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Abstract

We propose a new principle for measuring the cost of information structures in
rational inattention problems, based on the cost of generating the information used to
make a decision through a dynamic evidence accumulation process. We introduce a
continuous-time model of sequential information sampling, and provide assumptions
under which the choice frequencies resulting from optimal information accumulation
are the same as those implied by a static rational inattention problem with a particular
cost function. Among the cost functions that can be justified in this way is the mu-
tual information cost proposed by Sims (2010), but this is only one possibility. We
introduce a class of “neighborhood-based” cost functions, which make it more costly
to undertake experiments that differentiate between similar states. With this alterna-
tive cost function, optimal information accumulation implies choice frequencies that
vary continuously with the state, even when payoffs are discontinuous, as observed in
perceptual discrimination experiments.
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1 Introduction

The theory of rational inattention, proposed by Christopher Sims and surveyed in Sims

(2010), endogenizes the imperfect awareness that decision makers have about the circum-

stances under which they must choose their actions. According to the theory, a decision

maker (DM) chooses her action on the basis of a subjective representation of the deci-

sion situation which provides only an imperfect indication of the true state. The informa-

tion structure is assumed to be optimal, in the sense of allowing the best possible state-

contingent action choice, net of a cost of information. In Sims’ theory, the cost of an

arbitrary information structure is proportional to the Shannon mutual information between

the true state of the world and the information state available to the DM.

It is not obvious, though, that the theorems that justify the use of mutual information in

communications engineering (Cover and Thomas (2012)) provide any warrant for using it

as a cost function in a theory of attention allocation, either in the case of economic decisions

or that of perceptual judgments.1 Here we propose an alternative criterion for determining

the cost of an information structure, that follows from assuming that the DM’s subjective

representation of her situation must be built up through a process of sequential evidence

accumulation, in which each successive increment to the cumulatively available evidence

is only very minimally informative.

In addition, the mutual-information cost function has implications that are unappealing

on their face, and that seem inconsistent with evidence on the nature of sensory process-

ing, as discussed in Woodford (2012). For example, the mutual-information cost function

imposes a type of symmetry across different states of nature, so that it is equally easy or

difficult to distinguish between any two states that are equally probably ex ante.

1As explained in Cover and Thomas (2012), these theorems rely upon the possibility of “block coding” of
a large number of independent instances of a given type of message, that can be jointly transmitted before any
of the messages have to be decoded by the recipient. In our situation, an action must be taken in an individual
decision problem, without waiting to learn about a large number of problems of the same form.
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In the experimental task discussed by Caplin and Dean (2015), in which subjects are

presented with an array of 100 red and blue balls, and must determine whether there are

more red balls or more blue on a given trial, Sims’ theory of rational inattention implies

that, because the reward from any action (e.g., declaring that there are more red balls) is the

same for all states with the property that there are more red balls than blue, the probability

of a subject’s choosing that response will be the same in each of those states.2 In fact, it is

much easier to quickly and reliably determine that there are more red balls for some arrays

in this class (e.g. one with 98 red balls and only two blue balls) than others (e.g. one with

51 red balls and 49 blue balls, relatively uniformly dispersed), and subjects make more

correct responses in the former case.3

Our alternative theoretical foundations exploit the special structure implied by an as-

sumption that information sampling occurs through a sequential process, in which each

additional signal that is received determines whether additional information will be sam-

pled, and if so, the kind of experiment to be performed next. We emphasize the limiting

case in which each individual experiment is only minimally informative, but a very large

number of independent experiments can be performed. In this continuous-time limit, we

obtain strong and relatively simple characterizations of the implications of rational inatten-

tion, owing to the fact that only local properties of the assumed cost function for individual

experiments matter in this limiting case.

We believe that it is often quite realistic to assume that information is acquired through

a sequential sampling process. As discussed in Fehr and Rangel (2011) and Woodford

(2014), an extensive literature in psychology and neuroscience has argued that data on both

the frequency of perceptual errors and the frequency distribution of response times can

be explained by models of perceptual classification based on sequential sampling. More

2This is an implication of Lemma 6 in section 5.
3Dewan and Neligh (2017) present similar evidence against Sims’ theory, from a related experiment in

which subjects must estimate the number of dots in a visual array.
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recently, some authors have proposed that data on stochastic choice and response time in

economic contexts can be similarly modeled.4

Our paper is not the first that seeks to derive at least some features of such models from a

theory of optimal information sampling. In particular, Moscarini and Smith (2001) consider

both the optimal intensity of information sampling per unit of time and the optimal stopping

problem, when the only possible kind of information is given by the sample path of a

Brownian motion with a drift that depends on the unknown state of the world.5 (Fudenberg

et al. (2015) consider a variant of this problem with a continuum of possible states, and an

exogenously fixed sampling intensity.6) Woodford (2014) instead takes as given a stopping

rule (motivated by the empirical psychology and neuroscience literatures), but allows a very

flexible choice of the information sampling process, as in theories of rational inattention.

Our approach differs from these earlier efforts in seeking to endogenize both the nature of

the information that is sampled at each stage of the evidence accumulation process and the

stopping rule that determines how much evidence is collected before a decision is made.

We also consider decision problems with an arbitrary finite number of choice alterna-

tives, rather than restricting attention to binary choice problems, as in both Fudenberg et al.

(2015) and Woodford (2014). In the sequential information sampling problem considered

here, we allow the information sampled at each stage to be chosen very flexibly, as in

Woodford (2014), subject only to a “flow” information-cost function; but we also allow the

decision when to stop sampling and make a decision to be made optimally, on the basis of

the entire history of information sampled to that point, as in Moscarini and Smith (2001)

and Fudenberg et al. (2015). Among other results, we describe a class of information-cost

4In addition to the references in Fehr and Rangel (2011), recent examples include Krajbich et al. (2014)
and Clithero (2016). Shadlen and Shohamy (2016) provide a neural-process interpretation of sequential-
sampling models of choice.

5Moscarini and Smith (2001) allow the instantaneous variance of the observation process to be freely
chosen (subject to a cost), but this is equivalent to changing how much of the sample path of a given Brownian
motion can be observed by the DM within a given amount of clock time.

6See also Tajima et al. (2016) for analysis of a related class of models.
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functions such that in the case of a binary decision, the DM’s beliefs evolve according to

a diffusion along a one-dimensional line segment, with a decision being made when either

of the two endpoints is reached, as postulated by Woodford (2014).

In our continuous-time model, the optimal information-sampling problem is presented

as a problem of optimal control of a diffusion process on the probability simplex (the set

of possible posterior beliefs), with sampling stopping when certain (endogenously deter-

mined) boundaries are reached. For a relatively flexible family of possible cost functions

for individual experiments, the continuous time model’s predictions with regard to state-

dependent choice frequencies are the same as those of a static rational-inattention model,

with an appropriately chosen information-cost function. The finite set of possible signals in

the equivalent static model corresponds to the set of different possible terminal information

states in the dynamic model, each of which corresponds to one of the possible actions.

For a particular family of flow information-cost functions, the cost function for the

equivalent static model is just the mutual information between the action chosen and the

true state of the world; we thus provide foundations for the kind of rational inattention prob-

lem proposed by Sims (2010),7 that do not rely on any analogy with rate-distortion theory

in communications engineering. But while our dynamic model makes predictions that are

equivalent to those of the rational inattention theory of Sims (2010) (and more particularly,

its application to stochastic choice by Matêjka et al. (2015)) for this particular family of

flow information-cost functions, we show that different predictions can be obtained under

other, very plausible specifications of the flow cost function.

We focus on the implications of an attractive family of flow information-cost functions,

which we call “neighborhood-based” cost functions. The idea of this class of information-

cost specifications is that information structures are more costly the greater the extent

7Morris and Strack (2017) provide a related foundation for the mutual-information cost function, but for
the special case in which there are only two possible states.
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to which they allow intrinsically similar states of the world (states that share a “neigh-

borhood”) to be discriminated; the dependence on a concept of intrinsic similarity be-

tween states (the “neighborhood structure”) distinguishes these cost functions from the

mutual-information cost function. We show that versions of our theory that assume a flow

information-cost function in this family can explain the kind of continuous variation of

response frequencies with changes in the characteristics of the alternatives presented that

is commonly observed in perceptual discrimination experiments (but that would not be

predicted by the standard theory of rational inattention).8

Section 2 begins directly with a description of our continuous-time model, and intro-

duces the information-cost matrix function as a way of parameterizing information costs

in this model. Section 3 then presents one of our main results (Theorem 1), that in a large

set of cases, the solution to the continuous-time model is equivalent, in terms of the joint

distribution of choices and states, to the implications of a static rational inattention model

with a suitable static information-cost function.

In section 4, we discuss the connection between the information-cost matrix function of

the continuous-time model and the flow information-cost function for an individual signal,

and state a set of general assumptions that flow information-cost functions are assumed to

satisfy, in the spirit of the treatment of static rational inattention problems by De Oliveira

et al. (2017). We show that all flow cost functions satisfying these conditions must have a

particular type of local structure when individual “experiments” are nearly uninformative.9

Section 5 then introduces a specific class of flow cost functions that satisfy these general

conditions, our “neighborhood-based” cost functions.

Finally, section 6 provides a justification for the continuous-time model proposed in

8In section A.2 of the appendix, we describe a specific case of this class of cost functions, based on the
Fisher information as a measure of the informativeness of an information structure, that can be applied to
rational inattention models with a continuum of states.

9This method, based on Chentsov (1982), is also used by Hébert (2014) in a different context.
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section 2, and for the connection between flow cost function specifications and information-

cost matrix function of the continuous-time model asserted in section 4. Here we show

that a discrete-time dynamic evidence accumulation problem, in which the cost of each

individual signal is given by a flow cost function satisfying the assumptions stated in section

4, leads to the continuous-time problem discussed in section 2, in the limit as the number

of successive signals per time period is made large, while the informativeness of each

individual signal is made small at a corresponding rate. Section 7 concludes.

2 Continuous-Time Sequential Evidence Accumulation

We begin by directly introducing our continuous-time model of sequential evidence accu-

mulation, leaving for later (section 6) the demonstration that it arises as a limiting case of

an explicit discrete-time dynamic evidence accumulation problem. Let x ∈ X be the un-

derlying state of the nature, and a ∈ A be the action taken by the DM. For simplicity, we

assume that A and X are finite sets. We also assume that the number of states is weakly

larger than the number of actions, |X | ≥ |A|. The DM’s utility from taking action a in state

x at time t is ua,x− κt. The parameter κ > 0 governs the penalty for delaying making a

decision; the DM does not discount the future. We assume a penalty of this kind, rather

than time discounting, for reasons of tractability.

The DM does not perfectly observe the state x ∈ X . At each time t, the DM holds

beliefs qt ∈P(X), where P(X)⊂R|X | denotes the probability simplex over X . That is, qt

is a vector of length |X |, whose elements, denoted qx,t , are the probability, under the DM’s

beliefs at time t, of state x. Time begins at t = 0, when the DM holds prior beliefs q0. At

each moment in time, the DM faces two decisions: whether to gather information about

the state x ∈ X , and whether to stop and make a decision. When stopping with beliefs qτ at

time τ , the DM will simply choose a to maximize uT
a ·qτ , where ua is the vector of utilities
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associated with action a, resulting in payoff û(qτ)−κτ .

When the DM gathers information, she chooses the variance-covariance matrix of pos-

sible changes in her beliefs, subject to certain constraints. In our model, the DM’s beliefs

evolve as

dqx,t = qx,tσx,t ·dBt , (1)

where dBt is an |X |−1-dimensional Brownian motion,10 σt is a matrix that can be chosen

by the DM, and σx,t is a particular row of that matrix.

The DM’s choice of σt is subject to restrictions — a trivial one to ensure that the beliefs

stay in the simplex, and an economic restriction that limits the amount of information the

DM can acquire. The trivial restriction is that

ι
T ·dqt = 0

always, where ι is a vector of ones. This restriction is equivalent to requiring that

σ
T
t qt =~0.

We will use M(qt) to denote the set of |X | × |X | matrices satisfying this condition. Our

notation enforces the requirement that dqx,t = 0 if qx,t = 0.

The non-trivial restriction, which limits the quantity of information the DM can acquire

at each moment, is
1
2

tr[σtσ
T
t k(qt)]≤ χ, (2)

where k(qt) is an |X | × |X | dimensional matrix-valued function we will refer to as the

“information-cost matrix function”, tr[·] is the trace, and χ is a positive constant that in-

10Note that this is largest possible number of independent Brownian motions of which dqt may be a linear
combination.
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dexes the tightness of the constraint. We discuss this constraint, and the information-cost

matrix function, in more detail below. For now, we note simply that the information-cost

matrix function satisfies certain properties: for any qt , k(qt) is symmetric and positive

semi-definite, and its null space is the space of vectors that are constant for all x ∈ X in the

support of qt .11

Using her control of the volatility of her beliefs, and subject to the constraints imposed

by the information-cost matrix function, our DM attempts to maximize her expected payoff.

Her sequence problem can be written, given beliefs qt at time t,

V (qt) = sup
{σs∈M(qs)},τ≥t

Et [û(qτ)−κ(τ− t)],

where τ is the DM’s endogenous stopping time, subject to the constraints listed previously.

Wherever this value function is twice-differentiable and the DM does not choose to

stop, the problem can be given a simple recursive representation:

sup
σt∈M(qt)

1
2

tr[σT
t D(qt)Vqq(qt)D(qt)σt ] = κ,

subject to the information constraint (2), where D(qt) is a diagonal matrix with the elements

of qt on its diagonal, and Vqq(qt) is the Hessian of V (q) evaluated at q = qt .12

11Actually, because we require that σt ∈M(qt), constraint (2) only involves the quadratic form vT k(qt)w
defined for vectors v and w such that vT qt = wT qt = 0. We extend the definition of the quadratic form to
all vectors v,w ∈ R|X |, in order to obtain a unique representation in terms of a matrix k(qt), by adding the
requirement that k(q)v = 0 for any vector v ∈ R|X | with the property that vx is equal to a constant for all x in
the support of q.

12In the case of a differentiable function V (q) defined on the probability simplex P(X), in order to write
the Hessian of the function as a matrix, we must adopt a coordinate system for the tangent space to the
probability simplex. Throughout this paper, we do this by extending the function to the domain R|X |+ by
defining the function to be homogeneous of degree one on this larger domain (an assumption that does not
restrict the function’s values on the simplex). Vectors in the tangent space are then simply vectors in R|X |,
which we express using the natural set of basis vectors corresponding to each element of X . The Hessian
matrices appearing in equations such as (3), (11), (30), and (16) below should also all be understood in this
way.
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The following lemma describes the Hamilton-Jacobi-Bellman (HJB) equation associ-

ated with this dynamic optimization problem. It is derived by showing that the information

constraint binds.13 The maximum eigenvalue appears in place of a maximization over σt ,

but this is just a compact way of expressing the idea that the DM is choosing in which

direction(s) to update her beliefs.

