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1. Introduction 

A fundamental precept of financial economics is that investors earn higher average returns 

by bearing systematic risks. While this idea is well accepted, there is little agreement about the 

identities of systematic risks or the magnitudes of the supposed compensations. This is not due to 

a lack of efforts along two lines of enquiry. First, numerous candidates have been proposed as 

underlying risk factors. Second, empirical efforts to estimate risk premiums have a long and 

varied history.   

Starting with the single-factor CAPM (Sharpe, 1964; Lintner, 1965) and the multi-factor 

APT (Ross, 1976), the first line of enquiry has brought forth an abundance of risk factor 

candidates. Among others, these include the Fama and French size and book-to-market factors, 

human capital risk (Jagannathan and Wang, 1996), productivity and capital investment risk 

(Cochrane, 1996; Eisfeldt and Papanikolaou, 2013; Hou, Xue and Zhang, 2015), different 

components of consumption risk (Lettau and Ludvigson, 2001; Ait-Sahalia, Parker, and Yogo, 

2004; Li, Vassalou, and Xing, 2006), cash flow and discount rate risks (Campbell and 

Vuolteenaho, 2004) and illiquidity risks (Pastor and Stambaugh, 2003; Acharya and Pedersen, 

2005).  

The second line of enquiry has produced empirical estimates of risk premiums for many 

among, what Cochrane (2011) terms as, a “zoo” of risk factors. Most estimation methods have 

followed those originally introduced by Black, Jensen and Scholes (1972), (BJS), and refined by 

Fama and Macbeth (1973), (FM). Their most prominent feature is the use of portfolios rather 

than individual assets in testing asset pricing models. This has long been considered essential 

because of an error-in-variables (EIV) problem inherent in estimating risk premiums. 

The EIV problem is best appreciated by tracing through the BJS and FM methods.  They 

involve two-pass regressions: the first pass is a time-series regression of individual asset returns 

on the proposed factors. This pass provides estimates of factor loadings, widely called “betas” in 

the finance literature.1 The second pass regresses asset returns cross-sectionally on the betas 

obtained from the first-pass regression. Since the explanatory variables in the second pass are 

estimates, rather than the true betas, the resulting risk premium estimates are biased and 

inconsistent; and the directions of the biases are unknown when there are multiple factors 

involved in the two-pass regressions. 

                                                        
1 Hereafter, we will adopt the shorthand nomenclature “Beta” to mean “factor sensitivity” or “factor loading.” 
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With a large number (N) of individual assets, the EIV bias can be reduced by working with 

portfolios rather than individual assets.  This process begins by forming diversified portfolios 

classified by some individual asset characteristics such as a beta estimated over a preliminary 

sample period. It then estimates portfolio betas on the factors using data for a second period.  

Finally it runs the cross-sectional regressions on estimated portfolio betas using data for a third 

period.  BJS, Blume and Friend (1973), and FM note that portfolios have less idiosyncratic 

components; so the errors-in-variables bias is reduced (and can be entirely eliminated as N grows 

indefinitely).  

But using portfolios, rather than individual assets, has its own shortcomings. There is an 

immediate issue of test power since the dimensioniality is reduced; i.e., average returns vary with 

fewer explantory variables across portfolios than across individual assets. Perhaps more 

troubling is that diversification into portfolios can mask cross-sectional phenomena in individual 

assets that are unrelated to the portfolio grouping procedure.  For example, advocates of 

fundamental indexation (Arnott, Hsu and Moore, 2005) argue that assets with high market values 

are overpriced and vice versa, but any portfolio grouping by an attribute other than market value 

itself could diversify away such potential mispricing, rendering it undetectable.  

Another disquieting result of portfolio masking involves the cross-sectional relation between 

average returns and factor exposures (“betas”). Take the single-factor CAPM as an illustration 

(though the same effect is at work for any linear factor models). The cross-sectional relation 

between expected returns and betas holds exactly if and only if the market index used for 

computing betas is on the mean/variance frontier of the individual asset universe. Errors from the 

beta/return line, either positive or negative, imply that the index is not on the frontier. But if the 

individual assets are grouped into portfolios sorted by beta, any asset pricing errors across 

individual assets not related to beta are unlikely to be detected. Therefore, this procedure could 

lead to a mistaken inference that the index is on the efficient frontier. 

Test portfolios are typically organized by firm characteristics related to average returns, e.g., 

size and book-to-market. Sorting on characteristics that are known to predict returns helps 

generate a reasonable variation in average returns across test assets. But Lewellen, Nagel, and 

Shanken (2010) point out sorting on characteristics also imparts a strong factor structure across 

test portfolios. Lewellen et al. (2010) show as a result that even factors weakly correlated with 
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the sorting characteristics could explain the differences in average returns across test portfolios, 

regardless of the economic merits of the theories that underlie the factors.  

Finally, the statistical significance and economic magnitudes of risk premiums are likely to 

depend critically on the choice of test portfolios. For example, the Fama and French size and 

book-to-market risk factors are significantly priced when test portfolios are sorted based on the 

corresponding characteristics, but they do not command significant risk premiums when test 

portfolios are sorted only on momentum. 

In an effort to overcome the deficiencies of portfolio grouping while avoiding the EIV bias, 

we develop a new procedure to estimate risk premiums and to test their statistical significance 

using individual assets. Our method adopts the instrumental variables technique, a standard 

econometric solution to the EIV problem. We define a particular set of well-behaved instruments 

and hereafter refer to our approach as the IV method. 

To be specific, our IV method first estimates betas for individual assets from a portion of the 

observations available in the data sample. These become the “independent” variables for the 

second-stage cross-sectional regressions. Then, we re-estimate betas using non-overlapping 

observations, which become the “instrumental” variables in the second-stage cross-sectional 

regressions. Since we use non-overlapping observations to estimate the independent and 

instrumental variables, while returns are only weakly autocorrelated, if at all, the measurement 

errors in beta estimates should be virtually uncorrelated cross-sectionally with their instruments.2  

The IV estimator we propose is consistent for ex-post risk premium, i.e., N-consistent in 

Shanken (1992). Since consistency is a large sample property, it is important to examine the 

small sample performances of various estimators for practical applications. To do so, we conduct 

a number of simulation experiments. We choose simulation parameters matched to those in the 

actual data. Simulation results verify that the IV method produces unbiased risk premium 

estimates even with a relatively short time-series for beta estimation. In contrast, the standard 

approach that fits the the second-stage regressions using OLS (hereafter we will refer to this 

standard approach as the OLS method) suffers from severe EIV biases. For example, in 

simulations with a single factor model, we find that the OLS estimator, if used with individual 

stocks, is significantly biased toward zero even when betas are estimated with 2520 time-series 

observations. In contrast, the IV estimator yields nearly unbiased risk premium estimates when 

                                                        
2 Some of our empirical tests also use stock characteristics as additional instruments for betas. 
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only 252 time-series observations are available to estimate betas.  

In terms of test size (i.e., type I error) and power (i.e., type II error), we find that the 

conventional t-tests based on the IV estimator are well specified and they are reasonably 

powerful, even in small samples. We find similar results for the Fama-French three-factor model. 

We also show analytically that our IV estimator is consistent even if betas of individual stocks 

vary over time as long as they follow covariance stationary processes.3 We find that even with 

time-varying betas, the IV estimator is unbiased in small sample simulations. 

With actual data, we apply the IV method to examine whether the risk factors proposed by 

the CAPM, the three-factor and five-factor models of Fama and French (1993 and 2014), the q-

factor asset pricing model of Hou, Xue, and Zhang (2015), and the liquidity-adjusted capital 

asset pricing model (LCAPM) of Acharya and Pedersen (2005) command positive risk 

premiums. These risk factors have been successful when they were tested with portfolios, but 

these tests potentially suffer from the low dimensionality problems that Lewellen et al. (2010) 

discussed. In contrast to the original papers, when controlling for corresponding non-β 

characteristics, we find that none of these factors is associated with a significant risk premium in 

the cross-section of individual stock returns.  

This failure to find significant risk premiums is not due to the lack of test power of the IV 

method. Our simulation evidence indicates the t-tests based on the IV method provide reasonably 

high power under the alternative hypotheses that the true risk premiums equal the sample means 

of factor realizations observed in the data. For example, when the true HML risk premium equals 

the sample risk premium (4.36% per year), the probability of detecting it, which is the test 

power, is 91.5%.  

In addition, when analyzing real data, in the absence of non-β characteristics as control 

variables, we find some evidence that SMB and HML betas command significant risk premiums 

in the cross-section of individual stocks returns. However, when we include corresponding non-β 

characteristics in the cross-sectional regressions, we find that the risk premiums are not 

significantly different from zero for any of tested betas. 

                                                        
3  The assumption that betas follow a covariance stationary process is sensible from an economic perspective. Asset 

pricing models show that expected returns are linearly related to betas. If betas were to follow a non-stationary 

process, they can go to infinity, which would imply that expected returns also go to infinity. Infinite expected 

returns would not be economically meaningful for any reasonable risk aversion parameter.   



 7 

Several papers in the literature, including Berk et al. (1999), Carlson et al. (2004 and 2006), 

Zhang (2005), and Novy-Marx (2013) argue that firm characteristics may appear to be priced 

because they may serve as proxies for betas. For example, consider firms A and B that are 

identical except for their risk. If firm A were riskier than firm B, then firm A would have bigger 

book-to-market ratio than firm B because the market would discount its expected cash flows at a 

bigger discount rate. If error-ridden betas were used in an attempt to account for risk, book-to-

market ratios might appear, incorrectly, to be explaining at least part of the observed risk 

difference. 

We develop a method to investigate this alternative explanation. Specifically, we allow for 

time-varying betas and characteristics, and we let the characteristics anticipate future changes in 

betas. We show analytically that this IV estimator provides consistent risk premium estimates 

when the second-stage cross-sectional regression employs the average returns over a long sample 

period as dependent variable while both betas and characteristics serve as independent variables. 

Our empirical results are robust with respect to this modified IV approach.  

Our paper also contributes to a large literature on testing asset pricing models. As the length 

of time-series grows indefinitely, Shanken (1992) shows that the EIV bias becomes negligible 

because the estimation accuracy of betas improves. He also derives an asymptotic adjustment for 

the FM standard errors of the OLS method. Jagannathan and Wang (1998) extend Shanken’s 

asymptotic analysis to the case of conditionally heterogeneous errors in time-series regression. 

Shanken and Zhou (2007) and Kan, Robotti and Shanken (2013) extend the result to 

misspecified models. However, the evidence and analyses in those papers mainly focus on 

portfolios. Our paper focuses on individual stocks as test assets and proposes the IV method to 

mitigate the EIV bias in testing asset pricing models. 

Using individual stocks in testing asset pricing models is a recent development in the 

literature. Kim (1995) corrects the EIV bias using lagged betas to derive a closed-form solution 

for the MLE estimator of market risk premium. The solution proposed by Kim is based on the 

adjustment by Theil (1971). Other methods proposed by Litzenberger and Ramaswamy (1979), 

Kim and Skoulakis (2014), and Chordia et al. (2015) are similar, producing N-consistent risk 

premium estimators. To avoid the EIV bias, Brennan et al. (1998) advocate risk-adjusted returns 

as dependent variable in the second-stage regressions. However, the method that Brennan et al. 

use does not estimate the risk premiums of factors.  
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2. Risk-Return Models and IV Estimation 

 

A number of asset pricing models predict that expected returns on risky assets are linearly 

related to their covariances with certain risk factors. A general specification of a K-factor asset 

pricing model can be written as:  

                                          (1) 

where  is the expected excess return on stock i, is the sensitivity of stock i to factor k, 

and  is the risk premium on factor k. is the excess return on the zero-beta asset. If riskless 

borrowing and lending are allowed, then the zero-beta asset earns the risk-free rate and its excess 

return is zero, i.e.  

The CAPM predicts that only the market risk is priced in the cross-section of average returns. 

Several recent papers propose multifactor models based on empirical evidence of deviations 

from the CAPM. For example, Fama and French (1992) propose a three-factor model with size 

and book-to-market risks as additional priced factors.  

Many empirical tests of asset pricing models employ the Fama-MacBeth (FM) two-stage 

regression procedure to evaluate whether the betas of risk factors are priced in the cross-section. 

The first-stage estimates factor sensitivities using the following time-series regressions with T 

periods of data: 

                                                                                                  (2) 

where is the realization of factor k in time t. The time series estimates of factor sensitivities, 

for factor k, are the independent variables in the following second-stage cross-sectional 

regressions used to estimate factor risk premiums: For given time t, 

                                                                                (3) 

 

where realized excess return is the dependent variable. The standard FM approach fits OLS 

regression to estimate the parameters of Eq. (3). These OLS estimates are biased due to the EIV 

problem since s are estimated with errors. To mitigate such bias, the portfolios are typically 

used as test assets, rather than individual assets, because portfolio betas are estimated more 

precisely than individual betas.  
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Our empirical tests use individual stocks as test assets to avoid the shortcomings that we 

discussed earlier when using portfolios as test assets. We propose an instrumental variable 

estimator to avoid EIV-induced biases. To describe our estimator, rewrite Eq. (3) as 

tt
ˆ ξΒγr   where tr  is a  row vector of realized excess returns in month t, Β̂  is the 

 matrix containing the unit vector and K factor loadings, and  γ  is a  

vector of factor risk premiums (including the excess return of zero-beta asset). We propose the 

following instrumental variables estimator (IV):  

)'ˆ()'ˆˆ(='ˆ
tIV

1

EVIVtIV, rΒΒΒγ


                                                             (4) 

where IVΒ̂ and EVΒ̂ are the matrices of instrumental and explanatory variables, respectively. We 

estimate betas within odd months and even months separately. Then we use odd-month betas as 

instrumental variables and even-month betas as explanatory variables when month t is even and 

vice versa when month t is odd.4 We use daily data within odd and even months to estimate betas 

so that the measurement errors in the instrumental variables and explanatory variables are not 

correlated cross-sectionally, but in principle, one could use any non-overlapping intervals to 

estimate instrumental and explanatory betas. We fit the cross-sectional regressions each month 

using the IV estimator.  

The IV estimator has been widely used in the literature to address the EIV problem, and it is 

well known that the estimator is consistent under mild regularity conditions. In our context, the 

IV estimator converges to the ex-post risk premium even for finite T when the number of stocks 

in the cross-section is sufficiently large. The proposition below formally states the N-

consistency5 of the IV estimator:  

Proposition 1: Suppose stock returns follow an approximate factor structure with K common 

factors. Under mild regularity conditions, the IV estimator given by Eq. (4) is N-consistent when 

the number of stocks in the cross-section increases without bound.  

Proof: See Online Appendix E.  

                                                        
4  The EV and IV betas are computed using half the number of observations that one would use to compute OLS 

betas and hence they are noisier. However, this does not affect the consistency of the IV estimator. Our simulation 

results indicate that the IV estimator yields unbiased risk premium estimates even with a fairly short time-series 

for beta estimation.  
5  Shanken (1992) defines N-consistency. 
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We can frame the IV estimator as a two-stage least square (2SLS) cross-sectional regression 

to gain the underlying intuition. The first-stage regresses the explanatory variables against the 

instrumental variables. The matrix of the first-stage regression slope coefficients is:  

         .)'ˆˆ()'ˆˆ(=ˆ
EVIV

1

IVIV ΒΒΒΒλ


  
                             (5) 

 The second-stage regression uses the fitted values from the first-stage regression as 

explanatory variables and the OLS estimator of this second-stage regression is the IV estimator. 

After substituting the relation in Eq. (5) and rearranging the terms, the second-stage regression 

estimator can be written as:  

 

                         }.)'ˆ()'ˆˆ({ˆ='ˆ
tIV

1

IVIV

1

tIV, rΒΒΒλγ


                     (6) 

The expression within braces is the OLS estimates of the risk premiums when IV betas are used 

as regressors. These OLS estimates are pre-multiplied by the inverse of scaling matrix λ̂  to 

adjust for the EIV bias.  

