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Abstract

We develop a model of insurance pricing under heterogeneous lapse rates with asymmetric information about

lapse likelihood within the context of an optional two-part tariff as a screening device for future policyholder

behavior. We then test for consumer self-selection using detailed, policy-level data on life insurance backdating (a

common practice that resembles a two-part tariff). We are able to identify, through a control function approach,

the information about lapse risk a consumer reveals when they choose to backdate. Our contribution to the

literature is twofold: we are the first to model life insurance lapsing as a form of adverse selection; we also

explore, both theoretically and empirically, the role of optional two-part tariffs as a screening mechanism using

life insurance backdating as our primary example. We exploit randomness in the initial tariff size to separately

identify the selection and sunk cost effects of backdating on lapse proclivity. We find that consumers who are

less likely to lapse self-select into the two-part tariff pricing structure and also document consumer behavior

consistent with sunk cost fallacy.
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1. Introduction

There are large, upfront, fixed costs to writing a life insurance policy. Both agent commission

and direct underwriting costs (e.g., fees for physicals and blood tests) are fully paid a few years

into contracts that can last 10-30 years. Because of these upfront costs, insurers can actually lose

money on policies when the consumer lapses early into the contract, even if no death benefit is ever

paid out. Thus, to properly price contracts, insurers must estimate lapse risks. However, because

consumers often have more knowledge about their lapse likelihood than the insurer, asymmetric

information arises and room for a screening mechanism exists. In this paper, we develop a model

of life insurance pricing under heterogeneous lapse behavior with asymmetric information about

lapse likelihood. We establish the existence of a separating equilibrium under a menu of contracts

containing an optional two-part tariff. We then show the consumer’s choice serves as a screening

device for private information on lapse likelihood. Using detailed, policy-level data on life insurance

backdating as an example of our proposed optional two-part tariff, we empirically test our model’s

prediction of consumer self-selection. We use a control function approach to separately identify

selection effects from potential sunk cost fallacy. We find that consumers who choose to take part

in the two-part tariff by backdating their policies are less likely to lapse, due to both self-selection

and sunk costs.

Lapse rates in life insurance are substantial. Between 1991 and 2010, $29.7 trillion of new

individual life insurance coverage was issued in the United States. During this same time period,

$24 trillion of coverage lapsed. 85% of term life insurance policies never pay a death benefit. More

surprisingly, 74% of term life policies sold to people at age 65 fail to pay a death benefit (Gottlieb

and Smetters, 2014).1 In a given year, for every policy that ends in death or term maturation,

36 policies lapse due to nonpayment of premiums (Purushotham, 2006). We focus our analysis on

term life insurance and, though the vast majority of literature on insurance lapsing is focused on

whole life insurance, much of the theory applies to term insurance as well. The literature on lapse

behavior is well-developed and can be condensed into: preference shocks, income shocks, policy

replacement, and non-expected utility explanations.

1Whole life insurance, which doesn’t expire and is typically held for longer, has similar per-policy lapse rates and
lower per-year lapse rates.
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Preference shocks refer to a number of situations where the private value of the life insurance

contract has changed (Fang and Kung, 2010; Liebenberg et al., 2012; Fei et al., 2015).2 Examples

include: divorce, death of a spouse or child, children becoming self-sufficient, increase in spousal

income, etc. Income shocks refer to consumers experiencing a negative shock to income and thereby

having insufficient funds to pay premiums. The effect of an income shock on lapse rates is stronger

in whole life insurance due to the higher premiums and presence of a surrender value. This is

referred to in the literature as the emergency fund hypothesis (Linton, 1932; Outreville, 1990; Kuo

et al., 2003). The aptly named policy replacement hypothesis refers to consumers who lapse on one

policy because they find what they believe to be a better one (Outreville, 1990; Carson and Forster,

2000). The interest rate hypothesis is a specific case of the policy replacement hypothesis where

the driver of better available policies is a change in expectations of future interest rates (Schott,

1971; Pesando, 1974; Kuo et al., 2003).3 The final category of research on lapse rates focuses on

non-expected utility models of consumer behavior and how these various behavioral assumptions

can influence the decision to lapse on a policy (Shefrin, 2002; Mulholland and Finke, 2014; Gottlieb

and Smetters, 2014).4 Our theory requires that consumers potentially have some private knowledge

about their lapse proclivity. Of these four main determinants, consumers most likely have private

knowledge about income shocks and preference shocks.

Though asymmetric information on lapse risk initially appears different than the canonical

study of asymmetric information on loss probability, the same intuition applies. In our case, we

observe that life insurance incurs a front-loading of underwriting-related costs both through direct

underwriting costs and agent commission. It is expected that the costs of underwriting will be

recovered by the insurer over the long life of the contract. However, when a consumer lapses on

a policy early into the contract (e.g., in the first several years), the insurer is unable to recoup

the entire underwriting cost. Thus, consumers with a higher likelihood of lapsing have a higher

(expected) average cost per year because the fixed cost of underwriting is spread over a smaller

2This reason for lapsing generally only covers negative shocks to the insurance value of the policy. Positive shocks
to preferences are typically subsumed by the policy replacement category.

3Because insurance premiums are collected, and invested, long before benefits are paid out, expectations about
interest rates play an important part in the determination of premium rates.