Lemma 1. Anywhere the value function V (qt) is twice-differentiable, it satisfies

max{λ1(D(qt)Vqq(qt)D(qt)−θk(qt)), û(qt)−V (qt)}= 0, (3)

where θ = χ−1κ , and for any |X |× |X | matrix K, λ1(K) denotes the largest eigenvalue of

K associated with an eigenvector v such that ιT v = 0.14

Proof. See the appendix, section D.1.

This equation has the standard form of an optimal stopping problem, with the twist that

it is a “Hessian equation” in the continuation region. The parameter θ describes the race

between information acquisition and time in this model. The larger the penalty for delay,

and the tighter the information constraint, the larger the parameter θ . The caveat about

twice-differentiability plays several roles. First, as is common in optimal stopping prob-

lems, the value function may not be twice differentiable on the stopping boundary. Second,

the Hessian equation in the continuation region is “degenerate elliptic”, and therefore a

solution that is twice-differentiable everywhere in the continuation region may not exist. A

third complication is that the beliefs qt may come to place zero weight on a certain state —

13The derivation depends on an additional property of the k(qt) matrix that will be discussed below.
14Here we are interested in the eigenvectors of the matrix corresponding to elements of the tangent space to

the probability simplex. Note that under our notation for writing quadratic forms over the probability simplex
as matrices, explained in footnotes 11 and 12 above, ι is a null eigenvector of both D(q)VqqD(q) and k(q),
for any q; but we do not wish to count this as one of the eigenvectors of the linear operator for purposes of
defining the maximum eigenvalue, as our first-order condition actually involves a linear operator defined on
the tangent space of the probability simplex.
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that is, the beliefs may hit the boundary of the simplex, at which point the value function

V (qt) is not twice-differentiable in all directions. Fortunately, in what follows, these issues

will be a nuisance, rather than a serious obstacle.

The DM’s optimal stopping rule is characterized by the standard value-matching and

smooth-pasting conditions. Let Ω⊂P(X) be the open subset of the simplex on which the

DM continues to search for information, and let ∂Ω denote its boundary. For all q ∈ ∂Ω,

the value matching condition, V (q) = û(q), and smooth pasting condition, Vq(q) = ûq(q),

will hold. Note, however, that the derivative ûq(q) does not exist everywhere — at beliefs

where the DM is just indifferent between two actions with distinct state-contingent payoffs,

the stopping payoff is non-differentiable.15 However, it will never be optimal for the DM

to stop at one of these indifference points.

Before we describe the value function, we will provide some intuition for the volatility

constraint and describe in more detail the information-cost matrix function. The volatility

constraint is a limit on the information the DM can acquire, because it limits the volatility

of her beliefs. Our DM is a Bayesian, meaning that she can never expect to revise her

beliefs in a particular direction — her beliefs must be a martingale; this is why there can be

no drift term in equation (1). If she receives a mostly uninformative signal at a particular

moment, her beliefs have a small amount of volatility at that moment. In contrast, if she

receives an informative signal, her beliefs will be very volatile.

Our specification assumes that her beliefs are driven by a Brownian motion, which

generates continuous sample paths and does not have jumps.16 This embeds the idea that,

as one looks at smaller and smaller time intervals, the informativeness of the signals the

15At this point, we have also not shown that V (q) is differentiable everywhere, but this is proven in the
proof of Theorem 1.

16Che and Mierendorff (2016) and Zhong (2017) explore related models with jumps in beliefs. These are
assumed to represent the only possible form of information arrival in the former paper, and demonstrated
to represent an optimal form of experimentation in the latter paper, under assumptions different from those
made here.
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DM is observing scales down. In section 6, we discuss more primitive assumptions about

the cost of alternative dynamic information sampling strategies that lead the DM to want

to smooth the quantity of information gathered across time, so that the continuity assumed

in this section is a feature of the optimal strategy, in a continuous-time limiting case of the

model presented in that section.

We derive the information constraint (equation (2)) from a model in which the DM can

choose any information structure she desires at each time period, as in standard rational

inattention models. One result of our derivation is the observation that the DM can choose

any volatility matrix σt . This is, in a sense, a familiar idea — Kamenica and Gentzkow

(2011), for example, emphasize the idea of choosing a distribution of posteriors, subject

to the constraint that the mean posterior is equal to the prior. Our DM appears to choose

only the volatility, and not the higher cumulants of the distribution of posteriors, but this is

because she finds it optimal to smooth her information gathering over time, and the instan-

taneous volatility is sufficient to characterize the resulting process for beliefs. This result

permits both a relatively parsimonious specification of the information sampling strategies

available to the DM, and a relatively parsimonious specification of possible forms for the

information constraint.

In modeling the evolution of the DM’s beliefs as a diffusion process, our model resem-

bles those proposed by authors such as Krajbich et al. (2014) and Fudenberg et al. (2015),

though unlike those authors we endogenize the diffusion process through which additional

information arrives while sampling continues. Additionally, our model emphasizes the “un-

conditional” dynamics of beliefs (that is, not conditional on any particular state being the

true state), whereas the models discussed by those authors are described in terms of their

“conditional” dynamics (that is, conditional on some particular state being the true state).

The information-cost matrix function k(qt) is more than simply a way of obtaining a

single (scalar) measure of the “size” of the elements of σt . The relative size of different
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elements of the matrix also allows us to specify the degree to which it is more costly

to obtain more precise information of some kinds rather than others. Larger (positive)

diagonal elements kxx for certain states x imply that it is relatively more costly to obtain

signals that reveal much about the likelihood of those states; larger negative off-diagonal

elements kxx′ (relative to the size of the diagonal elements kxx and kx′x′) for pairs of states

x,x′ imply that it is relatively more costly to obtain signals that allow one to differentiate

sharply between states x and x′.

An example of an information-cost matrix function that satisfies our general assump-

tions (and will be important for the discussion below) is the inverse Fisher information

matrix (g+(q)),17

k(q) = g+(q) =



q1(1−q1) −q1q2 . . . −q1q|X |

−q1q2 q2(1−q2) . . . −q2q|X |
...

...
. . .

...

−q1q|X | −q2q|X | . . . q|X |(1−q|X |)


. (4)

In this case, the off-diagonal element kxx′(q) is equal to −q(x)q(x′) for any pair of states

x,x′; thus it depends only on the prior probabilities of the two states, and is otherwise the

same regardless of the states selected. Thus any two states are assumed to be equally easy

or difficult to tell apart: it only matters whether two states are the same or not, and how

likely they are to occur.

While this kind of symmetry might seem appealing on a priori grounds for some appli-

cations (where the different possible states are a set of alternatives, each equally unrelated

to all of the others), we view it as quite implausible for many cases of economic relevance.

For example, one is often interested in states that represent different possible values of

17The Fisher information matrix, of which this can be viewed as a pseudo-inverse, is described in section
4.
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some quantity (a “state variable”), and hence can be ordered on a line.18 One might well

suppose that possible methods of learning about the value of that variable will all have the

property that nearby values of the state variable result in similar probabilities of receiving

particular signals, and hence that it is particularly costly to arrange an information structure

that makes the conditional probabilities of signals very different for states that are near one

another in the ordering of states.

An alternative possible information-cost matrix function, also satisfying our general

assumptions, is given by

k(q) =



q1q2
q1+q2

− q1q2
q1+q2

0 . . . 0

− q1q2
q1+q2

q1q2
q1+q2

+ q2q3
q2+q3

− q2q3
q2+q3

. . .
...

0 − q2q3
q2+q3

. . .
. . . 0

...
. . .

. . .
q|X |−1q|X |−2

q|X |−2+q|X |−1
+

q|X |q|X |−1
q|X |−1+q|X |

− q|X |−1q|X |
q|X |+q|X |−1

0 . . . 0 − q|X |q|X |−1
q|X |+q|X |−1

q|X |−1q|X |
q|X |+q|X |−1


. (5)

In this case, the only off-diagonal elements kxx′(q) are negative elements in the case that x′

directly follows x in the ordering of states (or vice versa). This form of matrix k(q) implies

that an information structure is costly only to the extent that there are pairs of “neighboring”

states x,x′ for which the conditional probabilities of signals are different (px′ 6= px).

The differing implications of these two alternative assumptions about the form of the

information-cost matrix function are explored in section 5. For now, we simply note that

our model allows for different specifications in this regard, and that we regard this as desir-

able, as it will often be reasonable for the specification of information costs to incorporate

a notion of “distance” between different possible states.

Our derivation of the continuous-time problem set out above from a more explicit evi-

18This is also often true of perceptual classification experiments, in which subjects are asked to classify
stimuli that differ from one another in their intensity or magnitude along some single dimension.
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dence accumulation problem places additional restrictions on the information-cost matrix

function, beyond the properties already mentioned above: it will in fact be necessary that

k(q) be continuous, and that there exist a positive constant m such that k(q)−mg+(q) is

positive semi-definite.19

For a large class of information-cost matrix functions k(qt), we can solve the sequence

problem described in this section, and show that the solution is equivalent to a certain static

rational inattention problem. We present these results in the next section.

3 Static and Dynamic Rational Inattention Problems

In most theories of rational inattention, including the classic formulations of Sims, only a

single signal is collected for each decision that must be made. In a decision problem where

an action is to be chosen once from a set of possibilities, the rational inattention problem is

static; a signal is obtained (once) that depends on the state, an action is taken that depends

on the signal, and that is all. The kind of dynamic optimization model proposed in the

previous section seems quite different.

Nonetheless, we establish below that in a broad class of cases, it is possible to estab-

lish an equivalence between the information that is acquired through an optimal evidence

accumulation process of the kind proposed in the previous section and the information ac-

quired in a static model of rational inattention, with a particular type of cost function. Thus

our dynamic model does not necessarily have different implications than a static rational

inattention model; however, the dynamic optimization problem can provide a reason for

interest in static information-cost functions of particular types.

19Examples (4) and (5) above are both continuous in q. The second of these examples does not strictly
satisfy the second requirement stated in the text for m > 0, but is the limit of a sequence of examples that
does. These examples are closely related to the mutual-information cost function proposed by Sims and to a
“neighborhood-based” cost function that we introduce in section 5, respectively.
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We begin by explaining the form of a static rational inattention problem. As in the

previous section, let x ∈ X be the underlying state of nature, and let s ∈ S be a signal the

DM can receive, which might convey information about the state. We assume that X and

S are finite sets. Let q ∈P(X) denote the DM’s prior belief (before receiving a signal)

about the probability of state x. Define ps,x as the probability of receiving signal s in state

x, let px ∈P(S) be the associated conditional probability distribution of the signals given

state x, and let p be the |S|× |X | matrix whose elements are ps,x. The matrix p, which is

a set of conditional probability distributions for each state of nature, {px}x∈X , defines an

“information structure.” After receiving signal s, the DM will hold a posterior, qs ∈P(X),

which is a function of p and q, defined by Bayes’ rule.

The maximum achievable expected payoff, given an information structure p and prior

q, can be written as

ū(p,q) ≡ max
{a(s)}

∑
x∈X

∑
s∈S

qx ps,xu(a(s),x).

The standard static rational inattention problem, given the signal alphabet S,20 is then

max
{px∈P(S)}x∈X

ū(p,q)−θC(p,q; S), (6)

where

C(·, ·; S) : P(S)|X |×P(X)→ R (7)

is a cost function for information structures, and θ > 0 is a multiplicative factor that lets

us consider alternative assumptions about the tightness of the information constraint, given

a measure of the informativeness of alternative information structures represented by the

function C.

In the classic formulation of Sims, a problem of the form equation (6) is considered, in

20The full problem includes a choice over the signal alphabet S. A standard result, which will hold for all
of the cost functions we study, is that |S|= |A| is sufficient.
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which the cost function C(p,q; S) is given by the Shannon mutual information between the

signal and the state. This can be defined using Shannon’s entropy,21

HShannon(q) ≡ −∑
x∈X

(eT
x q) ln(eT

x q). (8)

Shannon’s entropy can in turn be used to define a measure of the degree to which the

posterior qs associated with any signal differs from the prior q, the Kullback-Leibler (KL)

divergence,

DKL(qs||q) ≡ HShannon(q)−HShannon(qs)+(qs−q)T HShannon
q (q). (9)

Mutual information is then the expected value of the KL divergence over possible signals,

IShannon(p,q; S) ≡ ∑
s∈S

(eT
s pq)DKL(qs||q). (10)

It is a measure of the informativeness of the signal, in that it provides a measure of the

degree to which the signal changes what one should believe about the state, on average.

Shannon’s mutual information is not, however, the only possible measure of the in-

formativeness of an information structure, or the only plausible cost function for a static

rational inattention problem. We discuss additional examples below, but first return to our

discussion of the continuous-time information sampling problem introduced in section 2.

To obtain further results, we restrict our attention to information-cost matrix functions

with the following property: there exists a twice-differentiable function H : R|X |+ → R such

21We use the notation ex to denote the vector (element of RX ) with a one in the place corresponding to
state x, and zeros elsewhere (column x of the identity matrix of dimension |X |).
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that, for all qt in the interior of the simplex,

D(qt)
−1k(qt)D(qt)

−1 = Hqq(qt). (11)

This class includes a number of information-cost matrix functions of interest: for example,

it includes the case in which k(qt) is the inverse Fisher information matrix, which we will

show corresponds to the standard rational inattention model, and the case in which k(qt) is

the “neighborhood-based” function that we introduce in section 5.22 We shall refer to the

function H as the “generalized entropy function,” for reasons that will become clear below.

Using this convex function, we can define a Bregman divergence,

DH(qs||q) = H(qs)−H(q)− (qs−q)T Hq(q).

The Kullback-Leibler divergence is a Bregman divergence (see equation (9)), with a gen-

eralized entropy function equal to the negative of Shannon’s entropy.

With these information-cost matrix functions, it is easy to show (using equation (3))

that the quantity V (q)− θH(q) is a local martingale inside the continuation region, any-

where the value function is twice differentiable. Ignoring several technicalities, which are

discussed in the proof, we can apply the optional stopping theorem:

V (q0) = E0[V (qτ)−θH(qτ)+θH(q0)]

= E0[û(qτ)−θH(qτ)+θH(q0)].

Using this idea, and the notion that, in an optimal stopping problem, the DM “chooses the

boundaries,” we conjecture and verify the following result:

22It is more restrictive, however, than the class of information-cost matrix functions defined in section 2.
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Theorem 1. There exists a unique solution to the continuous time sequential evidence

accumulation problem, in which

V (q0) = max
π∈P(A),{qa∈P(X)}a∈A

∑
a∈A

π(a)(uT
a ·qa)−θ ∑

a∈A
π(a)DH(qa||q0),

subject to the constraint that ∑a∈A π(a)qa = q0 .

There exist maximizers of this problem, π∗ and q∗a, such that π∗ is the unconditional

probability, in the dynamic problem, of choosing a particular action, and q∗a, for all a such

that π∗(a) > 0, is the unique belief the DM will hold when stopping and choosing that

action.

