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Despite the increased frequency of 

randomized field experiments in the social 

sciences, they are relatively uncommon in 

educational research. For instance, Alpert, 

Couch, and Harmon (2016) conducted a 

randomized controlled trial (RCT) to estimate 

the impact of online education in a college-

length course and referenced only three 

previous studies that did the same. 

A likely explanation for the lack of RCTs in 

education is their high cost. A study sponsored 

by the U.S. Department of Education used an 

RCT to compare the relative efficacy of four 

elementary school math curricula, recruiting 

110 schools for participation in the study 

(Agodini et al. 2010). While such large-scale 

studies may be justified from the high value of 

robust evidence on established, scalable, and 

highly standardized educational interventions, 

education researchers often evaluate 

techniques that are not well-established or 

fully reproducible, modifications of existing 

practices, or practices implemented in 

different disciplines or settings than have been 

evaluated previously. Bowen et al. (2013) 

conduct a large-scale RCT of online learning 

but also acknowledge that “online learning” 

refers to a vast array of interventions, 

requiring any one study to narrow the scope of 

the programs considered. Indeed, critics of 

large-scale randomized trials of educational 

interventions highlight their high costs and 

limited ability to generalize findings (Thomas 

2016). 

This paper describes an RCT design 

appropriate for evaluating a broad class of 

educational interventions using modest 

resources. Randomizing a classroom’s 

educational practice within each lesson or 

block of lessons has the potential to identify 

causal effects while attaining meaningful 

statistical power in far smaller-scale trials than 

are normally required. Randomization ensures 

that treatment impacts are unbiased, subject to 

assumptions discussed in more detail in the 

next section. Varying educational practices 

across lessons improves statistical precision 



by enabling fixed effects to capture 

unobserved individual characteristics and by 

reducing the effect of clustering on precision. 

We also offer suggestions for overcoming 

some of the implementation and analytic 

challenges of this design. 

I. Identification of Treatment Effects 

Randomization of treatment is a broadly 

accepted method to identify program impacts. 

Levitt and List (2009) explore the growth of 

field experimentation in the social sciences 

while also highlighting common threats to 

identification, such as attrition bias and 

psychological effects of treatment assignment. 

We argue that a carefully designed experiment 

assigning instructional method by lesson can 

largely avoid these threats, with some 

advantages over classroom-level assignment. 

Assigning teaching method by lesson, 

analogous to crossover designs in clinical 

trials (Wellek and Blettner 2012), also 

introduces unique challenges in identifying 

treatment effects. We describe and address 

those challenges below. 

This paper proposes randomizing 

classroom-level teaching methods at the 

section (or classroom) by lesson level. The 

analysis compares student performance on 

assessments linked to concepts taught in the 

treatment condition to the same student’s 

performance on concepts taught in the control 

condition. The researcher can estimate the 

following model: 

(1) 𝑌𝑖𝑠𝑙 = 𝛽𝑇𝑠𝑙 + 𝛼𝑖 + 𝜆𝑙 + 𝑢𝑖𝑠𝑙, 

 

where 𝑌𝑖𝑠𝑙 is an assessment score (or other 

relevant outcome) for student i in section s on 

lesson l, 𝑇𝑠𝑙 is a binary indicator equal to 1 

when lesson l in section s is treated, and 𝛼𝑖 

and 𝜆𝑙 are student and lesson fixed effects, 

respectively. 𝛽 represents the average impact 

of the treatment on assessment scores 

compared to the control condition. 

A. Modeling Spillover Effects 

The key identifying assumption of the 

proposed design depends on the nature of the 

experiment. If the teaching method is 

unconditionally randomly assigned, 𝑇𝑠𝑙 is 

uncorrelated with the error 𝑢𝑖𝑠𝑙 by design. 

However, unconditional random assignment 

of teaching method may be impractical, for 

example if fairness considerations or logistical 

constraints dictate that each section receives 

equal numbers of lessons with each teaching 

method. If lessons are randomly assigned 

conditional on such a constraint, treatment 

lessons are more likely to be followed by 

control lessons than by other treatment 

lessons. If one lesson’s teaching method also 

influences student performance in a 



subsequent lesson, these spillover effects will 

likely bias estimated impacts towards zero. 

For example, if a treatment has a positive 

impact on outcomes linked to that lesson and 

to subsequent lessons, then the positive 

spillover effects will tend to be attributed to 

subsequent control lessons rather than the 

latent effect of the treatment. 

