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Abstract

The use of order flow information by financial firms has come to the forefront of
the regulatory debate. A central question is: Should a dealer who acquires information
by taking client orders be allowed to use or share that information? We explore how
information sharing affects dealers, clients and issuer revenues in U.S. Treasury auc-
tions. Because one cannot observe alternative information regimes, we build a model,
calibrate it to auction results data, and use it to quantify counter-factuals. We esti-
mate that yearly auction revenues would be $2.4 billion higher with full-information
sharing with clients and between dealers. When information sharing enables collusion,
the collusion costs revenue; but if dealers share information with clients, prohibiting
information sharing may cost more. For investors, the welfare effects of information
sharing depend on how information is shared. The model shows that investors can
benefit when dealers share information with each other, not when they share more
with clients.
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“[B]efore the Treasury holds an auction, salespeople at 22 primary dealers field billions of dollars in bids
for government debt. Traders working at some of these financial institutions have the opportunity to learn
specifics of those bids hours ahead of the auctions [and] also have talked with counterparts at other banks via
online chatrooms [...]. Such conversations, both inside banks and among them, could give traders information
useful for making bets on one of the most powerful drivers of global markets [...].” — Bloomberg (2015),
“As U.S. Probes $12.7 Trillion Treasury Market, Trader Talk Is a Good Place to Start.”

Recent financial market misconduct, involving misuse of information about clients’ orders,
cost the firms involved record fines and lost reputation. It also prompted investigations
and calls for curbing dissemination of order flow information, between and within dealers.
Recent investigations reportedly involve U.S. Treasury auctions (Bloomberg, 2015 above).
But the use of order flow information has been central to our understanding of Treasury
auctions (Hortagsu and Kastl, 2012), to market making theory generally (Kyle, 1985) and
to market practice for decades. In describing Treasury market pre-auction activities in the
1950s, Robert Roosa (1956) noted that “Dealers sometime talk to each other; and they all
talk to their banks and customers; the banks talk to each other.” Furthermore, sharing
order-flow information—or, colloquially, “market color”—with issuers is even mandatory for
primary dealers both in the U.S. and abroad. Of course, if information sharing leads to
collusion, that has well-known welfare costs. But if collusion could be prevented with
separate remedies, is information sharing in itself problematic? The strong conflicting
views on a seemingly long-established practice raise the question of who gains or loses

when order-flow information is shared.’

Measuring the revenue and welfare effects of information sharing directly would require
data with and without sharing. In the absence of such data, we use a quantitative model.
Our setting is an institutionally-detailed model of U.S. Treasury auctions, which we select
because of the available data, the absence of other dealer functions,’ and their enormous

economic importance. In the model, dealers observe client orders and may use that in-

Thus far actions for misconduct have been successfully brought against participants in the interbank
lending (Libor) and foreign exchange markets. Regulations on information sharing in sovereign auctions
vary and are evolving. As of 2011, the UK Debt Management Office sanctioned that UK primary dealers,
or Gilt-edged Market Makers, “whilst not permitted to charge a fee for this service, may use the infor-
mation content of that bid to its own benefit” (GEMM Guidebook, 2011). The 2015 GEMM Guidebook,
instead, states that “information about trading interests, bids/offers or transactions may be subject to
confidentiality obligations or other legal restrictions on disclosure (including pursuant to competition law).
Improper disclosure or collusive behaviour will fall below the standards expected of GEMMSs, and evidence
or allegations of such behaviour will be escalated to the appropriate authority(ies).” We are not aware
of analogous rules in the context of U.S. Treasury auctions. In practice, a financial intermediary’s use of
client information, including sharing such information with other clients or using the information for other
benefit to such intermediary, may violate legal requirements, be they statutory, regulatory or contractual,
market best practices or standards. This paper does not take a view as to whether the described use of
client information with respect to Treasury auction activity is legal or proper. The objective of the paper
is to study the economic effects of alternative information sharing arrangements.

2Dealers in Treasury auctions do not diversify or transform risks, do not locate trading counterparties
and cannot monitor issuers because they cannot influence fiscal policy.



formation to inform their own strategy, share some of the information with clients, or
exchange information with other dealers. Then all agents submit continuous bid functions
to a uniform-price auction that features both common and private values. To quantify the
effects of order flow information sharing and sign welfare results, we calibrate the model
to auction results, allotment data as well as information about post-auction returns using
market prices on the co-called on-the-run premium, or the differential value of a new versus
an old Treasury security. In this setting, bids reflect risk premia associated with reselling
Treasuries, at an unknown price, in the secondary market. This risk premia informs the
model about how much uncertainty bidders face, and thus, how much information they
have, on average. After calibrating the model, we study the model-implied revenue and
bidders’ utilities with varying degrees and types of information sharing. We then extend
the model to think about how information sharing affects bidders and dealers incentives
to participate in the auction. Finally, we provide some empirical support for key model

assumptions.

The model teaches us that the primary beneficiary of information sharing is the U.S. Trea-
sury because better-informed buyers bid more. Based on the model parameters, moving
from the calibrated status-quo of a partial information sharing arrangements to full infor-
mation sharing would raise Treasury auction revenues by $2.4 billion annually. If instead,
all information sharing were prohibited, revenue would fall by $80 million. While the idea
that better-informed investors bid more is not a new finding, the issue is rarely raised in

policy debates, presumably because the magnitude of the effect is not known.

Our second finding is that dealer information sharing with other dealers and sharing with
clients have opposite effects on investor utility. When all dealers share information with
their clients, it typically makes the clients worse off. This is a form of the Hirshleifer (1971)
effect, which arises here because better-informed clients have more heterogeneous beliefs
and therefore share risk less efficiently. But surprisingly, when dealers share information
with each other and then transmit the same amount of information to their clients, investor
welfare improves. Our model shows how inter-dealer information sharing makes beliefs
more common, and thereby improves risk-sharing and welfare. In essence, information
sharing with clients is similar to providing more private information, while inter-dealer

sharing functions effectively makes information more public.

Third, since information sharing has been associated with coordinated trades in foreign-
exchange misconduct (for example, to manipulate benchmark rates), we consider a setting
in which dealers who share information also collude. In a collusive equilibrium, dealers
who share information also bid as a group, or coalition, that considers price impact of

the coalition as a whole. We find that dealer information sharing and collusion jointly



suppress auction prices and reduce Treasury revenue. However, if the dealers share enough

information with clients, the revenue costs can be overturned.

Fourth, our findings contribute to our understanding of a symbiotic relationship between
investors and intermediaries: it is the process of intermediating trades that reveals infor-
mation to dealers. Information sharing is what induces clients to use intermediaries and

induces large investors to intermediate.

These findings are not meant to imply that dealers should have carte blanche in using
information in any way they choose. The model assumes that clients know how dealers
use their information, and that order flow information is aggregated. Our setting does
not clearly span the range of malpractices that may have been undertaken. In effect, we
ask: If dealers disclose how information is used, what are the costs and benefits of limiting

information sharing?

Treasury auctions are unique in their importance and their complexity. Our model balances
a detailed description with a tractable and transparent model which highlights insights that
are broadly applicable. The foundation for the model is Kyle (1989). We adapted that
framework to a correlated-values, uniform-price auction with heterogeneous information,
limit orders and market orders. Our bidders are fully strategic. They exploit their price
impact (bid shading) and bid in such as way as to optimally manipulate the beliefs of others
(signal jamming). On top of this foundation, we assume that dealers observe informative

signals from order flows and that bidders share correlated values.

The assumption that bidders have private signals about future Treasury valuations and that
dealers learn from observing their order flow is supported by Hortagsu and Kastl (2012).
Using data from Canadian Treasury auctions, they find that order flow is informative about
demand and asset values. They further show that information about order flow accounts
for a significant fraction of dealers’ surplus. In our setting, dealers not only collect this

information but also share it.

Our model differs from previous treasury auction models (Hortagsu and Kastl, 2012) by
assuming that bidders have both a private and a common component to their valuation.
The common component is the secondary market resale value. Many auction participants
speculate on post-auction appreciation and sell within a week of the auction. Even non-
speculators consider the fact they could obtain the same securities at a market price after
the auction. This new assumption of correlated values is central to understanding the
costs and benefits of information sharing. The risk that another bidder will bid on my
information, because it is also informative about their own return, influence the price, and

reduce my return, is what makes information sharing potentially costly.



In order to match additional institutional features we also model the auction as “mixed
auctions”, meaning that investors can bid indirectly (through a dealer) or directly (without
any intermediary). Finally, we account for minimum bidding requirements of primary deal-
ers, who have historically been expected to bid “consistently” at all auctions for amounts,

which today, are equal to the pro-rata share of the offered amount.

Contribution to the existing literature. Previous papers have estimated the extent
of client information shared with Treasury dealers.® We consider that dealers may send
signals back to their clients and to other dealers. Also, we explore the incentive of a bidder
to bid directly, or through a dealer. More broadly, our work offers a different framework
for measurement. We use risk premia and the covariance of prices and payoffs to infer
how much investors know. Our risk-based estimation approach predicts different revenue,
market power and utility effects of information. Relative to Hortacsu and Kastl (2012)
and Hortagsu, Kastl, and Zhang (2016), our model misses the realism of bids that are step
functions. Instead, we assume demand is continuous and linear. This simplification allows
for risk-averse utility, correlated values and asymmetric information. Our model captures
bidders speculating on post-auction appreciation, whereas private values models describe
buy-and-hold bidders, who receive a known payout at maturity. The costs and benefits of
information sharing depend on this difference. For speculators with correlated values and
asymmetric information, observing others’ information helps the speculator determine their
own value of the asset more accurately. Speculators worry that sharing their information
with others will induce others to bid more aggressively because information reduces their
risk. Without risk aversion, this effect disappears. So, while our model compromises

realism in bidding, it enables us to examine new effects of information sharing.

Our main ideas are connected to a microstructure literature that studies how pre-trade
order flow information contributes to price formation (O’Hara, 1995, Chapter 9), raises
bid-ask spreads (Bloomfield and O’Hara, 1999) and affects utility of informed and unin-
formed traders (Fishman and Longstaff, 1992; Roell, 1990). For example, dealers learn
from sequential order flow in Easley, Kiefer, O'Hara, and Paperman (1996) and lever-
age asymmetric information and market power in Kyle (1985) and Medrano and Vives
(2004).

3 Hortagsu and McAdams (2010) and others studies how auction design affects revenues, or how it
affects information acquisition (Cole, Neuhann, and Ordonez, 2017) complements our project.Theoretical
work by Chari and Weber (1992), Bikhchandani and Huang (1989), Back and Zender (1993), and Wilson
(1979) considers the merits of uniform-price auctions versus other alternatives. Empirical work by Nyborg
and Sundaresan (1996), Malvey, Archibald, and Flynn (1995) and Malvey and Archibald (1998) compares
revenues from 1992-1998 when the U.S. Treasury used both uniform and discriminatory price auctions.
Armantier and Sbal (2006) use French Treasury auction bids to structurally estimate the benefits of uniform
price auctions. Similarly, He, Krishnamurthy, and Milbradt (2016) explore why US Treasuries are safe. We
fix the auction format to a uniform-price multi-unit auction, fix the distribution of future Treasury values,
and instead focus on how information sharing affects revenue and surplus.



Treasury primary dealers serve similar purposes to equity and initial public offering (IPO)
dealers. Di Maggio, Franzoni, Kermani, and Sommavilla (2017) document that equity
dealers share clients’ bid information with other clients, just like the dealers in our model
do. The IPO literature finds that intermediaries act as underwriters who stabilize prices, in
return for expected profit (Ritter and Welch, 2002). We show, instead, that when dealers
share information, the conventional wisdom of underwriting is reversed: information inter-
mediaries raise expected revenue. Finally the paper is also related to work on dual-capacity
trading, where brokers can submit customer orders and trade on their own accounts (see
Fishman and Longstaff, 1992; Réell, 1990, ).

The idea that intermediary behavior determines the equilibrium price of an asset arises
in He and Krishnamurthy (2013) and Brunnermeier and Sannikov (2014). Their capital-
constrained intermediaries provide households with access to risky asset markets and thus
improve risk sharing. In Babus and Parlatore (2015), dealers fragment a market, which
inhibits risk-sharing. In contrast, we explore how information-sharing induces some agents,

who could access markets directly, to choose intermediation.

1 A Treasury auction Model with information sharing

The auction setting is similar to Kyle (1989), where strategic bidders submit continuous
bid functions for an asset with a common value, or in our case a correlated value. The
novel feature of the model lies in its rich information structure. We allow bidders to
share information. Figure 1 summarizes the alternative sharing arrangements that we
consider, for a simplified setting with only a few market participants. Dealers are denoted
with the letter “D,” while investors with the letter “I.” Panel a) shows the case of no
information sharing (“Chinese walls”), where each auction participant only observes his

private information s;.

When information is shared between dealers and customers (panel b), an investor’s infor-
mation set includes both her private signal and the dealer’s; the dealer also observes this
extended information set. With cross-dealer information sharing (panel c), each investor
observes his dealer’s and the other dealer’s information. Investors who bid independently
from the intermediary keep their signal private (panel d) resulting in a more dispersed in-
formation set both for the direct bidder and other bidders. Since all bidders can condition
on every possible price, each bidder can use the information that would be conveyed by
that realized price. Thus bids are formed as if the realized price were in every bidder’s

information set.

While this simplified setting conveys the essence of information sharing, our model is richer



Figure 1: Information sets with alternative sharing assumptions. Letter D de-
notes dealers; letters I denotes investors (either large or small) bidding through a dealer
or not (direct bidding); p is the equilibrium price. Dashed lines indicate sets in which
information is shared.

(a) No sharing with
customers or dealers

(Chinese Walls)

(b) Sharing with cus-
tomers, not with other
dealers

(d) Sharing with cus-
(c) Sharing with cus- tomers only; one di-
tomers and dealers rect bidder

,,,,,,,,,,,,,,,

along many dimensions, as discussed next.

Assets The model economy lasts for one period and agents can invest in a risky asset
(the newly issued Treasury security) and a riskless storage technology with zero net return.
The risky asset is auctioned by Treasury in a fixed number of shares (normalized to 1) using
a uniform-price auction with a market-clearing price p. The secondary market common
value of the newly issued asset is unknown to the agents and normally distributed: f ~

N(p,7i7h).

Bidders To match key features of Treasury auctions, we consider four types of auction
participants: dealers, as well as direct, indirect and non-price contingent bidders. The
first three types we call speculative because they have a common value component to their

payoff, that depends on the asset’s future value. Each speculative bidder/dealer can submit



a continuous function that specifies a quantity demanded, for every possible clearing price
p. All dealers and direct bidders place bids directly in the auction. Indirect bidders are
speculative bidders who bid through a dealer, instead of bidding directly. For now, the
number of each type of bidders is fixed. Later, we examine the choice to bid (in)directly.
There are N; indirect bidders, which we index by i = {1,..., Ny} and N direct investors,
which we index by j = {1,..., Ns}.

In addition to the common value f of the Treasury security, each speculative bidder
has a private value. For direct and indirect investors v; ~ i.i.d. N(0,7,;') and v; ~
ii.d. N(0, 7, Jl) per share. There are many reason why investors may value Treasury issues
differently (see Hortagsu and Kastl, 2012). For example, a depository institution might ad-
dress a duration mismatch, a foreign official may be investing dollar-denominated reserves,
or an investor might cover a short position in the forward Treasury market (known as the

when-issued market).

Each bidder has initial wealth W;g, and chooses the quantity of the asset to hold, ¢; € R

at price p per share, to maximize his expected utility,*
E[—exp(—p(Wi + givi))], (1)

where p denotes absolute risk aversion. The budget constraint dictates that final wealth is

initial wealth, plus earnings from post-auction appreciation:
Wi =Wio + qi(f —p). (2)

All speculative bidders internalize the effect they have on market prices. Because they
strategically consider their price impact, they are not perfectly competitive. They maximize

their utility subject to the budget constraint as well as the market clearing condition.

While all other participants submit price-contingent (limit) orders, the non-price contingent
bidders submit market orders. (Treasury parlance calls these “non-competes,” which are
in practice relatively small). These bidders have only a private value for the asset and do
not condition their bids on price. Non-price contingent orders are exogenous and random.

The aggregate non-price contingent demand is 6 ~ N (0,7, 1).

Dealers There are Np dealers, which we index by d = {1,...,Np}. Then N = N;+N;+
Np is the total number of speculative auction participants. Like investors, dealers’ utility

also depends on the common resale value of the asset, as well as a private value component.

4Technically, the price of each Treasury is fixed at par and auction participants bid coupon payments.
Here p is the present discounted value of coupons computed from other outstanding Treasury securities.



But for dealers, the private value may arise, in part, from regulations known as “minimum
bidding requirements.”® In any given auction, a dealer may violate the requirement. But
if over time, a dealer is consistently allotted an insufficient share, his primary dealer status
could be revoked. To capture the essence of this dynamic requirement in a static model,
we give dealers private values for each share that are typically positive, but decreasing in
asset shares vg = x + %, where ¢4 represents the number of shares awarded to dealer d at
the market price. The decreasing private value represents the idea that when the dealer’s
bid ¢4 is too low, raising that bid reduces the risk of penalties for the dealer. When the
bid is already high and the requirement is satisfied, additional shares might relax future
bidding constraints, but provide diminishing value. This cost is a stand-in for the shadow

cost of a dynamic constraint.