4For an excellent, detailed analysis of these hypotheses the interested reader is referred to Eling and Kochanski
(2013).
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time span. If consumers have private knowledge about this cost, the same adverse selection issues

arise.

Much has been written on possible asymmetric information issues in life insurance, though

the extant literature focuses solely on loss as opposed to lapse. Cawley and Philipson (1999)

show the existence of a negative correlation between risk and coverage in life insurance that runs

counter to the testable implications set forth by Chiappori et al. (2006). Cutler et al. (2008)

explore reasons for this apparent “advantageous selection” citing a negative correlation for risk

aversion and risky behaviors. Gottlieb (2012) suggests it is unlikely there is an adverse selection

problem in life insurance, as it is priced close to actuarially fair levels. However, the possible

presence of simultaneous advantageous selection, which produces opposite observable correlation

as adverse selection, clouds this analysis (De Meza and Webb, 2001). Under advantageous selection,

individuals who have lower risk also tend to be more risk averse. This produces a situation where

less risky individuals are more likely to purchase insurance due to their higher risk aversion even

though they have a lower probability of experiencing a loss.5

The main difference in lapse risk versus loss risk is that the common methods of addressing

asymmetric information do not readily apply: deductibles and copays will not cause consumers to

self-select into their proper lapse-risk group. Instead we show insurers can offer a menu of contracts

with varying combinations of an initial fee and recurring premiums, i.e., a menu of two-part tariffs.

We show that consumers who choose to pay the higher up-front fee and lower recurring premiums

are signaling their intention to persist and not to lapse early in the contract period.

Two-part tariffs, originally examined by Gabor (1955) and Bowman (1957), are central to the

literature concerning price discrimination. The simplest form of second-degree price discrimination,

two-part tariffs are commonly used across numerous industries. The first formal analysis of this form

of price discrimination was Oi (1971) which examines the optimal pricing structure for amusement

parks (Disneyland in particular); Schmalense (1981) expands on this work. Blackstone (1975) looks

into potential two-part tariffs for Electrofax copying machines. Mussa and Rosen (1978) was the

first to examine two-part tariffs as a screening mechanism. Schmalense (2015) looks at the “razor-

and-blades” pricing strategy.6 The extreme version of a two-part tariff is “buffet pricing,” where

5For a broad discussion of adverse and advantageous selection, see Einav and Finkelstein (2011).
6For a more in-depth discussion of the extant literature on two-part tariffs, the interested reader is referred to

Stole (2007); for a discussion of the theory the reader is referred to Tirole (1988).
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the per-period price is set to zero and the entire payment is subsumed by the tariff (Nahata et al.,

1999). Prior work examined on why life insurance contracts tend to be actuarially front-loaded,

but the extant literature has failed to consider that optional front-loading acts as a screening device

(Hendel and Lizzeri, 2003; Hofmann and Browne, 2013).7

A version of an optional two-part tariff pricing method exists in the life insurance industry,

called backdating. A life insurance contract is considered backdated when the insurance contract

bears a start date that is prior to the application date.8 The consumer chooses to pay for coverage

for the time prior to their application and, because the consumer is still alive at the time of

application, no death benefit will be paid for this prior coverage. Rather, consumers do this to

“save age.” Because life insurance policies feature level premiums that are based largely on the

age of the applicant at the beginning of the contract, backdating to save age allows the consumer

to be underwritten at a lower age, which lowers the per-period premium paid throughout the life

of the contract.9 Throughout this paper we are only considering policies backdated to save age.

The choice to backdate is, in essence, the choice to pay an initial upfront payment to have lower

per-period payments, which looks a lot like an optional two-part tariff.

While the extant literature on backdating is limited, the practice is quite common. In our

sample, 19% of policies legally able to be backdated are. Carson (1994) shows that the net present

value of backdating can be positive after relatively short periods of time depending on the length

of the backdate period, the discount rate, and age. Carson and Ostaszewski (2004) further show

that the actuarial present value of backdating is generally positive. Carson et al. (2012) examine

the incentives and welfare economics of life insurance backdating.

Prior work on life insurance backdating has failed to address if and why decreased lapse rates

occur. The obvious avenue through which greater policy persistence might occur is via a selection

mechanism – those consumers with asymmetric knowledge of their low lapse risk are more likely

to pay the initial tariff because the future stream of decreased premiums is longer and, therefore,

more valuable to them. In addition to the selection effect, behavioral economics offers a differ-

7There is a somewhat similar vein of work on reclassification risk in health insurance (Herring and Pauly, 2006;
Pashchenko and Porapakkarm, 2015; Handel et al., 2015).

8This process is regulated by states with typical maximum backdating of six months.
9We note also that other forms of two-part tariffs could be offered by insurers (in addition to backdating), such

as the option to pay for underwriting /policy issue expenses separately from mortality charges.
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ent mechanism: sunk cost fallacy (Arkes and Blumer, 1985).10 Sunk cost fallacy would lead to

lower lapse rates because consumers may have an aversion to “wasting” the high upfront tariff

of backdating. If, for instance, consumers were randomly assigned to the tariff pricing structure,

we would not expect those who pay the tariff to exhibit lower lapse rates, unless those consumers

are exhibiting sunk cost fallacy (and we are properly controlling for the differences in per-period

premiums). Through our empirical structure we are able to separately identify the self-selection

and behavioral effects of backdating on lapsing behavior. Our work builds on the growing field

evidence of behavior consistent with sunk cost fallacy (Ho et al., 2017).

