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Abstract

We propose a theory of rational “Rush”, emphasizing the quantity of rational over-
investment in contrast to the theory of irrational price “Bubble”. We illustrate an important
friction when financing breakthrough innovations: non-excludability and spillover of uncer-
tain knowledge due to imperfect IPR (Intellectual Property Rights, e.g. patent) protection.
Facing a limited supply of new projects with uncertain return, investors make decisions
about when and how many projects to invest. Investors’ preemption motive will distort
their incentives for patient learning about project return, thus inducing them to "rush in"
to finance uncertain projects massively at a premature stage. A small positive news shock
regarding the project return can greatly amplify over-investment and result in large social
ineffi ciency. On the other hand, information externality creates free-rider motive, which
can also make under-investment possible. Our empirical finding based on sectoral Venture
Capital investment shows that weak IPR protection lead to excessively high investment level
and more procyclicality. Broader patent rights should be granted when the uncertainty of
innovation is high, although the “Rush”prevention can induce more patent race at the early
R&D stage, i.e. Rush-Race shifting. We also discuss the optimal and robust patent design
problems for macro and financial stability.
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1 Introduction

This research makes a linkage between innovation-induced economic booms with the fric-

tion of imperfect protection of Intellectual Property Rights (IPR). We also provide some

empirical evidence on the relationship between the degree of IPR protection and procycli-

cality and volatility of Venture Capital investment. Then we use Optimal Patent Design

method to correct this ineffi ciency, and propose a new principle for Patent design under

uncertainty.

New financial products have been widely blamed as an important cause of the 2008 finan-

cial crisis. Report issued by the FCIC (Financial Crisis Inquiry Commission) claims “there

was an explosion in risky subprime lending and securitization ... the GSEs (Government-

sponsored enterprise) participated in the expansion of subprime and other risky mortgages,

but they followed rather than led Wall Street and other lenders in the rush for fool’s gold.”

As early as 2007, the subprime sector started to experience serious delinquencies, triggering

fire sales and a credit crunch eventually. Therefore, a central question is whether, why, and

how can innovation lead to over-investment and social welfare loss?

In this paper, we develop a Theory of “Rush”in financing new technologies. By “Rush”,

we mean the premature massive investments in uncertain new technologies, which may be

eventually proved to be futile, wrong or even harmful. “Rush”emphasizes a sharp increase in

the quantity of investments, in contrast with the widely used term “Bubble”which focuses

on high asset price. We also illustrate an amplification mechanism through which a small

shock can induce a big “Rush”. Market structure matters for the scale of amplification and

ineffi ciency.

We argue for a view of “Rational Rush”, rather than “Irrational Bubble”. In fact, the

market equilibrium price for innovations might be too low, not too high. Property rights

for innovations especially the breakthrough ones are oftentimes not perfectly assigned, and

consequently the innovators are usually underpaid by investors. In the market equilibrium,

over-investment ofttimes happens in the sense that uncertainty of innovations is undervalued

due to investors’tradeoff of seizing a larger share of these underpriced innovations.

Then we point to an important friction: imperfect IPR protection and missing knowledge

market especially for breakthrough innovations and General Purpose Technologies (GPT ).

Innovation is generally a favorable public good, which can broaden the human knowledge

base, provide new products to consumers, and introduce new profitable opportunities for en-

trepreneurs and investors. On the other hand, innovations still bear uncertainties. Therefore

the new technology needs to be examined and refined patiently. Some of them will eventu-

ally prove to be fool’s gold, and should be discarded effi ciently. Premature massive adoption
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might create big social hazards. From the social planner’s view, it is optimal to firstly invest

in the new products on a small scale, wait and examine the outcomes carefully, and decide

whether to continue to finance them on a large scale at a later stage.

Excludability due to perfect patent protection is assumed by Romer-type innovation liter-

ature, but here we adopt an opposite assumption: non-excludability. Despite well-established

IPR laws, there are many innovations that IPR laws cannot be applied to. Abstract ideas

and business method are generally not patentable. For example, patent is rarely granted to

financial innovations, though first movers of financial innovations usually can catch a larger

market share, according to Tufano (1989). Due to non-excludability, investors face a tradeoff

between the precision of learning and market share grabbing. This is an important reason

why they will be inclined to deviate from the socialli effi cient investment in learning of a

new technology.

In contrast to the assumption of nonrival knowledge usage in the endogenous growth

literature, there is actually rivalry in financing these new projects. New investment oppor-

tunities are often supplied in a limited quantity. Therefore, investors have strong incentive

to capture a lion’s share and preempt others. This will distort the incentives for patient

learning and generate ineffi ciency and unnecessary hazards. There are strong complemen-

tarity between investors because they compete for limited resources in a common pool. A

small news shock to the expected return of new technology can be greatly amplified. A

larger number of investors will exacerbate this amplification mechanism. This mechanism

for "Rush-in" bears a comparative analogy to "Bank run" in that depositors withdraw funds

from a common pool of deposits. Similar to coordination problem in bank runs, investors

rush in to invest in new projects, giving up the benefits of waiting and learning. This re-

minds us of the "Tragedy of the Commons" in an uncertain and competitive environment.

Fish in the "Uncertain open-access pond" might be poisonous, and poisoning can spread too

quickly due to coordination failure. We name this type of ineffi ciency “The Tragedy of the

Uncertain Commons”.

This research explores the relationship between the uncertainty of innovation and patent

design. We use the Optimal Patent Design method to correct the ineffi ciency of rush. Tradi-

tional Patent Design has not take into consideration the uncertainty and premature adoption

of innovations. To discourage over-investment and too much entry when uncertainty is still

high, broader patent rights should be granted to the inventor. This can mitigate social wel-

fare loss due to over-entry into an uncertain technology. We also present and analyze the

Robust Patent Design problem when the prior of the expected return is unknown. Moreover,

we embed the rush mechanism in a simple endogenous growth framework, which allows en-

dogenous choices of R&D investment, as well as endogenous choice of technology adoption.

3



Rush prevention can induce more patent race at the early R&D stage but this rush− race
shifting can still improve social welfare in total, because in general rush ineffi ciency domi-

nates race ineffi ciency.

This research makes a linkage between innovation and social risk of innovation, which

the endogenous growth literature, as well as the current experimentation and preemption

game literature have missed. Besides the well-known public good property of innovation, we

emphasize innovations’"public bad" potential due to its innate uncertainty. Therefore, this

research reveals another benefit that IPR protection have contributed implicitly: by granting

Patent, it can give innovators’enough incentives to patiently learn and reduce the potential

hazards of innovations to the society.

Information externality from the learning of the innovation also creates free-rider motive

for investors. This makes under-investment possible especially when the expected return of

an innovation is low ex ante. We derive a sharp threshold of expected return below which

under-investment occurs and above which there will be over-investment. Larger number of

investors will amplify over-investment and under-investment on both sides.

We provide empirical evidence on several historical “Rush”episodes. Using cross-industry

Venture capital investment data, we illustrate a linkage between the degree of sectoral IPR

protection and investment volatility. In addition, we point out that a new wave of “Unicorn

Rush”has just emerged since 2010.

The friction identified and emphasized in this research is an important one: missing

knowledge market and the spillover of uncertain knowledge. This has broad policy implica-

tions: anti-trust, patent design, monetary policy and social hazards regulation (e.g. FDA,

EPA, CFPB). Particular attention should be paid to policies that can alleviate the coordi-

nation problem and mitigate the “Tragedy of the Uncertain Commons”.

Related Literature

Endogenous Growth and Innovation-induced Social Hazards Romer (1986,1990) starts

the literature on endogenous growth. This line of research emphasizes the Nonrivalry and

Excludability feature of innovation and knowledge. This paper makes opposite assumptions:

“Rivalry”and “Non-excludability”when financing new technologies.

Moreover, the potential hazards of innovation is largely omitted by the literature. Knowl-

edge spillover is generally treated as a spread of good thing. However, the spillover of “inno-

vation”can also have widespread adverse effects. Jones (2014) takes a first step forward to

also consider potential risk of innovations. In the other paper by the author, Xie (2015b) en-

dogenizes hazards generation and regulation in a growth framework. This paper emphasizes

the effect of market structure on amplifying uncertainty and potential hazards of innovations.
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Information Acquisition, Bubbles and Crisis Chari and Kehoe (2003) shows that infor-

mation is important for financial crisis, and illustrates the herding effect on crisis. Angeletos,

Hellwig and Pavan (2006) highlights that endogenous information generated by policy inter-

vention can move global game from unique equilibrium to multiple equilibria. In this paper,

the information structure is endogenously determined by the market structure and actions

of agents.

Entry, Competition and Ineffi ciency Mankiw and Winston (1986) discuss the social

ineffi ciency due to over-entry of firms. Hsieh and Moretti (2003) provides empirical evidence

on this channel.

Preemption game and Patent race Reinganum (1981), and Fudenberg and Tirole (1985)

apply preemption game to market entry and technology adoption. Firm will make a tradeoff

between entering earlier with the possibility of acquiring a patent or a significant share of the

new market and waiting for a reduced uncertainty and entry cost. Hopenhayn and Squintani

(2011) extends this line of research by adding heterogeneous information to each firm.

Experimentation, learning, and Learning-by-doing (LBD) Jovanovic and Lach (1989)

shows that the Learning-by-doing mechanism can result in the S-shaped diffusion across

firms. Bolton and Harris (1999) extend the two-armed bandit problem to a multi-agents dy-

namic game, and show the coexistence of a discouraging free-rider effect and a counteracting

encourage effect for experimentation.

Pastor and Veronesi (2003, 2006, 2009) argue technology bubble may be effi cient, and

their analysis is under the assumption of social effi cient learning. An essential difference from

our research is that they assume the nonrivalry of technological innovation and unlimited

number of new projects available for investing. With this assumption, there will not be

distorted incentives to induce early entry, and competitive learning in equilibrium delivers

the same effi cient outcome as the social optimum. However in reality, there is significant

rivalry for the limited new investment opportunities. As revealed by the 2008 Subprime Crisis,

investors had competed intensively to enter a new market too early and massively than the

socially optimal level before the uncertainty of new technology is suffi ciently reduced.

The paper proceeds as follows. Section 2 describes the environment and model setup.

Section 3 derives the optimal allocation. Section 4 discusses ownership and market structure

for new projects, and how they are related to ineffi ciency. Section 5 analyzes the equilibria in

a decentralized economy. Section 6 analyzes the amplification mechanism of rush, and tries to

derive a shadow price corresponding to the observed investment quantity. Section 7 discusses

ineffi ciencies in both cases of over- and under-investment. Section 8 analyzes the optimal and

robust patent design problem to correct abovementioned ineffi ciencies. Section 9 extends the

Optimal Patent design problem with endogenous R&D. Section 10 provides some empirical
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evidence on Rush and patent protection. Section 11 discusses some alternative policies.

Finally Section 12 concludes the paper and points to some future extensions.

2 The Model

The model has three periods t = 0, 1, 2, as shown by Figure (1).

2.1 Types of Projects

There are two types of projects: (i) the new and illiquid projects and (ii) liquidity.

(i) New and illiquid projects Each project needs one unit of investment. These

new projects can be started at either t = 0 or t = 1. No matter whether a project is financed

at t = 0 or 1, it will mature at t = 2. After maturity, each project will produce R units

of output. Return R will be the same for all projects. R is unknown, follows a normal

distribution, with a prior R ∼ N(R0, α
−1
0 ), shared by all players.

Assumption 1 Project invested at t = 0 cannot be liquidated at date 1.

There will be a total number N of new projects. N is deterministic and known to all

players.

(ii) Liquidity liquidity asset, which can return 1 for 1 unit of investment at any time

when needed. It is equal to holding cash.

Ownership of New Projects
Because of knowledge spillover, there is no perfect ownership defined for the new projects.

They look like common-pool resource to the economic agents. In Section 4, we will discuss

in details the nonexcludability problem of innovation and the “Tragedy of the Uncertain

Commons”as a result. Moreover, under imperfect property rights for innovations, we need

to propose an allocation mechanism for these new projects (discussion in Section 2.3).

2.2 Investors

There are M symmetric investors in total, indexed by i = 1, 2, ...M . Each investor i is

indifferent to consuming at t = 1 or 2, and has a linear preference as follows,

u(ci,1 + ci,2) = ci,1 + ci,2 (1)
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Figure 1: Timing

Each investor has an endowment of k units of capital at date 0. Investors can choose to

invest in new projects at two dates: either t = 0 or t = 1,or both dates. Investors essentially

select a portfolio composed of illiquid projects and liquidity.

2.3 Allocation mechanism

At t = 0, all investors make a simultaneous move. There is no pre-assigned property

rights for all new projects at t = 0 (but later we will discuss Patent as a special allocation

mechanism which grants certain degree of property rights to the innovator). Each investor i

can pose a request for xi new projects. Denote the aggregate requests of all Investors as X, so

X =
∑M

i=1 xi.The total requests from all investors can be larger than the total number of new

projects N . This is also true for t = 1. So we need a rationing and allocation mechanism,

defined as the following,

Definition 1 An allocation mechanism allocates new projects to each investor i at t = 0 and

1, according to each investor’s individual requests as well as all investors’aggregate requests

of projects. The allocation follows two related allocation functions h0(·) for t = 0 and h1(·)
for t = 1 respectively.

