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Abstract

This paper provides the first estimates of within-industry heterogeneity in energy and
CO2 productivity for industries spanning the entire U.S. manufacturing sector. We
measure energy and CO2 productivity as output per dollar energy input or per ton of
CO2 emitted. Three main findings emerge. First, within narrowly defined industries,
heterogeneity in energy and CO2 productivity across plants is enormous. Second, het-
erogeneity in energy and CO2 productivity significantly exceeds heterogeneity in most
other productivity measures, like labor or total factor productivity. Third, heterogene-
ity in energy and CO2 productivity has substantial normative and positive implications
for many environmental policies targeting industries rather than plants, including tech-
nology standards and carbon border adjustments.
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This paper provides the first estimates of within-industry heterogeneity in energy and

CO2 productivity for industries spanning the entire U.S. manufacturing sector. We define

energy and CO2 productivity as log dollars of output per dollar of energy input or per ton

of CO2 emitted.1 Three key takeaways emerge. First, within narrowly defined industries,

heterogeneity across plants in energy and CO2 productivity is enormous. For example, to

produce one dollar of output, a plant at the 10th percentile of a typical industry’s energy

productivity distribution spends 580% more on energy than a plant at the 90th percentile

of the same industry. Second, these values significantly exceed heterogeneity in most other

measures of productivity. For example, the corresponding 90-10 differences for labor and

total factor productivity are 400 percent and 150 percent, respectively. Third, heterogeneity

in energy and CO2 productivity has important implications for industry-based environmental

regulations. Many countries have considered pairing a carbon tax on domestic output with

a tariff on imports which is proportional to the carbon content of the imports. We show

that an industry-based carbon tariff, which abstracts from within-industry heterogeneity,

will substantially differ from the correct (plant-level) Pigouvian tax for many plants.

There are many existing environmental regulations that exist as industry-level standards

and apply uniformly to plants within an industry. For example, the U.S. Clean Air Act

requires plants in regulated industries and regions to meet an industry-level technology

standard by installing “Best Available Control Technologies.” Similarly, the Clean Water

Act’s Industrial Effluent Guidelines require plants to meet an industry-level technology stan-

1Energy and CO2 productivity are the inverse of energy and CO2 intensity. We use the former metric to
facilitate comparisons to other single-factor and total-factor productivity measures.
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dard. Several tradable permit markets use industry-level rebates to compensate firms.2 Due

to substantial data requirements, researchers and policy makers have a limited understand-

ing of the extent of producer heterogeneity in energy and CO2 productivity. We show that

plants within an industry have very different pollution emissions rates, and therefore such

industry-level regulations will be too stringent for some plants and too lenient for others.

We use confidential, plant-level data from the U.S. Census of Manufacturers (CM) and

the Manufacturing Energy Consumption Survey (MECS) to explore this heterogeneity. We

distinguish about 375 6-digit NAICS industries. One industry, for example, manufactures

carbon black; another makes ethyl alcohol. Our main results calculate plant-level energy

expenditures on raw fuels and electricity as reported in CM and MECS. We also calculate

plant-level CO2 emissions through converting each fuel consumption choice to CO2 equiva-

lents using emissions factors (e.g., tons CO2 emitted per ton of coal burned).

A few estimates near the paper’s end analyze carbon tariffs, and these estimates also

account for energy consumption and emissions required to produce intermediate inputs that

are used for final good production, sometimes called “indirect emissions.” For example, in

most of the paper, our measure of emissions for the cookware industry includes coal, gas,

oil, and electricity used to shape a pan. Indirect emissions for the cookware industry also

include fossil fuels used to make aluminum, which is then purchased as an intermediate input

to make a pan. We calculate indirect emissions in two separate ways. The first is standard:

we invert the U.S. input-output table to compute the dollars of coal, oil, and natural gas

inputs required to produce a dollar of output in each industry. This accounts for energy

used to produce inputs, and inputs to inputs, etc. Our second measure of indirect energy is

non-standard: we use plant-level data on the dollar value of each individual material input

the plant uses, along with associated industry codes for each material, which are all part

of the CM Materials Trailer. We combine this information with the inverted input-output

2California’s AB-32 cap-and-trade distributes additional permit allocations to energy intensive, trade-
exposed industries using an industry-level assistance factor to help combat against regulatory leakage. These
assistance factors are applied at the industry-level when determining permit allocations for a facility.
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table to calculate indirect energy and emissions separately for each plant.