Figure 1

NPV of Backdated Policy Relative to Normal Policy

Note: Annual net present value (NPV) for a 35 year old male for a
$250,000, 30 year term policy. Source: Carson and Ostaszewski (2004)

Because of the discrete nature of life insurance underwriting, specifically the use of integer ages,

the relative distance from a consumer’s application date to their birthday will change the size of

the initial tariff while having no effect on the size of the premium reduction. Drawn from Carson

and Ostaszewski (2004), Figure 1 shows how the actuarial value to a 35-year-old male consumer

of backdating a policy evolves over time compared to a traditionally purchased policy for different

10We acknowledge the existence of potential rational explanations for consumers exhibiting what appears to be
sunk cost fallacy (McAfee et al., 2010). We are only documenting the existence of the behavior, not necessarily
providing evidence of irrational behavior.
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lengths of backdating. Consumers who apply for life insurance far away from their birthdays must

pay a larger upfront cost to get the same reduction in premium. Thus, it takes longer for the

premium reduction to outweigh the initial tariff. We exploit this randomness in initial tariff size

to separately identify the selection and sunk cost effects of backdating on lapse proclivity. We find

each avenue to be a significant contributor to a consumer’s decreased propensity to lapse.

Our paper is similar to Gottlieb and Smetters (2014). We examine the insurer’s plight that

the consumer may lapse on their contract too early – Gottlieb and Smetters (2014) examine the

potential that the consumer may fail to lapse at all. Both of these dilemmas are due to level

premiums. Ours arises because most costs incurred in acquiring contracts are heavily front loaded

which means, due to level premiums, the contract must be in force for at least a few years for the

insurance company to profit from the contract. Gottlieb and Smetters’s (2014) arises because, due

to death risk increasing with age, level premiums are actuarially front loaded. This means that in

the later parts of contracts the annual expected payout is higher than the annual premium. At this

point, and thereafter, the insurance company is better off if the consumer lapses on the contract.

Furthermore, Gottlieb and Smetters’s (2014) stated reason for consumers selecting into contracts

they are likely to eventually lapse on, consumer over confidence in retention rates, is not mutually

exclusive from our examination. We only require that different types of consumers have different

expectations of their own lapse rates. We do not require these expectations be unbiased. Our

results of consumer selection likely do not have an effect on Gottlieb and Smetters’s (2014) results

because, as Figure 2 shows, the effect appears to diminish over time.

Our contribution to the literature is twofold: we are the first to model life insurance lapsing

as a form of adverse selection; we also explore, both theoretically and empirically, the role of

optional two-part tariffs as a screening mechanism using life insurance backdating as our primary

example. The findings shed light on why insurers continue to engage in backdating when alternative

pricing mechanisms exist – backdating is used by insurers as a screening device to deal with hidden

knowledge of lapse intentions that engender a form of adverse selection. As part of our results, we

also show evidence of consumer behavior consistent with sunk cost fallacy.

The rest of this paper proceeds as follows: the next section describes a simple model of life

insurance pricing under heterogeneous lapse behavior with perfect asymmetric information about

lapse likelihood and then examines the role of optional two-part tariffs as a screening device. The
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Figure 2

Difference in Hazard Probability over Time

Note: Difference in hazard probability over time for backdated vs.
non-backdated policies.

third section describes our data and empirical methods, and the fourth section presents our results.

The final section offers conclusions.
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2. Theory

We begin with a simple expression of how insurers can use optional two-part tariffs to screen

a consumer’s lapse risk.11 Let there be two periods. Consider a term insurance contract offered

by a competitive life insurer lasting both periods with level premiums. Let there be two types of

consumers: those who lapse after the first period and those who continue into the second. λ is

the share of consumers who lapse on their policies after the first period and (1 − λ) is the share

who do not lapse. Both types of consumers have an equal chance ρ1 of loss L in the first period

and ρ2 of loss L in the second period. Define ρ2 > ρ1 to exemplify that death risk increases with

age. Consumers are indistinguishable to the insurer who must incur a fixed underwriting cost

F > 0. The profit Π for a representative insurer, separated by period, offering full coverage at level

premium P is

Π = Π1 + Π2

Π1 = P − ρ1L− F

Π2 = (1− λ)P − (1− λ)ρ2L

Where Πt is the profit in period t.

With a competitive insurer, we use the zero profit condition and solve for equilibrium price

P ∗ =
F + ρ1L+ (1− λ)ρ2L

(2− λ)
.

The first derivative of premium with respect to lapse rate is then

∂P ∗

∂λ
=
F + (ρ1 − ρ2)L

(2− λ)2

The sign of this derivative, which determines whether or not lapsing is costly to the insurer,

is determined by the relative size of the underwriting cost F and the difference in expected costs

between periods (ρ1 − ρ2)L. In situations such as shorter term life insurance written for younger

consumers, it is likely that F > (ρ1 − ρ2)L and thus ∂P ∗

∂λ > 0 meaning lapsing is costly to insurers.