Proof. See the appendix, section D.2.

Thus the sequential evidence accumulation problem is equivalent to a static rational

inattention problem of the kind described above, with a particular kind of static information-

cost function,

C(p,q0; S) = ∑
s∈S

π(s)DH(qs||q0), (12)

= ∑
s∈S

π(s)H(qs) −H(q0)

where π(s) now refers to the unconditional probability of receiving signal s in the static

problem, and qs to the posterior when signal s is received, with the signal space S in the

static problem identified with the set of possible actions A.23 We call a cost function that

can be written in the form (12) “posterior-separable.” 24

The mutual-information cost function (10) proposed by Sims is one such cost func-

23The “signal” can thus be viewed as an instruction as to which action is advisable.
24This kind of cost function is instead called “uniformly posterior-separable” in Caplin et al. (2017). The

class of static cost functions that can be justified by Theorem 1 is also related to the class of “GERI” cost
functions defined by Fosgerau et al. (2016).
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tion. In this case, the generalized entropy function H is the negative of Shannon’s entropy

(8), the corresponding information-cost matrix function is the inverse Fisher information

matrix (4), the Bregman divergence is the Kullback-Leibler divergence (9), and the in-

formation measure defined by (12) is then the Shannon mutual information (10). Thus

Theorem 1 provides a foundation for assuming endogenous information of the same kind

as the standard static rational inattention model, and hence for the same predictions regard-

ing stochastic choice as are obtained by Matêjka et al. (2015).25 This assumes a particular

information-cost matrix function; but below we show not only that a continuous-time model

with this particular information-cost matrix function can arise as the limit of a well-behaved

discrete-time model of sequential evidence accumulation, but also that any of an entire class

of possible specifications of the flow information cost function for that discrete-time model

will lead to this result in the continuous-time limit.

On the other hand, Theorem 1 also implies that other posterior-separable cost functions

can similarly be justified. Indeed, any static information cost function (12), where DH is

the Bregman divergence derived from some convex, twice-differentiable function H, can

be given such a justification.26 We give additional examples in section 5. The divergence

DH associated with such a model is of interest apart from its role in defining the equivalent

static information-cost function (12). In particular, the expected value of the divergence

indicates the expected time cost required for the DM to reach a decision.

Theorem 1 shows that we can associate a particular posterior-separable static information-

cost function with any matrix-valued function k(q) satisfying certain conditions: this is the

information cost function that defines a static rational-inattention problem that is equiva-

lent in certain respects to the continuous-time problem defined by k(q). But we also show

25For a related foundation for this static cost function, in the special case in which there are only two
possible states, see Morris and Strack (2017).

26The continuous-time information sampling process that is required is simply the one in which the
information-cost matrix function is given by equation (11).
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below how to derive a particular information-cost matrix function k(q) corresponding to

any information-cost function C(p,q; S) satisfying certain conditions: k(q) defines a local

approximation to the function C(p,q; S), and defines a continuous-time problem that rep-

resents a limiting case of a discrete-time optimal evidence accumulation problem, in which

C(p,q; S) is the flow information-cost function specifying the cost associated with each

individual signal that is received.

Thus, there is a two-way relationship between matrix-valued functions k(q) and cost

functions C(p,q; S). Posterior-separable cost functions are the fixed points of the result-

ing mapping: if one uses a posterior-separable cost function to derive an information-cost

matrix function, and then solves the continuous-time model defined by that function k(q),

one will recover that same posterior-separable cost function as the static information-cost

function of the equivalent static rational inattention problem.

Another important general consequence of Theorem 1 concerns posterior beliefs at the

time of an eventual decision. The probability distribution q∗a ∈P(X) is the DM’s belief

conditional on taking action a ∈ A. The vector q∗a is unique, given a particular action a,

meaning that there is only one belief the DM can reach before choosing to stop and take

a particular action. (The further this belief is from the DM’s prior, q0, as measured by the

divergence DH , the more time it will take, in expectation, for the DM to arrive at this belief

before acting.) The martingale property of beliefs during the evidence accumulation pro-

cess thus requires that beliefs qt at each stage of the process are some convex combination

of the finite set of posteriors {q∗a}a∈A.

Hence beliefs diffuse on a simplex of dimension |A| − 1 during the decision process;

if there are only two possible actions (as in the binary choice problems to which the drift-

diffusion model is applied by authors such as Fehr and Rangel (2011)), then the belief state

must diffuse along a line segment, as assumed in the DDM, regardless of the number of

possible states |S|. Thus an apparently arbitrary feature of the DDM (outside the two-state
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case in which the DDM is known to correspond to optimal Bayesian decision making,

see Fudenberg et al. (2015)) can be shown to be follow from optimal sequential evidence

accumulation, if the information sampling is flexible in the way that we model it here.

4 Flow Information Costs

In this section, we elaborate on the connection, suggested above, between the information-

cost matrix function in our continuous-time model of information sampling and the kind of

cost function for an individual signal that is assumed in static rational inattention models.

The continuous-time model can be viewed as a limiting case of a discrete-time model of

optimal evidence accumulation, in which an endogenously determined signal is received

each period, and the choice of the signal to receive each period is subject to a cost for more

informative signals, specified by an information-cost function similar to the kind assumed

in static rational inattention models. We call this cost function for an individual signal in a

dynamic model of evidence accumulation the “flow information-cost function.”

While we defer until section 6 a complete discussion of how the continuous-time model

can be derived as a limiting case of a discrete-time dynamic model, in this section we

preview certain conclusions from that analysis by explaining the connection between the

flow information-cost function of the discrete-time dynamic model and the information-

cost matrix function of the continuous-time model. (Here the connection is simply asserted;

the connection is proven in section 6.) We preview the results before proceeding to the

complete derivation, because understanding them can help to explain the assumptions about

the information-cost matrix function that we have proposed above. Additionally, in the

following section we discuss a particular class of information-cost matrix functions, and

wish to motivate this specification in terms of the form of flow information-cost functions

from which these information-cost matrix functions can be derived.
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An important conclusion of this section is our demonstration that many different flow

information-cost functions can give rise to the same information-cost matrix function,

and hence to the same predictions about the information that will be accumulated in the

continuous-time limit. This is one of the main advantages, in our view, of considering the

continuous-time limit: while our conclusions still depend on assumptions about the nature

of information costs, there are less ways in which our conclusions can vary once we pass

to the continuous-time limit.

At each stage of the discrete-time sequential evidence accumulation problem discussed

in section 6, the DM chooses an information structure. Each information structure p has

a cost C(p,q; S), given by a function of the form of (7), where q indicates the DM’s prior

in this stage (that is, the posterior beliefs following from observations prior to the current

stage of the dynamic problem), and S is again the signal alphabet.27 Our most general

results depend only on assuming that this flow information-cost function satisfies a set of

six general conditions, stated below.

All of these conditions are satisfied by the mutual-information cost function (10) pro-

posed by Sims, but they are also satisfied by many other cost functions. (Additional ex-

amples are given in section 5.) They are closely related to conditions that other authors

have also proposed as attractive general properties to assume about information-cost func-

tion, though in the context of static information-cost functions of the kind discussed in

section §3. Here we assume that the flow information-cost function in our dynamic model

satisfies all six of these conditions; we then prove that under our assumptions, the equiva-

lent static rational inattention problem (the existence of which is guaranteed by Theorem 1)

involves a static information-cost function that satisfies these conditions.

27The information-cost functions that we study, like mutual information, are defined for all finite signal
alphabets S. Note, however, that mutual information is also defined over alternative sets of states of nature X .
We do not impose this requirement on our more general cost functions — all of our analysis takes the set of
states of nature as given.
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Condition 1. Information structures that convey no information (px = px′ for all x,x′ in the

support of q) have zero cost. All other information structures have a weakly positive cost.

This condition ensures that the least costly strategy for the DM in the standard static

rational inattention problem is to acquire no information, and make her decision based on

the prior. The requirement that gathering no information has zero cost is a normalization.

The next condition is called mixture feasibility by Caplin and Dean (2015). Consider

two information structures, {p1,x}x∈X , with signal alphabet S1, and {p2,x}x∈X , with alpha-

bet S2. Given a parameter λ ∈ (0,1), we define a mixed information structure, {pM,x}x∈X

over the signal alphabet SM = (S1 ∪ S2)× {1,2}. For each s = (s1,1) in the alphabet

SM, pM,x(s) is equal to λ p1,x(s) if s1 ∈ S1, and equal to 0 otherwise. Likewise, for each

s = (s2,2), pM,x(s) is equal to (1−λ )p2,x(s) if s2 ∈ S2, and equal to 0 otherwise.

That is, this information structure results, with probability λ , in a posterior associated

with information structure p1, and with probability 1−λ in a posterior associated with in-

formation structure p2. The distribution of posteriors under the mixed information structure

is a convex combination of the distributions of posteriors under the two original information

structures, as if the DM flipped a coin, observed the result, and then randomly chose one

of the two information structures. The mixture feasibility condition requires that choosing

a mixed information structure costs no more than the cost of randomizing over information

structures (using a mixed strategy in the rational inattention problem).

Condition 2. Given two information structures, {p1,x}x∈X , with signal alphabet S1, and

{p2,x}x∈X , with alphabet S2, the cost of the mixed information structure is weakly less than

the weighted average of the cost of the separate information structures:

C(pM,q;SM)≤ λC(p1,q;S1)+(1−λ )C(p2,q;S2).

The next condition uses Blackwell’s ordering. Consider two signal structures, {px}x∈X ,
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with signal alphabet S, and {p′x}x∈X , with alphabet S′. The first information structure

Blackwell dominates the second information structure if, for all utility functions u(a,x)

and all priors q ∈P(X),

ū(p,q) ≥ ū(p′,q).

If one information structure Blackwell dominates another, it is weakly more useful for

every decision maker, regardless of that decision maker’s utility function and prior. In this

sense, it conveys weakly more information. This ordering is incomplete; most information

structures neither dominate nor are dominated by a given alternative information structure.

However, when an information structure does Blackwell dominate another one, we assume

that the dominant information structure is weakly more costly.

Condition 3. If the information structure {px}x∈X with signal alphabet S is more informa-

tive, in the Blackwell sense, than {p′x}x∈X , with signal alphabet S′, then, for all q ∈P(X),

C({px}x∈X ,q;S)≥C({p′x}x∈X ,q;S′).

The first three conditions are, from a certain perspective, almost innocuous. For any

joint distribution of actions and states that could have been generated by a DM solving

a rational inattention type problem, with an arbitrary information cost function, there is

a cost function consistent with these three conditions that also could have generated that

data (Theorem 2 of Caplin and Dean (2015)). The result arises from the possibility of

the DM pursuing mixed strategies over information structures, or in the mapping between

signals and actions. These conditions also characterize “canonical” rational inattention cost

functions, in the terminology of De Oliveira et al. (2017).

The mixture feasibility condition (Condition 2) and Blackwell monotonicity condition

(Condition 3) are equivalent to requiring that the cost function be convex over information
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structures and Blackwell monotone.

Lemma 2. Let p and p′ be information structures with signal alphabet S. A cost function

is convex in information structures if, for all λ ∈ (0,1), all signal alphabets S, and all

q ∈P(X),

C(λ p+(1−λ )p′,q;S)≤ λC(p,q;S)+(1−λ )C(p′,q;S).

A cost function satisfies mixture feasibility and Blackwell monotonicity (Conditions 2 and

3) if and only if it is convex in information structures and satisfies Blackwell monotonicity.

Proof. See the appendix, section D.3.

The fourth condition that we assume, which is not imposed by Caplin and Dean (2015),

Caplin et al. (2017), or De Oliveira et al. (2017), is a differentiability condition that will

allow us to characterize the local properties of our cost functions.

Condition 4. For all signal alphabets S, in a neighborhood around any uninformative in-

formation structure, the information cost function is continuously twice-differentiable in

information structures {px}x∈X , in all directions that do not change the support of the signal

distribution, and directionally differentiable, with continuous directional derivatives, with

respect to perturbations that increase the support of the signal distribution. The information

cost function is also Lipschitz-continuous in q.

While this may seem a relatively innocuous regularity condition, it is not completely gen-

eral; for example, it rules out the case in which the DM is constrained to use only signals in

a parametric family of probability distributions, and the cost of other information structures

is infinite. Thus it rules out information structures of the kind assumed in Fudenberg et al.

(2015) or Morris and Strack (2017). Condition 4 also rules out other proposed alternatives,

such as the channel-capacity constraint suggested by Woodford (2012).
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The next condition that we assume, which is also not imposed by Caplin and Dean

(2015), Caplin et al. (2017), or De Oliveira et al. (2017), is a sort of local strong convexity.

We will assume that the cost function exhibits strong convexity, in the neighborhood of an

uninformative information structure, with respect to information structures that hold fixed

the unconditional distribution of signals, uniformly over the set of possible priors.

Condition 5. There exists constants m > 0 and B > 0 such that, for all priors q ∈P(X),

and all information structures that are sufficiently close to uninformative (C(p,q;S)< B),

C(p,q;S)≥ m
2 ∑

S∈S
(eT

s pq)||qs−q||2X ,

where qs is the posterior given by Bayes’ rule and || · ||X is an arbitrary norm on the tangent

space of P(X).

This condition is slightly stronger than Condition 1; it it essentially an assumption of

“local strong convexity” instead of merely local convexity. It implies that all informative

information structures have a strictly positive cost, and that (regardless of the DMs’ current

beliefs) there are no informative information structures that are “almost free.”

The mutual-information cost function (10) satisfies each of these five conditions. How-

ever, it is not the only cost function to do so. For example, we can construct a family of

such cost functions, using the family of “f-divergences,” defined as

D f (qs||q) = ∑
x∈X

(eT
x q) f (

eT
x qs

eT
x q

),

where f is any strictly convex, twice-differentiable function with f (1) = f ′(1) = 0 and

f ′′(1) = 1. (The KL divergence is a member of this family, corresponding to f (u) = u lnu−
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u+1.) For any divergence in this family, we can define an information cost function

I f (p,q; S) = ∑
s∈S

(eT
s pq)D f (qs||q). (13)

(When I f is the KL divergence, this is just mutual information.) It is relatively easy to

observe that this family of information cost functions satisfies all five of the conditions

described above.28

As another example of a class of cost functions that satisfy the conditions, we can

establish the following.

Corollary 1. Under the assumptions of Theorem 1, the posterior-separable cost function

(12) that defines the equivalent static rational inattention problem satisfies Conditions 1-5.

This follows from the form of the cost function and Lemma 3, described in the next section.

We are now in position to discuss our approximation of the information cost function.

We use Taylor’s theorem to approximate the cost function and its gradient up to order ∆

(we use ∆ because in section 6, we will be looking at small time intervals). We consider

perturbations that, as above, preserve the support of the signal structure. As a result, this

theorem should be interpreted as applying to “frequent but not very informative” signals,

as opposed to “rare but informative” signals. We will discuss the latter type of signals

shortly. The theorem is derived from the results of Chentsov (1982), which are discussed

in appendix section C.1.