2.3.1 Allocation at t = 0

We use xai to denote the number of projects that investor i will actually receive from an

allocation mechanism at t = 0. Then we have the following definition for the vector-valued
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function h0(·) at t = 0,

Definition 2 An allocation function h0(·), takes the investors’request vector 〈x1, x2, ..., xM〉
as input and return a unique allocation vector (xai , x

a
2, ..., x

a
M) as the function value:

〈xa1, xa2, ..., xaM〉 = h0 (〈x1, x2, ..., xM〉) (2)

in addition, we use h0
i (·) to denote the ith element of 〈xa1, xa2, ..., xaM〉 , i.e. number of projects

allocated to the ith investor. And h0(·) must satisfy the following constraint (3),

∑M
i=1h

0
i (〈x1, x2, ..., xM〉) ≤ N (3)

We also impose the following assumption for all allocation mechanisms,

Assumption 2 As a commitment to participating in the allocation mechanism, investor is
required to finance all its allocated projects at t = 0 and 1.

Then there will be N1 ≥ 0 new projects left for date t = 1,

N1 = N −
∑M

i=1h
0
i (〈x1, x2, ..., xM〉) (4)

2.3.2 Allocation at t = 1

At t = 1,each investor i can pose a request for zi new projects. Denote the aggregate

requests of all investors as Z, so Z =
∑M

i=1 zi.The remaining N1 projects will be allocated

according to a vector-valued function h1(·) at t = 0,

Definition 3 An allocation function h1(·), takes the investors’request vector 〈z1, z2, ..., zM〉
as input and return a unique allocation vector 〈zai , za2 , ..., zaM〉 as the function value:

〈za1 , za2 , ..., zaM〉 = h1 (〈z1, z2, ..., zM〉) (5)

subject to the following constraint (4) and (6),

∑M
i=1h

1
i (〈z1, z2, ..., zM〉) ≤ N1 (6)

With h0(·) and h1(·), we can formally describe various allocation mechanisms.
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2.4 Investors’Strategy Space and Strategy Profile

Each investor i choose a 3 − tuple (xi, zi, wi) . xi denotes her requested new projects at

t = 0; zi is additional requests of new projects at t = 1; wj is the investments in liquidity.

The strategy profile of M investors is thus 〈(x1, z1, w1) , (x2, z2, w2) , ..., (xM , zM , wM)〉.

2.5 Information Structure

At t = 0, all players have the same prior for the return of new projects: R ∼ N(R0, α
−1
0 ).

Assume at t = 0, there is a total number of investments x. At t = 1, consumers and

Investors receive an aggregate public signal d1 about R,

d1 = R + ε1 (7)

d1 is a realization of the return of new projects financed at t = 0.The signal d1 is not

perfect because there is a component noise ε1.

The endogenous noise ε1 follows,

ε1 ∼ N

(
0,

1

xθ

)
(8)

where xθ is the precision of the noice ε1. Investing in more projects can reduce the variance

of ε1.

Due to (7), we have d1|R ∼ N
(
R,
(
xθ
)−1
)
. R and ε1 are two independent random vari-

ables with normal distributions. The sum of them, i.e. d1 also follows a normal distribution

as follows,

d1 ∼ N
(
R0,
(
xθ
)−1

+ (α0)−1
)

(9)

3 Optimal Allocation

In this section, we start from the description of the social planner’s problem and then

derive the optimal allocation.

Social planner will allocate the total endowment of capital K to a 3− tuple (x, z, w) . x

is the capital invested in risky new projects at t = 0. Because each illiquid project requires

one unit of investment, this means that number x risky projects are invested at t = 0. A the

same time, the choice x also determines the signal d1 for t = 1, whose distribution follows

d1 ∼ N
(
R0,
(
xθ
)−1

+ (α0)−1
)
.
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At t = 1, an additional decision is to choose z : the number of additional risky projects

to invest. The total number of risky projects available for investment is N , so we have,

x+ z ≤ N (10)

This choice of z depends on the new information received at t = 1, i.e. signal d1 of

projects’return invested last period. There will be Bayesian Updating according to signal

d1, and the posterior belief follows (11) and (12),

E1 [R|d1]=
α0R0 + d1x

θ

α0 + xθ
(11)

V1 [R|d1]=
(
α0 + xθ

)−1
(12)

If the signal of project return is high enough, more risky projects will be invested. z = 0

if the signal is below some threshold. The remaining endowment will be the leftover liquidity

w. Therefore, we have a binding resource constraint (13) ,

x+ z + w = K (13)

x plays the role of learning about risky project’s return. However, if the return of risky

project turns out to be very low, it will impose a cost due to the investment on bad projects

at the beginning. x is chosen to make an optimal tradeoff between information acquisition

and potential welfare loss due to investments in uncertain new projects.

3.1 Social Planner’s Problem

The social planner’s problem is recursively described by (14) and (15),

V0 = max
x
E0 [Rx+ V1] (14)

where V1 is the continuation value at t = 1, described by (15)

V1 = max
z,w
E1 [Rz + w|d1] (15)

s.t. (9) , (10) , (11), (12), (13)

At t = 0, the expected return of risky projects is E0 [R] = R0, which is just the prior of

the return at the beginning. Whereas at t = 1, the information set will include a new signal

d1. Thus the choice of z at t = 1 depends on this newly generated signal d1, which is affected
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by the choice x last period, according to (9).

Additional new projects will be financed if and only if E1 [R| d1] > 1. Because the total

endowment is significantly larger than the number of all risky projects, there can be some

leftover liquidity w, even if all the remaining risky projects have been financed at t = 1.

The grand optimizatoin problem (14) need to be solved by backward induction.

3.2 Allocation Problem at t = 1

At t = 1, the optimization problem is (15).The public signal d1 has been generated. The

belief about return R is updated according to signal d1.

The optimal choice for (z∗, w∗) is given by (16) ,{
z∗ = N − x w∗ = K −N if E1 [R|d1] ≥ 1

z∗ = 0 w∗ = K − x if E1 [R|d1] < 1
(16)

The threshold value d̄1 of choice is when E1 [R|d1] = αR0+d1xθ

α0+xθ
= 1,and is given by (17),

d̄1 =
α0 + xθ − α0R0

xθ
(17)

Given the optimal choice (16) at t = 1, maximized total utility derived from t = 1

investment now becomes, {
αR0+d1xθ

α0+xθ
N+ (K −N) ifd1≥ d̄1

αR0+d1xθ

α0+xθ
x+ (K − x) ifd1< d̄1

(18)

Then the planner can take the result (18) as given, and make decisions at t = 0.

3.3 Allocation Problem at t = 0

Back to the very beginning, the decision problem is to choose the optimal signal d1 for

the next period.

At t = 0, we only know d1 = R + ε1.Because R and ε1 are two independent, we have

(9) .Therefore, we know signal d1’s probability distribution function f(d1) follows (19) ,

f(s) =
1√

(xθ)−1 + (α0)−1
φ

 s−R0√
(xθ)−1 + (α0)−1

 (19)
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Notice here the signal’s probability distribution function f(d1) is a function of x.

Then we can rewrite (14) as the optimization problem (20),

max
{x}


∫ α+xθ−αR0

xθ

−∞

(
α0R0+s·xθ
α0+xθ

x+K − x
)
f(s)ds

+
∫∞
α+xθ−αR0

xθ

(
α0R0+s·xθ
α0+xθ

N +K −N
)
f(s)ds

 (20)

s.t. (19)

Proposition 1 There is a unique solution to the optimal allocation problem (20) .The opti-

mal solution x to (20) is given by (21),

Φ

(
(1−R0)

√
α0(α0+xθ)

xθ

)
φ

(
(1−R0)

√
α0(α0+xθ)

xθ

) =
1

(1−R0)

√
α0(α0+xθ)

xθ

(
θα0 (N − x)

2x (α0 + xθ)
− 1

)
(21)

Proof. The detailed derivation and proof is provided in the appendix.

Corollary 1 x∗ is larger than 0.

Experimentation at the beginning is effi cient because the option value for learning is

greater than 0. The new projects are essentially a kind of real option and provide an

opportunity of financing new projects with potentially higher return. Therefore, investments

at this stage can generate more accurate information by trying a small number of new

projects. Information acquisition at the first stage can help to make better decisions later.

Corollary 2 x∗ is less than N in the optimal allocation.

In general, financing all risky projects at t = 0 are not socially optimal. This is due to

precaution regarding an uncertain new technology.

Corollary 3 When R0 = 1, θ = 1, we have a unique closed-form solution for x∗,

x∗ =
1

4

√
α0 (8N + 9α0)− 3

4
α0

and in the limit dx∗

dα0
converges to 0 when α0 grows to be large,

lim
α0→∞

dx∗

dα0

= 0
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3.4 Properties and discussions

3.4.1 Number of New Projects N

As shown in the Figure 2, the optimal x∗ is an increasing function of N , but the fraction

x/N is a decreasing function of N . This means that the relative learning cost is declining

with respect to the total number of new projects.

Proposition 2 The social optimal investments x∗ at t = 0 is an increasing function of N ,

but the ratio x/N is a decreasing function of N.

With a larger number of new projects, the social planner tends to be more cautious be-

cause the total social value and therefore the stake of learning will increase with N. However,

the relative number of projects x/N used for learning purpose decreases with N. On the

other hand, this can imply that market equilibrium can impose relatively higher social cost

when N grows larger.

Panel A Panel B

Figure 2. The number of new projects N

3.4.2 Learning effi ciency θ

We want to see the effect of learning effi ciency on the optimal x∗.We can see from Figure

3, that less effi cient learning, as in Panel B will demands more learning when the prior of

return is high, but less learning when the prior of return is low. Although the cost of learning

rises with a lower θ, it is worth more investment because of a better outlook of return.
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Panel A Panel B

Figure 3. Learning effi ciency

3.4.3 Prior return R0

Figure 4 shows how the socially optimal x responds to different priors of R0. With dis-

parate learning effi ciency (θ = 0.6 for the left panel, θ = 1.2 for the right panel), the optimal

x is smooth increasing function of R0. Even the prior R0 rises to as high as 6 (600% return

for investment), the first period investment only increases smoothly, without occurrence of

any “Rush”. You may now imagine market equilibrium can generate very different result

than the social optimum.
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Panel A Panel B

Figure 4. Optimal xas a function of prior R0

4 Nonexcludability, Rivalry, and Uncertainty of Innovation:

The Tragedy of the Uncertain Commons

In this section, we discuss the ownership and market structure for new technologies.

Exclusive ownership of new technology encourages patient learning of new technology which

can reduce potential hazards to the society. Conversely, imperfect IPR (Intellectual Property

Rights) protection can aggravate the coordination failure of massive premature investments

in those new but uncertain technologies.

4.1 Nonexcludability

The classical “Tragedy of the Commons” denotes a situation that individuals tend to

“overgraze some common pool of resource because the social cost will be shared by the

group whereas an individual can keep the benefit for herself. Nonexcludability and the lack

of property rights is one important cause of the Tragedy of the Commons.

IPR, e.g. patent, assigns exclusive property rights to the inventors, for the purpose of

providing incentive to invest on R&D. The endogenous growth literature assumes the full

patent rights to innovations. However, in reality, due to the public good nature of innovation,

excludability of IPR can be easily violated in various ways. Therefore property rights are

more often ill-defined for these “New Commons”, e.g. new technologies and new business

opportunities. We will discuss several situations of nonexcludability.
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4.1.1 Nonpatentability by the Patent Law

There are many types of new ideas that cannot be protected by the current Patent law.

For example, “abstract idea” and “obvious idea” are not patentable. Most recently, the

business method “surge-pricing”of Uber is thought to be nonpatentable: “This application

is really seeking to claim the basic idea of pricing and service, which is a concept Adam

Smith discussed 200 years ago.”It is very diffi cult for Uber to discourage other competitors

to copy its business method.

In general, financial innovations are also not eligible for patent application. In a recent

case, Alice Corp. v. CLS Bank (2014), the U.S. Supreme Court made a final decision that

“a computer-implemented, electronic escrow service for facilitating financial transactions

covered abstract ideas ineligible for patent protection. The patents were held to be invalid

because the claims were drawn to an abstract idea, and implementing those claims on a

computer was not enough to transform that idea into patentable subject matter.”Moreover,

after this Supreme Court decision, the U.S. Patent and Trademark offi ce has indeed stopped

granting business method patents.

4.1.2 Design-arounds

It is also possible to bypass an exisiting patent. By borrowing the idea of a major patent,

competitors can patent slightly modified ideas and bypass the existing one. This enroaches

the monopoly of existing patent and “steals” the IPR in an implicit way. Kremer (2001)

points out the relative easiness to design around vaccines patents.