11In this section we are ignoring any irrational behavior, specifically sunk cost fallacy.
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In other situations, such as longer term insurance written to the elderly, (ρ1 − ρ2)L may be quite

large and lapsing may actually reduce the costs of the insurer. In either case, the optimal price for

the two types differs and room for a screening mechanism exists.

If insurers instead offer an optional two-part tariff, the equilibrium changes. A pooling equilib-

rium is impossible under the standard Rothschild and Stiglitz (1976) argument so we instead search

for a separating equilibrium. This equilibrium is defined by two separate premium offers (P1, P2)

where P1 > P2 and an initial tariff T that a consumer must pay to access P2.
12 This equilibrium

space is defined by a solution to the following:

P1 = ρ1L+ F (1)

2P2 + T = (ρ1 + ρ2)L+ F (2)

2P2 + T ≤ 2P1 (3)

P2 + T ≥ P1 (4)

Equations (1) and (2) represent the zero profit conditions; Equations (3) and (4) represent the

incentive compatibility constraints. A space of solutions always exists, with an intuitive example

being to set the tariff T as slightly higher than the underwriting cost F + ε and P2 as slightly lower

than the expected, first period, loss ρ1L− ε, where ε is small.13

3. Data and Methods

3.1. Data

The data for the analysis come from a medium-sized and geographically diverse mutual life

insurer in the U.S. and spans contracts written in the years 2005 through 2013.14 The full sample

includes data for 97,522 term life insurance contracts. We focus exclusively on term insurance

between 10-30 years.15 Because death claims are so rarely paid in the first nine years of term

12Because our model is only two periods, a two-part tariff for those consumers who lapse after one period is
indistinguishable from a single premium.

13Unlike Rothschild and Stiglitz (1976), a solution always exists in our model.
14We use these years to simplify the issue of a term policy expiring vs. a consumer lapsing.
15This focus eliminates the yearly renewable term contracts. As yearly renewable terms policies are spot contracts

and do not have level premiums, a two-part tariff has no meaning. 10-year terms are the smallest length term policies
in our data after 1-year renewable term. This also eliminates universal life and whole life contracts.
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policies, the potential for consumers holding their policies “too long” appears remote. That is,

with reference to our model, it is likely that F > (ρ1 − ρ2)L, thus making improved persistency

strictly a benefit for the insurer and separating our analysis from Gottlieb and Smetters (2014).16

This allows us to view higher likelihood of lapse strictly as an adverse form of selection and adhere

more to the predicted selection results of our model. To avoid the complication of classifying

deaths in our hazard model, we remove the 727 policies that end in death.17 Many states have

laws restricting how long a policy can be backdated. Of the 10 states our insurer operates in – 5

restrict backdating to six months, 1 restricts to 3 months, and 4 have no laws. We remove from

the analysis every application that is greater than 6 months from the applicant’s birthday.

Table 1: Summary Stats

Variable Full Sample Backdate Don’t Backdate
Mean St. Dev. Mean St. Dev. Mean St. Dev.

Backdate 0.19 0.39 1 - 0 -
DaysAfterBirthday 86.72 47.74 44.04 23.44 96.70 46.46
Face Amount($000s) 223.79 299.47 312.19 431.72 203.13 254.62
Issue Age 41.13 11.11 43.29 10.91 40.63 11.10
Annual Premium 584.22 1,036.33 874.21 1,764.73 516.44 756.95
Lapse 0.30 0.46 0.21 0.41 0.32 0.47
Days in Force 1,508.17 1,020.75 1,736.21 1,012.505 1,454.87 1,015.34

N 24,661 4,672 19,989

Note: This table shows summary statistics separated by consumers who did and
did not backdate.

Life insurance policies are often backdated for reasons other than saving age (such as to align

financial documents). To address this, we define a policy as backdated only if the effective date is

within one week prior to the consumer’s birthday. Our identification strategy relies on randomness

in applying for life insurance with regard to a consumer’s birthday. However, there is evidence

that consumers do alter their behavior during the short time frame around their birthday (Dai

et al., 2014). To address this we drop those consumers who apply within one month (before or

after) of their birthday.18 After these modifications, and the removal of missing data, our sample

consists of 24,661 active or lapsed policies. Summary statistics for these policies can be found in

16In our full sample of 97,522 contracts, we observe 727 deaths; in our selected sample, we observe 494.
17Inclusion of policies that end in death and classifying them as non-lapsed policies does not affect our results.

Similarly, classifying the policies as lapsing at death does not affect our results.
18If we include these consumers our results are slightly strengthened.
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Table 1. Because they have to pay a lower tariff for the same reduction in premiums, consumers

who apply for life insurance closer to their birthdays are more likely to backdate their policies.

Additionally, consumers with backdated policies both hold their policies longer and have lower

lapse rates. Interestingly, consumers who backdate tend to have larger policies.

3.2. Base Specification

To first check our proposed optional two-part tariff selection mechanism, we examine if back-

dated policies exhibit lower lapse rates. Our initial specification for the hazard of lapsing is defined

as follows:19

λ(Lapseit|X) = λ0(t)exp(Xiβ
′)ui (5)

Xi = (Backdatei, IssueAgei,Malei, FaceAmti, AnnPremi,

UWClassi, T ermLengthi, IssueY eari, Statei)

ui ∼ exp(N(0, σ2)).