We propose two methods of minimizing the 

potential for bias from spillover effects. First, 

the researcher can modify the experimental 

design by identifying appropriate units of 

assignment. If a course contains blocks of 

closely related lessons, the researcher may 

vary teaching method across blocks rather 

than lessons. Second, we propose methods to 

model spillover effects explicitly after the 

experiment is implemented. If the 

specification adequately captures spillover 

effects, then the treatment status will be 

uncorrelated with the error even under 

conditional random assignment of treatment. 

We view these suggested methods as a starting 

point, recognizing that requirements for 

satisfying the identification assumption will 

vary with the specific situation. 

For the first model of spillover effects, we 

assume that treatment lessons have some 

effect on a fixed number of subsequent 

lessons, with the impact depending only on 

the number of lessons elapsed. Then the 

researcher can estimate the model: 

(2) 𝑌𝑖𝑠𝑙 = 𝛽𝑇𝑠𝑙 + ∑ 𝛾𝑗𝑇𝑠(𝑙−𝑗)
𝐽
𝑗=1 + 𝛼𝑖 + 𝜆𝑙 +

𝑢𝑖𝑠𝑙, 

 

where 𝑇𝑠(𝑙−𝑗) is a binary indicator for 

treatment j lessons prior. 

An alternative is to assume that prior 

treatment lessons have a cumulative effect, so 

that the researcher can estimate the model: 

(3) 𝑌𝑖𝑠𝑙 = 𝛽𝑇𝑠𝑙 + 𝛿 ∑ 𝑇𝑠𝑗
𝑙−1
𝑗=1 + 𝛼𝑖 + 𝜆𝑙 + 𝑢𝑖𝑠𝑙, 

 

where ∑ 𝑇𝑠𝑗
𝑙−1
𝑗=1  is the number of prior treated 

lessons. Equation (2) models latent effects 

more flexibly at the cost of having to exclude 

𝐽 initial observations to account for the lags. 

Equation (3) uses the full sample but assumes 

that spillover effects persist at the same 

magnitude for all subsequent lessons. A 

prudent strategy would be to estimate multiple 

models to account for spillover effects, 

observing the sensitivity of the 𝛽̂ estimate.
1
 

B. Other Threats to Validity 

The proposed design furthermore avoids 

other common threats to experimental 

validity. Observing all students in both 

conditions avoids differential attrition, and 

 

1
 Since estimating equation (2) requires restricting the sample, its 

𝛽̂ estimate is most appropriately compared to that of equation (1) 
estimated on the same restricted sample. 



therefore attrition bias, by design. While 

students are likely to be aware of the 

educational practice being implemented in a 

given lesson, common testing procedures 

greatly reduce the likelihood that such 

awareness affects outcomes. In particular, if 

graded assessments test concepts taught in 

treatment lessons and control lessons, students 

are unlikely to associate each question with 

the treatment status of the lesson covering the 

concept. While instructor bias is difficult to 

avoid in any evaluation of educational 

practices, each instructor contributes equally 

to treatment and control conditions under the 

proposed design. Furthermore, instructors are 

unlikely to introduce bias when grading 

assessments since they are also unlikely to be 

aware of the treatment status of the lesson 

associated with each question.  

II. Statistical Power 

A key limitation in precisely estimating 

effects of a classroom-level teaching method 

is the clustering adjustment required for 

correlated effects (Wooldridge 2003). 

Schochet (2008) calculates that in an 

experiment where N students are evenly 

divided among s sections, and half of sections 

are assigned to the treatment, the variance of 

the impact estimator is given by 
2(1−𝜌)𝜎2

𝑁
+

2𝜌𝜎2

𝑠
, where 𝜌 is the intra-class correlation and 

𝜎2 is the variance of the outcome’s residual.
2
 

For example, if a researcher wished to have an 

80 percent chance of detecting a 0.2 standard 

deviation impact of a teaching method, she 

would need 54 sections of 25 students totaling 

over 1,300 students.
3
 An experiment of this 

magnitude greatly exceeds the resources 

available for most educational studies. 