In the case of a single factor model, is the scalar slope coefficient obtained from 

regressing the explanatory variable on the instrumental variable. Since both explanatory and 

independent variables measure true beta with uncorrelated errors,  is less than one. The noisier 

the errors, the smaller , which is the ratio of the IV and OLS slope coefficients; it thus 

magnifies the OLS estimate to account for the EIV bias.  also correspondingly magnifies the 

standard error, and hence the t-statistics would be the same for both OLS and IV risk premium 

estimates in large samples.  

In addition, note that the EIV scaling under a single factor model suggests that the IV 

method essentially shrinks OLS betas toward their cross-sectional mean of their instruments. 

Such shrinkage is reminiscent of Vasicek (1973)-style betas that move estimated betas towards 

the market beta of 1. In the case of multifactor models, the shrinkage depends on the cross-

sectional correlation of beta estimates as well.  

 

3. Small Sample Properties of the IV Method - Simulation Evidence  

 To evaluate the small sample properties of the IV method, we conduct a battery of 

simulations using the parameters matched to real data. We first investigate the bias and the root-

mean-squared error (RMSE) of the IV estimator and then we examine the size and power of the 
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associated t-test, which we refer to as the IV test. 

 

3.1. Bias and RMSE of IV Estimator  

We set the simulation parameters to equal the corresponding parameters in the actual data 

during the sample period of January 1956 through December 2012. The Center for Research in 

Security Prices (CRSP) value-weighted index provides the market return and the one-month T-

bill rate is the risk-free rate. For each stock, a market model regression produces the beta and 

residual returns. Table 1 reports the simulation parameters. 

We conduct simulations with the cross-sectional size of N=2000 stocks. We randomly 

generate daily returns using the following procedure:  

1) For each stock, we randomly generate a beta and a standard deviation of return 

residuals εi,σ  from normal distributions with means and standard deviations equal to the 

corresponding sample means and standard deviations from the real data.6 We generate betas 

and εi,σ s in the beginning of each simulation and keep them constant across 1000 repetitions.  

2) For each day, we randomly generate a market excess return draw from a normal 

distribution with mean and standard deviation equal to the sample mean and standard 

deviation from the data.  

3) For each stock and each day, we then randomly generate residual returns τi,ε  

from independent normal distributions with mean zero and standard deviation equal to the 

value generated in step (1).  

For stock i, we compute the excess return on day  as 

                                                                       (7) 

where MKT,r  is the market excess returns. 

For the first-stage regression in the simulation, we estimate betas using the following 

market model regression with daily excess returns for each stock:7 

                                                .                                         (8) 

                                                        
6 If the random draw of  is negative, we replace it with its absolute value.  

7   We employ daily returns rather than monthly returns to obtain more precise beta estimates in the first-stage 

regression. We also experiment with monthly data to estimate betas. In untabulated results, when T=120, 180, and 

240 months, we find that the IV estimator with monthly data has similar small sample properties to that with daily 

data, which are reported in Tables 2 and 3. All of our results are based on the truncated IV method. 
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Each “month” in the simulation has 21 trading days and we use three years of daily returns 

(T=756 days) to fit the time-series regression in Eq. (8). For the IV method, we use daily returns 

from odd and even months during a rolling three-year estimation period to compute independent 

and instrumental variables, respectively.  

We fit the second-stage regression with monthly returns, following the common practice 

in the literature. We could have fit the second-stage regression with daily returns as well, but this 

would not improve the precision of the second-stage estimates. To see this intuitively, compare 

fitting one cross-sectional regression for month t with fitting 21 separate daily regressions for the 

month and averaging the daily regression slope coefficients over the month. With the same set of 

firms in both regressions and same betas for the month, the slope coefficient of the monthly 

regression would be exactly 21 times the average slope coefficient of the daily regressions and 

the standard error of the monthly regression would also be 21 times the standard error of average 

daily regression coefficient. As a result, both specifications would yield exactly the same t-

statistic for the slope coefficient. There would be some differences between the two 

specifications if daily returns are compounded to compute monthly returns but such differences 

are likely small.  

We compound daily stock and factor returns to compute corresponding monthly returns. 

We fit the cross-sectional IV regression in Eq. (4) for each month t to estimate  and . We 

then roll the three-year estimation window forward by one month and repeat the IV estimation 

procedure over 660 months (=55 years). Finally, we take the time-series averages of  and . 

We conduct the three-factor model simulations analogously, but in addition to market 

returns and market betas, additional factors and betas are chosen to correspond to the Fama-

French SMB and HML factors and betas. We match the means and standard deviations of the 

simulation parameters to those of actual data, then carry out the IV estimation procedure to 

estimate  ,  and  . Table 1 presents the simulation parameters in more detail. 

 One of the issues that often arises with IV estimators is that for any finite N, there is a very 

small chance that the cross-products of IVΒ̂  and EVΒ̂ might be close to non-invertible; this could 

result in an unreasonably large value of parameter estimates (see Kinal, 1980). To avoid such a 

potentially ill-behaved IV estimator for finite N, we treat any monthly risk premium estimate that 

deviates six standard deviations of the corresponding factor realizations from their sample 
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average as a missing value, i.e., the exclusion cutoff is six.8 In our empirical analyses in Section 

4, for any given risk factor, we adjust the exclusion cutoffs to maintain the chances of exclusion 

binding to below 3% of the number of all available months.  

 The average differences between the risk premium estimates and the corersponding true 

simulation parameters over the 1000 replications are the ex-ante biases relative to the true risk 

premiums. Since all risk premium estimates within a sample are conditional on a particular set of 

factor realizations, we also report the biases relative to the average realized risk premiums in that 

particular sample, which are the ex-post biases as defined by Shanken (1992).  

Panel A of Table 2 presents the ex-ante and ex-post biases, as percentages of the true market 

premium.9 The OLS estimate is biased towards zero by 20% relative to the ex-ante risk premium 

and by 21% relative to the ex-post risk premium, respectively, which are statistically 

significantly different from zero, because of the EIV problem. In contrast, the average 

differences between IV estimates and the ex-ante and ex-post risk premiums are about 1%, 

which is statistically insignificant.10 

The next two columns in Panel A present the ex-ante and ex-post RMSEs. The RMSE is a 

function of both the bias and the standard deviation of the estimation error. The OLS estimator 

has a smaller standard deviation than the IV estimator, but the former is biased, while the latter 

is unbiased. The ex-ante RMSE for the IV estimator is slightly smaller than that for the OLS 

estimator. The ex-post RMSE is .125 for the OLS estimator, compared with .080 for the IV 

estimator. These results indicate that because of the bias, the accuracy (assessed by RMSE) of 

the IV estimator is better than that of the OLS estimator for the parameters used in our 

simulations.11 

Figure 1 plots the ex-ante and ex-post biases of the IV and OLS estimators as a function of 

                                                        
8  Shanken and Zhou (2007) also similarly truncate their maximum likelihood estimates of risk premiums with 

portfolios as test assets to avoid undue influene of outliers. 
9  We know the ex-ante or the “true” risk premiums in simulations, but we only observe ex-post realizations in 

practice. Ex-post biases measure the biases conditional on particular factor realizations and would likely be more 

relevant in practice although both ex-ante and ex-post measures are conceptually interesting. 
10 Based on the standard errors across the 1,000 repetitions, the t-statistics of the ex-ante and ex-post biases of OLS 

estimate are -31.30 and -58.14, respectively. Therefore, OLS estimates are significantly biased at any 

conventional significance level. In contrast, the t-statistics of ex-ante and ex-post biases of IV estimate are 

insignificant at -0.46 and -0.22, respectively.  
11 The magnitude of the bias in the OLS estimator would be smaller if the true risk premium is smaller than what we 

assume in the simulations since the EIV bias is proportional to the magnitude of the true risk premium. In 

untabulated results, we find that the ex-post RMSE for the OLS estimator would be smaller than that for the IV 

estimator if the true market risk premium were smaller than about 2% per annum (for comparison, the sample risk 

premium is 5.8%).   



 14 

the number of days (=T) in the rolling window to estimate the market betas with N=2000 stocks 

under the single-factor CAPM. The vertical axis reports the ex-ante and ex-post biases as 

percentages of the true market risk premium. The bias of the OLS estimator is fairly large, -44% 

for T=252 days.12 The magnitude of the bias is greater than 5% even for T=2520 days, or 10 

years. In contrast, the bias is fairly close to zero for the IV estimator even for T=252 days, or 1 

year.  

Panel B of Table 2 presents the results for the Fama-French three-factor model. The EIV 

problem always biases OLS risk premium estimates towards zero in univariate regressions, but 

in theory the bias could be in any direction in multivariate regressions. The results in Panel B 

indicate that the OLS risk premium estimates for the Fama-French three-factor model are all 

biased towards zero. For example, the ex-ante biases of the OLS estimates are -54.4% and -

50.6% for SMB and HML, respectively. We find that all ex-ante and ex-post biases of the OLS 

estimates are significantly different from zero. In contrast, the magnitudes of the biases of IV 

estimates are all less than 2.1%, and these biases are statistically indistinguishable from zero.13  

 

3.2. Size and Power of IV Test 

Our tests follow the Fama-MacBeth approach to test whether the risk premiums associated 

with various common factors are reliably different from zero. For example, in the case of a single 

factor model, the test statistic is defined as: 

                 ,                                              (9) 

where  is the time-series average of monthly IV risk premium estimates and  is the 

corresponding Fama-MacBeth standard error (FMSE).14  

 To examine the small sample properties of the t-statistic in Eq. (9) under the null 

hypotheses, we follow the same steps as above to generate simulated data, but we set all true risk 

premiums equal to zero. We then examine the percentage of repetitions (out of 1000 total 

                                                        
12 Since our simulation assumes 21 days per month, T=252 days corresponds to one year. 
13 Based on the standard errors across the 1,000 repetitions, the t-statistics of the ex-ante and ex-post biases of OLS 

estimate for the three Fama-French factors are smaller than -45, and hence highly significant. In contrast, the t-

statistics of ex-ante and ex-post biases of IV estimates for the three Fama-French factors range from -1 to 0, and 

they are all insignificant statistically.  
14 An earlier version of our paper analytically derived the asymptotic distribution of the IV estimator, which could 

also be employed in our empirical tests. However, we use the Fama-MacBeth standard errors because they are 

fairly straightforward to compute and more commonly used in the literature. Since the monthly IV estimates are 

serially uncorrelated, the usual intuition behind the FM approach goes through.  



 15 

repetitions) when the t-statistics are positively significant at the various levels (one-sided) using 

critical values based on the standard normal distribution.  

Panel A of Table 3 presents the test sizes of the IV tests under the CAPM and the Fama-

French three-factor model for N=2000 stocks, respectively. The results indicate that the IV tests 

are well specified when T=756 days (=three years of daily data) are used for rolling beta 

estimation. For example, the test sizes for all risk premiums at the 5% significance level are 

between 5.0% and 5.2% and those at the 10% significance level are between 9.8% and 10.2%. In 

unreported results, we find that the distribution of the test statistic becomes closer to the 

theoretical distribution as we increase T. We also find similar results in simulations with N=1500 

stocks.  

We now investigate the power of the IV tests to reject the null hypotheses when the 

alternative hypotheses are true. To evaluate the power, we modify the simulation experiments by 

adding risk premiums equal to the average risk premiums that we observe from real data. All the 

other simulation parameters are the same as in the simulations under the null hypotheses. We fix 

the size of IV tests at the 5% significance level. 

 Panel B of Table 3 shows that the power of the IV test to reject the null hypothesis under 

the single-factor CAPM is 85.6%. Under the Fama-French three-factor model, we find that the 

frequency of rejection of the null of zero market risk premium is 83.8% and that of zero HML 

risk premium is 91.5%. The test power is somewhat weaker in detecting the positive SMB risk 

premium but it is still 51.8%. We also find that in 99.6% of the simulations, at least one of the IV 

risk premiums for the Fama-French three factors is significantly different from zero.  

 For comparison, Table 3 also presents the power of OLS tests. Under the CAPM, we reject 

the null hypothesis that the market risk premium equals zero in 84.2% of the simulations with 

OLS tests, compared with 85.6% with the IV tests. Although, the OLS estimates are biased 

towards zero, the OLS tests are almost as powerful as the IV tests because of smaller standard 

errors. We find similar power results for the Fama-French three-factor model as well although 

the OLS tests are generally less powerful than the IV tests.  

 We also examine the power of the IV and OLS as the true market risk premium varies 

(under the CAPM.) Figure 2 presents these results. If the market risk premium equals 2.9% per 

annum, which is 50% of the ex-post risk premium observed from real data, then the power of the 

IV tests is about 40% and the power of the OLS test is slightly smaller. Therefore, low power 
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would be a concern during a sample period when the true risk premium is fairly small.    

3.3. Time-varying betas 

Our simulations so far assume that betas are constant over time.  Appendix A proves that 

the IV estimator provides a consistent estimate of ex-post risk premium even with time-varying 

betas and risk premiums. We also conduct simulations to investigate the small sample properties 

of the IV estimator and associated tests with time-varying betas. When betas follow AR(1) 

processes, we find that the small sample properties of the IV estimator and the size and power of 

the IV tests are similar to what we report with constant betas in Tables 2 and 3.  

 

4. IV Risk Premium Estimates for Selected Asset Pricing Models 

 This section employs the IV method to estimate the premiums for risk factors proposed by 

prominent asset pricing models.   

4.1. Data 

We obtain stock return, trading volume, and market capitalization data from CRSP and 

financial statement data from COMPUSTAT for the sample period of January 1956 through 

December 2012. We include all common stocks (CRSP share codes of 10 or 11).15 The sample 

for month t excludes all stocks priced below $1 or stocks with market capitalizations less than 

$1,000,000 at the end of month t-1. Since daily returns are used to estimate betas, we restrict the 

sample to stocks with returns in month t, with at least 200 days of return data during each of the 

three years prior to month t.16   

Table 4 presents summary statistics for the included stocks.  A total of 14,058 distinct stocks 

enter the sample at different points in time; 2,425 stocks are present in an average month.  

 

4.2. The CAPM and the Fama-French Three-Factor Model 

This section first tests whether estimated risk premiums under the CAPM and the Fama-

French three-factor models are significantly different from zero using the IV method with 

individual stocks. It then estimates the risk premiums after controlling for stock characteristics.  

Early empirical tests of the CAPM by Fama and MacBeth (1973) and others find strong 

                                                        
15 We exclude American depository receipts (ADRs), shares of beneficial interest, American Trust components, 

close-end funds, preferred stocks, and real estate investment trusts (REITs). 
16 We find similar results of asset pricing tests when the sample includes all stocks with at least 100 or 150 return 

observations per year instead of 200 observations.  
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support for the CAPM. However, several subsequent papers find that market betas are not priced 

after controlling for other characteristics. For instance, Jegadeesh (1992) and Fama and French 

(1993) conclude that the market risk premium is not reliably different from zero after controlling 

for firm size.  

The inability of the CAPM to account for any of the cross-sectional differences in average 

returns reinvigorates the search for alternative asset pricing models. The arbitrage pricing theory 

proposed by Ross (1976) provides the general framework for multi-factor asset pricing models. 

The Fama-French three-factor model is perhaps the most widely used, which identifies size and 

book-to-market risk factors in addition to the market factor.  

We employ individual stocks as test assets in the asset pricing tests and avoid the low 

dimensionality problem inherent in the tests that use characteristics-sorted portfolios. We use 

daily rolling windows from month t-36 to month t-1 to estimate betas for month t. In untabulated 

tests, we find similar test results when we estimate betas with daily rolling windows over the past 

12, 24, and, 60 months. 

To account for non-synchronous trading effects, beta estimation is supplemented with a one-

day lead and lag of the independent variables (Dimson, 1979). For example, the following 

regression estimates market betas under the CAPM: for firm i and day , 

                                                            (10) 

         .   

We estimate odd- and even-month betas separately using returns on days belonging to odd and 

even months, respectively. Because of the non-synchronous trading adjustment in Eq. (10), the 

first and the last days of each month are excluded to avoid any potential biases due to overlap.17  

An analogous multivariate regression estimates the three betas under the Fama-French three-

factor model.  