4.1.3 GPT and Technological Revolutions

The “Commons”problem is especially prominant for the GPT (General Purpose Tech-

nology) and technological revolutions. A breakthrough in GPT often injects huge knowledge

spillover to the whole economy. A GPT, like the Internet, can spur the invention of a lot

of new products. The origional inventor of the GPT can only capture a very small share

of all the profitable opportunities built on the general technology. “New Commons”will

naturally emerge from such technological revolutions. This implies the supply of a large

quantity of “free lunches”.

4.2 Nonrivalry of ideas v.s. Rivalry of Investment Opportunities

On the other hand, limited profit opportunities for a new technology results in Rivalry for

financing new technologies. This is contrary to the “Nonrivalry of knowledge use”assumption
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in the endeogenous growth literature. Knowledge or ideas indeed has the nonrival nature,

especially for long run growth. Future generations can freely reuse the same idea for infinite

times without depreciation. Investment opportunities for new idea or new technology go in

the other way: it will disappear very quickly, and its profitability can be completely lost

when the idea becomes a pure public knowledge. The opportunities of investing in profitable

innovations is in a very limited supply.

4.3 Deep Uncertainty of Innovations

Some innovations have potential hazards, even very lethal ones. Many problems of inno-

vations can be revealed only in the market. Lab experiment and FDA-like pre-testing can

only detect a limited amount of potential hazards. Therefore, investment in a moderate scale

is necessary to generate better and more subtle information for innovations.

In general, idea and knowledge spillover is believed to be beneficial to the society. How-

ever, the hasty proliferation of bad ideas or wrong models can be extremely detrimental,

because the full spectrum of an innovation’s benefits and risks can not be completely under-

stood during a very short period.

Example 1 The drug “Thalidomide” is a thrilling case. “Shortly after Thalidomide was
sold in 1957, in Germany, between 5,000 and 7,000 infants were born with phocomelia (mal-

formation of the limbs). Only 40% of these children survived.” Globally, there were more

than 10,000 reported malformations due to usage of Thalidomide.

4.4 The Tragedy of the Uncertain Commons

A property with the nature of nonexcludability and rivalry is called open-access common

property. Without perfect IPR protection, the tragedy of the Commons will come up. There

does not exist a complete price system to discourage the massive entry into financing certain

new technologies. The limited supply of profitable opportunities creates strategic comple-

mentarity between investors which incentivizes them to rush into the new market. The fear

of losing market share to competitors will dilute the investor’s concern for the uncertainty of

innovations. Investors will finance new projects too quickly even when there are still a lot of

uncertainties remaining. “Overgrazing” these new and “Uncertain Commons”can result

in high social costs ex post. This leads to the Tragedy of the Uncertain Commons.

In general, “rush”phenomenon is often a consequence of ill-defined property rights and

missing market. With uncertainty, rush will generate larger ineffi ciencies than under the

traditional Tragedy of the Commons.
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5 The M − investor Equilibria
In this section, we discuss the market equillibrium of M symmetric investors (M−investor

Equilibria). We denote X−i as the total number of new projects requested by other investors

at t = 0 : X−i =
∑M

j 6=i xj. The aggregate requests is X =
∑M

j=1 xj. Denote Z−i as the total

number of new projects financed by other investors at t = 1, i.e. Z−i =
∑M

j 6=izj.

5.1 Investor’s Problem with General-form Allocation Mechanism

The optimization problem of investor i is described by (22),

Vi,0 = max
xi

Ei,0 [R× xi + Vi,1] (22)

where Vi,1 is investor i’s continuation value at t = 1, defined by (23)

Vi,1 = max
zi,wi

Ei,1 [R× zi + wi|d1] (23)

s.t. h0
i (〈x1, x2, ..., xM〉) + h1

i (〈z1, z2, ..., zM〉) + wi ≤ k (24)

xi, zi, wi ≥ 0 (25)

E1 [R|d1]=
α0R0 + d1

(∑M
i=1h

0
i (〈x1, x2, ..., xM〉)

)θ
α0 +

(∑M
i=1h

0
i (〈x1, x2, ..., xM〉)

)θ (26)

V1 [R|d1]=

(
α0 +

(∑M
i=1h

0
i (〈x1, x2, ..., xM〉)

)θ)−1

(27)

d1 ∼ N(R0,
(∑M

i=1h
0
i (〈x1, x2, ..., xM〉)

)−θ
+ (α0)−1) (28)

Investor’s problem has been described above with the most general-form allocation mech-

anism. In the next section, we will introduce the baseline allocation mechanism.

5.2 Baseline Allocation Mechanism: ECPR

We firstly define an allocation mechanism which embodies rivalry and nonexcludability as

discussed in the previous section. Under this mechanism, each investor receives her requested

projects up to an equal share limit at both dates. This is formally defined by the following

ECPR Allocation Mechanism (Equal Opportunity for the Common-pool Resource),
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Allocation Mechanism 1 (Baseline: ECPR) Allocation functions h0(·) and h1(·) are
defined by (4), (29), and (30),

h0
i (〈x1, x2, ..., xM〉) =

{
xi ifxi ≤ N

M
N
M

ifxi >
N
M

(29)

h1
i (〈z1, z2, ..., zM〉) =

{
zi ifzi ≤ N1

M
N1

M
ifzi >

N1

M

(30)

Notice that (4), (29), and (30) have automatically satisfied constraints (3) and (6).

Common-pool Resource problem
In the ECPR mechanism, the Common-pool Resource problem is embodied by the inter-

period constraint (4). The remaining projects will be reallocated equally at t = 1. Other

investors’increase in investments at t = 0 will reduce the leftover quantity N1 at t = 1. This

raises the cost of delaying investments. Therefore, this creates complementarity between

investors’x choices at t = 0.

5.3 A Model of Venture Capital (VC)

We argue the current model with the ECPR mechanism is consistent with the Venture

Capital’s (VC) investment pattern. Think each investor as a Venture Capitalist. At t = 0,

each VC builds their specific product based on a technological breakthrough, and stays in

their own niche for the first period. This is consistent with (29). Take the Shared-economy

as a recent example of technological breakthrough, Uber and AirBnB have applied the same

idea to different areas. But at t = 1, investors are allowed to enter each other’s niches, as

illustrated by (30).

With the ECPR mechanism, constraints in the general-form (24),(25),(26),(27),and (28)

can be reduced to the following,

xi + zi + wi ≤ k (31)

xi, zi, wi ≥ 0 (32)

xi ≤
N

M
(33)

zi ≤
N − xi −X−i

M
(34)
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E1 [R|d1]=
α0R0 + d1 (xi +X−i)

θ

α0 + (xi +X−i)
θ

(35)

V1 [R|d1]=
(
α0 + (xi +X−i)

θ
)−1

(36)

d1 ∼ N(R0, (xi +X−i)
−θ + (α0)−1) (37)

In comparison with social planner’s problem (14), the decentralized problem (22) for each

investor i have additional constraints (33), (34), (35), (36) and (37). These constraints will

move the optimal allocation to opposite directions.

As a mapping to the allocation functions (4), (29), and (30) in the last subsection, (33)

and (34) create complementarity between investors’x choices.

The other three constraints (35), (36) and (37) reflect Information externality, i.e. the

public good nature of the signal generated by all investments at t = 0, including other

Investors’. Here we have assumed all Investors’investments contribute equally to the gener-

ation of the public signal d1.Only the aggregate number of new projects financed at t = 0,

the Xa, matters for the precision of d1. Thus other Investors’investment at t = 0 can di-

rectly benefit investor i at t = 1. This information externality encourages Investors to delay

investment and free ride on others’effort.

Other Investors’investments can reveal more information, but this will also reduce the

stock of new projects available for financing. These two effects work in contradictory direc-

tions.

5.4 Subgame Perfect Equilibrium of M-investor game

The Equilibrium concept for the M-investor game is Subgame Perfect Equilibrium (SPE).

Definition 4 (Subgame Perfect Equilibrium) In an equilibrium of M-investor game, each

investor i chooses its optimal vector (x∗i , z
∗
i , w

∗
i ) and will not deviate from it, given all other

Investors’optimal strategies
{(
x∗j , z

∗
j , w

∗
j

)M
j=1&j 6=i

}
;and this also applies to every proper sub-

game.

Similar to the solution method for the social planner’s problem, we use backward induc-

tion to derive the decentralized solution.

5.5 Investor i’s problem at t = 1

At t = 1,the decision problem is whether to finance additional new risky projects, after

perceiving the public signal d1 about project return. All Investors see the same signal d1.
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There will exist a signal threshold d̄1 above which more investments will be made. No

more investments will be made if d1< d̄1. After Bayesian updating, the expected return of

new projects is given by α0R0+d1(xi+X−i)
θ

α0+(xi+X−i)
θ .

So the threshold d̄1 will make
α0R0+d̄1×(xi+X−i)

θ

α0+(xi+X−i)
θ = 1, and is thus determined by (38),

d̄1 =
α0 + (xi +X−i)

θ − α0R0

(xi +X−i)
θ

(38)

The optimal choice (z∗i , w
∗
i ) of investor i is thus given by the following equations,{

z∗i = N−xi−X−i
M

w∗i = k −
(
xi + N−xi−X−i

M

)
if d1 ≥ d̄1

z∗i = 0 w∗i = k − xi if d1 < d̄1

(39)

5.6 Investor i’s problem at t = 0

Given the t = 1 solution (39), Investor i’s optimization problem at t = 0 becomes,

max
{xi}


∫ d̄1

−∞

(
α0R0+s·(xi+X−i)θ

α0+(xi+X−i)
θ xi + ki − xi

)
f(s)ds

+
∫∞
d̄1

(
α0R0+s·(xi+X−i)θ

α0+(xi+X−i)
θ

(
xi + N−xi−X−i

M

)
+ ki −

(
xi + N−xi−X−i

M

))
f(s)ds

 (40)

s.t. (38), (41)

where d1’s probability distribution function f(·) follows (41),

f(s) =
1√

(xi +X−i)
−θ + (α0)−1

φ

 s−R0√
(xi +X−i)

−θ + (α0)−1

 (41)

After careful integration, the optimization problem finally becomes,

max
xi



ki + (R0 − 1)
(
M−1
M

xi + N−X−i
M

)
+N−xi−X−i

M
(1−R0) Φ

 (1−R0)[α0+(xi+X−i)
θ]

(xi+X−i)
θ√

(xi+X−i)
−θ+(α0)−1


+N−xi−X−i

M
(xi+X−i)

θ
2

α
1
2
0 (α0+(xi+X−i)

θ)
1
2
φ

 (1−R0)[α0+(xi+X−i)
θ]

(xi+X−i)
θ√

(xi+X−i)
−θ+(α0)−1




(42)
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5.7 Best response correspondence

Proposition 3 Equation (43) gives the best response correspondence regarding the optimiza-

tion problem (22).

M − 1 + Φ

 (1−R0)[α0+(xi+X−i)
θ]

(xi+X−i)
θ√

(xi +X−i)
−θ + (α0)−1

 =

(xi +X−i)
1
2
θ−1

2 (R0 − 1)
(
α0 + (xi +X−i)

θ
) 3

2
α

1
2
0

(
2 (xi +X−i)

θ+1 + 2α0(xi +X−i)

−Nθα0 + θα0(xi +X−i)

)
φ

 (1−R0)[α0+(xi+X−i)
θ]

(xi+X−i)
θ√

(xi +X−i)
−θ + (α0)−1


(43)

Equation (43) characterizes the best response of Investor i to the aggregate choice of all

other Investors.

We can see (43) has an additional itemM−1 in comparison with social planner’s solution

(21). This can move the equilibrium solution to either direction, over-invest or under-invest,

conditional on the sign of the middle item (43). This implies market equilibrium level of

early investment xi can be above or below the social optimal level.

Solution (43) is compatible with either pure-strategy symmetric equilibrium or mixed-

strategy (leader, follower) equilibrium.

Figure 5 shows a best response function with 2 Investors. This will give a unique equi-

librium.

Figure 5. Best Response Correspondence
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5.8 Symmetric Equilibrium

We have assumed all Investors are symmetric at the beginning, and then can get the

following proposition.

Proposition 4 There exists a unique symmetric equilibrium, and the closed-form solution

of x is given by (44),

(M − 1) + Φ

(1−R0)
√
α
(

(Mx)θ +α
) 1

2

(Mx)
θ
2

 =

1

2 (R0 − 1)

(Mx)
1
2
θ−1

α
1
2

(
α + (Mx)θ

) 3
2

(
2Mxα + 2 (Mx)θ+1

−Nθα + θαMx

)
φ

(1−R0)
√
α
(

(Mx)θ +α
) 1

2

(Mx)
θ
2


(44)

In the symmetric equilibrium, it is possible that all xi = 0, i.e. all Investors wait and

intend to free-ride on others’information acquisition.

At first glance, it seems there can exist multiple symmetric equilibria within some para-

meter ranges. Assume there exist two symmetric equilibria,
(
xHi
)
,
(
xLi
)
, where xHi > xLi . A

high−x equilibrium
(
xHi
)
can be justified due to preemption motive. A low−x equilibrium(

xLi
)
can be also justified due to the value of learning and free-rider motive. Multiple equi-

libria can exist when these two forces are close to a balance. However, uncertainty removes

the multiplicity.

