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Abstract

We study general quadratic games with multi-dimensional actions, stochastic payoff interac-

tions, and rich information structures. We first consider games with arbitrary finite information

structures. In such games, we show that there generically exists a unique equilibrium. We then

extend the result to games with possibly infinite information structures, under an additional

assumption of linearity of certain conditional expectations. In that case, there generically exists

a unique linear equilibrium. In both cases, the equilibria can be explicitly characterized in closed

form. We illustrate our framework by studying information aggregation in large asymmetric

Cournot markets and by considering the effects of stochastic payoff interactions in beauty contest

games. Our results apply to general games with linear best responses, and also allow us to

characterize the effects of small perturbations in arbitrary Bayesian games with finite information

structures and smooth payoffs.
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1 Introduction

We study general quadratic games with multidimensional actions, stochastic payoff interactions,

and rich information structures. After privately observing their signals, players simultaneously

choose vectors of real-valued actions to maximize quadratic payoff functions whose terms may be

stochastic.

We consider two types of information structures. In the first, any finite information structure is

allowed: in particular, the signals of different players may be arbitrarily correlated, may overlap,

may contain information about the signals of other players, and so on—we allow for the same level

of generality as the framework of Aumann (1976), subject only to the finiteness of the signal space.

In that setting, we show that generically, there exists a unique Bayesian Nash equilibrium, and give

a closed-form characterization of equilibrium strategies.

We then consider information structures that combine finite and (potentially) infinite signals.

The joint distribution of the finite components of the signals is arbitrary, as in the previous case.

The infinite components have the restriction that certain conditional expectations must be linear.

In particular, this setup includes, as a special case, the Linear-Quadratic Gaussian setup, where

(infinite) signals are distributed according to a multivariate normal distribution. By also allowing for

arbitrary finite signal components, we can capture various stochastic interactions and heterogeneous

information about the infinite signals (for example, about their correlations and observability across

players). We show that generically, there exists a unique linear Bayesian Nash equilibrium, and give

a closed-form characterization of equilibrium strategies.

To illustrate our framework and results, we present two sets of applications.

First, we consider Cournot competition with quadratic production costs and linear demand

functions, both of which may be only partially known by firms. This model fits our framework with

finite signals, and as in that framework, we allow for arbitrary information structures about the

costs and about the demand function. In particular, we allow not just the intercept but also the

slope of the demand function to be only partially known to the firms. We use our general results

to show that in this setting, an equilibrium of any Cournot competition game always exists and is

unique, and characterize it in closed form. We then prove two results about decentralized efficiency

in large asymmetric markets. First, as the market grows large, equilibrium becomes ex-ante efficient.

Second, when costs are linear, equilibrium forces act as an “invisible statistician”: the equilibrium

quantity converges to the best linear estimate of the ex-post socially efficient quantity, given the

information available to the firms.

Second, we analyze beauty contest games in which players may target different state variables

and are allowed to have only incomplete information about the payoff structure of others. This

generalization makes it possible to consider rich versions of beauty contest and coordination games:

e.g., one can consider a coordination game on a network in which each player knows who her friends

are, but has only partial information about the rest of the network, the strengths of the connections

there, etc. In this framework, we show that there always exists a unique linear equilibrium, and

characterize it in closed form. We illustrate the framework with an example that shows some of
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the novel effects that arise when the strengths of payoff interactions in a beauty contest game are

stochastic.

We also present several additional findings. First, we discuss how our closed-form character-

izations (both for the finite and infinite information cases) further simplify if payoff interactions

between players’ actions are deterministic rather than stochastic (but there is still uncertainty

about the random variables that directly affect the players’ payoffs, as in, e.g., the conventional

beauty contest games or in Cournot competition games in which the slope of the demand function

is known). Second, we discuss the applicability of our results to general games with linear best

responses. Finally, we show how our framework can be used to characterize the effects of small

perturbations in arbitrary Bayesian games with finite information structures and smooth payoffs.

For the last application, it is essential that the framework allows for stochastic payoff interaction

terms; without this feature, such characterization would not be possible.

The paper is organized as follows. In Section 1.1, we briefly review the related literature on

general Linear-Quadratic Gaussian games (the literatures on Cournot competition and beauty

contests are briefly reviewed in the corresponding sections). We present the model for arbitrary

finite information structures in Section 2, and prove the existence and uniqueness of Bayesian

Nash equilibrium. We apply this framework to the questions of equilibrium characterization and

information aggregation in Cournot markets in Section 3. In Section 4, we present the richer model

with both finite and potentially infinite signals. Applications to beauty contests are presented in

Section 5. In Section 6, we present the simplified closed-form characterization for the case in which

payoff interaction coefficients are deterministic. Finally, in Section 7, we discuss the applications of

our framework to general games with linear best responses and to the characterization of the effects

of small perturbations in general Bayesian games.

1.1 Related Literature on General Linear-Quadratic Gaussian Games

A large literature spanning multiple fields has investigated general Linear Quadratic Gaussian

(LQG) games. In this section, we briefly review theoretical work on the properties of LQG games,

highlighting the relative contributions of our paper. We review the literatures related to our

applications to Cournot competition and to beauty contests in Sections 3 and 5, respectively.

The foundational paper of Radner (1962) formalizes team problems as multi-agent decision

problems where agents share a common goal but information is decentralized. Using Hilbert space

methods, he proves that under the quadratic payoff specification the person-by-person optimal

decision policies are linear in signals. Ui (2009) introduces Bayesian potential games in order to

apply Radner’s methods to games where the common goal assumption does not hold. The drawback

of this approach is that stringent symmetry assumptions are required for the games to admit a

potential function. In contrast, our paper allows for possibly asymmetric payoff structures. Pachter

and Pham (2013) also revisit Radner (1962), prove necessary and sufficient conditions for the

existence and uniqueness of the linear equilibrium in a two-player environment, and relate the

Bayesian Nash equilibrium to the centralized optimum.
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The most general model present in the literature is Basar (1978a), which generalizes the earlier

work in Basar (1975) from 2 to n players. Like us, he allows for an arbitrary number of players,

potential asymmetry in the payoff structure, and multidimensional actions and signals. He employs a

contraction-mapping approach that gives sufficient conditions for equilibrium uniqueness in general.

However, this approach does not give necessary and sufficient conditions under which the linear

equilibrium exists and is unique. Furthermore, in contrast to Basar (1978a), we provide closed-form

solutions for the unique linear equilibrium. Basar (1978b) studies 2-player quadratic games in which

payoff interaction terms are allowed to be stochastic. Like Basar (1978a), Basar (1978b) only gives

sufficient conditions for equilibrium existence, and does not provide closed-form solutions.

A recent paper that also studies general quadratic games with rich asymmetric information

structures is Bergemann, Heumann, and Morris (2017). The focus of that paper, however, is different

from ours. Bergemann, Heumann, and Morris (2017) focus on games with single-dimensional actions,

fixed payoff interaction terms, and Gaussian information structures, and explore such topics as

identification in quadratic games; the range of possible outcomes as the information structure varies;

and the connections to Bayes Correlated Equilibrium (Bergemann and Morris, 2013, 2016). By

contrast, we provide existence, uniqueness, and closed-form characterization results for games with

multi-dimensional actions, stochastic payoff interaction terms, and general information structures

with linear conditional expectations. This level of generality allows us to explore such applications

as Cournot competition games with uncertain slope of demand, beauty contest games in which the

weights that players put on matching others’ actions are stochastic, and the characterization of the

effects of small perturbations in arbitrary Bayesian games with finite information structures and

smooth payoffs.

2 Games with Finite Information Structures

In this section, we state and prove our first main result: generic equilibrium existence and

uniqueness for quadratic games with arbitrary finite information structures. We impose no restrictions

on the information structure (beyond finiteness), which enables us to represent arbitrary informational

asymmetries and interdependencies.1 In Section 4, we present parallel results for games with

potentially infinite state and signal spaces, under some additional assumptions.

2.1 Model

There are n players, i = 1, . . . , n. Prior to taking an action, each player i privately observes a

signal si whose set Si of possible realizations is finite and contains ki ≥ 1 elements. We denote

by s = (s1; s2; . . . ; sn) the random vector summarizing the signals of all n players. Players share a

common prior belief P about the joint probability distribution over signal vectors s. Without loss

of generality, we assume that for every player i and realization s̃i ∈ Si, the probability of player i

1Our informational framework is equivalent to the canonical “partitional” information structure of Aumann (1976)
with a finite underlying state space, although its mathematical description is slightly different.
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observing signal s̃i ∈ Si is positive. We do not impose any other restrictions on distribution P.

As in Aumann (1976), this lack of restrictions is the key feature that allows our framework to

accommodate arbitrary information asymmetries and interdependencies, by appropriately choosing

the joint distribution P over signal vectors s.

2.2 Actions and Payoffs

After observing his signal si, each player i chooses action ai ∈ Rmi , where mi ≥ 1 is the

dimension of player i’s action. The payoff of player i depends on his own action ai, the actions of

other players (denoted by vector a−i), and the vector of signals s. Specifically,

πi(ai, a−i, s) =
1

2
aTi Γii(s)ai + aTi Γi,−i(s)a−i + aTi gi(s) + hi(a−i, s), (1)

where Γii(s) is a matrix of size mi×mi, Γi,−i(s) is a matrix of size mi× (
∑

j 6=imj), gi(s) is a vector

of size mi, and hi is an arbitrary function of a−i and s. Note that the presence of function hi does

not affect the incentives of player i (and thus the equilibria of the game), but does in general affect

the efficiency and welfare properties of various strategy profiles.

The only assumption we impose on the parameters of payoff functions πi is that for each i and

each signal realization s̃i ∈ Si, the conditional expectation E[Γii(s)|si = s̃i] is a symmetric and

negative definite matrix. The symmetry assumption is made for notational convenience and is

without loss of generality. The assumption that the matrix is negative definite is substantive: it

ensures that player i’s optimization problem is well-defined and has a finite solution. In the case of

single-dimensional actions, this assumption reduces to the conditional expectation of the quadratic

coefficient in equation (1) being negative.

We impose no other assumptions on the parameters of payoff functions πi. In particular, the

dimensions of different players’ action spaces may be different; the interaction terms Γi,−i between

different players’ actions can be different and asymmetric, and can vary arbitrarily as functions

of the entire vector of signals s; and functions gi, which determine the direct payoff interactions

between the vector of signals s and the players’ actions, can be arbitrary as well.

2.3 Bayesian Nash Equilibrium

A profile of pure strategies ai(·) of all players is a Bayesian Nash equilibrium if for every player i,

for every signal realization s̃i, action ai(s̃i) maximizes player i’s expected payoff, conditional on the

realization of the signal, given the primitives of the game and the strategies of other players.2

2.4 Equilibrium Existence, Uniqueness, and Characterization

We can now state and prove the first main result of the paper.

2In general, Bayesian games may of course have mixed-strategy equilibria in addition to pure-strategy ones, but as
we will note in the proof of Theorem 1, in our setting best responses are always unique. Thus, there cannot be any
mixed-strategy equilibria, and so to simplify notation we only talk about pure strategy profiles and equilibria.
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Theorem 1 Generically, there exists a unique Bayesian Nash equilibrium.

The remainder of this section presents the proof of Theorem 1 and the closed-form characterization

of the unique Bayesian Nash equilibrium. The proof consists of two parts. Lemma 1 provides

a condition that guarantees equilibrium existence and uniqueness. It also provides closed-form

expressions for the equilibrium strategies when the condition is satisfied. Lemma 2 shows that the

condition for existence and uniqueness required in Lemma 1 holds generically.

To state Lemma 1, we need to introduce additional notation.

Let Γij(s) be the matrix of size mi ×mj corresponding to the terms multiplying actions aTi and

aj of players i and j in equation (1), for a particular vector of signals s.

Let Φ be a block matrix defined as follows. Enumerate the ki possible signal realizations of

player i as 1, 2, . . . , ki, and let K = k1 + · · ·+kn. Matrix Φ consists of K×K blocks: each block row

corresponds to one player i and one possible signal realization of that player, s̃i,
3 and analogously,

each block column corresponds to one player j and one possible signal realization of that player, s̃j .

The block of matrix Φ in block row (i, s̃i) and block column (j, s̃j) is given by

Φ(i,s̃i),(j,s̃j) = E[Γij(s)|si = s̃i, sj = s̃j ] · P[sj = s̃j |si = s̃i].

Note that the size of block Φ(i,s̃i),(j,s̃j) is the same as the size of matrix Γij(s): mi ×mj . Also, when

i = j, then Φ(i,s̃i),(i,s̃i) = E[Γii(s)|si = s̃i], and when s̃i 6= ŝi, then Φ(i,s̃i),(i,ŝi) = 0.

Condition 1 Matrix Φ is invertible.