For each stock and month, SIZE is the natural logarithm of market capitalization at the end of 

the previous month. BM is the book value divided by the market value where book value is the 

sum of book equity value plus deferred taxes and credits minus the book value of preferred stock. 

We compute cross-sectional correlations between each pair of firm-specific variables each month 

                                                        
17 We find almost identical results while including the first and last days of each month. Also, the results are 

qualitatively similar when no adjustment is used for non-synchronous trading. 
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and Table 5 presents the average cross-sectional correlations among betas and characteristics. 

The CAPM beta estimated using the market model exhibits negative correlation with both SIZE 

and BM. In the Fama-French three-factor model, the correlations between market beta and the 

SMB and HML betas are positive. The correlation between SIZE and SMB betas is negative, and 

the correlation between BM and HML betas is positive.  

For comparison, Table 5 also presents the average cross-sectional correlations for 25 Fama-

French SIZE and BM sorted portfolios that the literature typically uses as tests assets. For each 

portfolio and each month, we compute SIZE and BM as the value-weighted averages across all 

stocks that belong to the portfolio. The magnitudes of correlations among portfolio betas and 

characteristics are much larger; between the SMB beta and SIZE it is -.97 and between the HML 

beta and BM it is .88.   

Table 6 presents the risk premium estimates using the IV method and individual stocks as 

test assets. We first test the CAPM using betas estimated from the univariate regression. The 

market risk premium estimate is -.246%, which is not reliably different from zero (Column (1).) 

Therefore, there is no empirical support for the CAPM with individual stocks.  

For the Fama-French three-factor model, the betas come from multivariate time-series 

regressions with all three factors. In Column (2), the market risk premium estimate is -.288% and 

insignificant and the SMB and HML risk premiums are .301% and .344%, respectively. The risk 

premiums of SMB and HML betas are statistically significant at the 5% level. 

The significance of SMB and HML risk premium estimates suggests that these factor risks 

may be priced in the cross-section, but it is also possible that these significant estimates might be 

due to an omitted variable bias because the second-stage cross-sectional regressions in Column 

(2) do not include SIZE and BM, the characteristics that underlie SMB and HML factors, as 

control variables. To examine this possibility, we include SIZE and BM as additional 

independent variables in the second-stage cross-sectional regressions. Under the CAPM, in 

Column (3), the slope coefficients of SIZE and BM are -.120% and .196%, respectively, and 

both are statistically significant at the 1% level. The market risk premium estimate is -.090%, 

which is still not significantly different from zero. Under the Fama-French three-factor model in 

Column (4), none of the risk premiums is significant at the 5% level in the presence of SIZE and 

BM, including the previously significant SMB and HML risk premiums. In contrast, SIZE and 

BM remain highly significant. We also find similar results when we use the logarithm of BM 
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(logBM) instead of BM in Column (5). 

Table 6 also presents the test results using OLS regression estimates. As in the IV tests, we 

find that the SMB and HML risk premiums are statistically significant when we do not use SIZE 

and BM as control variables. However, they become insignificant when SIZE and BM are 

included. The OLS test results are similar to what we find with the risk premium estimates using 

the IV method and they also indicate that the factor risks under the CAPM or Fama-French three-

factor model are not priced in the cross-section of individual stock returns.  

Table 6 also reports the results on two roughly equal subperiods. The factor risk premium 

estimates are insignificant in the both subperiods when SIZE and BM characteristics are included. 

The slope coefficients of SIZE and BM are significant in the both subperiods at conventional 

levels. For the two subperiods, the IV risk premium estimates are similar to their OLS 

counterparts except for the SMB risk premium in the first subperiod under the Fama-French 

three-factor model; see Columns (2) and (7). 

Given that the IV method works very well in simulations, there are several possible 

interpretations concerning these empirical results. First, something in the real data compromises 

the IV method; i.e., something that is missing from the simulations. For example, although our 

simulation evidence indicates that the IV tests are reasonably powerful to detect positive risk 

premiums under the CAPM and Fama-French three-factor models, they might not be in the real 

data. This interpretation does not seem convincing due to the following observation: Without 

controlling for SIZE and BM, Panel A in Table 6 finds that the SMB and HML risk premiums 

are significant.  

It is also possible that SIZE and BM measure the “true” future SMB and HML betas better 

than the SMB and HML betas estimated from past data under the Fama-French three-factor 

model. Consequently, the significant slope coefficients on SIZE and BM might actually represent 

the risk premiums for SMB and HML factors. We evaluate this possibility in greater detail in 

Section 5, and we find weak support for this alternative explanation. 

   

4.3. The Fama-French Five-Factor Model 

  Novy-Marx (2013) and Aharoni, Grundy, and Zeng (2013) among others find that stock returns 

are significantly related to profitability and investment after controlling for Fama and French’s 

three factors. Fama and French (2014) propose the following five-factor model that adds two 
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new factors to capture these effects:  

                 (11) 

 

where  and  are the betas with respect to market, size, book-

to-market, profitability, and investment factors, and  and  are the 

corresponding risk premiums. The RMW factor is based on the difference between the returns on 

diversified portfolios of stocks with robust and weak operating profitability and the CMA factor 

is based on the difference between the returns on diversified portfolios of the stocks with 

conservative and aggressive investment. We obtain the daily data for the five factors from Ken 

French’s website. As in Fama and French (2014), the sample period for the asset pricing tests in 

this subsection is from January 1964 through December 2012. 

      Panel A of Table 7 presents the asset pricing test results for the Fama-French five-factor 

model. For the entire sample period, we find that the risk premium estimates for the five factors 

are insignificant at the 5% level regardless of controlling for the corresponding characteristics: 

SIZE, BM, operating profitability (OP), and investment (INV).18 Specifically, similar to Panel A 

of Table 6, the SMB and HML risk premium estimates have the highest t-statistics without 

controlling for the four characteristics (Column (3).) But they become fairly weak when those 

four characteristics are included (Column (6).) In contrast, the slope coefficients of SIZE, BM, 

OP, and INV are highly significant with their usual signs (Column (6).) For the two subperiods 

whose lengths are roughly equal, we find qualitatively similar results as well.  

 

4.4. The q-factor Asset Pricing Model 

Cochrane (1991) and Liu, Whited and Zhang (2009) present production-based asset pricing 

models in which productivity shocks are tied to the changes in the investment opportunity set, 

which is consistent with Merton’s (1973) ICAPM framework. Since the shocks to productivity 

are difficult to measure accurately, Hou, Xue, and Zhang (2015) (henceforth HXZ) propose an 

                                                        
18 We follow Fama and French (2014) to construct OP and INV. As described in French’s data library: “OP for June 

of year t is annual revenues minus cost of goods sold, interest expense, and selling, general, and administrative 

expenses divided by book equity for the last fiscal year end in t-1.”  The slope coefficient in a univariate 

regression of stock returns against this measure of OP is insignificant, as in column (4) of Table 7. Novy-Marx 

(2013) defines gross profit as revenue minus cost of goods, scaled by current period total assets. In untabulated 

results, we find significantly positive slope coefficient in the univariate regression with Novy-Marx’s definition of 

OP. Apparently; the definition of OP affects the univariate relation. Because we use Fama-French factors, we 

follow their definition. 
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empirical q-factor model where an investment factor and a ROE factor capture productivity 

shocks. Their asset pricing model is specified as:  

                                       (12) 

 

where  and  are the betas with respect to market, size, investment, and 

ROE factors, respectively, and , and   are the corresponding risk premiums.  

The investment factor captures the level of investments and the ROE factor captures the 

return on investments, i.e., profitability. The investment factor is constructed as the return 

difference between firms with low and high levels of investments and the ROE factor is 

constructed as the return difference between firms with high and low levels of profitability. 

Intuitively, the investments and rates of return on investments are likely to reflect the sensitivity 

to unanticipated productivity shocks, and these factors are supposed to capture the price impact 

of such shocks. HXZ argue that their factors better explain the cross-sectional return differences 

across portfolios based on various anomalies, e.g., BM, SIZE, momentum, and earnings surprise 

than the Fama-French three-factor model and the Carhart four-factor model.  

HXZ use a variety of different test portfolios for their asset pricing tests. For instance, 

their test of SIZE and BM uses the 25 Fama-French SIZE and BM sorted portfolios, their test of 

momentum uses 10 portfolios based on momentum, and their test of the standardized earnings 

surprises (SUE) uses 10 SUE sorted portfolios. Since all the tests employ selected sets of tests 

portfolios, they are also subject to the low dimensionality problems. We examine whether the 

HXZ factors are priced in the cross-section of individual stock returns. We obtain daily HXZ 

factors from HXZ.    

Table 8 presents the test results of the q-factor asset pricing model using the IV method. 

To facilitate comparison, this table uses the sample period of January 1972 through December 

2012, which HXZ use in their empirical tests. Columns (1) to (4) report the risk premium 

estimates for each of the four betas under the HXZ model in univariate regressions. None of risk 

premiums are statistically significant at conventional levels. In Columns (6) and (7), when 

testing each of the investment and ROE factor betas with their corresponding characteristics, we 

find that only the slope coefficients of the characteristics are reliably different from zero.  

Column (5) presents the risk premium estimates for all four betas under the HXZ model 

together, none of which are reliably different from zero. In Column (8), when adding the three 



 22 

characteristics as control variables: SIZE, OP, and INV, to the HXZ model, we find that the 

slope coefficients of these characteristics are all statistically significant with usual signs, while 

none of risk premiums under the HXZ model is reliably different from zero. Therefore, for the 

entire sample period, we find no empirical support for the HXZ model when using individual 

stocks as test assets. For the subperiods whose lengths are equal, we obtain qualitatively similar 

results of asset pricing tests as well. 

 

4.5. Liquidity-Adjusted CAPM 

Next, we  examine the liquidity-adjusted capital asset pricing model (LCAPM) proposed by 

Acharya and Pedersen (2005), which accounts for the impact of illiquidity-based trading frictions 

on asset pricing.19 According to the LCAPM, the level of illiquidity and the covariances of return 

and illiquidity innovation with the market-wide return and illiquidity innovation affect expected 

return. The unconditional expected return in excess of the risk-free rate under the LCAPM is 

defined as:  

 ,                               (13) 

where ti,c is the illiquidity cost, the risk premium is the market excess return minus aggregate 

illiquidity cost (i.e., ), and the betas are  

         ,                                          (14) 

         ,    

         ,    

         .     

The term  is the reward for firm-specific illiquidity level, which is the compensation for 

holding an illiquid asset as in Amihud and Mendelson (1986). Acharya and Pedersen define 

illiquidity-adjusted net beta as:  

                                    .                                                      (15)  

                                                        
19 Several other papers, e.g., Pastor and Stambaugh (2003), also propose models where a stock’s return sensitivity to 

market-wide (il)liquidity is priced in the cross-section. Since we do not have daily Pastor and Stambaugh’s 

liquidity factor, we do not examine their model here.   
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The LCAPM implies that the linear relation between risk and return applies for the liquidity-

adjusted market beta, but not for the standard market beta under the CAPM. The LCAPM also 

implies that the linearity between risk and return applies to excess returns net of firm-specific 

illiquidity cost ( .  

Acharya and Pedersen test the LCAPM using two sets of test portfolios sorted on the average 

and standard deviation of illiquidity. They sort stocks based on Amihud (2002) illiquidity 

measures during each year and form 25 value-weighted illiquidity portfolios for the subsequent 

year. They also form 25 value-weighted (illiquidity) portfolios similarly by sorting based on 

the standard deviation of illiquidity. 

We examine the correlations between  and the value-weighted averages of SIZE and 

BM for those portfolios used by Acharya and Pedersen. The average cross-sectional correlations 

between  with SIZE for illiquidity and  (illiquidity) portfolios are -.96 and -.97, and 

those with BM are .71 and .74, respectively. Such high correlations between liquidity-adjusted 

market beta, i.e., , and SIZE suggest that it would be particularly hard to determine 

empirically whether average returns differ across test portfolios due to SIZE or illiquidity-

adjusted market betas. This situation parallels that in Chan and Chen (1988) who use 20 size-

sorted portfolios as test assets and find strong support for the standard CAPM. The correlations 

between the standard market beta and SIZE across Chan and Chen’s test portfolios range from -

.988 to -.909 over different sample periods, and the corresponding correlations in the cases of 

illiquidity and  (illiquidity) portfolios are within this range. Jegadeesh (1992) shows that when 

test portfolios are constructed so that SIZE and standard market beta have low correlations (in 

absolute value), the market beta is not priced and that the significant market risk premium found 

across size-sorted portfolios is due to the high correlation (in absolute value) between SIZE and 

market beta.  

To avoid such ambiguity, we employ the IV method with individual stocks to investigate 

whether  under the LCAPM is priced in the cross-section. To facilitate comparison, we 

follow the same procedure as in Acharya and Pedersen (2005) in all other respects. Because of 

the differences in the market structures of the NYSE/AMEX and NASDAQ, the trading volumes 

reported in these two markets are not comparable and hence NASDAQ stocks are excluded for 

this test. In addition to existing screening criteria, following Acharya and Pedersen, we exclude 

stocks that do not trade for at least 100 days per year, which can suppress noisy illiquidity 



 24 

measures.  

 Acharya and Pedersen define the illiquidity cost as follows:20  

                                     ,                                                     (16)  

,                              (17) 

where  is the return on day  in month t,  is the dollar volume (in millions) and  is 

the month 1-t  value of $1 invested in the market portfolio as of the end of July 1962. Eq. (16) is 

based on Amihud’s (2002) illiquidity measure. Acharya and Pedersen use Eq. (17) as a measure 

of illiquidity cost where  is used to adjust for inflation and the illiquidity cost is capped 

at 30% to avoid an obviously unreasonable value for it. The market-wide illiquidity cost  

is the value-weighted average of individual illiquidity costs using market capitalization in month 

t-1. 

As in Acharya and Pedersen (2005), we estimate the innovations in illiquidity costs using AR 

models and then estimate each individual component of betas in Eq. (15) using a time-series 

GMM approach and Dimson-type corrections. 21  We then fit the following cross-sectional 

regression each month t: 

                      .                            (18) 

where ti,c  is the average illiquidity for stock i in month t.22  

The IV estimator in month t is:  

,'ˆ)ˆˆ('ˆ
ttIV,

1'

tEV,tIV,t rΨΨΨγ
  

where tIV,Ψ̂  is teven,Ψ̂  when month t is odd and it is todd,Ψ̂  when month t is even, and 

teven,Ψ̂ N3  matrix with unit vector as the first row,  , and estimated even-month 

LMKT betas for N stocks as the second and third rows, respectively. We estimate 

the even-month LMKT betas using daily data in even months in the rolling 

estimation window of month t-36 to month t-1.  

todd,Ψ̂ Analogous to teven,Ψ̂  estimated using all daily data in odd months. 

                                                        
20 Acharya and Pedersen use illiquidity costs at monthly frequency but we use them at daily frequency.  
21 Appendix B presents the AR models that we use to estimate expected and unexpected components of illiquidity. 
22 As in Acharya and Pedersen (2005), 30% capping is applied after taking monthly average. 
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For the IV estimator in month t+1, we move the three-year rolling estimation window forward by 

one month. We repeat this estimation procedure until all available observations are exhausted. 

Then computing the average IV risk premium estimate under the LCAPM and its standard error 

is conducted in the same way as the other asset pricing models tested above. 

Table 9 presents the risk premium estimates for the LMKT betas when using individual 

stocks as test assets. The slope coefficient on the Amihud illiquidity measure is .220%, and it is 

positive and highly significant. However, the risk premium estimates for  are .150% and 

.085%, respectively, without and with controlling for Amihud illiquidity. These premiums are 

not reliably different from zero. These results indicate that firm-specific illiquidity, which is a 

firm characteristic, is positively related to average returns, but liquidity-adjusted market beta, 

which is the systematic risk under the LCAPM, does not command a risk premium. Table 9 also 

shows that the liquidity-adjusted market beta is not priced in either of subperiods, while Amihud 

illiquidity affects average returns significantly in both subperiods.   