Corollary 4 When R0 = 1, θ = 1, we have a unique closed-form solution for x∗,

x∗ =

√
α0 (8N + 9α0)− 3α0

4M

and in the limit dx∗

dα0
converges to 0 when α0 grows to be large,

lim
α0→∞

dx∗

dα0

= 0

We can see that at R0 = 1, the decentralized solution coincides with the social optimum.

23



6 Amplification and "Rush"

In this section we will discuss how a "Rush" can happen and the amplification mecha-
nism in market equilibrium.
We firstly use the following numerical example to demonstrate the degree of sensitivity

around some critial value of R0.

Example 2 θ = 1.25; prior precision α0 = 1; R0 = 1.275; total number of new projects

N=500; two Investors M=2

when ∆R0 = 0.001;the change of xi is from 75 to 325,∆xi
xi

= 3.333, ∆R0

R0
= 0.0008. Then

we have a sensitivity (∆X
X )(

∆R0
R0

) = 4250.

This means some tiny belief change ∆R0

R0
= 0.0008 can trigger a huge move in the market.

Investors will respond with more than four thousand times amplification in early investment.

A "Rush" occurs.

We will formally define "Rush" as the following,

Definition 5 A Rush: The equilibrium X̂, the first period investment, is dramatically in-

creased by some small shock.

A typical small shock is News shocks. For example, ∆R0 > 0, for some good news;

∆R0 < 0 for some bad news. A mathematical measure of "Rush" is defined by the following

Amplication function,

Definition 6 Amplification Function S(R0) :

S(R0) =
dX̂
dR0

dX∗

dR0

(R0) (45)

6.1 In Comparison with the Social Optimum

With Figure 4 in section 3, we have shown the social optimal X∗ is a smooth function

of prior R0.There will never be a "rush". Social planner always prefer to conduct some

small-scale experiment to learn the new projects patiently, before any massive investments.

We call the social optimum choice of X∗ "smooth learning" for investment. But market

equilibrium will behavior in very different fashion.
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Figure 6. The generation of a "Rush"

Figure 6 compares the social optimum with a 2− Investor market equilibrium outcome.
We can see a rush indeed occurs for the 2 − Investor equilibrium around some threshold

value 1.2. The amplification function S(R0) is an increasing function of R0 until all the new

projects are exhausted.

It is also worth mentioning that in this market equilibrium it is not a direct switching

between small-scale experiment and full-scale investment. It is still a continuous transition

though the amplification effect grows very fast. The remaining uncertainty prevents Investors

from taking a vertical jump to finance all new projects.

The amplification function S(R0) and its derivative S
′
(R0) increase in R0. And the fact

amplification function S(R0) is increasing in R0 also brings about the concern for social

welfare loss.

6.2 Amplification as a Function of N

At any given R0, if the prior is good enough, a higher N will add more impetus for an

investor to preempt the market.

Figure 7 displays the case of a huge N = 10000. A huge number of new projects can

be exhausted instantaneously because the amplification function S(R0) keeps growing very

quickly.
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Figure 7. "Rush" for huge N

When there is over-investment, we can prove lim
N→∞

S(R0)|X̂=N = ∞; but S(R0) < ∞,for
any R0,when N <∞.
This implies that larger quantity of new projects, can be drained in an accelerated man-

ner. Without constraint in available deposit, higher N will lead to expeditious investments.

The total social welfare loss is an increasing function of N because the upper limit N can be

reached very fast no matter how large is N . The uncertainty of innovation will be magnified

by the number of new projects.

6.3 Amplification as a function of M

Previous discussions focus on the 2-Investor equilibrium. We can easily generalize the

amplification function to M − Investor setup: S(R0,M). S(R0,M) is non-decreasing in M,

and welfare loss is also non-decreasing in M.
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Figure 8. Amplification and M

Figure 8 shows the different x for M − Investor equiliria (M = 1, 2, 3, 4). After a small

shock to R0,the new equilibrium x is illustrated with blue lines. The horizontal lines indicate

the increase in x for differentM after the shock. The increase in equilibrium x is an increasing

function of Investor number M .

6.4 "Pricing" a Rush: Shadow Asset Price

Since the property rights for innovations are not perfectly defined, the investment market

for innovations is somewhat missing. Therefore the market price for financing innovations

might be just misleading. Investors usually underpay for innovations.

In this section, we try to derive the "shadow price" (i.e. the shadow return) for new

technologies. We cannot observe the real price but can see the equilibrium quantity x̂. A

thought experiment is to back out the shadow return of new projects by referring to the

optimal allocation. For example, in Figure 7, the top panel shows the relationship between

optimal x∗ and prior mean return R0, while the bottom panel shows the relationship between

equilibrium x̂ and prior mean return R0.

Denote the socially optimal solution x∗ = X(R0) as a function of R0,and the its inverse

function R = X−1(x) gives the corresponding R value. Then we substitute the market

equilibrium x̂ into the inverse function X−1(·) and get the shadow return in (46),
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R̂ = X−1(x̂) (46)

The solution to (46) can be finally derived by combining (44) and (21) .

Corresponding to the super high level of equilibrium x̂, the prior mean return R0 must

reach an excessively high level X−1(x̂).

"Bubble" usually refers to the excessively high asset price. But we argue for the view

of "Rational Rush", rather than "Irrational Bubble". In fact, the market equilibrium
price for innovations is too low, not too high. The property rights for innovations are often

not perfectly defined, and consequently the innovators are usually underpaid. In the market

equilibrium, over-investment ofttimes happens in the sense that uncertainty of innovations

is underpriced due to the tradeoff of seizing a larger share of the underpriced innovations.

7 Ineffi ciencies: Over-investment or Under-investment

In this section, we will discuss the causes and conditions for ineffi ciencies in the market

equilibria.

There are two kind of externalities embedded in the model: (i) imperfect property rights
and common pool resource problem, and (ii) information externalities.
(i) Common-pool resource and coordination cost

The limited supply of new investment opportunities creates complementarities between

Investors. The ownership of these new investment opportunities is not clearly defined and

results in the ”Commons” problem. Without well-defined property rights, price cannot

work properly to impede a rush into the new and uncertain market. This will lead to over-

investment and "the Tragedy of the Uncertain Commons". The Option value of learning

and discarding bad innovations is reduced due to over-investment at an early stage.

(ii) Information externality

Information externality is generated because the public signal d1 of project return at

t = 1 is equally contributed by all Investor’s investments at t = 0. Given that d1 can be

perfectly seen by all Investors, each of them wants to delay investment and wait for the

signal created by other Investors’efforts. This free-rider motive always exist but will play a

more evident role when the prior of return R0 is low.

Interestingly, there is a watershed between over-investment and under-investment, and

we have the following proposition,
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Proposition 5 There exists a threshold R̄0 = 1,

(i) above which decentralized investors over-invest relative to the social optimum;

(ii) below which decentralized Investors under-invest in equilibrium.

See the appendix for the details of proof.

7.1 Welfare loss due to over-investment in early stage

Competition between Investors will incentivize them to concern more about the market

share of new projects than their uncertain return. Figure 9 compares the social optimal

investment with a 2 − Investor market equilibrium. The social optimal x∗ is 8, while

each investor will invest in 49 new projects in equilibrium. The total market equilibrium

investments are 98, close to exhausting all the new investment opportunities at the very

beginning. The top panel of Figure 9 shows that social welfare (the y axis) is achieved at the

highest level when x = x∗ (= 8). It contrasts with a sub− optimal social welfare level (the
dotted line) corresponding to the equilibrium x (= 98). The coordination cost dominates

the information externality. The welfare loss is mainly due to the abandoned option value

of learning.

Figure 9. Over-investment in 2-Investor Equilibrium

7.2 Welfare loss due to under-investment in early stage

There are also circumstances that information externality plays a major role so that

under-investment happens. In particular, when the prior of mean return R0 is less than 1,
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Investors have much less incentive to invest early in the new market, because the benefit of

preemption is relatively small. Investors tend to delay investments and wait to watch the

public signal. Figure 10 shows that the 2-Investor equilibrium has lower x than the social

optimal x∗. Admittedly, we can see from the top panel that social welfare loss is not very

significant in this under-investment situation.

Figure 10. Under-investment in 2-Investor Equilibrium

7.3 Amplification at the threshold value R̄0

The switch between under-investment and over-investment will increase the curvature of

amplification function S(R0) at the threshold value R̄0.The free-rider motive will amplify a

news shock around the R̄0.

7.4 Welfare loss and M

Increase in the number of Investors will exacerbate both the coordination problem and

information externality. For the over-investment circustance, coordination cost is aggravated

more severely than information free-riding problem. Therefore, the net over-investment

incentive is magnified by a larger M. We have the following proposition.

Proposition 6 (Ineffi ciency and M) For the over-investment circumstance:
(i) The aggregate quantity of illiquid projects X financed at t = 0 is a non-decreasing

function of the number of banks M ;

(ii) Social welfare is a non-increasing function of the number of banks M ;
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(iii) The limiting case: there exists a threshold M̄ , above which all N illiquid projects will

be financed at t = 0.

This can be easily proved as an extension to the proof of Proposition 5.

A mirror proposition can also be proved for the case of under-investment.

Figure 11 shows how the equilibrium x increases with M, and correspondingly how the

social welfare decreases with M.

Figure 11. Welfare loss as a function of M

7.5 The Number of New Projects N

The number of new projects also matter for the total welfare loss. From the previous

discussion of social planner’s problem and Figure 2 we know the relative cost of learning x
N

is a decreasing function of N. This implies the benefit of learning increases with M. On the

other hand, from the Proposition of Amplification Function and Figure 7, we know around

the threshold level R0,any large number of projects can be exhausted very quickly due to the

property of the amplification function. The welfare loss due to "Rush" will be multiplied
by the number of projects N.
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8 Optimal and Robust Macro-Patent Design

In this section, we will discuss the Patent Design problem, as a correction to the ineffi -

ciency of over-investment. At the end of the section, we will also prescribe the Robust Patent

Design problem for a generalized setup with ambigious priors.

8.1 Flexible Patent Mechanism

We assume the investor indexed by s is the innovator who creates the breakthrough

technology, and is guaranteed the ownership of a fixed shares (µ0, µ1) of new projects based

on that breakthrough technology. The vector (µ0, µ1) embodies the Patent policy. µ0 and

µ1 represent the monopolistic share for the innovator at t = 0 and t = 1 respectively, as

illustrated by the following allocation mechanism. Under full patent protection, µ0 = µ1 = 1.

However, full patent protection is not socially optimal with the possibility of sequential

innovation (or with deadweight loss of monopoly).

Allocation Mechanism 2 (Flexible Patent) Allocation functions h0(·) and h1(·) are de-
fined by (4), (47), (48), with the patent policy (µ0, µ1) ,

h0
i ((x1, x2, ..., xM)) =


xi ifxi=s ≤ µ0N

µ0N ifxi=s > µ0N

xi ifxi 6=s ≤
(1−µ0)N
M−1

(1−µ0)N
M−1

ifxi 6=s >
(1−µ0)N
M−1

(47)

h1
i ((z1, z2, ..., zM)) =


zi ifzi=s ≤ µ1N1

µ1N1 ifzi=s > µ1N1

zi ifzi 6=s ≤
(1−µ1)N1

M−1
(1−µ1)N1

M−1
ifzi 6=s >

(1−µ1)N1

M−1

(48)

This Patent Mechanism is flexible in that disparate degrees of monopolistic power are

allowed for different stages.

8.2 Correcting Rush Ineffi ciency with Patent

We want to use patent to discourage over-investment and reduce the ineffi ciency due to

rush. Patent as a monopolistic power also imposes cost, which we will model as the barrier

to sequential innovation.

For the following discussion, we focus on the 2− investor case for simplicity.
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8.2.1 At t = 0: First-wave experimental investment in the market

We assume at t = 0, one investor succeeds in making a breakthrough innovation and

gets the patent. We call her the leader. The other investor is then named a copycat. This

breakthrough will directly generate N new projects available for financing. Each of the

project has return R.

Patent Policy
According to the Flexible Patent Allocation Mechanism, there is a total share µ0 of N

new projects reserved for the leader for t = 0. The other investor can only stay in her own

niche of (1− µ0)N new projects at t = 0.

Sequential Innovation
The copycat (but in this sense, not a pure copycat) can combine the breakthrough tech-

nology with her own innovation. The sequential innovation will generate a multiplier effect

by expanding the number of projects he financed by a factor χ, and χ > 1. This can be

thought as a "buy one get χ− 1 free" bonus due to sequential innovation. This captures the

social welfare gain of sequential innovation which expands the applications of the technolog-

ical breakthrough. Too strong patent protection can discourage sequential innovation and

reduce social welfare.

8.2.2 At t = 1: Second-wave investment and systemic adoption decision

In this stage, the leader can finance up to µ1 · N1 new projects. The copycat can only

invest in his own niche of (1− µ1)N1 projects.

8.3 The Optimal Patent Design Problem

The patent policy is defined by the vector (µ0, µ1) .