We fit Equation (5) using the partial likelihood method of Cox (1972). Lapseit is equal to 1 in

time t if the policy has lapsed at any time equal or prior to t and 0 otherwise. For the independent

variables in the model, Backdatei is 1 if the consumer was found to be saving age and 0 otherwise.

IssueAgei is the age of the insured at time of application. Malei is a binary variable equal to 1

if the insured is male, and 0 otherwise. FaceAmti is the face value of the life insurance policy.

AnnPremi is the annual premium for the policy. TermLengthi is a series of dummy variables

for length of term (10, 15, 20, 25, or 30 years). UWClassi is a series of dummy variables for the

underwriting class of the insured (with four dummy variables for five different categories), with

UWClass1i being the healthiest. IssueY eari is a series of dummy variables for the year of policy

issuance. Statei is a series of dummy variables for state of issuance. Because we are going to use

19Contrary to most hazard models, our data are not truly panel and thus we do not represent them as such. Each
policy represents one row in our data and we derive the hazard specifications from a combination of our time-invariant
covariates: length of time policy was/is in force and a binary indicator for if the policy lapsed. Since our data’s time
frame for policy issuance is smaller than the minimum term length used in our data (10 years) we circumvent the
need to account for issues with a policy expiring without lapse or policy-holder death.
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a control function in the next step, we additionally specify the structure of the error term ui as

being log-normally distributed with mean 0 and variance σ2.

3.3. Control Function Approach

We wish to examine if information about a consumer’s lapse risk is contained within consumer’s

decision to backdate. However, our above model is not able to separately identify an effect from

the decision to backdate or an effect from simply having backdated. In other words, we are unable

to tell with this initial specification if differential lapse behavior is due to selection based on prior

knowledge of lapse risk or if it is based on the differential pricing structure caused by backdating.

Since we control for differences in premiums, any non-selection effect must be due to the initial

tariff. This tariff is only paid at the start of the policy, thus consumers who act differently based

only on having paid the tariff (not selection effects) are exhibiting classic sunk cost fallacy.

We are concerned with the selection effect and sunk cost effect separately, rather than the net

effect. Thus our identification problem is classic selection-bias which we address through instru-

mental variables. We instrument for Backdatei using the difference between the application date

of the policy and the consumer’s birthday (DaysAfterBirthdayi), i.e., how large of an initial tariff

the consumer must pay in order to acquire a lower premium. The exclusion restriction is satisfied

assuming that consumers do not consider their birthdays when applying for life insurance. Because

consumers are more likely to purchase life insurance close to their birthdays, we drop those who

apply to purchase life insurance within a month of their birthdays (both before and after). Figure

2 shows the distribution of days required to save age along with a fitted quadratic curve. The slope

is statistically significantly negative, however this effect is exceptionally small: a consumer is .018%

more likely to apply 31 days after their birthday vs. 180 days.20

20This can be attributed to Benford’s Law mod 365.
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Figure 3

Plot of Days Required to Save Age vs. Percent of Total Sample.

Note: This figure shows the distribution of application days relative
to birthdays, i.e. how many days of premiums consumers must pay to
backdate. Consumers who purchase within 30 days before (or 181 days
after) their birthday are not included.

To instrument here we redefine the error term

ui = exp(αvi + ei)

ei ∼ N(0, σ2)

Backdatei = f(Zi) + vi

Zi = (DaysAfterBirthdayi, IssueAgei,Malei, FaceAmti, AnnPremi,

UWClassi, T ermLengthi, IssueY eari, Statei)

Where f(Zi) is fitted via a Probit specification.
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This structure allows us to use a control function approach.21 Our identified model is

Full Model:

λ(Lapseit|X) = λ0(t)exp(Xiβ
′)ui (6)

Xi = (Backdatei, IssueAgei,Malei, FaceAmti, AnnPremi,

UWClassi, T ermLengthi, IssueY eari, Statei)

ui = exp(αvi + ei) (7)

ei ∼ N(0, σ2) (8)

First Stage:

Backdatei = f(Zi) + vi (9)

Zi = (DaysAfterBirthdayi, IssueAgei,Malei, FaceAmti, AnnPremi,

UWClassi, T ermLengthi, IssueY eari, Statei)

Second Stage:

λ(Lapseit|X̂) = λ0(t)exp(X̂iβ
′)ei (10)

X̂i = (v̂i,Backdatei, IssueAgei,Malei, FaceAmti, AnnPremi,

UWClassi, T ermLengthi, IssueY eari, Statei).

Here the second stage (10) is the same as (5) with the inclusion of the residuals from the first

stage (9).22 Following Basu and Coe (2015) we use Anscombe residuals (Anscombe and Tukey,

1963) to account for the relative rarity of backdating.23 Equation (10) allows us to separately

identify the selection effect (coefficient on v̂i) from the sunk cost effect (coefficient on Backdatei).

The interpretation of the coefficient on v̂i is similar in intuition to the coefficient on the inverse

Mills ratio in the classic Heckman selection model. That is, the significance of the coefficient shows

whether some form of selection is occurring. The interpretation of the coefficient on Backdatei

21Also commonly referred to as two-stage residual inclusion. This method originated with Heckman and Hotz
(1989). For an excellent review with a health focus, the reader is referred to Terza et al. (2008).