This paper builds on several literatures. One explores the implications of firm heterogene-

ity for environmental policy, and either argues for market-based instruments like pollution

taxes or cap-and-trade markets (Carlson, Burtraw, Cropper, and Palmer, 2000; Goulder and

Parry, 2008) or analyzes industry-based regulation when firms are heterogeneous (Shapiro

and Walker, 2016). Several papers within this literature specifically analyze border adjust-

ments (Cosbey, Droege, Fischer, and Munnnings, 2017; Kortum and Weisbach, 2017). This

paper also relates to work analyzing the efficiency of imperfectly targeted environmental

policies (Jacobsen, Knittel, Sallee, and van Benthem, 2017). A related literature shows

that total factor productivity is heterogeneous across establishments, even within narrowly-

defined or homogenous industries (Syverson, 2011). Existing analysis of heterogeneity in

industrial energy productivity is limited, though includes studies of a few specific manufac-

turing industries like glass (Boyd and Pang, 2000). The remainder of the paper discusses

data, methodology, and results.

1 Data and Methodology

We measure plant-level energy inputs using data from the 2007 CM and the 2006 MECS. The

CM includes the roughly 350,000 U.S. manufacturing plants operating in 2007, while MECS

includes a probabilistic sample of around 15,000 plants. We join MECS and the CM at the

plant level, using a unique plant identifier. All of our MECS estimates use survey weights

designed to make statistics representative of the broader manufacturing sector. The CM

reports each plant’s value of shipments, capital stock, production hours, and expenditure on

electricity, fuels, and materials. We exclude any observation identified as an “administrative

record” since many of their values are imputed. We also exclude records where output, fuel

expenditures, or electricity expenditures are recorded as imputed.

The CM and MECS both report plant-level expenditure on fuels and on electricity, which
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we use to compute CO2 emissions. MECS further reports physical quantities and expendi-

tures for each fuel, which we convert to CO2 (see Appendix for details). Since the CM does

not report expenditures by fuel type, we use MECS to calculate industry-level averages of

CO2 per dollar of fuel expenditure, and we multiply each CM establishment’s fuel expen-

diture by these averages. For electricity inputs, we use the EPA’s eGrid database—which

assigns annual total output emissions rates (CO2 per KWh) to 26 regions of the country—to

calculate the mean marginal emissions based on plant location of electricity consumption.

We account for indirect emissions only in our estimates of carbon tariffs. We do this in

two separate ways. First, we use the 2007 U.S. benchmark input-output data of the Bureau

of Economic Analysis. We invert the input-output table to compute the total dollars of coal,

oil, and natural gas inputs required to produce a dollar of output in each industry. We apply

emissions coefficients from the Energy Information Agency and Environmental Protection

Agency (EPA) to calculate the total CO2 emitted per dollar of output in an industry. Our

second measure of indirect emissions comes from the CM Materials Trailer, which provides

plant-level detail on the dollar value of each material input, along with associated input

industry codes. We multiply these expenditures by the corresponding industry emissions

rate from the inverted input-output table. Thus, while emissions rates are constant across

intermediate input industries, plant-level variation in intermediate input intensity generates

additional heterogeneity in energy and emissions productivity.

We use all these data to construct multiple measures of energy and emissions productivity.

For comparability with common productivity measures, we construct productivity measures

as the log of the value of shipments per dollar of direct energy input, or per metric ton

of CO2 emitted. We also discuss estimates that define productivity as log dollars of value

added per unit of energy input or CO2 emissions. We calculate value added by subtracting

expenditures on materials, parts, and energy from the plant’s total value of shipments.