8.3.1 Copycat’s Problem at t = 0

Vc,0 = max
xc

Ec,0 [R× χxc + Vc,1] (49)

Vc,1 = max
zc,wc

Ec,1 [R× χzc + wc|d1] (50)
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subject to

xc + zc + wc ≤ k − yc
xc, zc, wc ≥ 0

xc ≤ (1− µ0)N (51)

zc ≤ (1− µ1) (N − xs − xc) (52)

E1 [R|d1]=
α0R0 + d1 (xc + xs)

θ

α0 + (xc + xs)
θ

(53)

V1 [R|d1]=
(
α0 + (xc + xs)

θ
)−1

(54)

d1 ∼ N(R0, (xc + xs)
−θ + (α0)−1) (55)

8.3.2 Leader (patent holder)’s Problem at t = 0

Vs,0 = max
xs

Es,0 [R× xs + Vs,1] (56)

Vs,1 = max
zs,ws

Es,1 [R× zs + ws|d1] (57)

subject to

xs + zs + ws ≤ k − ys
xs, zs, ws ≥ 0

xs ≤ µ0N (58)

zs ≤ µ1 (N − xs − xc) (59)

and (53),(54),(55)

8.3.3 The Choice of Optimal Patent Policy

Finally, designing optimal patent is just to choose the vector (µ0, µ1) to maximize the

value function V0 at t = 0,

max
{(µ0,µ1)}

{V0} (60)
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V0 = ωVs,0 + (1− ω)Vc,0 (61)

where V0 is the weighted sum of utilities of the two types of players. ω is the patent

holder’s population share or the successful probability of becoming a patent holder. Here

we simply assume equal probability of becoming a leader and a copycat, ω = 0.5. In a later

subsection where we will explicitly model the R&D investment, these probabilities will be

endogenously determined by the choice of early R&D investments.

8.4 Solution Method

8.4.1 At t=1

The copycat’s threshold d̄c,1 will make χ
α0R0+d̄1(xc+xs)

θ

α0+(xc+xs)
θ = 1, and is thus determined by

(62),

d̄c,1 =
α0 + (xc + xs)

θ − χα0R0

χ (xc + xs)
θ

(62)

The optimal choice (z∗c , w
∗
c ) of the copycat is thus given by the following equations,{

z∗c = (1− µ1) (N − xs − xc) w∗i = k − xc − z∗c if d1 ≥ d̄c,1

z∗c = 0 w∗i = k − yc − xc if d1 < d̄c,1
(63)

The leader’s threshold d̄s,1 will make
α0R0+d̄1(xc+xs)

θ

α0+(xc+xs)
θ = 1, and is thus determined by (64),

d̄s,1 =
α0 + (xc + xs)

θ − α0R0

(xc + xs)
θ

(64)

The optimal choice (z∗s , w
∗
s) of the leader is thus given by the following equations,{

z∗s = µ1 (N − xs − xc) w∗s = k − xs − z∗s if d1 ≥ d̄s,1

z∗s = 0 w∗s = k − ys − xs if d1 < d̄s,1
(65)

8.4.2 At t=0

Given the t = 1 solution (63), copycat’s optimization problem at t = 0 becomes,

Vc,0 = max
{xc}


∫ d̄c,1
−∞

(
χα0R0+s·(xc+xs)θ

α0+(xc+xs)
θ xc + k − yc − xc

)
f(s)ds

+
∫∞
d̄c,1

(
χα0R0+s·(xc+xs)θ

α0+(xc+xs)
θ (xc + (1− µ1) (N − xs − xc))

+k − (yc + xc + (1− µ1) (N − xs − xc))

)
f(s)ds

 (66)
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s.t. (62), (67), (51)

where d1’s probability distribution function f(·) follows (67),

f(s) =
1√

(xc + xs)
−θ + (α0)−1

φ

 s−R0√
(xc + xs)

−θ + (α0)−1

 (67)

Similarly, leader′s problem at t = 0 becomes,

Vs,0 = max
{xs}


∫ d̄s,1
−∞

(
α0R0+s·(xc+xs)θ

α0+(xc+xs)
θ xs + k − ys − xs

)
f(s)ds

+
∫∞
d̄s,1

(
α0R0+s·(xc+xs)θ

α0+(xc+xs)
θ (xs + µ1 (N − xs − xc))

+k − (ys + xs + µ1 (N − xs − xc))

)
f(s)ds

 (68)

s.t. (64), (67), (58)

8.5 Numerical Result

In this subsection, we will numerically solve the optimal patent problem (60).

Figure 12 illustrates a numerical solution to (60). The x-axis corresponds to µ1, and

the y-axis corresponds to µ0. Function values denote the social welfare. With a setup R0 =

1.1, α0 = 3, χ = 1.01, θ = 1, we get the optimal patent (µ∗0 = 0.76, µ∗1 = 0.65) . That is,

µ∗0 ≥ µ∗1.

In fact, this result is robust to various paramter combinations. In general, we present the

following result (69),

Result 1 (Uncertainty of Innovation and Patent Design)

µ∗0 ≥ µ∗1 (69)

This implies that higher uncertainty demands stricter patent protection. At an early

stage of technology adoption, larger monopolistic power should be granted to the innovator

or first-mover, and discourage the rush of other investors.

At first glance, you may think µ∗1 should be equal to 1/2, which means no monopolistic

power for the leader. But if so, the leader will over-invest at t = 0 because she expects

decreased investment opportunities at t = 1.
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Granting monopolistic power is a way to prevent the premature spread of uncertain

knowledge which can potentially cause damages. After uncertainty dwindles with learning,

the monopolistic power of the patent holder should be reduced to facilitate sequential inno-

vation.

Figure 12. 2-Stage Optimal Patent

8.6 Tradeoffs in a sum

Better Patent protection leads to,

1. (+) lower cost of over-investment under uncertainty;

2. (−) lower sequential innovation;

Number (1) is a new force that traditional patent design has not taking into account.

This will imply a stricter patent protection than the traditional patent literature.
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8.7 Robust Macro-Patent Design

Another challenge facing patent designer is the existence of uncertainty even for the prior

return of a new technology. The prior return R0 can also be a random variable, following

certain distribution R0 ∼ z. Here we can assume R0 ∼ Uniform(R
¯
, R̄) for simplicity.

Assume the social planner (patent designer) needs to consider the worst-case senario.

This results in the following Robust Patent Design problem,

max
{(µ0,µ1)}

min
{R0}
{V0} (70)

where V0 is defined by (61) as before.

The problem (70) takes into consideration extreme cases of both low and high R0. The

possibility of a very high R0 requires more stringent patent protection to prevent excessive

investment. This implies determining a high upper bound of monopolistic power to deter

big "rush".

On the other hand, a low R0 implies weak private incentive to explore the new technology

relative to the social optimum. This also demands better patent protection, and even with

necessary government subsidies like the Orphan drug case.
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9 Extension: Optimal Patent Design with Endogenous

R&D

In this section, we prescribe and discuss the patent design problem in a more general

form. We add an additional period t = −1 when initial R&D investment happens, as shown

in Figure 13.

Figure 13. Timing with R&D

9.1 At t = −1: Lab R&D stage

Each investor i ∈ {1, 2} will invest an amount yi as R&D expenditure at t = −1. Each

of them will generate an innovation with return ri. But there can only be one breakthrough

innovation with return R. We assume only one investor will succeed in discovering and

winning the breakthrough, with an independent probability p(yi). p(yi) is an increasing,
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concave function. We call the breakthrough innovator the leader, denoted with subscript s.

The other investor is named copycat, denoted with subscript c.

The probabilities for all four possible contingencies is,
(1− p(yi)) (1− p(yj)) no investor makes a breakthrough

p(yi) (1− p(yj)) only investor i makes a breakthrough

p(yj) (1− p(yi)) only investor j makes a breakthrough

p(yi)p(yj) both i and j make a breakthrough

(71)

When both investors make the breakthrough, the planner randomly assigns patent to

one of them.

We assume the return of all innovations are,{
ri = 1 i 6= s

ri = R i = s
(72)

.

9.2 Investor’s problem at t = −1

The two investors are identical at t = −1.

The probability for investor i to successfully get the patent of a breakthrough innovation

is p(yi) (1− p(yj)) +
p(yi)p(yj)

2
;

the probability for the other investor j get the patent is p(yj) (1− p(yi)) +
p(yi)p(yj)

2

the probability of no breakthrough innovation is (1− p(yi)) (1− p(yj)) .
The aggregate successful probability of a breakthrough for the society is,

p(yi) + p(yj)− p(yi)p(yj) (73)

So we can write investor i′s optimization problem as (74),

V−1 = max
yi
E−1



(
p(yj) (1− p(yi)) +

p(yi)p(yj)

2

)
Vc,0

+
(
p(yi) (1− p(yj)) +

p(yi)p(yj)

2

)
Vs,0

+ (1− p(yi)) (1− p(yj))Vn,0
−yi

 (74)

Value of the case of no-breakthrough Vn,0 is,

Vn,0 = N × 1 (75)
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where the project return is just equal to 1.

9.3 Rush and Patent Race: the Rush-Race shifting

The Generlized Optimal Patent design problem is a tradeoffbetween the following forces.

Better Patent protection leads to,

1. (+) higher aggregate R&D expenditures, and higher probability of a breakthrough;

2. (−) lower sequential innovation;

3. (+) lower cost of over-investment under uncertainty;

4. (−) patent race at the very beginning

More stringent patent protection can discourage rush and over-investment at a later stage

(t = 0), but it will aggravate the traditional "patent race" at the earlier stage. Despite this

Rush−Race shifting, the welfare loss due to patent race in R&D will be at a smaller scale

than the loss due to rush in investments at a later stage. There is very few empirical evidence

on Patent Race although there have been many theoretical research on it. In contrast, the

magnitude of over-investment at later stage is usually much larger, as shown by the empirical

evidence of the next section.

41



10 Empirical Evidence

Economic historian Kindleberger (1978) cites Minsky’s argument that any speculative

bubble and crisis starts with a "displacement" or innovation or some exogenous macroeco-

nomic shock. This will grow to be a speculative bubble, over-investment, and eventual

crash. The mechanism modeled in this research is consistent with the empirical descriptions

of Kindleberger and Minsky. In contrast to their emphasis on irrational factors and mania,

here we attribute these innovation-induced economic booms to rational rushes in financing

innovations and ineffi ciencies due to coordination failure.

In this section, we study three cases and provide some suggestive evidence on rush in

terms of quantity of investment as well as the linkage between the degree of patent protection

and over-investment.

10.1 Three Historical Episodes of Technology “Rush”

10.1.1 The 1990’s “Internet Rush”

Figure 14 compares several scaled time series during the 1990’s Internet “Rush”, with

year 1995 set as 100.

Figure 14: VC investments v.s. Nasdaq Price and Market Cap

Price, as illustrated by the Nasdaq index, cannot capture all the abrupt increase in

investment. If we look at the quantity of Venture Capital investments, we see VC investments

have grown much faster than Nasdaq price index and the Nasdaq Market Cap. From 1995
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to 2000, the total amount of venture capital investment increased by 12 times, while the

NASDAQ price index only quadrupled.

The new technologies had actually been undervalued due to knowledge spillovers and

non-excludability in applying the General Purpose Technology, the Internet.

10.1.2 The 2000’s “Subprime Rush”

The cause of the 2008 Financial Crisis was largely attributed to excessive subprime mort-

gage lending and securitization. Subprime mortgage and securitization are financial inno-

vations, which are not patentable in general. We have seen a large number of subprime

mortgage lenders enter the market and compete heavily to lend to new subprime borrowers.

There were limited number of potential subprime borrowers. Nevertheless, both securiti-

zation and subprime mortgage contract have revealed to have innate defects in the design.

This “Subprime Rush”engendered excessive lending and eventually ended up with the Great

Recession.

The uncertainty of financial innovations can easily raise systemic risk in the economy if

a rush happens. According to the principle illustrated in the Optimal Patent design section,

broader patent rights should be granted to the financial innovators.

10.1.3 The 2010’s “Unicorn Rush”

Most recently, we are witnessing a new (potential) rush, the phenomenon of the rise of

“Unicorns”. “Unicorns”refer to technology startups with at least $1 billion valuation, based

on fundraising. Figure 15 displays the trend of Unicorns from 2009 to Nov 2015.
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Figure 15: The Trend of Unicorns1

Among the list of Unicorns2, dominating ones are based on social media, Mobile technol-

ogy, shared economy, and new drugs. The top Unicorn is Uber, with 51 $Billion till November

2015, and the second one is Xiaomi, a new Chinese mobile phone company. Airbnb takes

the third position, Airbnb shares the same fundamental technology with Uber, but has the

application in a different niche. This is consistent with our theoretical model above.

Unicorns have blurred the borderline between early VC investment and IPO, and they

might have grown too big relative to the social optimal size. From Figure 15, we see an

accelerated growth of unicorns from 2013 on: both the number and aggregate value of the

unicorns almost quadrupled in only 2 years. This reminds us the Internet Rush and a jump

in VC investments from 1998, as shown in Figure 14.