22It is important to note that −1 < vi < 1 and thus is vi is not normally distributed. However, E[vi] = 0 since the
predictions of a Probit specification are unbiased. In Equation (10), vi is transformed into approximately normal v̂i

via an Anscombe transformation. See Basu and Coe (2015) for further discussion on 2SRI with a binary first-stage
as well as Anscombe residuals.

23Anscombe residuals are a transformation of the standard residuals into an approximately standard normal dis-
tribution. Standard errors are bootstrapped.
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as only the effect of paying the initial tariff on future decisions depends vitally on the implicit

assumption that premium changes are being effectively controlled for via the additively linear

term. There is no reason to believe this is true. To account for arbitrary non-linearity in the

control variables, while still preserving the ability to instrument, we turn to a Lasso technique.

3.4. Lasso

The Lasso (least absolute shrinkage and selection operator) is a model selection technique

originally developed by Tibshirani (1996) as an improvement on step-wise regression and adapted

to Cox hazard models by Tibshirani et al. (1997). The technique is currently popular in the machine

learning literature and was introduced to the econometrics literature by Belloni et al. (2012).24 The

Lasso is in the class of l1-penalized methods of model selection.25

The Lasso is beneficial here in two specific ways. First, the model selection allows us to account

for (nearly) arbitrary non-linearity in our control variables via polynomial approximation. Rather

than including only linear representations of our control variables, we allow linear, squared, and

cubic terms as well as all possible two-variable (inclusive of squared and cubed variables) interaction

terms and then allow the Lasso to select the important terms. The second benefit of this method

of approximating non-linearity in control variables is the preservation of the linear nature of the

treatment variables (here Backdatei and the selection effect v̂i) allowing for control function

instrumentation. Formally, our final model is

Final Model:

λ(Lapseit|X) = λ0(t)exp(Xiβ
′)ui (11)

Xi = (Backdatei, IssueAgei,Malei, FaceAmti, AnnPremi,

UWClassi, T ermLengthi, IssueY eari, Statei)

ui = exp(αvi + ei) (12)

ei ∼ N(0, σ2) (13)

First Stage:

24See also Belloni et al. (2014b), Belloni et al. (2014a), Belloni et al. (2016), and Chernozhukov et al. (2015).
25That is, they generally take the form: βLasso = argmin

β

{∑
(y −Xβ)2

}
subject to

∑
|β| ≤ l1.

16



Backdatei = f(Zi) + vi (14)

Zi = (DaysAfterBirthdayi, IssueAgei,Malei, FaceAmti, AnnPremi,

UWClassi, T ermLengthi, IssueY eari, Statei)

Second Stage:

λ(Lapseit|L̂) = λ0(t)exp(L̂iβ
′
Lasso)ei

where β′Lasso = argmax
β

{lCox(βL)} subject to |β| ≤ l1 (15)

L̂i = S(v̂i,Backdatei; X̂i, X̂
2
i , X̂

3
i , X̂i : X̂i, X̂i : X̂2

i , X̂i : X̂3
i )

Third Stage:

λ(Lapseit|L̂p) = λ0(t)exp(L̂pi β
′)ei (16)

L̂pi = (v̂i,Backdatei; L̂i such that βLasso,i 6= 0)..

Where the first stage is the same as above.

L̂i = S(v̂i,Backdatei; X̂i, X̂
2
i , X̂

3
i , X̂i : X̂i, X̂i : X̂2

i , X̂i : X̂3
i )

is the standardized collection of our two variables of interest, all control variables, squared terms,

cubed terms, and two-variable interactions. Equation (15) describes the Lasso procedure where

lCox(βL) is the likelihood function for the Cox proportional hazard model.26 Following Belloni et

al. (2016) in Equation (16) we estimate the unpenalized Cox proportional hazard using the two

treatment variables and all of the control variables whose coefficients were non-zero in the second

stage. The included variables and combinations of variables in L̂pi can be interpreted as the optimal

polynomial form of the control variables that can be represented in a limited (via the choice of l1)

number of terms.

4. Results

26In Equation (15), the coefficients on v̂i and Backdatei are not penalized. l1 is determined via cross-validation
techniques (Goeman, 2010). Additionally, the linear versions of all variables in X̂i are included in L̂Pi regardless of
their coefficient in the Lasso stage.
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Table 2: Cox Proportional Hazard Model

Dependent variable:

Hazard(Lapse)

Variable of Interest:
Backdate −0.285∗∗∗

(0.036)
Controls:
Issue Age −0.030∗∗∗

(0.001)
Male 0.034

(0.024)
Face Amount($000s) −0.001∗∗∗

(0.000)
Annual Premium 0.000∗∗∗

(0.000)
Length of Term 15 −0.368∗∗∗

(0.053)
Length of Term 20 −0.240∗∗∗

(0.028)
Length of Term 25 −0.353∗∗∗

(0.126)
Length of Term 30 −0.388∗∗∗

(0.037)
UW Rank2 0.164∗∗∗

(0.056)
UW Rank3 0.509∗∗∗

(0.101)
UW Rank4 1.141∗∗∗

(0.056)
UW Rank5 0.717∗∗∗

(0.049)

State Effects? Yes
Year Effects? Yes

Observations 24,661
R2 0.100
Max. Possible R2 0.997
Log Likelihood -70,432.380
Wald Test 2,531.580∗∗∗