Lemma 1 The game has a unique Bayesian Nash equilibrium if and only if Condition 1 is satisfied.

The proof of Lemma 1 is in Appendix A.1. In addition to showing the result, the proof also shows

that when Condition 1 is not satisfied, then either the game has no Bayesian Nash equilibrium, or it

has infinitely many. Also, the proof provides a convenient closed-form solution for the equilibrium

when the condition is satisfied. Specifically, slightly abusing notation, let ai ∈ Rmiki denote a

“stacked” vector of player i’s actions, one for each possible realization of signal si (i.e., the first mi

elements of vector ai are player i’s action after observing si = 1, the next mi elements of ai are the

action after observing si = 2, and so on). Let vector a = (a1; a2; . . . ; an) denote the combined profile

of all players’ actions. Similarly, let gi ∈ Rmiki denote a stacked vector of player i’s conditional

expectations of gi(s), one for each realization of signal si (i.e., the first mi elements of vector gi are

equal to E[gi(s)|si = 1], the next mi elements of gi are equal to E[gi(s)|si = 2], and so on). Let

g = (g1; g2; . . . ; gn) denote the vector combining the vectors gi of all individual players i.

When Condition 1 is satisfied, the unique Bayesian Nash Equilibrium is given by

a = −Φ−1g. (2)

3I.e., block row 1 corresponds to the first signal realization of player 1, block row 2 corresponds to the second
signal realization of player 1, . . . , block row k1 corresponds to the last signal realization of player 1, block row (k1 + 1)
corresponds to the first signal realization of player 2, and so on.
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The second step of the proof of Theorem 1 shows that Condition 1 holds generically. Formally,

consider the following one-dimensional collection of quadratic games, parameterized by γ ∈ R. The

information structure is the same for all the games in the collection, and payoffs are given by

πi(ai, a−i, s) =
1

2
aTi Γii(s)ai + aTi (γΓi,−i(s)) a−i + aTi gi(s) + hi(a−i, s). (3)

Lemma 2 Condition 1 holds for all γ ∈ R, except for at most finitely many values.

The proof of Lemma 2 is in Appendix A.2. Together with Lemma 1, this concludes the proof of

Theorem 1.

3 Application: Cournot Competition

In this section, we apply the results of Section 2 to Cournot markets with incomplete information.

Our model uses the classical linear demand functions and linear-quadratic costs that are used in

Palfrey (1985) and Vives (1988), also in the context of incomplete information. While these two

papers use symmetric information structures in which firms receive i.i.d. signals (conditionally on

the state of the world), we leverage the framework of the previous section to derive implications for

the case of arbitrary finite information structures.

Rich information structures in Cournot markets are also considered by Lambert, Ostrovsky, and

Panov (2017a), who study information aggregation properties of large asymmetric markets. They

assume that the firms’ information is jointly normally distributed, and show that as the market grows

large, information gets aggregated. As our results in Section 3.3 demonstrate, this result depends

on the property of jointly normal distributions that one random variable can be “decomposed” as a

linear combination of other jointly normal random variables and idiosyncratic noise. Without this

property, under general information structures, full information aggregation does not occur. Instead,

the decentralized market serves, in effect, as an “invisible statistician”, with equilibrium market

quantities and prices providing optimal linear estimators of social welfare-maximizing quantities

and prices.

We are not the first to step away from the assumption of joint normality of signals and

parameters in Cournot competition with incomplete information. Li et al. (1987) point out that

to obtain tractable results in a Cournot setting, it is sufficient to consider distributions for which

certain conditional expectations are linear. They also note the advantages of certain non-Gaussian

distributions, which make it possible to circumvent the issues with negative quantities and prices

that can arise under the Gaussian specification (Hurkens, 2014). However, to the best of our

knowledge, ours is the first specification that allows tractable analysis of linear-demand settings in

which firms are uncertain not only about the intercept of the demand function, but also about its

slope. Note also that analogously to the current setting, the framework of Section 2 can also be used

to study models of differentiated Bertrand and differential Cournot competition with multi-product

firms and rich asymmetric information structures about various demand and cost parameters.

7



3.1 Model of Cournot Competition

There is a market with n firms, i = 1, . . . , n. The firms produce and sell a good to a population

of consumers. Each firm observes a finite signal si ∈ Si, using the notation of Section 2.1. In

addition, there is a state of the world ω that takes values in a finite set Ω. For each firm, the

marginal probability distribution over signals has full support. The joint distribution of signals and

state of the world is otherwise arbitrary.

After each firm i has observed its signal si, it decides on a quantity to produce, qi; this is the

player’s action in our general framework. Each firm incurs cost of production ci(ω)qi + di(ω)q2
i ,

with di(·) ≥ 0 and ci(·) ≥ 0. Consumer demand is linear, and the inverse demand is

P = α(ω)− β(ω)Q,

where α(·) > 0 and β(·) > 0. For a given profile of quantities q1, . . . , qn supplied by the firms, and a

given state of the world, the realized profit of firm i is

πi = (α(ω)− β(ω)Q) qi − ci(ω)qi − di(ω)q2
i

where Q =
∑

j qj is the total quantity supplied by the firms. This model of Cournot competition is

therefore a special case of our framework of Section 2.4 We refer to the game just described as a

Cournot game.

The following proposition shows that there always exists a unique equilibrium in a Cournot

game. Note that this statement is stronger than the statement of Theorem 1, because it does not

rely on genericity.

Proposition 1 There exists a unique Bayesian Nash equilibrium of the Cournot game.

The proof of Proposition 1 is in the appendix. The idea of the proof is as follows. First, we

show that in the special case α(·) = ci(·) = 0 for every i, all firms producing zero (for all signal

realizations) is the unique Bayesian Nash equilibrium. Thus, by Lemma 1, Condition 1 is satisfied.

Second, we observe that in the general case, with no conditions on α(·) and ci(·), matrix Φ (defined

in Section 2.4), which determines existence and uniqueness of equilibrium via Condition 1, does not

depend on α(·) and ci(·). Hence, since Condition 1 is satisfied in the special case α(·) = ci(·) = 0 for

every i, it is also satisfied in the general case. We conclude by Lemma 1 that there exists a unique

Bayesian Nash equilibrium in the general case.

4 Strictly speaking, our Cournot competition model does not fit the framework of Section 2.1, as it involves a state
of the world that is not part of the finite signals of the firms. This issue, however, is purely notational. To make the
model fit the framework of Section 2.1, one can introduce an additional player, Nature, whose signal space is Ω and
whose payoff is given by, for example, πN = −a2N , so that it always plays aN = 0. Alternatively, without introducing
an artificial player, one can replace the payoff functions πi(ai, a−i, s, ω) with their expectations conditional on the
vector of firms’ signals s: πi(ai, a−i, s) = E[πi(ai, a−i, s, ω)|s]. Either approach brings the model into the formal
framework of Section 2.1.
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3.2 On the Efficiency of Large Markets

We now show that a property of invisible hand of competitive markets holds under incomplete

information and arbitrary finite information structure, generalizing the work of Vives (1988) to

arbitrary finite information structures. Our result also relates to Palfrey (1985), who gives conditions

on the information structures for the first-best market outcome to be achieved in large Cournot

markets for firms with constant marginal costs.

To establish the results of this subsection, we consider a sequence of markets of the type just

described. The markets of the sequence are indexed k = 1, 2, . . . Each market k corresponds to

a market of Section 3.1 in which both the number of firms and consumer demand are scaled by

a factor k. Specifically, market k has N groups of firms, and each group includes k firms. There

continues to be a finite state of the world ω taking values in Ω. Every firm of group i observes

the same finite signal si ∈ Si, and incurs cost ci(ω)qi + di(ω)q2
i when producing qi units. Inverse

demand in market k is

P = α(ω)− β(ω)
Q

k
.

By Proposition 1, there exists a unique Bayesian Nash equilibrium in every market k.

In a Cournot environment with incomplete information, one must distinguish between two

relevant notion of efficiency, which we refer to as ex-ante versus ex-post efficiency. The notion of

ex-post efficiency assumes all uncertainty has resolved. Specifically, fixing a given state of the world

ω, a vector of production quantities is ex-post efficient when the total surplus is maximized among

all possible vectors of production quantities. Thus, ex-post efficiency corresponds to a social planner

who has full knowledge of the state of the world, and recommends to each firm an output level so as

to maximize total surplus. In contrast, ex-ante efficiency captures the idea that the state of the

world is not known by the firms at the time they must decide on production quantities. Furthermore,

information is decentralized: each firm’s decision can only depend on its own signal. Formally, we

say that a strategy profile is ex-ante efficient when the expected total surplus is maximized among

all firm strategy profiles. Hence, ex-ante efficiency corresponds to a social planner who can dictate

the strategies to be followed by each firm, but does not have any particular information on the state

of the world. When firms observe ω directly then both ex-ante and ex-post efficiency reduce to the

classical notion of efficiency under complete information. Our notion of ex-ante efficiency coincides

with the notion of second-best decentralized efficiency of Vives (1988), also for Cournot games, and

with the efficiency notion of Angeletos and Pavan (2007) for a broader class of quadratic games.

We let TSak be the maximum expected total surplus that can be achieved in market k over all

possible strategy profiles. Either TSak is infinite for all k, or TSak is proportional to the number of

firms.5 We restrict attention to the interesting case of finite maximum total surplus, and we let TS
a

be the normalized maximum expected total surplus per firm that can be achieved in any market k.

Analogously, we let TS∗k be the expected total surplus of the unique equilibrium in market k, and

5The possibility of unbounded total surplus is an artifact of the general quadratic framework from which our model
of Cournot competition derives, and which does not restrict firms to nonnegative output levels. Such situation may
occur when the costs are linear and the marginal costs vary across firms.
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TS
∗
k the expected total surplus per firm.

Under incomplete information, it is well-known that it is generally not possible for the market

equilibrium to be ex-post efficient6 (see, for example, Proposition 1 of Vives (1988)). Ex-ante

efficiency is thus the natural benchmark for models of Cournot competition with incomplete

information, as a second-best welfare property. Our next result shows that as markets grow large

and many firms share the same information, the market equilibrium becomes ex-ante efficient.

Proposition 2 In the limit as the market size grows, the market equilibrium becomes ex-ante

efficient: limk→∞TS
∗
k = TS

a
.

The decentralized efficiency of large Cournot markets was observed by Vives (1988) in the case

of i.i.d. signals. Our result implies that this efficiency result does not rely on the symmetry of

information.

The proof of Proposition 2 is in the appendix. It relies on the observation that the strategies

which obtain in the Bayesian Nash equilibrium correspond to the strategies that a planner would

want to enforce to maximize a biased expected total surplus, where the bias is additive and inversely

proportional to market size. As the market size grows, the objective of the planner becomes close to

the unbiased expected total surplus, and the equilibrium strategies yield a expected total surplus

that, in turn, becomes close to the surplus obtained under an ex-ante efficient strategy profile.

3.3 The Invisible Statistician

Because information is incomplete, in general as the market grows large the equilibrium market

quantity cannot converge to the ex-post efficient quantity. However, these two quantities are related

in a statistical sense. In this section, we show that the equilibrium market quantity converges to

the best linear estimate of the ex-post efficient quantity.

Throughout this section, marginal costs are constant and identical across firms: di(·) = 0 and

ci(ω) = c(ω) for every i. Let Q denote the set of all real-valued mappings with vectors of firms’

signals and states of the world as input. Elements of Q are market quantities determined by the

realization of the firms’ signals and the state of the world; they can be interpreted as random

variables. For the cost structures under consideration, both the ex-ante and ex-post efficient market

quantities exist in every market k. Let us denote them by Qak and Qpk, respectively. Note that

Qak, Q
p
k ∈ Q. We continue to make use of the bar notation to denote per-firm averages, that

is, Q
p

= Qpk/(Nk) and Q
a

= Qak/(Nk). We omit subscript k because per-firm average efficient

quantities do not depend on the market k.

To state our result, we introduce the collection C ⊂ Q of additively separable mappings:

C = {Q ∈ Q with Q(s1, . . . , sn, ω) = q1(s1) + · · ·+ qN (sN )} .
6Palfrey (1985) shows that if marginal costs are constant and identical across firms, and if firms receive i.i.d. signals

on the state of the world that determines the firms’ costs and the intercept of the demand function, ex-post efficiency
is achieved in large markets under certain general conditions on the distributions of signals and states.
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Note that Q
a ∈ C, but that in general, Q

p 6∈ C. In the following, the variables of C can be interpreted

as possible statistical estimates of Q
p
. These estimates are additively separable in the signal values,

and so correspond to classical statistical linear estimates in which each firm signal is a dummy

variable. We refer to the elements of C as linear estimates.

Consider the statistical question of finding a linear estimate Q that minimizes the β-weighted

quadratic error

E[β(ω)(Q−Qp)2].

