)c > 0,

where the second line follows from eq. (8) and the final line follows from the assumption that

J i and hence J̄ satisfies the HJB equation (4).

The following result summarizes the previous Lemmas.

Proposition 1. 1. There does not exist an equilibrium in which the trader follows a pure

information acquisition strategy in which information is acquired after t = 0 with

positive probability.

2. Suppose that Assumptions 1 and 2 hold. Then,
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(a) there does not exist an equilibrium in which the trader follows a smooth trad-

ing strategy and a pure information acquisition strategy in which information is

acquired at t = 0 with probability 1,

(b) there does not exist an equilibrium in which the trader follows a smooth trading

strategy and a mixed acquisition strategy

The results in this section rule out the existence of equilibrium in the case of unobservable

information acquisition, under standard regularity conditions. The deviation arguments

apply generally to a large class of models that feature discounting (e.g., Back and Baruch

(2004), Chau and Vayanos (2008), Caldentey and Stacchetti (2010)), which implies that

the trading equilibria in these models do not naturally arise as a consequence of costly

dynamic information acquisition. Moreover, as we discuss in Appendix C, a number of the

non-existence results carry over to the standard continuous-time Kyle (1985) model with

a fixed horizon and no discounting. The arguments behind Lemmas 1 and 2 imply that

pure-strategy information acquisition cannot exhibit delay in such a setting. Further, we

show that when the cost of information is sufficiently high there are also no pure strategy

equilibria with acquisition at time zero, which rules out the existence of any pure strategy

equilibria in that case.

While standard strategic trading models provide useful intuition for how exogenous (or

costless), private information gets incorporated into prices, our analysis recommends caution

when considering settings with endogenous information acquisition. In the next section we

consider the case of observable information acquisition, in which case such deviations are no

longer profitable, and show that there emerge equilibria with nontrivial dynamic, endogenous

information acquisition.

4 Observable information acquisition

The analysis in the previous section highlights the key role that observability plays when the

strategic trader can dynamically trade and choose the time at which she acquires information.

Sustaining equilibria with costly information acquisition is difficult when information acqui-

sition is unobservable because the strategic trader has incentives to deviate by pre-empting

or delaying acquisition. However, such deviations are not feasible when the information ac-

quisition is observable, since the market maker could immediately respond to such decisions

by appropriately adjusting the price impact of order flow.

Based on this observation, we consider a tractable specification of the general model

from Section 2 in which the strategic trader’s decision to acquire information is observable
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by the market maker. This is a natural benchmark. Since the market maker in standard

Kyle (1985) models knows with certainty that there is an informed trader in the market,

these models effectively feature observable acquisition. Moreover, in practice, decisions to

acquire expertise or information are often publicly detectable. For instance, entry into

new markets and asset classes by large institutional investors is usually scrutinized by other

market participants. The addition of star traders, portfolio managers, and executives garners

significant media attention. Finally, many institutional investors are subject to regulatory

reporting requirements, and disclosures about trading positions and capital adequacy can

provide noisy information about an investor’s trading strategies and private information.

With observability, the information acquisition decision by the strategic trader resembles

the exercise of a real option. The standard assumption that the trader makes a one-shot

information acquisition decision when the financial market opens is restrictive: we show that,

generally, optimal acquisition can exhibit delay. Moreover, we find that allowing for dynamic,

endogenous information acquisition has qualitatively novel implications for the likelihood of

information acquisition and price dynamics.

4.1 A tractable specification

Suppose the random variable ξ ∈ {0, 1} is binomial with probability α = Pr (ξ = 1). The

risky asset pays off v at time T , where

v = ξNT . (9)

The public news process Nt is a geometric Brownian motion

dNt

Nt

= σN dWNt, (10)

where σN > 0 and the initial value N0 > 0 is constant. Hence, the time-t conditional

expected value for an informed trader is vt = ξNt.

The assumptions that the public signal is perfectly informative about Nt and that Nt

has zero drift are without loss of generality. More generally, one could replace Nt with

N̂t = E[NT |FPt ] in the pricing rule and trading strategy without qualitatively affecting the

rest of the analysis. It is also straightforward to generalize to a general continuous, positive

martingale for the news process, but at the expense of closed-form solutions to the optimal

acquisition problem in most cases.

We interpret ξ as the payoff-relevance of the news process. In particular, the news process

is only informative about the payoff of the risky asset if ξ = 1. To fix ideas, consider the
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example from the introduction. Suppose the market faces uncertainty about whether an

airline is hedged against fuel price increases. The strategic trader must pay a cost (i.e., c) to

investigate whether the airline is exposed (i.e., ξ ∈ {0, 1}), and can optimally choose when

to do so. When the price of oil is stable, the incremental impact of hedging on firm value

(i.e., v) is low. In contrast, when the price of oil moves dramatically, the airline’s hedging

decision has a larger effect on firm value. As such, one expects the value of learning about

exposure varies over time with the publicly observable news about fuel prices (i.e., changes

in Nt).
16

A relabeling of variables offers another natural interpretation of the model. Suppose

v ∈ {HT , LT} where Ht and Lt are publicly observable processes, independent of ξ, and

where α = Pr (v = HT ). Then, one can express v = LT + ξNT , where NT ≡ HT −LT . Under

this interpretation, acquiring information about ξ reveals whether the asset value is HT or

LT , and this information is more valuable when the difference between the two possible

values is larger.

More generally, the specification of the public news process allows us to introduce stochas-

tic volatility in a parsimonious and tractable manner. Without variation in public news

(Nt ≡ 1), the above setting reduces to the one analyzed by Back and Baruch (2004) but

with endogenous information acquisition. In this case, however, the trader’s acquisition

decision is effectively static since the value of information is constant over time. With a

stochastic news process, the value of information evolves over time, which introduces dy-

namic considerations to the acquisition decision. We expect alternative specifications that

generate time-variation in uncertainty about fundamentals would generate similar predic-

tions, although at the expense of tractability or a less natural economic interpretation.17

Let It = 1{τ≤t} denote an indicator for whether the strategic trader has acquired informa-

tion at time t or before. Because the market maker observes the public signal and order flow

processes, and the acquisition status of the strategic trader, the public information filtration

FPt is the augmentation of the filtration σ({Nt, Yt, It}).18

16Note, in this example the level of Nt is interpreted at the deviation of the price of oil from a baseline
level (normalized to zero), not the price level itself.

17A perhaps more standard specification of the model would be one in which the value v is normally
distributed with stochastic volatility (e.g., variance Σt). In order for this volatility to impact the acquisition
decision, it must be publicly observable. However, this poses a difficulty: how does one interpret a setting
in which the value of an asset is unobservable, but exhibits observable stochastic volatility? An alternative
specification, in which there is a public signal with an error that exhibits stochastic volatility (e.g., Nt = v+εt,
where εt exhibits stochastic volatility σt), necessitates the introduction of two state variables (i.e., the signal
Nt and the conditional variance of v under the public information set, ΣP,t), which limits tractability.

18To reduce clutter, we abuse notation somewhat by using FP
t to denote both the market maker’s infor-

mation set, which includes the acquisition indicator It in this case, as well as the trader’s pre-acquisition
(public) information set, which includes only the news process and order flow variables, and defines the
admissible class of stopping times for acquisition.
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Finally, let pt denote the market maker’s conditional probability that ξ = 1. Note that

zero and one are absorbing states for pt. As such, following Back and Baruch (2004), we must

rule out trading strategies that first drive the stock price to zero or Nt, incurring infinite

losses, and then yield infinite profits by trading against a pricing rule that is unresponsive

to order flows. To do so, we add to the existing smoothness and measurability restrictions

on trading strategies an additional admissibility condition which requires that the trading

strategy for a trader informed of ξ = 1 satisfies

E
[∫ T

τ

Nu(1− pu)θ−u du
]
<∞,

and analogously for a trader informed of ξ = 0,

E
[∫ T

τ

Nupuθ
+
u du

]
<∞.

4.2 Financial market equilibrium

We can construct equilibrium by working backwards. We begin by characterizing the fi-

nancial market equilibrium, conditional on an arbitrary acquisition time, and then find the

optimal acquisition time given the financial market equilibrium.

Proposition 2. Fix an information acquisition time τ ∈ T . There exists an equilibrium in

the trading game in which the price of the risky asset is given by Pt = Ntpt, where

pt ≡ E
[
ξ | FPt

]
=

α 0 ≤ t < τ

Φ
(

Φ−1 (α) er(t−τ) +
√

2r
σ2
Z

∫ t
τ
er(t−s)dYs

)
τ ≤ t < T

. (11)

Prior to information acquisition, the trader does not trade (i.e., θU ≡ 0), and conditional on

information acquisition, her strategy depends only on p and is given by

θ1 (p) =
σ2
Zλ(p)

p
, and θ0 (p) = −σ

2
Zλ(p)

1− p
,

where θi, i ∈ {U, 1, 0}, denotes the trading strategy corresponding to the uninformed, in-

formed of ξ = 1, and informed of ξ = 0 types. In this equilibrium, conditional on becoming

informed, the trader’s value function is given by

J1 (pt, Nt) = Nt

∫ 1

pt

1− a
λ (a)

da, and J0 (pt, Nt) = Nt

∫ pt

0

a

λ (a)
da, (12)
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where λ (p) =
√

2r
σ2
Z
φ (Φ−1 (1− p)).

Our equilibrium characterization naturally extends the equilibrium in Back and Baruch

(2004) to (i) accommodate the news process Nt and (ii) account for the possibility that

the strategic trader is uninformed before τ . Before information acquisition, the strategic

trader does not trade,19 and consequently, the order-flow is uninformative and the market-

maker does not update his beliefs about ξ. As a result, before τ the price Pt = αNt evolves

linearly with Nt. Conditional on information acquisition, the strategic trader optimally

trades according to θξ characterized in the proposition. Since θ1 6= θ0, the order flow provides

a noisy signal about ξ to the market maker. The market maker’s conditional expectation

about ξ, given by pt, depends on the cumulative (weighted) order-flow since the acquisition

date (i.e.,
∫ t
τ
er(t−s)dYs), and consequently, so does the price Pt.