10.2 Cross-industry VC investments and Patent protection

According to the theoretical part of this research, we will test the hypothesis of whether

sectors with less de facto IPR protection will be more procyclical and display more severe

“Rush”.

1Data Source: CB Insights and Thomson Reuters.
2see the latest updates from http://fortune.com/unicorns/ and http://graphics.wsj.com/billion-dollar-

club/?co=Square
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Figure 16: VC investments by sectors3

Figure 16 compares the Venture capital investments across several industries. We can see

from Figure 16 that biotech and medical devices were rushed on a much smaller scale than

the software industry. The volatility of VC investments in software industry is huge relative

to other sectors. This is because the idea of software is very easy to copy and duplicate, even

though it can be patented de jure. Therefore, the concept of "De facto IPR protection" is

important. The essential idea of a new software can be easily designed around and so it is

not protected as well as pharmacy although both of them have de jure patents.

Within the biotech industry, different types of drugs also have variations in de facto

patent protection. Chemical drugs (based on Chemical molecule) are relatively easy to

design around or copy with small changes, while biomolecules drugs are diffi cult to copy

because the production process has subtleties, which can be thought of as business secret in

some sense.

Industries with weaker de facto IPR protection display more volatile and procyclical

pattern of VC investments.

3Data Source: CB Insights and Thomson Reuters.
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11 Alternative Policy Instruments

In general, it should be socially optimal to subsidize the earliest adoption of new tech-

nology, but put some restrictions on followers’"rushing" into it.

11.1 Patent policy contingent on expected return

An straightforward policy is to set "tax rates" contingent on innovations’expected re-

turns. In general, the optimal policy is to tax innovations with high expected returns and

use the proceeds to subsidize innovations with low expected returns, such as the Orphan

drugs.

11.2 Anti-trust and Competition Policy

For some new industries and new products, if without appropriate patent protection,

anti-trust regulation should be relaxed. Allowing certain monopolistic power at the early

stage of technology adoption can help to mitigate some unexpected hazards.

11.3 Product Liability, Patent and Social Regulation

Patent not only provides incentives for inventing new products, but also helps to amelio-

rate hazards. Because the innovator has exclusive IPR of the new product, the liability of

the new product is also exclusively assigned to the innovator. It implies that the innovator

will be fully responsible for the negative side of her innovation. This can mitigate moral

hazards and other ineffi ciencies of insuffi cient learning.

Thus there is a linkage or substitute effect between patent protection and product liability.

For products that are generally nonpatentable, to mitigate potential hazards, it demands

stricter liability system or screening. Because financial products are generally not available

for patent, the establishment of the CFPB (Consumer Financial Protection Bureau) can play

an important role in alleviating the side effects of financial innovations.

FDA sets a standard or require the least information to reduce uncertainty of an innova-

tion. This can mitigate the uncertainty spillover., and reduce the proportions of bad models

on the market.

11.4 Monetary v.s. IPR Policy: cheap credit or cheap knowledge

Monetary policy plays a big role in controlling credit to firms and investors. It has been

pointed out that loose monetary policy and thus cheap credit was culprit for the major
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financial crises. However, technological breakthroughs often inject too much “liquidity”of

underpriced knowledge, due to its nature of public good. Relative to the monetary policy

which broadly affects the whole economy, will a counter-cyclical IPR policy be more accurate

in targeting the sectors which market failure of IPR is most significant?

12 Conclusions

Innovations not only create better investment opportunities but also bear uncertainties

and potential hazards. Patient learning are necessary to reduce the uncertainties to a socially

optimal level. However, this can be distorted by Investor’s incentive to capture a lion’s

share of the new market. Facing a limited supply of new projects, investors prefer to enter

the market prematurely. An ineffi cient "rush" often happens after the launch of some
breakthrough technology.

We assume the knowledge of learning can be publicly seen. Interestingly, the incentive

for free-riding the knowledge generated by other investors’early investments can mitigate

the coordination problem to some extent. On the other hand, this information externality

can lead to under-investment at early stage especially when the prior of mean return is low.

Our findings imply that granting some monopolistic power can help to remove ineffi -

ciencies in decentralized learning and investments in innovations. Financial innovations are

generally not protected by patent laws. The traditional literature of innovation and patent

emphasizes the benefit and public good nature of innovations. This research calls atten-

tion to the other side of innovation: uncertainty and potential social hazards. Premature

diffusion and rush in financing an innovation can bring about significant and unexpected

"public bad". Appropriate mechanism needs to be designed to make Investors internalize

the negative externalities.

The core mechanism illustrated by this research has broad policy implications. We sug-

gest the following applications and extensions for future research,

Effort level for learning

We can allow the Investors to make a tradeoff between the quantity of projects to finance

and the effort level put on each project. This tradeoff is important especially when Investors

face resource constraints.

Bank Runs and sytemic risk

A rush in financing innovations can increase the probability of runs. Consumers also have

coordination problems regarding their withdrawal decisions. Suboptimal learning of decen-

tralized Investors can amplify the coordination failure of consumers. Therefore, "rushing-in"
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at the asset side leads to "running out" at the liability side. The author illustrates this

mechanism in a separate paper, Xie (2015c).

Technological improvement and refinement

The innovator can keep on improving the product and removing hazards after learn-

ing. Therefore, at a later stage, the expected return can be higher due to learning and

improvement.

Endogenous Growth Model with Rush

Embed this mechanism of Rush into an endogenous growth model. We can calibrate an

endogenous growth model with this amplification mechanism to match the “rush”phenomena

in real data.

A New Quantity Theory of Money

This research points out an important friction, knowledge spillover and non-excludability

for using uncertain knowledge. This implies the dysfunction of the price mechanism, when

pricing major innovations and technological breakthroughs. Therefore, the mainstream mon-

etary regime for targeting price level will be insuffi cient. During a technology rush, an

inflation-targeting monetary framework will miss the "target": there seems to be no need

to intervene when there is high growth and low inflation. Therefore, this research implies a

monetary framework to target both price and quantity. In my coauthored paper Hufbauer

and Xie (2009), we show the correlation of our definition of a broader money aggregate,

the De Facto Money (DFM), and financial instability. An optimal monetary framework

with special attention to quantity can be derived based on the theoretical mechanism of this

research and the empirical work in Hufbauer and Xie (2009).
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13 Appendix

13.1 Proof of Proposition 1

Given the optimization problem,

max
{x}


∫ α+xθ−αR0

xθ

−∞

(
α0R0+s·xθ
α0+xθ

x+K − x
)
f(s)ds

+
∫∞
α+xθ−αR0

xθ

(
α0R0+s·xθ
α0+xθ

N +K −N
)
f(s)ds

 (76)

where the distribution f(s) follows,

f(s) =
1√(

xθ
)−1

+ (α0)−1
φ

 s−R0√(
xθ
)−1

+ (α0)−1

 (77)

There are three major steps. Firstly integrate (76), and secondly take first-order conditions to get a

closed-form solution of x. Thirdly, we prove the uniqueness of social planner’s solution.

13.1.1 Step 1: Integration

(i) Integrate the lower part of (76)∫ α+xθ−αR0
xθ

−∞

(
αR0+s·xθ
α+xθ

x+K − x
)
f(s)ds

=
∫ α+xθ−αR0

xθ

−∞

(
αR0+s·xθ
α+xθ

x− x+K
)
f(s)ds

=
∫ α+xθ−αR0

xθ

−∞

(
s·xθ
α+xθ

x
)
f(s)ds+

(
K − x+ xαR0

α+xθ

) ∫ α+xθ−αR0
xθ

−∞ f(s)ds

(ii) Integrate the lower part of (76)∫∞
α+xθ−αR0

xθ

(
αR0+s·xθ
α+xθ

N +K −N
)
f(s)ds

=
∫∞
α+xθ−αR0

xθ

(
s·xθ
α+xθ

N
)
f(s)ds+

(
K −N + αR0N

α+xθ

) ∫∞
α+xθ−αR0

xθ

f(s)ds

rearrange the sum of the two outcomes above, we have((
K − x+ xαR0

α+xθ

) ∫ α+xθ−αR0
xθ

−∞ f(s)ds+
(
K −N + αR0N

α+xθ

) ∫∞
α+xθ−αR0

xθ

f(s)ds

)
+

xθ

α+xθ
1

1−λ

(
x
∫ α+xθ−αR0

xθ

−∞ sf(s)ds+N
∫∞
α+xθ−αR0

xθ

sf(s)ds

)
and we integrate the two parts respectively,

(a) The first part(
K − x+ xαR0

α+xθ

) ∫ α+xθ−αR0
xθ

−∞ f(s)ds+
(
K −N + αR0N

α+xθ

) ∫∞
α+xθ−αR0

xθ

f(s)ds

because f(s) = 1√
(xθ)−1+(α0)−1

φ

(
s−R0√

(xθ)−1+(α0)−1

)
,

we have
∫ α+xθ−αR0

xθ

−∞ f(s)ds = Φ

(
s−R0√

(xθ)−1+(α0)−1

)
|
α+xθ−αR0

xθ

−∞
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therefore
(
K − x+ xαR0

α+xθ

) ∫ α+xθ−αR0
xθ

−∞ f(s)ds+
(
K −N + αR0N

α+xθ

) ∫∞
α+xθ−αR0

xθ

f(s)ds

=
E−x+

xαR0
α+xθ

1−λ Φ

(
(α+xθ)(1−R0)

xθ√
(xθ)−1+(α0)−1

)
+

E−N+
αR0N

α+xθ

1−λ

[
1− Φ

(
(α+xθ)(1−R0)

xθ√
(xθ)−1+(α0)−1

)]

=
E−N+

αR0N

α+xθ

1−λ +
N−x+

xαR0−NαR0
α+xθ

1−λ Φ

(
(α+xθ)(1−R0)

xθ√
(xθ)−1+(α0)−1

)

=
E−N+

αR0N

α+xθ

1−λ + (N−x)
1−λ

(
α+xθ−αR0

α+xθ

)
Φ

(
(α+xθ)(1−R0)

xθ√
(xθ)−1+(α0)−1

)

(b) The second part

xθ

α+xθ
1

1−λ

(
x
∫ α+xθ−αR0

xθ

−∞ sf(s)ds+N
∫∞
α+xθ−αR0

xθ

sf(s)ds

)

we need to firstly derive
∫
sf(s)ds∫

sf(s)ds =
∫
sφ

(
s−R0√

(xθ)−1+(α0)−1

)
d

(
s−R0√

(xθ)−1+(α0)−1

)
=
√

(xθ)
−1

+ (α0)
−1 ∫ s√

(xθ)−1+(α0)−1
φ

(
s−R0√

(xθ)−1+(α0)−1

)
d

(
s−R0√

(xθ)−1+(α0)−1

)
=
√

(xθ)
−1

+ (α0)
−1 ∫ s−R0√

(xθ)−1+(α0)−1
φ

(
s−R0√

(xθ)−1+(α0)−1

)
d

(
s−R0√

(xθ)−1+(α0)−1

)
+√

(xθ)
−1

+ (α0)
−1 ∫ R0√

(xθ)−1+(α0)−1
φ

(
s−R0√

(xθ)−1+(α0)−1

)
d

(
s−R0√

(xθ)−1+(α0)−1

)
=

√
(xθ)

−1
+ (α0)

−1 ∫ ( s−R0√
(xθ)−1+(α0)−1

)
φ

(
s−R0√

(xθ)−1+(α0)−1

)
d

(
s−R0√

(xθ)−1+(α0)−1

)
+

R0

∫
φ

(
s−R0√

(xθ)−1+(α0)−1

)
d

(
s−R0√

(xθ)−1+(α0)−1

)
=
(
−
√

(xθ)
−1

+ (α0)
−1

)
φ

(
s−R0√

(xθ)−1+(α0)−1

)
| +R0Φ

(
s−R0√

(xθ)−1+(α0)−1

)
|

then

x
∫ α+xθ−αR0

xθ

−∞ sf(s)ds

= −x
√

(xθ)
−1

+ (α0)
−1
φ

(
α+xθ−αR0

xθ
−R0√

(xθ)−1+(α0)−1

)
+ xR0Φ

(
α+xθ−αR0

xθ
−R0√

(xθ)−1+(α0)−1

)
and

N
∫∞
α+xθ−αR0

xθ

sf(s)ds

= N

√
(xθ)

−1
+ (α0)

−1
φ

(
α+xθ−αR0

xθ
−R0√

(xθ)−1+(α0)−1

)
+NR0Φ

(
s−R0√

(xθ)−1+(α0)−1

)
|∞
α+xθ−αR0

xθ

= NR0 +N

√
(xθ)

−1
+ (α0)

−1
φ

(
α+xθ−αR0

xθ
−R0√

(xθ)−1+(α0)−1

)
−NR0Φ

(
α+xθ−αR0

xθ
−R0√

(xθ)−1+(α0)−1

)
Add up the two parts’integration results, we have the final integration result:

E−N+
αR0N

α+xθ

1−λ + (N−x)
1−λ

(
α+xθ−αR0

α+xθ

)
Φ

(
(α+xθ)(1−R0)

xθ√
(xθ)−1+(α0)−1

)