When such a linear estimate exists, we refer to it as best linear estimate of Q
p

with respect to the

β-weighted squared error.

The following proposition shows how this statistical question relates to Cournot markets. It

consists of two parts. The first part of the proposition shows that the ex-ante efficient production is

the unique best linear estimate of the ex-post efficient production for the β-weighted quadratic error.

The second part of the proposition shows that, in large markets, the equilibrium production per

firm approximates the best linear estimate of the ex-post efficient production level. In the following,

Q∗k denotes the equilibrium quantity in market k, and let Q
∗
k denote the output per firm. Both are

a function of the firms’ signals.

Proposition 3 There exists a unique best linear estimate Q
†

of Q
p

with respect to the β-weighted

squared error, and the following obtains:

1. Q
a

= Q
†
.

2. For every realization of joint signals, limk→∞Q
∗
k = Q

†
.

As opposed to the previous result of Section 3.2 on the ex-ante efficiency of large markets, Proposi-

tion 3 does not apply when the costs are quadratic.

One direct implication of the above result is that, if (and only if) Q
p ∈ C, then at the limit,

the large Cournot market becomes ex-post efficient. For the case of i.i.d. signals, and assuming

constant and identical marginal costs, Palfrey (1985) shows that under fairly general conditions on

distributions, ex-post efficiency of large market obtains. Our result suggests that, with asymmetric

information, ex-post efficiency requires stronger conditions: ex-post efficiency only obtains under

additive separability of the first-best output.

The proof of Proposition 3 is in the appendix. Uniqueness of the best linear estimate owes

to the convexity of the squared error, and to the convexity of the set of linear estimates. The

key to the first statement of the proposition is the observation that, when there are no quadratic

costs, the problem of minimizing the β-weighted error is identical to the problem of maximizing the

expected surplus, so that if the problems have a unique maximizer, the maximizers must be identical.

The second statement of the proposition uses an argument related to the proof of Proposition 2.

The equilibrium market quantity is the unique solution of an optimization problem that can be

interpreted as the minimization of the β-weighted squared error with a bias. The magnitude of the

bias vanishes as the market size grows, consequently the problem of finding the equilibrium market
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quantity becomes very similar to the problem of finding the quantity that minimizes the β-weighted

squared error, and the two maximizers become arbitrarily close.

4 Games with Infinite Information Structures

In some applications, using potentially infinite signal spaces may be more convenient than

restricting attention to finite signal spaces. For example, it is common to assume that signals of

players are jointly normally distributed. In this section, we consider a setting with potentially

infinite signals spaces, with some additional assumptions on the distribution of signals and the

payoff structure. We restrict attention to linear equilibria (in which the actions of players are linear

functions of some of the signals). Our second main result shows that generically, there exists a

unique linear equilibrium. This equilibrium can be characterized in closed form.

4.1 Model

There are n players, i = 1, . . . , n. Prior to taking an action, each player i privately observes a

pair of signals: si ∈ Si (where, as in Section 2, set Si is finite and contains ki elements) and θi ∈ R`i

(where `i ≥ 1 is the dimension of signal θi). We denote by s = (s1; s2; . . . ; sn) and θ = (θ1; θ2; . . . ; θn)

the vectors summarizing the signals of all n players. For convenience, we refer to si’s as “finite

signals” of the players and θi’s as “infinite signals” (although the latter are not required to have an

infinite number of possible realizations).

We make the following assumptions about the joint distribution of signals (s, θ). First, for every

player i and realization s̃i ∈ Si, the probability of player i observing s̃i is positive. As in Section 2,

this is without loss of generality. Also as in Section 2, we do not impose any other restrictions on

the joint distribution of finite signals s.

Second, for every player i and realization s̃i ∈ Si, the conditional distribution of θi has finite

first and second moments, and matrix Var(θi|si = s̃i) has full rank. The latter assumption is also

without loss of generality, as redundant signals can always be replaced with independent noise.

Third, conditional on the finite signals of a subset of players, their infinite signals do not contain

any additional information about other players’ finite signals. Formally, take any subset T of players,

with |T | ≥ 1 and |T | < n. Take any profile of finite and infinite signal realizations (s̃T , θ̃T ) of

players in set T . Then the probability of any realization s̃−T of finite signals of players outside of T ,

conditional on the entire profile of signals (s̃T , θ̃T ), is equal to the probability of realization s̃−T

conditional only on the profile of finite signal realizations s̃T . One immediate case of distributions

satisfying this condition is vector θ being independent of vector s. However, more interesting

dependencies are also allowed. For example, n − 1 players may observe independent identically

distributed signals θi, and the n-th player may observe a subset of those signals, with his signal sn

determining which subset of the n− 1 independent signals he observes.7 Another example is two

7Formally, for the first n− 1 players, |Si| = 1, and θi ∈ Rk. For the n-th player, Sn = {0, 1}n−1 and θn ∈ R(n−1)k.
When the j-th element of sn is equal to 1, components (k(j − 1) + 1, . . . , kj) of θn are equal to θj . When the j-th
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players observing signals θi drawn from two potentially correlated distributions (with several possible

correlation coefficients), and also observing partially informative signals si about the correlation

coefficient.

Next, for convenience, we assume that for every player i, for every realization s̃i of his finite

signal, the expected value of his infinite signal is zero: E[θi|si = s̃i] = 0. This is without loss of

generality. Note, however, that in conjunction with the previous assumption, this renormalization

implies a stronger property: for every subset T of players, with |T | ≥ 0 and |T | ≤ n, for any profile

of their finite signal realizations s̃T that has a positive probability, for any player i (who may or

may not be a part of T ), we have E[θi|sT = s̃T ] = 0.8

Finally, we assume that for every player i and every player j 6= i, the conditional expectation

E[θj |si = s̃i, sj = s̃j , θi = θ̃i] is a linear function of θ̃i. This is a substantive assumption, which we

discuss in more detail in Section 4.5. Note that while the expectation has to be a linear function

of θ̃i, the coefficients in this linear function are allowed to depend on s̃i and s̃j (although of course

the case when they do not depend on one or both of these finite signals is also allowed). In particular,

these assumptions allow for the case of jointly normal signals θ whose covariance matrix may depend

on the profile of finite signals s.

4.2 Actions and Payoffs

After privately observing his signal, each player i chooses action ai ∈ Rmi , where mi ≥ 1 is

the dimension of player i’s action. Note that there is in general no relation between the size ki of

player i’s finite signal space Si, the dimension `i of his infinite signal θi, and the dimension mi of his

action ai. The payoff of player i depends on his own action ai, the actions of other players (denoted

by vector a−i), and the entire vectors of signals s and θ (which include both the signals of player i

and the signals of other players):

πi(ai, a−i, s, θ) =
1

2
aTi Γii(s)ai + aTi Γi,−i(s)a−i + aTi gi(s, θ) + hi(a−i, s, θ), (4)

where Γii(s) is a matrix of size mi × mi, Γi,−i(s) is a matrix of size mi × (
∑

j 6=imj), gi(s, θ) is

a vector of size mi, and hi is an arbitrary function of a−i, s, and θ.9 As before, the presence of

function hi does not affect the incentives of player i (and thus the equilibria of the game), but does

in general affect the efficiency and welfare properties of various strategy profiles.

We assume that for each i and each signal realization s̃i ∈ Si, the conditional expectation

E[Γii(s)|si = s̃i] is a symmetric negative definite matrix. In addition, we assume that for every

player i, the expectation E[gi(s, θ)|si = s̃i, θi = θ̃i] is a linear function of θ̃i. Note that while the

expectation has to be a linear function of θ̃i, the coefficients in this linear function are allowed to

depend on s̃i. We impose no other restrictions on payoff functions πi.

element of sn is equal to 0, these components are random noise.
8The proof of this statement is given in Appendix A.6.
9The only assumption we need to impose on function hi is that the expected value of hi(a−i, s, θ) is finite for every

profile of linear strategies of players other than i, conditional on every possible realization (s̃i, θ̃i) of player i’s signals.
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4.3 Linear Equilibrium

We say that a strategy of player i is linear if it can be represented as ai(si, θi) = κi(si) + Λi(si)θi,

where for every realization s̃i of signal si, κi(s̃i) is a vector in Rmi and Λi(s̃i) is a matrix in Rmi×`i .
Note, in particular, that the sensitivity of player i’s action to his infinite signal θi may depend on

the realization of his finite signal si.

We say that a profile of strategies of all players is a linear equilibrium if (1) every strategy ai(·)
in the profile is linear, and (2) the profile of strategies is a Bayesian Nash equilibrium, i.e., for every

player i, for every realization (s̃i, θ̃i) of signals (si, θi), action ai(s̃i, θ̃i) maximizes player i’s expected

payoff, given the primitives of the game and the strategies of other players.

4.4 Equilibrium Existence and Uniqueness

We can now state and prove the second main result of the paper.

Theorem 2 Generically, there exists a unique linear equilibrium.

The remainder of this section presents the proof of Theorem 2 and the closed-form characterization

of the unique linear equilibrium. As in the proof of Theorem 1, the argument consists of two parts.

Lemma 3 provides conditions that guarantee the existence and uniqueness of linear equilibrium.

It also provides closed-form expressions for the equilibrium strategies when these conditions are

satisfied. Lemma 4 shows that the conditions for existence and uniqueness required in Lemma 3

hold generically.

The first condition in Lemma 3 is the same as Condition 1 stated earlier (in Section 2). To

give the second condition, we need to introduce some additional notation. By assumption, the

expectation E[θj |si = s̃i, sj = s̃j , θi = θ̃i] is a linear function of θ̃i. Denote this linear function by

E[θj |si = s̃i, sj = s̃j , θi = θ̃i] = QTij(s̃i, s̃j)θ̃i.
10

Let Ψ be a block matrix defined as follows. As in Section 2, enumerate the ki possible signal

realizations s̃i of player i as 1, 2, . . . , ki, and let K = k1 + · · ·+kn. Matrix Ψ consists of K×K blocks:

each block row corresponds to one player i and one possible signal realization of that player, s̃i, and

analogously, each block column corresponds to one player j and one possible signal realization of

that player, s̃j . The block of matrix Ψ in block row (i, s̃i) and block column (j, s̃j) is given by

Ψ(i,s̃i),(j,s̃j) =
(
Qij(s̃i, s̃j)⊗ E [Γij(s)|si = s̃i, sj = s̃j ]

)
· P[sj = s̃j |si = s̃i]

where “⊗” denotes the Kronecker product of two matrices.11 When actions a or infinite signals θ

of all players are single-dimensional, the Kronecker product reduces to regular multiplication by

a scalar. When both actions a and infinite signals θ of all players are single-dimensional, the

10Note that this linear function does not have a constant term. As we show in Appendix A.6, this lack of the
constant term is implied by our normalization of the signal distributions.

11If matrix A is of size k ×m with elements aij and matrix B is another matrix, of any size, then A⊗B is defined
as a block matrix with k ×m blocks, in which the size of each block is equal to the size of B and each block (i, j) is
equal to aijB. See http://en.wikipedia.org/wiki/Kronecker_product for details.
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expressions simplify further and each block Ψ(i,s̃i),(j,s̃j) is just a real number. In the general case,

the size of block Ψ(i,s̃i),(j,s̃j) is mi`i ×mj`i.

Condition 2 Matrix Ψ is invertible.

Lemma 3 The game has a unique linear equilibrium if and only if Conditions 1 and 2 are satisfied.

The proof of Lemma 3 is in Appendix A.7. In addition to showing the result, the proof also

shows that when Condition 1 or Condition 2 are not satisfied, then either the game has no linear

equilibrium, or it has infinitely many. Also, the proof provides a closed-form solution for the

equilibrium when both conditions are satisfied. Specifically, recall our representation of linear

strategies as ai(si, θi) = κi(si) + Λi(si)θi. Slightly abusing notation, let κi ∈ Rmiki be the stacked

vector of player i’s constant terms κi(si), one for each possible realization of signal si (i.e., the first

mi elements of κi are κi(1), the next mi elements are κi(2), and so on). Let vector κ = (κ1; . . . ;κn)

denote the combined profile of all players’ constant terms. Next, consider the vectorization vec Λi(s̃i),

i.e., the column vector of size mi`i in which the columns of matrix Λi(s̃i) are stacked on top of

each other.12 Let Λi ∈ Rmi`iki be the stacked vector of these vectorizations vec Λi(s̃i), one for each

realization s̃i. Finally, let vector Λ = (Λ1; . . . ; Λn) combine the vectors Λi of individual players.

Next, by assumption, the expectation E[gi(s, θ)|si = s̃i, θi = θ̃i] is a linear function of θ̃i. Denote

this function by E[gi(s, θ)|si = s̃i, θi = θ̃i] = Gi(s̃i) + Fi(s̃i)θ̃i. Let gi ∈ Rmiki be the stacked vector

of individual vectors Gi(s̃i), one for each possible realization of si (i.e., gi = (Gi(1); . . . ;Gi(ki)),

and let g = (g1; . . . ; gn) denote the vector combining these terms for all players. Finally, let

fi = (vecFi(1); . . . ; vecFi(ki)) ∈ Rmi`iki , and let f = (f1; f2; . . . ; fn).