Dealers choose asset demand functions gg(p) to maximize
E[— exp(—p(Wy + qqvaq))] where Wy is given by (2). (3)

Describing Information Sets and Updating Beliefs with Correlated Signals
Bidders can potentially observe five possible pieces of information: 1) their own private
signal, 2) signals from others who may share information with them, 3) the equilibrium
price of the asset, and 4) their private value v;. For dealers, the private value is common
knowledge as it derives from a common and publicly known requirement while investors’
private values are private information. Finally, it is a feature of Treasury auctions that all
non-price contingent bids are publicly revealed before bidding closes. Therefore, we assume

5) that § is common knowledge. We explain each in turn.

Before trading, each bidder and dealer gets a signal about the payoff of the asset. These

signals are unbiased, normally distributed and have private noise:
Si = f + &4,

where g; ~ N(0,71).

By placing orders through dealers, customers reveal their order flow ¢;(p) to their dealer,

5 In the current design of the primary dealer system, dealers are expected to bid for a pro-rata share
of the auction at “reasonably competitive” prices Federal Reserve Bank of New York (2016). Prior to
1992, an active primary dealer had to be a “consistent and meaningful participant” in Treasury auctions by
submitting bids roughly commensurate with the dealer’s capacity. See appendix E in Brady, Breeden, and
Greenspan (1992) In 1997, the New York Fed instituted an explicit counterparty performance scorecard
and dealers were evaluated based on the volume of allotted securities (FOMC, November 2007). In 2010
the NY Fed clarified their primary dealer operating policies and strengthened the requirements (Federal
Reserve Bank of New York, 2016).



which in the model is equivalent to sharing their expected value of the security E;[f] + v;.
Each dealer d receives orders from N;/Np clients.® The dealer constructs 54, which is an

average of his clients’ expected valuations:

f0= 22 [ B ] (4)
€Ly

where Z, is the set of investors bidding through dealer d.

Dealers, in turn, can share some of this order flow information with their clients. Dealer-
client information sharing takes the form of a noisy signal about §4, which is the summary
statistic for everything the dealer learned from client order flow. That noisy signal is
s¢; = 8q + & where & ~ N(O,Tgl) is the noise in the dealers’ advice. The noise &; varies
by dealer and by client, but sums to zero for each dealer, meaning that dealers do not
systematically mislead clients. Section 4.4 considers dealers who do mislead clients, by not
truthfully revealing their information sharing. Our model captures noisy dealer advice, as
well as two extreme cases: perfect information-sharing between dealers and clients (7¢ = 00)

and no information-sharing (7¢ = 0).

In addition, dealers may share information with other dealers. Let v be the size of the
group of dealers who share their information with each other. In other words, each dealer
reveals all of his or her signals to ¢ — 1 other dealers. No sharing between dealers is the

case where ¢ = 1. All information sharing is mutual.

The final piece of information that all agents observe is the auction-clearing price p. Of
course, the agent does not know this price at the time he bids. However, the agent con-
ditions his bid ¢(p) on the realized auction price p. Thus, each quantity ¢ demanded at
each price p conditions on the information that would be conveyed if p were the realized
price. Since p contains information about the signals that other investors received, an in-
vestor uses a signal derived from p to form his posterior beliefs about the asset payoff. Let
si(p) denote the unbiased signal ¢ constructs from auction-clearing price. We guess and
verify that (s;(p) — f) ~ N (O,TI;l), where 7, is a measure of the informativeness of the
auction-clearing settle price. Recall that direct and indirect bidders have private values

that are private information. Adjusting their price inference for their own valuation, they

infer s(p|v;) or s(p|vj) from a realized price p.

Signal vectors for the three types of agents are as follows: An investor who bids directly

51t is quite plausible that a dealer might also include his own private signal in the information he transmits
to clients. However, the paper focuses on the effect of dealers’ sharing of client order flow information and
we therefore exclude dealers’ private information from 3§, in order to make clear that our results reflect the
sharing of order flow information. Note also that dealers’ signals to clients covary with clients’ private and
public information. Our solution method accounts for this covariance.



observes a vector of signals S; = [s;, s(p|vj)]. Investors who bid through dealers observe
the larger signal vector S; = [s;, s¢i, s(p|vi)]. While these investors observe an extra signal,
they also will end up having signals and thus making bids that covary more with price
information. A dealer observes the same signals as an indirect investor, except that he sees
the exact order flows, instead of a noisy signal of them. For dealer d, Sy = [sq4, $4, $(p)].
Since non-price contingent bids § and dealer valuations vg are common knowledge, we don’t

include them in S. But every speculative bidder accounts for them.

For every agent, we use Bayes’ law to update beliefs about f. Bayesian updating is compli-
cated by correlation in the signal errors. To adjust for this correlation, we use the following

optimal linear projection formulas:

E[f1S)] = (1= B'ln)p+8'S;  where (5)
Bj =V (S;)"! Cov (f,5;) (6)
V[fISj] = V(f) = Cov (£,5;)' V(S;)~" Cov (f,5)) =7; ", (7)

where m is the number of signals in the vector S;, the covariance vector is Cov (f, S;) =
LnTy L and the signal variance-covariance V (S;), is worked out in the appendix. The vector
Bj = [Bsj> Bej> Bps] dictates how much weight an agents puts on his signals [s;, s¢q(j), $(p)]

in his posterior expectation. In a Kalman filtering problem, j is like the Kalman gain.

Equilibrium. A Nash equilibrium is

1. A bid function by each direct or indirect bidder that maximizes

max B[ exp(—p(W; + qiv1))|5i] (8)
s.t. Wi =W +ai(f —p) and (12) (9)

The second constraint (12) is the auction clearing condition and reflects that the
speculative bidders choose their quantity, taking into account the effect their demand

has on the equilibrium price.

2. A bid function for each dealer that maximizes

max E[—exp(—p(Wy + qava))|Sa] (10)
s.t. Wqg=Woa+qa(f —p) and (12) (11)

10



3. An auction-clearing (settle) price that equates demand and supply:

Ny Ny Np
SNa+d g +Y autd=1. (12)
i=1 d=1

j=1

Of course, in practice, customers submit orders, then dealers observe and share some
information about these orders. Then, bids get revised, and so forth. Our equilbrium
concept is a Nash or rational expectations equilibrium. It represents the point where this

Tatonnement process converges.

Similarly, in practice, auction prices cannot possibly be observed while bids are still being
formed. However, auction theory teaches us that each bidder should avoid the winner’s
curse by choosing a quantity for each price that would be optimal, if he observed that
market-clearing price and included it in his information set. Since bidders can set a different
demand for every possible price, and thus condition on the information contained in every

possible price, the information set of investor i is effectively {s;, p}.”

2 Solving the Model

We first solve for optimal bid schedules of investors and dealers. Then, we work out the
auction equilibrium with different information being shared. Since all investors’ posterior
beliefs about f are normally distributed, we can use the properties of a log-normal random

variable to evaluate the expectation of each agent’s objective function.

We then substitute the budget constraint in the objective function, evaluate the expectation
and take the log. The investor maximization problem simplifies to maxg, , ¢;(E[f]S;] +
v;j—p)—3 quZV[ f15;] subject to the market clearing condition (12), where the price is not
taken as given.® The first order condition with respect to gj reveals that investors bid

o ElfISi]+v—p
%)= pV[f[S;] + dp/dg;”

(13)

For dealers, the expression is almost identical. The only difference arises from the gap in
signal vector S that the dealer conditions on and the form of the private value v4. Since

vaqd = Xq4 + Xo, the constant yo drops out when taking the first order condition and the

"There is a long history of including market-clearing prices in information sets, including the literature
building on Grossman and Stiglitz (1980) and Kyle (1989).
8In the baseline model we rule out collusion, and relax this assumption in Section 4.4.
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optimal dealer bid is
E[f[Sil+x —p
pV([f1S;] + dp/dq;

qj (p) =

2.1 Equilibrium auction-clearing price: Three cases

In order to understand the implications of different information sharing arrangements,
we solve for auction outcomes in the three cases illustrated in Figure 1: 1) dealers and
customers share information; 2) dealers also share information with other dealers; and 3)

no information is shared either with customers or between dealers.

The no-information-sharing world is one with “Chinese walls,” where dealers cannot use
client information to inform their own or their clients’ purchases. In recent years, a number
of financial firms have reportedly implemented such a separation of brokerage activities
and transactions for their own account. Regulators have also recommended that banks
establish and enforce such internal controls to address potential conflicts of interest.” In
our Chinese wall model specification, each agent sees only their own private signal s; and
the price information s;(p) which they can condition their bid on, but not any signal from
the dealer: S; = [s;, 5i(p)]-

In the information sharing cases, investors observe the larger signal vector S; = [s;, s¢i, si(p)].
The signal s¢; includes information from clients and/or information shared across dealers.

In these cases, the investors’ own information will also be shared with others.

The equilibrium auction price is obtained by adding up all investors’ and dealers’ asset
demands as well as the volume of market orders x and equating them with total supply.
As in most models with exponential utility (e.g. Kyle (1989)), the price turns out to be
a linear function of each signal. The innovation in this model is that information sharing
changes the linear price weights, which affects utility. To the extent that signals are shared
with more investors, that signal will influence the demand of more investors, and the weight
on those signals in the price function will be greater.

Result 1. Under each of the following three information-sharing regimes:
1. Dealers share information imperfectly with clients, but not with other dealers.
2. Dealers share information with clients and ¢ other dealers.

3. There is no information sharing at all. Dealers cannot use client trades as informa-

tion on which to condition their own bid (Chinese walls).

9For example, the Financial Stability Board (FSB) 2014 report on “Foreign Exchange Benchmarks.”
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auction revenues are always a linear function of signals s; and investors’ average private
values v:
p=A+ Bisi+ Bjs5+ Bpsp + Cior + Cjo5 + D (15)

where 51 = N; vaz’l Siy S5 = N}l Zﬁiﬁ sj and 5p = Np* ZfiDl sq are the average signals
of indirect bidders (1), direct bidders (J) and dealers (D), and 6 is the non-price contingent
demand. The equilibrium pricing coefficients A, By, By, Bp,Cr, and Cj that solve each
model differ by model and are reported in Appendix A.

Standard competitive market models often have simple solutions for the price coefficients,
but this is not true in our setting. The complication is two-fold: 1) there are strategic
agents whose demands are not linear in the coefficients of the price function and 2) shared
signals are correlated with price information. Both sources of complexity are essential to
understand information sharing affects auction revenue. Appendix A proves that, in the

two extremes of Chinese walls and perfect information sharing, an equilibrium exists.

Through the lens of the pricing equation (15), the primary effect of information sharing
in this model is higher auction revenue as sharing information leaves all investors better
informed. Investors who perceive an asset to be less risky will hold it at a lower risk
premium, or at a higher price. A lower risk premium is a less negative A. We see in the
solution that this risk premium (—A) decreases when information is shared and uncertainty
is lower. While this type of effect shows up in many imperfect information asset pricing
models, it offers a new perspective on how restricting sharing of information affects auction
revenues. From a policy perspective, this effect is equally important and has largely been

neglected in the policy discourse on information regulation.

With Chinese walls, when dealers can no longer use the information in their clients’ orders,
the functional difference between indirect and direct bidders and dealers disappears. In
other words, eliminating all information sharing effectively eliminates intermediation as

well. 10

Auction Revenue Because the supply of the Treasury asset is normalized to one, price
and auction revenue are the same. Our objective is to determine how expected revenue
varies with information sharing. Since private values and non-price contingent bids are
both mean zero, expected revenue is linear in the unconditional mean of the asset payoffs
p: A+ Biotaipt, where Bioyqy = Br + By + Bp.

10 The finding that there is no longer any meaningful distinction between a dealer and a non-dealer large
investor is reflected in the fact that in the price formula, if the number of dealers and large investors is
equal and the dealers do not face a minimum bidding requirement, then the coefficients on the signals of
dealers sq and the signal of large investors s; are equal as well.
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3 Mapping the Model to the Data

The model has twelve parameters. We map the model to the data by fixing the number
of agents (three parameters) and then calibrating the remaining nine parameters to twelve
moments from Treasury auction allotments and market pricing data. The rest of this
section provides detail on the calibration. Our sample starts in September 2004 and ends
in June 2014. To study a comparable sample and estimate yield curves, we restrict attention
to 2-, 3-, 5-, 7- and 10-year notes and exclude bills, bonds and TIPS. In 2013 alone, Treasury
issued nearly $8 trillion direct obligations in the form of marketable debt as bills, notes,

bonds and inflation protected securities (TIPS), in about 270 separate auctions.!!

In each auction, price-contingent (called “competitive”) bids specify a quantity and a rate,

’ is treasury parlance for non-price

or the nominal yield for note securities. “Non-competes,’
contingent bidders; they specify a total amount to purchase at the market-clearing rate.
As discussed in more detail below, we are largely focusing on the price-contingent bidding,
which accounts for more about 99% of allotted amounts. Price-contingent bids can be
direct or indirect. To place a direct bid, investors submit electronic bids to Treasury’s
Department of the Public Debt or the Federal Reserve Bank of New York. Indirect bids
are placed on behalf of their clients by depository institutions (banks that accept demand
deposits), or brokers and dealers, which include all institutions registered according to

Section 15C(a)(1) of the Securities Exchange Act.

On the auction day, bids are received prior to the auction close. The auction clears at a
uniform price, which is determined by first accepting all non-price contingent bids, and
then price-contingent bids in ascending yield order. The rate at the auction (or stop-out
rate) is then equal to the interest rate that produces the price closest to, but not above,

par when evaluated at the highest yield, at which bids were accepted.

We first discuss auction participation, as measured by market share of quantity won by
type of bidders based on auction results data published by the U.S. Treasury. For each
maturity, we compute the mean share of securities allotted to primary dealers, direct and
indirect bidders as a fraction of all price-contingent bids. Price-contingent bids, the sum of

direct, indirect and primary dealer bids, account for 99% of all bids in the auction.'? More

HTreasury bills are auctioned at a discount from par, do not carry a coupon and have terms of not more
than one year. Bonds and notes, instead, pay interest in the form of semi-annual coupons. The maturity
of notes range between 1 and 10 years, while the term of bonds is above 10 year. For TIPS, the coupon is
applied to an inflation-adjusted principal, which also determines the maturity redeemable principal. TIPS
maturities range between 1 and 30 years.

2We thus exclude, amounts allotted to the Fed’s own portfolio through roll-overs of maturing securities,
which are an add-on to the auction. Starting in April 2008, Treasury begun releasing noncompetitive results
ahead of the auction close, meaning that just like the Fed’s own bids, non-competitive bids are known to
other investors.
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precisely, primary dealers bidding for their own account, are the largest bidder category at
auctions accounting for 53% on average of all price-contingent bids. Indirect bidders are

the second largest at about 37% and direct bids account for about 10%.

The next set of calibration moments are the mean and variance of auction prices and sec-
ondary market values. Measuring payoff risk (speculative risk) is central to our calibration
strategy. Importantly, risks faced by speculative Treasury bidders is different from those
faced by investors underwriting corporate bonds. Because the U.S. sovereign secondary
market is deep and liquid, Treasury investors can hedge issuer-specific risks by shorting
already-issued securities. Newly issued government securities do, however, carry a liquid-
ity premium relative to already-issued securities. Investors’ demand for specific issues is
the key determinant of these liquidity differences. As a result, key underwriting risks for

bidders are issue-specific rather than issuer-specific.

When calculating the first and second moments of auction prices and secondary market
payoffs (p and f), note that, up to rounding, the auction price clears at par. The stop-out
coupon rate is, instead, uncertain and will be a function of issue-specific value as well as
the term structure of interest rates at the time of the auction, which depends on factors
unrelated to the auction, namely the expected path of short-term interest rates and term
premia. In our calibration, we focus on issue-specific fundamentals, or the “on-the-run”
value of the issue, for two reasons. First, an investor can easily hedge interest rate risk into
the auction by shorting a portfolio of currently outstanding securities. Second, from the
issuer perspective, the stop-out rate could be very low because of low interest rates, but an
issue could still be “expensive” relative to the rate environment due to auction features,
which is what we are after. To strip out the aggregate interest-rate effects, we assume
that the bidder enters the auction with an interest-rate-neutral portfolio, which holds one
unit of the auctioned security and shorts a replicating portfolio of bonds trading in the
secondary market. This portfolio is also equivalent to the excess revenue on the current

issue, relative to outstanding securities.

Thus, price p in our model corresponds to the auction price, minus the present value of
the security’s cash-flows, where future cash flows are discounted using a yield curve. To
compute this measure, we estimate a Svensson yield curve following the implementation
details of Giirkaynak, Sack, and Wright (2007) but using intraday price data as of 1pm,

which is when the auction closes (data from Thomson Reuters TickHistory).