Theorem 2. Suppose that an information structure {px}x∈X , with signal alphabet S, is

described by the equation

px = r+∆
1
2 τx +o(∆

1
2 ),

where, for any x ∈ X and any ∆ ≥ 0, eT
s px 6= 0⇒ eT

s r > 0. Let C(·) be an information

28This follows from Lemma 3 in the next section.
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cost function that satisfies Conditions 1-4. Then, for ∆ sufficiently small, the cost of this

information structure can be written as

C({px}x∈X ;q;S) =
1
2

∆ ∑
x′∈X

∑
x∈X

(eT
x k(q)ex′)τ

T
x′g(r)τx +o(∆),

where the matrix k(q) is positive semi-definite and symmetric, and satisfies k(q)ι = 0.

If in addition the cost function satisfies Condition 5, Then there exists a constant mg > 0

such that the difference between k(q) and the inverse Fisher information matrix, g+(q),

multiplied by that constant, is positive semi-definite: k(q)−mgg+(q)� 0.

Proof. See the appendix, section C.1 and section D.4.

Our re-use of the notation k(q) is intentional– this matrix valued function, which is

defined based on a local approximation of the cost function, will be the information cost

matrix function defined in the continuous time model described in section 2. In the case of

the mutual-information cost function, the matrix k(q) is itself the inverse Fisher information

matrix. Written in terms of the coordinate system used previously in the paper,29

k(q) = g+(q) = D(q)−qqT .

In general, however, the matrix-valued function k(q) is not the inverse Fisher information

matrix, but rather an arbitrary matrix-valued function satisfying certain restrictions.

There are, in effect, two ways for a signal to be contain a small amount of information,

and different costs associated with these different types of signals. The results of Theorem 2

characterize, for any rational inattention cost function satisfying our conditions, the cost of

receiving frequently, but relatively uninformative, signals. As Corollary 3 below demon-

29This corresponds to the pseudo-inverse of the standard definition of the Fisher information matrix, if
derivatives of smooth functions defined on the probability simplex are written in terms of the coordinates
explained in footnote 12.
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strates, the posteriors associated with these signals are close to the prior (order ∆
1
2 ). We

will discuss the cost of receiving a rare but informative signal below. Previewing the results

of section 6, these two types of uninformative signals correspond, in the continuous-time

limit, to the diffusion and jump components of the belief process.

The theorem substantially restricts the local structure of the cost of commonly occur-

ring, but not particularly informative, signals, relative to the most general possible alter-

natives (which would not satisfy our conditions). Potential information structures {px}x∈X

can be represented as vectors of dimension N = (|S|−1)×|X |. Under the assumptions of

Condition 1, convexity, and Condition 4 (but not the Blackwell ordering condition, Condi-

tion 3), the cost function must locally resemble an inner product with respect to a positive

semi-definite, N×N matrix. If we impose Condition 3 as well, the results of Theorem 2

show that we can restrict this matrix to the k(q) matrix, an |X | × |X | matrix. If the DM

were only allowed binary signals (|S|= 2), this restriction would be trivial. When the DM

is allowed to contemplate more general information structures, the restriction is non-trivial.

Several authors (Caplin and Dean (2015); Kamenica and Gentzkow (2011)) have ob-

served that it is easier to study rational inattention problems by considering the space of

posteriors, conditional on receiving each signal, rather than space of signals. We can re-

define the cost function using the posteriors and unconditional signal probabilities, rather

than the prior and the conditional probabilities of signals. The results are described in

Corollary 3 in Appendix section C.1. They are based on the matrix-valued function

k̄(q) = D+(q)k(q)D+(q), (14)

where D+(·) is the pseudo-inverse of the diagonal matrix. In the case of the mutual infor-
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mation cost function, the matrix k̄(q) is the Fisher information matrix,

k̄(q) = g(q) = D(q)+− ιι
T . (15)

The Theorem 2 and Corollary 3 describe the costs of receiving frequent, but relatively

uninformative signals. We next discuss the cost of receiving rare, but informative signals.

These types of signals, in the limit that we discuss in section 6, will lead to jumps in beliefs.

After we describe the cost of these signals, we will introduce a condition that ensures that

jumps in beliefs are not part of an optimal evidence accumulation strategy.

Corollary 2. Under the assumptions of Theorem 2, define the signal structure

p̂ = p̄∆ +∆ω,

where p∆ is a signal structure of the type described in Theorem 2, with lim∆→0+ p̄∆ = rιT ,

and ∑s∈S ωex = 0 for all x ∈ X, with eT
s ωex ≥ 0 for all s ∈ S such that eT

s p̄∆ = 0.

The cost of this information structure can be written in the form

C(pn;q;S) =
1
2

∆ ∑
s∈S:eT

s r>0

(eT
s r)(qs−q)T k̄(q)(qs−q)

+ ∑
s∈S:eT

s r=0

(eT
s φ)D∗(qs||q)+o(∆),

where the divergence D∗ is finite and twice-differentiable in its first argument for q′ suffi-

ciently close to q, with
∂ 2D∗(r||q)

∂ ri∂ r j |r=q = k̄(q). (16)

Proof. See the appendix, section D.6.

The divergence D∗ represents the cost of acquiring an infrequent, but potentially in-
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formative, signal. Naturally, if the signal is in fact not very informative, this cost must be

closely related to the costs of other uninformative signals, which gives rise to the condition

on the Hessian of the divergence. Note that the corollary requires that the cost is additive

with respect to the other signals being received (at least up to order ∆). The result follows

from the directional differentiability of the cost function with respect to signals that occur

with zero probability, the continuity of that directional derivative, and invariance.

We now introduce the last condition we will impose on our cost functions. This condi-

tion, which is expressed in terms of the k̄(q) matrix-valued function and the divergence D∗,

is a sufficient condition to ensure that the discrete-time models that we study in section 6

converge to the model with continuous sample paths (no jumps) described in section 2. The

condition reflects an assumption that learning gradually over time, receiving frequent but

never very informative signals, is less costly than receiving rare signals that lead to large

changes in beliefs when they occur.

Condition 6. The matrix-valued function k̄(q) and divergence D∗ associated with the cost

function C(p,q;S) satisfy, for all q,q′ ∈P(X) with q′� q,

D∗(q′||q)≥ 1
2
(q′−q)T (

ˆ 1

0
k̄(sq′+(1− s)q)ds)(q′−q).

We will say that a cost function satisfying this condition exhibits a preference for grad-

ual learning. We will call this preference “strict” if the inequality is strict for all q′ 6= q. If

the k̄(q) function is the Hessian of some generalized entropy function (see equation (11)),

this condition is equivalent to requiring that

D∗(q′||q) ≥ DH(q′||q), (17)

where DH is the associated Bregman divergence. In the particular case of mutual informa-
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tion, both D∗ and DH are the KL divergence, and the condition is (weakly) satisfied. It is

also easy to construct cases in which it is strictly satisfied, as the example below shows.30

Consider the family of information cost functions built from f-divergences defined in

equation (13) above. All of the cost functions in this family resemble mutual information,

to second order, in the sense defined by Corollary 3. Assuming that the posteriors induced

by the information structure p and prior q, {qs}s∈S, are close to the prior q, and that the

prior q is on the interior of the simplex,

I f (p,q;S) ≈ 1
2 ∑

s∈S
(eT

s pq)(qs−q)T D(q)+g+(q)D(q)+(qs−q). (18)

In other words, in a sense that we show formally in section 6, all of these flow cost functions

induce the same information-cost matrix function in the continuous-time problem.

However, all such functions do not induce the same divergence D∗. (Note that for this

family, D∗ = D f .) Nonetheless, if D f ≥ DKL (which holds strictly, for example, in the

case of the χ2-divergence), these cost functions will generate the same solution in the

continuous-time problem: the solution to a static rational-inattention problem with the

mutual-information cost function. Regardless of whether the f-divergence used to con-

struct the flow cost function is the KL divergence or not, the KL divergence will appear in

the solution to the continuous-time problem.31

We argued in section 2 that the inverse Fisher information matrix, when used as the

30It is the assumption that the flow cost function in our dynamic evidence accumulation problem satisfies
Condition 6 that allows us to avoid considering the possibility of Poisson jumps in the posterior belief state
of the kind assumed by Che and Mierendorff (2016) and Zhong (2017) in the continuous-time model pre-
sented in section 2. Zhong (2017) presents conditions under which information accumulation with Poisson
jumps can be optimal, but considers only posterior-separable flow cost functions of the form (12) based on
a Bregman divergence, so that (17) holds with equality rather than an inequality. In this special case, in
our framework jumps can also be among the optimal policies, but an equally good outcome can always be
achieved by an information sampling strategy that involves no jumps, as we establish in section 6. When
the inequality is instead strict, jumps cannot be optimal in the continuous-time limit of the kind of dynamic
evidence accumulation problem considered in this paper.

31In fact, this result applies to the larger class of invariant divergences, which includes the f-divergences,
and follows from Chentsov’s theorem (see appendix section C.1).
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information-cost matrix function, lacks certain desirable properties related to the distance

between different states of the world. In the next section, we introduce a new family of cost

functions which can induce information cost matrix functions that capture these notions.

These information-cost matrix functions also satisfy equation (11), and therefore Theo-

rem 1 applies. In the appendix, sections A.1 and A.2, we solve examples of the static model

implied by Theorem 1 and compare it to the same static model with mutual information,

illustrating why notions of the distance between states matter in economic applications.

5 Neighborhood-Based Cost Functions

Suppose that the state space X can be written as the union of a finite collection of “neigh-

borhoods” {Xi}, and suppose furthermore that the state space is connected, in the sense that

any two states can be connected by a sequence of overlapping neighborhoods. That is, for

any two states x, x′ ∈ X , there exists a sequence of states {x0, . . . ,xn} with x0 = x, xn = x′,

and the property that for any 1 ≤ m ≤ n, states xm and xm−1 belong to a common neigh-

borhood. Define the selection matrices Ei as the |Xi|× |X | matrices that select each of the

elements of Xi from a vector of length |X |.

For any prior q ∈P(X), let I (q) be the (necessarily non-empty) set of neighborhoods

Xi such that some state belonging to Xi has positive probability under the prior, and let

q̄i≡∑x∈Xi eT
x q be the prior probability that some state belonging to neighborhood Xi occurs.

Let qi ∈P(Xi) be the conditional probability distribution over states in neighborhood Xi,

given the prior q and conditional on the state being in neighborhood Xi. That is, for all

x ∈ Xi, qi ≡ 1
q̄i

Eiq.

Similarly, let qs ∈P(X) be the posterior after receiving signal s ∈ S, and let qi,s ∈

P(Xi) be the posterior over states in neighborhood Xi, conditional on receiving signal s

and having the state be part of neighborhood Xi. That is, for all x ∈ Xi, qi,s ≡ 1
q̄i,s

Eiqs, with
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q̄i,s ≡ ∑x∈Xi eT
x qs. We adopt the convention that qi,s = qi if q̄i,s = 0. Finally, let p̄i ∈P(S)

be the conditional distribution of signals under the information structure p and prior q,

p̄i =
1
q̄i

∑x∈Xi pexeT
x q.

We will say that a cost function has a “neighborhood structure” if it can be written in

the form

CN(p,q;S) = ∑
i∈I (q)

q̄i ∑
s∈S

eT
s p̄i Di(qi,s||qi), (19)

where for each i ∈I (q), Di(·||·) is a divergence (not necessarily the same for all i) defined

over probability distributions in P(Xi) that is a twice-differentiable and strongly convex

in its first argument.32 Mutual information is an example of a flow cost function in this

family, corresponding to the case in which there is only a single neighborhood, consisting

of the entire state space X , and the divergence is the KL divergence, so that

C(p,q;S) = ∑
s∈S

(eT
s pq)DKL(qs||q) = IShannon({px},q;S).

The information cost functions based on f-divergences, defined by (13), are also single-

neighborhood examples of neighborhood-based cost functions.

The following lemma shows that all cost functions with a neighborhood structure satisfy

the conditions defined in section 4.

Lemma 3. All cost functions with a neighborhood structure (19) satisfy Conditions 1-4

stated in section 4. If the neighborhood structure includes a neighborhood containing all

of the states x ∈ X, the cost function also satisfies Condition 5.

Proof. See the appendix, section D.7.

An implication of this lemma is that any posterior-separable cost function (12) based on a

strongly convex generalized entropy function H satisfies Conditions 1-5. Below, we give a
32The f-divergences defined previously satisfy these conditions (Amari and Nagaoka (2007)).
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sufficient condition for Condition 6 to be satisfied as well.

We will study a particular family of cost functions with a neighborhood structure, the

“neighborhood-based cost functions.” This family is defined by the additional requirements

that (i) the divergences Di be invariant (a term defined in appendix section C.1, which

applies to all of the f-divergences defined previously), and (ii) each of the Di is bounded

below by some positive multiple of DKL, the Kullback-Leibler divergence.33 As an example

of the possibility of satisfying these latter requirements, the Di may be α-divergences (or

Rényi divergences, van Erven and Harremoës (2014)) of order α ≥ 1:34

Dα(pi||qi) ≡
1

α−1
log ∑

x∈Xi

pi(x)α

qi(x)α−1 .

This family can have complex neighborhood structures, for which the requirement that

each of the individual divergences Di be invariant is a less restrictive requirement. The idea

of this class of cost functions is that information structures are costly only to the extent that

they result in different signal distributions for states that are “similar” to one another, in

the sense of belonging to the same neighborhood. If there is only one neighborhood that

includes all of the states (the mutual-information case), all states are equally difficult to

distinguish from one another. Allowing for more complex neighborhood structures allows

us to assume instead that it is much more difficult to tell some pairs of states apart than

others. Note that under the general formalism (19), this is true not only because some pairs

of states share a neighborhood while others do not — and more generally, that the length

of the chain of neighborhoods required to link two states differs for different pairs of states

33Stipulation (ii) is added in order to ensure that Condition 6 is satisfied. For this it suffices that Di be
bounded below by a Bregman divergence for each i. But as explained in section appendix C.1, any invariant
divergence is locally equivalent (for p near q) to a positive multiple of DKL. Hence in order for Di to be
bounded below by a Bregman divergence, it must be bounded below by a positive multiple of DKL.

34The definition is here stated only for the case α 6= 1. When α = 1, the α-divergence is simply the KL
divergence, and Condition 6 is weakly satisfied. If α > 1, the α-divergence satisfies Dα(p||q) > DKL(p||q)
for all p 6= q, so that the strong form of Condition 6 is satisfied, implying a strict preference for gradual
learning.
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— but also because the divergences Di can be different for different neighborhoods.