When Conditions 1 and 2 are satisfied, the unique linear equilibrium is given by

κ = −Φ−1g (5)

Λ = −Ψ−1f. (6)

The second step of the proof of Theorem 2 shows that Conditions 1 and 2 hold generically.

Formally, consider the following one-dimensional collection of quadratic games, parameterized by

γ ∈ R. The information structure is the same for all the games in the collection, and payoffs are

given by

πi(ai, a−i, s, θ) =
1

2
aTi Γii(s)ai + aTi (γΓi,−i(s)) a−i + aTi gi(s, θ) + hi(a−i, s, θ) (7)

Lemma 4 Conditions 1 and 2 hold for all γ ∈ R, except for at most finitely many values.

The proof of Lemma 4 is in Appendix A.8. Together with Lemma 3, this concludes the proof of

Theorem 2.

12See https://en.wikipedia.org/wiki/Vectorization_(mathematics) for details.
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4.5 Linear Conditional Expectations

As we mentioned in Section 4.1, the assumption of the linearity of conditional expectations

(i.e., the assumption that for every player i and every player j 6= i, the conditional expectation

E[θj |si = s̃i, sj = s̃j , θi = θ̃i] is a linear function of θ̃i) is substantive. However, there are many

interesting and common examples of joint distributions that satisfy this restriction.

The most common example is the multivariate normal distribution. For example, if vector θ

is distributed normally, with any variance-covariance matrix, and is independent of vector s, then

E[θj |si = s̃i, sj = s̃j , θi = θ̃i] is a linear function of θ̃i, for any i and j. More complex examples

“built from” normal distributions are also possible. For example, finite signals s may determine

correlations between the infinite signals of different players.

For a very different example of joint distributions satisfying the conditional linearity assumption,

suppose random variables α and β are independent (and other than that, come from arbitrary

distributions), and suppose player i observes both of them (i.e., θi = (α;β)), while player j 6= i

observes only one (e.g., θj = (α)). Then both E[θj |θi] and E[θi|θj ] are linear functions. More

generally, if there are several independent random variables, and each agent observes a subset of

them, the resulting information structure satisfies the linearity condition. For example, suppose

there are no finite signals s (formally, a fixed vector s is observed with probability 1), and consider a

network of agents in which the infinite signal (type) of each agent is a random variable drawn from

some distribution (possibly a different one for each agent). The types of agents are independent of

each other. Each agent observes their own type, and the types of their neighbors in the network.

Then, for all i and j, E[θj |θi = θ̃i] is a linear function of θ̃i.

For yet another example, suppose random variables α and β are independent and identically

distributed, and player i observes each of them separately, while player j only observes their sum.

Again, both E[θj |θi] and E[θi|θj ] are linear functions. As before, we can use this observation to

explore richer models in which some players observe specific variables while others only observe

their aggregates (and in which who observes what may depend on finite signals s).

Finally, note that if a player’s signal θi is binary, then for any joint distribution of θi and θj , the

expectation E[θj |θi] is a linear function of θi. We return to this observation in Section 6.2, where it

serves as a basis for a connection between two seemingly distinct models.

The list above is by no means exhaustive—there are many other types of joint distributions

of signals for which our assumption of linear conditional expectations is satisfied.13 So while the

assumption is certainly substantive, it nevertheless allows for a wide variety of interesting cases.

5 Application: Beauty Contest Games

In this section, we illustrate the framework and results of Section 4 with an application: beauty

contest games with potentially uncertain relative weights that players put on coordinating with

others. In beauty contest games (Morris and Shin, 2002), players receive signals about an uncertain

13See, e.g., Li et al. (1987).
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variable, and their optimal action is a weighted average of their estimate of the value of the variable

and their estimate of the average action of other players. The standard BC framework assumes that

all players are ex ante identical, and in particular, receive identically distributed signals and put

the same weights on matching the actions of all other players. In their analyses of beauty contest

games, Bergemann et al. (2017) and Lambert et al. (2017b) allow for rich asymmetric information

structures, but maintain the assumption that each agent cares equally about matching all other

agents’ actions (i.e., each player tries to match a weighted average of the true state of the world and

the average action of other players).

Golub and Morris (2017), Leister (2016), and Myatt and Wallace (2017) relax this assumption,

and allow players to put more weight on matching some agents’ actions and less (or none) on

matching other agents’ actions, examining the interplay between beauty contests and network

settings. In such environments, Golub and Morris (2017) consider common and heterogeneous priors,

and focus on the characterization of higher-order expectations and their limit as the weight of the

coordination component in payoff functions goes to 1. Leister (2016) and Myatt and Wallace (2017)

explore endogenous information acquisition.14

The contribution of the current section of our paper is to not only allow players to put different

weights on matching different agents’ actions, but to also allow these weights to be stochastic,

with players potentially having rich information both about these weights and about the “states

of the world” (and about other players’ knowledge of those parameters). We also allow players

to target different state variables, allowing for many other interpretations of the framework (e.g.,

the framework can be viewed as a model of a coordination game, in which each player has some

(individual) “bliss” action that he would pick in the absence of interactions with other players, but

also puts some weight on picking an action close to the actions of some other players), and to receive

multidimensional information (so that, for example, one dimension of the signal is informative about

a player’s own optimal bliss action and another dimension is informative about another player’s

bliss action; or one dimension is a player’s own signal, another dimension is a signal shared with

some other players, and the third, finite dimension, contains information about other players’ payoff

functions).

In Section 5.1, we describe our general model of beauty contest games. In Section 5.2, we show

that in this model, there is always a unique linear equilibrium (unlike Theorem 2, this statement

is always true, not just generically). In Section 5.3, we consider a particular example of a beauty

contest game with uncertain interactions and show that allowing for uncertain interaction terms in

players’ payoff functions leads to economically novel predictions.

14With the exception of Golub and Morris (2017), all papers on beauty contests mentioned above consider games
with jointly normal information structures. Golub and Morris (2017) consider beauty contest games with finite
information structures, which (in the case of common priors) fit the model of Section 6.1 below. As we explain in
Section 6.2, all these models are special cases of a unified model of quadratic games with fixed interaction coefficients
and information structures that satisfy the “linear conditional expectations” property.
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5.1 Model of Beauty Contest Games

The model is a special case of the setting of Section 4. There are n players, i = 1, . . . , n. Each

player observes a finite signal si ∈ Si and an infinite signal θi ∈ R`i . Each player also has a bliss

point b∗i ∈ R, which is a random variable. Denote by b = (b∗1; . . . ; b∗n) the random vector of bliss

points. As in Section 4, we do not impose any restrictions on the distribution of finite signals s,

apart from assuming that for each player i and each signal realization s̃i ∈ Si, the probability of

player i observing s̃i is positive. For the profile of infinite signals θ and the vector of bliss points b,

we assume that they are jointly normally distributed, with the mean of θ being equal to zero, the

mean of b being equal to b, and the variance-covariance matrix of (θ; b) being arbitrary, subject only

to the constraint that for each i, matrix V ar(θi) has full rank (as before, this assumption is without

loss of generality). Note that different bliss points b∗i can be assumed to be identical, but are not

required to. We assume that s is independent of θ and b.15

Each player’s action is a real number: ai ∈ R. The payoff of each player is a function of his bliss

point, his action, the actions of other players, and the profile of finite signals s, and is equal to

πi(ai, a−i, b
∗
i , s) = −γii(s)(ai − b∗i )2 −

∑
j 6=i

γij(s)(ai − aj)2, (8)

where for every s, γii(s) > 0 and for each j 6= i, γij(s) ≥ 0.16 In the classical models of beauty

contests, players have an incentive to choose an action that is close to a common random bliss point,

and at the same time that is close to the average action of the other players. The weights that

players put on each component can vary across players, but are fixed and commonly known. Our

model of beauty contests allows for more flexibility along three dimensions. First, different players

may have different bliss points. Second, a player may put different weights on matching the actions

of different other players. Finally, the weights that players put on matching the bliss points and on

matching various other players’ actions may be stochastic, with complex information structures

about these weights (e.g., on a network, a player may know the preferences of her neighbors, but

only have probabilistic information about the preferences of agents who are further away).

5.2 Equilibrium Existence and Uniqueness

A linear equilibrium in our model is defined as in Section 4.3. The following proposition shows

that there always exists a unique equilibrium. Note that this statement is stronger than the

corresponding statement in Theorem 2, since it does not rely on genericity.

15The results of this section can be extended to more general cases in which the distribution of θ is not necessarily
normal, and in which s and θ are not independent, while still remaining within the framework of Section 4. We restrict
attention to the current set of assumptions for expositional convenience.

16As in the Cournot competition model of Section 3, our beauty contests model does not formally fit the framework
of Section 4, because the bliss points are not directly parts of either finite signals s or infinite signals θ. Similarly
to the Cournot competition model, to fit formally the framework of Section 4.1, one can introduce a dummy player
Nature whose finite signal space consists of only one element and whose infinite signal is equal to vector b and whose
payoff πN is given by πN = −a2N , so that it always plays aN = 0.
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Proposition 4 In a model of beauty contest games, there always exists a unique linear equilibrium.

The proof of Proposition 4 is in the appendix. The idea of the proof is to first observe that in

a given game, Conditions 1 and 2 of Lemma 3 are satisfied if and only if they are satisfied in a

modified game where all the entries b∗i are replaced by zeros. The next step of the proof is to show

that the modified game has a unique equilibrium (the one in which all players always play zero).

This implies that Conditions 1 and 2 are satisfied for the modified game—which in turn implies that

they are satisfied for the original game, and thus the original game has a unique linear equilibrium.

5.3 Example of a Beauty Contest Game with Stochastic Payoff Interactions

To illustrate the framework, we present a simple example in which players are uncertain about

the relative weights other players put on the bliss point vs. matching the actions of other players. We

find that the impact of this uncertainty on the equilibrium of the game is subtle, and is substantively

different from an equilibrium that would arise if these uncertain terms were simply replaced by

their expected values. Our framework also allows us to provide predictions on the signs of various

comparative static effects as this uncertainty increases.

Example 1 There are n ≥ 2 players who receive signals θi = θ + εi, where θ ∼ N (0, σ2) is the

players’ common “bliss point” and errors εi ∼ N (0, σ2
ε ) are iid. We denote by ρ = σ2

σ2+σ2
ε

the

informativeness of signal θi about the state variable θ. Each player i also observes his “payoff type”

si ∈ {H,L}, with prior P(si = H) = P(si = L) = 1/2. Payoff types are correlated across players:

P[sj = x|si = x] = q ≥ 1
2 , for x ∈ {H,L}, for all j 6= i. At the same time, the profile of players’

payoff types s is independent of state variable θ and signals θi.

After observing his signal θi and payoff type si, each player i chooses action ai ∈ R to minimize

a combination of two quadratic loss terms: one from the distance to the bliss point θ and one from

the distance to the average action of other players, a−i. The relative weights player i puts on each

of the two terms are determined by his payoff type: when player i has type si = H, the weight he

places on the coordination component of his payoff is αi = αH , and when his type is si = L, the

weight is αL. We assume that 0 ≤ αL ≤ αH < 1.17

Formally, player i’s payoff depends on his action ai, the average action of other players a−i, his

payoff type αi, and the state θ:

πi(ai, a−i, αi, θ) = −(1− αi)(ai − θ)2 − αi(ai − a−i)2. (9)

By Proposition 4, there exists a unique linear equilibrium of this game. In this equilibrium, the

sensitivity of the player’s action to his signal θi depends on his payoff type si. Since the game is

symmetric and the linear equilibrium is unique, the equilibrium is also symmetric. Equilibrium

17The case αH = 1 would violate the assumption in the model of Section 5.1 that γii(s) is always positive, and so
we rule it out. Note, however, the the existence and uniqueness result, and the explicit formulas below would continue
to hold even in the case αH = 1, as long as q < 1 and αL < 1, allowing for the possibility that some agents care only
about matching the average action of other players and put zero weight on matching the fundamental value θ.
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strategies are described by two numbers: the sensitivity βH when payoff type is H, and the sensitivity

βL when payoff type is L (the affine term is 0 for both payoff types). I.e., when a player of type

H observes signal θi, his action is ai = βHθi, and when a player of type L observes signal θj , his

action is aj = βLθj . Using our closed-form characterization, we find

βH = ρ
(1− αH)(1− αLqρ) + αH(1− αL)(1− q)ρ
(1− αHqρ)(1− αLqρ)− αHαL(1− q)2ρ2

,

βL = ρ
(1− αL)(1− αHqρ) + αL(1− αH)(1− q)ρ
(1− αHqρ)(1− αLqρ)− αHαL(1− q)2ρ2

.