The speculative payoff value f in the model corresponds to the value of the interest-rate
neutral portfolio on the date when the security is delivered to the winning bidders (close
of issue date). The issue date in our sample lags the auction date by an average of 5.5

days with a standard deviation of about 2.3 days. For example, in Table 2, the average
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revenue from selling a new coupon-bearing security is about 37 basis points higher than
the replicating portfolio formed using outstanding securities. Thus, we calibrate the model
to have this average asset payoff. This excess revenue is positive across all maturities.
This is the well-known “on-the-run” premium (Lou, Yan, and Zhang, 2013; Amihud and
Mendelson, 1991; Krishnamurthy, 2002). Appendix B details exactly how we calculate

payoffs and explores other possible ways of hedging the interest rate risk.

Table 1: Calibrated parameters: The valuation-related parameters in the Table
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Calibration Table 1 lists the thirteen parameters in the model with the exception of
the constant term x( in the dealer’s private value that plays no difference in the demand
functions.!® The three parameters that govern the number of market participants (Np, Ny
and Nj) are chosen directly to approximate the observed number of dealers (about 20) and
produce 10 clients per dealer. Since indirect bidders take down almost four times as much of
the auction as direct bidders do, we set the number of direct bidders N; = N;/4 = 50.

Of the remaining 9 parameters, two can be matched directly to data. The mean and
standard deviation of the common value (p and Tf_l/ 2) correspond directly to the first and
second moments of the secondary market payoffs, described above. Thus, two moments

are used to match two parameters.

Risk aversion closely governs the price of the Treasury and thus auction revenues. For a
given set of other parameters, we can calculate analytically the value of risk aversion that
matches revenues. Thus, for each set of candidate parameters, risk aversion p is chosen

such that the expected revenue (p) of the auction matches exactly observed data.

We estimate the remaining six parameters jointly to provide the best fit to the aggregate
moments in Table 2. Note that there are more moments than parameters. Since the model
is not an exact representation of reality, it cannot match all the moments. The over-

identifying moments provide extra information to guide parameter estimation and gauge

13We set the level of minimum bids xo to be equal to the pro-rata share of the issuance at the expected
price in the baseline model, with perfect information sharing with clients and no information sharing with
other dealers. This reflects the spirit of the minimum bidding requirement: dealers have an effective price
concession when they bid for a larger fraction of the auction or at a higher price.
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Table 2: Calibration targets and model-implied values. Prices and excess revenues
are all expressed in basis points. Ny, Ny and Ny are set directly, resulting in three over-
identifying moments.

‘ Data Model
Expected speculative payoff (u) 40.36  40.36
Stdev speculative payoff (Tf_l/Q) 72777 72777
Expected revenue (p) 36.74  36.74
Stdev revenue 71.97  73.08
Price constant (A) -1.56  -3.55
Price sensitivity to fundamental (B) | 0.97 1.00
Pricing Error Stdev. (o¢) 30.19 8.03
Indirect share (% ) 36.89  34.83
Dealer share (% ) 53.31  56.53
Volatility of dealer share 14.50 7.39
Direct share (% ) 9.80 8.64
Volatility of direct share 8.56  18.41

the fit of the model to the data.

The estimation objective function for these remaining six parameters includes the variance
of the auction revenue (or the on-the-run premium at the auction), the mean allotted
share to primary dealers (Eé\g’l qa), indirect bidders (3=, ¢;), and to direct bidders as
well as the variance of the direct and dealer share. In addition, we estimate the empirical

counterpart of the equilibrium pricing equation (15):

Pt =10+ ft + €, (16)

where, p; and f; are “on-the-run premiums” at the auction and issuance dates, respectively.
From (15) and (16), we see that excess revenues are positively correlated to the fundamental
value on issue date (73 = Br+ By + Bp > Ou). The loading of about one suggests that the
auction price reflects expectations for secondary market value, nearly one-for -one. The

estimate of o, is the variance of the residual from that regression.

The model moments are computed by drawing 100,000 realizations of the fundamental f, all
the signals .S;, and non-price contingent demands J, and calculating the average equilibrium
outcomes. We solve the model by solving for the equilibrium pricing coefficients in Result
1. This amounts to solving for a fixed point in a set of up to seven non-linear equations
(five for pricing coefficients and two for demand elasticities of dealers and large investors).
We iterate to convergence, using the average violation of the market clearing condition (12)
to ensure that we find the equilibrium pricing coefficients. At our solution, the average
violation of the market clearing condition is about 107'2. We use multiple starting points

to ensure that the maximum is a global one.
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Estimated parameters Looking at the values of the estimated parameters in Table 1
_1

we note the standard deviation of the signal s; (7 %) observed by investors and dealers

is estimated to be about a tenth as large as the unconditional standard deviation of the

_1
fundamental f (Tf 2). The estimated volatility of private values of direct and indirect
_1 _1
bidders increase the standard deviation of their respective shares, or 7,;*> > 7, /. Finally,

the size of the dealer’s private value, which is the same for all dealers, is ten times as
large as 7,; and of the same order of magnitude of the unconditional variation in f. This

suggests that the model estimates a sizable private value component for dealers.

4 Results: Effects of Information Sharing

We examine two forms of information sharing. We first study information sharing between
dealers and clients by varying the precision of the dealer signal to their clients, without
allowing dealers to communicate amongst each other. Then, we hold the precision of
client communication fixed and vary the number of other dealers that each dealer shares
information with. In both cases, we find that information sharing increases auction revenues
as well as revenue volatility. The surprising finding is that small investors dislike, as a
group, when dealers share more precise information with them, but sometimes benefit
when dealers share information with each other. The intuition for this puzzling finding is
that client information sharing increases information asymmetry and inhibits risk sharing,
as in Hirshleifer (1971), while inter-dealer talk can reduce information asymmetry and

improve risk sharing.

Since the quantity of auctioned securities is fixed and normalized to 1, the auction price and
auction revenues are the same. In the plots that follow, we study expected excess revenues
varying one exogenous parameter at a time. In each exercise, all parameters other than

the one being varied, are held at their calibrated values from Table 1.

4.1 Information Sharing Raises Auction Revenue

Information sharing — of either kind — raises auction revenue. Indeed more information
sharing makes the average bidder better informed, which in turn makes Treasuries less
risky to the average investor, eliciting stronger bids, resulting in higher auction revenues.
However, the quantitative revenue effects of client-sharing and dealer-sharing are quite
different. The left panel of Figure 2 plots expected auction revenues, as a function of
different levels of dealer information sharing with clients. The horizontal axis shows the

precision of the dealer signal 7¢ from zero (no information sharing) to infinity (perfect
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Figure 2: Dealer Information Sharing. Left: dealer information sharing with clients;
right: dealer information sharing with other dealers. In the left panel, the horizontal axis
shows the precision of the dealer signal 7¢ from zero (no information sharing) to infinity
(perfect information sharing).
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information sharing). More information sharing means that dealers reveal their information
54 with less noise to their clients. In the absence of inter-dealer talk (¢p = 1 in left
panel), moving from no sharing to perfect information sharing with clients results in a
very small increase in expected revenue of a tenth of a basis points. The vertical line
on the plot represents the amount of client information sharing implied by the model
calibration. This calibrated status quo corresponds to revenues of 36.74 bps. How much
can client information sharing raise revenue? Given an annual Treasury issuance of about
$8 trillion, the model implies that going from no sharing to perfect sharing with clients
would increase total auction revenues by a modest $80 million. Furthermore, the model
suggests no revenue gain from encouraging further client information disclosure compared
to the calibrated status-quo. Indeed the revenue curve to the right of the current level
of information sharing is flat. Importantly this result assumes that dealers do not share
information with each other. The model suggests that without dealer sharing, the benefits

of client information sharing are limited.

The biggest revenue gains arise when both types of information sharing take place as shown
in the right panel of Figure 2. As shown by the brown dashed line, if dealers do not share
information with their clients, the revenue benefits of dealer talk are small, less than 0.5
basis points. In contrast, the combination of inter-dealer sharing and sharing information
with clients is a powerful revenue generator. In the presence of full client information
sharing (solid blue line), increasing the number of dealers with which each dealer shares

information, auction revenues increase by almost 3 basis points.'* Given the current level

HQince we assume dealers are symmetric, we need the number of dealers in an information-sharing
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of client information sharing, the additional revenue from allowing all dealers to share with

four (or more) other dealers amounts to $ 2.4 billion.

In unreported results, we also find that both types of information sharing reduce the
variance of auction revenue, but that this effect is quite small (order of less than a basis
point). The reason for the small change in variance is because two countervailing effects
nearly offset each other. In a model with only common values, an increase in information
sharing would increase revenue volatility: As investors put more weight on their more
informative signals, the auction clearing price becomes more sensitive to changes in the
fundamental value f. With correlated values, when information sharing makes the auction
price more responsive to the speculative return, it also becomes less responsive to private

values. The result is small changes in revenue variance.

In additional analysis, we find that when prior uncertainty about the future value of the
asset is high (precision 7y is low), or if the variance of non-price contingent bids grows,
information sharing raises revenue by more. The reason is that both make bidders more
uncertain ex-ante. When bidders are more uncertain, there is more scope for information
sharing to reduce risk. All else equal, a reduction in risk prompts bidders to bid more for

the asset.

One proposed policy is an open order book. An open book allows all bids to be observed by
all market participants. The expected revenue of an open order book is just like the revenue
of full dealer information sharing. This takes into account the fact that when all bids are
observed, bidders behave strategically and try to manipulate their bids to affect others’
beliefs. If instead of a strategic bidder market, this were a large, competitive market, the
benefits of an open order book would rise further to 40.36 basis points. That’s a 3.6 basis
point increase over the status quo, corresponding to an additional $2.9 billion in Treasury

revenue.

The role of minimum bidding requirements Primary dealers are required to be
consistent, active participants in Treasury auctions. While rules have evolved over time,
today, primary dealers are expected to bid at all auctions an amount equal to the pro-rata
share of the offered amount, with bids that are “reasonable” compared to the market. The
inclusion of minimum bidding penalties in dealers’ private values is realistic but also helps
to calibrate the model in a sensible way. Absent a reason for a high private value and given
common risk aversion for all bidders, it would be hard our model to explain why dealers

bid for so much of the auction. One way to see this is by looking at the estimated level of

collective to be a factor of 20, the calibrated number of dealers. Thus, we stop at 9, which implies that two
groups of 10 dealers each are sharing information with each other. Any more information sharing beyond
this level would be perfect inter-dealer sharing.
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x = 55 in Table 1, which is about as large as the standard deviation of the fundamental in
the model (Tf_ : = 73). In words, the model needs a private value component for dealers
which is of the same order the common component to rationalize the observed shares. In
unreported results we show that the main effect of minimum bidding requirements is that
a higher penalty () raises expected revenue by boosting demand by primary dealers, since
dealers are incentivized to bid more aggressively. But bidding requirements leave the effect

of client information-sharing on revenue and utility unchanged.

4.2 Bid Shading and Signal Jamming

Since our bidders have price impact and are strategic, they optimally use their bids to
influence the auction-clearing price (“bid shading”), which is the central focus Hortagcsu,
Kastl, and Zhang (2016). Our bidders can also influence others’ beliefs, so as to impact
others’ bids (“signal jamming”). In this section we provide additional details on bid shading
and jamming, their impact on expected revenues and how they interact with information

sharing.

FEach speculator’s and primary dealer’s bid depends on her expected private and common
value (numerator of (13)), and on the sensitivity to that expected value (denominator of
(13)). The sensitivity (denominator) has a risk aversion pV'[f]S;] term. If investor i is more
risk averse, then she bids for a smaller position in the asset. The second term is dp/dg;.
This is a strategic effect that captures her ability to influence the auction price. We break
that strategic effect into two parts. One is bid shading (BS).

If the bidder reduces their demand by one unit, and others’ bidding best responses stayed
fixed, this effect captures the change in the auction-clearing price. Bid shading is the part
of dp/dq; that would remain, even if, when an investor reduces his bid, others do not make
inference from the slightly lower price: BS = dp/dg;|s,—0, where 3, = 0 means that other
bidders are not drawing inference from the price signal. The other part of the strategic
effect is the ability to influence others’ beliefs through prices. This is signal jamming:
SJ = (dp/dg;)~* — BS~!. We define these two terms formally in terms of model primitives
in equations (103) and (101) in the Appendix.

The extent of bid shading and signal jamming depends greatly on how and how much
information is shared. Information sharing, of either type, reduces both bid shading and
signal jamming, for each investor. When dealers share more information, either with
their clients or with each other, everyone is better informed. When all bidders are better
informed, small changes in price have little additional information value. Thus, the price

impact of a trade is reduced. Instead, highly informed traders infer that if the price is
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Figure 3: Bid Shading and Signal Jamming Revenue Effects. This Fig-
ure shows the effect of removing either bid shading (dp/dgi|g,—0) or signal jamming
((dp/dq;)~' — BS~!) from bidders’ demands, one at a time. Each line represents an average
price (revenue). Left: dealer information sharing with clients; right: dealer information
sharing with other dealers. Formulas for bids without jamming and shading are (101) and
(103) in the Appendix
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high, someone bid high for non-informational reasons and they will buy less. Because
of this informed bidder response, price impact is reduced. The maximal effect of client
information sharing on dp/dq is only equal to a tenth of a percent. For dealer talk, the

effect is on the order of one percent.'®

What is perhaps most interesting is the effect that each component has on Treasury auction
revenue. Figure 3 shows that, not surprisingly, removing bid shading and signal jamming
causes bidders to bid more. But as shown in panel a, the size of the revenue increase
hardly depends on how much information dealers share with clients. In contrast, when
information is shared between dealers, bid shading and signal jamming have a much larger
effect on expected revenues. The reason is that highly-informed traders bid for larger
positions. Shading a large bid has a larger revenue effect than shading a smaller one. As
more dealers talk, we see that gap in revenue widens to about 2.5 bps, between auctions

with and without strategic bids (Figure 3, panel b).

In sum, while revenues increase with dealer talk, this increase is partially offset by strategic
bidding. By making bidders’ beliefs more precise and more correlated, the effect of market

power on auction revenue is strenghthened.

15The absolute magnitude of these effects is difficult to interpret because they depend on the meaning
of one auction unit. Here, we define normalized offering amounts to one unit, so only relative comparisons
within the model are meaningful. As we discuss next, revenue effects have interpretable units.
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4.3 Client vs. Dealer Information Sharing: Utility Effects

So far, we studied effects of client and dealer information sharing on expected auction rev-
enues. In this section, we study effects on bidders’ welfare. A key insight of the model is
that client and dealer information sharing are quite different for bidders’ welfare. The rea-
son for this opposite effect lies in how each type of information sharing affects information

asymmetry and risk-sharing.

It would be logical to think that if dealers are passing along more of their information
to their clients, that clients would be happy about that. That turns out not to be the
case. Figure 4 plots investors’ utility levels relative to the “Chinese wall” benchmark of no
information sharing between dealers and customers. Panel (a) shows that bidders’ utility
declines when dealers share more information with them. Information acquisition is like a
prisoners’ dilemma in this setting. Each investor would like more of it. But when they all
get more, all are worse off. One reason is that better-informed investors bid more for the

asset; by raising prices, they transfer more surplus to the issuer (Treasury).

Figure 4: Clients Lose from Client Information Sharing, Can Gain from Dealer
Talk. Both panels plot the change in clients’ expected utility from information sharing, as
a fraction of the utility each type gets in the Chinese wall (no sharing) equilibrium. Client
information sharing makes allocations more heterogeneous. This reduces client expected
utility. Dealer and client information sharing reduces this asymmetry and can improve
utility.
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The other mechanism at work is that sharing information with clients increases information
asymmetry. When dealers share little information with clients, clients’ beliefs are not very
different. They all average their priors with a heterogeneous, but imprecise, private signal.
Because private information is imprecise, beliefs mostly reflect prior information, which is
common to all investors. When different dealers transmit different signals, and investors

get a more precise dealer’s signal, they weigh it more heavily in their beliefs; this makes
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investors’ beliefs differ. This increase in information asymmetry makes ex-ante similar
investors hold different amounts of securities ex-post. Asymmetric information pushes the
asset allocation further away from the efficient diversified benchmark. Because investor
preferences are concave, investment asymmetry hurts average investor utility. In short,

information reduces risk sharing, which reduces utility.

One might also expect that when dealers share information with each other, investors are
harmed. When dealers share information with each other and do not pass this better
information on to the clients, clients do suffer as shown by the blue line in panel (b) of
Figure 4. However, if dealers share what they know with their clients, clients can benefit
from inter-dealer talk as shown by the right side of the dashed line in panel (b). When
only a few dealers talk, the limited dealer talk increases belief and investment dispersion,
just like client information sharing. But when many dealers exchange information, their
information sets become more similar. That is the essence of information sharing. Since
dealers’ beliefs are more similar, the signals that dealers share with their clients also become
more similar. The similarity of these signals offset the dispersion increase arising from more
precise information. When dealers share information with four other dealers, belief and
investment dispersion stabilizes. When clients get more precise (shared) information from
their dealers, but do not face the downside of more asymmetric auction outcomes, their

utility rises.