4.3 Optimal information acquisition

Given the value function in Proposition 2, we can characterize the optimal information

acquisition decision.

Proposition 3. Given the financial market equilibrium in Proposition 2, there is a unique

optimal acquisition strategy: the strategic trader optimally acquires information the first time

Nt hits the optimal acquisition boundary N∗ = β
β−1

c
K

from below, where

K =

√
σ2
Z

2r
φ
(
Φ−1 (1− α)

)
, and β =

1+
√

1+8r/σ2
N

2
. (13)

Moreover, the optimal acquisition boundary N∗ increases in c and σN , decreases in σZ, is

U-shaped in α (minimized at α = 0.5), and is U-shaped in r.

As we show in the proof of the above, the expected profit immediately prior to acquiring

information at any date t (i.e., the value function the instant before ξ is observed) is given

by

J̄ (Nt) ≡ Et
[
αJ1 (α,Nt) + (1− α) J0 (α,Nt)

]
= KNt. (14)

Note that the value function given information acquisition at date t is higher when there is

more noise in the order flow (i.e., higher σZ), when there is more prior uncertainty about

19Under the posited price function, the pre-acquisition trading strategy is indeterminate. Any strategy
that uses only public information earns zero expected profit under the public information set. Given such a
trading strategy, it also remains optimal for the market maker to set Pt = Ntα. Without loss of generality,
we focus on the case in which the trader does not trade before time τ . In the presence of transaction costs,
this would be the optimal strategy.
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whether Nt is informative (i.e., when α is closer to 0.5), and when the information advantage

is expected to be longer lived (i.e., when r is smaller).

The standard approach in the literature restricts the strategic trader to make her in-

formation choices before trading begins. In this case, she follows a naive “NPV” rule —

she only acquires information if the value from becoming informed is higher than the cost

i.e., J̄ (N0) ≥ c. As the following corollary highlights, the resulting information acquisition

decision is effectively a static one.

Corollary 1. If the strategic trader is restricted to acquiring information at t = 0, she

optimally acquires information if and only if N0 ≥ N∗0 , where N∗0 = c
K

. Moreover, the

optimal acquisition boundary N∗0 increases in c, decreases in σZ, is U-shaped in α (minimized

at α = 0.5), and increases in r.

With dynamic information acquisition, the optimal time to acquire information is char-

acterized by the following problem:

JU (n) ≡ sup
τ∈T

E
[
1{τ<T}(J̄(Nτ )− c)

∣∣Nt = n
]

= sup
τ∈T

E
[
e−rτ (KNτ − c)+ |Nt = n

]
. (15)

This problem is analogous to characterizing the optimal exercise time for a perpetual Amer-

ican call option.20 Notably, the optimal information acquisition decision exhibits delay:

information is not acquired when KNt = c, as would be implied by the static NPV rule.

The intuition for this effect is analogous to that for investment delay in a real options prob-

lem. At any point in time, the trader can exercise her “option” to acquire information and

use that information to profit at the expense of the noise traders. However, by waiting and

observing the news process she learns additional information about the asset payoff (and

therefore her ultimate profits) on which she can condition her decision. Since acquiring in-

formation irreversibly sacrifices the ability to wait, it is optimal to acquire only when doing

so is sufficiently profitable to overcome this opportunity cost. Moreover, the option to wait

is more valuable (and hence N∗ is higher) when the volatility of the news process (i.e., σN)

is higher.

A key difference between the static acquisition boundary of Corollary 1 and the dynamic

acquisition boundary of Proposition 3 is how they respond to the expected trading horizon.

In the static case, the exercise boundary is increasing in r. Recall that increasing r increases

the likelihood that the payoff is revealed sooner i.e., it decreases the expected trading horizon.

This naturally decreases the value from acquiring information, since the trader has a shorter

window over which to exploit her informational advantage.

20Hence, appealing to standard results, we establish that the optimal stopping time is a first hitting time
for the Nt process and show that the given N∗ is a solution to this problem.
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Figure 1: Exercise Boundary N∗ versus trading horizon
Unless otherwise specified, parameters are set to σZ = σN = 1, c = 0.25 and α = 0.5.
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With dynamic information acquisition, the trader also accounts for the cost of waiting

to acquire information. Specifically, as the trading horizon increases (i.e., r decreases), the

expected value from acquiring information at any date (i.e., JU (Nt)) increases. However, she

is also willing to wait longer to acquire this information, since the cost of waiting (the prob-

ability the value will be revealed before she acquires information) also decreases. Initially,

the first effect dominates, which leads the exercise boundary to decrease as the trading hori-

zon increases. Eventually, however, the second effect dominates, and the exercise boundary

increases with the horizon. As Figure 1 illustrates, this implies that the exercise boundary is

non-monotonic in the trading horizon (1/r): the trader is less likely to acquire information

when the asset payoff is expected to be revealed too quickly or too slowly.

4.4 Likelihood of information acquisition

The likelihood of information acquisition depends on two forces. First, the cost of information

may be too high relative to the value of acquiring it: given c, the trader might never find

it optimal to acquire the information. Second, even if the (relative) cost of acquisition is

not too high, the asset payoff may be revealed before the strategic trader chooses to acquire

information. The following results characterize how these effects interact to determine the

likelihood of information acquisition.

In what follows, it is useful to define TN as the first time Nt ≥ N∗. Then, the time at

21



which information is acquired can be expressed as

τ = TN1{TN≤T} +∞× 1{TN>T}, (16)

where, as before, τ =∞ corresponds to no information acquisition. To avoid the trivial case,

assume N0 < N∗. We begin with the following observation.

Lemma 5. Suppose N0 < N∗. For 0 ≤ t < ∞, the probability that TN ∈ [t, t+ dt] is given

by

Pr (TN ∈ [t, t+ dt]) =

(
log
(
N∗

N0

))
σN
√

2πt3
exp

−
(

1
σN

log
(
N∗

N0

)
+ 1

2
σ2
N t
)2

2t

 dt. (17)

The probability that TN is not finite is given by Pr (TN =∞) = 1− N0

N∗
.

The result follows from applying results on the first hitting time of a Brownian motion

with drift. Note that there is a positive probability that the boundary is never hit, even

if T ≡ ∞. Also, the probability that TN = ∞ is increasing in the N∗. As a result, the

probability that the news process reaches N∗ decreases in the cost c and volatility σN ,

increases in volatility of noise trading σZ and uncertainty about ξ (i.e., is hump-shaped in

α), and is hump-shaped in the trading horizon (i.e., 1/r).

The next result accounts for the possibility that the payoff is revealed before the trader

acquires information (i.e, TN > T ).

Proposition 4. Suppose N0 < N∗. The probability that information is acquired is Pr (τ <∞) =(
N0

N∗

)β
. The probability is decreasing in c, increasing in N0 and σZ, hump-shaped in α

(around 1
2
), and hump-shaped in r. When c ≤ N0K, the probability is decreasing in σN ;

when c > N0K, it is hump-shaped in σN .

Not surprisingly, accounting for the possibility that the payoff is revealed before Nt hits

N∗ reduces the likelihood of information acquisition (i.e., Pr (τ <∞) < Pr (TN <∞), since

N0 < N∗ and β > 1). More interestingly, it reveals novel comparative statics relative to

those suggested by an NPV rule.

First, the effect of changes in expected trading horizon (changes in 1/r) is inherited from

the effect of such changes on the acquisition boundary N∗. When the expected trading

horizon is short the probability of acquisition is low because, conditional on acquiring, the

trader has little time to profit from her informational advantage. On the other hand, when

the expected trading horizon is long, the probability of acquisition is also low because in this

case the cost of waiting is sufficiently low to offset the longer trading horizon conditional on

acquiring.
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Second, incorporating the possibility that the payoff is revealed before the trader acquires

information also changes the effect of the volatility σN on the likelihood of acquisition.

Increasing σN has two effects on the probability of acquisition: (i) it increases the acquisition

boundary (i.e., N∗ increases in σN), which tends to reduce the probability of acquisition,

and (ii) fixing the boundary, it increases the likelihood that Nt will hit the boundary by any

given time (i.e., Nt is more volatile), which tends to increase the probability of acquisition.

The overall effect of σN therefore depends on the relative strength of these two forces.

To gain some intuition for the dependence of the σN comparative statics on the initial

value N0, note that the asset value is either v = 0 or

v = NT = N0e
− 1

2
σ2
NT+σNWT .

As a result, the uncertainty about v, and consequently, the benefit of acquiring information

depends on both N0 and σN .21 When N0 is sufficiently high, uncertainty about v is already

high and information acquisition is valuable. Appealing to the analogy with an American

call option, the option to acquire information starts in the money. In this case, initial

uncertainty is already sufficiently high that the effect of increasing σN on N∗ dominates,

and the probability of acquisition decreases in σN . On the other hand, when N0 is low,

uncertainty about v is low and information acquisition is not valuable, i.e., the option starts

out of the money. In this case, when σN is low, the effect of an increase in σN on the

volatility of Nt initially dominates, and increases the probability of acquisition. However, as

σN continues to increase the effect of increasing the boundary N∗ begins to dominate, which

reduces the acquisition probability.

Figure 2 presents an example of this non-monotonic effect of σN on the probability of

information acquisition. In panel (a), N0 is sufficiently high so that N0K ≥ c, and so the

probability of information acquisition is decreasing in σN . In panel (b), N0 is low enough so

that the probability of information acquisition initially increases and then decreases in σN .

Finally, using the distribution of τ derived in the proof of Proposition 4 it is straightfor-

ward to characterize the expected time of information acquisition.