By the results of Chentsov (1982), the fact that Di is an invariant divergence implies

that its Hessian matrix is proportional to the Fisher information matrix. As a result, the

approximation described in equation (18) applies, but only within each neighborhood. That

is,

CN(p,q;S) ≈ 1
2 ∑

i∈I (q)
ciq̄i ∑

s∈S
(eT

s pq)(qi,s−qi)
T g(qi)(qi,s−qi), (20)

where the ci > 0 are positive constants. This implies the following structure for the information-

cost matrix:

Lemma 4. The information-cost matrix function kN(q) associated with the neighborhood-

based cost function is

kN(q) = ∑
i∈I (q)

ciq̄i ET
i g+(qi)Ei,

where g+ is the inverse Fisher information matrix and the constant ci > 0 for each i.

Proof. See the appendix, section D.8.

We can use the information-cost matrix function in our continuous-time problem (the

problem defined in section 2).35 It satisfies the equation necessary for the results of Theo-

rem 1 to apply (equation (11)). As a result, there is a generalized entropy function, HN(q),

associated Bregman divergence, DN(p||q), and posterior-separable static information-cost

function, Cstatic
N (p,q; S), that can be used to define the static rational-inattention problem

the choice probabilities of which coincide with the solution to the dynamic model. The

following lemma describes these functions:

35Our derivation of the continuous-time model from the discrete-time model applies only to cost functions
satisfying Conditions 1-6. We have established these conditions only for neighborhood structures that include
a neighborhood containing all states. However, the constant ci associated with this neighborhood can be
arbitrarily small, and in what follows we will ignore this requirement.
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Lemma 5. Let HShannon(q) be Shannon’s entropy (8). The generalized entropy func-

tion HN(q) and Bregman divergence DN(qs||q) associated with the neighborhood-based

information-cost matrix function kN(q) are

HN(q) = − ∑
i∈I (q)

ciq̄i HShannon(qi),

DN(qs||q) = ∑
i∈I (q)

ciq̄i,s DKL(qi,s||qi).

The posterior-separable static information cost function derived from the neighborhood-

based generalized entropy can then be written as

Cstatic
N (p,q;S) = ∑

s∈S
(eT

s pq)DN(qs||q),

= ∑
i∈I (q)

ciq̄i ∑
s∈S

p̄i,s DKL(qi,s||qi)

= ∑
i∈I (q)

ci ∑
x∈Xi

(eT
x q)DKL(pex||pET

i qi).

Proof. See the appendix, section D.9.

The fact that k̄N(q) is the Hessian of a convex function HN(q) means that we can apply

the sufficient condition (17) in order to verify that Condition 6 is satisfied by any cost

function in this family. For a flow cost function of the form (19), the marginal cost of

increasing the probability of a jump to an arbitrary posterior q′ is given by the divergence

D∗N(q
′||q) = ∑i∈I (q) q̄′i Di(q′i||qi). Under our assumption that Di is bounded below by

ciDKL for each i, it follows that D∗N(q
′||q) ≥ DN(q′||q), and condition (17) is verified. If

for each i, Di is a positive multiple of an α-divergence with αi > 1, then (17) holds with

a strict inequality for any q′ 6= q. In this case, the cost function satisfies the strong form of

Condition 6, so that there is a strict preference for gradual learning.
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Lemma 5 allows us to write the static rational inattention problem (Theorem 1) directly

in terms of an optimization over choice probabilities {πx} so as to maximize

∑
x∈X

eT
x q0 ∑

a∈A
eT

a πxux,a − θC({πx}x∈X ,q0;A). (21)

As discussed previously, in the special case in which there is only a single neighborhood,

this is the standard rational inattention problem. The relevance of alternative assumptions

about the neighborhood structure is illustrated by the following result.

Lemma 6. Consider a rational inattention problem (21) with a neighborhood-based information-

cost function, and let x,x′ be two states with the property that (i) ua,x = ua,x′ for all actions

a ∈ A, and (ii) the set of neighborhoods {Xi} such that x ∈ Xi is the same as the set such

that x′ ∈ Xi. Then under the optimal policy, π∗x = π∗x′.

Proof. The result follows directly from the problem in (21) and the alternative expression

for the cost function in Lemma 5.

The significance of Lemma 6 can be seen if we consider the predictions of rational

inattention for a standard form of perceptual discrimination experiment, an application we

describe in appendix section A.1. In these experiments, payments are based on correct and

incorrect responses. As a result, two states in which the correct response is identical will

(for a single-neighborhood cost function) have the same likelihood of a correct response.

Experimental evidence (intuitively) shows that in some states it is more difficult to deter-

mine the correct response than in other states.

In appendix section A.2, we consider an alternative neighborhood structure, in which

states can be totally ordered and it is costly to discriminate between neighboring states. We

derive an infinite state limit, and show that in this limit the cost function is equivalent to

one based on Fisher information, an alternative measure of information costs that penalizes

38



sharply discriminating between nearby states. We connect our result to the work of Morris

and Yang (2016), who show that this property is related to uniqueness in global games. We

also note that, like mutual information, Fisher information is a cost function that can be

applied in many contexts and has only a single free parameter.

We believe that these results show the usefulness of our continuous-time model of evi-

dence accumulation as a micro-foundation for interesting classes of static rational-inattention

problems, with properties that are relevant for economic applications. It remains for us to

explain the justification for our proposed formulation of the continuous-time model of evi-

dence accumulation itself.

6 Derivation of the Continuous-Time Model

We now show how the continuous-time model of section 2 can be obtained as the limit

of a discrete-time model of sequential evidence accumulation, with a sequence of endoge-

nous signals as in dynamic rational inattention models like that of Steiner et al. (2017), and

an information cost function for each of the individual signals that satisfies the properties

proposed for flow cost functions in section 4. In particular, we will justify the link pro-

posed above between a second-order approximation to the information cost function for an

individual signal and the information-cost matrix function defined in section 2.

We study a dynamic problem in which the DM has repeated opportunities to gather

information before making a decision. The state of the world, x ∈ X , remains constant over

time. At each time t, the DM can either stop and take an action a ∈ A, or continue and

receive a signal drawn from the information structure {pt,x ∈P(S)}x∈X , for some signal

alphabet S. We assume that the number of potential actions is weakly less than the number

of states, |A| ≤ |X |.

We also assume that the signal alphabet S is finite and fixed over time, with |S| ≥

39



2|X |+ 1. However, the information structure {pt,x}x∈X is a choice variable that can be

state- and time-dependent. Fixing the signal alphabet S has no economic meaning, because

the information content of receiving a particular signal s ∈ S can change between periods.

The assumption allows us to assume a finite information structure and invoke the results

from section 4.36 As a technical device, we assume that S contains one signal, s̄, that is

required to be uninformative. This assumption is a technical device to ensure that the DM

can choose to mix any arbitrary signal structure with an uninformative one, even if she has

already used up her “useful” signals.

The DM’s prior beliefs at time t, before receiving the signal, are denoted qt . Each time

period has a length ∆. Let τ denote the time at which the DM stops and makes a decision,

with τ = 0 corresponding to making a decision without acquiring any information. At this

time, the DM receives utility u(x,a)−κτ if she takes action a at time τ and the true state of

the world is x. As in the previous sections, let û(qτ) be the utility (not including the penalty

for delay) associated with taking an optimal action under beliefs qτ . The parameter κ

governs the size of the penalty the DM faces from delaying his decision. The reason the DM

does not make a decision immediately is that she is able to gather information, and make a

more-informed decision. The setup thus far is essentially identical to the continuous-time

model described previously.

The DM can choose an information structure that depends on the current time and past

history of the signals received. As we will see, the problem has a Markov structure, and

the current time’s “prior,” qt , summarizes all of the relevant information that the DM needs

36As mentioned previously, the work of Ay et al. (2014) discusses how to extend the Chentsov (1982)
theorems to infinite-dimensional structures. We conjecture that their results would allow us to extend our
theorems to infinite signal spaces, but do not attempt such an extension here.
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to design the information structure. The DM is constrained to satisfy

E0[
∆

ρ

τ∆−1−1

∑
j=0

C({p∆ j,q∆ j;S)ρ ]
1
ρ ≤ ∆cE0[τ], (22)

if the DM choose to acquire any information at all (τ > 0 always in this case). In words, the

Lρ -norm of the flow information cost function C(·) over time and possible histories must

be less that the constant c per unit time.

In the limit as ρ→∞, this would approach a per-period constraint on the amount of in-

formation the DM can obtain. For finite values of ρ , the DM can allocate more information

gathering to states and times in which it is more advantageous to gather more information.

We assume, however, that ρ > 1, to ensure that it is optimal for the DM to gather infor-

mation gradually, rather than all at once.37 We also assume that the flow cost function C(·)

satisfies Conditions 1-6 stated in section 4.

Let V (q0;∆) denote the value obtained in the sequence problem for a DM with prior

beliefs q0, and let qτ denote the DM’s beliefs when stopping to act. The DM’s problem is

V (q0;∆) = max
{p∆ j},τ

E0[û(qτ)−κτ)],

subject to the information-cost constraint (22). The dual version of this problem is

W (q0,λ ;∆) = max
{p∆ j},τ

E0[û(qτ)−κτ)]−

λE0[∆
1−ρ

τ∆−1−1

∑
j=0
{ 1

ρ
C(p∆ j,q∆ j;S)ρ −∆

ρcρ}]. (23)

Here, the function W (q0,λ ;∆) can be thought of as the value function of a different prob-

37Our assumption of ρ > 1 is similar to the convex cost of the rate of experimentation assumed by
Moscarini and Smith (2001).
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lem, in which there is a cost of gathering information proportional to λ
1
ρ

C(·)ρ . We guess

and verify that λ ∈ (0,κc−ρ). In our proofs, we demonstrate that there is no duality gap in

the continuous time limit of this problem, and that our assumption about λ is without loss

of generality. We describe our result below, and outline the proof in appendix section C.2.

Theorem 3. Let n ∈ N index a sub-sequence of policies described in Lemma 10. There

exists a λ ∗ ∈ (0,κc−ρ) such that

lim
n→∞

W (qt ,λ
∗;∆n) = lim

n→∞
V (q0;∆n) =V (q0),

where V (q0) is the solution to the continuous-time problem described in section 2, with

χ = ρρ−1
c and µ = κ. There exists a sequence of policies in the discrete-time models that

achieve, in the limit, the value function V (q0) and for which the associated belief process,

qt,n, and stopping time τn converges in law to a belief process q∗t and stopping time τ∗ that

are induced by an optimal policy in the continuous-time model (and hence q∗t is a diffusion).

If the cost function exhibits a strict preference for gradual learning, every convergent sub-

sequence of belief processes q∗t,n associated with optimal policies in the discrete-time model

converges in law to a diffusion.

Proof. See the appendix, section C.2 and section D.16.

We have shown that the DM’s behavior in the continuous-time problem can be thought

of as an approximation of her behavior in discrete-time problems with flow cost functions

drawn from a very general class. These convergence results can be viewed as offering a sort

of micro-foundation for the continuous-time model, and in particular for our assumptions

in section 2 about the information-cost matrix function.
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7 Conclusion

We have derived a continuous-time rational-inattention model as the limit of a discrete-

time sequential evidence accumulation problem. In the limit of a very large number of

successive signals, each of which is only minimally informative, only the local properties

of the flow cost function matter. These properties can be summarized by a matrix-valued

function defined on the space of possible posterior beliefs, which we call the information-

cost matrix function. This function summarizes the degree to which it is costly to further

distinguish between different pairs of possible states, given the decision maker’s current

beliefs.

For a broad class of information-cost functions, we are able to solve the resulting con-

tinuous time problem, and show that the solution is equivalent to the solution of a static

rational-inattention problem, with a particular posterior-separable information-cost func-

tion. The use of posterior-separable cost functions in static rational-inattention problems

can thus be justified as summarizing the implications of a dynamic evidence accumulation

process. Among the static cost functions that can be justified in this way is the mutual-

information cost function proposed by Sims and the neighborhood-based cost function that

we introduce. Unlike mutual information, the neighborhood-based cost function incorpo-

rates the idea that “nearby” states are more difficult to distinguish from one another. We

argue that this property is appealing in the context of both perceptual experiments and

economic applications.
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A Applications of Neighborhood-Based Cost Functions

A.1 Psychometric Functions

Suppose that the different states X = {1,2, . . . ,N} represent different stimuli that may be

presented to the subject, and that the subject is asked to classify the stimulus that is pre-

sented as one of two types (L or R); R is the correct answer if and only if x > (N + 1)/2.

For example, the stimuli might be visual images with different orientations relative to the

vertical, with increasing values of x corresponding to increasingly clockwise orientations;

the subject is asked whether the image is tilted clockwise or counter-clockwise relative to

the vertical. In such experiments, the subject’s goal is often simply to give as many correct

responses as possible; hence we suppose that ux,a = 1 if a = R and x > (N + 1)/2 or if

a = L and x < (N + 1)/2, while ux,a = 0 in all other cases. We shall assume that each of

the possible stimuli is presented with equal prior probability, and hence (assuming that N

is odd) that both responses have an equal ex ante probability of being correct.

The standard theory of rational inattention, in which the static information cost is mu-

tual information, corresponds to a special case of a neighborhood-based cost function, in

which all states belong to the unique neighborhood. Hence condition (ii) of Lemma 6 holds

for any pair of states. Lemma 6 thus implies that if any two states result in the same payoff

regardless of the action chosen, the frequency with which different actions will be chosen

under an optimal policy must be the same in the two states.

In the problem just posed, this implies that the probability of response R must be the

same for all states x < (N + 1)/2, and also the same (but higher) for all states x > (N +

1)/2. Changing the severity of the information constraint changes the degree to which

the probability of responding R is higher when x > (N + 1)/2, but it cannot change the

prediction that the response probabilities should depend only on whether x is greater or less

than (N +1)/2. This is illustrated in Appendix Figure 1, which plots the optimal response
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frequencies as a function of x, for alternative values of the cost parameter θ , in a numerical

example in which C is given by mutual information and N = 20.

Alternatively, consider a posterior-separable neighborhood-based cost function in which

the neighborhoods are given by

Xi = {xi, xi+1} (24)

for i= 1,2, . . . ,N−1. Thus two states belong to a common neighborhood if and only if they

are either identical or one comes immediately after the other in the sequence. This captures

the idea that the available measurement technologies all respond similarly in states that

are “similar,” in the sense of being at nearby positions in the sequence, so that repeated

measurements are necessary to reliably distinguish between two states if and only if they

are near each other in the sequence. Suppose further that ci = 1 for all i, implying that it is

equally difficult to distinguish two neighboring states at all points in the sequence.38 These

assumptions suffice to completely determine a static information cost function (Lemma 5).