In comparison, Acharya and Pedersen (2005) report a liquidity-adjusted market risk premium 

estimate of about 2.5% per month using the value-weighted index (see Panel B of Table 5 in 

Acharya and Pedersen, 2005), which is about 30% per year.23 The equity risk premium puzzle 

literature argues that even an annual risk premium of about 6% observed in the data is hard to 

justify with realistic levels of risk aversion, and larger risk premiums would be harder to justify. 

The large risk premium estimate obtained with test portfolios seems likely to be the result of high 

correlations between  and portfolios characteristics rather than a true depiction of the 

compensation for a systematic risk.  

 

5. Additional Tests  

This section examines the robustness of our findings to a number of variations in the test 

specification and evaluates the strength of the instruments. 

 

5.1. Do Characteristics Proxy for True Betas?  

Our results indicate that many of the systematic risk factors proposed in the literature do not 

command a premium after controlling for stock characteristics. However, it is possible that 

                                                        
23  The liquidity-adjusted market risk premium equals the market risk premium minus expected market-wide 

illiquidity cost and hence it is smaller than the unadjusted market risk premium. 
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because beta estimates contain measurement errors, characteristics may serve as better proxies 

for true betas and the slope coefficients on characteristics may actually reflect the risk premiums 

of underlying systematic risk factors. In other words, it is possible that the characteristics 

measure the “true” future betas better than the betas estimated from past data, which we refer to 

as the past betas. Several papers in the literature, including Berk et al. (1999), Carlson et al. 

(2004 and 2006), Zhang (2005), and Novy-Marx (2013), present variations of such an 

interpretation.  

The fact that “true” betas are unobservable makes it difficult to evaluate the tenability of this 

interpretation directly. However, there are several empirical implications of this “risk-proxy” 

hypothesis that we can test. One implication of this hypothesis is that characteristics should be 

more highly correlated with the betas estimated from future data, which we refer to as the future 

betas, than past betas. However, under the CAPM and Fama-French three-factor model, we find 

that the average cross-sectional correlations between past betas and future betas are slightly 

larger than those between characteristics and future betas. 

The average cross-sectional correlation between past betas and future betas increases as we 

increase the sample periods over which we estimate them. For example, under the Fama-French 

three-factor model, the average correlation between past SMB betas and future SMB betas 

increases from 0.395 to 0.497 and the average correlation between past HML betas and future 

HML betas increases from 0.233 to 0.276 as we increase the length of rolling estimation window 

from 1.5 years to 2.5 years.  

We repeat our asset pricing tests by employing the past SMB and HML betas as instrumental 

variables and their future betas as independent variables. We find that the risk premiums for 

SMB and HML betas in the second-stage regressions are all insignificant, while the slope 

coefficients on SIZE and BM remain significant, similar to the results in Table 6. We also apply 

the same past and future betas specification to the other asset pricing models tested in Section 4 

and find that our conclusions stay the same as before.  

Finally, we develop and implement asset pricing tests that directly examine whether 

characteristics are priced because they contain forward-looking information about future betas 

that is not contained in the corresponding past betas. Formally, suppose that the dynamics of beta 

is described by the following AR(1) process: for stock i in time t, 

                .                               (19) 
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Suppose that the market is aware of at the end of time t-1. Then, under the CAPM 

expected return is24: 

                                                                                                        (20) 

Let the corresponding characteristic also follow an AR(1) process given by:  

                                                        (21) 

where, to capture the idea that the characteristic anticipates the innovation in beta, we assume 

that  

We can obtain an unbiased estimate of  using the past returns available up to time t-

1 but these data do not contain the information about In contrast, contains the 

information about . Therefore, the expected return under the CAPM can be written as a 

function of  and  as follows: 25                          

(22) 

When we use the estimates of  and  as independent variables in the second-

stage regressions, the slope coefficient on characteristic, i.e., , would be significant because 

the characteristic anticipates the innovation in the future beta and because the measurement 

error in  estimate would allow the characteristic to capture a part of the true risk premium 

as well. Therefore, we cannot obtain a consistent risk premium estimate.  

Accordingly, we develop a modified IV methodology to address this issue and the 

proposition below shows that this modified IV methodology yields consistent risk premium 

estimates:  

Proposition 2: Suppose that the CAPM is true as in Eq. (20). Let the time-series dynamics of 

beta and characteristic be given by Eqs. (19) and (21), respectively. The time-series average of 

the risk premium estimates computed using estimator in Eq. (23) is consistent when N, T and Tm 

converge to infinity:  

              ,             (23)  

                                                        
24 In the main text of the paper, we assume that the true risk premium is constant. We relax this assumption in the 

Online Appendix and provide a formal and more general proof for Proposition 2. 
25 We can derive the following relation between the parameters in Eqs. (20) and (22): 
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,           (24) 

, = = The betas for both explanatory 

variable ( ) and instrumental variable ( ) are estimated from past data. We refer to 

the risk premium estimator based on the time-series average of Eq. (23) as the IV mean-

estimator.  

Proof: See Appendix C.  

For the ease of exposition, we present Proposition 2 only for the CAPM, assuming that 

both beta and characteristic follow AR(1) processes. The proposition also holds for multi-factor 

models when we allow time-varying risk premium, and betas and characteristics to follow any 

stationary and ergodic processes. We present the proposition and proof for the general case in 

the Online Appendix G.  

The IV mean-estimator in Proposition 2 differs from the previous IV estimator in Eq. (4) 

in two important ways. First, the IV mean-estimator uses characteristics as well as  as 

the instruments for . In contrast, our previous IV estimator employs the only betas 

estimated from a non-overlapping sample period as the instruments and uses the characteristics 

only as control variables; see, e.g., Columns (3) to (5) in Panel A of Table 6. Second, the IV 

mean-estimator uses the time-series averages of current (in month t) and future returns as the 

dependent variable, and past betas and time-series averages of characteristics as independent 

variables, while our previous IV estimator uses the returns in month t as the dependent variable 

and past betas and one-month lagged characteristics as independent variables.  

Intuitively, the IV mean-estimator method increases the time lag between estimation of 

the characteristics and observations of future returns. For example, if we employ a characteristic 

averaged over the past 12 months as an independent variable and the average return over the 

next 12 months as dependent variable, the time lag between the two variables is 12 months. As 

we increase the time lag between independent and dependent variables, under the null 

hypothesis that expected returns are associated with characteristics indirectly through betas, the 

informational advantage of the characteristics over beta estimates should diminish and disappear 

in the limit.  
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In the additional simulations that we report in Appendix C, we examine the small sample 

properties of the IV mean-estimator in Proposition 2. For the IV mean-estimator, we find that 

the ex-ante biases of the slope coefficients on betas range from -6.5% to -4.5% and the biases of 

the slope coefficients on characteristics are virtually zero under the CAPM and Fama-French 

three-factor model. In contrast, for the OLS estimator, biases of betas range from -67.6% to -

29.1% and those of characteristics range from 4.1% to 18.1%, which indicates that the IV mean-

estimates of the slope coefficients on betas and characteristics are substantially less biased than 

their corresponding OLS estimates. We also investigate the size and power of the asset pricing 

tests based on the IV mean-estimator. The size of this IV test is close to its theoretical 

percentile. Under the CAPM, the power of the IV test to detect a positive market risk premium 

is virtually 100%. Under the Fama-French three-factor model, the power of the IV test for 

positive market, SMB, and HML risk premiums is also quite close to 100%. In contrast, the 

power of the OLS test is substantially lower, especially for detecting a positive SMB risk 

premium, than that of the IV test under the CAPM and Fama-French three-factor model. 

With actual (not simulated) data, based on Proposition 2, we run the following cross-

sectional regression in month t, i.e., to obtain the IV mean-estimates of risk premiums for all the 

models that we examined above:   

                                            (25) 

where  is the average return over month t to month t+11 and the independent and instrumental 

betas are estimated over the past 36 months as we did earlier. denotes the average of 

characteristic j over the past 12 months. Table 10 reports the time-series averages of monthly 

slope coefficients of betas and characteristics. Because the dependent variable in Eq. (25) is the 

average return over the current and future twelve months (columns labelled as Tm=12), we use 

the Hansen and Hodrick (HH) standard errors with 12 lags. For comparison, Table 10 also 

reports the results of asset pricing tests when we use the returns in month t on the left-hand side 

of Eq. (25) and the characteristics in month t-1 on the right-hand side (columns labeled as 

Tm=1). 

The results in Table 10 are similar to those in the corresponding earlier tables using 

characteristics only as control variables. Specifically, we find that none of the factor risk 

premiums is significant for both Tm=1 and Tm=12 at conventional significance levels. Most of 

characteristics still remain statistically significant, although the effects of some characteristics 
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become weaker than before since portions of them are now captured by the corresponding factor 

betas. We also find similar results of asset pricing tests when we increase the length of 

averaging, i.e., Tm in Proposition 2, up to 36 months with 12-month increments. Therefore, the 

pattern of the results with the IV mean-estimator does not support the notion that characteristics 

are significant because they are better proxies for true future betas. 

  

5.2. Robustness with Respect to Changes in Beta Estimation Procedure 

We carry out a number of tests to examine the robustness of our asset pricing results to 

changes in how we estimate betas. For the IV estimator, the test results that we report so far 

employ a 36-month estimation window to obtain betas (i.e., 18 months each for independent and 

instrumental betas). We also experiment with increasing this estimation interval to 48 and 60 

months. In addition, we employ alternate quarters instead of alternate months to estimate 

independent and instrumental betas. From all these experiments, we find qualitatively similar 

results of asset pricing tests to those already reported.  

We also carry out the following additional experiments to examine whether our test 

results are sensitive to the changes in the Dimson-type corrections for betas: (i) increasing the 

number of daily lags up to five days and (ii) using weekly returns to estimate independent and 

instrumental betas and allowing for up to five weeks of lagged returns. 26  With all these 

experiments, we find qualitatively similar test results. 

  

5.3. On the Strength of Instrumental Variables  

An important issue to consider in IV regressions is the strength of instrumental variables for 

the corresponding independent variables. The cross-product matrix of instrumental variables and 

independent variables could be close singular if the correlations between independent and 

instrumental variables are too low, i.e., if the instruments are too weak. Nelson and Startz (1990) 

show that if the instruments are sufficiently weak, then the expected value of the IV estimator 

may not exist. A univariate regression with a weak instrument can provide the intuition behind 

this result. If the covariance between the independent and instrumental variables is close to zero, 

then the sample covariance could be small and be either negative or positive, resulting in large 

variations in both the sign and magnitude of the slope coefficients of IV regressions in finite 

                                                        
26 We use a rolling window of past 260 weeks (about five years) to estimate these betas.    
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samples. However, if the covariance and the number of samples are sufficiently large, then the 

probability that the sample covariance is close to zero becomes negligibly small, and the IV 

estimator is well behaved.  

Nelson and Startz (1990) show that weak instruments would be a concern if   

                                                     (26) 

where  is the correlation between the independent variable (x) and the corresponding 

instrument (z), and N is the number of individual stocks. In Section 4.2, e.g., when testing the 

CAPM and Fama-French three-factor model, we had 2425 stocks per month on average and the 

minimum number of stocks over the entire sample period was 309. From Eq. (26), there would 

be a weak instrument concern based on the minimum (average) number of stocks, if the 

correlation were less than .057 (.020) in absolute value.  

 Table 11 presents the average cross-sectional correlations between the odd- and even-month 

beta estimates for all asset pricing models that we tested above. The correlation for market beta 

under the CAPM is .72. The market beta of the Fama-French three-factor (five-factor) model is 

less precisely estimated and its average correlation is smaller at .59 (.43). The market beta in the 

q-factor asset pricing model by HXZ and the net beta under the LCAPM also exhibit similar 

levels of average cross-sectional correlation to that of the market beta under the Fama-French 

three-factor model. The average correlations for SMB, HML, RMW, CMA, I/A, and ROE betas 

range from .13 to .48. Although these correlations are smaller than those for market betas, they 

are all comfortably above the critical value suggested by Nelson and Startz (1990).  

Nelson and Startz (1990) and Staiger and Stock (1997) show that the conventional IV 

standard error estimator based on the asymptotic theory would not be reliable in small samples if 

the instruments are weak. However, this concern is not relevant in our applications since we use 

the Fama-MacBeth approach to estimate the standard errors of IV estimator and do not rely on 

the asymptotic distribution of the IV estimator in our empirical analyses. Nevertheless, we find, 

in the tests proposed by Staiger and Stock (1997), that our instrumental betas give no cause for 

concern.27 

To provide further insights into the strength of the instruments in our IV method, we also 

                                                        
27 Staiger and Stock (1997) regress the independent variables against their instrumental variables and develop a test 

based on the goodness of fit for the regression. In unreported results, we find that their test statistics in our 

applications are well above the critical values for all of our instrumental betas.  
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estimate the correlations between the instrumental betas and the corresponding true but 

unobservable betas. Although the true betas are unobservable, we can estimate these correlations 

based on the correlations between odd- and even-month betas as we show in the following 

proposition:  

 

Proposition 3: Let  be stock i’s true but unobservable sensitivity to factor k and let  

and  be the odd- and even-month estimates of the true beta, respectively. Then: we can 

show that 

                                                                    

                          . 

Proof: See Appendix D. 

Table 11 also presents the average cross-sectional correlations between estimated betas and 

true but unobservable betas.28 Under the CAPM, the average correlation between even- and odd-

month market betas is .72 and thus the average correlation between estimated market betas and 

unobserved true market betas is .85. Under the Fama-French three- and five-factor models, we 

find smaller correlations for SMB, HML, RMW, and CMA betas, but even for CMA, the average 

correlation between estimated CMA betas and unobservable true CMA betas is .36. Under the q-

factor asset pricing model, the correlations for the investment and ROE betas are about the same 

as that for the HML beta under the Fama-French five-factor model. All these correlation 

estimates are significantly above the cutoff prescribed by Nelson and Startz (1990). 

 

  

6. Conclusion 

 We propose a method for estimating risk premiums using individual stocks as test assets. It 

overcomes concerns about risk premiums estimated with test portfolios, which have been 

employed in almost all previous researches to mitigate an inherent errors-in-variables problem in 

testing asset pricing models. Estimated betas from one sample period can serve as effective 

                                                        
28 To compute the average correlation between estimated betas and true betas, we first compute the square root of 

the correlation between odd- and even-month betas each month and then compute the average across months.  

Because the variability of correlation between odd- and even-month betas is relatively small, the square root of 

average correlation is about the same as the average of the square root of the monthly correlations. 
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instruments for estimated betas from a non-overlapping sample period that serve as the 

explanatory variables in cross-sectional regressions. We prove the consistency and provide the 

asymptotic theory of the proposed IV risk premium estimator when the number of individual 

stocks and the length of time-series grow simultaneously without bounds. In simulations, our IV 

method yields unbiased estimates of risk premiums even for relatively short time-series and also 

provides valid tests for statistical inference. Our simulations also indicate that IV tests are 

reliable under time-varying betas. 

We use the IV method to test whether the premiums for risk factors proposed by several 

popular asset pricing models are reliably different from zero. The tested asset pricing models are 

the standard CAPM, the Fama-French three- and five-factor models, the q-factor asset pricing 

model proposed by Hou, Xue, and Zhang (2015), and the liquidity-adjusted CAPM proposed by 

Acharya and Pedersen (2005). Previous empirical research, which employed portfolios as tests 

assets, found strong empirical support for these asset pricing models. But Lewellen, Nagel and 

Shanken (2010) suggest caution in interpreting those results because of the low dimensionality 

issue with portfolios. We find that none of the factors from those asset pricing models is 

associated with a significant risk premium in the cross-section of individual stock returns after 

controlling for corresponding firm characteristics. The evidence in simulations and empirical 

analyses indicates that this empirical failure is unlikely to be due to the lack of test power, so it 

represents a puzzle that calls for further research.  
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Figure 1 

Biases versus Number of Days Used to Estimate Betas 

 

This figure presents the ex-ante and ex-post biases using the ordinary least squares (OLS) and 

instrumental variables (IV) estimators of the market risk premium under the CAPM, as a 

function of the number of days in the rolling window to estimate the market betas. The 

simulations use the market risk premium of 5.80% per annum and 2000 individual stocks in the 

cross-section. The total sample period for the simulations is 660 months. The y-axis denotes the 

bias as a percentage of the true market risk premium and the x-axis denotes the number of days 

(=T) in the rolling window to estimate the market betas. These results are based on 1,000 

repetitions for each T.   
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Figure 2 

Power of IV and OLS Tests for Varying Levels  

of Market Risk Premium 

 

This figure presents the power of tests using the ordinary least squares (OLS) and instrumental 

variables (IV) estimators as a function of the market risk premium. The simulations use 2000 

individual stocks in the cross-section and the sample period is 660 months. For each month, 

rolling betas are estimated using daily return data over the previous 36 months, with data over 18 

months to estimate the independent variables (betas) and data over the other non-overlapping 18 

months to estimate the corresponding instrumental betas. The power of a test denotes the 

rejection frequency of the null hypothesis based on 1,000 repetitions. The market risk premiums 

are in percent per annum. 