Corollary 2. Suppose N0 < N∗. The expected time of acquisition, conditional on acquisition

occurring, is

E[τ |τ <∞] =
2

σ2
N

log(N∗/N0)

(
1 +

8r

σ2
N

)−1/2

.

Moreover, all unconditional moments of τ are infinite.

21We thank Kerry Back for this intuition.
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Figure 2: Probability that information is acquired Pr (τ <∞) versus σN .
Unless otherwise specified, parameters are set to σZ = 1, c = 0.25 r = 1.5, α = 0.5.
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4.5 Implications: Price dynamics and Announcement Effects

In this subsection, we explore some additional properties of the equilibrium with observabil-

ity. First, the dynamic nature of the trader’s information acquisition decision leads to novel

price dynamics: information acquisition triggers a jump in instantaneous volatility and price

impact, and following acquisition, both evolve stochastically. Notably, these results are not

driven by stochastic volatility of fundamentals or noise trading, but arise endogenously due

to the trader’s acquisition decision and the market maker’s learning problem.22

Second, we characterize the average absolute price change at the time the asset payoff is

publicly announced. Intuitively, one might expect that this announcement effect is smaller

when the strategic trader is informed, since the order flow is more informative about the

asset payoff.23 We show that this need not be the case when the timing of information

acquisition is endogenous, because the strategic trader only chooses to acquire information

when uncertainty is sufficiently high. In fact, when the cost of information acquisition is suf-

ficiently high, the public signal volatility is sufficiently high, or the expected trading horizon

is sufficiently extreme (i.e., sufficiently short or sufficiently long), the expected announcement

effect is larger when there is information acquisition.

22Although not the focus of their analysis, a similar result on stochastic volatility and price impact arises in
Back and Baruch (2004). However, our result differs from Collin-Dufresne and Fos (2016), where stochastic
volatility and price impact are driven by stochastic volatility in noise trading. Furthermore, neither of these
models generate jumps in volatility or price impact.

23For instance, as Back (1992) establishes, conditional on the strategic trader being informed the an-
nouncement effect must be zero in the analogous, finite horizon model where the announcement is perfectly
anticipated. When the announcement date is stochastic, but the strategic trader is exogenously endowed
with information, as in Back and Baruch (2004), the announcement effect is smaller on average when the
strategic trader is informed.
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4.5.1 Price dynamics

The expression for the price in Proposition 2 immediately implies that price impact of or-

der flow before information acquisition is zero, but jumps to λ (pτ ) when information is

acquired. Moreover, price impact evolves stochastically post-acquisition, since it is driven

by the evolution of the market maker’s beliefs pt.

The following result characterizes return volatility in our model.

Proposition 5. The instantaneous variance of returns is

νt ≡

σ
2
N 0 ≤ t < τ

σ2
N +

(
λ∗(pt)
pt

)2

σ2
Z τ ≤ t < T

Conditional on information acquisition, volatility is stochastic and exhibits the “leverage”

effect i.e., the instantaneous covariance between returns and variance of returns is negative

(cov
(
νt,

dpt
pt

)
≤ 0).

The above result highlights that return volatility is higher conditional on information

acquisition. Conditional on no acquisition, price changes are driven purely by changes in

the news process. However, conditional on the strategic trader being informed, the market

maker also conditions on order flow to update his beliefs about the asset payoff, and as a

result, return volatility is driven by two sources of variation.

In contrast to the standard Kyle (1985) model, our model generates stochastic return

volatility and price impact, even though fundamentals (i.e., Nt) and noise trading (i.e., Zt)

are homoskedastic. This is a consequence of the non-linearity in the filtering problem of

the market maker, and is in contrast to models where the (conditionally linear) filtering

problem amplifies stochastic volatility in an underlying process (e.g., in Collin-Dufresne and

Fos (2016), return volatility amplifies stochastic volatility in noise trading).24 Moreover,

conditional on information acquisition, return volatility also exhibits the “leverage effect”

(see Black (1976) and the subsequent literature) — the instantaneous variance increases

when returns are negative, and vice versa — even though there is no leverage (debt) in the

underlying risky asset.

Despite the large empirical literature documenting the importance of stochastic volatil-

ity and jumps in volatility, there are relatively few theoretical explanations for how these

patterns arise. Our model provides an explanation for both, but it does not rely on jumps

or stochastic volatility in fundamentals. Instead, volatility jumps (and becomes stochastic)

24Similar results obtain in the continuous-time models of Back and Baruch (2004), Li (2013), Back et al.
(2016), and the discrete-time model of Banerjee and Green (2015).
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when the public news process triggers private information acquisition by the strategic trader.

Our analysis suggests that further understanding the interaction between public news and

private information can provide new insights into what drives empirically observed patterns

in volatility.

4.5.2 Announcement effects

Next, we turn to the absolute price change at the time the payoff of the risky asset is an-

nounced. In finite horizon models where the announcement is perfectly anticipated (e.g.,

Back (1992)), the informed trader’s optimal strategy ensures that the price change at an-

nouncement is zero. While this is no longer the case with a stochastic announcement date,

the intuition from these models would suggest that the announcement effect is smaller on

average if information is acquired than if it is not. However, as the next result highlights,

this is not always the case.

Proposition 6. The expected absolute price jump on announcement, conditional on infor-

mation acquisition is

E
[∣∣ξNT − PT−

∣∣∣∣τ <∞] = 2N∗h (α) , (18)

where h (α) is characterized in the Appendix, and fully illustrated by the plot in Figure 3. The

expected absolute price jump on announcement, conditional on no information acquisition is

E
[∣∣ξNT − PT−

∣∣∣∣τ =∞
]

= 2α (1− α)N∗
N0

N∗
−
(
N0

N∗

)β
1−

(
N0

N∗

)β .

Fixing α ∈ (0, 1) and the other parameters, the announcement effect is larger with informa-

tion acquisition when: N0 is sufficiently small, c is sufficiently high, σ2
N is sufficiently high,

σ2
Z is sufficiently low, or r is sufficiently extreme (i.e., sufficiently low, or sufficiently high).

The proposition characterizes conditions under which a potentially surprising result holds:

the announcement effect is larger with information acquisition than without. In a setting

where the strategic trader is exogenously endowed with information, the standard intuition

holds — the announcement effect conditional on an informed trading is smaller than the

announcement effect conditional on no informed trading. To see why, note that in this case,

the announcement effect can be expressed as

E
[∣∣ξNT − PT−

∣∣] = N0E
[∣∣ξ − πT ∣∣] = 2N0E [πT (1− πT )] , (19)

where πt = E[ξ|FPt ]. When the strategic trader is not informed, πT = α. When the strate-

gic trader is informed, πT = pT , and so Jensen’s inequality implies that E [pT (1− pT )] ≤
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Figure 3: h (α) and α (1− α)
The figure plots h (α) (solid) and α (1− α) (dashed) as a function of α.
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h (α) (solid), α (1− α) (dashed) as a function of α

α (1− α). Intuitively, the market-maker’s posterior beliefs are more precise when the strate-

gic trader is informed, and as a result, the price reflects the asset payoff more accurately.

When information acquisition in endogenous, however, there is an offsetting effect at

work. Recall that the strategic trader only acquires information when the news process is

sufficiently high (Nt ≥ N∗). This implies that the expected level of NT , conditional on

information acquisition, is higher since E [NT |τ <∞] = N∗ ≥ N0. Intuitively, the strategic

trader only chooses to acquire information when the prior uncertainty about fundamentals

is sufficiently high. This offsetting effect dominates when the initial news level N0 is suffi-

ciently small or the optimal exercise boundary N∗ is sufficiently large, and as a result, the

announcement effect conditional on information acquisition is higher in these cases.

5 Conclusions

The canonical Kyle-type framework, in which a market maker sets prices in response to

strategic trading by an informed trader, provides an important benchmark for understanding

how markets incorporate private information. A key limitation of the standard setup is

that the strategic trader is endowed with private information before trading begins, instead

of acquiring it endogenously at a time of her choosing. To explore the implications of

endogenous information acquisition, we consider a strategic trading model in which the

trader can choose when to acquire information about the asset payoff in response to the

evolution of a public signal.

We show that the existence and nature of equilibrium depends crucially on whether

the information acquisition decision is observable by the market maker. When acquisition
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is not observable, we find there cannot exist pure strategy equilibria. Moreover, mixed

strategy equilibria satisfying standard regularity condition are also ruled out. In contrast,

when acquisition is observable, we show in a tractable benchmark setting that there exists a

unique equilibrium in pure (acquisition) strategies. Moreover, the equilibrium features delay

in information acquisition.

Our analysis suggests that key features of the standard, strategic trading framework

may be difficult to reconcile with costly dynamic information acquisition. Exploring the

robustness of these results to different information acquisition technologies (e.g., costs that

depend on the precision of information) and competition among traders are natural next

steps. It would also be interesting to study how our analysis changes when public news is

endogenous (e.g., in the form of strategic disclosure by firms or regulators).
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A Proofs

Proof of Proposition 2. To establish the equilibrium in the Proposition, we need to show:

(i) the proposed price function is rational, and (ii) the informed trader’s strategy is optimal.

Fix any τ ∈ T .

Rationality of pricing function

Consider the set {t : t < τ} on which the trader has not acquired information. Then,

because {Nt}, {Zt} and ξ are independent, and under the proposed trading strategy Yt = Zt

for t < τ, it is immediate that

E[ξNT |FPt ] = E[ξ|FPt ]E[NT |FPt ] = αE[NT |FPt ].

Since T is almost surely finite and is independent of the process Nt we have E[NT |FPt ] = Nt,

and so E[ξNT |FPt ] = αNt.