With this alternative neighborhood structure, Lemma 6 no longer requires that the re-

sponse frequencies be identical for any two states. Moreover, because the cost function

penalizes large differences in signal frequencies (and hence in response frequencies) in the

case of neighboring states, in this case an optimal policy involves a gradual increase in the

probability of response R as x increases, even though the payoffs associated with the differ-

ent actions jump abruptly at a particular value of x. This is illustrated in Appendix Figure 2,

which again shows the optimal response frequencies as a function of x, for alternative val-

ues of θ , in the case of the alternative neighborhood structure (24). The sigmoid functions

predicted by rational inattention with this cost function — with the property that response

frequencies differ only modestly from 50 percent when the stimuli are near the threshold

of being correctly classified one way or the other, and yet approach zero or one in the case

38If ci is the same for all i, we can without loss of generality set it equal to one, as the multiplier θ can still
be used to scale the overall magnitude of information costs.
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of stimuli that are sufficiently extreme — are characteristic of measured “psychometric

functions” in perceptual experiments of this kind.39

The continuity of choice probabilities across points at which there are discrete changes

in payoffs is also an important issue for the global games literature (Morris and Yang

(2016)). However, this literature typically assumes a continuum of states, and many of

the perceptual experiments that we have just referred to are naturally modeled with a con-

tinuum of states as well. In the next sub-section, we consider a continuous-state limit of

the example just analyzed, that can be used as a model of imprecise perception in such

examples.

A.2 Global Games and The Fisher-Information Cost Function

In this subsection, we continue our discussion of the neighborhood-based cost function

proposed in the previous subsection, and consider the limit as the number of states of the

world, |X |, becomes infinite. This example is motivated by the work of Yang (2015) and

Morris and Yang (2016), who study global games (e.g. Morris and Shin (2001)) with

endogenous information acquisition. However, we derive our limiting result for arbitrary

action spaces and utility functions.

The result corresponds to a static rational inattention problem with a continuum of

states, in which the information cost function is given by the average value of the Fisher

information, a measure of the precision with which an information structure allows nearby

39For the general concept of a psychometric function, see, for example, Gabbiani and Cox (2010), chap.
25, especially Figures 25.1 and 25.2, and discussion on p. 360; or Gold and Heekeren (2014), p. 356. For
an example of an empirical psychometric function for the kind of task discussed in the text (classification
of a field of moving dots as to which of two opposing directions is the dominant direction of motion), see
Shadlen et al. (2007), Figure 10.1A. Note not only that the curve is monotonically increasing, with many data
points corresponding to different response probabilities between zero and one, but also that in this experiment
the subject’s reward function is clearly of the kind assumed in the text: only two possible reward levels (for
correct vs. incorrect responses), with a discontinuous change in the reward where the sign of the “motion
strength” changes from negative to positive.
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states to be distinguished from each other (Cover and Thomas (2012)). Like Sims’ proposal

of a cost function proportional to Shannon’s mutual information, the Fisher-information

cost function is a single-parameter cost function, and it can also be applied in almost any

context, as long as the state space is continuous. But unlike Shannon’s mutual informa-

tion, our measure of the informativeness of an information structure based on the Fisher

information depends on the topological structure of the state space.

This is of considerable significance for the literature on global games. In the well-

known analysis of Morris and Shin (2001), with exogenous private information, there is

a unique equilibrium despite the incentives for coordination across DMs (subject to some

caveats and details that are not relevant for our discussion). Instead Yang (2015) demon-

strates that allowing for endogenous information acquisition, with mutual information as

the information cost, restores a multiplicity of equilibria.

The key to Yang’s result is that DMs can tailor the signals they receive to sharply dis-

criminate between nearby states of the world, as discussed in our previous example. As a

result, they can all coordinate their decision (say, to invest or not) on a particular threshold,

and there are many such thresholds that can represent equilibria if coordinated upon. But

this result depends on the fact that the mutual-information cost function does not make

it costly to have abrupt changes in signal probabilities as the state of the world changes

continuously. Morris and Yang (2016) develop the complementary result, showing that

even in the case of an endogenous information structure, if signal probabilities must vary

continuously with the state, there is again a unique equilibrium.

Here we show that a neighborhood-based cost function can provide a justification for

the kind of continuity condition that the result of Morris and Yang (2016) requires. How-

ever, our results in the previous subsection cannot be applied directly to the model of Morris

and Yang (2016), because the global games model in that paper assumes a continuum of

states, whereas our analysis above supposes that |X | is finite. To bridge this gap, we study
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an example of the static model implied by Theorem 1 with a particular neighborhood-based

cost function, and consider the limit as the number of states becomes unboundedly large.

We show that the example model converges to a static rational inattention model with a

particular cost function, similar in certain respects to the leading example of Morris and

Yang (2016), that satisfies the continuous choice condition established by those authors.

For each of a sequence of values for the finite integer N, we assume a neighborhood

structure of the kind discussed in the previous subsection for a model with N + 1 states.

The set of states is ordered, XN = {0,1, . . . ,N}, and each pair of adjacent states forms a

neighborhood, X j = {i, i+1}, for all j ∈ {0,1, . . . , N−1}. We will also assume that there is

an N +1st neighborhood containing all of the states. Note that N indexes both the number

of states and the number of neighborhoods, which is always equal to the number of states.

We consider the limit as N→ ∞.

To study this limit, we need to define how the initial beliefs, qN , and the magnitude of

the information costs vary with N. For the initial beliefs, we shall assume that there is a

differentiable probability density function f : [0,1]→ R+, with full support on [0,1], with

a derivative that is Lipschitz continuous. Using this function, we define, for any i ∈ XN ,

eT
i qN =

ˆ i+1
N+1

i
N+1

f (x)dx.

That is, for each value of N, the prior qN is assumed to be a discrete approximation to the

Lipschitz-continuous p.d.f. f (x), which becomes increasingly accurate as N→ ∞.

For our neighborhood structures, we assume that that the constants associated with the

cost of each neighborhood, c j, are equal to N2 for all j < N, and N−1 for j = N. In this

particular example, the scaling ensures that the DM is neither able to determine the state

with certainty, nor prevented from gathering any useful information, even as N is made

arbitrarily large; moreover, the scaling ensures that the neighborhood containing all states
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plays no role in the limiting behavior, so that in the limit all information costs are local. We

also scale the entire cost function by a constant, θ̄ > 0.

We also need to define the set of actions, and the utility from those actions. We will as-

sume the set of actions, A, remains fixed as N grows, and define the utility from a particular

action, in a particular state, as

eT
i ua,N =

´ i+1
N+1

i
N+1

f (x)ua(x)dx

eT
i qN

.

Here, the utility ua : [0,1]→ R is a bounded measurable function for each action a ∈ A.40

In other words, as N grows large, the prior converges to f (x) and the utilities converge to

the functions ua(x).

Under these assumptions, the static model of Theorem 1 can be written as

VN(qN ; θ̄) = max
πN∈P(A),{qa,N∈P(XN)}a∈A

∑
a∈A

πN(a)(uT
a,N ·qa,N)− θ̄ ∑

a∈A
πN(a)DN(qa,N ||qN),

(25)

subject to the constraint that

∑
a∈A

πN(a)qa,N = qN .

Here DN denotes the divergence associated with the neighborhood-based cost function in-

troduced above, specialized to the particular neighborhood structure of this section:

DN(qa,N ||qN) = N2
∑

j∈XN\{N}
q̄ j,a,NDKL(q j,a,N ||q j,N)+N−1DKL(qa,N ||qN).

The following theorem shows that the solution to this problem, both in terms of the

40Note that we do not require the payoff resulting from a action to be a continuous function of x at all
points, though it will be continuous almost everywhere. This allows for the possibility that a DM’s payoffs
change discontinuously when the state x crosses some threshold, as in the kind of equilibria discussed by
Yang (2015).

51



value function and the optimal policies, converges to the solution of a static rational inat-

tention problem with a continuous state space.

Theorem 4. Consider the sequence of finite-state-space static rational inattention prob-

lems (25), with progressively larger state spaces indexed by the natural numbers N. Then

there exists a sub-sequence of integers n ∈N for which the solutions to the sub-sequence of

problems converge, in the sense that

i) limn→∞ Vn(qn; θ̄) = V (q; θ̄);

ii) limn→∞ π∗n = π∗; and

iii) for all a ∈ A and all x ∈ [0,1], limn→∞ ∑
bxnc
i=0 eT

i q∗a,n =
´ x

0 f ∗a (y)dy.

Moreover, the limiting value function V (q; θ̄) is the value function for the following continuous-

state-space static rational inattention problem:

V ( f ; θ̄) = sup
π∈P(A),{ fa∈PLipG([0,1])}a∈A

∑
a∈A

π(a)
ˆ 1

0
ua(x) fa(x)dx

− θ̄

4 ∑
a∈A
{π(a)

ˆ 1

0

( f ′a(x))
2

fa(x)
dx}+ θ̄

4

ˆ 1

0

( f ′(x))2

f (x)
dx,

subject to the constraint that, for all x ∈ [0,1],

∑
a∈A

π(a) fa(x) = f (x), (26)

and where PLipG([0,1]) denotes the set of differentiable probability density functions with

full support on [0,1], whose derivatives are Lipschitz-continuous. Furthermore, the limiting

action probabilities π∗(a) and posteriors f ∗a are the optimal policies for the continuous-

state-space problem.

Proof. See the appendix, section D.11.
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This theorem demonstrates that the value function, choice probabilities, and posterior

beliefs of the discrete state problem converge to the value function, choice probabilities, and

posterior beliefs associated with a continuous state problem. The continuous state problem

uses a particular cost function, the expected value of the Fisher information IFisher(x; p),

defined locally for each element of the continuum of possible states x, with the expectation

taken with respect to the prior over possible states.41 The posterior beliefs in the continuous

state problem, fa(x), are required to be differentiable and have full support on [0,1], with

a Lipschitz-continuous derivative. This is a result; the limiting posterior beliefs of the

discrete state problem will have these properties. This restriction also ensures that the

Fisher information is finite, so that the optimization associated with the continuous state

problem is well-behaved.

This cost function, unlike mutual information, depends only on the degree to which the

information structure allows states to be distinguished from ones extremely close to them

(under the topology of the real line); and unlike the rational inattention problem based on

mutual information, this static mutual information problem will generate the smoothness

of responses across discrete changes in payoffs shown in Figure 2. For these reasons,

we believe that the Fisher-information cost function is likely to be more appropriate than

mutual information in a wide range of settings. It should also be noted that, as in the

case of Sims’ theory of rational inattention, the Fisher-information cost function has only

a single degree of freedom. We thus obtain a rational inattention theory for problems with

a continuous space that yields highly specific predictions, albeit different ones from Sims’

theory.

The static rational inattention problem for the limiting case of a continuous state space

can be given an alternative, equivalent formulation, in which the objects of choice are the

41This aggregate Fisher information has also proven useful in a variety of physics applications (Frieden
(2004)).
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conditional probabilities of taking different actions in the different possible states, rather

than the posteriors associated with different actions.

Lemma 7. Consider the alternative continuous-state-space static rational inattention prob-

lem:

V̄ ( f ; θ̄) = sup
p∈PLipG(A)

ˆ 1

0
f (x) ∑

a∈A
pa(x)ua(x)dx − θ̄

4

ˆ 1

0
f (x) IFisher(x; p)dx,

where PLipG(A) is the set of mappings p : [0,1]→P(A) such that for each action a, the

function pa(x)42 is a differentiable function of x with a Lipschitz-continuous derivative, and

for any information structure p∈PLipG(A), the Fisher information at state x∈X is defined

as

IFisher(x; p) ≡ ∑
a∈A

(p′a(x))
2

pa(x)
.

This problem is equivalent to the one defined in Theorem 4, in the sense that the information

structure p∗ that solves this problem defines action probabilities and posteriors

π
∗(a) =

ˆ 1

0
f (x)p∗a(x), f ∗a (x) =

f (x)p∗a(x)
π∗(a)

(27)

that solve the problem in Theorem 4, and conversely, the action probabilities and posteriors

{π∗(a), f ∗a } that solve the problem stated in the theorem define state-contingent action

probabilities

p∗a(x) =
π∗(a) f ∗a (x)

f (x)
(28)

that solve the problem stated here. Moreover, the maximum achievable value is the same

for both problems: V̄ ( f ; θ̄) =V ( f ; θ̄).

Proof. See the appendix, section D.12.
42Here for any x ∈ [0,1], we use the notation pa(x) to indicate the probability of action a implied by the

probability distribution p(x) ∈P(A).

54



We can apply this result to the problem considered in Morris and Yang (2016). Those

authors study a global game with two possible actions, “invest” and “not-invest,” with equi-

librium behavior characterized by a probability s(x) of investing when the state is x. Their

equilibrium uniqueness result depends on an assumption of continuous choice, meaning

that for all θ̄ > 0 and all parameterizations of the relevant utility function, s(x) is abso-

lutely continuous. Our Theorem 4 provides an example of more primitive assumptions that

would guarantee continuous choice in this sense.
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Figure 1: Predicted response probabilities with a mutual-information cost function, for
alternative values of the cost parameter θ .
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Figure 2: Predicted response probabilities with a neighborhood-based cost function, in
which each neighborhood consists only of two adjacent states.

C Proof Outlines

C.1 Approximations of the Cost Function

We describe the local (second-order) properties of any information cost function satisfying

our conditions. The condition requiring that Blackwell-dominant information structures

cost weakly more (Condition 3) is of particular importance. To understand why, it is first

useful to recall Blackwell’s theorem.

Theorem. (Blackwell (1953)) The information structure {px}x∈X , with signal alphabet S,

is more informative, in the Blackwell sense, than {p′x}x∈X , with signal alphabet S′, if and
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only if there exists a Markov transition matrix Π : S→ S′ such that, for all s′ ∈ S′ and x∈ X ,

p′x = Πpx. (29)

This Markov transition matrix is known as the “garbling” matrix. Another way of

interpreting Condition 3 is that garbled signals are (weakly) less costly than the original

signal.

There are certain kinds of garbling matrices that don’t really garble the signals. These

garbling matrices have left inverses that are also Markov transition matrices. If we de-

fine an information structure {px}x∈X , with signal alphabet S, and another information

structure {p′x}x∈X , with signal alphabet S′, using one of these left-invertible matrices,

via equation (29), then {px}x∈X is more informative than {p′x}x∈X , but {p′x}x∈X is also

more informative than {px}x∈X . These two information structures are called “Blackwell-

equivalent,” and it follows that the cost of these two information structures must be equal,

by Condition 3. The left-invertible Markov transition matrices associated with Blackwell-

equivalent information structures are called Markov congruent embeddings by Chentsov

(1982). Chentsov (1982) studied tensors and divergences that are invariant to Markov con-

gruent embeddings (we will say “invariant” for brevity).

An invariant divergence is a divergence that is invariant to these embeddings. Let Π

be a Markov congruent embedding from P(S) to P(S′). The KL divergence and the

f-divergences more generally are invariant, meaning that

D f (Πp||Πr) = D f (p||r)

for all p, r ∈P(S). There are also other, non-additively-separable invariant divergences.
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Chentsov’s theorem (Chentsov (1982)) states that, for any invariant divergence DI ,

∂ 2DI(p||r)
∂ pi∂ p j |p=r = c ·gi j(r), (30)

where c > 0 is a positive constant and gi j(r) is the (i, j)-element of the Fisher information

matrix evaluated at r.