For the discussion of the properties of the equilibrium, it is convenient to introduce two new

variables. Let α = αH+αL
2 and ∆ = αH−αL

2 , so that α represents the average weight that each player

puts on the square of the difference between his action and the average action of other players (recall

that types H and L are equally likely) and ∆ represents the absolute amount by which the actual

weights αH and αL differ from that average. Note first that our model naturally nests the standard

beauty contest case without stochastic interactions: if αH = αL = α, the equilibrium reduces to

βH = βL = ρ 1−α
1−ρα , and if q = 1, the game “decomposes” into either all players being of type H (and

knowing that) or all players being of type L, with the corresponding equilibrium strategies reducing

to βH = ρ 1−αH
1−ραH and βL = ρ 1−αL

1−ραL .18

Another “corner case” is when the type of player i is not informative about the types of other

players, i.e., q = 1
2 . In that case, we get βH = ρ1−α−(1−ρ)∆

1−ρα and βL = ρ1−α+(1−ρ)∆
1−ρα , and the average

sensitivity of a player to his signal, βH+βL
2 , is equal to ρ 1−α

1−ρα . I.e., the average sensitivity of a

player to his signal is the same as in the standard beauty contest game with constant interaction

term α, and each individual player behaves as if he is simply best responding to a population of

such “average” players.

Away from these corner cases, the relationship between the parameters of the game and the

equilibrium strategy profiles becomes more subtle. To illustrate this relationship, we look at the

comparative statics of the equilibria, holding fixed the average weight α and varying the difference

between the weights in the two states (2∆) as well as the informativeness of a player’s state about

the states of other players (q). Proposition 5 summarizes our results.

Proposition 5 The following comparative statics hold:

1. The average sensitivity βH+βL
2 decreases in ∆ and decreases in q.

2. The sensitivity βH decreases in ∆ and decreases in q.

3. The sensitivity βL increases in q, but is not monotone in ∆.

18Note that the number of players n has no impact on the equilibrium behavior of a given player in the game, as
long as n ≥ 2. In particular, we could consider a version of the beauty contest game with a continuum of players, as is
common in the literature. All of the formulas and results would remain the same. More generally, we could consider a
model of Section 5.1 with continuous masses of players of different types (or even with continuous masses of “small”
players of some types and discrete “large” players of other types). Aside from minor notational adjustments, none of
our results would change.
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Intuition for the non-monotonicity in part 3 is as follows: as ∆ increases, the weight αL (that a

player of type L puts on matching the actions of other players) decreases, which in the absence of

other effects would lead such a player to increase the weight he puts on his own signal. However,

the weight that players of type H put on their signals decreases, which in equilibrium also gives an

incentive to players of type L to decrease the sensitivity of their action to their signals. For certain

parameter values (for example α = 7
8 , q = 15

16 , and ρ = 95
96), the latter effect outweighs the former.

6 Models with Constant Interaction Terms

The models of Sections 2 and 4 allow the interaction terms Γij to vary stochastically as a

function of the profile of players’ finite signals s. While the results of those sections provide tractable

closed-form solutions for those general models, the solutions are further simplified in applications

in which interaction terms Γij are constant. In this section, we present these simplified solutions

in two special cases. First, we consider the case of constant interaction terms and finite signals.

Second, we consider the case of constant interaction terms and potentially infinite signals.

6.1 Constant Interaction Terms and Finite Signals

Consider the setting of Section 2, and suppose that for all i and j, interaction terms Γii(s) and

Γij(s) do not depend on the profile of signals s, and are simply always equal to some matrices Γii

and Γij (where matrix Γii is negative definite). The payoff term gi(s) is still allowed to depend on

signal s in an arbitrary way.

Blocks of matrix Φ then simplify to Φ(i,s̃i),(j,s̃j) = Γij · P[sj = s̃j |si = s̃i]. Furthermore, for every

pair of players i and j, all blocks Φ(i,s̃i),(j,s̃j) (across all possible realizations of signals s̃i and s̃j)

can be joined together, and expressed more compactly as

Φij = Γij ⊗Mij ,

where ⊗ denotes the Kronecker product and Mij is a matrix of size ki × kj given by

Mij =


P [sj = 1|s̃i = 1] · · · P [sj = kj |s̃i = 1]

...
. . .

...

P [sj = 1|s̃i = ki] · · · P [sj = kj |s̃i = ki]

 .

Lemma 1, of course, continues to hold: there is a unique Bayesian Nash equilibrium if and only

if matrix Φ is invertible, and when it is, equilibrium strategies are given by a = −Φ−1g. Lemma 2

also applies directly, showing that in the model with fixed interaction terms, generically, there exists

a unique Bayesian Nash equilibrium.
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6.2 Constant Interaction Terms and Potentially Infinite Signals

The second case we consider is the setting of Section 4, in which we assume that the players

only receive potentially infinite signals θi, and do not receive any finite signals si (a formal way to

incorporate this into the setting of Section 4 is to simply assume that for each i, set Si contains only

one element, which player i observes with probability 1 and which therefore contains no information).

This assumption leads to several simplifications. First, as in Section 6.1, interaction terms are

constant, given by matrices Γii and Γij . Second, the joint distribution of signals θi has to satisfy

only the following restrictions: (i) for each i, matrix Var(θi) has full rank; (ii) for each i, E[θi] = 0;

and (iii) for each i and j 6= i, the conditional expectation E[θj |θi = θ̃i] is a linear function of θ̃i.

Finally, the payoff terms gi(θ) also have to satisfy a linearity property: E[gi(θ)|θi = θ̃i] is a linear

function of θ̃i. Note that only the last two assumptions, on the linearity of conditional expectations,

are substantive; assumptions (i) and (ii) are made only for convenience, without loss of generality.

In this setting, the expression for the blocks of matrix Φ simplify even further, and we can drop

the realizations of finite signals si from the subindices:

Φij = Γij .

Thus, matrix Φ is simply equal to the matrix Γ that summarizes the interaction terms in players’

payoff functions.

The expression for the blocks of matrix Ψ is also substantially simplified, and also no longer

requires the realizations of finite signals si in the subindices:

Ψij = Qij ⊗ Γij .

Of course, Lemma 3 continues to hold, and the game has a unique linear equilibrium if and only

if matrices Φ and Ψ are invertible. When the matrices are invertible, the equilibrium strategies

continue to be given by κ = −Φ−1g and Λ = −Ψ−1f . And as before, Lemma 4 applies directly,

showing that in this model, generically, there exists a unique linear equilibrium.

The models of Sections 6.1 and 6.2 are seemingly quite different: the former allows arbitrary

finite signals without imposing any restrictions on their joint distribution or on functions gi(s), while

the latter allows infinite signals but imposes the restrictions of linearity on conditional expectations

E[θj |θi = θ̃i] and E[gi(θ)|θi = θ̃i]. The two models, however, are closely related: the model of

Section 6.1 is a special case of the model of Section 6.2. To see that, recall the observation made

in Section 4.5 that if a player’s signal θi is binary, then for any joint distribution of θi and θj , the

expectation E[θj |θi = θ̃i] is a linear function of θi. Similarly, if player i’s signal takes ki possible

values (as in Section 6.1), we can “project” it onto a ki-dimensional space Rki , as follows: when

the original signal realization is 1, the projection takes the value (1, 0, . . . , 0); when the original

signal realization is 2, the projection takes the value (0, 1, 0, . . . , 0); and so on—when the original

signal realization is ki, the projection takes the value (0, . . . , 0, 1). With this representation, any

function of the projected signal is linear. Thus, if we represent the signals of all players in this
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fashion, all conditional expectations E[θj |θi = θ̃i] and E[gi(θ)|θi = θ̃i] become linear, and thus the

model of Section 6.1 can be represented as a special case of the model of Section 6.2. (Formally, this

representation violates both assumptions (i) and (ii) of the model of Section 6.2. However, as we

noted, these assumptions are without loss of generality, and it is straightforward to further adjust

the representation so that it fully fits the model.)

Thus, the model of Section 6.2 can be viewed as a unifying framework for a “linear conditional

expectations” family of quadratic games with fixed interaction coefficients, including those with

finite information structures, Gaussian information structures, and so on.

7 Beyond Quadratic Games

We end with a brief discussion on applying the main framework beyond quadratic payoff functions.

In Section 7.1, we discuss how our results can be applied to other, not necessarily quadratic, games

and economies with linear best responses. In Section 7.2, we provide an informal discussion on how

our framework and results can be used to characterize changes in equilibrium behavior after small

perturbations in general games with smooth payoffs.

7.1 Games with Linear Best Responses

In some applications, it is useful to abstract away from the game itself, and instead write down

directly the best responses of each player as a function of the strategies of other players. These

best responses continue to characterize the behavior of the agents in an economic system, without

the need to specify agents’ payoffs. When the best response functions are a linear function of the

strategies of other players, the “game” is one of linear best responses. Linear best response games

can be interpreted as an alternative formulation to quadratic games. Which formulation to use is a

matter of preferences, and our results apply to both formulations.

To illustrate, consider the game described in Section 2.1. The best response of player i satisfies

− Γiiai = E[gi(s)|si] +
∑
j 6=i

E[Γij(s)aj(sj)|si] (10)

When Condition 1 holds, the Bayesian Nash equilibrium is characterized by the unique solution to

(10).

Now let us consider the case in which the game is not specified. Instead, assume that when

player i conjectures that player j takes action âj(sj) upon receiving his signal sj , player i strictly

prefers to play action

ai(si) = E[gi(s)|si] +
∑
j 6=i

E[Γij(s)âj(sj)|si]

upon receiving signal si. In the above best response equation, gi is arbitrary and Γij(s) is a matrix

of size mi ×mj whose elements can depend arbitrarily on the joint vector of signals s. Except for
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payoff structure which is left unspecified, we continue to use the notation and information structure

of Section 2.

An equilibrium in this context is defined as a strategy profile (a1(·), . . . , an(·)) such that for

every i,

ai(si) = E[gi(s)|si] +
∑
j 6=i

E[Γij(s)aj(sj)|si].

The results of Section 2 continue to apply in this alternative model specification, replacing Γii by

the negative of the identity matrix of size mi. Analogous arguments apply to the model of Section 4.

7.2 Approximate Equilibrium in General Games

Quadratic games with stochastic interaction terms can be used to understand changes in player

behavior in general games with smooth payoff functions when small changes are made to those

games’ payoff functions or information structures.

Specifically, consider a general game of incomplete information, whose payoff functions are smooth

but not necessarily quadratic in players’ actions. The signal structure is finite and the actions are

real-valued or multi-dimensional. Suppose the game has a known pure-strategy equilibrium. How

does the equilibrium strategy profile change after a small variation of the information structure or

payoff functions? Quadratic games with stochastic interaction terms provide a convenient approach

to answering these questions. We give an informal illustration of this approach below.

For concreteness, we focus on changes to payoff functions; small changes to the information

structure can be treated analogously. Consider the following example. There are n players. Each

player i takes a one-dimensional action ai, taking real values (the argument extends directly to

multi-dimensional actions). Each player i privately observes a random signal si, which takes finitely

many possible values, as in Section 2.

However, unlike the framework of Section 2, player i now gets utility

ui(a1, . . . , an, s1, . . . , sn;x),

where x is a real-valued parameter, and where ui is not necessarily quadratic, but is sufficiently

smooth in the players’ actions and parameter x.

Suppose there exists a pure-strategy Bayesian Nash equilibrium of the game just described for

the case x = 0. The equilibrium strategy profile is denoted a∗(s) = (a∗1(s1); . . . ; a∗n(sn)).

In general, when x is nonzero, the strategy profile a∗(s) is no longer an equilibrium. We now

explain how the framework and the results of Section 2 help us find an approximate equilibrium

profile for small values of x.

First, we perform a second-order expansion of player i’s utility around the initial equilibrium for

x = 0, by computing the utility of a player i when every player j plays action a∗j (sj) + ∆aj , for
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small values of ∆aj :

ui(a
∗(s) + ∆a, s, x) ≈ ui(a

∗(s), s, 0) + x
∂ui
∂x

(a∗(s), s, 0)

+
∑
j

∆aj
∂ui
∂aj

(a∗(s), s, 0) +
∑
j,k

∆aj∆ak
∂2ui
∂aj∂ak

(a∗(s), s, 0)

+
∑
j

x∆aj
∂2ui
∂aj∂x

(a∗(s), s, 0).

Observe that the payoff of player i as a function of the action increments ∆a is linear quadratic,

when approximating the payoffs to the second order.