Now, consider the set {t : τ ≤ t < T} on which the trader has acquired information and

the asset payoff has not yet occurred. Up to the addition of the news process, the problem

now resembles that considered in Back and Baruch (2004), and we can adapt the proof

offered there. Specifically, consider the pricing rule from Back and Baruch (2004), adapted

for the fact that information is acquired at time τ,

dpt = λ(p)dYt, pτ = α,

where λ(p) is given in the statement of the Proposition. (Later we will show that this

pricing rule can be written in the explicit form in eq. (11).) Note that the proposed trading

strategy depends only on ξ and p, the process p depends only on the order flow, and {Nt} is

independent of ξ and {Zt}, so (ξ, {pt}) is conditionally independent of {Nt}, and therefore

E[ξNT |FPt ] = E[ξ|FPt ]E[NT |FPt ] = E[ξ|{Ys}s≤t]Nt,

where the final equality follows since E[NT |FPt ] = Nt. Furthermore, since Yt = Zt for

t < τ under the proposed trading strategy and ξ is independent of {Zt} it follows that

E[ξ|{Ys}s≤t] = E[ξ|{Ys}τ≤s≤t].
Recall that as of time τ, the informed trader begins trading according to the strategy

θξ(p) and the order flow becomes informative. The market maker’s conditional expectation

is simply equal to her prior α since before this time only noise traders have been active. It

follows that starting at time τ the market maker’s filtering problem becomes identical to
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that of the market maker in Back and Baruch (2004). Hence, their Theorem 1 implies that

for t ≥ τ the pricing rule

dpt = λ(p)dYt, pτ = α,

satisfies pt = E[ξ|{Ys}s≥τ ].
To complete the proof of the rationality of the proposed price, it suffices to show that the

explicit form of p(·) for τ ≤ t < T in eq. (11) satisfies dpt = λ(p)dYt. Applying Ito’s Lemma

to the function f(p) =

√
σ2
Z

2r
Φ−1(p) to the above process for pt gives

df(pt) =
1

2
σ2
Zλ

2(pt)

2r
σ2
Z
f(pt)

λ2(pt)
dt+

1

λ(pt)
λ(pt)dYt

= rf(pt) dt+ dYt.

Now applying Ito’s lemma to the function e−rtf(pt) and integrating allows one to express

f(pt) = f(pτ )e
rt +

∫ t

τ

er(t−s)dYs.

Note that f(pτ ) =

√
σ2
Z

2r
Φ−1(α), so returning to the explicit form of the function f(p) and

inverting it follows that

pt = Φ

(
Φ−1 (α) er(t−τ) +

√
2r
σ2
Z

∫ t

τ

er(t−s)dYs

)
.

Optimality of trading strategy

Next, we demonstrate the optimality of the proposed trading strategy, taking as given the

acquisition time τ. This analysis closely follows the proof in Back and Baruch (2004). Define

V (p) ≡
∫ 1

p
1−a
λ(a)

da and consider the proposed post-acquisition value function for the case ξ = 1

(the case for ξ = 0 is analogous)

J1 (pt, Nt) = NtV (pt).

We begin by showing that the given J characterizes the value function for t ≥ τ . Consider

{t : τ ≤ t < T} and suppose ξ = 1. Direct calculation on the function V yields

V ′ =
p− 1

λ
(20)
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rV =
1

2
σ2
Zλ

2V ′′, (21)

which coincides with eq. (1.15) and (1.16) in Back and Baruch (2004).

Let θt denote an arbitrary admissible trading strategy. Following Back and Baruch

(2004), let p̂t denote the process defined by p̂s = α for s ≤ τ and dp̂t = λ(p̂)dYt for t > τ and

0 < p̂t < 1, with Yt generated when the trader follows the given arbitrary trading strategy. In

order to condense notation, in this section, we denote E[·|FPt ] = Et[·]. Since θ is admissible,

we know that

Eτ
[∫ T

τ

Nu(1− pu)θ−u du
]

= Eτ
[∫ ∞

τ

e−r(u−τ)Nu(1− p̂u)θ−u du
]
<∞,

from which it follows that ∫ ∞
τ

e−r(u−τ)Nu(1− p̂u)θ−u du <∞

almost surely, and therefore that the integral∫ ∞
τ

e−r(u−τ)Nu(1− p̂u)θudu

is well-defined, though is possibly infinite.

Let T̂ = inf{t ≥ τ : p̂ ∈ {0, 1}}. Applying Ito’s lemma to e−r(t−τ)J yields

e−r(t∧T̂−τ)J1(p̂t∧T̂ , Nt∧T̂ )− J1(p̂τ , Nτ )

=

∫ t∧T̂

τ

e−r(u−τ)N

(
−rV (p̂u) + λθV ′(p̂u) +

1

2
σ2
Zλ

2V ′′
)
du

+ σZ

∫ t∧T̂

τ

e−r(u−τ)NλV ′(p̂u)dWZu + σN

∫ t∧T̂

τ

e−r(u−τ)NV (p̂u)dWNu

= −
∫ t∧T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du− σZ
∫ t∧T̂

τ

e−r(u−τ)Nu(1− p̂u)dWZu (22)

+ σN

∫ t∧T̂

τ

e−r(u−τ)NuV (p̂u)dWNu

where the last equality uses eq. (20) and (21). Since V ≥ 0, the above implies

∫ t∧T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du ≤ NτV (α) + x(t), (23)
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where we define x(t) = σN
∫ t∧T̂
τ

e−r(u−τ)NuV (p̂u)dWNu − σZ
∫ t∧T̂
τ

e−r(u−τ)Nu(1 − p̂u)dWZu.

The integrands in the stochastic integrals are locally bounded and hence the integrals are

local martingales (Thm. 29, Ch. 4, Protter (2003)). It follows that x(t) is itself a local

martingale (Thm. 48, Ch. 1, Protter (2003)).

Let τ̂n be a localizing sequence of stopping times for x(t). That is, τ̂n+1 ≥ τ̂n, τ̂n →∞, and

x(t∧ τ̂n) is a martingale for each n. Because x(t) is a local martingale such a sequence exists

(e.g., because x(t) is continuous we can take τ̂n = inf{t : |x(t)| ≥ n}). Further considering

the sequence n ∧ τ̂n, eq. (23) implies

∫ n∧τ̂n∧T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du ≤ NτV (α) + x(n ∧ τ̂n).

Applying Fatou’s lemma,25 along with this inequality, yields

Eτ

[∫ T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du

]
≤ lim inf

n→∞
Eτ

[∫ n∧τ̂n∧T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du

]
≤ NτV (α) + lim inf

n→∞
Eτ [x(n ∧ τ̂n)]

≤ NτV (α).

Note that for T̂ < ∞ we have p̂T̂ = 1 since p̂T̂ = 0 would imply a violation of the

admissibility condition. To establish this, note that eq. (22) implies

−Eτ

[∫ n∧τ̂n∧T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du

]
= Eτ

[
e−r(t∧T̂−τ)Nt∧T̂V (p̂t∧T̂ )−NτV (α)

]
− J1(p̂τ , Nτ ),

and therefore

− Eτ

[∫ T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du

]

≥ lim sup
n→∞

Eτ

[
−
∫ n∧τ̂n∧T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du

]
= lim sup

n→∞
Eτ
[
e−r(n∧τ̂n∧T̂−τ)Nn∧τ̂n∧T̂V (p̂n∧τ̂n∧T̂ )−NτV (α)

]
− J1(p̂τ , Nτ )

≥ Eτ
[
e−r(T̂−τ)NT̂V (p̂T̂ )

]
− J1(p̂τ , Nτ )

=∞,
25The typical formulation of Fatou’s Lemma requires that the integrands fn be weakly positive. However,

if f−n is bounded above by an integrable function g, considering fn + g in Fatou’s lemma delivers the result.
Here, due to the admissibility condition we can take g = Nu(1− pu)θ−u .
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where the first line applies the ‘reverse’ Fatou’s Lemma, the second line uses the equality

in the previous displayed equation, the third line applies Fatou’s Lemma and the final line

follows because V (0) = ∞. Furthermore, p̂u = p̂T̂ = 1 for all u ≥ T̂ since 1 is an absorbing

state. It follows that

Eτ
[∫ ∞

τ

e−r(u−τ)Nuθu(1− p̂u)du
]

= Eτ

[∫ T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du

]
≤ NτV (α). (24)

Furthermore, this inequality is trivially true for T̂ =∞, so it holds regardless of the behavior

of T̂ . It follows that

NτV (α) ≥ Eτ
[∫ ∞

τ

e−r(u−τ)Nuθu(1− p̂u)du
]

= Eτ
[∫ T

τ

Nuθu(1− pu)du
]
,

since p̂ = p for t ≤ T. Hence NτV (α) is an upper bound on the post-acquisition value

function.