For each industry, we measure productivity heterogeneity by calculating the 90th and

4



10th percentile of energy and CO2 productivity across plants within the same industry.3 We

also compute the within-industry standard deviation of all productivity measures for each of

the 375 industries. Lastly, we summarize these industry-level dispersion measures by taking

the unweighted mean across all industries. This latter statistic provides some insight on

within-industry heterogeneity in productivity for the mean industry.

2 Results

Table 1 shows the mean and dispersion of seven different productivity measures. This table

accounts for only “direct” CO2 or other inputs at a plant. Columns 1-6 calculate productiv-

ity as the log of the plant’s value of shipments divided by some measure of a plant’s factor

demand, CO2 emissions, or intermediate inputs. Columns 2 and 3 report value of shipments

per ton of CO2 produced, where CO2 is calculated using the CM and MECS samples, re-

spectively. Columns 4-6 report other single factor productivity measures, as indicated in the

column headings. Column 7 presents statistics from a total factor productivity index.4

Panel A of Table 1 shows mean productivity levels. For example, column 1 implies that

energy costs are roughly 1.5 percent of output value (0.015 = 1/ exp(4.16)) for the mean

plant in our sample, since the log of output per dollar energy input is 4.16. Panel B of

Table 1 summarizes the industry-level dispersion measures. The first row presents the mean

of the within-industry 90-10 ratio, taken across all industries in our sample. The second row

of Panel B shows the standard deviation of the within-industry 90-10 ratio, taken across all

industries. The third row shows the difference between the 90th percentile industry and the

10th percentile industry of this within-industry 90-10 dispersion measure. Panel C shows

similar values, but using within-industry standard deviations.

Panels B and C of Table 1 show substantial heterogeneity in output per dollar of energy

3To respect confidentiality requirements for 90-10 statistics, we use each industry’s mean and standard
deviation of the respective productivity measure to simulate the 90th and 10th percentile using a normal
distribution. Estimates using the simulated data are nearly identical to those from the underlying microdata.

4This index uses a Cobb-Douglas production technology with three inputs: labor, capital, and materials.
Output elasticities for each input are constructed from industry-level revenue shares (Syverson, 2011).
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Table 1: Single and Total Factor Productivity Statistics

Direct CO2 CO2

Energy [CM] [MECS] Labor Capital Materials TFP
(1) (2) (3) (4) (5) (6) (7)

Panel A: Industry-Wide Statistics

Mean 4.16 8.42 8.79 4.51 1.01 0.95 1.81
SD 0.94 1.16 1.16 0.83 0.95 0.66 0.56

Panel B: Within-Industry 90-10 Difference in Productivity

Mean 1.92 2.27 2.27 1.63 2.22 1.34 0.92
SD 0.47 0.57 1.17 0.45 0.50 0.62 0.39
p90-10 1.21 1.46 3.01 1.16 1.27 1.58 1.00

Panel C: Within-Industry Standard Deviation of Productivity

Mean 0.75 0.89 0.89 0.64 0.87 0.52 0.36
SD 0.19 0.22 0.46 0.18 0.19 0.24 0.15
p90-10 0.47 0.50 1.14 0.44 0.43 0.55 0.33

Notes: Panel A means and SD are computed from plant-level CM and MECS observations. Panel B

statistics are calculated using the 375 within-industry 90-10 dispersion measures. Panel C statistics are

calculated using the 375 within-industry standard deviation measures. See text for details.

expenditure or per ton of CO2 emitted, which is the paper’s first main finding. The top-left

entry in Panel B, for example, shows that to produce a dollar of output in the industry with

the mean energy productivity dispersion, a plant at the 10th percentile of the within-industry

energy productivity distribution spends 580 percent more on energy than a plant at the 90th

percentile of that within-industry distribution does. Dispersion in CO2 productivity is even

wider, at 2.27 log points (870 percent difference). The standard deviation of energy and of

CO2 productivity within the average industry is 0.75 to 0.89 log points, respectively.