Thus, these payoffs define a linear-quadratic game in the action increments. Using the notation

of Section 2, this game is defined by

Γii(s) = 2
∂2ui
∂a2

i

(a∗(s), s, 0)

Γij(s) = 2
∂2ui
∂ai∂aj

(a∗(s), s, 0)

gi(s) = x
∂2ui
∂ai∂x

(a∗(s), s, 0)

hi(∆a−i, s) = ui(a
∗(s), s, 0) + x

∂ui
∂x

(a∗(s), s, 0)

+
∑
j 6=i

∆aj
∂ui
∂aj

(a∗(s), s, 0) +
∑

j 6=i,k 6=i
∆aj∆ak

∂2ui
∂aj∂ak

(a∗(s), s, 0)

+
∑
j 6=i

x∆aj
∂2ui
∂aj∂x

(a∗(s), s, 0).

Note that the second-order approximation of utility is necessary. The first-order approximation

is not enough because the first-order terms vanish in expectation, meaning that

E

[
∂ui
∂ai

(a∗(s), s, 0)

∣∣∣∣si] = 0,

which is the first order condition for a∗(s) to be an equilibrium profile for the case x = 0.

The last equality implies that E[gi(s)|si] is of order x, which in turn implies that the equilibrium

actions of this linear-quadratic game are of order x as well. Hence, the second-order approximation

of utility is also sufficient to obtain a first-order approximation of the equilibrium strategy following

a small perturbation of the original game.

Finally, we remark that in this application, stochastic interactions play a major part. A model of

quadratic games with deterministic payoff interaction terms does not allow to derive the approximate

equilibrium of the perturbed game, because the partial derivatives of the players’ utility functions,

which define the interaction terms Γij above, generally depend on the vector of signals.
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Appendix A: Proofs

A.1 Proof of Lemma 1

Consider the optimization problem of player i who has observed realization s̃i of signal si. If he

chooses action ai, his expected payoff (ignoring the term hi(a−i, s), which does not affect incentives)

is equal to

E[πi|ai, s̃i] =
1

2
aTi E[Γii(s)|s̃i]ai + aTi E[Γi,−i(s)a−i|s̃i] + aTi E[gi(s)|s̃i].

Since matrix E [Γii(s)|s̃i] is negative definite for all s̃i, the unique best response of player i is to

set ai(s̃i) to the value that satisfies the first-order condition

E [Γii(s)|s̃i] ai(s̃i) +
∑
j 6=i

E [Γij(s)aj(sj)|s̃i] + E [gi(s)|s̃i] = 0, (11)

and a necessary and sufficient condition for a profile of strategies ai(·) to be a Bayesian Nash

equilibrium is that the first-order condition (11) is satisfied for every i and every signal realization s̃i.

Bringing the first term under the summation sign, equation (11) becomes

n∑
j=1

E [Γij(s)aj(sj)|s̃i] + E [gi(s)|s̃i] = 0.

By the law of iterated expectations, conditioning over all kj possible realizations of signal s̃j , the

equation can be further rewritten as

n∑
j=1

kj∑
s̃j=1

E [Γij(s)|s̃i, s̃j ] P [sj = s̃j |si = s̃i] aj(s̃j) + E [gi(s)|s̃i] = 0. (12)

Using the notation introduced in Section 2.4, we can rewrite (12) as∑
j,s̃j

Φ(i,s̃i),(j,s̃j)aj(s̃j) + E [gi(s)|s̃i] = 0. (13)

Stacking equations (13) for all i = 1, . . . , n and all s̃i = 1, . . . , ki we obtain

Φa+ g = 0. (14)

If Φ is invertible, linear equation (14) admits the unique solution

a = −Φ−1g. (15)

Conversely, if Φ is not invertible, then (14) has either zero or infinitely many solutions, and hence

either the equilibrium does not exist or there are infinitely many equilibria.
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A.2 Proof of Lemma 2

Slightly abusing notation, let Φ(γ) denote the matrix Φ corresponding to the quadratic game

with parameter γ. Matrix Φ(γ) is invertible if and only if its determinant det Φ(γ) is not equal

to zero. Note that det Φ(γ) is a polynomial in γ, because each element of matrix Φ(γ) is either

independent of γ or is a linear function of it, and the determinant of any matrix is a polynomial

function of its elements.

Consider the quadratic game with γ = 0, so that payoffs are πi(ai, a−i, s) = 1
2a

T
i Γii(s)ai +

aTi gi(s) +hi(a−i, s). Since E [Γii(s)|s̃i] is negative definite for all s̃i, there is a unique optimal action

for each player i, and this optimal action is independent of the actions of other players. Therefore,

this game has a unique Bayesian Nash equilibrium. Thus, by Lemma 1, Condition 1 holds, and so

det Φ(γ) 6= 0 at γ = 0.

Thus, the polynomial det Φ(γ) is not equal to the zero polynomial. Therefore, it has at most a

finite number of roots, and so matrix Φ(γ) is invertible for all γ ∈ R, except for at most finitely

many values.

A.3 Proof of Proposition 1

To begin, let us consider the special case α(·) = ci(·) = 0 for every i. We show that in

this case, there exists a unique Bayesian Nash equilibrium. The profit of firm i becomes πi =

−β(ω)qiQ− di(ω)q2
i . For such a profit function, it is readily verified that all firms producing zero

is an equilibrium: thus, there exists at least one equilibrium of this game. We also note that no

matter what other firms produce, a firm can always guarantee itself a profit of zero by producing

zero. Hence, in every equilibrium profile qi(si), i = 1, . . . , n, the expected profit of each firm is

nonnegative, and so is the sum of profits for all the players,∑
i

E
[
−β(ω)qi(si)Q(s)− di(ω)qi(si)

2
]

= − E
[
β(ω)Q(s)2 +

∑
di(ω)qi(si)

2
]
,

where Q(s) =
∑

j qj(sj) is the total equilibrium quantity supplied by the firms. Note that the right

hand side is also nonpositive, and hence has to be equal to zero. Therefore, in every equilibrium,

the expected profit of every firm is equal to zero. Fixing the strategies of other firms, the best

response of firm i, that maximizes its expected profit, conditional on its signal and conditional on

the strategies of the other firms, is unique, because β(·) > 0 and di(·) ≥ 0. Hence, the only strategy

for which the best response of firm i yields an expected profit of zero is to produce zero.

We have shown that there exists a unique Bayesian Nash equilibrium for the special case

where α(·) = ci(·) = 0 for every i. We now consider the general case in which α(·) and ci(·) are

arbitrary. Note that, using the notation of Section 2, the term Γij reduces to −β(ω) if i 6= j and

−2di(ω) − 2β(ω) < 0 if i = j. Hence, the assumptions of Section 2.2 are satisfied, and Lemma 1

applies. Observe that the matrix Φ, defined in Section 2.4, does not depend on the terms α(·) and

ci(·) of the profit function. By Lemma 1, Condition 1 is satisfied for the special case α(·) = ci(·) = 0,
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and so by our observation Condition 1 is also satisfied for the general case. Therefore, by Lemma 1,

there exists a unique Bayesian Nash equilibrium in this general case.

A.4 Proof of Proposition 2

To save on notation, we restrict attention to symmetric strategy profiles in which the firms

of a given group use identical strategies. (By symmetry of the game structure, this restriction is

without loss of generality.) A strategy profile then reduces to the specification of the strategies qi(si)

common to every firm of group i, for every group i.

Let us write the total surplus of a given strategy profile qi(si) for every firm of group i in market

k. Given market price P and market quantity Q, the ex-post consumer surplus is:

1

2
(α(ω)− P )Q =

1

2k
β(ω)Q2,

and the ex-post producer surplus is

PQ−k
∑
i

ci(ω)qi(si)−k
∑
i

di(ω)qi(si)
2 = α(ω)Q− 1

k
β(ω)Q2−k

∑
i

ci(ω)qi(si)−k
∑
i

di(ω)qi(si)
2,

so the ex-post total surplus is

α(ω)Q− 1

2k
β(ω)Q2 − k

∑
i

ci(ω)qi(si)− k
∑
i

di(ω)qi(si)
2

= kα(ω)

(∑
i

qi(si)

)
− k

2
β(ω)

(∑
i

qi(si)

)2

− k
∑
i

ci(ω)qi(si)− k
∑
i

di(ω)qi(si)
2,

and the ex-ante expected total surplus, denoted TSk, is

TSk = E

kα(ω)

(∑
i

qi(si)

)
− k

2
β(ω)

(∑
i

qi(si)

)2

− k
∑
i

ci(ω)qi(si)− k
∑
i

di(ω)qi(si)
2

 .
In the remainder of the proof, it is useful to make explicit the dependence on the strategy profile.

For a strategy profile summarized by q = (q1(·), . . . , qn(·)) in any market k, we denote by TSk(q)

the expected total surplus in that market. By assumption, TS
a
< ∞, so supq TSk(q) < ∞. The

optimization problem that consists in finding the supremum is quadratic, which implies that the

supremum is reached for some instance of strategy profile. Thus, there exists at least one ex-ante

efficient strategy profile, which we denote qa. Since the total surplus is linear in the market size, qa

does not depend on the market index k.

Next, let us consider the equilibrium in market k. Recall that, by Proposition 1, there exists a

unique Bayesian Nash equilibrium profile (q1(s1), . . . , qN (sN )). The profit of any firm in group i,
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who produces q instead of its prescribed equilibrium quantity qi(si), is

Pq−ci(ω)q − di(ω)q2

=

(
α(ω)− β(ω)

k
Q

)
q − ci(ω)q − di(ω)q2

=

α(ω)− β(ω)

k
q − β(ω)(k − 1)

k
qi(si)− β(ω)

∑
j 6=i

qj(sj)

 q − ci(ω)q − di(ω)q2,

where P is the market price and Q is the market quantity. The equilibrium profile is the unique

solution to the first-order conditions

E

α(ω)− β(ω)

k
qi(si)− β(ω)

N∑
j=1

qj(sj)− ci(ω)− 2di(ω)qi(si)

∣∣∣∣∣∣si
 = 0 (16)

for every i.

These first-order conditions are the same first-order conditions of the maximization of the

expected total surplus with the addition of an extra term, a modified total surplus which we write

MTSk(q) and is expressed as MTSk(q) = TSk(q)− Rk(q) with

Rk(q) = E

[
β(ω)

2

∑
i

qi(si)
2

]
≥ 0.

Denote by q∗k the unique equilibrium strategy profile in market k, and by qa a strategy profile

that is ex-ante efficient. Since the total surplus is linear in k, ex-ante efficient strategy profiles do

not depend on the market index k.

As q∗k maximizes the expected modified total surplus, MTSk(q
∗
k) ≥ MTSk(q

a). Hence, we have

TSk(q
∗
k) = MTSk(q

∗
k) + Rk(q

∗
k) ≥ MTSk(q

∗
k) ≥ MTSk(q

a) = TSk(q
a)− Rk(q

a).

Besides, qa maximizes the expected total surplus, so TSk(q
∗
k) ≤ TSk(q

a). Hence, letting Rk(q) =

Rk(q)/(kN) and TSk(q) = TSk(q)/(kN), noting that TSk(qa) = TS
a

and TSk(q∗k) = TS
∗
k, we have

TS
a − Rk(q

a) ≤ TS
∗
k ≤ TS

a
.

For any fixed strategy profile q, limk→∞Rk(q) = 0. Thus,

lim
k→∞

TS
∗
k = TS

a
,

which concludes the proof.
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A.5 Proof of Proposition 3

First, let us demonstrate that a best linear estimate exists. The problem of minimizing the

β-weighted squared error can be formulated as a quadratic optimization problem, in which we

minimize ∑
s1,...,sN ,ω

β(ω)(q1,s1 + · · ·+ qN,sN −Q
p
(ω))2 P[s1, . . . , sN , ω],

over the variables q1,1, . . . , q1,k1 , . . . , qN,1, . . . , qN,kN . In this optimization problem, the objective is

a quadratic function of k1 + · · ·+ kN variables. It is nonnegative, thus a minimum exists, and this

minimum is reached in at least one instance of the variables. Hence, there exists at least one best

linear estimate of Q
p
.

Next, we prove that the best linear estimate is unique. Suppose, by contradiction, that Q1 and

Q2 are two different best linear estimates: there is at least one vector of signals for which Q1 and

Q2 take different values. Observing that C is convex, we claim that (Q1 +Q2)/2 is a strictly better

linear estimate of Q
p
. We have, for all realizations of joint signals,(

Q1 +Q2

2
−Qp

)2

=
1

4
(Q1 −Q

p
)2 +

1

4
(Q2 −Q

p
)2 +

1

2
(Q1 −Q

p
)(Q2 −Q

p
)

≤ 1

4
(Q1 −Q

p
)2 +

1

4
(Q2 −Q

p
)2 +

1

4
(Q1 −Q

p
)2 +

1

4
(Q2 −Q

p
)2

=
1

2
(Q1 −Q

p
)2 +

1

2
(Q2 −Q

p
)2,

and where the inequality is strict for the vectors of signals are such that Q1 6= Q2. As all vectors of

signals have positive probability, we get

E

[(
Q1 +Q2

2
−Qp

)2
]

<
1

2
E
[(
Q1 −Q

p)2]
+

1

2
E
[(
Q2 −Q

p)2]
= E

[(
Q1 −Q

p)2]
= E

[(
Q2 −Q

p)2]
and hence (Q1 +Q2)/2 is a strictly better linear estimate. Thus, we have established that there

exists a unique best linear estimate Q†.