To establish the optimality of the trader’s post-acquisition strategy and the expression for

the value function, it remains to show that the expected profits generated by the strategy

attain the bound NτV (α). (We show below that the trader’s overall trading strategy is

admissible.) Compute the trader’s expected profit at time τ. We have

Eτ
[∫ T

τ

θ1(pu)Nu(1− pu) du
]

=

∫ ∞
τ

Eτ
[
1{t≤T}θ

1(pu)Nu(1− pu)
]
du

=

∫ ∞
τ

Eτ [Nu]Eτ
[
1{t≤T}θ

1(pu)(1− pu)
]
du

= Nτ

∫ ∞
τ

Eτ
[
1{t≤T}θ

1(pu)(1− pu)
]
du

= NτEτ
[∫ T

τ

θ1(pu)(1− pu) du
]
,

where the first equality applies Fubini’s theorem which is permissible because the integrand

is positive, the second equality uses the fact that N is independent of T and {pu}, the next-

to-last equality follows because N is a martingale, and the final equality applies Fubini’s

theorem again. Back and Baruch (2004) establish that under the given trading strategy and

pricing rule, V (α) = Eτ
[∫ T

τ
θ1(pu)(1− pu) du

]
. Hence,

NτV (α) = Eτ
[∫ T

τ

θ1(pu)Nu(1− pu) du
]
,

which establishes the optimality of the post-acquisition trading strategy.
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Let JU(N) denote the pre-acquisition value function (i.e., the value function for an unin-

formed trader). Note that because p ≡ 0 for t < τ, JU effectively depends only on the news

process in this case. We need to characterize this function and establish that the overall

posited trading strategy, involving no trade prior to acquisition, is optimal. Under the given

trading strategy, we have

JU(N) = E
[
1{τ<T}

∫ T

τ

θξ(pu)Nu(ξ − pu) du
]

= E
[
1{τ<T}J

ξ(pτ , Nτ )
]

Let θ̌ be any admissible trading strategy that is adapted to FPt and θ̂ any admissible

strategy that is adapted to F It . Then θ = 1{t<τ}θ̌+1{t≥τ}θ̂ is an arbitrary admissible strategy

that obeys the restriction that the trader does not observe ξ until time τ. The expected profits

from following this strategy are

E0

[
1{τ<T}

∫ τ

0

θ̌uNu(ξ − α) du+ 1{τ<T}

∫ T

τ

θ̂uNu(ξ − pu) du+ 1{τ≥T}

∫ T

0

θ̌uNu(ξ − α) du

]
= E0

[
1{τ<T}

∫ T

τ

θ̂uNu(ξ − pu) du
]

= E0

[
1{τ<T}E

[∫ T

τ

θ̂uNu(ξ − pu) du|F Iτ
]]

≤ E0

[
1{τ<T}J

ξ(pτ , Nτ )
]

= JU(N),

where the first equality takes expectations over ξ, the second equality uses the law of iterated

expectations, and the inequality follows since it was shown above that as of time τ, our posited

trading strategy achieves higher expected profit than any other admissible strategy.

Proof of Proposition 3. Let J̄(Nt) denote the value of acquiring information when the

news process is equal to Nt. Using the expression for the post-acquisition value function in

Proposition 2, we have

J̄ (Nt) = Nt

(
α

∫ 1

α

1− a
λ(a)

da+ (1− α)

∫ α

0

a

λ(a)
da

)
≡ NtK.

Make the change of variables x = Φ−1(1− a) in the integrals in the expression for JU(Nt)

K = α

√
σ2
Z

2r

∫ 1

α

(1− a)
1

φ(Φ−1(1− a))
da+ (1− α)

√
σ2
Z

2r

∫ α

0

a
1

φ(Φ−1(1− a))
da
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= −α
√

σ2
Z

2r

∫ −∞
Φ−1(1−α)

Φ(x)dx− (1− α)

√
σ2
Z

2r

∫ Φ−1(1−α)

∞
(1− Φ(x)) dx

= α

√
σ2
Z

2r

∫ Φ−1(1−α)

−∞
Φ(x)dx+ (1− α)

√
σ2
Z

2r

∫ ∞
Φ−1(1−α)

(1− Φ(x)) dx.

Now integrate by parts

K = α

√
σ2
Z

2r

∫ Φ−1(1−α)

−∞
Φ(x)dx+ (1− α)

√
σ2
Z

2r

∫ ∞
Φ−1(1−α)

(1− Φ(x)) dx

= α

√
σ2
Z

2r

(
−
∫ Φ−1(1−α)

−∞
xφ(x) dx+ xΦ(x)

∣∣∣∣Φ−1(1−α)

−∞

)

+ (1− α)

√
σ2
Z

2r

(∫ ∞
Φ−1(1−α)

xφ(x) dx+ x(1− Φ(x))

∣∣∣∣∞
Φ−1(1−α)

)

= α

√
σ2
Z

2r

(
−
∫ Φ−1(1−α)

−∞
xφ(x) dx+ (1− α)Φ−1(1− α)

)

+ (1− α)

√
σ2
Z

2r

(∫ ∞
Φ−1(1−α)

xφ(x) dx− αΦ−1(1− α)

)
=

√
σ2
Z

2r

∫ Φ−1(1−α)

−∞
−xφ(x) dx =

√
σ2
Z

2r
φ(Φ−1(1− α)),

since
∫
−xφ(x)dx =

∫
φ′(x)dx = φ (x).

The pre-acquisition value function under optimal stopping is

JU(n) ≡ sup
τ∈T

E
[
1{τ<T}(KNτ − c) | Nt = n

]
= sup

τ∈T
E
[
e−rτ (KNτ − c)+ | Nt = n

]
,

where the second equality follows because T is independently exponentially distributed and

it suffices to consider only the positive part of KNτ−c since the trader can always guarantee

herself zero profit by not acquiring. Note that this problem is similar to pricing a perpetual

American call option on an asset with price process KNt that follows a geometric Brownian

motion and with strike price c. Hence, standard results (Peskir and Shiryaev (2006), Chapter

4) imply that there is a uniquely optimal stopping time and this time is is a first hitting

time of the Nt process,

TN = inf{t > 0 : Nt ≥ N∗},

where N∗ > 0 is a constant to be determined.
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The value function and optimal N∗ solve the following free boundary problem

rJU = 1
2
σ2
NN

2
t J

U
NN for n < N∗

JU(N∗) = KN∗ − c ‘value matching’

JUN (N∗) = K ‘smooth pasting’

JU(n) > (n− c)+ for n < N∗

JU(n) = (n− c)+ for n > N∗

JU(0) = 0.

To determine the solution in the continuation region n < N∗, consider a trial solution of the

form JU(n) = Anβ. Substituting and matching terms in the differential equation yields

r = 1
2
σ2
Nβ(β − 1), β = 1

2
± 1

2

√
1 + 8r

σ2
N

and the boundary condition at N = 0 requires that one take the positive root

β = 1
2

+ 1
2

√
1 + 8r

σ2
N
.

Applying the above conjecture to the value-matching and smooth pasting conditions implies:

N∗ =
β

β − 1

c

K
, A =

K

β

(
β

β − 1

c

K

)1−β

=
c

β − 1

1

(N∗)β
,

and the resulting function satisfies JU(n) > n−c in the continuation region, which establishes

the result. The comparative statics with respect to c, σN , σZ , and α are immediate from the

explicit expression for N∗. Moreover, since

∂
∂r
N∗ =

c

σ2
Zφ (Φ−1 (1− α))

4
√

2

(
√
r − 2

√
r

8r

σ2
N

+1

)
(
σN −

√
σ2
N + 8r

)
2

(25)

we know that N∗ is decreasing in r when r < 3
8
σ2
N , but increasing otherwise.

Proof of Lemma 5. Note that

Nt ≥ N∗ ⇐⇒ log(Nt) ≥ log(N∗)

⇐⇒ −1

2
σN t+WNt ≥

1

σN
(log(N∗/N0)),
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so that the first time that Nt hits N∗ is the first time that a Brownian motion with drift

−1
2
σN hits 1

σN
(log(N

∗

N0
)). It follows from Karatzas and Shreve (1998) (Chapter 3.5, Part C,

p.196-197) that for N0 < N∗ the density of TN is

Pr (TN ∈ [t, t+ dt]) =

(
log
(
N∗

N0

))
σN
√

2πt3
exp

−
(

1
σN

log
(
N∗

N0

)
+ 1

2
σN t

)2

2t

 dt.

Moreover, since 1
σN

(log(N
∗

N0
)) > 0 but the drift of the Brownian motion is −1

2
σN < 0, it

follows from Karatzas and Shreve (1998) (p.197) that Pr(TN =∞) > 0. Specifically, note

that

Pr (TN <∞) =

∫ ∞
0

(
log
(
N∗

N0

))
σN
√

2πt3
exp

−
(

1
σN

log
(
N∗

N0

)
+ 1

2
σN t

)2

2t

 dt =
N0

N∗
, (26)

which implies Pr (TN =∞) = 1− N0

N∗
.

Proof of Proposition 4. Given the definition of τ , we have that for 0 ≤ t <∞,

Pr (τ ∈ [t, t+ dt]) =
Pr
(
τ ∈ [t, t+ dt]

∣∣TN ≤ T
)

Pr (TN ≤ T )

+ Pr
(
τ ∈ [t, t+ dt]

∣∣TN > T
)

Pr (TN > T )
(27)

= Pr
(
TN ∈ [t, t+ dt]

∣∣TN ≤ T
)

Pr (TN ≤ T ) (28)

= Pr (TN ∈ [t, t+ dt]) Pr (T ≥ t) (29)

= e−rt Pr (TN ∈ [t, t+ dt]) . (30)

Integrating gives us

Pr (τ <∞) =

∫ ∞
0

e−rt

(
log
(
N∗

N0

))
σN
√

2πt3
exp

−
(

1
σN

log
(
N∗

N0

)
+ 1

2
σN t

)2

2t

 dt (31)

=
e
−

log(N∗/N0)
√

8r+σ2
N

2σN√
N∗/N0

=

(
N0

N∗

)β
(32)

The comparative statics for c, N0, σZ and α follow from plugging in the expressions for N∗

and β. To establish the comparative statics for σN , first note that since limσN→0 β =∞,
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limσN→∞ β = 1, and N∗ = β
β−1

c
K

,

lim
σN→∞

Pr (τ <∞) = 0 (33)

lim
σN→0

Pr (τ <∞) =

0 if c > N0K

1 if c ≤ N0K
. (34)

Let

ζ ≡ ∂
∂β

(log (Pr (τ <∞))) = ∂
∂β

(
N0

N∗

)β
= log

(
N0

N∗

)
+ 1

β−1
(35)

which implies limσN→0 ζ = limβ→∞ ζ = log
(
N0K
c

)
, limσN→∞ ζ = limβ→1 ζ =∞, and

∂
∂σN

ζ = ∂ζ
∂β

∂β
∂σN

= − 1
β(1−β)2

∂β
∂σN

> 0. (36)

Since ∂
∂σN

log (Pr (τ <∞)) = ζ ∂β
∂σN

, we have the following results:

• When c ≤ N0K, since ζ ≥ 0 for σN → 0 and ∂
∂σN

ζ > 0 we have ζ > 0 for all σN , which

in turn implies ∂
∂σN

log (Pr (τ <∞)) < 0 for all σN .