Panels B and C also show the paper’s second main finding—dispersion in CO2 and en-

ergy productivity is larger than dispersion in most other measures of productivity. Both

panels show that dispersion in energy and CO2 productivity is more than twice as large as

dispersion in total factor productivity (TFP). Typically single-factor productivity measures

are more dispersed than TFP, but Table 1 shows that dispersion in energy and CO2 produc-
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tivity exceeds dispersion in other single-factor productivity measures like labor or material

productivity.5 Dispersion in energy and capital productivity is more similar, though worth

interpreting cautiously since the durability of capital investments makes the value of the cap-

ital stock difficult to measure. All pairwise t-tests (not shown for space) reject the hypothesis

that dispersion in energy and CO2 productivity equals dispersion in the other productivity

levels. Appendix Table A1 shows value added measures of productivity dispersion, which

give similar conclusions.

It may be unsurprising that CO2 productivity varies so much, since differences in fuel

inputs, variation across the grid in the CO2 intensity of electricity generation, and related

forces make CO2 more variable than energy expenditure. It is more surprising that energy

productivity varies more than other single-factor productivity measures, since even though

some fuels are dirtier than others, one might expect plants to use similar amounts of energy

to produce a single unit of output. Panel A of Table 1 shows that mean productivity for

energy and labor are similar, so the difference in dispersion is not driven by scale effects.

Figure 1 demonstrates the paper’s first two conclusions. This graph plots the distribution

of industry-level 90-10 dispersion measures. Each of the roughly 375 observations underlying

one of these lines is an industry; the value of each observation equals the within-industry

90-10 productivity ratio. The mean of the CO2 distribution (dark solid line) lies above the

mean of all other productivity dispersion measures, demonstrating that CO2 dispersion for

the average industry is greater than dispersion in the other productivity measures. The

greater width of the CO2 distribution relative to the TFP and labor distributions shows

that within-industry dispersion in CO2 productivity is more variable across industries than

within-industry dispersion in TFP or labor productivity.

5The greater dispersion of single factor productivity compared to TFP stems from cross-plant differences
in factor intensities. For example, if one plant has a greater labor share than another plant due to lower local
wages, the two plants may have the same TFP but different labor productivity. Differences across plants in
factor prices (e.g., wages) generally affect single-factor productivity but not TFP (Syverson, 2011).
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Figure 1: Dispersion of Within-Industry 90-10 Productivity Measures

Notes: Each kernel density plot was created using the approximately 375 6-digit NAICS dispersion measures

for the corresponding productivity measure. Kernel densities have been censored at the 5th and 95th

percentiles in accordance with Census disclosure avoidance.

Implications for Carbon Tariffs

In many countries, policymakers have proposed import tariffs proportional to the carbon

content of imported goods in order to guard against emissions leakage.6 These are often

referred to as carbon border adjustments or carbon tariffs.

Table 2 reports the level and distribution of the external cost of CO2 emissions per dollar

of output. If another country imposed a carbon tariff on imports from the U.S., the social

cost of carbon (SCC) per dollar output provides one measure of the relevant tariff. We

assume a standard SCC of $40 per metric ton of CO2. Each column represents a different

method of calculating CO2 per dollar of output. Column 1 presents direct emissions from

fuels plus electricity per dollar of output using CM data. Column 2 adds indirect emissions

to the direct emissions estimates from column 1, where indirect emissions are calculated by

6This type of policy was in the Waxman-Markey bill that passed the U.S. House but not the Senate in 2009.
In 2017, France, Mexico, and Canada discussed imposing one on the U.S. after the Trump Administration
announced it was withdrawing from the Paris Treaty on Climate Change. California has just implemented
such a measure for government purchase decisions (the Buy Clean California Act).
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inverting the industry-level input-output table.7 Adding industry-level indirect emissions

changes the mean externality (Panel A) but not the within-industry dispersion (Panels B-

C). Column 3 shows the same direct plus indirect emissions estimates from column 2, but

uses MECS rather than CM to measure direct plant-level emissions. While MECS is a

smaller sample than CM, it contains plant-level information on the types of fossil fuels used.

Column 4 replaces the industry-level indirect emissions estimates used in columns 2 and 3

with indirect emissions calculated using the CM Materials Trailer. Column 4 uses plant-

level information on input purchases to calculate indirect emissions, though for each input

material, it only accounts for the industry average of direct emissions of that input material

and not its indirect emissions. Column 5 is similar to column 4, but for each material input,

it calculates total (not just direct) emissions of each input using the inverted input-output

table. Column 6 is similar to column 5 but uses MECS to measure direct emissions.