When information is shared, two features of the information environment change simulta-
neously. First, the agents involved have more precise forecasts of post-auction appreciation.
This creates the increase in auction revenues, which is common to both types of information
sharing. Second, there may be more or less market-wide forecast disagreement, depending
on how information is shared. Client (dealer) sharing is like observing a private (public)
signal in a strategic game. Client information sharing is like more private information
because it pushes beliefs further apart. The result that more informative private signals
can increase information asymmetry and thereby reduce utility is the same force that is
at work in Hirshleifer (1971). In contrast, dealer sharing makes information sets more
similar or more public. A large literature examines the different effects of public and pri-
vate information in strategic environments. In some of those environments, coordinated
actions are socially costly (Morris and Shin, 2002; Angeletos and Pavan, 2007); therefore,
public signals are bad because they enable this costly coordination. In other environments,
like Lucas (1972) island models, coordination is socially beneficial (Woodford, 2011). In
the island models, like in this model, public information is good: In a way, dealer talk is

equivalent to merging some of Lucas’ islands together.
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Profits of non-price contingent bidders Whenever information is shared, speculative
bidders become better informed, surplus is transfered from bidders to the issuer and profits
of non-price contingent bidders decline. Who are these bidders that lose out? Some non-
price contingent bidders are small retail investors. Many are bids placed by the New York
Fed on behalf foreign and international monetary authorities (FIMA) that hold securities
in custody at the Fed.'®

4.4 What if Information Sharing Enabled Collusion?

One reason why some call for curbing information sharing is that dealers who share infor-
mation may also collude. Many textbook analyses show economic losses associated with
collusion. We do not repeat those arguments here. Instead, we look at how information

sharing interacts with the costs of collusion.

Suppose that every time dealers shared information with each other, that group of dealers
also colluded, meaning that they bid as one dealer, in order to amplify their price impact.
How would this collusion and information sharing jointly affect auction revenue? Without
collusion, dealer information sharing increases expected revenue because of the reduction
in investors’ risk (Figure 2, panel b). With collusion, the effect depends on client informa-
tion sharing. When no information is shared with clients, investors don’t perceive a risk
reduction, and revenue declines as collusion increases. With client information sharing,
there is a small region in which the joint effect of information sharing and collusion is to
increase revenue slightly, before dropping below the “Chinese walls” benchmark (Figure

5).

When expected revenues decline, investors utilities are higher, while taxpayers are worse
off. In other words, if information enables collusion, the issuer is the main loser. From an
auction revenue perspective, this does not necessarily mean that prohibiting information-
sharing would be optimal. If anti-collusion laws could be effectively enforced, without
prohibiting the sharing of information, that would be the best possible outcome for Treasury

revenue.

Lying about dealer talk Perhaps not all investors know that dealers swap order flow
information with other dealers. Of course, one could enforce laws about disclosure of
information practices, without prohibiting information sharing. But agents understanding
of others’ strategies do matter in the results that we have discussed so far. When a set

of dealers share information and collude but others are not aware, auction revenue falls

I6FIMA customers can place non-competitive bids for up to $100 million per account and $1 billion in
total. Additional bids need to be placed competitively.
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Figure 5: Collusion reduces revenue. Average equilibrium auction revenue, assuming
that when v dealers share information, they also bid as one. These results differ from
previous figures because here, varying information-sharing along the x-axis also varies the
extent of collusion.
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by more than in Figure 5.!7 When inter-dealer information sharing is undisclosed, even if
information is subsequently shared with clients, revenue declines. This is because if clients
are not aware that their information is very precise, they do not bid aggressively. Thus

hidden information sharing fails to raise auction revenue.

5 How and When to Bid?

So far, the paper takes as given that all bidders participate in the auction, some are dealers,
and some bid directly, while others bid indirectly. In reality, all of these margins involve
choices. While a full analysis of every relevant margin would require more than one paper,
an extension of the model provides insights about each choice, that we hope might invite

further analysis.

A distinguishing feature of U.S. Treasury auctions is that they are mixed auctions: Any
investor can either place an intermediated bid through a primary dealer, or bid directly.
When choosing how to bid, information sharing arrangements matter. In order to under-
stand these effects of information sharing, explore the choice of a single bidder, deciding
whether to bid directly or indirectly (through a dealer). Once clients have a direct/indirect
bidding choice, it becomes clear why dealers may share some of their information with
clients. Absent any information sharing, clients would have no incentive to bid with them.

Similarly, dealer’s ability to use client information is what incentivizes them to be dealers.

"Details of this model variation and its results are reported in Appendix A.5.
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Finally, we discuss an investor’s choice to bid into the auction, or to purchase securities

before the auction in the when-issued (WI) market.

Model: Choosing to Bid Directly or Indirectly Consider one investor choosing
between bidding directly or indirectly through an intermediary (the dealer). The investor’s
choice of how to bid affects the information structure of that investor, its dealer, other
investors bidding with that same dealer, and the information content of the price s(p).'®
If investor ¢ bids indirectly, through dealer d, the model and the signals are as discussed in
the baseline specification. But when the investor chooses to bid directly on his own behalf,
he observes only his own signal, private value and the price information: S; = [s;, v;, s;(p)].
The order flow signal of the dealer that investor j refused to bid through, now has a signal
based on N;/Np — 1 clients’ order flow signals. This dealer also knows one more piece
of important information: that one investor, an investor who typically bids through him,

decided to bid directly.

Solving the model with an endogenous direct versus indirect bidding decision introduces a
technical challenge. The decision to bid directly or indirectly itself becomes a signal. We
assume that the dealer who would intermediate this trade observes the investor’s bidding
decision and transmits this information to clients, with noise. If the investor bids through
the dealer, the dealer observes his bid, as before. If the investor bids directly, the dealer
learns that the investor’s signal must lie in one of two disjoint regions of the distribution.
This is problematic because doing Bayesian updating of beliefs with truncated normals
would require involved simulation methods. Embedding that updating problem in our

solution would render it intractable.

We circumvent this problem by constructing an approximating normal signal. Through
simulation, we first estimate the mean and variance of the investor’s signal, conditional on
choosing direct bidding. Then, whenever the investor chooses to bid directly, the dealer,
who would have intermediated that trade, makes inference from the direct bidding decision.
That dealer observes a normally distributed signal, s, = f + e, (¢ for quit) with the same
mean and variance as the signals of the simulated direct bidders. This normal signal is
included in the precision-weighted average signal of dealer d’. In appendix B we show how
this signal can be used to construct a precision-weighted average signal of dealer d’ and

derive the updated equilibrium pricing condition.

8There may well be fixed costs associated with bidding directly for large investors, such as registering
with the online direct bidding system known as TAAPSLink for large investors or setting up one’s own
trading desk. We abstract from such costs because they are difficult to quantify and do not change the
main price asymmetry result.
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Client Information Sharing and the Direct/Indirect Bidding Decision. Examin-
ing expected utility in our model clarifies the incentives to bid directly and indirectly. Our
results reveal how information sharing affects bidders’ utility of bidding through dealers.

This, in turn, helps to explain why information sharing with clients takes place.

When the investor chooses whether to invest through a dealer, he has seen his private
signal s;. In addition, the bidder knows his private value v;. Thus the intermediation
choice maximizes expected utility, with an additional expectation over the information
that the investor has not yet observed. Computing the expectation over possible price
realizations and dealer signals, but conditioning on an investor’s private signal, we find

that expected utility of any type of bidder 4 is'

2
_1 T
EU; = —exp(pWy)(1 + 20;AV;) 2 exp | — ———2— |. 17
= - el (14 20,87 e (-t ) (1
The intermediation decision affects utility in three ways: through the expected profit per
unit allotted ., the sensitivity of demand to expected profit 6;, and through the ex-ante

variance of expected profit AV;. These three terms are:

pri = E{E[f|Si] + vi — plsi}, (18)
0; = plpVI[f|S;] + dp/dg;] " (1 - %p[pV[fISi] + dp/in]_lV[flsi])7 (19)
AV, = V{E[f|Si] 4+ vi — plsi} = V[f — plsi] — V[f]X;S]. (20)

The first term p,; embodies the main cost of intermediation: It reveals some of one’s
private information s; to others. This effect shows up as a reduction in p,;, the ex-ante
expectation profit per share, after all signals are observed. Information sharing reduces f;
for two reasons. First, since many investors condition their bids on the shared information
E[f]Si] + vi, the expectation conditional on that information, has a large effect (closer
to 1) on the auction-clearing price. Thus bidding through a dealer brings the difference
E[f]S;]+v;—p closer to zero. Second, improving the precision of other investors’ information

lowers their risk, raises the expected price p, which in turn, lowers p,;.

The second term 6; captures the main advantage of intermediation: Dealers give their
clients an extra signal, which makes them better informed. Better information allows the
large investor to make better bids, increasing expected utility. In Appendix A, we show that
0; is positive and strictly increasing in the posterior precision of the asset payoff V[f]S;]~!.
Thus, intermediation improves the investor’s information, which decreases variance V[f|.S;],

increases 6;, and (holding all other terms equal) increases expected utility.

19Gee Appendix A.6 for derivation.
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The third effect of intermediation, which operates through ex-ante variance AV, is am-

biguous and turns out to be quantitatively unimportant.?’

Client information sharing and the existence of dealers. This utility expression
reveals why information sharing is so integral to the primary dealer system. If dealers
shared no information with clients, the cost of using a dealer, a reduction in pu,;, would still
be present because the dealer observes the client’s order and may trades on this information.
That is costly because it reduces the client’s expected speculative profit. However, the
benefit of using a dealer disappears. If clients get no information from dealers, the signal
set S; and thus the speculative risk V; do not change. In such an environment with only

costs and no benefits, to indirect bidding, primary dealers would cease to exist.

Of course, one could prohibit primary dealers from trading on clients’ information, which is
the “Chinese wall” solution we examined before. But this would also not support a dealer
system. First, investors would now be indifferent between bidding directly and indirectly
in the sense that both pu,; and 6; would be unaffected. Second, there are costs to being
a dealer, in the form of regulatory or minimum bidding constraints. In sum, while we
do not explicitly model dealers’ and bidders participation decision, these results suggest
that information sharing is what induces bidders to bid through dealers, and dealers to
participate in the primary dealer system. In this sense, information sharing is at the core

of the primary dealer system.

When-issued markets. Before each Treasury auction, investors can bet on the auction-
clearing price by transacting in the when-issued (often called “WI”) market. WI is an
over-the-counter forward market. In a way, purchasing WI contracts is like direct bidding:
An investor who bids in the WI market does not learn from a dealer’s signal, implying a
lower ;. At the same time, the investor does not reveal her order flow to a dealer who
shares that information with others (implying a higher ;). Of course, the person with

whom the investor transacts will know the order and the market price will reflect it.

The decision of an investor to bid in the WI market, as opposed to the actual auction,

depends on risk preferences and on information sharing. Investors who purchase securities

20When the large investor trades through a dealer, his uncertainty V[f|S;] declines. From equation (20)
we can see that this increases the ex-ante variance of the expected profit AV;. This is because more
information makes the investor’s beliefs change more, which means a higher ex-ante variance. This change
in AV; has two opposing effects on expected utility. First, an increase in AV; increases the exponential
term in equation (17), which decreases EU;. This effect arises because the large investor is risk averse
and higher AV, corresponds to more risk in continuation utility. The second effect is that an increase in
AV, reduces (1 + 291-AV1')_%, which increases FU;. The intuition for this is that when the variance of the
expected profit is larger, there are more realizations with large magnitude (more weight in the tails of the
distribution). Since these are the states that generate high profit, this effect increases expected utility.
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in the WI market limit auction uncertainty by purchasing newly-issued securities at a
predetermined price. But this price will reflect in equilibrium risk compensation on the
part of the sellers. Indeed, securities outstanding in the WI market are in zero net supply,
meaning that whenever an investor is long a WI, another will be short. The other feature
that differentiates WI from auction bidding is that the opportunity to bid through a dealer

allows an investor to benefit from information sharing.

WI activity may also affect the benefits of information sharing. WI market commitments
affect investors’ private values. When private values are more important, shared infor-
mation about common values is less important. One might think that, because the WI
market is often an accurate forecast of the auction-clearing price, this would matter as
well. However, since our model allows bidders to condition on every possible price, they
have no use for a price forecast. They simply form bids by asking the question, if p were
the auction clearing price, what would I learn and how would I want to bid? Continuous

price-contingent bids make price forecasts redundant.

6 Supporting Evidence: Correlated Values and Informed
Bidders

This section’s evidence supports three key features of the model: the common value as-
sumption, the private value assumption and the information content of signals about the
common value. Although we do not have bidder-level data, our modeling strategy allows us
to infer values and information from publicly available data on secondary market outcomes

and risk premia.

Much of the previous literature on Treasury auctions assumes that valuations for auctioned
securities are private, an assumption that is supported by the findings of (Hortagsu and
Kastl, 2012). There are a number of reasons why bidders may have private values for
newly-issued Treasury securities. First, buy-and-hold bidders do not resell in the secondary
market and their private valuation will reflect a number of bidder specific factors, including
their duration-hedging needs, their investment horizon and regulatory requirements, such as
liquidity coverage ratios, which tilt preferences towards Treasury securities. Some investors
may also be entering the auction having sold the newly-issued security in the WI market,
in which case their valuation would be influenced by the the magnitude of the short that
needs to be covered. Finally, primary dealers may be required to bid for the auctioned
securities over and beyond their secondary market value in order to maintain their primary

dealer status.
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Table 3: Regression of f — p on speculative bidders’ auction share g. The depen-
dent variable is the post-auction appreciation measured as the difference between the value
of the interest-rate neutral portfolio on issue date (f) and on auction date (p) expressed
in basis points units. speculative bidders are bids by primary dealers and direct/indirect
bids of domestic investors. Non-PD speculative shares is domestic bidders except primary
dealers. All shares are measured in percent. Robust standard errors reported in square
brackets. *** significant at 1%, ** significant at 5%, *significant at 10%.

(1) (2) (3) (4)

Spec Share 0.77*** 0.92%**
[0.21] [0.26]
PD Share 0.97***
[0.26]
non-PD Spec Share 0.70**
[0.30]
Const 2.71**  -57.63***  -73.59"**  -2.01
[1.36] [16.05] [21.56] [13.38]
Adj. R2 0.00 0.05 0.24 0.24
Obs. 494 494 494 494
Month FEs? No No Yes Yes
Tenor FEs? No No Yes Yes

On the other hand, a common value component is also likely present for two reasons.
First, many speculators bid in the auction, in order to resell in the secondary market, at a
profit. These speculators share a common profit objective, and thus a common valuation,
given by the secondary market price. Data on inventory holdings of primary dealers, which
are the largest participants in Treasury auctions, suggest that they typically resell all of
their holdings by the first week of trading (Fleming and Jones, 2015). Similarly, hedge
funds, who are active bidders in auctions (see Wall Street Journal, 2015, for example)
hold securities only briefly because of their limited capital. A second reason for correlated
values is that any investor who bids in the auction has the option to wait. Any investor
can purchase the newly-issued security in the secondary market, on issuance date at the
price f. If expectations about f are very low, even a buy-and-hold investor should wait to

purchase in the secondary market, lowering demand at the auction.

Model predictions We turn next to three model predictions.
Prediction 1. If values are correlated and signals s; are informative about the fundamental

f, The auction clearing price p is positively correlated with the fundamental f.

The common value assumption is what causes the auction clearing price to be correlated

with the fundamental value. This correlation arises because the price coefficients on signals,
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By, By and Bp in equation (15), are all positive.

The next result is that private values lower the correlation of bidders’ bids with the post-
auction appreciation payoff f.

Prediction 2. Consider an investor k for whom the private value is less important than
others, or 71;@1 < 7’;11,7';[1. Then a higher allotted share qi, at any given price p has a

higher correlation with post-auction appreciation f — p.

From the first order condition (13) the quantity ¢;(p) demanded by each bidder is propor-
tional to the sum of the expected return E[f|S;] — p and the private value v;. If agent k
has a less volatile private value vy component, she is more of a speculator. Then k’s first
order condition implies a lower correlation (or regression loading) of post-auction returns
E[f|Sk] — p and allotted shares gj.

Prediction 3. Consider an investor k that has a more precise signal Sy about the funda-

mental f, then a higher allotted share g predicts higher post-auction appreciation f — p.

When the signal s is informative about the common value f, the correlation between
realized f — p and the expected E[f — p|S;] rises. Information aligns beliefs with outcomes.
The quantity ¢;, demanded by any bidder is a linear function of E[f — p|S;]. Thus, the

covariance of ¢; and f — p is higher for a better informed investor.

Supporting evidence FEvidence supporting Prediction 1 was provided in Section 3.
Indeed to calibrate the A and B parameters in the model-implied equilibrium equation of
Proposition 1, we estimated parameters of the regression (equation 16) of p on f. Consistent
with the common value component we find a highly statistically significant coefficient,
which is nearly equal to one. In words, the auction price p moves (on average) nearly

one-for-one with the value of the fundamental f.