  

 

 

  



 36 

Table 1 

Simulation Parameters 

 This table presents the parameters that are used in the simulations. We set the risk premiums of 

the common factors and their covariance structure in the simulations equal to the corresponding 

sample values during the sample period January, 1956 through December, 2012. We maintain 

the historical covariances among the common factors under the Fama-French three-factor model. 

The means and standard deviations of the common factors and idiosyncratic volatility are 

annualized and reported in percentages.   

 Panel A: Common Factors 

  
  Single-factor  CAPM 

Fama-French 

Three-factor Model 

 
 

Mean Std. Dev. Mean Std. Dev. 

Factors MKT 5.80 15.69 5.80 15.69 

 
SMB 

  

2.64 7.89 

 

HML 

  

4.36 7.56 

 

Panel B: Betas and Idiosyncratic Volatility  

  
        Single-factor CAPM 

Fama-French 

Three-factor Model 

 
 

Mean Std. Dev. Mean Std. Dev. 

Betas MKT 0.95 0.42 0.95 0.42 

 
SMB 

  
0.80 0.50 

 
HML 

  
0.19 0.51 

Idiosyncratic 

Volatility    
58.73 23.81 58.73 23.81 
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Table 2 

Small Sample Properties of IV Risk Premium Estimates  

 

Panel A presents the biases and root-mean-squared errors (RMSEs) in risk premium estimates when 

the second-stage regressions are fitted using the OLS and Instrumental Variable (IV) methods under 

the single-factor CAPM. Panel B presents those results under the Fama-French three-factor model. 

The simulation uses 2000 stocks in the cross-section, and the results are based on 1,000 repetitions. 

The sample period for the simulations is 660 months. For each month, rolling betas are estimated 

using daily return data over the previous 36 months. Among those 36 months, the IV method uses 

data over 18 months to estimate the independent variables (betas) and data over the other non-

overlapping 18 months to estimate the corresponding instrumental betas. Ex-ante bias is the difference 

between the mean risk premium estimate and the corresponding true risk premium. Ex-post bias is the 

difference between the mean risk premium estimate and the sample mean of the corresponding risk 

factor realizations in that particular simulation. Ex-ante and ex-post biases are expressed as 

percentages of the true risk premium.  

 

Panel A: Single-factor CAPM 

Risk 

Factor 
Estimator 

Ex-ante 

Bias (%) 

Ex-post 

Bias (%) 

Ex-ante 

RMSE 

Ex-post 

RMSE 

MKT OLS -20.1 -20.8 0.184 0.125 

 IV -0.6 -1.1 0.174 0.080 

 

 

Panel B: Fama-French Three-factor Model 

Risk 

Factor 
Estimator 

Ex-ante 

Bias (%) 

Ex-post 

Bias (%) 

Ex-ante 

RMSE 

Ex-post 

RMSE 

MKT OLS -28.7 -29.4 0.199 0.158 

 IV 1.2 0.5 0.189 0.084 

SMB OLS -54.4 -55.2 0.136 0.135 

 IV -1.4 -2.1 0.126 0.096 

HML OLS -50.6 -51.2 0.194 0.193 

 IV 1.6 1.0 0.124 0.092 
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Table 3 

Size and Power of the IV Test 

 

Panel A presents the sizes of the OLS and IV tests under the null hypotheses that the risk 

premiums equal zero for the single-factor CAPM and the Fama-French three-factor model. The t-

statistics are computed using Fama-MacBeth standard errors. The number of stocks in the cross-

section is set to N=2000, and the results are based on 1,000 repetitions. The sample period for the 

simulations is 660 months. For each month, rolling betas are estimated using daily return data 

over the previous 36 months, with data over 18 months to estimate the independent variables 

(betas) and data over the other non-overlapping 18 months to estimate the corresponding 

instrumental betas. Panel B presents the power of the OLS and IV tests to reject the null 

hypothesis when we set the market (MKT) risk premium equal to 5.80% per annum for the 

single-factor CAPM and when set the MKT, SMB and HML risk premiums equal to 5.80%, 

2.64% and 4.36% per annum, respectively, for the Fama-French three-factor model. Panel B 

presents the percentage of simulations that reject the null hypothesis that the respective factor 

risk premium is less than or equal to zero at the 5% significance level. The row labeled “MKT or 

SMB or HML” presents the percentage of 1,000 repetitions that reject the null hypothesis that all 

of the risk premiums are less than or equal to zero at the 5% significance level. 

 

 

Panel A: Test Size 

 

Risk Test 

Based on 

Theoretical Percentiles 

Factor 1% 2.5% 5% 7.5% 10% 

           Single-factor CAPM 

MKT OLS 1.5% 2.9% 4.9% 8.0% 10.5% 

 IV 1.3% 2.8% 5.1% 7.6% 10.2% 

           Fama-French Three-factor Model 

MKT OLS 1.5% 2.8% 5.2% 8.0% 10.5% 

 IV 1.3% 2.4% 5.2% 7.3% 9.8% 

HML OLS 1.7% 2.2% 5.1% 8.0% 10.4% 

 IV 1.3% 2.7% 5.2% 7.8% 9.9% 

SMB OLS 1.6% 2.9% 4.8% 7.9% 10.3% 

 IV 1.1% 2.7% 5.0% 7.7% 10.2% 
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Panel B: Test Power 

Risk 

Factor 

Test Based on 

OLS IV 

Single-factor CAPM 

MKT 84.2% 85.6% 

Fama-French Three-factor Model 

MKT 78.7% 83.8% 

SMB 47.3% 51.8% 

HML 89.0% 91.5% 

MKT or SMB or HML 99.1% 99.6% 
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Table 4 

Summary Statistics  

 

This table presents summary statistics for various characteristics of stocks in the sample. 

Capitalization is price multiplied by the number of shares outstanding. Book-to-market ratio is 

computed as in Davis et al. (2000). Excess return is relative to the one-month T-bill rate. Return 

volatility is the standard deviation of daily returns. The sample period is from January, 1956 

through December, 2012. 

 

 

  Mean Median Standard Deviation Q1 Q3 

Number of stocks each month  2,425 2,903 1,286 1,456 3,390 

Capitalization, $ billion 0.876 0.094 4.718 0.028 0.383 

Book-to-market ratio 0.854 0.719 0.661 0.425 1.089 

Excess return (%) 0.535 0.856 5.610 -0.201 1.770 

Return volatility (%) 3.140 1.941 6.366 1.018 3.408 
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Table 5 

Correlations Among Estimated Betas 

 and SIZE and Book-to-Market Characteristics 

 

This table presents the average cross-sectional correlations among betas, SIZE, and BM. Betas 

are estimated for each month using daily returns data from the previous 36 months. SIZE is the 

natural logarithm of market capitalization and BM is the book-to-market ratio. Panel A reports 

the correlations under the CAPM and Panels B and C report the correlations under the Fama-

French three-factor model. The sample period is from January, 1956 through December, 2012.  

 

Panel A: Single-factor CAPM 
 

  
 

SIZE BM 

Individual Stocks MKT -0.20 -0.24 

25 Fama-French 

portfolios 
MKT -0.56 -0.44 

 

 

Panel B: Fama-French Three-factor Model: Individual Stocks 
 

  MKT SMB HML SIZE BM 

MKT 1     

SMB 0.34  1    

HML 0.10 0.14 1   

SIZE 0.18 -0.45 -0.13 1  

BM -0.13 0.06 0.29 -0.34 1 

 

 

Panel C: Fama-French Three-factor Model: 25 SIZE and BM sorted Portfolios 

  MKT SMB HML SIZE BM 

MKT 1     

SMB -0.08 1    

HML -0.08 -0.15 1   

SIZE 0.19 -0.97 -0.01 1  

BM 0.07 -0.03 0.88 -0.08 1 
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Table 6 

Risk Premium Estimates with Individual Stocks: 

CAPM and Fama-French Three-Factor Model 

 

The IV method estimates risk premiums, in percent per month, using individual stocks as test 

assets.  Panel A reports the test results using the IV method in Columns (1) to (5) and those using 

the OLS method in Columns (6) to (10) for comparison. Panels B and C report the asset pricing 

results using the IV method for two subperiods. Rows labeled MKT, SMB and HML are the risk 

premiums for the market, SMB and HML factors, respectively, and the corresponding t-statistics 

are in parentheses (bold if significant at the 5% level). SIZE is the natural logarithm of market 

capitalization. BM is the book-to-market ratio at the end of the previous month and logBM is the 

natural logarithm of BM. Betas for each month are estimated using daily returns data over the 

previous 36 months and cross-sectional regressions are fitted using the IV and OLS methods. 

The sample period is from January 1956 through December 2012. N is the average number of 

stocks in the monthly cross-sections. 

  (1) (2) (3) (4) (5)  (6) (7) (8)  (9) (10) 

 Panel A: 1956-2012, N=2425 

 IV   OLS 
Const 1.028 0.725 2.906 2.729 3.007  0.938 0.720 3.264 2.971 3.202 

 (7.89) (6.00) (4.31) (4.55) (4.92)  (7.40) (5.97) (4.86) (4.86) (5.13) 

MKT -0.246 -0.288 -0.090 -0.018 0.019  -0.102 -0.285 0.040 0.073 0.092 

 (-1.36) (-1.60) (-0.51) (-0.10) (0.11)  (-0.50) (-1.59) (0.17) (0.42) (0.53) 

SMB  0.301  -0.043 -0.019   0.323  -0.042 -0.007 

  (2.20)  (-0.42) (-0.19)   (2.22)  (-0.39) (-0.07) 

HML  0.344  0.242 0.185   0.333  0.198 0.141 

  (2.55)  (1.88) (1.46)   (2.37)  (1.47) (1.08) 

SIZE   -0.120 -0.118 -0.122    -0.141 -0.131 -0.133 

   (-3.49) (-3.93) (-3.94)    (-3.98) (-4.28) (-4.21) 

BM   0.196 0.180     0.195 0.178  

     (4.40) (4.50)     (4.19) (4.41)  

logBM     0.177      0.169 

     (4.31)      (4.03) 

                        Panel B: 1956-1985, N=1379 

 IV   OLS 
Const 1.242 0.720 3.341 3.088   1.078 0.691 3.378 3.295 

 (6.62) (4.06) (3.30) (3.36)   (6.15) (3.94) (3.45) (3.57) 

MKT -0.410 -0.399 -0.200 -0.055   -0.265 -0.375 -0.232 -0.007 

 (-1.78) (-1.69) (-0.87) (-0.23)   (-1.04) (-1.59) (-0.88) (-0.03) 

SMB  0.447  0.095    0.343  0.101 

  
(2.19) 

 
(0.67)    (1.74)  (0.73) 

HML 
 

0.400 
 

0.257    0.405  0.226 

  
(2.03) 

 
(1.41)    (2.06)  (1.20) 

SIZE 
  

-0.139 -0.139     -0.140 -0.150 

   
(-2.67) (-2.98)     (-2.75) (-320) 

BM 
  

0.230 0.207     0.245 0.209 

      (3.44) (3.33)     (3.57) (3.35) 
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                      Panel C: 1986 to 2012, N=3583 

 IV  OLS 
Const 0.853 0.712 2.320 2.558  0.782 0.717 3.104 2.722 

 (4.97) (4.37) (2.74) (3.26)  (4.21) (4.43) (3.41) (3.43) 

MKT -0.084 -0.129 0.060 0.142  0.076 -0.142 0.334 0.144 

 (-0.32) (-0.47) (0.21) (0.56)  (0.24) (-0.52) (0.85) (0.57) 

SMB  0.116  -0.216   0.114  -0.182 

  (0.57)  (-1.42)   (0.53)  (1.09) 

HML  0.331  0.264   0.273  0.167 

  (1.71)  (1.44)   (1.37)  (0.87) 

SIZE   -0.091 -0.108    -0.140 -0.116 

   (-2.15) (-2.77)    (-2.84) (-2.95) 

BM   0.154 0.153    0.139 0.143 

      (2.75) (3.14)    (2.23) (2.86) 
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Table 7 

Risk Premium Estimates with Individual Stocks: 

Fama-French Five-Factor Model 

 

This table reports risk premium estimates from the IV method, in percent per month, using 

individual stocks as test assets, and corresponding t-statistics in parentheses (bold if significant at 

the 5% level).  Rows labelled MKT, SMB, HML, RMW, and CMA are the risk premiums for the 

market, SMB, HML, RMW, and CMA factors, respectively. SIZE is the natural logarithm of 

market capitalization and BM is the book-to-market ratio at the end of the previous month. OP 

and INV are the operating profitability and investment/total asset, respectively. Betas for each 

month are estimated using daily returns data over the previous 36 months and cross-sectional 

regressions are fitted using the IV method. The sample period is from January, 1964 through 

December, 2012. N is the average number of stocks in the cross-sections. Panel A reports the test 

results for the entire sample period, while Panels B and C report those for two subperiods. 

 

 

(1) (2) (3) (4) (5) (6) 

Panel A: 1964-2012, N=2811 

Const 0.739 0.817 0.541 0.753 0.919 3.079 

 
(3.05) (3.40) (1.92) (2.97) (3.90) (4.19) 

MKT 
  

-0.198 
  

0.367 

   
(-0.57) 

  
(1.06) 

SMB 
  

0.453 
  

-0.095 

   
(1.85) 

  
(-0.50) 

HML 
  

0.766 
  

0.354 

   
(1.83) 

  
(0.87) 

RMW 0.121 
 

-0.237 0.207 
 

-0.051 

 
(0.59) 

 
(-0.46) (1.07) 

 
(-0.11) 

CMA 
 

0.030 0.159 
 

-0.043 0.049 

  
(0.13) (0.29) 

 
(-0.18) (0.11) 

SIZE 
     

-0.153 

      
(-4.38) 

BM 
     

0.178 

      
(4.12) 

OP 
   

-0.001 
 

0.649 

    
(-0.00) 

 
(6.10) 

INV 
    

-0.963 -0.709 

          (-6.62) (-9.25) 
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Panel B: 1964-1988, N=1992 

Const 0.640 0.767 0.304 0.692 0.894 2.670 

 
(1.69) (2.04) (0.65) (1.73) (2.42) (2.28) 

MKT 
  

-0.213 
  

0.217 

   
(-0.41) 

  
(0.41) 

SMB 
  

0.496 
  

-0.097 

   
(1.37) 

  
(-0.41) 

HML 
  

1.701 
  

0.891 

   
(2.90) 

  
(1.63) 

RMW 0.218 
 

-0.910 0.142 
 

-0.460 

 
(0.66) 

 
(-1.32) (0.45) 

 
(-0.87) 

CMA 
 

0.180 0.021 
 

0.123 -0.084 

  
(0.42) (0.03) 

 
(0.29) (-0.14) 

SIZE 
     

-0.149 

      
(-2.67) 

BM 
     

0.291 

      
(4.34) 

OP 
   

-0.186 
 

0.994 

    
(-0.64) 

 
(5.36) 

INV 
    

-1.197 -0.909 

     
(-4.39) (-6.65) 

Panel C: 1989-2012, N=3588 

Const 0.845 0.903 0.770 0.793 0.979 3.434 

 
(2.79) (3.01) (2.38) (2.51) (3.31) (3.79) 

MKT 
  

-0.200 
  

0.513 

   
(-0.44) 

  
(1.11) 

SMB 
  

0.409 
  

-0.012 

   
(1.23) 

  
(-0.04) 

HML 
  

-0.123 
  

-0.395 

   
(-0.21) 

  
(-0.63) 

RMW 0132 
 

0.396 0.081 
 

0.721 

 
(0.45) 

 
(0.52) (0.32) 

 
(0.84) 

CMA 
 

-0.403 0.280 
 

-0.300 0.294 

  
(-1.30) (0.37) 

 
(-1.00) (0.42) 

SIZE 
     

-0.157 

      
(-3.70) 

BM 
     

0.072 

      
(1.30) 

OP 
   

0.147 
 

0.331 

    
(1.03) 

 
(3.09) 

INV 
    

-0.738 -0.535 

          (-6.57) (-7.24) 
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Table 8 

Risk Premium Estimates with Individual Stocks: 

The q-factor Asset Pricing Model 

 

This table reports the risk premium estimates from the IV method, in percent per month, using 

individual stocks as test assets, and the corresponding t-statistics in parentheses (bold if 

significant at the 5% level). Rows labeled MKT, ME, I/A, and ROE report the risk premium 

estimates for the market, size, investment, and ROE factors, respectively. SIZE is the natural 

logarithm of market capitalization at the end of the previous month. OP and INV are the 

operating profitability and investment/total asset, respectively. Betas for each month are 

estimated using daily returns over the previous 36 months. The sample period is January, 1972 

through December, 2012. N is the average number of stocks in the cross-sections. 