LR Test 2,604.569∗∗∗

Score (Logrank) Test 2,648.117∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
This table shows equation (5) fitted via the Cox
proportional hazards technique. Std. errors are
in parentheses.
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The results from our initial specification (Equation (5)) are presented in Table 2. The initial

regression results are congruent with our theoretical predictions. Policy owners who choose to back-

date their life insurance contracts (effectively paying a two-part tariff) signal their lower likelihood

for lapsing by their willingness to pay for time that already has elapsed that only results in net

saving if the policy is held for a relatively long period of time. However, this coefficient does not

fully identify the selection effect that we seek. Potentially, consumers who backdate may have no

additional knowledge of their propensity for lapsing and are instead exhibiting sunk cost fallacy.

Table 3: First Stage Regression

Dependent variable:

Backdate

Instrument:
DaysAfterBirthday −0.021∗∗∗

(0.000)
Controls:
Issue Age 0.019∗∗∗

(0.001)
Male 0.145∗∗∗

(0.023)
Face Amount($000s) 0.001∗∗∗

(0.000)
Annual Premium 0.000∗∗∗

(0.000)
Length of Term 15 0.227∗∗∗

(0.044)
Length of Term 20 0.025

(0.029)
Length of Term 25 0.231∗∗∗

(0.087)
Length of Term 30 0.232∗∗∗

(0.037)
UW Rank2 0.039

(0.037)
UW Rank3 −0.082

(0.085)
UW Rank4 −0.212∗∗∗

(0.052)
UW Rank5 −0.097∗∗∗

(0.035)
Constant −0.516∗∗∗

(0.088)

State Effects? Yes
Year Effects? Yes

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
This table shows fitted values for the first stage
in our control function procedure (equation (9)).
Std. errors are in parentheses.
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To identify these separate effects, we exploit inherent randomness in the time of year, relative

to the consumer’s birthday, that the consumer applies for life insurance. This allows us to perform

a pseudo-random experiment exploiting variation in the initial tariff consumers have to pay while

holding constant the reduction in future premiums. The results from the first stage in our control

function approach (Equation (9)) are presented in Table 3. Our instrument is strong and loads in

the predicted manner – people who have to pay a higher initial tariff, ceteris paribus, are less likely

to choose to backdate.
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Table 4: Two-Stage Residual Inclusion Estimation

Dependent variable:

Hazard(Lapse)
Initial Instrumented

(1) (2)

Variables of Interest:
Backdate −0.285∗∗∗ −0.120∗

(0.036) (0.067)
Stage 1 Residuals −0.113∗∗∗

(0.038)
Controls:
Issue Age −0.030∗∗∗ −0.031∗∗∗

(0.001) (0.001)
Male 0.034 0.028

(0.024) (0.024)
Face Amount($000s) −0.001∗∗∗ −0.001∗∗∗

(0.000) (0.000)
Annual Premium 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000)
Length of Term 15 −0.368∗∗∗ −0.376∗∗∗

(0.053) (0.054)
Length of Term 20 −0.240∗∗∗ −0.241∗∗∗

(0.028) (0.029)
Length of Term 25 −0.353∗∗∗ −0.357∗∗∗

(0.126) (0.122)
Length of Term 30 −0.388∗∗∗ −0.394∗∗∗

(0.037) (0.038)
UW Rank2 0.164∗∗∗ 0.163∗∗∗

(0.056) (0.055)
UW Rank3 0.509∗∗∗ 0.516∗∗∗

(0.101) (0.106)
UW Rank4 1.141∗∗∗ 1.149∗∗∗

(0.056) (0.059)
UW Rank5 0.717∗∗∗ 0.721∗∗∗

(0.049) (0.050)

State Effects? Yes Yes
Year Effects? Yes Yes

Observations 24,661 24,661
R2 0.100 0.101
Max. Possible R2 0.997 0.997
Log Likelihood -70,432.380 -70,427.620
Wald Test 2,531.580∗∗∗ 2,545.240∗∗∗

LR Test 2,604.569∗∗∗ 2,614.074∗∗∗

Score (Logrank) Test 2,648.117∗∗∗ 2,661.391∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
This table presents again for comparison our initial model from
Table 2 in the first column and shows fitted values for the sec-
ond stage in our control function approach in the second column.
Bootstrapped std. errors are in parentheses.

21



We then re-estimate the hazard specification from Table 2 (Equation (5)), this time including

the transformed residuals from the first stage. The results from our instrumented model (Equation

(10)) are presented in the second column of Table 4. Our original estimated effect was indeed a

combination of both selection and sunk cost fallacy. The selection effect (−0.113) is statistically

significant, and it also appears that a significant portion (−0.120) of the reduction in lapse likelihood

is due to sunk cost fallacy.

The third column of Table 5 shows the results of the Lasso procedure. In addition to the 12

independent control variables shown in the table, the model includes state effects, year effects,

and 135 (out of over 800 potential) other forms of the control variables (either squared, cubed, or

interaction) that the Lasso procedure selected as important.27 The inclusion of these variables does

not change the significance of our main results, though the point estimates are slightly diminished.28

The selection effect does not have an interpretation beyond directional comparative statics, however

the sunk cost effect does. Exponentiating the coefficient on Backdatei results in a marginal relative

hazard rate of 89.2%. That is, the sunk cost effect of backdating reduces the per-period hazard

rate of lapsing by 10.8%.