Predictions 2 and 3 imply a positive correlation between post-auction returns and allotted
shares of investors that either weigh their common values more or that have more precise
signals. Thus observing a higher correlation between an investor’s allotted share and post-
auction returns does not identify its type. We thus bring additional information from
prior literature to identify investors that are more likely to possess stronger common value
components or more precise signals. We then study how allotted shares of these investors’

types are related to post-auction appreciation.

In reality, the importance of private values can differ across investors. While Treasury
auction results provide information on types of bids (direct, indirect, primary dealers, non-
price contingent), Treasury also releases data on allotted shares by investor types (dealers,

investment funds, retail, depository institutions, pension funds and foreign investors). Prior
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literature contributions assume that foreign holders of U.S. Treasuries, which are largely
official investors, hold Treasuries for non-speculative motives, for example, related to their
foreign exchange policies and their respective domestic economic conditions. For exam-
ple work by Bernanke, Reinhart, and Sack (2004) and Warnock and Warnock (2009) on
quantitative easing policies and the “savings glut hypothesis” make the (stronger) assump-
tion that foreign official purchases of Treasuries are completely exogenous to U.S. economic
and market conditions. Furthermore Krishnamurthy and Vissing-Jorgensen (2012) provide
supporting evidence for this hypothesis in the context of the convenience yield. Based on
these findings, we define a speculative share by subtracting the share allotted to foreign

investors.

We therefore estimate the relationship between this speculative share and post-auction
appreciation of the hedged portfolio from the time of the auction close to the issue date,
or f —p. As shown in the first column of Table 3, the value of the newly issued secu-
rity appreciates on average 2.7 basis points between the auction date and the issue date
(column 1).?! As shown in the second column, this appreciation is higher when the share
of speculative bids is higher (column 2), with a highly statistically significant coefficient
(t-stat = 3.5, column 2). The point estimate of 0.77 implies that a 10% increase in the
speculative share (Std. Dev. = 9.1%) is associated with a sizable positive effect of 7.7% in
f—p (Std. Dev = 30%) This empirical result is stronger after including month and tenor

fixed effects (column 3), which supports Prediction 2.

With respect to Prediction 3, prior literature (for example Hortagsu and Kastl, 2012, in the
context of Canadian auctions) find that dealers are at an informational advantage. This is
also true in our model in which dealers share a noisier signal with clients meaning that deal-
ers are better informed about f. Consistent with Prediction 3, post-auction appreciation is
increasing with the allotted share to primary dealers, which display a larger coefficient vis-
a-vis other speculative bidders. The coefficient on the primary dealer share is 0.97 versus

a coefficient of 0.70 on the speculative share excluding primary dealers (p-val=.11).

Importantly neither the speculative bidders or the primary dealer results in Table 3 are
the mechanical result from higher demand. When speculative demand is high, the price is
lower on average, relative to the payoff. It is that low price relative to fundamental value

that induces informed investors and speculators to buy more securities.

21This average post-auction appreciation estimate is consistent with the findings of Lou, Yan, and Zhang
(2013). See Data Appendix for a full set of summary statistics on these variables.
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7 Conclusion

Recent news about dealers sharing clients’ order flow information with other clients or
dealers has prompted calls to restrict financial intermediaries’ use of order flow information.
The need to prohibit collusion and misleading clients about information sharing are quite
clear. But when collusion does not occur and information sharing is common knowledge, the
gains and losses of information sharing are not as apparent. Using data from U.S. Treasury
auctions, we calibrate a structural auction model, with correlated values, to quantify the
costs and benefits of information sharing both between dealers as well as between dealers

and customers.

To analyze the impact information sharing, this paper brings new features to empirical
auction models (see Kastl, 2017, for a review): an uncertain common value component,
risk aversion and of course information sharing. These new components offer a new way
to estimate the role of information in auctions. Instead of relying on bid-level dispersion,
whose measurement relies on confidential data, we back out bidders’ uncertainty and av-
erage bidders’ information from measured risk premia. This new approach is essential to
understanding information sharing. If valuations are private, then by observing order flow
one only learns about other bidders’ demand. When valuations are common and uncertain,
order flow is informative about everyone’s valuation of the asset. With this perspective in
mind, one can understand our main results. We find that the way in which information
is shared matters. Dealer sharing information with other dealers about the common value
makes bidders’ beliefs more correlated. On the opposite, dealer sharing information with
clients makes beliefs about the common value more dispersed. Beliefs about the common
value are the heart of our utility results. Without the uncertain, common value, this effect,

as we describe it, would not be present.

The model also shows that information sharing raises auction revenues by making bidders
better informed. Dealer talk benefits issuers by raising auction revenues, but also can
improve risk sharing by lowering asymmetric information. These results assume full disclo-
sure about how information is used and no collusion; model extensions show that these can
overturn the welfare effect. While our model does not detect whether collusion and mis-
representation occurs, it suggests different remedies to enforce disclosure and anti-collusion

laws, perhaps without prohibiting information sharing.

Against a backdrop of policy initiatives aimed at curbing infomation sharing, other novel
features of our model — investors’ choice to bid directly or through dealers and dealers’
minimum bidding requirements — highlight that information sharing is an integral part

of Treasury auctions and the primary dealer system. Without client information sharing,
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clients would not want to bid through dealers. At the same time, prohibiting dealer use
of client order flow data, while imposing bidding requirements on dealers, creates a dealer
system with large costs and very limited benefits. Information sharing may not be optimal,
depending on feasible alternatives and social welfare criterion. But it has upsides, as well

as downsides.

35



References
AMIHUD, Y., anpD H. MENDELSON (1991): “Liquidity, maturity, and the yields on US
Treasury securities,” The Journal of Finance, 46(4), 1411-1425.

ANGELETOS, G.-M., AND A. PAVAN (2007): “Efficient use of information and social value
of information,” Econometrica, 75(4), 1103-1142.

ARMANTIER, O., aAND E. SBAI (2006): “Estimation and comparison of Treasury auction
formats when bidders are asymmetric,” Journal of Applied Econometrics, 21(6), 745-779.

BaBus, A., anp C. PARLATORE (2015): “Strategic Fragmented Markets,” Working paper,
New York University.

Back, K., anp J. F. ZENDER (1993): “Auctions of divisible goods: on the rationale for
the treasury experiment,” Review of Financial Studies, 6(4), 733-764.

BERNANKE, B., V. REINHART, AND B. SACK (2004): “Monetary policy alternatives at the

zero bound: An empirical assessment,” Brookings papers on economic activity, 2004(2),
1-100.

BIKHCHANDANI, S., aND C.-F. HUANG (1989): “Auctions with resale markets: An ex-
ploratory model of Treasury bill markets,” Review of Financial Studies, 2(3), 311-339.

BLOOMFIELD, R., AND M. O’HARA (1999): “Market transparency: Who wins and who
loses?,” The Review of Financial Studies, 12(1), 5-35.

BraDY, N.; R. BREEDEN, AND A. GREENSPAN (1992): “Joint report on the government
securities market,” US Government Printing Office.

BRUNNERMEIER, M. K., AND Y. SANNIKOV (2014): “A macroeconomic model with a
financial sector,” The American Economic Review, 104(2), 379-421.

CuARI, V. V., anxp R. J. WEBER (1992): “How the U.S. Treasury Should Auction Its
Debt,” Federal Reserve Bank of Minneapolis, 16(4), 1-8.

CoLE, H., D. NEUHANN, AND G. ORDONEZ (2017): “A Walrasian Theory of Sovereign
Debt Auctions with Asymmetric Information,” Working paper.

D1 Maccro, M., F. FrRaANzZONI, A. KERMANI, AND C. SOMMAVILLA (2017): “The Rel-
evance of Broker Networks for Information Diffusion in the Stock Market,” Working
paper, University of California at Berkeley.

DuFFIE, D. (1996): “Special repo rates,” The Journal of Finance, 51(2), 493-526.

EAsLEY, D., N. KIEFER, M. O’HARA, AND J. PAPERMAN (1996): “Liquidity, Information
and Infrequently Traded Stocks,” The Journal of Finance, 51(4), 1405-1436.

FEDERAL RESERVE BANK OF NEW YORK (2016): “Policy on Counterparties for Market
Operations,” .

FisumaN, M. J., anp F. A. LONGSTAFF (1992): “Dual trading in futures markets,” The
Journal of Finance, 47(2), 643-671.

FLECKENSTEIN, M., F. A. LONGSTAFF, aND H. LusTiG (2014): “The TIPS-Treasury
Bond Puzzle,” the Journal of Finance, 69(5), 2151-2197.

36



FLEMING, M. J., anp K. D. GARBADE (2007a): “Dealer behavior in the specials market
for US Treasury securities,” Journal of Financial Intermediation, 16(2), 204—228.

(2007b): “Dealer behavior in the specials market for US Treasury securities,”
Journal of Financial Intermediation, 16(2), 204-228.

FLEMING, M. P.; anp C. JONES (2015): “Dealers Positions and the Auction Cycle,”
Discussion paper, Liberty Street Economics.

FOMC (November 2007): “Minutes of the Federal Open Market Committee,” Federal
Reserve Bulletin.

GROSSMAN, S., AND J. STIGLITZ (1980): “On the impossibility of informationally efficient
markets,” American Economic Review, 70(3), 393—408.

GURKAYNAK, R. S., B. SACKk, anp J. H. WRIGHT (2007): “The US Treasury yield curve:
1961 to the present,” Journal of Monetary Economics, 54(8), 2291-2304.

HE, Z., anD A. KRISHNAMURTHY (2013): “Intermediary Asset Pricing,” American Eco-
nomic Review, 103(2), 732-770.

HE, Z., A. KRISHNAMURTHY, AND K. MILBRADT (2016): “What Makes US Government
Bonds Safe Assets?,” American Economic Review, 106(5), 519-523.

HIRSHLEIFER, D. (1971): “The private and social value of information and the reward of
inventive activity,” American Economic Review, 61, 561-574.

HorrAgsu, A., anp J. KASTL (2012): “Valuing Dealers’ Informational Advantage: A
Study of Canadian Treasury Auctions,” Econometrica, 80(6), 2511-2542.

HortAgsu, A., J. KASTL, aND A. ZHANG (2016): “ Bid Shading and Bidder Surplus in
the U.S. Treasury Auction System ,” American Economic Review, forthcoming.

HorTAgsU, A., anp D. McADAMS (2010): “Mechanism Choice and Strategic Bidding
in Divisible Good Auctions: An Empirical Analysis of the Turkish Treasury Auction
Market,” Journal of Political Economy, 118(5), 833-865.

JORDAN, B. D., anp S. D. JORDAN (1997): “Special repo rates: An empirical analysis,”
The Journal of Finance, 52(5), 2051-2072.

KastL, J. (2017): “Recent advances in empirical analysis of financial markets: industrial
organization meets finance,” in Advances in Economics and Econometrics: Volume 2:
Eleventh World Congress, vol. 59, p. 231. Cambridge University Press.

KRISHNAMURTHY, A. (2002): “The bond/old-bond spread,” Journal of Financial Eco-
nomics, 66(2), 463-506.

KRISHNAMURTHY, A., AND A. VISSING-JORGENSEN (2012): “The aggregate demand for
treasury debt,” Journal of Political Economy, 120(2), 233-267.

KyLE, A. S. (1985): “Continuous auctions and insider trading,” Econometrica: Journal
of the Econometric Society, pp. 1315-1335.

(1989): “Informed Speculation with Imperfect Competition,” Review of Economic
Studies, 56(3), 317-355.

37



Lou, D., H. YAN, anDp J. ZHANG (2013): “Anticipated and Repeated Shocks in Liquid
Markets,” Review of Financial Studies, 26(8), 1891-1912.

Lucas, R. E. (1972): “Expectations and the Neutrality of Money,” Journal of economic
theory, 4(2), 103-124.

MALvEY, P. F., anp C. M. ARCHIBALD (1998): “Uniform-price auctions: Update of the
Treasury experience,” US Treasury.

MALVEY, P. F., C. M. ARCHIBALD, AND S. T. FLYNN (1995): “Uniform-Price Auctions:
Evaluation of the Treasury Experience,” Office of Market Finance, US Treasury.

MEDRANO, L., anD X. VIVES (2004): “Regulating Insider Trading when Investment Mat-
ters,” Review of Finance, 8, 199-277.

MoRRIs, S., aND H. S. SHIN (2002): “Social value of public information,” The American
Economic Review, 92(5), 1521-1534.

NYBORG, K. G., AND S. M. SUNDARESAN (1996): “Discriminatory versus uniform Trea-

sury auctions: Evidence from when-issued transactions,” Journal of Financial Eco-
nomics, 42, 63-104.

O’HARA, M. (1995): Market microstructure theory, vol. 108. Blackwell Cambridge, MA.

RITTER, J. R., anD I. WELCH (2002): “A Review of IPO Activity, Pricing, and Alloca-
tions,” The Journal of Finance, 57(4), 1795-1828.

ROELL, A. (1990): “Dual-capacity trading and the quality of the market,” Journal of
Financial intermediation, 1(2), 105-124.

RoosA, R. V. (1956): Federal Reserve Operations in the Money and Government Securi-
ties Markets, vol. 332. Federal Reserve Bank of New York.

SVENSSON, L. E. (1994): “Estimating and interpreting forward interest rates: Sweden
1992-1994,” Discussion paper, National Bureau of Economic Research.

WALL STREET JOURNAL (2015): “An Obscure Hedge Fund Is Buying Tens of Billions of
Dollars of U.S. Treasurys,” .

WarNoOcK, F. E.;, anp V. C. WARNOCK (2009): “International capital flows and US
interest rates,” Journal of International Money and Finance, 28(6), 903-919.

WiLsoN, R. (1979): “Auctions of shares,” Quarterly Journal of Economics, 93(4), 675—
689.

WOODFORD, M. (2011): Interest and prices: Foundations of a theory of monetary policy.
princeton university press.

38



Internet Appendix: Not for Publication

A Solution and Proofs

A.1 Model solution details

Step 1. Describe information from conditioning on market-clearing prices: Define My, My, and
Mp as follows.

~1
M; = (pV[f|Si] + c(;p> for indirect investors (21)
4qi
dp \ !
M, = (pV[f|Sj] + dp) for direct investors (22)
45
dp \ L
Mp = (pV[f|Sd} + d(f) for dealers (23)
d

Now we define v; and v; as follows:

1 &

EZW =7 (24)
i=1

1 &

Ezvj =0y (25)
j=1

If v; ~ #dN(0,7,;') and v; ~ #dN(0,7,}), then var(v;) = 1/Np7,;! = 7,;' and var(v;) =
1/N. J’Tv_Jl =17, Jl. These 75 terms are the noise in prices.

We conjecture a linear price function p:

p=A+ B;s;+Bjs;+ Bpsp + Cror + Cj05+D0d (26)
where 5 = &= 3, 51, 55 = 1= Y, 55, and 5p = 5= Y0, 54.7
The price signal for dealers is:
p—A—-Dé
s(p) = =———— 27
(p) B+ Bj;+ Bp ( )

Note that since non-price contingent bids are common knowledge, the dealer and all other bidders
simpliy subtract this from this price signal. It is not a source of price noise.

Investors have private information about price noise ©. Investors can subtract the effect of their
own private value from v and obtain a slightly more precise estimate of the noise, and thus extract a
slightly more precise signal from prices. Indirect investor ¢ faces precise noise from indirect investors
of oy — E[v;|v;]. For a direct investor, the residual direct investor price noise is oy — E[o;|v;]. Note
that dealers have no private value information. Their v4 values are known to all and get incorporated

22 Why isn’t dealer signal noise &; in the price? Because each dealer is assumed to transmit unbiased
signals with zero signal noise, on average, to his clients, it implies that dealer signal noise realizations &4,
have no effect on the market-clearing price. Note that each ¢ is equally-weighted in demand by each client
i. For the purpose of solving the price, we can drop the &4 in demand (but not it’s precision 7¢).



in the price constant term A. Thus, the price signals for indirect and direct investors are:

- p— A— C[’Ui/N[—D(S

s(plvi) = B; + B, + Bp (28)
p—A—Cyv;j/N;—D§
N 2
s(plv;) Br+ By + Bp (29)

Next steps are aim to construct conditional expectations of f for indirect, direct investors, and
dealers: E[fls;, sei, s(plvi)], E[f]s;, s(p|v;)], and E[f]54, s(p)].

Step 2. Give all signals a state-space representation: The vector of orthogonal shocks Z is a column
vector of size Ny = N +2N; + Ny + 1, where

Z=[e1,. . €N, V15, ONTEN T E15 - ENT, O] (30)

and the variance matrix of 7 is

€ v

var(Z) = diag([TﬁllN,T_IllNI,TU_Jl].NJ,Tg_l]_NI,Té_lb (31)

where 1N is a vector of 1s of size N. Let ¢; be a vector of size Ny of zeros with one 1 in ith
position. For example, ¢3 =[0,0,1,0,...,0]. Then s; = f + ¢;Z and §5 = f + ﬁ Zied(i) biZ.

Here, % means the number of clients per dealer.