 

 

(1) (2) (3) (4) (5) (6) (7) (8) 

Panel A: 1972-2012, N=3162 

Const 1.206 0.893 0.907 0.890 0.856 1.120 0.809 4.268 

 
(8.30) (5.00) (4.03) (4.01) (3.68) (4.56) (3.55) (5.39) 

MKT -0.061 
   

-0.247 
  

0.437 

 
(-0.28) 

   
(-0.86) 

  
(1.20) 

ME 
 

0.110 
  

0.222 
  

-0.118 

  
(0.61) 

  
(0.67) 

  
(-0.28) 

I/A 
  

-0.066 
 

0.001 0.247 
 

-0.547 

   
(-0.28) 

 
(0.01) (0.89) 

 
(-0.83) 

ROE 
   

-0.087 -0.400 
 

-0.100 -0.632 

    
(-0.36) (-0.77) 

 
(-0.46) (-0.83) 

SIZE 
       

-0.202 

        
(-5.41) 

OP 
      

2.699 3.734 

       
(3.74) (4.97) 

INV      -0.651  -0.579 

      (-5.16)  (-6.54) 

 

Panel B: 1972-1992, N=2579 

Const 1.040 0.900 1.133 0.778 0.710 1.125 0.687 4.116 

 
(5.17) (3.63) (2.84) (2.09) (2.37) (2.91) (1.88) (3.38) 

MKT 0.179 
   

-0.076 
  

0.501 

 
(0.59) 

   
(-0.21) 

  
(1.07) 

ME 
 

0.258 
  

0.697 
  

0.719 

  
(1.07) 

  
(1.56) 

  
(1.21) 

I/A 
  

0.729 
 

-0.174 0.862 
 

-0.527 

   
(1.72) 

 
(-0.29) (1.46) 

 
(-0.50) 

ROE 
   

-0.252 -0.336 
 

-0.698 -0.140 

    
(-0.87) (-0.46) 

 
(-2.20) (-0.13) 

SIZE 
       

-0.213 
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(-3.58) 

OP 
      

6.11 8.012 

       
(4.32) (5.76) 

INV      -0.845  -0.779 

      (-3.31)  (-4.88) 

 

Panel C: 1993-2012, N=3694 

Const 1.234 0.936 1.102 0.838 0.926 1.117 0.843 4.305 

 
(5.98) (3.92) (3.36) (3.10) (2.59) (3.56) (3.06) (4.17) 

MKT -0.329 
   

-0.278 
  

0.139 

 
(-0.87) 

   
(-0.57) 

  
(0.25) 

ME 
 

-0.021 
  

-0.983 
  

-0.977 

  
(-0.08) 

  
(-1.59) 

  
(-1.68) 

I/A 
  

-0.191 
 

-0.837 -0.084 
 

-1.050 

   
(-0.68) 

 
(-1.16) (-0.29) 

 
(-1.30) 

ROE 
   

0.193 -1.823 
 

0.074 -1.788 

    
(0.53) (-1.68) 

 
(0.22) (-1.72) 

SIZE 
       

-0.182 

        
(-3.88) 

OP 
      

0.086 0.001 

            
 

(0.15) (0.00) 

INV      -0.498  -0.402 

      (-4.65)     (-4.59) 
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Table 9 

Risk Premium Estimates with Individual Stocks:  

Liquidity-adjusted CAPM (LCAPM) 

 

This table reports the risk premium estimates from the IV method, in percent per month, using 

individual stocks as test assets, and the corresponding t-statistics in parentheses (bold if 

significant at the 5% level).  The row labeled LMKT reports the premium estimates for liquidity-

adjusted market risk under the liquidity-adjusted CAPM (LCAPM), and the row labeled Amihud 

illiquidity reports the slope coefficient on firm-specific Amihud illiquidity measure. Liquidity-

adjusted market betas for each month are estimated using daily returns over the previous 36 

months. The sample period is from January, 1956 through December, 2012. Following the 

literature, only NYSE/AMEX-listed stocks are included in the analyses. N is the average number 

of stocks in the cross-sections. 

 

 

 Sample Period 

 1956-2012, N=1283 1956-1985, N=1204 1986-2012, N=1368 

Constant 0.559 0.503 0.833 0.719 0.350 0.312 

 (3.85) (3.48) (4.32) (3.71) (1.64) (1.44) 

LMKT 0.150 0.085 -0.110 -0.165 0.346 0.344 

 (0.66) (0.38) (-0.34) (-0.52) (1.11) (1.10) 

Amihud 
 

0.220  0.361  0.061 

Illiquidity 
 

(4.21)  (3.70)  (2.78) 
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Table 10 

Risk Premium Estimates with Characteristics  

as Additional Instruments: IV Mean-estimator  

 

This table reports the slope coefficients of the following regression, fitted using the IV mean-estimator in Eq. (25): 

 

 

where  is the average return over month t to month t+11 and the independent and instrumental betas are estimated using daily 

returns over the past 36 months. denotes the average of characteristic j over the past 12 months. The columns titled “Tm=1” and 

“Tm=12” report the slope coefficients when the averages are taken over the corresponding numbers of months, respectively. Using the 

IV mean-estimator, the table reports the risk premium estimates for the CAPM, Fama-French three- and five-factors models, q-factor 

asset pricing model by HXZ, and liquidity-adjusted CAPM. MKT, SMB, HML, RMW, CMA, ME, I/A, and, ROE are the risk 

premiums for the market, SMB, HML, RMW, CMA, size, investment, and ROE factors, respectively. SIZE is the natural logarithm of 

market capitalization, BM is the book-to-market ratio, OP is the operating profitability, and INV is investment/total asset at the end of 

the previous month. LMKT is the liquidity-adjusted market risk premium under the LCAPM, and Amihud illiquidity is the slope 

coefficient on firm-specific Amihud illiquidity measure. We use Fama-MacBeth standard errors for Tm=1 and Hansen-Hodrick 

standard errors with 12 lags for Tm=12 to compute the t-statistics reported in parentheses (bold if significant at the 5% level). The 

sample period for the CAPM, Fama-French three-factor model (FF3M), and liquidity-adjusted CAPM (LCAPM) is from January, 

1956 through December, 2012. The sample periods for the Fama-French five-factor model (FF5M) and the q-factor asset pricing 

model (APM) are from January, 1964 through December, 2012 and from January, 1972 through December 2012, respectively.   
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 CAPM 

  

            FF3M 

  

           FF5M 

  

         q-factor APM 

  

           LCAPM 

T=1 T=12  T=1 T=12  T=1 T=12  T=1 T=12  T=1 T=12 

Intercept 3.255 2.565  3.102 2.479  3.079 2.084  4.268 2.696  0.503 0.433 
 (4.85) (3.49)  (5.21) (3.69)  (4.19) (3.04)  (5.39) (3.77)  (3.48) (2.17) 

MKT 0.001 0.056  0.032 0.053  0.367 0.165  0.437 0.335    

 (0.01) (0.29)  (0.19) (0.34)  (1.06) (0.88)  (1.20) (1.57)    

LMKT             0.085 0.021 

             (0.38) (0.93) 

SMB    -0.072 0.042  -0.095 0.123       

    (-0.71) (0.49)  (-0.50) (1.41)       

HML    0.196 0.106  0.354 0.141       

    (1.55) (0.86)  (0.87) (0.77)       

RMW       -0.051 0.090       

       (-0.11) (0.42)       

CMA       0.049 0.653       

       (0.11) (1.88)       

ME          -0.118 0.140    

          (-0.28) (0.94)    

I/A          -0.547 -0.242    

          (-0.83) (-0.69)    

ROE          -0.632 -0.354    

          (-0.83) (-0.94)    

SIZE -0.139 -0.103  -0.136 -0.101  -0.153 -0.089  -0202 -0.111    

 (-4.05) (-2.78)  (-4.55) (-3.03)  (-4.38) (-2.61)  (-5.41) (-3.40)    

BM 0.166 0.191  0.153 0.173  0.178 0.139       

 (3.73) (2.91)  (3.82) (2.95)  (4.12) (2.05)       

OP       0.649 0.258  3.734 -1.783    

       (6.10) (1.35)  (4.97) (-1.37)    

INV       -0.709 -0.615  -0.579 -0.324    

       (-9.25) (-3.61)  (-6.54) (-1.84)    

Amihud             0.220 0.152 
Illiquidity             (4.21) (4.34) 
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Table 11 

Strength of Instruments  

 

This table presents the average cross-sectional correlations between odd- and even-month betas 

(in the columns labeled Corr(Odd,Even)) for the CAPM, Fama-French three- and five-factor 

models, q-factor asset pricing model by HXZ, and liquidity-adjusted CAPM by Acharya and 

Pedersen. The critical value for the weak instruments test proposed by Nelson and Startz (1990) 

is .057, based on the smallest number of stocks in any month of the sample period. The square 

root of the correlation of odd- and even-month betas is the correlation between the unobservable 

“true” betas and the corresponding beta estimates based on the IV method (in the columns 

labeled Corr(True Beta, Beta Est.)).  

 

Panel A: CAPM 

Sample period 
Corr(Odd, Even) Corr(True Beta, Beta Est.) 

MKT MKT 

1956-2012 
 

0.72 
  

0.85 
 

 

 

Panel B: Fama-French Three-factor Model 

Sample period 
Corr(Odd, Even) Corr(True Beta, Beta Est.) 

MKT SMB HML MKT SMB HML 

1956-2012 0.59 0.48 0.33 0.77 0.69 0.57 

 

 

Panel C: Fama-French Five-factor Model 

Sample 

period 

Corr(Odd, Even) Corr(True Beta, Beta Est.) 

MKT SMB HML RMW CMA MKT SMB HML RMW CMA 

1964-2012 0.43 0.37 0.21 0.16 0.13 0.66 0.61 0.46 0.40 0.36 

 

 

Panel D: q-factor Asset Pricing Model 

Sample 

period 

Corr(Odd, Even) Corr(True Beta, Beta Est.) 

MKT ME I/A ROE MKT ME I/A ROE 

1972-2012 0.49 0.37 0.19 0.21 0.70 0.61 0.44 0.46 

 

Panel E: Liquidity-adjusted CAPM (LCAPM) 

Sample period 
Corr(Odd, Even) Corr(True Beta, Beta Est.) 

LMKT LMKT 

1956-2012 0.58 0.76 
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Appendix 

Appendix A. Consistency of the IV Estimator with Time-varying Betas and Simulation 

Evidence 

 

The proposition below shows that the IV estimator is also consistent when betas are time-

varying. For ease of exposition, we present the special case for a single factor model where time-

variation in beta is captured by white noise. Online Appendix F contains the proposition and its 

proof for multi-factor models with time-varying betas that follow any covariance stationary 

process. 

Proposition: Suppose that asset returns follow a one-factor model, and betas of stocks vary over 

time. Let βi,t be the beta of stock i at time t and βi be its unconditional mean. Let  

 

      βi,t = βi + ui,t,                                                                       (27)                       

where  ui,t is white noise, uncorrelated across stocks. Let tγ be the ex ante risk premium at time t. 

Under mild regularity conditions, the estimator in Eq. (4),   'ˆ
tγ , is N-consistent for any T. 

Proof: Under the one factor model, expected return is given by: 

                    𝐸(ri,t) = γ0 +  βi,tΥt = γ0 + (βi + ui,t)Υt = γ0 + βiΥt + ui,tΥt.                            (28) 

Here, Υt=γt+ft is the exposed risk premium. 

Suppose both  βi and ui,t are observable. We can fit the following model: 

                               ri,t = a + Υtβi + cui,t + εi,t                                                                                  (29) 

The slope coefficient on beta is the factor risk premium, i.e.  

                                                    Υt =
𝑐𝑜𝑣(ri,t,βi)

𝑣𝑎𝑟(βi)
                                                                                  (30)    
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In practice βi and ui,t are not observable. We can obtain an estimate of beta from past data, say β̂, 

but ui,t  cannot be estimated from returns data since it is a time t innovation.  Consider the 

following IV regression:  

                                               ri,t = a + Υtβ̂EV,i + ξi,t                                                                  (31) 

 

where β̂EV,i  is estimated using half the sample period, and ξi,t  (which can be written as εi,t +

ui,tΥt − Υt(β̂EV,i − β̂i) based on Eqs. (28) and (29)) is the error in the regression. Let β̂IV,i be the 

instrumental variable, which is estimated using the other half of the sample period. We can 

express estimates of betas as:  

 

                                       β̂EV,i  = βi + ηEV,i                                                                                  (32) 

                                            β̂IV,i = βi + ηIV,i.                                                                                   (33) 

 

Since we estimate betas using linear regressions, we can express η’s as linear combinations of u 

and ε. Specifically,  

 

                    ηEV,i =
2

T
(∑ ω1,i,tui,tt∈EV + ∑ ω2,i,tt∈EV εi,t)                                                         (34) 

                       ηIV,i =
2

T
(∑ ω1,i,tui,tt∈IV + ∑ ω2,i,tt∈IV εi,t)                                                         (35) 

 

where ω1,i,t and ω2,i,t are finite weights and T/2 is the number of observations used to estimate 

β̂EV,i  and β̂IV,i  Since β̂EV,i  and β̂IV,i  are estimated over non-overlapping periods,and betas are 

uncorrelated with ui,t and εi,t  cross-sectionally, 

 

𝑐𝑜𝑣(ηEV,i, ηIV,i) = 0, 𝑐𝑜𝑣(βi, ηIV,i) = 0, 𝑐𝑜𝑣(βi, ηEV,i) = 0, 

                               𝑐𝑜𝑣(βi, ui,t) = 0, 𝑐𝑜𝑣(βi, εi,t) = 0                                                                    (36) 

 

Also, because both regression residuals in return process, ui,t are white noise, and Υt is fixed at 

time t,         

                              𝑐𝑜𝑣(ri,t, ηIV,i) = 0.                                                                                           (37)  
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Therefore,  

γ̂IV →
𝑐𝑜𝑣(ri,t, β̂IV,i)

𝑐𝑜𝑣(β̂EV,i, β̂IV,i)
=

𝑐𝑜𝑣(ri,t, βi)

𝑣𝑎𝑟(βi)
=

𝑐𝑜𝑣(a + Υtβi + Υtui,t + εi,t, βi)

𝑣𝑎𝑟(βi)
= Υt                   (38) 

 

as N converges to infinity.  