However, the focus of this paper is not invariant divergences, but rather invariant in-

formation cost functions. By Condition 3, all information cost functions satisfying our

conditions are invariant to Markov congruent embeddings. It necessarily follows that, for

any Markov congruent embedding Π, that

C({px}x∈X ,q;S) =C({Πpx}x∈X ,q;S′).

Using this invariance, and results from Chentsov (1982), we will describe the local structure

of all information cost functions satisfying our conditions.

Chentsov establishes the following results:43

i) Any continuous function that is invariant over the probability simplex is equal to a

constant.

ii) Any continuous, invariant 1-form tensor field over the probability simplex is equal to

zero.

iii) Any continuous, invariant quadratic form tensor field over the probability simplex is

proportional to the Fisher information matrix.44

43See Lemma 11.1, Lemma 11.2, and Theorem 11.1 in Chentsov (1982). See also Proposition 3.19 of Ay
et al. (2014), who demonstrate how to extend the Chentsov results to infinite sets X and S.

44A 1-form tensor field on a probability simplex P is a function T : V ×P → R, where V is the tangent
space of the simplex. Let Π : P →P ′ be a mapping from the simplex P to the simplex P ′, let V ′ be the
tangent space of the simplex P ′, and let dΠ : V → V ′ be the pushforward of the mapping Π. The tensor
field is invariant under Π if T (dΠv,Πp) = T (v, p) for all p ∈P and v in the tangent space at p, and a
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These results allow us to characterize the local properties of rational inattention cost func-

tions, via a Taylor expansion. Hold fixed the signal alphabet S, and consider an information

structure px(ε,ν) = r+ ετx +νωx, where r ∈P(S). Here, τx satisfies ιT τx = 0 for all x,

and. for all s ∈ S, eT
s τx 6= 0 only if eT

s r > 0. That is, τx is an element of the tangent space

of the probability simplex at r, and the same holds true for ωx. As a result, for values of

the perturbation parameters ε and ν sufficiently close to zero, px ∈P(S) for all x ∈ X . In

other words, the parameters ε and ν index a two-parameter family of perturbations of an

uninformative information structure (corresponding to ε = ν = 0), in which the perturbed

information structures will generally be informative; the τx and ωx specify two directions

of perturbation. Each of the perturbed information structures has the property that px is

absolutely continuous with respect to r.

By Condition 1, C({px(0,0)}x∈X ;q;S) = 0. The first order term is

∂

∂ε
C({px(ε,ν)}x∈X ,q;S)|ε=ν=0 = ∑

x∈X
Cx({r}x∈X ,q;S) · τx,

where Cx denotes the derivative with respect to px. This derivative, Cx({r};q;S), forms a

continuous 1-form tensor field over the probability simplex P(S). By the invariance of

C(·), it also follows that Cx is invariant, and therefore, by Chentsov’s results, it is equal to

zero.

We repeat the argument for the second derivative terms. Those terms can be written as

∂

∂ν

∂

∂ε
C({px(ε,ν)}x∈X ,q;S)|ε=ν=0 = ∑

x′∈X
∑
x∈X

ω
T
x′ ·Cxx′({r}x∈X ,q;S) · τx.

By the invariance of C(·), the quadratic form Cxx′(·) is invariant for all x,x′ ∈ X , and there-

fore is proportional to the Fisher information matrix for all x,x′ ∈X . We can define a matrix

similar definition holds for quadratic form tensor fields. This means that if the quadratic form is extended to
a quadratic form over R|X | using the method defined in footnote 11, its matrix representation is proportional
to the matrix defined in (15).
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k(q) consisting of the constants of proportionality associated with each x,x′ ∈ X . That is,

∂

∂ν

∂

∂ε
C({p(·|·;ε,ν)},q)|ε=ν=0 = ∑

x′∈X
∑
x∈X

(eT
x k(q)ex′)ω

T
x′g(r)τx,

where g(r) is the Fisher information matrix evaluated at the unconditional distribution of

signals r∈P(S). We note that the matrix k(q) can depend on the prior q, but cannot depend

on the unconditional distribution of signals, r; otherwise, invariance would not hold.

This matrix k(q) is the matrix referenced in Theorem 2, and is (by the results of sec-

tion §6) the information cost matrix function described in the continous time model. The

corollary below expresses the results of Theorem 2 in terms of posterior beliefs.

Corollary 3. Under the assumptions of Theorem 2, the posterior beliefs can be written, for

any s ∈ S such that eT
s r > 0, as

qs,n,x = qx +∆
1
2 qx

eT
s τn,x

eT
s r

+o(∆
1
2 ).

The cost function can be written as

C({px}x∈X ,q;S) =
1
2 ∑

s∈S:eT
s r>0

(eT
s r)(qs−q)T k̄(q)(qs−q)+o(∆).

Proof. See the appendix, section D.5.

C.2 Convergence of Discrete to Continuous Time

We begin by describing the recursive representation for the value function W (qt ,λ ;∆), and

discussing certain technical lemmas that are necessary to establish our main results. The
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value function has a recursive representation:

W (qt ,λ ;∆) = max{max
pt
−κ∆+λ∆

1−ρ(∆ρcρ − 1
ρ

C(pt ,qt ;S)ρ)+

∑
s∈S

(eT
s ptqt)W (qt+∆,s,λ ;∆), û(qt)},

where qt+∆,s is pinned down by Bayes’ rule. In standard rational inattention problems, it is

without loss of generality to equate signals and actions. In this problem, when the DM does

not stop and make a decision, the “action” is updating one’s beliefs. Rather than consider

a probability distribution over signals, and then an updating of beliefs by Bayes’ rule, one

can consider the DM to be choosing a probability distribution over posteriors, subject to

the constraint that the expectation of the posterior is equal to the prior.45

To begin our analysis, we note that the value function W (qt ,λ ;∆) is well-behaved:

Lemma 8. The value function W (qt ,λ ;∆) is bounded on qt ∈P(X), and convex in q. The

optimal stopping time τ∆ is bounded in expectation by a constant, τ̄ , for all ∆:

E0[τ∆]≤ τ̄.

Proof. See the appendix, section D.13.

The boundedness of the value function follows from the setup of the problem: ulti-

mately, the DM will make a decision, and the utility from making the best possible decision

in the best possible state of the world is finite. The convexity of the value function is what

motivates the DM to acquire information. By updating her beliefs from q to either q′ or q′′,

with q = αq′′+(1−α)q′ for some α ∈ (0,1), the DM improves her welfare by enabling

better decision making. That the optimal stopping time is bounded in expectation follows

45The notion of choosing a probability distribution over posteriors appears in Kamenica and Gentzkow
(2011), Caplin and Dean (2015), and Caplin et al. (2017), among other papers.
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from an obvious point: waiting too long to make a decision will eventually become worse,

even if the DM eventually makes the best possible decision, than making the worst possible

decision immediately.

Next, we show that, because of the curvature (ρ) that we impose, the DM will choose,

under any optimal policy, to gather only a small amount of information in each time period,

as the length of each time period shrinks.

Lemma 9. Let n∈N denote a sequence such that limn→∞ ∆n = 0. Any associated sequence

of optimal policies p∗t,n satisfies, for all elements of the sequence,

C(p∗t,n,qt,n;S)≤ (
θ

λ
)

1
ρ−1 ∆n,

where θ = λ (ρ κ−λcρ

λ (ρ−1))
ρ−1

ρ .

Proof. See appendix, section D.14.

The key step in proving this lemma is demonstrating that, as the time period shrinks,

the optimal quantity of information acquired vanishes at a sufficiently fast rate. The con-

vergence of the information structure to an uninformative one, as the time period shrinks,

allows us to use the approximation described in Theorem 2 to study the continuous-time

limit of the sequential evidence accumulation model. The assumption that ρ > 1 is criti-

cal to generating this result. When ρ = 1, the DM has no particular desire to smooth the

quantity of information gathered over time, and might choose to gather a large quantity of

information in a single period (as in Steiner et al. (2017)).

We next discuss the convergence of an arbitrary sequence of stochastic processes for

beliefs (denoted qt,m) and of stopping times (denoted τm) to their continuous-time limits,

under the assumption that the policies generating them satisfy the bound in Lemma 9 and

the bound on expected stopping times. This lemma applies to a sequence of optimal poli-
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cies, but also to sequences of sub-optimal policies. The lemma describes the convergence

of the beliefs process to a martingale, which is not necessarily a diffusion (it may have

jumps, or even be a semi-martingale that is not a jump-diffusion).

Lemma 10. Let ∆m, m ∈ N, denote a sequence such that limm→∞ ∆m = 0. Let pm(q) de-

note a sequence of Markov policies satisfying the bound in Lemma 9. Let qt,m denote the

stochastic process for the DM’s beliefs at time t, under such a policy, and let τm be a

sequence of stopping policies such that E0[τm]≤ τ̄ .

There exists a sub-sequence n ∈ N and a probability space such that:

i) The beliefs qt,n and the stopping time τn converge almost surely to a martingale qt

and a stopping time τ .

ii) The martingale qt can be represented in terms of its semi-martingale characteristics,

Bt =−
ˆ t

0
(

ˆ
R|X |\{0}

ψs(x)xdx)dAs

Ct =

ˆ t

0
D(qs−)σsσ

T
s D(qs−)dAs

νt(x) = dAtψt(x),

where σs is an |X | × |X | matrix-valued predictable stochastic process, satisfying

qT
s−σs =~0, ψs is a measure on R|X |\{0} such that qs−+x∈P(X) and qs−+x� qs−

for all x in the support of ψs, and dAs is the increment of a weakly increasing process.

iii) For all stopping times T ,

Et [

ˆ T

t
{1

2
tr[σsσ

T
s k(qs−)]+

ˆ
R|X |\{0}

ψs(x)D∗(qs−+ x||qs−)dx}dAs]≤

(
θ

λ
)

1
ρ−1 Et [T − t].
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iv) The limit of the cumulative information cost is bounded below,

lim
n→∞

E0[

ˆ
τn

0
∆

1−ρ
n C(pn(qt,n),qt,n;S)ρdt]≥

Et [

ˆ
τ

0
{1

2
tr[σsσ

T
s k(qs−)]+

ˆ
R|X |\{0}

ψs(x)D∗(qs−+ x||qs−)dx}ρ(
dAs

ds
)ρds].

Proof. See the appendix, section D.15.

In essence, the stochastic process qt,n converges to a jump-diffusion process. The semi-

martingale characteristics, Bt ,Ct ,νt , summarize the DM’s policy function. They have a

representation as a function of σt ,ψt ,At because of the need for beliefs to remain the sim-

plex, and the property that, once a state x ∈ X has been assigned zero probability, it will be

assigned zero probability forever after.

To finish the proof, we resolve several issues. We show that the constraint given in

Lemma 9 binds. We show that the limiting value function W is unique, that duality holds

(V = W for a suitable choice of λ ), and that the the limit of V is the solution to the

continuous-time problem described in section 2. We also show that there is a sequence

of (possibly sub-optimal) policies in the discrete-time model that achieve, in the limit, the

optimal utility and converge to a diffusion. Moreover, if the cost function C(p,q;S) ex-

hibits a strict preference for gradual learning (it satisfies Condition 6 strictly for q′ 6= q),

then all sequences of optimal policies converge to diffusions that are optimal policies of the

continuous-time model.
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D Proofs

D.1 Proof of Lemma 1

The problem in the continuation region is (everywhere the value function is twice differen-

tiable)

sup
σt∈M(qt)

1
2

tr[σT
t D(qt)Vqq(qt)D(qt)σt ] = κ,

subject to
1
2

tr[σT
t k(qt)σt ]≤ χ.

First, suppose that the constraint does not bind and a maximizing optimal policy exists:

1
2

tr[σ∗Tt k(qt)σ
∗
t ] = aχ,

where σ∗t is a maximizer, for some a ∈ [0,1) (a ≥ 0 by the positive semi-definiteness of

k(qt)). For any c∈ (1,a−1), with a−1 =∞ for a = 0, if we used σt = cσ∗t instead, the policy

would be feasible and we would have

1
2

tr[σT
t D(qt)Vqq(qt)D(qt)σt ] = c2

κ >
1
2

tr[σ∗Tt D(qt)Vqq(qt)D(qt)σ
∗
t ] = κ,

a contradiction by the fact that κ > 0. Therefore, either the constraint binds under the

optimal policy or an optimal policy does not exist. The latter would require that, for some

vector z ∈ R|X | with zzT ∈M(qt),

zT D(qt)Vqq(qt)D(qt)z > 0

and zT k(qt)z = 0, but the null space of k(qt) consists only of vectors whose elements are
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constant over the support of qt , and therefore satisfy qT z 6= 0, implying that zzT /∈M(qt).

Therefore, the constraint binds.

Using θ as defined in the lemma, it must be the case (anywhere the DM chooses not to

stop and the value function is twice differentiable) that

sup
σt∈M(qt)

1
2

tr[σtσ
T
t (D(qt)Vqq(qt)D(qt)−θk(qt))] = 0.

Because of the homogeneity assumption on V ,

qT
t Vq(qt) =V (qt).

Differentiating again,

qT
t Vqq(qt) = 0.

It follows that, for any α ∈ R,

1
2

tr[(σtσ
T
t +αιι

T )(D(qt)Vqq(qt)D(qt)−θk(qt))] =

1
2

tr[(σtσ
T
t )(D(qt)Vqq(qt)D(qt)−θk(qt))].

Suppose that we relax the requirement that qT
t σt =~0 and simply require that σt by a square

matrix. Let σ̃t be any square matrix. Setting

α =−qT
t σ̃t σ̃

T
t qt ,

and performing an eigendecomposition,

V DV T = σ̃t σ̃
T
t +αιι

T ,

66



we construct a matrix

σt =V D
1
2

that achieves the same utility and satisfies σt ∈M(qt). Therefore, ignoring this restriction

is without loss of generality.

It immediately follows that, in the continuation region, the maximum eigenvalue of

D(qt)Vqq(qt)D(qt)−θk(qt)

must be equal to zero. If it were less than zero, we would always have

1
2

tr[(σtσ
T
t )(D(qt)Vqq(qt)D(qt)−θk(qt))]< 0,

and if it were greater than zero, we could achieve

1
2

tr[(σtσ
T
t )(D(qt)Vqq(qt)D(qt)−θk(qt))]> 0

by setting σt = v1eT
1 , where v1 is an associated eigenvector of the maximal eigenvalue.

Finally, note that the DM would always choose to stop if V (qt) < û(qt), and there-

fore we must have V (qt) ≥ û(qt). If V (qt) > û(qt), the DM must choose to continue, and

(assuming twice-differentiability) the HJB equation must hold.