Dealers’ price signal. How do we represent price signals in state space? For a dealer, the price
signal is

p—A—D§ B;s;r+ Bjs;+ Bpsp Cr_ Cy_
s(p) = = = = + —v7 + —=0y. 32
0 == 2 ~Lor + Loy (32)
To represent v, we need a 1 x Ny vector ¢,; that is N zeros, followed by N; ones, followed by
Nj + Ny zeros:

¢ur = [ON, 1Ny, ON, ONg 1] (33)
¢1}J - [0N7 0N17 ]‘NJ ) 0N1+1] (34)
(35)

These vectors select out the private values of I or J investors from Z. Then oy = (1/Nj)dyr - Z
and vy = (1/NJ)¢,UJ -Z.

Next, we define binary vectors that select from Z the signal noise of all indirect investors, all direct
investors, or all dealers:

Ger = [1N1’ ONZ*NI] (36)
bes = [ONy, Iny, ONg—N;—N, | (37)
¢€D - [0N1+NJ7 1ND70Nz—N]- (38)

Finally, we define binary vectors that select from Z the signal noise € or the private value v; of all
clients of a given dealer d:

bear(i) =1 if d =d(i) and 0 otherwise. (39)

boa(N+i) =1 if d =d(i) and 0 otherwise. (40)



Then dealers price signal is

p— A—-D§ By Bp Cr Cy
O N B g T — It —bpr Tt —T by 7 = frm, 7
B f BNI¢I BNJ¢J BND(bD N1B¢I NJB¢J f+mp
(41)

s(p) =

Dealers’ information from indirect bids. The dealer observes the bid function (13) of each indirect
investor ¢ that bids through the dealer: i : d(7) = d. The dealer can multiply the bid by pV[f]S;] +
dp/dq;, which all depend on known parameters, to infer E[f|s;] + v; — p, for each value p. The
dealer can add p back in to infer E[f|s;] + v;. Recall from (5) that the conditional expectation
is (1 — f'1pm)pe + B'Si. The dealer knows the prior belief ¢ and can thus subtract that to infer
B'S; + v;. Breaking out the signal vector in its component parts yields Srss; + Bresei + Brp(s(p) —
Cr/(BNp)v;) + v;. Note that the indirect bidder’s private value affects his bid in two ways, once
directly affecting demand, and once by changing the way he interprets the price. The dealer can
again take out the known terms fr,s(p) and Bre¢se;, which the dealer knows since he sent that signal
to his client. Thus, the known component of beliefs that each dealer subtracts from average client
valuations is Spuptic = (1 — /1)t + Brps(p) + Biese;. That leaves Brgs; + (1 — B1,Cr/(BNy))v;.
Dividing by S;s, we obtain the unbiased signal that a dealer can infer from each of his N;/Np
clients indirect bids. Since each of these signals is equally precise, the dealer optimally averages

them to yield:
- N _ Cr\ N
Sa=f+-2 Y @+ 6 (1 Ao I) 2PNV (42)
Ny
i€d(i)

54 f oy
Sq =\ f|+| m Z (43)
s(p) f Tp

where

Np - C -
Td = VD@d + Br < 51;; I) 7¢ud-
T

Indirect and direct bidders’ price signals: Indirect and direct investors remove the effect of their
own private valuations from the price when they condition on it. Their signals are the same as the
dealers’ price signal s(p), minus all the terms that load on v; or v; for that investor:

C
s(plvi) = s(p) — N,IN Onyi-Z (44)
C
s(plvj) = s(p) — NJ%</>N+NI+9 Z (45)

Note that ¢n4; has a 1 in the position that corresponds to v; in Z and ¢n4n,+; has a 1 in the
position that corresponds to v; for direct investor j.

Indirect bidders’ information from dealers: The dealer takes all the information collected from all
his clients 54, adds noise &; to it for each bidder ¢ and transmits the resulting s¢; signal to his client.
This signal has the same state space representation as the dealer’s signal §4, with one additional
term ¢n,—nNp+; that adds the signal noise &;:

sei=f+ (Ta+ ON,—Np+i)Z- (46)



Signals for indirect investors are:

S f Pi
Sei =| f|+]| ma+ ¢ng—ND+i A (47)
s(plvi) f > T N BON+

Direct bidders’ signals: The signal vector for direct investors is:
Sj f
= +
[ s(plv;) } { f }

In sum the 3 x 1 signal loading matrix of a dealer’s signals, an indirect bidder’s signals and a direct
bidder’s signals can be written as:

Tp = N5 ON+NI+j

o ]-z (48)
Ny

IIpg= [ ¢ ma ]/ (49)
/
Iy, = [ i Ta@) T ONz—Np+i Tp — %¢N+i } (50)
/
1, = [@ %—N%@HMﬂ} (51)

Given this state space representation, we just apply (5),(6), and (7) to form conditional expecta-
tions and variance. v(S;) = 7;111’ + v(2)IT; delivers 3, E[f|S], and V[f|S]. Let 81,87, 8p be
the weights on signals given by (6) for each type of market participant. Then we can express the
conditional expectation of the payoff as E[f|S;] = (1 — 8'1)p + 5'S;. Let Br = [Brs, Bie, Brp]’ and
define 8; and Sp components analogously.

Step 3. Solve for the equilibrium price:

Using the first-order conditions (13) and (14) and the definition of M from (21), (22) and (23), we
rewrite the market clearing condition as:

Ny

> (E(£18:) + vi — M1+Z (f1S)) +v; — MJJrZ fISa) + x —p) Mp+o =1 (52)

=1

Substituting in the state space representation of conditional expectations:

Ny
L = MI[Z(l — B+ B1Si — pl + N1 Moy

i—2
Ny

+ MJ[Z(l — B3+ B5S; —pl+ NyMyv,
j=1
Np

+ MD[Z(l — Bp1 )+ BpSa —pl + NpMpx+9 (53)
d=1

Define M = N;M; + N;Mj; + NpMp and break out the signal vectors into their constituent



parts.

1 = A+ NyM(Brs5r + Brede + Brps(plvi))
+ NyM;(Byss55+ Brps(plvj)) + NpMp(Bpssp + Bpede + Bpps(p))
— Mp+ NiM;o; + NyMjo; + NpMpx+6 (54)

where A is a collection of all u terms A = MyN;(1 — B41" )+ MyN;(1 — 851 )u + MpNp(1 —
Bp1)p.

Define the average signal transmitted by a dealer to clients as: 5¢ = (1/Ng) Efi’l s¢;. Note that
this is the same as the average order flow information observed by dealers because we have assumed
that dealer signal noise averages to zero. From the analysis of dealer’s information from indirect
bids, we showed that this order flow information is a weighted sum of indirect bidders’ signals and
their private values. Averaging this signal yields 5¢ = 57 + 61_51(1 — BIPCI/(BNI))T)I.

Substitute in the conditional price signals to get:

- C C
1 = A+ MiNi(Brs8r+ Birede + Bip(s(p) — L 01)) + MyNj(B1s55 + Bip(s(p) — . vy))
NiB N;B
+ MDND(ﬁpsgp + 5D§§§ + 5Dp5(p)) — Mp+ MiN;or+ MjNjo;+ NpMpx—+6 (55)

Using s(p) = (p — A—Dé)/B, we can gather coefficients of p. Then let Q = M — (Nt M;Br, +
NyM;Bp+ NDMDﬁDp)é-

Gathering terms in p and then matching A to all constants:

A =5 [A-1+AQ - M)+ NpMpy] (56)

Q

:ﬁ[A—HNDMDX} (57)

where the second line comes from collecting terms in A. Note that A does not contain A terms.

Substituting in A, substituting in for 5¢, and rearranging the market clearing equation yields,

Qp = AQ+ MNiv; + MyNyvy+ MiNiB1s5r + MyNyBys5s
_ Cr ._ _
+ (M{N;Bre + MpNpBpe) (51 + Bt (1 — 51pN IB)UI) + MpNpfBpsSp

I
C C ~ ~
ﬂh&péﬁz—ﬂhﬂmjgﬁH%Q—A@D5+6 (58)

Matching coefficients, gives us the solution for equilibrium prices, in terms of pricing impact
M:

By = é[MINlﬁfs + (MN1B1e + MpNpBpe)] (59)

By = %MJNJﬂJs (60)

Bp = %MDNDﬁDs (61)

Cr = 5MiN; (1= Brysis) + B (MiNiBre + MpNoBpe)8il (1= Binidy)  (62)
Cy = 5MyN; (151855 (63



Step 4. Determine price impact and demand: To solve for dp/dg;, start with market-clearing in
(55) but write one indirect investor’s demand as an exogenous amount ¢;:

)

1 = A+ M;(Nr —1)(Brs51 + Brespr + Brp(s(p) — m

- J\SIJB v7)) + MpNp(Bpsspr + Bpps(p))

— (M — Mp)p+ M;(N; — 1)o7 + MyNjo;46 + ¢ (65)

+ MjN;(Brs57+ Brp(s(p)

Recall that ds(p)/dp = 1/B. Then use the implicit function theorem to solve for

d - 1 -t
TZ =|M—-M;— 5 (M;(N;r—1)Brp + MyNjBsp+ MDNDBDp):| (66)

Similarly, for direct bidders,

d [ 1 -t
Epj =|M-M;— 5 (MiN1Brp+ My(Ny—1)Bp + MDNDBDp):| (67)
and for dealers,
dp [ - 1 -1
dop M — Mp - 5 (MiNBrp+ MyN;jBsp+ Mp(Np — 1)5Dp):| (68)

Then the model solution is characterized jointly by the M’s, the price coefficients and the updating
formulas.

A.2 Result 1l

This result has three cases. We consider each separately.

Case 1: Only Dealer-Client Information Sharing The set of equations (59)-(63), along
with (66)-(68) substituted into Mp, M; and M; constitute a set of 8 equations in 8 unknowns.
The fact that we could impose optimality, budget and market clearing conditions and then write
price as a linear function of sy, 55, §p, v; and v, proves the linear price conjecture.

Case 2: Dealer-Dealer information sharing In this setup, dealers share information
with clients using the same noisy signal as before, but they also share information with 1) — 1 other
dealers. Then % is the size of the dealer chat room. Dealer-dealer sharing is symmetric, which
requires that the number of dealers in an information-sharing collective be a factor of 20. We also
require that 1 # 20, as that would imply perfect inter-dealer sharing. Thus, we only consider
¥ € {1,2,4,5,10}.

It would be repetitive to re-derive each part of the preceding analysis when most of it can be pre-
served. So, rather than do that, we simply point out the piece of the solution that is different.

First, define a set of dealers who share information with any given dealer d. Let chat(d) =
{d’,d",...} such that dealers d’, d’ and d share information. Information sharing means observing
the order flow of the clients of all the dealers in chat(d). Since all investor order flow signals are
equally informative, all dealers in a chat group average all the order flow signals they see in the



same way. Each dealer now sees a new, more precise composite order flow signal which is:

5 N _ Br,Cr\ N
ETE =D M SRR A (L - SEND SIS

d’€chat(d(i)) i€d’ d’'€chat(d(i)) i€d’

Thus the dealer’s signals have the same state space representation as in (43), except that we redefine
74, the weight the order flow information puts on the underlying shocks, as

N . - 8,01\ N .
g S bt ()RS e

I @ echat(d(s)) &’ €chat(d(i))

For indirect bidders, the signals are the same, except that m, is redefined, as above. For direct
bidders, there is no change in the signal vector. Of course, information charing will change bids and
thus change the variance and covariance of auction-clearing price. But all these effects will show
up through the change in the signal vector, represented by the change in m .

This change in the model does not change the linearity of the price in 57, 55, §p, v; and v;. The
equations (59)-(63), along with (66)-(68) substituted into Mp, My and M still characterize the
solution to the model.

Case 3: No Information Sharing (“Chinese Wall”) In this model, dealers do not use
or share any information derived from client order flow. Practically speaking, it is as if each type
of investor submits bids on their own behalf, rather than through an intermediary. Each investor’s
information set is therefore a 2 x 1 vector S; = [s;, s;(p)], comprised of their private signal s; and
the counterfactual price signal s;(p). In this regime, the only difference between dealers and non-
dealer large investors is that dealers are subject to a minimum bidding penalty, while investors have
private values that are private information.

We can solve this model by simply changing the signal vector weights on each of the underlying
shocks. In sum the 2 x 1 signal loading matrix of a dealer’s signals, an indirect bidder’s signals and
a direct bidder’s signals now becomes:

llpq= [ ¢ mp ]/ (70)
I;; = { Qi mp— Cgh PN+i }, (71)
;= [ ¢ T — CHLON }/ (72)

Once we adjust the signal structure, the rest of the solution method goes through unchanged. In
the price coefficient solutions (59)-(63), this change implies that the weight put on dealers’ order
flow signals (now no longer existent) 8¢ and Spe are both 0. Pricing simplifies to:

Br = %MINIBIS
B;= %MJNJBJS
Bp = %MDNDBDS
Cr= éMINI (1 - 51;)1\2’,;)

Cy = 5MyNy (1= Brpolis) (77)

The existence of a set of coefficients verifies the price conjecture. Since the supply of the asset
is one, auction revenue is the price of the asset. The solution to this model is a joint solution to



(66)-(68) substituted into Mp, My and M; and the price coefficient equations above.

A.3 Equilibrium Existence

We prove equilibrium existence for two versions of the model, each of which represents one extreme
of the information sharing spectrum. The first model has no information sharing (Chinese walls)
and the second has complete sharing between dealers and their clients. The proof strategy is to write
the solution as one equation in the ratio of price coefficients (B/C) and then use the intermediate
value theorem to show a solution to that equation exists.

We employ the following simplifying assumptions throughout.

1. We assume that Ny =2 Np = N/3 and N; = 0.

2. The minimum bidding requirement cost x is heterogeneous, private information, and has the
same distribution as v;. Thus, we call it vg.

The role of these assumptions is to preserve as much symmetry as possible. Without symmetry, the
number of terms in the pricing equation multiplies and it becomes impossible to characterize the
model’s solution with one equation. These simplifications imply that all investors have the same
information set. Thus, they all put the same weight on each signal when they form their beliefs.
Also, symmetry between investors implies that M; = Mp = M. Therefore, the price conjecture
and price signal can be written as:

p=A+Bs+Cv (78)
_p—A-Cuy N-1C_

A L

Si(p)
Case 1: Chinese Wall

Under no information sharing, we have that S; = Sq = [si, s;(p)] and the market clearing condition
is:

N/3 2N/3
> (B8] +vi = p)M + Y (E[f|Sd] + va —p)M =1 (79)
i=1 d=1
Replacing E[f|S] and dividing by M N we have:
_ _ _ 1
/14(1 — Bs _Bp) +558+ﬁp5(17) +v—-p= m

where 5(p) = % — £2-0. Then:

S]]

p(1—B,B™ Y =pu(l - Bs—By) —AB,B™F — (MN)™* + B35+ (1 _ ﬂpB?V)

Matching coefficients we get:

_ #(1=Bs = By) = AB BT — (MN)~!

A . (80)
_ Bs
_1-pB,B"'C/N

C= #;,B*l (82)



The signals’ weight in the optimal linear predictor are:
8= V[S]fllmTf_l.

In this case, m = 2 and

_1+T:1 T_1+TS’1N
e I fo1+T;/1 ]
Then
T — }1 S [ I_llJrTgll ( +7_11/N)
(47 )1y 41 )= (1, +75 /N)? —(r;" +7,/N) + 7
1 Y+ ( +T L/N)
:T]Tl[rp — 7 VNI + 77 ! rgl/NHr;l[r;lT;l/N?][ (Tf +T‘1/N) Tyt

Multiplying by 1mTJ71, we obtain:

7']71[7'1;1 —1;1/N]

Bs: _ —1 _ — — _
Tfl[p — T 1/N]—i—Tfngl( —1)/N—|—7'51[Tp1—7'3 1/NQ]

We multiply the numerator and denominator by 7,N/(N — 1)7¢[r, ' — 7,1 /N| " to get:

5, = 7sN/(N —1)
TN/ (N =D+ = NI N/ (N = D =N - N
Finally, we replace 7}71 = T‘j;l + (%)2 %T}il:
Ts
= 83
b = T (BJORNT, 1L+ (BJO)Pry 7 (83)
Following exactly the same procedure for the second row, we arrive to an analogous expression for
Bp:
. (B/C)* N7, -
P 1+ (B/C)2NT1, + 14[1 + (B/C)%7, /75]
Now that we have the vector 3, we can solve for the posterior variance:
R P R U (85)
1+ (B/C)?1y /s

+ (B/C)2N1, + 741 + (B/C)%1, /74

In order to complete the characterization of the equilibrium, we need to compute the price impact
to obtain M. From the market clearing condition we have:

N/3—1 2N/3

> (EIfISi] +vi — M+Z [f1Sa] + va —p)M + ¢ =1

i=1



Replacing E[f]S] and dividing by M (N — 1) we have:
P1=8,B70) = (1= 6.~ By) = A8, = (N =)+ s (1-

dp(1 = B,B™") = dq(M(N — 1))
and we obtain

b~ MV =11 5,B )
Using the definition of M, we have that:

M~ =pr+ M7HN -1)7' (1~ 5B~

Thus, the full characterization of the equilibrium is:

A=p(l = Bs = Bp) — (MN)™

B =B + Bp
1
C=— =T
Ts
Bs=17 (B/C)2Nt, + 74[1 + (B/C)?7, /74|
(B/C)*NT,
By = Ts + (B/C)2N1, + 141 + (B/C)?1, /75]
.1 14 (B/C)?7,/7s

75+ (B/C)2NT, + 14[1 + (B/C)27, /75
_1-(N-1'1-p,B7 )

M n
pT

rigy ) THIOIN - 1)

(90)
(91)
(92)

(93)

Note that 85 and S, only depend on C/B, so C' and B do not depend on A or M. Also, since [,

and f3, are positive, it is easy to see that B and C are positive as well.