+ xθ

α+xθ
NR0

1−λ + xθ

α+xθ
N−x
1−λ

√
(xθ)

−1
+ (α0)

−1
φ

(
α+xθ−αR0

xθ
−R0√

(xθ)−1+(α0)−1

)
− xθR0

α+xθ
N−x
1−λ Φ

(
α+xθ−αR0

xθ
−R0√

(xθ)−1+(α0)−1

)

which can be simplified to

52



1
1−λ (E +N (R0 − 1)) + 1

1−λ (N − x) (1−R0) Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
+

1
1−λ

x
θ
2 (N−x)

α
1
2
0 (α0+xθ)

1
2

φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)

13.1.2 Step 2: First-order condition

now the optimization problem becomes,

max
x



K +N (R0 − 1)

+ (N − x) (1−R0) Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)

+ x
θ
2 (N−x)

α
1
2
0 (α0+xθ)

1
2

φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)


(78)

the derivative of
(1−R)(α+xθ)

1
2 α

1
2

x
θ
2

d
dx

{
(1−R)(α+xθ)

1
2 α

1
2

x
θ
2

}
= 1

2x
1
2
θ+1

α
3
2

θ√
α+xθ

(R− 1)

(i) derivative of (N − x) (1−R0) Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
d
dx

{
(N − x) (1−R0) Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)}

= (R0 − 1) Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
− (N − x) (1−R0)

2 1

2x
1
2
θ+1

α
3
2

θ√
α+xθ

φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)

(ii) derivative of x
θ
2 (N−x)

α
1
2
0 (α0+xθ)

1
2

φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
d
dx

{
x
θ
2 (N−x)

α
1
2
0 (α0+xθ)

1
2

φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)}

=− 1
2

x
1
2
θ−1

√
α(α+xθ)

3
2

(
2xα+ 2xxθ −Nαθ + xαθ

)
φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
−

x
θ
2 (N−x)

α
1
2
0 (α0+xθ)

1
2

(1−R0)(α+xθ)
1
2 α

1
2
0

x
θ
2

1

2x
1
2
θ+1

α
3
2

θ√
α+xθ

(R− 1)φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)

=− 1
2

x
1
2
θ−1

√
α(α+xθ)

3
2

(
2xα+ 2xxθ −Nαθ + xαθ

)
φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
+

1

2x
1
2
θ+1

α
3
2 θ N−x√

α+xθ
(R− 1)

2
φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)

then the sum of these two derivatives, and equalizes it with 0,
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(R0 − 1) Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
− (N − x) (1−R0)

2 1

2x
1
2
θ+1

α
3
2

θ√
α+xθ

φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)

− 1
2

x
1
2
θ−1

√
α(α+xθ)

3
2

(
2xα+ 2xxθ −Nαθ + xαθ

)
φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
+ 1

2x
1
2
θ+1

α
3
2 θ N−x√

α+xθ
(R− 1)

2
φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
=

0

rearrange items to get,

Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
(R0 − 1)

= φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
1
2

x
1
2
θ−1

√
α(α+xθ)

3
2

(
2xα+ 2xxθ −Nαθ + xαθ

)
+ (N − x) (1−R0)

2 1

2x
1
2
θ+1

α
3
2

θ√
α+xθ

− 1

2x
1
2
θ+1

α
3
2 θ N−x√

α+xθ
(R− 1)

2


which can be further simplifed to,

Φ

 (1−R0)(α+xθ)
1
2 α

1
2
0

x
θ
2


φ

 (1−R0)(α+xθ)
1
2 α

1
2
0

x
θ
2


= 1

2
1

R0−1

{
x

1
2
θ−1

√
α(α+xθ)

3
2

(
2xα+ 2xxθ −Nαθ + xαθ

)}
= 1

2
1

R0−1

{
2x

θ
2√

α(α+xθ)
− x

1
2
θ−1θ

√
α

(α+xθ)
3
2

(N − x)

}
finally we have,

Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)

φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

) =
1

2

1

R0 − 1

{
2x

θ
2√

α (α+ xθ)
− x

1
2 θ−1θ

√
α

(α+ xθ)
3
2

(N − x)

}
(79)

13.1.3 Step 3. Uniqueness

denote G = (1−R0)
√

α0(α0+xθ)
xθ√

α0(α0+xθ)
xθ

=

√
α2

0

xθ
+ α0 is always a decreasing function of x, when x ≥ 1

Equation (79) can be rearranged to be

G
Φ (G)

φ (G)
=

θα0 (N − x)

2x
(
α0 + xθ

) − 1 (80)

θα0(N−x)
2x(α0+xθ)

is always decreasing in x for x > 0 and x < N .

d
dG

(
Φ(G)
φ(G)

)
= 1 + Φ (G)

(
1

φ(G)

)′
= 1 + Φ (G) ·

(
− 1
φ2(G)

)
· (−Gφ (G)) = 1 +GΦ(G)

φ(G)

d(G·Φ(G)
φ(G) )
dG =

d(G·Φ(G)
φ(G) )
dG = Φ(G)

φ(G) +G ·
(

1 +GΦ(G)
φ(G)

)
= G+ Φ(G)

φ(G)

(
G2 + 1

)
For any G > 0,

d(G·Φ(G)
φ(G) )
dG > 0;
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and in fact, for any G >G
¯

= −7.48,
d(G·Φ(G)

φ(G) )
dG > 0.

G
¯
is tiny enough, and G = (1−R0)

√
α0(α0+xθ)

xθ
will never be smaller than G

¯
in reasonable way.

So generally G·Φ(G)
φ(G) is an increasing function of G.

When R0 > 1,(1−R0) < 0,

G (x) = (1−R0)
√

α0(α0+xθ)
xθ

is increasing function of x;

so LHS = G(x)·Φ(G(x))
φ(G(x)) is increasing function of x.

RHS is decreasing function of x.

there is a unique solution at their intersection.

When R0 < 1,(1−R0) > 0,

G (x) = (1−R0)
√

α0(α0+xθ)
xθ

is decreasing function of x;

so LHS = G(x)·Φ(G(x))
φ(G(x)) is decreasing function of x.

and RHS is decreasing function of x.

However, the slope of the RHS is higher than the LHS when x is large enough. The LHS and RHS curve

will cross once and only once, and (80) has a unique solution x.

�

13.2 Proof of Corollary 1

max
x



K +N (R0 − 1)

+ (N − x) (1−R0) Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)

+ (N − x) x
θ
2

α
1
2
0 (α0+xθ)

1
2

φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)


(81)

lim
x→0

{
(1−R0)(α+xθ)

1
2 α

1
2

x
θ
2

}
=

{
∞ if R0 < 1
−∞ if R0 ≥ 1

therefore

(i) if R0 < 1, x→ 0

lim
x→0

{
Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)}
= 1;

(N − x) (1−R0) Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
→ N (1−R0) = (N − 1) (1−R0) + (1−R0)

x
θ
2 (N−x)

α
1
2
0 (α0+xθ)

1
2

φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
→ 0

if x = 1, then (1−R0) Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
= (1−R0) Φ

(
(1−R0) (α0 + 1)

1
2 α

1
2
0

)
x
θ
2

α
1
2
0 (α0+xθ)

1
2

φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
= 1

α
1
2
0 (α0+1)

1
2

φ
(

(1−R0) (α0 + 1)
1
2 α

1
2
0

)
(ii) if R0 > 1, x→ 0

lim
x→0

{
Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)}
= 0; (N − x) (1−R0) Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
→ 0
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x
θ
2 (N−x)

α
1
2
0 (α0+xθ)

1
2

φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
→ 0

but any 0 < x < N will make (N − x) (1−R0) Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
>

0; x
θ
2 (N−x)

α
1
2
0 (α0+xθ)

1
2

φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
> 0

so x = 0 is not optimal.

�

13.3 Proof of Corollary 2

max
x



K +N (R0 − 1)

+ (N − x) (1−R0) Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)

+ x
θ
2 (N−x)

α
1
2
0 (α0+xθ)

1
2

φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)


(82)

at x = N ,both(N − x) (1−R0) Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
and x

θ
2 (N−x)

α
1
2
0 (α0+xθ)

1
2

φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
are equal

to 0.

because Φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
> 0 and φ

(
(1−R0)(α+xθ)

1
2 α

1
2
0

x
θ
2

)
> 0

when (1−R0) < 0,any x < N will have a higher utility than when x = N .

�

13.4 Proof of Corollary 3

(1−R0)
Φ

(
(1−R0)

√
α0(α0+xθ)

xθ

)

φ

(
(1−R0)

√
α0(α0+xθ)

xθ

)= 1√
α0(α0+xθ)

xθ

(
θα0(N−x)

2x(α0+xθ)
− 1

)
When R0 −→ 1,

lim
R0−→1

(1−R0)
Φ

(
(1−R0)

√
α0(α0+xθ)

xθ

)

φ

(
(1−R0)

√
α0(α0+xθ)

xθ

) = 0 = lim
R0−→1

1√
α0(α0+xθ)

xθ

(
θα0(N−x)

2x(α0+xθ)
− 1

)
so we have θα0(N−x)

2x(α0+xθ)
− 1 = 0

θα0 (N − x) = 2x
(
α0 + xθ

)
That is, x is the solution to 2xθ+1 + α0 (2 + θ)x− θα0N = 0
When θ = 0, 2x+ 2α0x = 0; so x = 0.
When θ = 1,
we have 2x2 + 3α0x− α0N = 0, and the solution is given by,(

1
4

√
α0 (8N + 9α0)− 3

4
α0,−1

4

√
α0 (8N + 9α0)− 3

4
α0

)
finally we have the following unique positive solution for x,
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x = 1
4

√
α0 (8N + 9α0)− 3

4
α0

In the limit
lim
α0→∞

dx
dα0

= lim
α0→∞

8N+18α0

8
√

9α2
0+8Nα0

− 3
4

= lim
α0→∞

8N+18α0

24α0
− 3

4
= 0

�

13.5 Proof of Proposition 2

13.5.1 x with respect to N

When (1−R0) < 0, the LHS of (80) is a decreasing function of x. The RHS of (80) is an increasing

function of x.

Because for

√
xθ

α0(α0+xθ)

1−R0

θα0

2x(α0+xθ)
(N − x) ,

√
xθ

α0(α0+xθ)
> 0 and θα0

2x(α0+xθ)
> 0, 1−R0 < 0, so an increase

in N will shift down the RHS.

The intersection x will rise.

This outcome also applies when (1−R0) > 0.

13.5.2 x/N with respect to N

the RHS of (80) can be rearranged to be

√
xθ

α0(α0+xθ)

1−R0

(
θα0([Nx ]−1)

2(α0+xθ)
− 1

)
.

�

13.6 Proof of Proposition 3

Derivation of the best response function

The threshold of signal:d̄1 = α0+(xi+X−i)
θ−αR0

(xi+X−i)
θ

max
{xi}


∫ α0+(xi+X−i)

θ−αR0

(xi+X−i)
θ

−∞

(
αR0+s·(xi+X−i)θ
α+(xi+X−i)

θ xi + k − xi
)
f(s)ds

+
∫∞
α0+(xi+X−i)

θ−αR0

(xi+X−i)
θ

(
αR0+s·(xi+X−i)θ
α+(xi+X−i)

θ

(
xi + N−xi−X−i

M

)
+
(
k −

(
xi + N−xi−X−i

M

)))
f(s)ds


(83)

with f(s) = 1√
(xi+X−i)

−θ+(α0)−1
φ

(
s−R0√

(xi+X−i)
−θ+(α0)−1

)
Integration Part∫ α0+(xi+X−i)

θ−αR0

(xi+X−i)
θ

−∞

(
αR0+s·(xi+X−i)θ
α+(xi+X−i)

θ xi + k − xi
)
f(s)ds

=
∫ α0+(xi+X−i)

θ−αR0

(xi+X−i)
θ

−∞

(
αR0+s·(xi+X−i)θ
α+(xi+X−i)

θ xi − xi + k
)
f(s)ds

=
∫ α0+(xi+X−i)

θ−αR0

(xi+X−i)
θ

−∞

(
xi(xi+X−i)

θ

α+(xi+X−i)
θ

)
sf(s)ds+

(
k − xi + xiαR0

α+(xi+X−i)
θ

) ∫ α0+(xi+X−i)
θ−αR0

(xi+X−i)
θ

−∞ f(s)ds
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and

∫∞
α0+(xi+X−i)

θ−αR0

(xi+X−i)
θ

(
αR0+s·(xi+X−i)θ
α+(xi+X−i)

θ

(
M−1
M xi + N−X−i

M

)
+
(
k −

(
M−1
M xi + N−X−i

M

)))
f(s)ds

=
∫∞
α0+(xi+X−i)

θ−αR0

(xi+X−i)
θ

(
(xi+X−i)

θ

α+(xi+X−i)
θ

(
M−1
M xi + N−X−i

M

))
sf(s)ds

+

(
k −

(
M−1
M xi + N−X−i

M

)
+

αR0

(
M−1
M xi+

N−X−i
M

)
α+(xi+X−i)