 

If in Eq. (27) ui,t follows any stationary and ergodic process, we prove in  Online Appendix F  

shows that the IV estimator is consistent when we allow T to converge to infinity first, and then 

allow N to converge to infinity. 

 

Simulations with Time-varying Betas  

This section describes our procedure for the simulations with time-varying betas 

discussed in Section 3.3. The simulation assumes that , the beta of stock i in month t,  follows 

an AR(1) process. Specifically:  

                 

where  is the shock to beta, and  is the unconditional mean of beta. We first estimate  from 

real data, which we then use in the simulation. Specifically, we first estimate the three-year 

rolling betas for each stock, producing monthly time-varying betas. We then trim these beta 

estimates at the 2.5% and 97.5% levels, and shrink them by applying a simple adjustment rule: 

adjusted beta = 2/3×beta estimate + 1/3. We then compute the average autocorrelation of the 

betas across all stocks, which equals .96. Table A1 presents the average time-series standard 

deviations for single-factor and three-factor betas.  

To generate time-varying betas, we first randomly generate the time-series mean of each 

beta as we did for the constant-beta simulations. We next draw  from a normal distribution 

with mean zero and standard deviation equal to  times the average time-series standard 

deviation of the corresponding beta. We then compute  through the AR(1) specification above. 

We assume that  stays constant for 21 trading days for a given month. Finally, using this time-

varying betas, we generate daily returns by following the same simulation procedure described in 
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Section 3.1. We conduct the same IV estimation procedure for risk premiums as in the 

simulations with constant betas. This simulation procedure is used for the single factor CAPM 

and the Fama-French three-factor model. Table A2 presents the biases and RMSEs of IV risk 

premium estimates with time-varying betas and Table A3 presents the size and power of IV tests 

with time-varying betas. The results here are similar to the corresponding results in Tables 2 and 

3. 

We also experiment with less persistent time-varying betas that have different values of ρ  

ranging from 0.56 to 0.96. The results from these additional simulations with different ρ s are 

similar to the corresponding results in Tables A2 and A3. For example, with ρ =0.56, under the 

single factor CAPM, we find that the ex-ante and ex-post biases of IV market risk premium 

estimates are -1.0% and -1.5%, respectively, while those biases of OLS market risk premium 

estimates are -28.2% and -28.6%, respectively. With ρ =0.56, under the Fama-French three-

factor model, the ex-ante and ex-post biases of IV risk premium estimates range from -3.5% to 

0.0%, while those biases of OLS risk premium estimates range from -64.7% to -38.1%. The 

magnitudes of these biases of IV and OLS risk premium estimates are similar to those with ρ

=0.96 in Table A2. When ρ =0.76 is used, under the single factor CAPM, we find that the ex-ante 

and ex-post biases of IV market risk premium estimates are -2.0% and -4.2%, respectively, while 

those biases of OLS market risk premium estimates are -28.4% and -30.5%, respectively. With ρ

=0.76, under the Fama-French three-factor model, the ex-ante and ex-post biases of IV risk 

premium estimates range from -5.7% to -2.1%, while the biases of OLS risk premium estimates 

range from -65.4% to -37.9%. We thus conclude that the different degree of persistence in time-

varying betas does not affect the small sample properties of IV risk premium estimator 

significantly.  
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Table A1 

Time-varying Beta Parameters 

Average time-series standard deviations of time-varying betas and their AR(1) Coefficients (=ρ )  

  
  Single Factor Model 

Fama-French 

Three-Factor Model 

 
 

ρ   StdDev ρ   StdDev 

Betas MKT 0.96 0.15 0.96 0.15 

 
SMB 

  
0.96 0.19 

 
HML 

  
0.96 0.21 

 

TABLE A2 

Small Sample Properties of IV Risk Premium Estimates 

with Time-varying Betas 

 

Panel A: Single-factor CAPM 

 

 

Risk 

Factor 

Estimator 
Ex-ante 

Bias (%) 

Ex-post 

Bias (%) 

Ex-ante 

RMSE 

Ex-post 

RMSE 

MKT OLS -25.7 -27.0 0.184 0.147 

 IV -1.5 -2.8 0.182 0.078 

 

 

Panel B: Fama-French Three-factor Model 

 

 

Risk 

Factor 

Estimator 
Ex-ante 

Bias (%) 

Ex-post 

Bias (%) 

Ex-ante 

RMSE 

Ex-post 

RMSE 

MKT OLS -35.4 -36.1 0.212 0.189 

 IV -1.5 -2.2 0.176 0.086 

SMB OLS -61.0 -60.1 0.146 0.144 

 IV -4.2 -3.4 0.126 0.094 

HML OLS -56.8 -57.6 0.213 0.216 

 IV -1.9 -2.7 0.112 0.084 
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TABLE A3 

Size and Power of the IV Tests  

with Time-varying Betas 

 

 

Risk 
Estimator 

Theoretical Percentiles 

Factor 1% 2.5% 5% 7.5% 10% 

 Panel A: Size for Single-factor CAPM 

MKT OLS 1.8% 3.2% 4.1% 8.2% 10.9% 

 IV 1.3% 2.7% 4.7% 7.9% 10.1% 

 Panel B: Size for Fama-French Three-factor Model 

MKT OLS 1.9% 3.1% 4.1% 8.3% 11.1% 

 IV 1.4% 2.8% 4.6% 7.7% 10.3% 

SMB OLS 1.7% 3.3% 4.9% 7.1% 9.5% 

 IV 1.2% 2.9% 5.2% 7.3% 9.7% 

HML OLS 1.6% 2.9% 4.7% 7.8% 10.5% 

 IV 1.4% 2.6% 4.9% 7.2% 9.8% 

 

 

Risk 

Factor 

Test Power 

OLS IV 

Panel C: Power for Single-factor Model CAPM 

MKT 85.2% 85.4% 

Panel D: Power for Fama-French Three-factor Model 

MKT 79.0% 84.2% 

SMB 45.4% 52.9% 

HML 91.0% 91.7% 

MKT or SMB or 

HML 
99.5% 99.7% 
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Appendix B. Innovations in Illiquidity Costs 

We follow Acharya and Pedersen (2005) and fit the following time-series regression to 

estimate expected and unexpected components of market-wide illiquidity cost 

(  ): 

 

, 

 

where is the value-weighted average of , which Acharya 

and Pedersen define as un-normalized illiquidity, truncated for outliers. These variables are 

defined based on Eqs (16) and (17). We cannot reject the hypothesis that the residuals are white 

noise based on the Durbin-Watson tests for L=2. The results we report in the text are based on 

the application of the AR(2) model to estimate expected and unexpected components of 

illiquidity cost for the market as well as for individual stocks. We repeat the tests with L ranging 

from 2 to 6 and find that the results are not sensitive to the choice of L. 

 

Appendix C.  Proof of Proposition 2 

Proof: Let XIV,t−1 =




















1tN,1t1,

1tN,IV,1ti,IV,

CC

β̂β̂

11







,     XEV,t−1 =




















1tN,1t1,

1tN,EV,1tEV,1,

CC

β̂β̂

11







,                

the estimator is , where .  

Denote , where  are the estimated coefficient of constant, beta 

and characteristics in the cross-sectional regression. We will show that the coefficient of beta in 

the regression converges to the exposed factor risk premium . The proof for coefficients of 

constant and characteristics converge to zero is similar (we provide a more general proof in the 

Online Appendix G). 
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With some algebra, we can show that , where  

+

, and 

 where , 

 and  denote the cross-sectional sample mean, covariance and variance. 

Assume that , and for each i,  follows a stationary and ergodic process 

with mean zero. Hence,  and as T converges to infinity. Similarly, 

when Tm converges to infinity, , and . Therefore, 

+ =

 when N, T and Tm converge to infinity. Similarly,  

 when N, T and Tm converge to infinity. This implies that the 

estimated risk premium  when N, T and Tm converge to infinity. 

Details of Simulations with Time-varying Betas and Characteristics 

 This section describes the procedure that we use for the simulations with time-varying 

betas and time-varying characteristics discussed in Section 5.1. We assume that  and  , i.e., 

the beta and corresponding characteristic of stock i in month t, follow AR(1) processes:  

                                       

                                        

where  and  are the shocks to beta and characteristic, respectively, the shock to the 

characteristic is defined as , and  is the unconditional mean of beta. We set  

to 0.96, i.e., beta and characteristic have the same persistence. Note that  and  are 

correlated through  cross-sectionally and  and  are correlated through  cross-

sectionally.  

We generate the time-varying betas and daily and monthly returns by following the same 

simulation procedure described in Appendix A. To generate the time-varying characteristic, we 
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independently generate the shock to characteristic  and combine it with the shock to future 

beta . The standard deviation of  is determined based on the time-series average of cross-

sectional correlation between  and , whose information is presented in Panel B of Table 

5.29 For the IV mean-estimator, we use the average characteristic over the past twelve months as 

additional instrumental and control variables, and we use the average return over the sample 

period from month t to month t+11 as the dependent variable.  

The same simulation procedure as before is used for the single-factor CAPM and the 

Fama-French three-factor model. For the IV mean-estimator, Table A4 presents the ex-ante 

biases and RMSEs of risk premium estimates and slope coefficients of characteristics and Table 

A5 presents the size and power of the corresponding IV tests, where the theoretical percentile for 

the size is 5%. For comparison, the results for the OLS estimator are also provided in Tables A4 

and A5. 

 

  

                                                        
29 To simulate time-varying market beta and corresponding characteristic, the average of cross-section correlation is 

set to 0.37, which is the average of absolute value of Corr(SMB beta, SIZE) and Corr(HML beta, BM). 
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TABLE A4 

Small Sample Properties of the IV Mean-estimator 

with Time-varying Betas and Characteristics 

 

Panel A: Single-factor CAPM 

 

 

 

  Panel B: Fama-French Three-factor Model 

 

Risk  

Factor 
Estimator 

Ex-ante  

Bias (%) 

Ex-ante 

RMSE 

Ex-ante  

Bias (%) 

Ex-ante 

RMSE 

 
Risk Premium Characteristic 

MKT OLS -37.6 0.222 5.5 0.033 

 IV Mean -5.2 0.059 0.1 0.007 

SMB OLS -67.6 0.158 18.1 0.048 

 IV Mean -4.5 0.043 -0.2 0.012 

HML OLS -60.6 0.227 6.7 0.028 

 IV Mean -6.5 0.042 0.1 0.005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Risk  

Factor 
Estimator 

Ex-ante  

Bias (%) 

Ex-ante 

RMSE 

Ex-ante Bias 

(%) 

Ex-ante 

RMSE 

Risk Premium Characteristic 

MKT OLS -29.1 0.196 4.1 0.027 

 IV Mean -5.1 0.058 0.1 0.007 
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TABLE A5 

Size and Power of the Tests by the IV Mean-estimator 

with Time-varying Betas and Characteristics 

 

Panel A: Single-factor CAPM 

 

Risk 

Factor Estimator 

Size 

(Theoretical: 5%) 
Power 

Size 

(Theoretical: 5%) 

Risk Premium Risk Premium Characteristic 

MKT OLS 4.0% 83.7% 4.5% 

 IV Mean 5.4% 99.9% 4.7% 

 

Panel B: Fama-French Three-factor Model 

 

Risk 

Factor Estimator 

Size 

(Theoretical: 5%) 
Power 

Size 

(Theoretical: 5%) 

Risk Premium Risk Premium Characteristic 

MKT OLS 5.7% 77.6% 4.5% 

 IV Mean 5.5% 99.9% 4.9% 

SMB OLS 5.8% 36.7% 4.8% 

 IV Mean 4.6% 99.1% 4.9% 

HML OLS 5.6% 82.8% 5.4% 

 IV Mean 5.3% 99.9% 4.7% 
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Appendix D. Proof of Proposition 3 

For expositional convenience, we assume that the even-month beta is the independent 

variable and odd-month beta is its instrument. We need to show that the correlation of true beta 

(x) and estimated beta ( ) from even months is the square root of the correlation of estimated 

beta ( ) and its instrument (z), i.e.,  

 

where        

and,   and   are mutually independent and  

By the definition of correlation, we have 

                          

 

           .
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Empirical Tests of Asset Pricing Models with Individual Assets: 

Resolving the Errors-in-Variables Bias in Risk Premium Estimation 
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Appendix E. Proof of Proposition 1 

        Let β  be matrix of true values of betas for all factors and assets. When there are K factors 

and N assets, it is a NK   matrix. Next, let IVβ̂  and EVβ̂  ( NK   matrix) be estimated betas. 

“IV” subscript indicates the beta instruments and the “EV” subscript denotes the corresponding 

explanatory variables, respectively. We define IV and EV periods as the periods of data used to 

estimate IV and EV betas. The symbol “^” indicates an estimate. Define ]ˆ ;[ˆ
IVIV β1Β   and 

]ˆ ;[ˆ
EVEV β1Β  ,  “1  ” denotes a N1  vector of ones and the operator “;” stacks the first row 

vector on top of second matrix. Hence, IVΒ̂  and EVΒ̂  are N1)(K   matrices that contain the 

intercept and K estimated factor loadings. Without loss of generality, we assume that there are 

total T+1 periods, we use first T periods to estimate IV and EV beta, and run cross-sectional 

regression using returns at time T+1. Define tr  as the N1  vector of excess returns at t, and 

denote γ̂ , a 1)(K1   vector, as the estimates of zero beta rate and K risk premiums. With 

these matrix notations, Eq. (3) in the paper can be written as  

                                            1TEV1T
ˆˆ

  ξΒγr                

where and 1Tξ  denotes the N1  vector of return residuals, and its formula will be defined on 

next page. 

       We then propose the following IV estimator for risk premiums at month T+1:  

                                          .)'ˆ()'ˆˆ(='ˆ
1TIV

1

EVIV1T 



 rΒΒΒγ                                (Eq. (4) in paper)           
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In this paper, IVΒ̂  ( EVΒ̂ ) can be either eΒ̂  (even-month betas) or oΒ̂  (odd-month betas) in our 

implementation (define ]ˆ;[ˆ
evene β1Β   and ]ˆ;[ˆ

oddo β1Β   where evenβ̂  and oddβ̂  ( NK   matrix) 

are estimated betas using data in even and odd months, respectively.). For example, if IVΒ̂  is oΒ̂ , 

EVΒ̂  is eΒ̂ , and vice-versa. 

 

E.1. Consistency of the IV estimator 

In this section, we prove the consistency of the IV estimator. Define ]ˆ;[ˆ
samplesample β1Β   where 

sample =odd or even. In addition, ];[ β1Β   is the matrix that contains the vector of ones and true 

value (or unconditional expected value) of betas.  

Let tf denote the factor realization in period t; it is a K1 vectors. And let tε be the vectors 

of regression residuals at time t for all assets in Eq. (2) of the paper; it is a N1 vector. Without 

loss of generality, assume that factors have zero means (for example, demeaned factors). The 

estimation error in the first stage regression is   sample

d

sample

d

sample

1d

sample

d

samplesample ''ˆ uΩFFFββ 


, 

where ];;[ d

1-T

d

3

d

1

d

o

d

sample fffFF   when sample contains odd periods and 

];;;[ d

T

d

4

d

2

d

e

d

sample fffFF   when sample contains even periods. ];;;[ d

1-T

d

3

d

1

d

sample εεεΩ   when 

sample contains odd periods and  ];;;[ d

T

d

4

d

2

d

sample εεεΩ   when sample contains even periods 

(for simplicity, we assume that T is even). The superscript d indicates a demeaned factor or 

residual, where average values of factors or residuals are taken over sample periods (such as odd 

and even periods). With these notations,   ]'';[ˆ d

sample

d

sample

1d

sample

d

samplesample ΩFFF0ΒΒ


 , where 

“ 0 ” denotes a N1  vector of zeros. 

The dependent variable in the second stage cross-sectional regression is 1Tr . The regression 

in the second stage (the cross-sectional regression) can be written as 1TEV1T
ˆˆ

  ξΒγr . Since 

the true model is 1T1T1T )(   εβγfr 30, the cross-sectional residuals are 

                                                        
30 Rewriting Eqs. (1) and (2) in Section 2 of main text in matrix notation, we have γβr  )( 1TE  (1’) and 

1T1T1T1T '   εαεβfαr  (2’)  where ]α,,α[ N1 α  and ]ε,ε[ N

1T

1

1Tt  ε  (assume that
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                                 1TEV1T1TEV1T1T )()ˆ)((   εuγfεββγfξ . 