27The extra control variables are suppressed in the table for space; a full table reporting the coefficients on all
Lasso control variables can be found on the author’s website.

28Interestingly, the significance of the coefficients for the linear terms of Male and FaceAmount goes away. This
is due to the inclusion, via the Lasso, of many significant interaction terms containing those variables.
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Table 5: Lasso Estimation

Dependent variable:

Hazard(Lapse)
Initial Instrumented Lasso Controlled

(1) (2) (3)

Variables of Interest:
Backdate −0.285∗∗∗ −0.120∗ −0.114∗

(0.036) (0.067) (0.062)
Stage 1 Residuals −0.113∗∗∗ −0.067∗

(0.038) (0.037)
Controls:
Issue Age −0.030∗∗∗ −0.031∗∗∗ −0.031∗∗∗

(0.001) (0.001) (0.004)
Male 0.034 0.028 −0.170

(0.024) (0.024) (0.111)
Face Amount($000s) −0.001∗∗∗ −0.001∗∗∗ 0.001

(0.000) (0.000) (0.001)
Annual Premium 0.000∗∗∗ 0.000∗∗∗ −0.002

(0.000) (0.000) (0.004)
Length of Term 15 −0.368∗∗∗ −0.376∗∗∗ −0.218

(0.053) (0.054) (0.248)
Length of Term 20 −0.240∗∗∗ −0.241∗∗∗ −0.561∗∗∗

(0.028) (0.029) (0.123)
Length of Term 25 −0.353∗∗∗ −0.357∗∗∗ −0.050

(0.126) (0.122) (0.308)
Length of Term 30 −0.388∗∗∗ −0.394∗∗∗ −0.284∗∗

(0.037) (0.038) (0.129)
UW Rank2 0.164∗∗∗ 0.163∗∗∗ 0.284∗

(0.056) (0.055) (0.171)
UW Rank3 0.509∗∗∗ 0.516∗∗∗ 0.794∗∗

(0.101) (0.106) (0.361)
UW Rank4 1.141∗∗∗ 1.149∗∗∗ 0.885∗∗

(0.056) (0.059) (0.348)
UW Rank5 0.717∗∗∗ 0.721∗∗∗ 0.471∗

(0.049) (0.050) (0.282)

State Effects? Yes Yes Yes
Year Effects? Yes Yes Yes
Lasso Controls? (Number) No No Yes(135)

Observations 24,661 24,661 24,661
R2 0.100 0.101 0.126
Max. Possible R2 0.997 0.997 0.997
Log Likelihood -70,432.380 -70,427.620 -70,075.100
Wald Test 2,531.580∗∗∗ 2,545.240∗∗∗ 2,408.640∗∗∗

LR Test 2,604.569∗∗∗ 2,614.074∗∗∗ 3,319.120∗∗∗

Score (Logrank) Test 2,648.117∗∗∗ 2,661.391∗∗∗ 3,594.168∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
This table presents again for comparison both our initial model
from Table 2 in the first column and the fitted coefficients for
the second stage in our control function approach in the second
column. The third column represents the results of the Lasso
procedure. A full representation and list of the Lasso coefficients
can be found on the author’s website. Bootstrapped std. errors
are in parentheses.
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5. Conclusions

Our results indicate that asymmetric information about lapse risk can be reduced through a

firm offering a menu of two-part tariff contracts and allowing consumers to self-select into the

contract designed for their lapse type. These optional two-part tariffs serve as a screening device

for insurers on consumers’ likelihood of lapsing. Consumers who choose to pay the two-part tariff

(e.g., backdating their life insurance contracts) signal their lower likelihood for lapsing by their

willingness to pay for time that already has elapsed to have lower premiums that only results in

net savings if the policy is held for a long time. If consumers terminate the policy early, they do

not reap the benefit of the lower premium level. Such a willingness translates into a significantly

lower hazard of lapsing, thus aligning the interests of the consumer with the insurer. Our research

provides key insight into why insurers do not use continuous (with regards to age) pricing despite

the computational ease of doing so – the value of the screening provided by offering the optional

two-part tariff outweighs any actuarial downside caused by discreteness in years.

We additionally find strong evidence that life insurance consumers exhibit behavior consistent

with sunk cost fallacy in their lapsing behavior, even when controlling for arbitrary non-linearity

in premium effects on lapse proclivity. This interesting finding implies a larger degree of reverse

causality with lapse rates and premium structures (including initial tariffs) than is currently being

discussed in the literature. Development of a simultaneous model of lapse rates and premium

structures would be an excellent direction for further research. While backdating is an example

of an optional two-part tariff, it is not the optimal one. The value of the screening mechanism

varies randomly from consumer to consumer with the randomness of the distance to their birthday

– someone signing up the day after their birthday is almost sure to backdate and thus there is

very little selection effect to signal. Additionally, by definition, backdating is a binary choice. An

optimal menu of contracts would likely consist of the consumer choosing what portion of their

underwriting cost to pre-pay and having a subsequent reduction in premiums reflective of their

choice. Further examination of this optimal structure is worthy of additional study.
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