θ

)∫∞
α0+(xi+X−i)

θ−αR0

(xi+X−i)
θ

f(s)ds

(1) The coeffi cient on
∫
f(s)ds∫ α0+(xi+X−i)

θ−αR0

(xi+X−i)
θ

−∞ f(s)ds = Φ

 (1−R0)[α0+(xi+X−i)
θ]

(xi+X−i)
θ√

(xi+X−i)
−θ+(α0)−1


(
k − xi + xiαR0

α+(xi+X−i)
θ

) ∫ α0+(xi+X−i)
θ−αR0

(xi+X−i)
θ

−∞ f(s)ds

+

(
k −

(
M−1
M xi + N−X−i

M

)
+

αR0

(
M−1
M xi+

N−X−i
M

)
α+(xi+X−i)

θ

)∫∞
α0+(xi+X−i)

θ−αR0

(xi+X−i)
θ

f(s)ds

=
(
k − xi + xiαR0

α+(xi+X−i)
θ

)
Φ

 (1−R0)[α0+(xi+X−i)
θ]

(xi+X−i)
θ√

(xi+X−i)
−θ+(α0)−1


+

(
k −

(
M−1
M xi + N−X−i

M

)
+

αR0

(
M−1
M xi+

N−X−i
M

)
α+(xi+X−i)

θ

)1− Φ

 (1−R0)[α0+(xi+X−i)
θ]

(xi+X−i)
θ√

(xi+X−i)
−θ+(α0)−1


= k−

(
M−1
M xi + N−X−i

M

)
+
αR0

(
M−1
M xi+

N−X−i
M

)
α+(xi+X−i)

θ +Φ

 (1−R0)[α0+(xi+X−i)
θ]

(xi+X−i)
θ√

(xi+X−i)
−θ+(α0)−1

(N−X
M − N−X

M
αR0

α+(xi+X−i)
θ

)
(2) The coeffi cient on

∫
sf(s)ds∫ α0+(xi+X−i)

θ−αR0

(xi+X−i)
θ

−∞

(
xi(xi+X−i)

θ

α+(xi+X−i)
θ

)
sf(s)ds+

∫∞
α0+(xi+X−i)

θ−αR0

(xi+X−i)
θ

(
(xi+X−i)

θ

α+(xi+X−i)
θ

(
M−1
M xi + N−X−i

M

))
sf(s)ds

= Xθ

α+Xθ

xi ∫ α0+(xi+X−i)
θ−αR0

(xi+X−i)
θ

−∞ sf(s)ds+
(
M−1
M xi + N−X−i

M

) ∫∞
α0+(xi+X−i)

θ−αR0

(xi+X−i)
θ

sf(s)ds


= Xθ

α+Xθ

(
M−1
M xi+

N−X−i
M

)
R0

1−λ + Xθ

α+Xθ

(
M−1
M xi+

N−X−i
M

)
−xi

1−λ

√
(Xθ)

−1
+ (α0)

−1
φ

 α0+(xi+X−i)
θ−αR0

(xi+X−i)
θ −R0

√
(Xθ)−1+(α0)−1


− Xθ

α+Xθ

(
M−1
M xi+

N−X−i
M

)
−xi

1−λ R0Φ

 α0+(xi+X−i)
θ−αR0

(xi+X−i)
θ −R0

√
(Xθ)−1+(α0)−1


(3) The final integration result

= k −
(
M−1
M xi + N−X−i

M

)
+

αR0

(
M−1
M xi+

N−X−i
M

)
α+(xi+X−i)

θ + Xθ

α+Xθ

(
M−1
M xi + N−X−i

M

)
R0

+Φ

 (1−R0)[α0+(xi+X−i)
θ]

(xi+X−i)
θ√

(xi+X−i)
−θ+(α0)−1

 N−X
M

(
α+(xi+X−i)

θ−αR0

α+(xi+X−i)
θ

)
− Xθ

α+Xθ

((
M−1
M xi + N−X−i

M

)
− xi

)
R0


+ Xθ

α+Xθ

((
M−1
M xi + N−X−i

M

)
− xi

)√
(Xθ)

−1
+ (α0)

−1
φ

 α0+(xi+X−i)
θ−αR0

(xi+X−i)
θ −R0

√
(Xθ)−1+(α0)−1


and it can be simplifed to the following optimization problem,
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max
x



k + (R0 − 1)
(
M−1
M xi + N−X−i

M

)
+N−xi−X−i

M (1−R0) Φ

 (1−R0)[α0+(xi+X−i)
θ]

(xi+X−i)
θ√

(xi+X−i)
−θ+(α0)−1


+N−xi−X−i

M
(xi+X−i)

θ
2

α
1
2 (α+(xi+X−i)

θ)
1
2
φ

 α0+(xi+X−i)
θ−αR0

(xi+X−i)
θ −R0

√
(Xθ)−1+(α0)−1




Taking First-order Conditions with respect to x
d
dx

{
(1−R0)

((xi+X−i)
θ+α0)

1
2

(xi+X−i)
θ
2

√
α0

}
= R−1

2
α

3
2 θ

(x+X−i)
1
2
θ+1
√
α+(x+X−i)

θ

(i) Part 1 derivative

derivative for N−xi−X−iM (1−R0) Φ

 (1−R0)[α0+(xi+X−i)
θ]

(xi+X−i)
θ√

(xi+X−i)
−θ+(α0)−1


= R0−1

M Φ

 (1−R0)[α0+(xi+X−i)
θ]

(xi+X−i)
θ√

(xi+X−i)
−θ+(α0)−1

− N−xi−X−i
M

(R−1)2

2
α

3
2 θ

(x+X−i)
1
2
θ+1
√
α+(x+X−i)

θ
φ

 (1−R0)[α0+(xi+X−i)
θ]

(xi+X−i)
θ√

(xi+X−i)
−θ+(α0)−1


(ii) Part 2 derivative

derivative for N−xi−X−iM
(xi+X−i)

θ
2

α
1
2 (α+(xi+X−i)

θ)
1
2
φ

 α0+(xi+X−i)
θ−αR0

(xi+X−i)
θ −R0

√
(Xθ)−1+(α0)−1


= − (X−i+x)

1
2
θ−1

2(α+(X−i+x)θ)
3
2Mα

1
2

 2X−i (X−i + x)
θ

+ 2x (X−i + x)
θ

+2X−iα+ 2xα−Nθα
+X−iθα+ xθα

φ

 α0+(xi+X−i)
θ−αR0

(xi+X−i)
θ −R0

√
(Xθ)−1+(α0)−1


− 1

2M θ α
3
2√

α+(X−+x)θ
(R−1)2

(X−+x)
1
2
θ+1

(X−i −N + x)φ

(
(1−R0)

√
α0

((xi+X−i)
θ+α0)

1
2

(xi+X−i)
θ
2

)
(iii) The final FOC result with respect to x

M − 1 + Φ


(1−R0)

[
α0+(xi+X−i)

θ
]

(xi+X−i)
θ√

(xi +X−i)
−θ + (α0)−1

 =
(xi +X−i)

1
2
θ−1

2 (R0 − 1)
(
α0 + (xi +X−i)

θ
) 3

2
α

1
2
0

×
(

2 (xi +X−i)
θ+1

+ 2α0(xi +X−i)
−Nθα0 + θα0(xi +X−i)

)
φ


α0+(xi+X−i)

θ−αR0

(xi+X−i)
θ −R0√

(xi +X−i)
−θ + (α0)−1

 (84)

�

13.7 Proof of Proposition 4

from the Best-response function of x derived in Proposition 2,

M − 1 + Φ

 (1−R0)[α0+(xi+X−i)
θ]

(xi+X−i)
θ√

(xi+X−i)
−θ+(α0)−1


= (xi+X−i)

1
2
θ−1

2(R0−1)(α0+(xi+X−i)
θ)

3
2 α

1
2
0

(
2 (xi +X−i)

θ+1
+ 2α0(xi +X−i)

−Nθα0 + θα0(xi +X−i)

)
φ

 α0+(xi+X−i)
θ−αR0

(xi+X−i)
θ −R0

√
(xi+X−i)

−θ+(α0)−1


59



for the symmetric equilibrium x = xi = X−i
M−1

then the final M-Investor symmetric equilibrium is,

(M − 1) + Φ

(
(1−R0)

√
α0((Mx)θ+α0)

1
2

(Mx)
θ
2

)
= 1

R0−1
1
2

(Mx)
1
2
θ−1

α
1
2
0 (α0+(Mx)θ)

3
2

(
2Mxα0 + 2 (Mx)

θ+1 −Nθα0 + θα0Mx
)
φ

(
(1−R0)

√
α0((Mx)θ+α0)

1
2

(Mx)
θ
2

)
This can be simplifed to (85),

(M − 1)+Φ

(1−R0)

√√√√α0

(
α0+ (Mx)θ

)
(Mx)θ

 = φ

(1−R0)

√√√√α0

(
α0+ (Mx)θ

)
(Mx)θ

× 1

(1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ

 θα (N −Mx)

2Mx
(
α+ (Mx)θ

) − 1


(85)

13.7.1 Uniqueness

denote G (x) = (1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ√
α0(α0+(Mx)θ)

(Mx)θ
=
√

α2
0

(Mx)θ
+ α0 is always a decreasing function of x, when x ≥ 1

Equation (85) can be rearranged to be,

(M − 1)

[
(1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ

]

φ

(
(1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ

)
︸ ︷︷ ︸

LHS1

+

[
(1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ

]
Φ

(
(1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ

)

φ

(
(1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ

)
︸ ︷︷ ︸

LHS2

=

 θα0 (N −Mx)

2Mx
(
α0 + (Mx)θ

) − 1


︸ ︷︷ ︸

RHS

and further simplified to (86),

(M − 1)G

φ (G)︸ ︷︷ ︸
LHS1

+
GΦ (G)

φ (G)︸ ︷︷ ︸
LHS2

=

 θα0 (N −Mx)

2Mx
(
α0 + (Mx)θ

) − 1


︸ ︷︷ ︸

RHS

(86)

Monotonicity of G
φ(G)

d( G
φ(G) )
dx = 1

φ(G) −
G

(φ(G))2 [−Gφ (G)] = 1
φ(G) + G2

φ(G) = 1+G2

φ(G) > 0
G

φ(G) is always an increasing function of G, and does not depend on the sign of G.

Monotonicity of GΦ(G)
φ(G)

As proved before, generally G·Φ(G)
φ(G) is an increasing function of G.

Monotonicity of RHS
RHS = θα0(N−Mx)

2Mx(α0+(Mx)θ)
is always decreasing in x for x > 0 and x < N .

When R0 > 1,(1−R0) < 0,

G (x) = (1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ
is an increasing function of x;

so LHS = LHS1 + LHS2 is increasing functions of x.

RHS is decreasing function of x. There is a unique solution at their intersection.

When R0 < 1,(1−R0) > 0,
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G (x) = (1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ
is an decreasing function of x;

so LHS is a decreasing function of x, and RHS is also a decreasing function of x.

However, the slope of the RHS is larger than the LHS when x grows large enough. The LHS and RHS

curve will cross once and only once, and (80) has a unique solution x.

�

13.8 Proof of Proposition 5

The Threshold R0

(M − 1)

[
(1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ

]

φ

(
(1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ

)
︸ ︷︷ ︸

LHS1

+

[
(1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ

]
Φ

(
(1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ

)

φ

(
(1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ

)
︸ ︷︷ ︸

LHS2

=

 θα0 (N −Mx)

2Mx
(
α0 + (Mx)θ

) − 1


︸ ︷︷ ︸

RHS

denote G (x) = (1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ
,then we have,

(M − 1)G

φ (G)︸ ︷︷ ︸
LHS1

+
GΦ (G)

φ (G)︸ ︷︷ ︸
LHS2

=

 θα0 (N −Mx)

2Mx
(
α0 + (Mx)θ

) − 1


︸ ︷︷ ︸

RHS

When R0 > 1,(1−R0) < 0,

As have been proved before, LHS1, LHS2 are increasing functions of x, and LHS = LHS1 +LHS2 is

also an increasing function of x.

But G (x) = (1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ
< 0, and LHS1 < 0.

LHS2 is an increasing functions of x; adding LHS1 to it will shift the original LHS2 curve downwards.

Compare to the social planner’s solution x, the equilibrium x̂ will be larger, and there will be overinvest-

ment.

When R0 < 1,(1−R0) > 0,

G (x) = (1−R0)

√
α0(α0+(Mx)θ)

(Mx)θ
> 0, and it is an decreasing function of x;

so LHS is a decreasing function of x, and RHS is also a decreasing function of x.

However, the slope of the RHS is larger than the LHS when x grows large enough. The LHS and RHS

curve will cross once and only once, and (80) has a unique solution x. RHS curve will cross the LHS curve

from above once and only once.

LHS1 > 0. So adding LHS1 to LHS2 will shift the original LHS2 curve up.

This will make the interaction point x̂ between LHS and RHS smaller. That is, there will be underin-

vestment relative to the social optimal level.

�
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