         The estimated risk premium for this regression can be written as 

.)'ˆ()'ˆˆ(='ˆ
1TIV

1

EVIV1T 



 rΒΒΒγ  In order to show the N-consistency and derive asymptotic 

distribution of the above estimator, we need to make the following assumptions: (1) The residual 

process ]ε,,ε,ε[ N

t

2

t

1

tt ε 31 is stationary. The elements in sε  are cross-sectionally uncorrelated, 

and sε  and tε  are uncorrelated when s is not equal to t. Moreover, assume that the variances 

(second moments) and fourth moments of all residuals exist. Let Σ  be the covariance matrix for 

the residuals, then the above assumption implies that it is a diagonal matrix with finite elements. 

(2) The factor process tf  is stationary, with finite variance, and is independent with residuals. 

With these assumptions and several regularity conditions (described in the Theorem), N-

consistent is presented in Theorem E1. 

Theorem E1 (Consistency, Proposition 1 in paper) Assume that for any t, elements in 

)'(εB,,)'(εB N

t

N1

t

1    (where Β=]B,,B[ N1  32) have finite variances, and when N∞, N/'ΒΒ  

converges to invertible matrice (denote the matrices by 'bb  ), then the estimated risk premiums 

,)'ˆ
N

1
()'ˆˆ

N

1
('ˆ

1TIV

1

EVIV1T 



  rΒΒΒγ  converges to )',0( 1T fγ  when N converges to infinity.  

Proof of the consistency: Note that:  

 .)'ˆ
N

1
()'ˆˆ

N

1
(=')(0,'ˆ

1TIV

1

EVIV1T1T 



  ξΒΒΒfγγ  

The consistency is established based on Markov’s Law of Large Numbers: (1) Since elements in 

)'(εB,,)'(εB N

t

N1

t

1  have finite variances, and factors are stationary with finite variances, and 

factors are independent with regression residuals, elements in )'(ξB,,)'(ξB N

1T

N1

1T

1

   have finite 

                                                                                                                                                                                   

0)'( t fE ). Take the expectation of (2’), we have αr  )( 1TE   (2’’). Combining the three Eqs. ((1’), (2’) and 

(2’’)) above, the true return process can be written as 1T1T1T )(   εβγfr .  

 
31 Note that we are using superscript i to indicate the i’th stock in the Online Appendix. 

32 With this notation, when there are K factors, ]β;;β;1[B i

K

i

1

i  . 
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variances. Similarly, elements in     )'''(B,,)'''(B Nd,

IV

d

IV

1d

IV

d

IV

Nd,1

IV

d

IV

1d

IV

d

IV

1
εFFFεFFF


  have finite 

variances, and elements in     )'''(B,,)'''(B Nd,

EV

d

EV

1d

EV

d

EV

Nd,1

EV

d

EV

1d

EV

d

EV

1
εFFFεFFF


  have finite 

variances ( i

IVε  is the residuals vector for stock i in IV periods, and i

EVε  is the residuals vector for 

stock i in EV periods; superscript d indicates demeaned residual where average values are taken 

in IV or EV periods); (2) for any i, 0=))'(ξB( i

1T

i

E ,   0εFFF =))'''(B( id,

IV

d

IV

1d

IV

d

IV

i 
E , and 

  0εFFF =))'''(B( id,

EV

d

EV

1d

EV

d

EV

i 
E ; (3) regression residuals 

i

tε  are not cross-sectional and time-

sereies correlated so that   id,

IV

d

IV

1d

IV

d

IV '' εFFF


 and   id,

EV

d

EV

1d

EV

d

EV '' εFFF


 are uncorrelated, and 

  id,

IV

d

IV

1d

IV

d

IV '' εFFF


 is uncorrelated with 
i

1Tξ  ; (4) Given that regression residuals have finite 

variances and fouth moments, factors have finite variances, and factors are independent with 

regression residuals, then elements in     ')ξ)(''(,,')ξ)(''( N

1T

Nd,

IV

d

IV

1d

IV

d

IV

1

1T

d,1

IV

d

IV

1d

IV

d

IV 






εFFFεFFF   

have finite variances, and elements in

        ')'')(''(,,')'')(''( Nd,

EV

d

EV

1d

EV

d

EV

Nd,

IV

d

IV

1d

IV

d

IV

d,1

EV

d

EV

1d

EV

d

EV

d,1

IV

d

IV

1d

IV

d

IV εFFFεFFFεFFFεFFF


  also have 

finite variances; apply Markov’s Law of Large Numbers, 

 






 
N

1i

i

1T

id,

IV

d

IV

1d

IV

d

IV

i

1TIV 0')ξ])('';0[(B
N

1
='ˆ

N

1
εFFFξΒ , and  

    .')'])'';[])('';[((
N

1
)'ˆˆ(

N

1 d

EV

d

EV

1d

EV

d

EV

d

IV

d

IV

1d

IV

d

IVEVIV bbΩFFF0ΒΩFFF0ΒΒΒ 


  

This implies that ')(0,'ˆ
1T1T   fγγ  is N-consistent.▄ 

      One key assumption in this proof is that elements in )'(εB,,)'(εB N

t

N1

t

1    have finite 

variances. To satisfy this condition, besides finite variances of residuals, we also impose 

regularity condition for beta. For example, maximum values of betas among all stocks are finite.  

     This Theorem can be extended to case that the regression residuals are not highly correlated 

(Shanken (1992) call it “weakly correlated”). The intuition is that when these correlations are 

small enough so that )'ˆ
N

1
( 1TIV ξΒ  converges to zero and )'ˆˆ(

N

1
EVIVΒΒ is finite, it can be shown 
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that the estimator is still N-consistency. We also derive the conditional (on factors) and 

unconditional asymptotic distribution of the estimator. These Theorems and proofs can be 

requested from the authors. 

 

Appendix F. Consistency of IV estimator with time-varying betas  

 

         Theorem E1 requires that factor loading betas are constant. In this subsection, we relax this 

assumption and analyze the properties of the estimated risk premiums.  

Proposition: In addition to the assumptions in Theorem E1, suppose betas of stocks vary over 

time. Let 
i

tβ  be the beta of stock i at time t and 
i
β be its unconditional mean. Let  

                         
i

t

ii

t uββ                                                                              (1)   

In addition, true risk premium tγ  is time-varying. 

(1) When
i

tu  and 
j

su  are uncorrelated for any ji   and ts  , and any 
i

tu ’s  are uncorrelated with 

factors and regression residuals, ')(0,'ˆ
1T1T1T   fγγ converges to zero in probability when N 

converges to infinity, under mild regularity conditions.  

(2) Assume that for each time t, 
i

tu  and 
j

tu  are uncorrelated for any ji   . Moreover, for each i, 

i

tu  follows a stationary and ergodic process. In addition, 
i

tu ’s  are uncorrelated with factors and 

regression residual. With mild regularity conditions, ')(0,'ˆ
1T1T1T   fγγ converges to zero in 

probability when we take probability limit as T converges to infinity first, and then take 

probability limit as N converges to infinity. ▄ 

Proof of proposition: 

(1) In this proposition, factor loadings are assumed to be time-varying. Thus, the model 

becomes: 
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.γβγ)r( kt,

K

1k

i

kt,0

i

t  


E  

The first stage regression is the following: ,εfβαr i

ttk,

K

1k

i

kt,

ii

t  


 where
i

kt,

i

k

i

kt, uββ  . With 

the above equation, we can rewrite return dynamics as follows: 

).fuε(fβαr tk,

K

1k

i

k

i

ttk,

K

1k

i

k

ii

t  


 

Define ),fuε(ν tk,

K

1k

i

k

i

t

i

t  


 the above equation becomes 

.νfβαr i

ttk,

K

1k

i

k

ii

t  


 

It is clear that regression residuals 
i

tν  is stationary and  it is not correlated across stocks or  auto 

correlated when 
i

tu ’s are not correlated across stocks and not auto correlated, 
i

tu ’s are 

uncorrelated with factors and regression residuals, and the factors are stationary processes with 

finite variances. Therefore, if we replace 
i

tε  with 
i

tν , we can apply Theorem E1 with the same 

assumptions, regularity conditions, and the proof is the same. 

(2) Following the same deviation as in Appendix E, the second stage regression is 

1TEV1T
ˆˆ

  ξΒγr . Since the true model is 1T1T1T1T )(   νβγfr , the cross-sectional 

residuals are 

1TEV1T1T1T )ˆ)((   νββγfξ . 

  .)'ˆ
N

1
()'ˆˆ

N

1
(=')(0,'ˆ

1TIV

1

EVIV1T1T1T 



  ξΒΒΒfγγ    

Take probability limit as T converges to infinity, ΒΒ IV
ˆ , ΒΒ IV

ˆ and 1T1T   νξ . Hence, 
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)'
N

1
()'

N

1
()'ˆ

N

1
()'ˆˆ

N

1
( 1T

1

1TIV

1

EVIV 





  ΒνΒΒξΒΒΒ . 

Next, take probability limit as N converges to infinity, 0)'
N

1
()'

N

1
( 1T

1 


ΒνΒΒ following 

Markov’s law of large numbers, with the assumption that the variances of elements in 

)'(νB,,)'(νB N

1T

N1

1T

1

   (where Β=]B,,B[ N1   and t

N

1T

1

1T ]ν,,[ν ν  ) converge to zero as N 

converges to infinity.▄ 

Appendix G. Time-varying characteristics  

         In this section, we incorpate time-varying characteristics in the cross-sectionally regression: 

i.e. in the second stage regression, the independent variables are estimated betas and 

characteristics of stocks. The key structure is that both estimated betas and characteristics are 

proxies for the true factor loading (true betas). Therefore, they should be correlated. Moreover, 

we assume that the processes for betas and characteristics are autocorrelated. We propose a new 

estimator: mean estimator, and prove its NT-consistency. The mean estimator in this appendix is 

more general, with the estimator in Proposition 2 in Section 5 as a special example.  

   Denote that 
i

tC  as characteristics for stock i at time t. Assume that there are L 

characteristics, so 
i

tC  is a L by 1 column vector. The dependent variable in the second stage 

cross-sectional regression is the average return 



NVt

t

m

NV
T

1
rr  over the mT  periods not in the 

sample (we call them NV periods) to construct IVβ̂ and EVβ̂ . Without loss of generality, assume 

that we construct IV and EV betas using observations from time 1 to time T, and NV periods are 

from 1T   to mTT  . In addition, we take average of characteristics from cTT   to 1T  , i.e. 

define 



cT

1t

t-T

cT

1
CC , with ]C,,C[ N

t

1

tt C  an NL  matrix33. With the notations above, we 

run the following cross-sectional regression with characteristics: NVEVNV
ˆˆˆ ξCκΒγr  . The 

                                                        
33 In Section 5, we assume that mc TT  , but we relax this assumption here. 
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estimated coefficient of characteristics, denoted by κ̂ , is a 1 by L vector. Since the true model is

ttttt )( εβγfr   (i.e. true value of κ is zero), the cross-sectional regression residuals are 

NVNVt

NVt

tt

m

EVNV

NVt

tt

m

NV ))()(
T

1
()ˆ)()(

T

1
( εββγfββγfξ  



  

where 



NVt

t

m

NV
T

1
ββ and 




NVt

t

m

NV
T

1
εε .   

        Assume that the process of beta follows Eq. (1) in Appendix F. Hence 

NVt

NVt

tt

mNVt

t

mNVt

tt

m

EV

NVt

tt

m

NV ))(
T

1
(

T

1
))(

T

1
()ˆ)()(

T

1
( εuγfuγfββγfξ  



. Here, 

the error term ]u,,u[ N

t

1

tt u  is the deviation of true beta at time t from its unconditional 

expected value, and it is stationary and are auto-correlated. Denote ]B,,B[ N1 Β  the matrix 

of unconditional expected value of betas.  

        Similarly, assume that characteristics 
i

t

ii

t υCC  . For each i, the process i

tυ  is stationary 

ergodic. Moreover, for any t1 and t2, i

t1υ  and j

t2υ
 are uncorrelated for any ji  . Denote 

]C,,C[ N1 C the unconditional expected value of characteristics. In addition, assume that i

tυ

and i

tu can be correlated, but not perfectly correlated. With these assumptions, the estimated 

coeffiicents in this regression are defined as  

.)'
T

1
],ˆ[

N

1
()'],ˆ][,ˆ[

N

1
(='ˆ

NVt

t

m

IV

1

EVIV 



rCΒCΒCΒγ  We will prove the NT-consistency through 

the following Theorem. 

Theorem G1 Suppose that the assumptions in Theorem E1, proposition of Appendix E and in 

this subsection hold. Define  

)]uε'('
T

1
)[)(

T

1
(δ id,

s

id,

s

d

s

1

d

EV

d

EV

NVt

tt

m

i

s 













 fFFγf , for any s in the sample periods used to 

construct IVβ̂ or EVβ̂ . Define 
i

s

i

sss

i

s

NVt

tt

m

i

s εu)(u))(
T

1
(π  



γfγf  for any s in NV periods. 
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Define )]uε'('
T

1
[ id,

s

id,

s

d

s

1

d

sample

d

sample

i

s 











fFF  with sample as either IV and EV periods, and s  

in the sample periods. Assume that the variances of elements in )(
TN

1 N

1i EVt

i

t
 

 and

)(
TN

1 N

1i IVt

i

t
 

  converge to zero when both T and N converge to infinity, variances of elements 

in )δB(
TN

1 N

1i EVt

1

t

i
 

 and )δC(
TN

1 N

1i EVt

1

t

i
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 converge to zero when both T and N converge to 

infinity, variances of elements in )')(B(
TN

1 N

1i EVt

i

t

i
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 , ))'(B(
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1 N

1i IVt

i

t

i
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 , ))'(C(
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1 N

1i EVt

i
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 , 

and ))'(C(
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1 N

1i IVt

i

t

i
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   converge to zero when both T and N converge to infinity, variances of 

elements in ))'υ(B(
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1 N

1i

1-T

T-Tt

i
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c c

 
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, and ))'υ(C(
NT

1 N
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T-Tt
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c c

 
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 converge to zero when both cT  and 

N converge to infinity, and variances of elements in )πBπBπB(
NT

1 N
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NN

1T

N1

1T

1

m
m    

and )πCπCπ(C
NT

1 N

TT

NN

1T

N1

1T

1

m
m    converge to zero when both mT  and N converge 

to infinity,  then 'γ̂  converges to )',)(
T

1
,0( L

NVt

tt

m

0γf


  (where L0 is the 1 by L vector of 

zeros) in probability when N, mT , cT  and T converge to infinity▄  

 

Proof: The estimated risk premium satisfies: 

.)'
T

1
],ˆ[

N

1
()'],ˆ][,ˆ[

N

1
(=)',)(

T

1
,0('ˆ

NVt

t

m

IV

1

EVIVL

NVt

tt

m








 ξCΒCΒCΒ0γfγ   

To prove NT-consistency, we need to show: 
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 converge to zero when N and T converge to 
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CΒCΒ  is bounded since beta and characteristics are not perfectly 

correlated (based on the assumption that i

tυ and i

tu are correlated, but not perfectly correlated).▄ 

 

In above theorem, we assume that betas and characteristics can be correlated stationary and 

ergodic processes; hence, Proposition 2 in paper is a special case. The key conditions for the 

above theorem are variances of elements in )(
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m    also converge to zero when both mT  and N 

converge to infinity. These conditions are satisfied when cross-sectional correlation of regression 

residuals, error terms in betas and characteristics among all assets are weak (as in Shanken 

(1992)), processes for regression residuals, error terms in betas and characteristics of each asset 
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are stationary and ergodic, together with some regularity conditions for the uncondional mean of 

betas and characteristics (for example, maximum values of the unconditional means of betas and 

characteristics among all stocks are finite).  

 