Starting from this observations, we are going to prove that the close system given by the equations
for B and C plus the definitions of 3, and 3, has a solution. First, we divide the expressions for B

and C and then plug in the definitions of 8¢ and 3, :

B_ _N-1 5
6_(ﬂs+ﬁp) 1 N /Bs"_/ﬁp
_ B
=B+ 37

_ s + (B/C)?T,
Ts + (B/C)2N1, + 1¢[1 + (B/C)%1, /4]

RHS

The main idea of the proof is that while the left hand side is increasing in (B/C'), the right hand
side (RHS) is decreasing (since B and C are positive, we can use the derivative with respect to

(B/C)?). To see this, let z = (B/C)?, then:

10



Ts +XTy

RHS =
Ts + &NT, + 7¢[1 + 27 /7]

ORHS  7,[1s + aNT, + 7p + 2747, [Ts) — [2Ty + T|[NTy + T4 70 /T4
or (ts + &NTy + 7/ [1 + 27, /75])?

_ TyvTs — NTst < 0
~ (rs+ Nty + Tf[l + 27, /Ts])?

Finally, we use the intermediate value theorem to show existence. To do this, we need to show that
there exist a value for (B/C) such that (B/C) < RHS and another value such that (B/C) > RHS.
For (B/C) = 0, we have that RHS = 7,/(1s + 74) > 0. For (B/C) = 1, we have that RHS =
(Ts + Tv)/(Ts + N7y + 7¢[1 + 7,/75]) < 1. Then, since the function is continuous, there exists an
equilibrium value for (B/C') between 0 and 1.

Given the equilibrium value for (B/C), equations (90) ,(91) give us the values for 8, and 3, and
then we can plug in and obtain the equilibrium values for the rest of the variables.

Case 2: Perfect information sharing

Under perfect information sharing a dealer observe the signal of each client and share that infor-
mation with the other clients. With Ny = 2Np, every agent observe 3 signals and every signal is
observed by 3 agents. Let 53 =), d(i) 56> then we have that all agents have the same information

set S; = {33,5(p)}.

Since agents give the same weight to each of the three private signals they observe, the market
clearing condition is the same as before. Thus, the equilibrium conditions we found for the chinese
wall still holds, but for different 5’s. In particular, the unconditional variance now is:

7'f_1—|—7'5_1/3 7'f_1+7'5_1/N

V[S} - 7_f—1 + 7_;1/]\[ 7_f—1 + ,]_;1

. Then, using the same steps than in the chinese wall, we get:
Ts
s + %=3(B/C)2N7, + 74[1 + (B/C)?7, /7]
Y=L(B/C)?Nt,
Ts + =3 (B/C)2N7, + 74[1 + (B/C)?7, /7]

Bs:

Bp:

This modifications do not affect any part of the proof. Now, the equation for (B/C) is:

B 7o + 3=3(B/C)?7,

C 7,4+ N=L(B/C)2Nr, + 741 + (B/C)?7, /7]

RHS

ORHS %TvTS(l —N)+ TUTf(%:é - 1)
where = N1 2 <0
ox (7'3+$mNT1)+Tf[1+th)/TS])
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For (B/C) = 0, we have that RHS = 7,/(1s + 74) > 0. For (B/C) = 1, we have that RHS =
(15 + X=270) /(15 + X5 N7, + 74[1 + 7,/75]) < 1. Then, there exists an equilibrium with perfect
information sharing.

A.4 Bid Shading and Signal Jamming

The term M for each investor type measures the bid sensitivity to changes in expected returns.
Since expected returns are typically positive (this is a compensation for the risk of the uncertain
common value), a larger value of M denotes a smaller average bid and a lower average equilibrium
price.

From (21), (22) and (23), we know that the sensitivity M for ech of the three types of bidders is
the inverse of a sum of pV[f|S] term that measures risk aversion and risk, plus a dp/dq term that
arises because strategic bidders internalize the impact they have on price. Bid shading and signal
jamming are about this strategic dp/dq term.

The inverse of this price impact term is the sum of a direct effect, which is bid shading, and an
indirect effect, which works through its effect on the beliefs of others:

dp\ "' - _
(dti) =M —M;— (Mi(N;r—1)Bp 1 +MjN;jBp.s+ MpNppps) /B

dp\ ' - .
(dqp,) =M—-M;— (MiNtBpr+M;(N;y—1)Bp5+ MpNppp3)/B

dp \ 7' - .
(dq};) =M —Mp — (MyNiBp1+ MyN;By s+ Mp(Np—1)3,3)/B

The first two terms of each expression capture the direct effect of one bidder’s demand on the price.
M is the sum of every bidder’s demand sensitivity to return. The more sensitive demand is to
return, the less the return needs to change to clear the market. This sum represents the inverse
price elasticity to a change in demand. The higher it is, the larger the price impact of a change
in bids. But if one bidder changes their demand, they do not absorb their own change in demand.
Thus, bid shading is the price impact when all bidders, except one bidder of type I (or J or D),
adjust their bids to the new equilibrium price:

S; =M — My; S;=M— My; Sp=M— Mp (96)

The large term on the right describes how the price change affects others’ demands through their
beliefs. 8, 1 is the sensitivity of bidder type I’s beliefs to a one-unit change in the price p. The sum
in the parentheses is the sum of all the effects on beliefs of every bidder, except the one changing
their demand (they do not fool themself). The final term B maps these changes in beliefs to a
change in price. Thus, signal jamming is defined as

dp dp dp

SJr=-——S;  SIj=-——-S8; Slp=-——5 97
"™ dgr ! T dgy ! P dgp b 07)

HKZ measure of bid shading Hortacsu, Kastl and Zhang (2017) define bid shading as
the quantity-weighted expected difference between the bidder’s marginal valuation for the last unit
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awarded and the price paid. In our notation:

Bl (% - p))
Elg:]

(98)

Our model has two key differences. First, in HKZ, the uncertainty is about the realized price.
Valuations are known. In our setting, bidders’ uncertainty is about the payoff. So, we use marginal
expected utility, in place of HKZ’s marginal utility.

The second key difference is that our utility is not quasi-linear in bid payments. Instead, there is a
risk-averse utility function over the value of the asset (itself a financial value) net of the payment.
THere are two possible ways to deal with this

1. Instead of taking marginal utility of the payment, then subtracting the price (MU(f) — p),
a natural adaption would be to compute the expected marginal value of the asset, net of
payment(M EU(f — p)). In other words, we bring the price paid inside the utility function
because that’s internally consistent with our model. Log expected utility (from text just
before eqn (14)) is ¢, (E[f|S;] +v; — p) — %qu—V[ﬂSj]. The associated marginal utility is:

oOEU dp
g =E[f[Si] +vj —p— Qj@ — pg; V[f]S;]. (99)

Marginal utility (without the log) is just a rescaling: %ETU x E[U]. The problem is that this
quantity is always zero. Why? Because it’s our first order condition. Bid for more ¢; until
the marginal additional unit yields zero marginal utility.

2. However, we could instead be more true to the HKZ definition by keeping the price out of
the marginal utility. We compute marginal utility, as if price were zero, and then subtract

the price. We get

OEU op
. OP 1
94 P=dig, (100)

p=0

In our model, the price impact term %’_ is a function of parameters, not of random variables.
i

So, we can pull it out of the expectation. When we substitute this into 98, the E[qg;] terms

cancel and we get

_Op
dq;’

This measure is plotted below in Figure 6. It shows that information sharing, of either kind,

reduces bid shading. The fact that only one line is visible indicates that, in this model, the

price impact of a dealer trade, a client trade or a direct bidder trade are indistinguishable.

B(’Ui, SZ)

(101)

Since the main question of the paper is about how information sharing affects auction revenue, our
primary measure of bid sharing is how much revenue is lost to bid shading (and signal jamming),
and how that interacts with information sharing. To compute this revenue loss, we simply turn
off some or all of the dp/dg term in the first-order condition. This term is the only piece of
demand that differs from the demand of a fully competitive, measure-zero bidder. When we set
dp/dq = 0 and re-solve the model (agents are aware that others are not strategic and correctly infer
different information from the auction-clearing price), we capture all lost revenue due to strategic
bidding. Then, we break up that lost revenue into two pieces: bid shading and signal jamming as
follows.

Signal jamming Signal jamming is the revenue lost because bidders try to influence each others’
beliefs. We compute optimal signal jamming now, both analytically and quantitatively. We compare
its magnitude to price impact more generally and to the magnitude of bid shading. Equation (67)
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Figure 6: A Price Impact Measure of Bid Shading. This plots bid shading, as
defined in (101).
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shows that the price impact of an indirect investor (for example, other classes of agents have
analogous expressions) is:

-1

d ~ 1
P _ |- My — 5 (My(N;r —1)Brp + MyN;jBsp + MpNpBpp) (102)

dqr B

where M — M; represents the price elasticity of all other market participants collectively. This is
the direct effect of one unit of additional demand from one I investor on the market price. The
long last term is signal jamming:
. ) 1

Signal Jamming = 5 (My(N;r—1)Brp + MyN;jBsp + MpNpSpyp) (103)
The Brp, Bp, and Bp, terms measure how much a change in the price affects other indirect, direct
investor’ and dealers’ beliefs. Investors in our model consider how their bids affect the infor-
mation transmitted by the price and they are optimally adjusting their bid to distort that price
signal.

A.5 Auction price with dealer collusion

When dealers collude, they share information and then bid in order to maximize their joint utility.
From an information point of view, if collusion takes place in pairs (each dealer shares information
and bids jointly with 1 other dealer), it is as if there are Np/2 dealers, each with twice as many
orders as before. If collusion takes place in groups of size i, the information structure is as if there
are Np /v dealers. The only difference between the collusion model and the reduced-number of
dealers model is that the demand of each collusive group is larger than it would be if there were
only 1 dealer. Two colluding bidders bid have a larger appetite for risk. One can think of collusion
as a contractual arrangement whereby each dealer commits to give half his profits to the other
dealer and thereby internalizes his effect on the other dealer.
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The portfolio optimization problem of colluding dealers is

1
max E [— exp (—p((Wd + qqva) + Wa + qd/vd/))> |Sd} (104)
qdsqq 5P 2
s.t. Wa=Woa+qa(f —p), and Wy = Wo ar + qar (f — ) (105)

Nr Ny Np
Sa+d ¢+ =1 (106)
i=1 j=1 d=1

Taking the expected value of the lognormal yields
2

— exp (const - pl((qd +qa)ELf1S;] —p+ X)) + 2

! i+ i+ 2000 V1115

where const is the constant that depends on initial wealth. Then computing the first order condition
with respect to ¢4 reveals that

- E[f1Si]+x—p
pV[f1S;] + 2dp/dq;”

So, the two colluding dealers jointly bid for twice as much of the asset, but adjusted for twice the
price impact. This is the same formula as that which would hold for one dealer who has 1/2 the risk
aversion. Therefore, we numerically solve the collusion model by reducing the number of dealers
from Np to Np/v and reducing each dealer’s risk aversion from p to p/v for ¢ > 1.

qa (p) + qa (p) =2 (107)

Figure 7: Lying about Dealer Talk Reduces Revenue. Figure plots average
equilibrium auction revenue, against the number of other dealers that share information.
We assume here that when dealers share information, no one else knows.
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Lying about Dealer Talk A related issue is that in practice, not all market participants may
know that dealers are swapping order flow information. Of course, this also has a separate legal
remedy. One can enforce laws about disclosure of information practices, without prohibiting the
information sharing. But our results on what happens when others are not aware highlights the
importance of the assumption that agents understand others’ strategies.

When a set of dealers share information and others are not aware, auction revenue falls. This is true
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even if the information is shared with clients. If the clients are not aware that their information
is very precise, they do not bid as if they are better informed. By not bidding aggressively, these
clients fail to push up auction revenue as they do in the baseline case. Just as with collusion,
when revenue declines, bidder utilities rise. All bidders are better off because prices are lower. But
taxpayers are left to foot the bill.

To compute the revenue in Figure 7, we simulated a version of our model where a set of 1 dealers
share information and bid collusively on that more precise information. We vary the size of the set
of dealers. But every other bidder and dealer bids using the no-dealer-sharing bid functions. The
idea is that if they are unaware of the information sharing, then their strategy should be unchanged
by it. For each 1, we resolved for the equilibrium pricing coefficients and then computed the average
auction revenue.

A.6 Intermediation Choice: Solution with one bidder who switches

Our objective is to illustrate the properties of the intermediation decision of a client. To do that, we
simplify the model by assuming that all participants in the auction (including dealers) have private
values drawn from v; ~ N (0, Ty 1) and focusing on the model without demand shocks. We focus on
the case where dealers share information perferctly with their clients and study, instead, how the
intermediation decision changes when dealers share information with each other. Without loss of
generality, we assume that client 1 of dealer 1 is the agent making the intermediation decision.

If one bidder switches from being an indirect bidder through a dealer to a direct bidder through
treasury direct, how does the signal structure for bidders and dealers change? If the dealer did
not make any inference from the direct bidding choice of the client, the the solution would be the
same as before, only adjusting the number of indirect and direct bidders. But a rational dealer
who observes a regular client not showing up infers that the client’s signal must be in a particular
range. We propose a solution method that includes that inferred information.

Define a conglomerate to be the set of dealers that share information with each other, as well as all
their clients. Without loss, let conglomerate 1 be the conglomerate that the marginal bidder would
be bid through, if he decided to bid through a dealer. This is the group of agents that learn from
seeing bidder 1 bid directly or indirectly. The intermediation decision of the client depends on both
the client’s signal and private value. The key to our solution method is that we approximate the
truncated normal signal that can be extracted from the intermediation choice with a normal signal
sq = [ +mgq + eq, with the same mean m, and variance 7, ! as the true signal. Denote also by p,
the probability of the client choosing to bid directly.

If bidder 1 chooses to bid through the dealer, the dealer sees the intermediation decision, which
reveals that bidder 1’s order flow must be in a range. But the intermediating dealer also sees exactly
what bidder 1’s order flow is. The additional information from seeing the choice to bid indirectly
is redundant. Thus, in this case, we do not need to construct an approximated dealer signal from
the intermediation decision. Just seeing the order flow contains all the relevant information.

In cases where the bidder bids indirectly, we solve the model using an approximating normal signal.
The normal signal is included in the precision-weighted average signal of dealer d'.

1
§d/ =1 (]VI/]VD—l (zgz:d ]Ez[f] + Ui) - 5public> + (1 - L)sqv (108)

where Z; is the reduced set of investors bidding through dealer d — excluding the direct bidder —
and Spypiic is solved for in Appendix B. The dealer is constructing §4 from an average of his clients’
expected valuations plus private values, minus a term sp,p;c that includes all public information
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in E;[f], and from the information s, inferred from the direct bidding decision. If investor j bids
through the dealer, the problem and the solution are the same as in the baseline model.

The equilibrium price if bidder 1 chooses to bid indirectly (through the dealer) can be expressed
as

l/]—l _ ND+N1—V]7 B[ BJ7
=A+B,—35n+B S0 + §1 4+ —35 109
p IN]+ND n ! Np + Ny 2 Np + Ny ! Ny 7 ( )
vir—1 _ Np +N;p—vy _ Cr _
+Cr—— v+ C U2 + v1 + Cyoy,
I N[ T ND I1 I ND + N[ 12 N[ + ND 1 JUJ
where
1 Y Ni/Np [ 1 YNr/Np P
= ; 3i+dZ::13d ; o=y ; vi+;vd ;
1 Ny N 1 Ny N
S T (V) P e —— S B S
Np + Nr—v1 i=yN;/Np+1 d=1+1 Np + Ni— v i=yN;/Np+1 d=1p+1
1 Njyj+1 1 Njyj+1
SJziNJ+1;Sj§ UJZiNJJrl;Uj»

and vy = ND/(1/}(N]+ND)).

If bidder 1 chooses to bid directly, conglomerate 1 learns from that decisions, and all the other
agents observe that decision but do not learn from the truncated normal signal, we can express the
equilibrium price as

- - Bja BjaNy _
=A;+B B : : 11
D d+Bnsn + I2312+NJ+131+NJ+15J (110)
C CyaN,
+Cnon + Cravgs + — 2%y + 2255, + Fsq. (111)

Ny+1 Ny+1

Notice that, in this case, we have one more direct bidder, and dealer conglomerate 1 has one less
client than all the other conglomerates.