We now proceed to prove that Q
†

= Q
a
. First, note that as Q

†
is the unique minimizer of

E
[
β(ω)(Q−Qp)2

]
for Q ∈ C, subtracting β(ω)(Q

p
)2 from the objective and then multiplying by −N2k/2, we get that

Q
†

is also the unique maximizer of

E

[
−1

2
β(ω)kN2Q2 + kN2β(ω)QQ

p
]

= E

[
−1

2
β(ω)kN2Q2 + kNQα(ω)− kNQc(ω)

]
(17)

for Q ∈ C, where we used the fact that the ex-post efficient market quantity Qpk is equal to
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k(α(ω)− c(ω))/β(ω) in market k, and thus Q
p

= (α(ω)− c(ω))/(Nβ(ω)). Writing Q in the form

Q = 1
N (q1(s1) + · · ·+ qN (sN )), the value of (17) is equal to

E

kα(ω)

(∑
i

qi(si)

)
− k

2
β(ω)

(∑
i

qi(si)

)2

− k
∑
i

c(ω)qi(si)

 ,
which is the expected total surplus when each firm of group i produces qi(si), as shown in the

proof of Proposition 2. The variable Q can then be interpreted as the per-firm average production.

Hence, the value Q
†

is the per-firm average production that makes the market ex-ante efficient, and

Q
†

= Q
a
.

Finally, we prove that the per-firm average equilibrium production converges to the ex-ante

efficient level. Borrowing notation and terminology from the proof of Proposition 2, let us consider

the problem of finding a profile q = (q1(s1), . . . , qN (sN )) that maximizes the value of

E

[
−β(ω)(Q−Qp)2 − β(ω)

kN

∑
i

qi(si)
2

]
(18)

where we write Q = (q1(s1) + · · · + qN (sN ))/N . Using that Q
p

= (α(ω) − c(ω))/(Nβ(ω)), the

first-order conditions of this maximization problem are

2

N
E

[
−β(ω)

∑
i

qi(si) + α(ω)− c(ω)− β(ω)

k
qi(si)

∣∣∣∣∣si
]

= 0 (19)

for every i. Observe that these first-order conditions are identical to the first-order conditions

associated with the unique equilibrium of market k. Indeed, recall from the proof of Proposition 2

that an equilibrium profile (q1(s1), . . . , qN (sN )) in market k is the unique solution to (16) for every i,

and equations (16) and (19) are identical for the cost structures of the environments being considered.

Thus, there exists a unique profile that maximizes (18), and that profile is the equilibrium strategy

profile of market k, denoted q∗k.

For a profile q, and for Q ∈ C, we let

A(Q) = E
[
−β(ω)

(
Q−Qpk

)2]
,

Bk(q) = E

[
β(ω)

kN

∑
i

q2
i (si)

]
,

Fk(q) = A

(
1

N

∑
i

qi(si)

)
−Bk(q).

Thus, q∗k maximizes Fk(q) over all profiles q. Let qa = (qa1(s1), . . . , qaN (sN )) be a profile such that

Q
a

= (qa1(s1) + · · · + qaN (sN ))/N . We have shown above that Q
a

= Q
†
, and that Q

a
maximizes

A(Q) over all profiles Q ∈ C.
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As Q
a

maximizes A(Q), and Q
∗
k ∈ C, we have

A(Q
∗
k) ≤ A(Q

a
). (20)

Noting that Bk(q) ≥ 0, and that q∗k maximizes Fk(q), we also have

A(Q
∗
k) = Fk(q

∗
k) +Bk(q

∗
k) ≥ Fk(q∗k) ≥ Fk(qa) = A(Q

a
)−Bk(qa)→ A(Q

a
) (21)

where the limit obtains as k → ∞ and is implied by the fact that for any fixed profile q,

limk→∞Bk(q) = 0.

Hence, putting together the inequalities (20) and (21), we obtain the limit

lim
k→∞

A(Q
∗
k) = A(Q

a
). (22)

To finish, we observe that the limit (22) implies that Q
∗
k converges to Q

a
for every realization of

joint signals, because every realization of joint signals occurs with positive probability and Q
a

is the

unique maximizer of A(Q) for Q ∈ C. Hence, Q
∗
k → Q

a
as k →∞, where the limit holds for every

realization of joint signals.

A.6 Additional Properties of Conditional Expectations

In this section, we state and prove a lemma that summarizes two additional properties of

conditional expectations of variables θi that follow from our assumptions.

Lemma A.1 For every i, conditional expectations of signal θi satisfy the following properties:

1. For every subset T of players, for any profile of their finite signal realizations s̃T that has a

positive probability, we have E[θi|sT = s̃T ] = 0.

2. For every j 6= i, for every pair of finite signal realizations s̃i and s̃j, there exists a matrix

Qji(s̃j , s̃i) such that for every infinite signal realization θ̃j, the conditional expectation of θi is

given by E[θi|sj = s̃j , si = s̃i, θj = θ̃j ] = QTji(s̃j , s̃i)θ̃j.

Proof.

Statement 1: It is sufficient to prove the statement for the case i ∈ T : if the statement is true

for all i and T such that i ∈ T , then for any T and i /∈ T , E[θi|sT = s̃T ] =
∑

s̃i
E[θi|sT = s̃T , si =

s̃i] P[si = s̃i|sT = s̃T ] = 0.

Now suppose i ∈ T . Consider a new random variable, χ, which is equal to θi when sT = s̃T and

is equal to zero otherwise. Note that E[χ] = E[θi|sT = s̃T ]P (s̃T ), so it is sufficient to show that
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E[χ] = 0 (because by assumption, P(s̃T ) 6= 0). Decompose s̃T as s̃T = (s̃i, s̃T\i). Then

E[χ] = P(s̃i) E[χ|si = s̃i]

= P(s̃i)

∫
θ̃i

θ̃i P(sT\i = s̃T\i|si = s̃i, θi = θ̃i) dP (θ̃i|si = s̃i)

= P(s̃i)

∫
θ̃i

θ̃i P(sT\i = s̃T\i|si = s̃i) dP (θ̃i|si = s̃i)

= P(s̃i) P(sT\i = s̃T\i|si = s̃i)

∫
θ̃i

θ̃i dP (θ̃i|si = s̃i)

= P(s̃i) P(sT\i = s̃T\i|si = s̃i) E[θi|si = s̃i]

= 0.

Note that a key step in the calculation is the substitution P(sT\i = s̃T\i|si = s̃i, θi = θ̃i) = P(sT\i =

s̃T\i|si = s̃i), which is one of our assumptions on the joint distribution of finite and infinite signals.

Statement 2: By assumption, the conditional expectation of θi is a linear function of θ̃j , and

so E[θi|sj = s̃j , si = s̃i, θj = θ̃j ] = qji(s̃j , s̃i) + QTji(s̃j , s̃i)θ̃j for some vector qji(s̃j , s̃i) and matrix

QTji(s̃j , s̃i). To prove that qji(s̃j , s̃i) = 0, consider the conditional expectation E[θi|sj = s̃j , si = s̃i],

and note that on one hand, we have E[θi|sj = s̃j , si = s̃i] = 0, and on the other hand, E[θi|sj =

s̃j , si = s̃i] = qji(s̃j , s̃i) +QTji(s̃j , s̃i) E[θj |sj = s̃j , si = s̃i] = qji(s̃j , s̃i).

A.7 Proof of Lemma 3

Consider the optimization problem of player i who has observed realization (s̃i, θ̃i) of signal

(si, θi). If he chooses action ai, his expected payoff, ignoring the term hi(ai, s, θ) which does not

impact incentives, is equal to

E
[
πi

∣∣∣ai, s̃i, θ̃i] =
1

2
aTi E

[
Γii(s)

∣∣∣s̃i, θ̃i] ai + aTi E
[
Γi,−i(s)a−i

∣∣∣s̃i, θ̃i]+ aTi E
[
gi(s)

∣∣∣s̃i, θ̃i] .
Since E

[
Γii(s)

∣∣∣s̃i, θ̃i] = E [Γii(s)|s̃i] is negative definite for all s̃i, the unique best response of

player i is to set ai(s̃i, θ̃i) to the value that satisfies the first-order condition

E
[
Γii(s)

∣∣∣s̃i, θ̃i] ai(s̃i, θ̃i) +
∑
j 6=i

E
[
Γij(s)aj(sj , θj)

∣∣∣s̃i, θ̃i]+ E
[
gi(s, θ)

∣∣∣s̃i, θ̃i] = 0, (23)

and a necessary and sufficient condition for a profile of linear strategies aj(sj , θj) = κj(sj) +Λj(sj)θj

for every player j to be a linear equilibrium is that the first-order condition (23) is satisfied for

every i and every signal realization (s̃i, θ̃i).

Bringing the first term under the summation sign in equation (23), we get

n∑
j=1

E
[
Γij(s)aj(sj , θj)

∣∣∣s̃i, θ̃i]+ E
[
gi(s, θ)

∣∣∣s̃i, θ̃i] = 0. (24)
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By the law of iterated expectations, conditioning over all kj possible realizations of signal s̃j , we

can rewrite (24) as

n∑
j=1

kj∑
s̃j=1

P [sj = s̃j |si = s̃i] E
[
Γij(s)aj(sj , θj)

∣∣∣s̃i, s̃j , θ̃i]+ E
[
gi(s, θ)

∣∣∣s̃i, θ̃i] = 0. (25)

For simplicity, in the remainder of the proof, we write P [s̃j |s̃i] to denote P [sj = s̃j |si = s̃i].

By the law of iterated expectations and our assumption that the distribution of s given

(s̃i, s̃j , θ̃i, θ̃j) is equal to the distribution of s given (s̃i, s̃j), we get

E
[
Γij(s)

∣∣∣s̃i, s̃j , θ̃i] = E
[

E
[
Γij(s)

∣∣∣s̃i, s̃j , θ̃i, θ̃j]∣∣∣s̃i, s̃j , θ̃i] = E [Γij(s)|s̃i, s̃j ] .

Then, recalling our notation E
[
gi(s, θ)

∣∣∣s̃i, θ̃i] = Gi(s̃i) + Fi(s̃i)θ̃i, equation (25) becomes

∑
j,s̃j

P [s̃j |s̃i]
(

E [Γij(s)|s̃i, s̃j ]κj(s̃j) + E
[
Γij(s)Λj(s̃j)θ̃j

∣∣∣s̃i, s̃j , θ̃i])+Gi(s̃i) + Fi(s̃i)θ̃i = 0. (26)

Let us use again the law of iterated expectations and our assumption that the distribution of s

given (s̃i, s̃j , θ̃i, θ̃j) is equal to the distribution of s given (s̃i, s̃j) to obtain the following equalities:

E
[
Γij(s)Λj(s̃j)θ̃j

∣∣∣s̃i, s̃j , θ̃i] = E
[

E
[
Γij(s)Λj(s̃j)θ̃j

∣∣∣s̃i, s̃j , θ̃i, θ̃j]∣∣∣s̃i, s̃j , θ̃i]
= E

[
E
[
Γij(s)

∣∣∣s̃i, s̃j , θ̃i, θ̃j]Λj(s̃j)θ̃j

∣∣∣s̃i, s̃j , θ̃i]
= E

[
E [Γij(s)|s̃i, s̃j ] Λj(s̃j)θ̃j

∣∣∣s̃i, s̃j , θ̃i]
= E [Γij(s)|s̃i, s̃j ] Λj(s̃j) E

[
θ̃j

∣∣∣s̃i, s̃j , θ̃i] .
Recalling our notation E

[
θj

∣∣∣s̃i, s̃j , θ̃i] = QTij(s̃i, s̃j)θ̃i, equation (26) can then be written

∑
j,s̃j

P [s̃j |s̃i] E [Γij(s)|s̃i, s̃j ]
(
κj(s̃j) + Λj(s̃j)Q

T
ij(s̃i, s̃j)θ̃i

)
+Gi(s̃i) + Fi(s̃i)θ̃i = 0. (27)

This equation is linear in θ̃i. By assumption, the variance of θi has full rank, so for (27) to hold for

all possible realizations θ̃i of θi, both the constant term and the multiplier of θ̃i must be equal to

zero.19

19To see this, consider a square matrix M ∈ R`×`, a vector N ∈ R`, and a random vector X ∈ R` with E[X] = 0

and finite second moments, with full rank variance matrix Var(X). Suppose that the equality MX̃ +N = 0 holds

for all possible realizations X̃ of X. Then E[MX + N ] = 0. First, note that as E[X] = 0, we must have N = 0.