• When c > N0K, ζ crosses zero once, from below, as σN increases, which implies
∂

∂σN
log (Pr (τ <∞)) = 0 at exactly this one point. In this case, Pr (τ <∞) is hump-

shaped.

Similarly, for r, ∂
∂r

log(Pr(τ <∞)) = ζ ∂
∂r
β− β

2r
. We have ∂

∂r
ζ = − 1

β(β−1)2
∂
∂r
β− 1

2r
< 0. Since

∂
∂r
β = 1

σ2
N(β− 1

2)
> 0 this implies ∂

∂r
log(Pr(τ < ∞)) crosses zero as most once as r increases

and from above if it does so. Consider the limit as r tends to zero,

lim
r→0

∂
∂r

log(Pr(τ <∞)) = lim
r→0

(
ζ ∂
∂r
β − β

2r

)
= lim

r→0

2rζ − σ2
Nβ
(
β − 1

2

)
2σ2

Nr
(
β − 1

2

) . (37)

If it can be shown that the numerator in eq. (37) has a finite, positive limit it will follow

that the overall limit is ∞. Considering the numerator, we have

lim
r→0

(
2rζ − σ2

Nβ
(
β − 1

2

))
= 2 lim

r→0
r
(

1
β−1
− log β

β−1
− log

√
2r
)
− 1

2
σ2
N

= σ2
N − 2 lim

r→0

1
β(β−1)

1
r2

− 1
2
σ2
N

= 1
2
σ2
N − 2 lim

r→0

2r

(2β − 1) ∂
∂r
β

= 1
2
σ2
N
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where the second equality applies l’Hôspital’s rule to the three different terms and uses the

fact ∂
∂r
β → 2

σ2
N

as β → 1. The third equality rearranges the expression in the remaining limit

to place r2 in the numerator and uses l’Hôspital’s rule again. Returning to eq. (37), this

implies limr→0
∂
∂r

log(P(τ <∞)) =∞.
Now, consider limr→∞

∂
∂r

log(Pr(τ <∞)). We have

lim
r→∞

ζ = lim
r→∞

(
1

β−1
− log β

β−1
− log

√
2r
)

= lim
β→∞

(
1

β−1
− log β

β−1

)
− lim

r→∞
log
√

2r = −∞.

Because ∂
∂r
β > 0, it follows that limr→∞

∂
∂r

log(Pr(τ < ∞)) = −∞, which completes the

proof.

Proof of Proposition 5. Using the expression for the asset price in Proposition 2,

dPt =

ασNNtdWNt 0 ≤ t < τ

σNNtp(Yt)dWNt +Ntλ
∗(pt)σZ dWY t τ ≤ t < T

,

where WY t ≡ Yt/σZ is a standard Brownian motion under the public filtration and is

independent of WNt. Hence,

dPt
Pt

=

σNdWNt 0 ≤ t < τ

σNdWNt + λ∗(pt)
pt

σZ dWY t τ ≤ t < T
.

Letting νt denote the instantaneous variance of the return process gives:

νt ≡


σ2
N 0 ≤ t < τ

σ2
N +

(
λ(pt)
pt

)2

σ2
Z = σ2

N + 2r

(
φ(Φ−1(pt))

pt

)2

τ ≤ t
(38)

Let f (p) ≡ φ (Φ−1 (p)), and note that fp = −Φ−1 (p) and fpp = − 1
f
. Conditional on

information acquisition, note that by Ito’s Lemma, we have:

dνt = νpdpt + 1
2
νpp (λ (pt))

2 σ2
Zdt = νpdpt + rf (p)2 νppdt, (39)

where νp = 4r
(
f
p

)(
fpp−f
p2

)
< 0, and

νpp = 4r
(
fpp−f
p2

)2

+ 4r
(
f
p

)(
p2(fppp+fp−fp)−2p(fpp−f)

p4

)
. (40)

Since νp < 0, the above implies that conditional on information acquisition, instantaneous
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return variance νt and returns are negatively related i.e., cov
(
dpt
pt
, dνt

)
< 0.

Proof of Proposition 6. For the no acquisition case,

E
[∣∣ξNT − PT−

∣∣∣∣TN > T
]

= E
[
NT

∣∣ξ − α∣∣∣∣TN > T
]

= 2α (1− α)E
[
NT

∣∣TN > T
]

(41)

Next, note that

E [NT ] = Pr (TN < T )E
[
NT

∣∣TN < T
]

+ Pr (TN ≥ T )E
[
NT

∣∣TN ≥ T
]

(42)

⇒ E
[
NT

∣∣TN > T
]

=
N0 − Pr (TN < T )N∗

Pr (TN ≥ T )
(43)

=
N0 −

(
N0

N∗

)β
N∗

1−
(
N0

N∗

)β (44)

since E [NT ] = N0, E
[
NT

∣∣TN < T
]

= N∗ and Pr (TN < T ) =
(
N0

N∗

)β
. This produces the

desired expression.

Conditional on information acquisition, the expected announcement effect is

E
[∣∣ξNT − PT−

∣∣∣∣τ <∞] = E
[
NT

∣∣ξ − p (YT )
∣∣∣∣TN < T

]
(45)

= 2E
[
NTp (YT ) (1− p (YT ))

∣∣∣∣TN < T
]

(46)

= 2E
[
ETN

[
NTp (YT ) (1− p (YT ))

∣∣TN < T
] ∣∣∣∣TN < T

]
(47)

= 2E
[
NTNETN

[
p (YT ) (1− p (YT ))

∣∣TN < T
] ∣∣∣∣TN < T

]
(48)

= 2N∗E
[
p (YT ) (1− p (YT ))

∣∣TN < T
]

(49)

the first and second equalities use the law of iterated expectations, the third equality uses

the fact that conditional on σ
(
FPTN∪{TN < T}

)
, NT −NTN and YT are independent, the

fourth equality uses the fact that N is a martingale, and the final equality uses NTN = N∗.

Suppose τ ∈ [t, t+ dt]. Given the characterization of pt in Proposition 2, we can express

ps for s ≥ t as ps = Φ
(√

2r
σZ
zs

)
, where

zs
∣∣ {τ ∈ [t, t+ dt]} ∼ N

(
Φ−1 (α) er(s−t),

σ2
Z

2r

(
e2r(s−t) − 1

))
. (50)

Next, note that for w ∼ N (0, 1), we have

E [Φ (a+ bw) [1− Φ (a+ bw)]] = Φ
(

a√
1+b2

)
−
[
Φ
(

a√
1+b2

)
− 2T o

(
a√

1+b2
, 1√

1+2b2

)]
(51)
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from Owen (1980) 10,010.8 and 20,010.4, where T o (a, b) is the Owen T function. Let z̃s ≡
zs−er(s−t)z0√
σ2
Z

2r (e2r(s−t)−1)
∼ N (0, 1), and note that p (zs) = Φ (a+ bz̃s). This implies

G (t, s) ≡ Et [ps (1− ps) |τ ∈ [t, t+ dt] , s > t] = 2T o
(

Φ−1 (α) , 1√
2e2r(s−t)−1

)
. (52)

Since the stopping time T is exponentially distributed, we have

Et [p (YT ) (1− p (YT )) |T > t, τ ∈ [t, t+ dt]]

= e−rt
∫ ∞
s=t

re−r(s−t)Et
[
p (Ys) (1− p (Ys))

∣∣τ ∈ [t, t+ dt]
]
ds (53)

=

∫ ∞
0

re−rsG (0, s) ds (54)

= 2

∫ ∞
0

re−rsT o
(

Φ−1 (α) , 1√
2e2rs−1

)
ds (55)

= 2

∫ ∞
0

e−xT o
(

Φ−1 (α) , 1√
2e2x−1

)
dx, where x = rs (56)

≡ h (α) (57)

This implies that

E
[
p (YT ) (1− p (YT ))

∣∣τ < T
]

=

∫ ∞
0

Et [p (YT ) (1− p (YT )) |T > t, τ ∈ [t, t+ dt]] Pr (τ ∈ [t, t+ dt] |T > τ) dt (58)

= h (α)

∫ ∞
0

Pr (τ ∈ [t, t+ dt] |T > τ) dt = h (α) (59)

which implies E
[
|ξNT − PT− |

∣∣τ < T
]

= 2N∗h (α).

Note that the announcement effect is bigger conditional on no acquisition if and only if:

2N∗h (α) < 2α (1− α)N∗
N0

N∗
−
(
N0

N∗

)β
1−

(
N0

N∗

)β ⇔ h (α)

α (1− α)
<

N0

N∗
−
(
N0

N∗

)β
1−

(
N0

N∗

)β (60)

⇔ h(α)
α(1−α)

(
1−

(
N0

N∗

)β)
< N0

N∗
−
(
N0

N∗

)β
(61)

⇔ h(α)
α(1−α)

< N0

N∗
−
(
N0

N∗

)β (
1− h(α)

α(1−α)

)
(62)
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For a fixed α, since

N0

N∗
= N0

β−1
βc
K =

N0

c

1
2

(
1 +

√
1 + 8 r

σ2
N

)
− 1

1
2

(
1 +

√
1 + 8 r

σ2
N

) σZ√
2r
φ
(
Φ−1 (α)

)
, (63)

implies that N0

N∗
→ 0 when r → 0, r → ∞, σN → ∞,c → ∞ or σZ → 0. Moreover, since

β > 1 and N0

N∗
< 1, we have

(
N0

N∗

)β → 0 when
(
N0

N∗

)
→ 0. Now, fix α and pick a δ such that

0 < δ < h(α)
α(1−α)

. Then, the above implies that for sufficiently extreme r, sufficiently large

σN , sufficiently large c or sufficiently small σZ , N0

N∗
−
(
N0

N∗

)β (
1− h(α)

α(1−α)

)
< δ, and so the

announcement effect is bigger conditional on acquisition.