Panel A of Table 2 shows that the external cost of CO2 emissions for the mean plant is

2 to 5 percent of product value. Column 2 suggests that a uniform Pigouvian carbon tariff

imposed on imports from U.S. manufacturers should be around 3 percent. In the first row of

Panels B-C, column 2 shows that the mean industry has a 90-10 SCC difference of 0.06. This

implies that even if a carbon tariff were imposed based on industry-specific means instead

of the economy-wide 3 percent, many plants would have a carbon tariff which is well below

the appropriate plant-level tax, whereas others would face a tax rate that is far too high.

Comparing columns 3 and 5 of Panel B shows that using plant-level records of intermediate

good purchases from CM, rather than industry-level records from the input-output table,

approximately doubles both the 90-10 and standard deviation measures of dispersion.

Figure 2 plots the distribution of industry-level 90-10 differences in SCC per dollar output.

This shows the main conclusions from Table 2 visually. Many industries have high 90-10

differences, and this distribution of dispersions has a long right tail which is understated

7Total emissions are the sum of direct and indirect emissions. Direct emissions come from plant-level
data. Indirect emissions come from the input-output table. Note that the input-output table provides both
direct and indirect emissions for an industry. We subtract the industry-level direct emissions from total
industry-level emissions to get our measure of indirect emissions.
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Table 2: Social Costs of Carbon Per Dollar of Output

SCC SCC SCC SCC SCC SCC
Direct Total Total Direct+indirect Total Total

(1) (2) (3) (4) (5) (6)

Panel A. Industry-Wide Statistics

Mean 0.019 0.029 0.023 0.036 0.051 0.046
SD 0.048 0.049 0.032 0.056 0.074 0.051

Panel B: Within-Industry 90-10 Difference in SCC/$

Mean 0.060 0.060 0.051 0.076 0.098 0.084
SD 0.204 0.204 0.102 0.203 0.208 0.109
p90-10 0.523 0.523 0.261 0.521 0.533 0.280

Panel C: Within-Industry Standard Deviation of SCC/$

Mean 0.023 0.023 0.020 0.030 0.038 0.033
SD 0.080 0.080 0.040 0.079 0.081 0.043
p90-10 0.035 0.035 0.045 0.040 0.053 0.068

Direct Source CM CM MECS CM CM MECS
Indirect Source BEA BEA CM CM CM
Leontief Inverse X X X X

Notes: Panel A means and SD are computed from plant-level CM and MECS observations. Panel B

statistics are calculated using the 375 within-industry 90-10 dispersion measures. Panel C statistics are

calculated using the 375 within-industry standard deviation measures. Each column computes SCC per

dollar of output using different inputs, as indicated in the column headings and table footers. A column

represents either direct or total emissions, where direct emissions come from either the CM or MECS, and

indirect emissions come from either the BEA I-O table or the CM Material trailer. See text for details.

by our censoring at the 5th and 95th percentile. Thus, a Pigouvian tax based on industry

averages would still miss significant heterogeneity in true SCC per dollar of output.

Detailed analyses of carbon tariffs have noted many challenges, ranging from legal ambi-

guity to information burdens. This paper uses plant-level data to highlight another tradeoff—

while a plant-specific tariff would impose a large information burden, an industry-level tariff

would have substantial targeting errors stemming from firm heterogeneity.
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Figure 2: Dispersion in SCC Per Dollar Output

Notes: Each kernel density plot was created using the approximately 375 6-digit NAICS dispersion measures

for the corresponding emissions intensity measure. Densities are censored at the 5th and 95th percentiles.

3 Discussion and Conclusions

The records used for this paper are the most detailed data we know that cover the entire

U.S. manufacturing sector. The plant-level granularity and detailed information on plant-

level input purchases reveal significant heterogeneity in energy and CO2 productivity, which

exceeds heterogeneity for most other measures of single-factor and total factor productivity.