In this model, the price signal for dealers and their clients in conglomerate 1 is now

5 (pluvn) = p—A—CHvZ-/BgVI -1 —qu7

for dealers and their clients in all other conglomerates is

s(plvi) = p—A- CI2Ui/éND + Ny — ,/1)7

and for direct bidders

—A—-Cyv;/(Ny+1
s (ploy) = E=AZ G L),

where B = Bjy + Bro+ By + F.

The vector of orthogonal shocks Z is a a column vector of size Ny = 2% N + 1, where

Z = [61,...,6N,U1,...7UN76q},
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and the variance matrix of 7 is

var(Z)fdzag([ "1y, q;llNa 1})

Consider now representing the price signals. Let

bur,1 = [ON,0,Lyn, /Np—1, 0N, N7 /Np» ON, s L, Onp s, O]
Gur2 = [ON,0,04n, /Np—15 LN, —pN; /Nps ONy O Ly s, 0]
¢vg =[0n,1,0Nn,-1,1N,,0n,,,0]

be the vectors that select the private values of dealers and their clients and of direct bidders,
respectively. Then, vp1 = (1/(vr — 1)) ¢p11 - Z, U2 = (1/ (N1 +Np —v1)) dp12 - Z and o5 =
(1/(Nj+1)) ¢y - Z. Similarly, the vectors that select the signal noise are given by
ber1 = [0,1yn, /Np—1:ON, —yN; /Np - ON s Ly, Oy —yp, O, O]
ber,2 = [0,04N, /Np—1, LN, —pN; /Np» ON, Oy, I —yp, O, 0]
(bGJ = [1a0N1—171NJ70ND50N70] .

Thus, the price can be represented as

B[ Bl

Z4 T 7 7
, Np t N, = I¢12 N+1¢J
+ Cn ¢y11 Z+C—I¢v12 Z+ Gvg - Z+Fog-Z

vy — Np + Ny — Ny 1 4
= A+ Bf + Br,Z.

With this representation of the equilibrium price, the information that a dealer or one of its clients
in conglomerate 1 extracts from the price is
Cn

p—A—qu CIl F
= — = i L=s -—=myg— ——= PRA
5 1 — 1)B¢N+ (p) A - 1)B¢N+

s (plvi) =

a dealer or one of its clients in any other conglomerate extracts from the price is

C
s(plvi) = s(p) — w +N” V)Bmi-z,
I D — VI

and the signal that a direct investor extracts from the price is

Cy

m¢N+NI+J Z.

s(plvj) =s(p) —

It now remains to determine how dealers aggregate their own signals together with the signals they
get from their clients (and other dealers). Similarly to the belief weighting in the no intermediation
choice model, a dealer in conglomerate 1 optimally averages all the signals to yeild

Brp,1Cn
Z 61+BI$1< B(vr—1) Vl_l Z v

Zedw( ) 1E€dqy (2)

Sq1 =
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and a dealer belonging to any other conglomerate optimally averages all the signals to yeild

_ 1 1 BrpCra ) 1
Sgo = + — i + 1— — — V.
a2 =/ v Z ¢ BIS ( B(N]+ND—V[) T Z

T . . vr . .
1€dy (1) 1€dy (1)

Thus, the signals for the indirect investors and dealers in conglomerate 1 are given by

S f o
Sgi f Td1
= + C ,
s (plvi) f Tp = B PN+
Sq f by
where
i —1 BrpiCrn \ 1 -+
= ) R S £ [ S
T V]—1¢d71+ﬂ15’1 ( B(V[-l)) 1/1(’ZS !

Thus, the signals for the indirect investors and dealers in any other conglomerate are given by

S f ®i
S¢i = f + 7g(dZ -7,
S (p‘v’b) f 7Tp - (N1+N;27V1)B¢N+i
where
1~ -1 B1p,2Cr2 ) 1 -
Td2 = —QPed,2 + Br, 1— = 2 vd.2-
d2 1/1¢ d2 + B 72( BN+ Np— o) VI¢ d,2

The signals for the direct dealers are given by

{s@j@j)}:“‘]*

Using the first-order conditions and this belief representation, we can now rewrite the market

b;
__Cy A
Tp = Ny oD B ON+N1+] ]
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clearing condition as:

YN /Np N;
1=Mp Y EUISI+o-—p)+M Y. (E[fIS]+vi—p)
=2 1=y N7 /Np+1
Njy+1

+MJZ [f1S;] +v; — +MI1Z [f[ Sa] +va —p)

+MIQZ [f1Sa] + va — p)

wNI/ND Ny
=M, Z (1= B )+ BrSi—p) + Mz Z ((1 = B+ 8795 — p)
=2 =y N1/Np+1
Ny+1
+ My > (1= B4 g+ B5Si —p)+ My (Ny+1) 0,
j*l
Np
+ M Z —Bn1) pt BriSa—p) + Mra Y (1= B1) p+ B1aSa — p)
d=1

+ (vy — 1) M;i 101 + (Np + Ni — vr) My 201s.

Define M = (vi —1)Mp + (Nr+ Np —vr) Mrs + (Nj + 1) M. Breaking out the signal vectors
into the individual components, we obtain

—=0 — —=m + S
wi-1)B ' B Pasa
Cr2

(N;+Np —v) B 72))

1=A+ (v — 1) Mn (ﬁfs,lsn + Brea (vr — 1) 841 + Bipa (3 (p) —

+ (N1 + Np —vy) My (513,2512 + Bre2 (N1 + Np — vr) 8a2 + Bip,2 (S (p) —

+(N;+1)M; (5Js§J + B <5 (p) — (NJC—&—Jl)B@J)> — Mp,

where
A= (v = 1) My (1= B V) p+ (Nr + Np — vp) Mya (1= Bp,1) g+ My (Ny +1) (1= 851) .
Using s(p) = (p — A)/B, we can collect terms in p to obtain

~ ~ ~ . F
Qp=A-1-A4 (Q - M) —Mp (v —1) 51p,1§mq + M (v — 1) (Brs,1 + Bren) 5n
+ Mo (Nt + Np —vr) (Brs,2 + Bie2) 52 + My (Ny+1) 81555

+M11(Vr—1)< 'BI“) (1_%>v,l

6151 B(l/]—l)
/315 2) ( Cr2B1p,2 )
+ Mo (N;y+ Np — 1— = ’
IQ( ! P VI)( 5152 B(N[#’ND*V]) vz
CiBip

—I—MJ(NJ+1)<1— >5J+(V1—1)M115q5q

B(Ny+1)

where @ = B! (Mn (vr—1) (B - ﬁlp,1) + Mpa (N + Np —vy) (B - ﬁlp,z) +M;(Ny+1) (B - ﬁJp))-
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Matching coefficients to the price equation, we obtain

1 /-~ ~ ~ 1 F
A= 5 (A-l-l-A(Q—M)) = ﬁ (A—l—MIl(l/]—l)ﬂ]p,lémq>
B = E}Mn (vr = 1) (Brs,1 + Bre1)
By = E}Mm (Nr+ Np —vr) (Brs,2 + Bre,2)

By = ;}MJ (Ny+1)Bss

Cn = Cl?Mn (v —1) (1 + ’815’1> (1 — NCHBI“)

ﬂls,l B(V[ — 1)
_1 _ 5152) ( _ Cr2081p,2 )
Cra QM12 (N;+ Np —vr) <1+ Bies 1 BN+ Ny —o0)
1 CiBip )
Cr=—=M,;(N;+1)(1- 2P
=5 7 (Ny+ )( B, L 1)
1

F= QMjl (Vl — 1)ﬁq

Finally, analogously to the no intermediation choice model, the price impact of indirect bidders and
dealers in conglomerate 1 is given by

d . . N . -1
Wi =B [Mn (vr —2) (B - 51;:,1) + Mo (Np + Ny —vy) (B - 51;:,2) + My (N;+1) (B - 5];7)} ;

the price impact of indirect bidders and dealers in any other conglomerate by

ap
dqro

B [MH (vi—1) (B - Blp,1> + M (Np +Nr—vr —1) (B - 5@,2) +M;(Ny+1) (B - ﬁ.]p):|71 )

and the price impact of direct bidders by

Ap

e B [Mn (v —1) (B’ - ﬂlp,l) + Myo (Np + Nr —vp) (B - BIP,Q) +M;N, (B - ﬂJp)} - :

Agents outside of conglomerate 1 do not observe the intermediation decision. That is, they perceive
the price to be a probability-weighted average of the pricing coefficients in (109) and (110):

p= A+ Bpi5p1 + Bradra + Byis1 + By2sy + Crivpn + Cravra + Crivy + Cuovy + Fsy,  (112)

where
A=(1 ) A+ poAg; B =(1 )BLJ_F Bii:
- Dq PqAd; 11 = Dq INI+ND PqDr1;
_ Np + Ny — vy = By Bja
Bro=(1—py) Bi—2 1" | p Bry; By =(1- A
12 = (1 —pq) Br Np N, + DgDr2; 71 =(1—pg) Np+ N, +quJ—|—1’
_ By Ny = vr —
Bjy=(1—p,) B Lty —(1- S :
g2 =(1—pg) Bs+pq Nl Cri=( pq)CINI+ND +p.Cr1;
- Np + Ny —vy = Cr Cja
Cro=(1- Cr————— Cro; Cn=(01- .
12 = (1= pa) Cr—=g ==+ PaCi2i = =pd) oy, Py
CraNy _

Cro=(1-py)Cs+pg F =pF.

47\/YL]-‘1-17
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Dealers and clients of conglomerate 1, on the other hand, know the intermediation choice made by
client 1, and perceive the price to be different conditional on the intermediation choice.

A.7 The Role of Risk Aversion

Since risk aversion is always a difficult parameter to identify with aggregate data, we show results
with risk aversion that is 50% higher and 50% lower than our baseline value of 448. Table 4 shows
that while the exact revenue and utility numbers change, the ordering and magnitudes are quite
stable.

Table 4: The Role of Risk Aversion.

Baseline 7z Chinese wall Open order book

Auction Revenue
Baseline 36.740 32.884 39.311
1.5p 38.831 36.014 40.708
p/1.5 36.616 32.699 39.227
Bidder Utility
Baseline 0.810 1.915 0.975
1.5p 1.457 1.709 0.923
p/1.5 1.436 1.925 0.983

B Measuring Treasury Payoffs

This appendix provides additional detail about how payoffs are calculated. Because of lags between
trade and settlement dates, the appendix also provides detail on funding costs. We begin by
reporting summary statistics of post-auction appreciation and the speculative (competitive) share
(Table 5). Then, we go into detail about how these variables are constructed and what alternative
methods yield. The first subsection describes what those terms are and argues that they are small
and stable. The second subsection discusses an alternative hedging strategy, known as a coupon
roll. The third explains why information from the when-issued-market (or WIs) is not relevant in
our setting.

Table 5: Summary statistics for Table 3. Shares are in percent; post-auction appre-
ciation (f — p) is measured in basis points.

Post-auction appreciation (f —p) Spec. share PD share non-PD Spec. share

Mean 2.7 78.8 53.3 25.5
P25 -8.6 74.1 42.2 14.2
P50 -1.0 79.9 51.2 25.8
P75 10.8 84.5 63.7 34.8
Stdev 30.2 9.1 14.4 13.4
Obs 494 494 494 494
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Funding position. In the model, winning bids pay p and the common fundamental value is f.
In Treasury auctions bidders bid a coupon rate rather than a price. The price is always set to $100
up to rounding, which we rescale to $1 for the purposes of this discussion. To assess auction results
from the issuer perspective we discount future interest payments using a yield curve estimated on
outstanding Treasury securities. Economically this means that we measure issuance cost relative
to other debt outstanding at the time of the auction. Newly issued Treasury securities are typically
valued more than older securities because of their better liquidity, a phenomenon known as the
on-the-run premium (see e.g., Vayanos and Weill 2008). As a result of the on-the-run premium, the
discounted value of Treasury’s future interest and principal payments is smaller than the price at
which the security sells ($1), and we define net auction revenue as the gap between the two:

T
R,=1- (Z Za(t) C + Za(T)> , (113)
t=0

where C' is the coupon determined at the auction, T is the maturity, Z,(j) = exp(—i X y.(j)) is
the price at the time of the auction of a zero-coupon bond maturing at ¢, y(j) is the jth maturity
yield from the yield curve estimated on outstanding securities at the time of the auction.

Trades in the secondary Treasury market settle on the business day following a trade, meaning
that securities are delivered and cash is paid a day after a transaction is agreed upon. In Treasury
auctions, instead, investors pay bids to Treasury and receive securities on the issuance date, which
occurs one to 14 days following the date of the auction. This different settlement rule is the source
of extra funding cost/income in our setting.

We measure f as the market price of the security on the issuance date, which is when the security is
first available to investors. The value of f depends on the general level of interest rates and the on-
the-run premium. While fluctuations in interest rates between auction and issuance date create risk
for investors, this risk can be hedged with other outstanding Treasuries. We assume that investors
hedge interest rate risk optimally by selling a replicating portfolio of other Treasury securities. On
the auction date, the investor buys the new security and shorts the replicating portfolio of off-the-
run issues. On the issuance date, the investor reverses by selling the new security and covering the
short in older securities. The per-unit value of the hedged portfolio at auction is equal to ff%a, and
to:

T
fi= <Z Zi(t)C + Zi(T)> - P, (114)
=0

on the issuance date, where P; is the market price of the new security on that date. Detailed steps
in the investment strategy are:

1. Auction date:
(a) Place bid
(b) For each unit of successful bid alloted, sell T' zero coupon bond each priced at Z,(¢)
and in amounts equal to C for ¢t < T and 1 + C for t = T. The zero coupon bonds
could either be stripped Treasuries (as in Fleckenstein, Longstaff, and Lustig, 2014) or
proxied with a combination of coupon securities.
2. Post-auction date:
(a) Borrow (to post-issuance date) the amount Z, = ZtT:O Zo(t) C + Zo(T) paying the
per-diem unsecured rate 7.
(b) Borrow zero-coupon bonds with reverse repos (to post-issuance date) and receive the
per-diem repo rate r,.. Deliver the T zero coupons to the auction-date buyer.

3. Issuance date:
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(a) Borrow $1 at rate 7. Receive new issue from, and pay $1, to Treasury; sell issue in the
secondary market

(b) Buy portfolio of T' zero-coupon bonds at Z;ssuance

4. Post-issuance date:
(a) Receive payment of p; and repay the issuance-date loan
(b) Receive T zero-coupon bonds and deliver into the reverse repo;

(¢) Receive payment of Z, from reverse-repo and pay Z; to settle the issue-date purchase;
Repay post-auction date loan

The cash flows from this position at the post-issue date are:

(date; — date,)
360

Ty

Pz'*l Zafzi -
(Pi=1)+ (2. Z) + -

X (rp —1p) X Z4 — x 1 (115)

In our calculations we disregard the two funding terms because they are small and don’t vary much
when 7. = rp. The repo rate for old issues, which are being funded between the post-auction and
post-issue date, typically trades within a few basis points to the unsecured rate 7y, so the funding
terms are small. For example (see e.g. Duffie, 1996), reports that first off-the-runs repo rates around
about 25 basis points below the (general collateral) repo rate. This difference has only a minimal
impact on the payoff as the position is only held between the auction and issue dates. Furthermore,
off-the-run securities rarely go “on special” as indirectly observed in the Federal Reserve’s securities
loan auctions (Fleming and Garbade, 2007a). Instead, repo rates for new (or first-off-the-run)
securities can trade far off from uncollateralized rates and be volatile because funding rates balance
the supply and demand of new securities, which can be in high demand to take short position in
interest rates (see e.g. Duffie, 1996; Jordan and Jordan, 1997). As per the detailed steps above the
new issue is never shorted or funded, as it is sold as soon as it is received by the investor. Thus
fluctuations in the special-repo rate do not affect the returns in our position.

Coupon roll An investor could achieve approximately the same hedged position by shorting
only the previously on-the-run (same maturity) security. This strategy is fairly common around
Treasury auctions as discussed by Fleming and Garbade (2007b). While this would be a preferred
approach in practice, the paper focuses on a OTR strategy for two reasons. First, interest hedging
with the former on-the-run is imperfect because maturities are not matched and additional accrued
interest calculations would need to be accounted for. Second, the repo rate for recently issued
securities can trade “special”, that is at a significant gap to the r, so that the funding terms would
become more important. At the same time historical special repo rates are not readily available,
so we focus on OTR for which these terms are not important.

24



	A Treasury auction Model with information sharing
	Solving the Model
	Equilibrium auction-clearing price: Three cases

	Mapping the Model to the Data
	Results: Effects of Information Sharing
	Information Sharing Raises Auction Revenue
	Bid Shading and Signal Jamming
	Client vs. Dealer Information Sharing: Utility Effects
	What if Information Sharing Enabled Collusion?

	How and When to Bid?
	Supporting Evidence: Correlated Values and Informed Bidders
	Conclusion
	Solution and Proofs
	Model solution details
	Result 1
	Equilibrium Existence
	Bid Shading and Signal Jamming
	Auction price with dealer collusion
	Intermediation Choice: Solution with one bidder who switches
	The Role of Risk Aversion

	Measuring Treasury Payoffs