B Unobservable acquisition in discrete time

In this appendix, we establish that there does not exist an equilibrium with pure-strategy

information acquisition in the discrete-time model of Caldentey and Stacchetti (2010) when

the time between trading rounds, ∆, is sufficiently small. Note that Lemmas 1 and 2 ap-

ply to this setting: never acquiring information, or acquiring it with a delay, cannot be

an equilibrium. In either case, the strategic trader can unobservably deviate by acquiring

information earlier, and trade profitably against an insensitive pricing rule. The rest of the

appendix establishes that information acquisition at date zero is not an equilibrium when the

length between trading rounds is sufficiently small. The argument follows that of Lemma 3:

instead of acquiring immediately, the strategic trader can wait for a period and re-evaluate

her decision. The expected gain from delaying acquisition is of order ∆, but the expected

loss from not trading in the first period is of order smaller than ∆. As a result, when ∆ is

sufficiently small, the deviation is strictly profitable.

B.1 Setup

Consider the setting in Caldentey and Stacchetti (2010). Time is discrete and trade takes

place at dates tn = n∆ for n ≥ 0 and ∆ > 0. There is a risky asset that pays off V ∼ N(0,Σ0)

immediately after trading round T , where T is random. Specifically, T = η∆, where η is

geometrically distributed with failure probability ρ = e−r∆.26 There is a risk-neutral strategic

trader who observes V . Let xn denote her trade at date tn. There are noise traders who

26There are at least two different distributions that are often referred to as “the geometric distribution”.
The one we use here is supported on the nonnegative integers n ∈ {0, 1, 2, . . . } and has probability mass
function fn = ρn(1− ρ) and cdf Fn = 1− ρn+1.
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submit iid trades zt ∼ N(0,Σz) with Σz = σ2
z∆. Let yn = xn + zn denote the time n order

flow. Competitive risk-neutral market makers set the price pn in each trading round equal

to the conditional expected value. Following Caldentey and Stacchetti (2010), we focus on

linear, Markovian equilibria in which the time tn price depends only on pn−1 and yn. Let V̄n

and Σn denote the market maker’s conditional expectation and variance, immediately before

the time tn trading round. So, V̄n = pn−1. Finally, set p−1 = E[V ] = 0.

Caldentey and Stacchetti (2010) show that there exists an equilibrium in which the asset

price and trading strategy are given by

pn(V̄n, yn) = V̄n + λnyn

xn(V, V̄n) = βn(V − V̄n),

the trader’s expected profit is

Πn(pn−1, V ) = αn(V − pn−1)2 + γn,

and the constants are characterized by the difference equations

Σn+1 =
ΣnΣz

β2
nΣn + Σz

βn+1Σn+1 = ρβnΣn

(
Σ2
z

Σ2
z − β4

nΣ2
n

)
λn =

βnΣn

β2
nΣn + Σz

αn =
1− λnβn

2λn

ργn+1 = γn −
1− 2λnβn

2λn(1− λnβn)
λ2
nΣz

γ0 =
∞∑
k=0

ρk
(

1− 2λkβk
2λk(1− λkβk)

)
λ2
kΣz

B.2 Nonexistence of equilibrium with unobservable acquisition

In this section, we show that for sufficiently small ∆ > 0 there does not exist an equilibrium in

which information acquisition follows a pure strategy. First, note that the same preemption

argument used in the tex rules out a pure strategy equilibrium in which the trader acquires

information after round n = 0. Hence, we need only to search for equilibria in which the

trader acquires with probability 1 at the beginning of round n = 0.

Suppose that there is such an equilibrium. The ex-ante expected profit from acquiring

45



information immediately before the t = 0 trading round is

Π̄0 ≡ E[Π0(p−1, V )]− c = α0E[(V − p−1)2] + γ0 − c

= α0Σ0 + γ0 − c.

We would like to compare this to the expected profit if the trader deviates by remaining

uninformed for the n = 0 trading round and then acquiring immediately before round n = 1.

Supposing that she does so, trades x units at time zero, and then follows the prescribed

equilibrium trading strategy in the following rounds, the expected profit is

E[x(V − p0(V̄0, x+ z0))] + E

[
∞∑
n=1

ρn(V − pn)xn − ρc

]

= E[x(V − λ0(x+ z0))] + ρE

[
∞∑
n=1

ρn(V − pn)xn − c

]
= E[x(V − λ0(x+ z0))] + ρE[Π1(p0, V )− c]

= E[x(V − λ0(x+ z0))] + ρE[α1(V − p0)2 + γ1 − c]

= E[x(V − λ0(x+ z0))] + ρE[α1(V − λ0(x+ z0))2 + γ1 − c]

= −x2λ0 + ρ
(
α1(Σ0 + λ2

0Σz + λ2
0x

2) + γ1 − c
)
,

Take x = 0. This yields ex-ante deviation profits

Π̄d0 = ρ
(
α1(Σ0 + λ2

0Σz) + γ1 − c
)
.

This deviation is profitable if and only if

Π̄d0 − Π̄0 > 0

⇐⇒ ρ
(
α1(Σ0 + λ2

0Σz) + γ1 − c
)
− (α0Σ0 + γ0 − c) > 0

⇐⇒ (ρα1 − α0)Σ0 + ργ1 − γ0 + ρα1λ
2
0Σz + (1− ρ)c > 0.

We have

ρα1 − α0 = ρ
1− λ1β1

2λ1

− 1− λ0β0

2λ0

= ρ
1− β2

1Σ1

β2
1Σ1+Σz

2 β1Σ1

β2
1Σ1+Σz

−
1− β2

0Σ0

β2
0Σ0+Σz

2 β0Σ0

β2
0Σ0+Σz

=
ρ

2

Σz

β1Σ1

− 1

2

Σz

β0Σ0
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=
1

2
Σz

1

β0Σ0

(
ρβ0Σ0

β1Σ1

− 1

)
=

1

2
Σz

1

β0Σ0

(
Σ2
z − β4

0Σ2
0

Σ2
z

− 1

)
= −1

2

β3
0Σ0

Σz

,

where the first equality substitutes in from the difference equation for αn, the second equality

substitutes from the equation for λn, the third and fourth simplify and collect terms, the

fifth equality uses the difference equation for βn+1Σn+1, and the final equality simplifies and

collects terms.

Similarly,

ργ1 − γ0 = − 1− 2λ0β0

2λ0(1− λ0β0)
λ2

0Σz

= −1

2

1− 2λ0β0

1− λ0β0

λ0Σz

= −1

2

1− 2
β2

0Σ0

β2
0Σ0+Σz

1− β2
0Σ0

β2
0Σ0+Σz

λ0Σz

= −1

2

Σz − β2
0Σ0

Σz

λ0Σz

= −1

2
(Σz − β2

0Σ0)λ0,

where the first equality uses the difference equation for γn, the second equality cancels a λ0,

the third equality substitutes for λ0, and the last two equalities simplify.

Furthermore, recalling from the calculations for ρα1 − α0 that ρα1 = ρ
2

Σz
β1Σ1

we have

ρα1λ
2
0Σz =

ρ

2

Σz

β1Σ1

λ2
0Σz

=
1

2

Σ2
z

β0Σ0

(
Σ2
z

Σ2
z−β4

0Σ2
0

)λ2
0

=
1

2

1

β0Σ0

(Σ2
z − β4

0Σ2
0)λ2

0

=
1

2

1

β0Σ0

(Σ2
z − β4

0Σ2
0)

β0Σ0

β2
0Σ0 + Σz

λ0

=
1

2
(Σ2

z − β4
0Σ2

0)
1

β2
0Σ0 + Σz

λ0,

where the second equality substitutes from the difference equation for βnΣn, the third equal-
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ity simplifies, the fourth equality substitutes for λ0, and the final equality simplifies.

Combining the most recent two displayed expressions, we have

ργ1 − γ0 + ρα1λ
2
0Σz =

1

2
(Σ2

z − β4
0Σ2

0)
1

β2
0Σ0 + Σz

λ0 −
1

2
(Σz − β2

0Σ0)λ0

=
1

2
λ0

1

β2
0Σ0 + Σz

(Σ2
z − β4

0Σ2
0 − (Σz − β2

0Σ0)(β2
0Σ0 + Σz))

=
1

2
λ0

1

β2
0Σ0 + Σz

(Σ2
z − β4

0Σ2
0 − β2

0ΣzΣ0 − Σ2
z + β4

0Σ2
0 + β2

0ΣzΣ0)

= 0.

It follows that

Π̄d0 − Π̄0 = (ρα1 − α0)Σ0 + ργ1 − γ0 + ρα1λ
2
0Σz + (1− ρ)c

= −1

2

β3
0Σ2

0

Σz

+ (1− ρ)c. (64)

We would like to study the behavior of the above expression as ∆→ 0. To make clear the

dependence of the various coefficients h0 on ∆, we write h∆
0 as applicable in the following.

Lemma 6. There exists a strictly increasing function ψ such that

β0 =

√
ΣZ

Σ0

ψ(Σ0).

Furthermore, ψ(0) = 0 and we have

ψ(Σ0) ≤ [1− ρ]1/4
√

Σ0.

Proof. This proof leans heavily on the Appendix of Caldentey and Stacchetti (2010) but

specialized to the case in which there is no flow of private information (Σv ≡ 0). As such,

we point out only the essential differences in the analysis.

Define

An = Σn, Bn =
βnΣn√

Σz

Then the difference equations for Σn and βnΣn imply that (An+1, Bn+1) = F (An, Bn),

where

FA(An, Bn) =
A2
n

An +B2
n

, FB(An, Bn) = ρ

[
A2
nBn

A2
n −B4

n

]
.
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Note that these are similar to those in Caldentey and Stacchetti (2010), with the exception

that there is no +1 term in FA owing to the absence of a flow of private information Σv.