However, there are at least three reasons why our approach may understate the true ex-

tent of heterogeneity. First, we do not observe the full upstream set of plants that contribute

to final output for a given plant in our data. Instead, we assign industry-level emission and

energy intensities to construct our indirect emission and energy measures.8 If supplying

plants are significantly different in terms of emissions or CO2 productivity, then we would

understate heterogeneity. Second, our productivity estimates are based on revenues and not

quantities. This should lead to underestimates of dispersion since more productive plants

8Even when we observe plant-level input purchases, we only observe the industry of those inputs and not
the specific plant.
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tend to have lower prices. Lastly, by excluding “administrative records” and other imputes

from the CM, we are missing many of the smallest manufacturing establishments which

might contribute to even more within-industry heterogeneity.9

How large are the welfare consequences of this heterogeneity for policies like technology

standards or carbon tariffs that target industries and not plants? What are the economic

reasons why energy productivity is more widely dispersed than labor or total factor produc-

tivity? Finally, what does heterogeneity in CO2 productivity imply about heterogeneity in

marginal abatement costs? We leave these important questions for future work.

References

Boyd, G. A., and J. X. Pang (2000): “Estimating the linkage between energy efficiency
and productivity,” Energy Policy, 28(5), 289–296.

Carlson, C., D. Burtraw, M. Cropper, and K. L. Palmer (2000): “Sulfur Dioxide
Control by Electric Utilities: What are the Gains from Trade?,” Journal of Political
Economy, 108(6), 1292–1326.

Cosbey, A., S. Droege, C. Fischer, and C. Munnnings (2017): “Developing guidance
for implementing border carbon adjustments: Lessons, cautions, and research needs from
the literature,” Mimeo, RFF.

Goulder, L. H., and I. W. H. Parry (2008): “Instrument Choice in Environmental
Policy,” Review of Environmental Economics & Policy, 2(2), 152–174.

Jacobsen, M. R., C. R. Knittel, J. M. Sallee, and A. A. van Benthem (2017):
“Sufficient statistics for imperfect externality-correcting policies,” NBER Working Paper
22063.

Kortum, S., and D. Weisbach (2017): “The Design of Border Adjustments for Carbon
Prices,” National Tax Journal, 70(2).

Shapiro, J. S., and R. Walker (2016): “Why is Pollution from U.S. Manufacturing
Declining? The Roles of Environmental Regulation, Productivity, and Trade,” Mimeo,
Yale University.

Syverson, C. (2011): “What Determines Productivity?,” Journal of Economic Literature,
49(2), 326–365.

9It is worth noting that while these reasons suggest we are understating true heterogeneity, any remaining
measurement error after excluding imputed observations could lead to overstatement of true heterogeneity.

12



Appendix A Appendix: Figures and Tables

Table A1: Descriptive Statistics of Industry-Level Characteristics - Value Added

Direct CO2 CO2 Capital
Energy [CM] [MECS] Labor Stock Materials

(1) (2) (3) (4) (5) (6)

Panel A. Industry-Wide Statistics

Mean across all plants 3.63 7.89 8.24 3.97 0.48 0.42
SD across all plants 1.07 1.28 1.31 0.81 1.03 1.07

Panel B. Within-Industry 90-10 Productivity Diff.

Mean 2.20 2.53 2.47 1.76 2.43 2.33
SD 0.54 0.59 1.28 0.56 0.53 0.76
p90-10 1.39 1.51 3.27 1.43 1.37 1.95

Panel C. Within-Industry Productivity Standard Dev.

Mean 0.86 0.99 0.96 0.69 0.95 0.91
SD 0.21 0.23 0.50 0.22 0.21 0.30
p90-10 0.50 0.54 1.28 0.51 0.45 0.63

Notes: Panel A means and SD are computed from plant-level CM and MECS observations. Panel B

statistics are calculated using the 375 within-industry 90-10 dispersion measures. Panel C statistics are

calculated using the 375 within-industry standard deviation measures. See text for details.
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Table A2: Social Costs of Carbon Per Dollar of Value Added

SCC SCC SCC SCC SCC SCC
Direct Total Total Direct+indirect Total Total

(1) (2) (3) (4) (5) (6)

Panel A. Summary Stats, CM

Mean across all plants 0.06 0.09 0.04 0.23 0.41 0.13
SD across all plants 2.72 2.72 0.31 3.3 4.69 1.01

Panel B. Within-Industry 90/10 Productivity Diff.