Second, we now have MX̃ = 0, which implies MX̃X̃T = 0, and so E[MXXT ] = 0. Since E[MXXT ] = M Var(X)
and Var(X) has full rank, we must have M = 0.
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The equation corresponding to the constant term is∑
j,s̃j

P [s̃j |s̃i] E [Γij(s)|s̃i, s̃j ]κj(s̃j) +Gi(s̃i) = 0. (28)

and using the notation introduced in Section 2.4, we can rewrite (28) as∑
j,s̃j

Φ(i,s̃i),(j,s̃j)κj(s̃j) +Gi(s̃i) = 0. (29)

Stacking equations (29) for all i = 1, . . . , n and all s̃i = 1, . . . , ki, we get

Φκ+ g = 0. (30)

Note that (30) is the same as (12), where κj(s̃j) is used instead of aj(s̃j) and Gi(s̃i) is used instead

of E [gi(s)|s̃i]. If Φ is invertible, (30) admits the unique solution

κ = −Φ−1g.

If Φ is not invertible, then (30) has either zero or infinitely many solutions.

Now we write the equation corresponding to the multiplier of θ̃i:∑
j,s̃j

P [s̃j |s̃i] E [Γij(s)|s̃i, s̃j ] Λj(s̃j)Q
T
ij(s̃i, s̃j) + Fi(s̃i) = 0. (31)

We vectorize this equation and apply the identity vec(XY Z) = (ZT ⊗X) vec(Y ):20

∑
j,s̃j

P [s̃j |s̃i] (Qij(s̃i, s̃j)⊗ E [Γij(s)|s̃i, s̃j ]) vec Λj(s̃j) + vecFi(s̃i) = 0. (32)

Stacking equations (32) for all i = 1, . . . , n and all s̃i = 1, . . . , ki, we get

ΨΛ + f = 0. (33)

If Ψ is invertible, then (33) admits the unique solution

Λ = −Ψ−1f.

If Ψ is not invertible, then (33) has either zero of infinitely many solutions.

Therefore, if both Φ and Ψ are invertible, then there exists a unique linear equilibrium given by

κ = −Φ−1g and Λ = −Ψ−1f . Conversely, if Φ or Ψ are not invertible, then either there exists no

linear equilibrium, or there are infinitely many linear equilibria.

20See https://en.wikipedia.org/wiki/Vectorization_(mathematics)#Compatibility_with_Kronecker_

products for details.

35

https://en.wikipedia.org/wiki/Vectorization_(mathematics)#Compatibility_with_Kronecker_products
https://en.wikipedia.org/wiki/Vectorization_(mathematics)#Compatibility_with_Kronecker_products


A.8 Proof of Lemma 4

The proof is analogous to the proof of Lemma 2. Similar to that proof, let Φ(γ) and Ψ(γ) denote

the matrices Φ and Ψ corresponding to the quadratic game with parameter γ. As in that proof,

det Φ(γ) and det Ψ(γ) are polynomials in γ, and so it is sufficient to prove that neither of these

polynomials is identically equal to zero.

Consider the quadratic game with γ = 0, so that payoffs are πi(ai, a−i, s, θ) = 1
2a

T
i Γii(s)ai +

aTi gi(s, θ) +hi(a−i, s, θ). Since E
[
Γii(s)

∣∣∣s̃i, θ̃i] is negative definite for all s̃i and θ̃i, there is a unique

optimal action for each player i, and this optimal action is independent of the actions of other

players. Also, since by assumption E
[
Γii(s)

∣∣∣s̃i, θ̃i] does not depend on θ̃i and E[gi(s, θ)|s̃i, θ̃i] is a

linear function in θ̃i, the optimal strategy of player i is also linear in θ̃i. Thus, the quadratic game

with γ = 0 has a unique linear equilibrium, which in turn implies that Conditions 1 and 2 are both

satisfied, and so det Φ(γ) 6= 0 and det Φ(γ) 6= 0 at γ = 0.

A.9 Proof of Proposition 4

First, observe that terms b∗i do not affect matrices Φ and Ψ in any way: these matrices only

depend on the distribution of the profile of finite signals s, the terms Γij(s), which in the current

context depend only on the parameters γii and γij , and matrices Qij(si, sj), which in the current

context depend only on the distribution of the profile of infinite signals θ. By Lemma 3, there exists

a unique equilibrium if and only if Conditions 1 and 2 are satisfied, i.e., if matrices Φ and Ψ are

invertible. Thus, it is sufficient to prove that the game has a unique equilibrium if all bliss points

b∗i are always equal to zero: this fact would imply that Conditions 1 and 2 are satisfied for that

modified game, which would in turn imply that Conditions 1 and 2 are satisfied for the original

game, completing the proof.

Consider a beauty contest game with zero bliss points: the payoffs are given by

πi(ai, a−i, s) = −γii(s)a2
i −

∑
j 6=i

γij(s)(ai − aj)2. (34)

It is immediate that this game has a linear equilibrium in which each player i always plays ai = 0

regardless of his information. Let us prove that there are no other linear equilibria in this game.

Consider a linear equilibrium in which each player i plays ai(si, θi) = κi(si) + Λi(si)θi. We will

first show that for all i and all realizations s̃i, the constant term κi(s̃i) is equal to zero, and will

then prove an analogous statement about the terms Λi(si), thus completing the proof.

Suppose for some i and some realization s̃i, the term κi(s̃i) is not equal to zero. Without loss

of generality, suppose that for this i and s̃i, the term κi(s̃i) has the largest absolute value: for

any player j and signal realization s̃j , we have |κj(s̃j)| ≤ |κi(s̃i)|. Consider the case when player i

observes the realization of his finite signal equal s̃i, and observes the realization of his infinite signal

equal to zero. Conditional on this information, the expected value of the infinite signal θj of any

other player j is also equal to zero, and the expected action of player j depends only on the κj
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terms of his strategy, and not on Λi terms. The optimal action of player i, which by assumption is

given by κi(s̃i), must satisfy the following first-order condition:

E[γii(s)|s̃i]κi(s̃i) +
∑
j 6=i

E[γij(s)(κi(s̃i)− κj(sj))|s̃i] = 0.

Since γii(s) is always positive, γij(s) is always non-negative, and κi(s̃i) has the largest possible

absolute value among all κj(sj), the above expression has the same sign as κi(s̃i), and in particular

is not equal to zero, contradicting the assumption of equilibrium. Thus, all terms κi(si) are equal

to zero, and the linear equilibrium behavior of each player i reduces to ai(si, θi) = Λi(si)θi.

We will now show that terms Λi(si) also have to be equal to zero (and thus the actions of

all players are constant, identically equal to zero). Suppose that is not the case. Take player i

and finite signal realization s̃i such that the variance Var(ai|s̃i) = Λi(s̃i) Var(θi)Λi(s̃i)
T is maximal,

i.e., for every j and every signal realization s̃j , Var(aj |s̃j) ≤ Var(ai|s̃i) (recall that actions are

one-dimensional in this application).

Suppose in addition to the finite signal realization s̃i, player i also observes an infinite signal

realization θ̃i. His first-order condition then implies that

E[γii(s)|s̃i]Λi(s̃i)θ̃i +
∑
j 6=i

E[γij(s)(Λi(s̃i)θ̃i − Λj(sj)θj)|s̃i, θ̃i] = 0,

which can be rewritten as

E[γii(s)|s̃i]Λi(s̃i)θ̃i +
∑
j 6=i

E[γij(s)(Λi(s̃i)θ̃i − Λj(sj) E[θj |θ̃i])|s̃i] = 0.

Multiplying this equation by θ̃Ti Λi(s̃i)
T on the right, and taking the expectation over θi, we get

E[γii(s)|s̃i] Var(ai|s̃i) +
∑
j 6=i

E[γij(s)(Var(ai|s̃i)− Λj(sj) Cov(θj , θi)Λi(s̃i)
T |s̃i] = 0. (35)

The final step of the proof is to observe that for every player j and every realization s̃j of his

finite signal, the expression Λj(s̃j) Cov(θj , θi)Λi(s̃i)
T is equal to Cov(aj , ai|s̃j , s̃i), for which we have

Cov(aj , ai|s̃j , s̃i) ≤
√

Var(aj |s̃j) ·Var(ai|s̃i) ≤ Var(ai|s̃i) (where the second inequality follows from

the choice of player i and signal realization s̃i). Thus, the left-hand side of equation (35) is strictly

positive, contradicting the assumption that it is equal to zero. Thus, the modified game has a

unique linear equilibrium, in which every player always plays zero, and therefore, as explained in

the beginning of the proof, the original game also has a unique equilibrium.
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A.10 Proof of Proposition 5

1. The derivative of (βL + βH)/2 with respect to ∆ is

2ρ2∆(2q − 1)(1− ρ)(α(2q − 1)ρ− 1)

(ρ2(2q − 1)(α−∆)(α+ ∆)− 2αqρ+ 1)2

which is negative because 2q− 1 > 0 (as q > 1/2), 1− ρ > 0, and α(2q− 1)ρ− 1 < αρ− 1 < 0.

Next, the derivative of (βL + βH)/2 with respect to q is

2∆2ρ2(ρ− 1)

(ρ2(2q − 1)(α−∆)(α+ ∆)− 2αqρ+ 1)2

which is negative, because ρ− 1 < 0.

2. The derivative of βH with respect to q is:

2ρ2∆(ρ− 1)(α+ ∆)(−αρ+ ∆ρ+ 1)

(ρ2(2q − 1)(α−∆)(α+ ∆)− 2αqρ+ 1)2

which is negative, because ρ− 1 < 0 and because −αρ+ ∆ρ+ 1 = 1− ρ(α−∆) > 0.

The derivative of βH with respect to ∆ is:

(ρ− 1)ρ
(
(2q − 1)ρ2

(
(α+ ∆)2 − 4α∆q

)
− 2ρ(αq − 2∆q + ∆) + 1

)
(ρ2(2q − 1)(α−∆)(α+ ∆)− 2αqρ+ 1)2 . (36)

To evaluate the sign of (36) we will show that the following inequality holds:

(2q − 1)ρ2
(
(α+ ∆)2 − 4α∆q

)
− 2ρ(αq − 2∆q + ∆) + 1 > 0. (37)

To see this, recall that α = (αL + αH)/2 and ∆ = (αH − αL)/2. Plugging these in the above

expression, (37) becomes

α2
H(−2q2 + 3q − 1)ρ2 + αH(q − 1)ρ+ (αLqρ− 1)(αL(2q − 1)ρ− 1) > 0.

Note that −2q2 + 3q − 1 = −(q − 1)(2q − 1) > 0 and so, since αH > αL,

α2
H(−2q2 + 3q − 1)ρ2 + αH(q − 1)ρ+ (αLqρ− 1)(αL(2q − 1)ρ− 1)

> α2
L(−2q2 + 3q − 1)ρ2 + αH(q − 1)ρ+ (αLqρ− 1)(αL(2q − 1)ρ− 1)

= qρ(αH + αL(2αLρ− 3))− ρ(αH + αL(αLρ− 1)) + 1

which is linear in q. If q = 1, we have

qρ(αH + αL(2αLρ− 3))− ρ(αH + αL(αLρ− 1)) + 1 = (αLρ− 1)2 > 0.
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If q = 1/2, we have

qρ(αH + αL(2αLρ− 3))− ρ(αH + αL(αLρ− 1)) + 1 = 1− 1

2
ρ(αH + αL) > 0.

So, for every q ∈ (1/2, 1),

qρ(αH + αL(2αLρ− 3))− ρ(αH + αL(αLρ− 1)) + 1 > 0

which proves (37).

Using (37) and the fact that ρ− 1 < 0, we obtain that (36) is negative.

3. The derivative of βL with respect to q is

2ρ2∆(ρ− 1)(α−∆)(ρ(α+ ∆)− 1)

(ρ2(2q − 1)(α−∆)(α+ ∆)− 2αqρ+ 1)2

which is positive because ρ− 1 < 0, α−∆ > 0 and ρ(α+ ∆)− 1 < ρ− 1 < 0.

The derivative of βL with respect to ∆ is:

−
(ρ− 1)ρ

(
ρ
(
(2q − 1)ρ

(
4α∆q + (α−∆)2

)
− 2q(α+ 2∆) + 2∆

)
+ 1
)

((2q − 1)ρ2(α−∆)(α+ ∆)− 2αqρ+ 1)2 . (38)

Fix α = 7
8 , q = 15

16 , and ρ = 95
96 . Then at ∆ = 1

10 expression (38) is negative, while at ∆ = 1
11

it is positive. Hence the comparative static is in general ambiguous.
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