Further, define

G1(A) = 0, G2(A) =
√
A[1− ρ]1/4, G3(A) =

√
A,

where the functionG1 is defined so that FA(A,G1(A)) = A andG2(A) is such that FB(A,G2(A)) =

G2(A). (Note that there is a typo in this definition in Caldentey and Stacchetti (2010) which

claims that FB(A,G2(A)) = B. However, this cannot hold in general since B is on only one

side of the equation.) Finally, G3(A) is defined so that a point (A,B) is feasible (i.e., leads

to a strictly positive value of Σn+1βn+1 in its difference equation) if and only if B < G3(A).

These curves divide R2
+ into three mutually exclusive regions, the union of which com-

prises all of R2
+. First, define the infeasible region R5 = {(A,B) : A ≥ 0, B ≥ G3(A)}.

Second, define region R1 = {(A,B) : A ≥ 0, G2(A) < B < G3(A)}. In this region, F (A,B)

is always to the left and higher than (A,B) and the given expression for F implies that start-

ing the iteration (An+1, Bn+1) = F (An, Bn) in R1 will eventually lead the sequence to enter

the infeasible region R5. Finally, define R2 = {(A,B) : A ≥ 0, 0 = G1(A) < B ≤ G2(A)}.
Note that any sequence (An, Bn) always remains feasible, as shown by Caldentey and Stac-

chetti (2010). Hence, any candidate (A0, B0) must lie in R2.

To put the above more clearly in the setting of Figure 1 in Caldentey and Stacchetti

(2010), note that in our case, the function G1(A) is shifted identically downward to zero.

This completely eliminates the regions R3 and R4 in their plot. Furthermore, the stationary

point (Â, B̂) in our case is defined by the point at which G1(A) and G2(A) intersect. This

point is precisely (0, 0). That is, with no flow of information to the insider, in the stationary

limit the trader perfectly reveals her information and the market maker faces no residual

uncertainty.

To complete the proof, we need to find a curve C ⊂ R2 such that (0, 0) ∈ C and F (C) ⊂ C.
Note further that because for sequences inR2, we have (An+1, Bn+1) = (FA(An, Bn), FB(An, Bn)) <

(An, Bn) we know that such a curve must be strictly increasing. Furthermore, because F is

continuous we know that such a curve exists. This curve can be defined by an increasing

function 0 ≤ ψ(A) ≤ G2(A) with ψ(0) = 0 so that C = {(A,B) : A ≥ 0, B = ψ(A)}.
Clearly if we take B0 = ψ(A0) then the associated sequence always lies in C and we have

(An, Bn) ↓ 0, the stationary point. Hence, returning to the definitions of A0 and B0, this

implies that we need to set

β0Σ0√
ΣZ

= ψ(Σ0)
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⇒ β0 = Ψ(Σ0) ≡
√

ΣZ

Σ0

ψ(Σ0).

The claimed inequality holds because it was shown above that 0 ≤ ψ(A) ≤ G2(A).

We will now proceed with analyzing the behavior of the deviation profit in eq. (64) as ∆

shrinks. Recall that for a positive function of ∆ > 0, h∆, we define h∆ ∼ O(∆p) for p > 0

as ∆→ 0 if and only if

lim sup
∆→0

h∆

∆p
<∞.

The following result establishes a property of the limiting behavior of β∆
0 as ∆→ 0.

Lemma 7. We have

β∆
0 ∼ O(∆3/4), as ∆→ 0.

Proof. From Lemma 6 we know

0 < β∆
0 =

√
ΣZ

Σ0

ψ(Σ0)

=
σz
√

∆

Σ0

ψ(Σ0)

≤ σz
√

∆

Σ0

[1− ρ]1/4
√

Σ0

=
σz√
Σ0

√
∆[1− e−r∆]1/4.

We have [1− e−r∆]1/4 ∼ O(∆1/4) from which it follows that

0 ≤ lim sup
∆→0

β∆
0

∆3/4
≤ σz√

Σ0

lim sup
∆→0

√
∆[1− e−r∆]1/4

∆3/4
<∞,

which establishes the result.

Proposition 7. For all ∆ > 0 sufficiently small we have

Π̄d0 − Π̄0

∆
=
−1

2

(β∆
0 )3Σ2

0

σ2
z∆

+ (1− e−r∆)c

∆
> 0.

Proof. From Lemma 7 we know β∆
0 ∼ O(∆3/4). It follows that (β∆

0 )3 ∼ O(∆9/4). Hence

lim inf
∆→0

(
−1

2

(β∆
0 )3Σ2

0

σ2
z∆

2

)
= −1

2

Σ2
0

σ2
z

lim sup
∆→0

(β∆
0 )3

∆2
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= −1

2

Σ2
0

σ2
z

lim sup
∆→0

(β∆
0 )3

∆9/4
∆1/4

= 0.

Similarly since 1−e−r∆
∆
→ rc, we have

lim inf
∆→0

(1− e−r∆)c

∆
= rc.

Combining the above two results yields

lim inf
∆→0

Π̄d0 − Π̄0

∆
= rc > 0,

which establishes the result.

C Unobservable acquisition in Kyle (1985)

In this appendix, we study unobservable information acquisition in the continuous-time

version of Kyle (1985). As in the case of a random horizon considered in the body of the

paper, we first establish that the only candidate pure strategy equilibria involve acquisition

at the beginning of the trading game. We then show that when the cost of information is

sufficiently high, there does not exist a pure strategy equilibrium with acquisition at time

zero, and therefore there does not exist any pure strategy equilibrium. The intuition for

this result is a stronger version of the deviation argument in the text – when the cost of

information is sufficiently high, it is profitable for the trader to deviate by never acquiring

information.

Trading takes place on the interval [0, 1]. That is, following Kyle (1985) and Back (1992)

the terminal date T is fixed and normalized to 1. As the end of trading the asset pays off

v, where v ∼ N(0,Σ0). There is a risk-neutral strategic trader who maximizes her expected

trading profit and at any time can choose to pay c > 0 to observe v. As above, we assume

that she trades smoothly so that her cumulative holdings Xt =
∫ t

0
θu du for trading rate

θu. There are noise traders whose cumulative holdings Zt follow a Brownian motion with

variance σ2
Z . Prices are set by a risk neutral market maker who observes the cumulative

order flow Yt = Xt + Zt and sets Pt = E[v|FPt]. Because we are considering unobservable

acquisition, public information includes only the order flow so FPt is the augmentation of the

filtration σ({Yt}). As is standard, we search for equilibria in which the time-t asset price is a

smooth function of the cumulative order flow up to that point. Thus, in the notation in the
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text, the conditional expected payoff is f(t, ξ, N) = ξ, where ξ = v and there is no public

signal, and the endogenous state variable is simply the cumulative order flow, pt = Yt.

An identical argument to that in Lemmas 1 and 2 immediately implies that any pure-

strategy equilibrium cannot involve acquisition after time zero. Otherwise the strategic

trader has a profitable deviation from any conjectured equilibrium since she can preemptively

acquire information, trade against an unresponsive pricing rule, and make unboundedly large

profits.

Now, suppose that there is a pure strategy equilibrium in which the trader acquires

information immediately at t = 0. In such an equilibrium, the pricing rule and the trader’s

post-acquisition value function are those from Kyle (1985) (or the special case of Back (1992)

with normally-distributed payoff).

Hence,

P (t, y) = λy,

where λ =
√

Σ0

σ2
Z

and

Jv(t, y) =
1

2

√
σ2
Z

Σ0

(
v −

√
Σ0

σ2
Z
y
)2

+
1

2

√
Σ0σ2

Z(1− t).

The ex-ante (gross) expected profit from being informed is therefore

J(0, 0) = E[Jv(0, 0)]

=
1

2

√
σ2
Z

Σ0
Σ0 +

1

2

√
Σ0σ2

Z

=
√

Σ0σ2
Z .

We would like to compare the above to the expected payoff if the trader deviates, remains

uninformed for the duration of the trading game, and trades against the posited equilibrium

price function. Following the argument of Lemma 1 in Back (1992), it is straightforward to

construct the trader’s value function under this deviation. It is

Jd,U(t, y) = J0(t, y) =
1

2

√
Σ0

σ2
Z
y2 +

1

2

√
Σ0σ2

Z(1− t).

At time zero, this becomes

Jd,U(0, 0) =
1

2

√
Σ0σ2

Z ,
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which is half of the informed trader’s ex-ante gross profit.

Notice that because the trader is risk-neutral, under the given price process her optimal

trading profit depends only on her conditional expectation of the asset value (as well as the

cumulative order flow and the calendar time), so her value function is identical to that for a

trader who acquires information but for whom the realized signal does not change her prior

expectation (v = 0). The fact that this trading profit is not zero is a consequence of the fact

that in a dynamic model the trader expects profitable trading opportunities to arise in the

future when the realized noise trade pushes the price away from zero.

With the above value functions, we arrive immediately at the following.

Proposition 8. Suppose that the asset price is a smooth function of calendar time and the

cumulative order flow, Assumption 2 holds, and c > 1
2

√
Σ0σ2

Z. Then, there does not exist an

equilibrium in which information acquisition follows a pure strategy.

Proof. We have already ruled out pure strategy equilibria in which the trader acquires with

some delay. Suppose that there is an equilibrium in which the trader acquires information

immediately. The analysis of Back (1992) implies that under the stated assumptions the

asset price and the informed trader’s value functions must be of the form above. Consider

the trader’s expected profit from unobservably deviating and never acquiring information.

The net expected profit from this deviation is

Jd,u(0, 0)− (J̄(0, 0)− c) = c− 1

2

√
Σ0σ2

Z > 0,

so the trader is better off by undertaking the deviation.

Importantly, note that the above result implies that when c > 1
2

√
Σ0σ2

Z , the financial

market equilibrium in Kyle (1985) cannot arise as a consequence of endogenous information

acquisition.
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