Mean 0.55 0.55 0.24 1.99 3.76 0.64
SD 4.22 4.22 1.49 12.19 26.54 3.12
p90-10 10.81 10.81 3.82 31.26 68.05 8.00

Panel C. Within-Industry Productivity Std. Dev.

Mean 0.21 0.21 0.10 0.78 1.47 0.25
SD 1.65 1.65 0.58 4.76 10.35 1.22
p90-10 0.18 0.18 0.14 0.92 1.71 0.36

Direct Source CM CM MECS CM CM MECS
Indirect Source BEA BEA CM CM CM
Leontief Inverse X X X X

Notes: Panel A means and SD are computed from plant-level CM and MECS observations. Panel B

statistics are calculated using the 375 within-industry 90-10 dispersion measures. Panel C statistics are

calculated using the 375 within-industry standard deviation measures. Each column computes SCC per

dollar of output using different inputs, as indicated in the column headings and table footers. A column

represents either direct or total emissions, where direct emissions come from either the CM or MECS, and

indirect emissions come from either the BEA I-O table or the CM Material trailer. See text for details.

Appendix B Data

Appendix B.1 Direct Energy and Emissions

The main text describes how we construct the analysis sample. Here we describe a few
additional sample restrictions designed to limit measurement error.

For each variable in the raw data, the final sample excludes observations that are more
than 100 times larger than the 99th percentile value. We do not apply this rule to ratios,
e.g., this restriction is applied to CO2 and to output but not to CO2 productivity. The final
sample also excludes plants that report zero or have missing values for any of our variables,10

and plants that do not report positive values for at least one material in the materials trailer.

10In cases where electricity kWh variables are missing in MECS but not CM, we use CM values to calculate
total emissions in MECS.
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Finally, the sample excludes establishments that are unique in their industry after all the
above restrictions, since we cannot compute 90-10 dispersions or standard deviations for
these industries.

We calculate emissions from fuel use by multiplying each establishment’s consumption
by fuel-specific emissions factors. We assign these emissions factors using data from the
EPA when possible and from the EIA otherwise. We treat acetylene, hydrogen, and waste
and byproduct gases as zero emissions. For emissions from electricity, we assign CO2 per
MWh using the EPA’s eGRID dataset. We match eGRID regions to counties and compute
emissions from electricity at the establishment level by multiplying each establishment’s
electricity consumption with the corresponding emissions factor from eGRID. In cases where
a county overlaps with several eGRID regions, we take an unweighted mean of emissions
intensities across the relevant eGRID regions. For observations in the CM that are missing
the county variable, we take the unweighted mean of emissions factors across counties within
the state. We do not account for process emissions.

Appendix B.2 Indirect Emissions

We use the BEA’s 2007 benchmark Make Table, Use Table, and Import Table to construct
an industry-level input-output (I-O) table. The BEA tables distinguish between industries
and commodities to reflect the fact that some industries produce commodities other than the
primary product of that industry (known as secondary commodities). We use tables after
redefinitions, which in certain casesreallocate secondary commodity outputs to the industry
in which they are the primary product, because this makes industries more homogenous.11

In practice most I-O codes in the benchmark analysis represent both a commodity and an
industry. Exceptions to this are four commodities which are not industries (scrap goods,
non-comparable imports, used and second-hand goods, and rest-of-world adjustment), and
nine industries corresponding to different types of government enterprises. In cases where a
government industry has an analog in private industry – for example federal electric utilities
– the BEA assigns both the public and private industries’ commodity outputs to the private
industry’s commodity code.