Varying instructional method by lesson 

dramatically improves statistical power. In the 

absence of spillover effects, the proposed 

design effectively repeats a lesson-level 

experiment L times, where L is the number of 

lessons (or blocks) assigned a teaching 

method. The resulting variance of the impact 

estimator is 
2(1−𝜌)𝜎2

𝑁𝐿
+

2𝜌𝜎2

𝑠𝐿
. Here, 𝜎2 

represents the variance of the outcome 

measured across all students and all lessons, 

while 𝜌 represents the fraction of an 

outcome’s variance that is within a section-

lesson combination. While these quantities 

could in principle be larger or smaller than 

their analogous definitions for a traditional 

RCT, we suspect they are in general smaller, 

 

2
 This relationship treats the sample as drawn purposefully, as 

opposed to a random sample from a broader population to which the 

study is intended to generalize.  
3

 This calculation assumes no control variables but an 

optimistically low intra-class correlation of 0.1 (Hedges and Hedberg 

2007). It also uses a factor (the ratio of the minimum detectable 

impact to the standard error of the impact estimate) of 2.80, which 
assumes a large sample. 



leading to substantially more precise 

estimates. This design could detect the same 

0.2 standard deviation effect as described 

above with only 5 sections of 25 students if 11 

lessons are assigned to a teaching method.
4
  

The design also raises a question of the 

appropriate level of clustering. The 

unexplained portion of assessment scores may 

be correlated both within a section and within 

a student. Clustered standard errors or 

multiway clustering (Cameron, Gelbach, and 

Miller 2011) ensure accurate statistical 

inference in the presence of such correlations. 

A prudent strategy would be to estimate 

models using multiple assumptions about 

clustering, observing the sensitivity of the 𝛽̂ 

standard error estimate. 

III. Implementation Challenges 

Implementing an RCT that varies treatment 

by lesson introduces some surmountable 

challenges. The instructor must be well-versed 

in teaching both methods and must take care 

not to favor preparation for one method. 

While this risk of instructor bias must be taken 

seriously, we argue that such risk is likely 

greater in a traditional RCT where different 

instructors implement each teaching method. 

 

4
 To the extent that student fixed effects explain variation of the 

outcome, precision will further increase as 𝜎2 represents the 
unexplained variance in the outcome. 

Furthermore, instructors must communicate 

clearly with students about course logistics 

that may vary across sections. Assessments 

must be designed to test achievement specific 

to each lesson, with a mechanism for 

recording disaggregated scores corresponding 

to each lesson’s material. Finally, instructors 

may wish to take steps to reduce treatment 

noncompliance, such as implementing access 

control systems for materials intended for only 

one condition. 

The proposed design is appropriate only for 

interventions that can be implemented in a 

self-contained manner within a lesson or block 

of lessons. We note that some interventions 

initially conceptualized as a practice for an 

entire course may still be quite appropriate for 

this method. The authors implemented this 

design to estimate the impact of a flipped 

classroom where students in the treatment 

condition for a given section-lesson watched a 

video lecture before class, enabling instructors 

to replace in-class lecture with interactive 

exercises (Wozny, Balser, and Ives, 

forthcoming). Prunuske et al. (2016) randomly 

assigned four groups of medical students to 

sequences of four modules each using one of 

two online learning methods, although the 

study’s analysis appears to treat students’ 

learning gains as independent despite the 

clustered design. 



IV. Conclusions 

RCTs are understandably uncommon in the 

evaluation of educational interventions. Large-

scale RCTs capable of detecting meaningful 

impacts are reserved for well-established, 

highly scalable educational interventions. The 

remaining majority of educational research 

plays an essential role in evaluating the 

extensive diversity of educational techniques 

in a wide variety of disciplines and settings. 

This diversity and the likelihood of 

heterogeneous treatment effects across 

different settings (Vivalt 2015) limits the 

external validity of any small-scale study, so 

that many studies are essential to identify the 

most effective teaching practices. Although a 

greater volume of literature can address the 

limits of a study’s external validity, systemic 

internal validity problems may undermine the 

conclusions drawn from a body of literature 

on an educational topic. 

This paper proposes an experimental design 

by which researchers can evaluate educational 

interventions rigorously while using only 

modest resources. The more common 

approach of comparing classrooms with 

different teaching methods risks confounding 

the efficacy of the teaching methods with 

differences in the instructors, student body, or 

other factors. By contrast, the proposed design 

ensures that experimental comparisons isolate 

the effect of the intervention while improving 

statistical power. Furthermore, such a study 

could be designed to test specific hypotheses 

about heterogeneity of treatment effects across 

lesson types or other subgroups. While the 

design is not appropriate for all teaching 

methods, small-scale randomized controlled 

trials have the potential to bring rigor to 

evaluating the efficacy of promising teaching 

practices when large-scale randomized trials 

are infeasible. 
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