The make table is an industry-by-commodity table, with each element mij represent-
ing industry i’s output of commodity j, in nominal dollars. The use (and import) tables
are commodity-by-industry tables, with each element uij representing the total (imported)
amount of commodity i used in industry j’s production, also in nominal dollars. In addition
to the commodity-by-industry pairs, the use table contains three value added rows (com-
pensation of employees; taxes on production and imports less subsidies; and gross operating
surplus) and 20 final demand columns. These additional rows and columns play an impor-
tant role in ensuring that total inputs equal total outputs, but they are not rows or columns
of the final I-O table. The use and import tables are available from the BEA at producer
values and purchaser values – we use producer values throughout to maintain consistency
with the make table. We construct a domestic use table by subtracting import values from
the use table.

11The BEA reallocates secondary output from an industry to the industry in which it is the primary
product when the two industries’ input structures differ significantly
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The BEA combines crude oil and natural gas extraction into one industry (code 211000).
We split this industry into two, in order to treat oil and natural gas extraction separately.
We assign all of the petroleum refineries commodity produced by the original industry to
the new crude oil industry, and we assign all of the industrial gas manufacturing commodity
produced by the original industry to the new natural gas industry. The rest of commodity
output is assigned such that total production of gas and crude oil are proportional to their
overall production according to the EIA. We assume that the commodity input mix for each
of the two new industries is the same, with levels proportional to industry output, and we
maintain oil and gas extraction as one commodity.

We normalize elements of the make table by commodity totals to generate a “market
shares” table, in which each element sij is the proportion of commodity j produced by
industry i. Analogously, we normalize elements of the domestic use table by industry totals
to generate a direct requirements table, in which each element dij is the proportion of industry
j’s production made up by commodity i. Because we are interested only in combustible fuel
use, we adjust direct requirements values by proportions of fuel used for combustion using
EIA values.12

We generate the industry level I-O matrix by multiplying the market share matrix by
the direct requirements matrix. The elements of this matrix are how much of each input an
industry uses to produce one dollar of output. Thus equilibrium is defined by:

X = AX + Y

where X is an industry-length vector of gross production, Y is an industry-length vector of
final demand, and A is the I-O matrix. We can rearrange to get

X = (I − A)−1Y

(I −A)−1 is referred to as the Leontief inverse. Using the Leontief inverse, we can calculate
how much output is necessary in total from every industry to meet a given vector of final
demand.

Thus, we calculate total emissions embedded in the production necessary to meet a unit
of demand for goods from a given industry by left multiplying the Leontief Inverse by a
row vector of the raw emissions intensities for coal, crude oil, and natural gas, which we
get from the EPA. Since we are using CM data to calculate a more granular measure of
direct emissions from production, we calculate indirect embedded emissions by subtracting
emissions from the direct requirements from the total emissions:

IndirectEmissionsj = TotalEmissionsj −
∑
i

(DirectEmissionsj × InputOutputji)

where the direct emissions vector is calculated from the total emissions vector, resetting all
values to 0 except those corresponding to utilities and fuel industries.

After creating the BEA-level emissions intensities, we convert from BEA industry defini-
tions to NAICS industry definitions using the concordance provided by the BEA. If multiple
BEA industries correspond to a single NAICS industry, we take BEA output-weighted means

12These are calculated as a proportion of first use energy consumption and not total energy consumption.
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to calculate a unique NAICS industry value. If a BEA industry gets split into multiple NAICS
industries, all NAICS industries get the same value. There are several BEA industries that
don’t have corresponding NAICS codes—importantly, the BEA considers government util-
ities and private utilities separately, and only the private utility gets mapped to a NAICS
utility code.

We use the indirect emissions calculated from the BEA to account for the full embedded
emissions of production in two ways. One is through addition of the intermediate emissions
intensities, by industry, to direct emissions intensities from CM. The second uses the CM
materials trailer, which identifies material inputs into production by establishment. We use
the BEA emissions intensity values to calculate the direct and the total emissions embedded
in material inputs. The direct emissions capture the industry averages for emissions from
fuel and electricity use in the production of materials. The indirect emissions use the full
Leontief inverse to capture all emissions generated throughout the economy in the produc-
tion of the materials, on average by industry. We add these to CM emissions intensities to
calculate two versions of total emissions productivity based on material inputs.
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