D.2 Proof of Theorem 1

Define φ(qt) as the function described in the statement of the theorem (we will prove that

it is indeed equal to V (qt), the value function of the dynamic problem). We will first show

that φ(qt) satisfies the HJB equation, can be implemented by a particular strategy for the

DM, and that any other strategy for the DM achieves weakly less utility.
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We begin by observing that

ι
T k(qt)D(qt)

−1 = 0 = ι
T D(qt)Hqq(qt) = qT

t Hqq(qt).

We claim that, without loss of generality, we can assume that H(qt) is homogeneous of

degree one,

H(αqt) = αH(qt)

for all α ∈ R+ and qt ∈P(X). Differentiating with respect to α and then with respect to

qt , and evaluating at α = 1, implies that

qT
t Hqq(qt) = 0,

consistent with the claim above.

We start by showing that the function φ(qt) is twice-differentiable in certain directions.

The function is

φ(q0) = max
π∈P(A),{qa∈P(X)}a∈A

∑
a∈A

π(a)uT
a ·qa−θ ∑

a∈A
π(a)DH(qa||q0),

subject to the constraint that

∑
a∈A

π(a)qa = q0.

Substituting the definition of the divergence, we can rewrite the problem as

φ(q0) = max
π∈P(A),{qa∈P(X)}a∈A

∑
a∈A

π(a)uT
a ·qa +θH(q0)−θ ∑

a∈A
π(a)H(qa),
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subject to the same constraint. Define a new choice variable,

q̂a = π(a)qa.

By definition, q̂a ∈ R|X |+ , and the constraint is ∑a∈A q̂a = q0. By the homogeneity of H, the

objective is

φ(q0) = max
π∈P(A),{qa∈P(X)}a∈A,{q̂a∈P(X)}a∈A

∑
a∈A

uT
a · q̂a +θH(q0)−θ ∑

a∈A
H(q̂a).

Any choice of q̂a satisfying the constraint can be implemented by some choice of π and qa

in the following way: set

π(a) = ι
T q̂a,

and (if π(a)> 0) set

qa =
q̂a

π(a)
.

If π(a) = 0, set qa = q0. By construction, the constraint will require that π(a) ≤ 1,

∑a∈A π(a)= 1, and the fact that the elements of qa are weakly positive will ensure π(a)≥ 0.

Similarly, ιT qa = 1 for all a ∈ A, and the elements of qa are weakly greater than zero.

Therefore, we can implement any set of q̂a satisfying the constraints.

Rewriting the problem in Lagrangian form,

φ(q0) = max
{q̂a∈R|X |}a∈A

min
κ∈R|X |,{νa∈R

|X |
+ }a∈A

∑
a∈A

uT
a · q̂a +θH(q0)

−θ ∑
a∈A

H(q̂a)+κ
T (q0−∑

a∈A
q̂a)+ ∑

a∈A
ν

T
a q̂a.

We begin by observing that φ(q0) is convex in q0. Suppose not: for some q = λq0 +(1−

λ )q1, with λ ∈ (0,1), φ(q) < λφ(q0)+ (1−λ )φ(q1). Consider a relaxed version of the
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problem in which the DM is allowed to choose two different q̂a for each a. Observe that,

because of the convexity of H, even with this option, the DM will set both of the q̂a to

the same value, and therefore the relaxed problem reaches the same value as the original

problem. However, in the relaxed problem, choosing the optimal policies for q0 and q1

in the original problem, scaled by λ and (1−λ ) respectively, is feasible. It follows that

φ(q)≥ λφ(q0)+(1−λ )φ(q1). Note also that φ(q0) is bounded on the interior of the sim-

plex. It follows by Alexandrov’s theorem that is is twice-differentiable almost everywhere

on the interior of the simplex.

By the convexity of H, the objective function is concave, and the constraints are affine

and a feasible point exists. Therefore, the KKT conditions are necessary. Moreover, the

objective function is continuously differentiable in the choice variables and in q0, and there-

fore the envelope theorem applies. We have, by the envelope theorem,

φq(q0) = θHq(q0)+κ,

and the first-order conditions (for all a ∈ A),

ua−θHq(q̂a)−κ +νa = 0.

Define q̂a(q0), κ(q0), and νa(q0) as functions that are solutions to the first-order conditions

and constraints.

Consider an alternative prior, q̃0 ∈P(X), such that

q̃0 = ∑
a∈A

α(a)q̂a(q0)

for some α(a) ≥ 0. Conjecture that q̂a(q̃0) = α(a)q̂a(q0), κ(q̃0) = κ(q0), and νa(q̃0) =
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νa(q0). By the homogeneity property,

Hq(α(a)q̂a(q0)) = Hq(q̂a(q0)),

and therefore the first-order conditions are satisfied. By construction, the constraint is

satisfied, the complementary slackness conditions are satisfied, and q̂a and νa are weakly

positive. Therefore, all necessary conditions are satisfied, and by the concavity of the

problem, this is sufficient. It follows that the conjecture is verified.

Consider a perturbation

q0(ε;z) = q0 + εz,

with z ∈ R|X |, such that q0(ε;z) remains in P(X) for some ε > 0. If z is in the span of

q̂a(q0), then there exists a sufficiently small ε > 0 such that the above conjecture applies.

It follows in this case that κ is constant, and therefore φq(q0(ε;z)) is directionally differ-

entiable with respect to ε . If q0(−ε;z) ∈P(X) for some ε > 0, then φq is differentiable,

with

φqq(q0) · z = θHqq(q0) · z,

proving twice-differentiability in this direction. This perturbation exists anywhere the span

of q̂a(q0) is strictly larger than the line segment connecting zero and q0 (in other words, all

q̂a(q0) are not proportional to q0). Define this region as the continuation region, Ω. Outside

of this region, all q̂a(q0) are proportional to q0, implying that

φ(q0) = max
a∈A

uT
a ·q0,

as required for the stopping region. Within the continuation region, the strict convexity of
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H(q0) in all directions orthogonal to q0 implies that

φ(q0)> max
a∈A

uT
a ·q0,

as required.

Now consider an arbitrary perturbation z such that q0(ε;z) ∈ R|X |+ and q0(−ε;z) ∈ R|X |+

for some ε > 0. Observe that, by the constraint,

εz = ∑
a∈A

(q̂a(ε;z)− q̂a(q0)).

It follows that

(κT (q0(ε;z))−κ
T (q0))εz = ∑

a∈A
(κT (q0(ε;z))−κ

T (q0))(q̂a(ε;z)− q̂a(q0)).

By the first-order condition,

(κT (q0(ε;z))−κ
T (q0))(q̂a(ε;z)− q̂a(q0)) =

[θHq(q̂a(q0))−θHq(q̂a(ε;z))+ν
T
a (q0(ε;z))−ν

T
a (q0)](q̂a(ε;z)− q̂a(q0)).

Consider the term

(νT
a (q0(ε;z))−ν

T
a (q0))(q̂a(ε;z)− q̂a(q0))= ∑

x∈X
(νT

a (q0(ε;z))−ν
T
a (q0))exeT

x (q̂a(ε;z)− q̂a(q0)).

By the complementary slackness condition,

(νT
a (q0(ε;z))−ν

T
a (q0))(q̂a(ε;z)− q̂a(q0)) =−ν

T
a (q0(ε;z))q̂a(q0)−ν

T
a (q0)q̂a(ε;z)≤ 0.
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By the convexity of H,

θ(Hq(q̂a(q0))−θHq(q̂a(ε;z)))(q̂a(ε;z)− q̂a(q0))≤ 0.

Therefore,

(κT (q0(ε;z))−κ
T (q0))εz≤ 0.

It follows that anywhere φ is twice differentiable (almost everywhere on the interior of the

simplex),

φqq(q)� θHqq(q),

with equality in certain directions. Therefore, it satisfies the HJB equation almost every-

where in the continuation region. Moreover, by the convexity of φ ,

(Hq(q0(ε;z))−Hq(q0))
T

εz≥ (φq(q0(ε;z))−φq(q0))
T

εz≥ 0,

implying that the “Hessian measure” (see Villani (2003)) associated with φqq has no pure

point component. This implies that φ is continuously differentiable.

Next, we show that there is a strategy for the DM in the dynamic problem which can

implement this value function. Suppose the DM starts with beliefs q0, and generates some

q̂a(q0) as described above. As shown previously, this can be mapped into a policy π(a,q0)

and qa(q0), with the property that

∑
a∈A

π(a,q0)qa(q0) = q0.

We will construct a policy such that, for all times t,

qt = ∑
a∈A

πt(a)qa(q0)
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for some πt(a) ∈P(A). Let Ω (the continuation region) be the set of qt such that a πt ∈

P(A) satisfying the above property exists and πt(a) < 1 for all a ∈ A. The associated

stopping rule will be the stop whenever πt(a) = 1 for some a ∈ A.

For all qt ∈Ω, there is a linear map from P(A) to Ω, which we will denote Q(q0):

Q(q0)πt = qt .

Therefore, we must have

Q(q0)dπt = D(qt)σtdBt .

By the assumption that |X | ≥ |A|, there exists a |A|× |X | matrix σπ,t such that

Q(q0)σπ,t = D(qt)σt

and

dπt = σπ,tdBt .

Define

φ̃(πt) = φ(qt).

As shown above,

QT (q0)φqq(qt)Q(q0)

exists everywhere in Ω, and therefore

φ̃(πt)−θH(Q(q0)πt)

is a martingale.
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We also have to scale σπ,t to respect the constraint,

1
2

tr[σtσ
T
t k(qt)] = χ > 0.

This can be rewritten as

1
2

tr[σπ,tσ
T
π,tQ

T (q0)D+(Q(q0)πt)k(Q(q0)πt))D+(Q(q0)πt)Q(q0)] = χ,

where D+ denotes the pseudo-inverse.

By the positive-definiteness of k in all directions orthogonal to ι , we will always have

1
2tr[σπ,tσ

T
π,t ] > 0. Under the stopping rule described previously, the boundary will be hit

a.s. as the horizon goes to infinity. As a result, by the martingale property described above,

initializing π0(a) = π(a,q0),

φ̃(π0) = E0[φ̃(πτ)−θH(Q(q0)πτ)+θH(Q(q0)π0)].

By Ito’s lemma,

θH(Q(q0)πτ)−θH(Q(q0)π0) =

ˆ
τ

0
χθdt = µτ.

By the value-matching property of φ , φ̃(πτ) = û(Q(q0)πτ). It follows that

φ(q0) = φ̃(π0) = E0[û(qτ)−µτ],

as required.

Finally, we verify that alternative policies are sub-optimal. Consider an arbitrary control

process σt and stopping rule described by the stopping time τ . We have, by the convexity
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of φ and the generalized Ito formula for convex functions (noting that we have shown that

the Hessian measure associated with φqq has no pure point component), interpreting φqq in

a distributional sense,

E0[φ(qτ)]−φ(q0) =
1
2

E0[

ˆ
τ

0
tr[σT

t D(qt)φqq(qt)D(qt)σt ]dt].

By the feasibility of the policies, anywhere in the continuation region of the optimal policy,

1
2

tr[σT
t D(qt)φqq(qt)D(qt)σt ]≤

1
2

θ tr[σT
t k(qt)σt ]≤ θ χ.

In the stopping region of the optimal policy,

1
2

tr[σT
t D(qt)φqq(qt)D(qt)σt ] = 0 < θ χ.

Therefore,

φ(q0)≥ E0[φ(qτ)]−
ˆ

τ

0
θ χdt.

By the inequality

φ(qτ)≥ û(qτ),

we have

φ(q0)≥ E0[û(qτ)−µτ]

for all policies, verifying optimality.

D.3 Proof of Lemma 2

Let p and p′ be information structures with signal alphabet S. First, we will show that

mixture feasibility and Blackwell monotonicity imply convexity. By mixture equivalence,
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letting pM denote the mixture information structure and SM the signal alphabet,

C(pM,q;SM)≤ λC(p,q;S)+(1−λ )C(p′,q;S).

Consider the garbling Π : S×{1,2} → S, which maps each (s, i) ∈ SM to s ∈ S. By Black-

well monotonicity,

C(pM,q;SM)≥C(ΠpM,q;S).

By construction,

eT
s ΠpM = λeT

s p+(1−λ )eT
s p′,

and the result follows.

Now we show the other direction: that convexity and Blackwell monotonicity imply

mixture feasibility. Let p1 and p2 be information structures with signal alphabets S1 and

S2. Because the cost function satisfies Blackwell monotonicity, it is invariant to Markov

congruent embeddings. Define SM = (S1 ∪ S2)×{1,2}. There exists an embedding Π1 :

S1→ SM such that, for some sM = (s, i) ∈ SM,

eT
sM

Π1 p1 =


0 i = 2

0 s /∈ S1

eT
s p1 otherwise

.

Define an embedding Π2 along similar lines, and note that these embeddings are left-

invertible. It follows by invariance that

C(Π1 p1,q;SM) =C(p1,q;S1),
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and likewise that

C(Π2 p2,q;SM) =C(p2,q;S2).

By convexity,

C(λΠ1 p1 +(1−λ )Π2 p2;q;SM)≤ λC(Π1 p1,q;SM)+(1−λ )C(Π2 p2,q;SM).

Observing that

λΠ1 p1 +(1−λ )Π2 p2 = pM

proves the result.

D.4 Proof of Theorem 2

Parts 1 and 2 of the theorem follow from a Taylor expansion of the cost function. Using the

lemmas and theorem of Chentsov (1982), cited in the text, we know that for any invariant

cost function with continuous second derivatives,

C(p,q;S) =
1
2

∆ ∑
x′∈X

∑
x∈X

(eT
x k(q)ex′)τ

T
x′g(r)τx +o(∆).

The second claim follows by a similar argument.

We next demonstrate the claimed properties of k(q). First, k(q) is symmetric and con-

tinuous in q, by the symmetry of partial derivatives and the assumption of continuous sec-

ond derivatives (Condition 4). Recall the assumption that

px = r+∆
1
2 τx +o(∆

1
2 ),

which implies that ∑s∈S eT
s r = 1 and ∑s∈S eT

s τx = 0 for all x ∈ X . Consider an information

structure for which τx = φeT
x v, where v ∈ R|X | and φ ∈ R|S|, with ∑s∈S eT

s φ = 0. Suppose
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that both v and φ are not zero. For this information structure,

C(p,q;S) =
1
2

∆ḡvT k(q)v+o(∆),

where φ T g(r)φ = ḡ > 0. Suppose the information structure is uninformative for all ∆. This

would be the case if v is proportional to ι , and therefore

ι
T k(q)ι = 0

by Condition 1. Regardless of whether the information structure is informative, by Condi-

tion 1, we must have

vT k(q)v≥ 0,

implying that k(q) is positive semi-definite. If z and −z are in the tangent space of the

simplex at q, there exists an x,x′ eT
x z 6= eT

x′z with x,x′ in the support of q. Using z in the

place of v above, by Condition 1, we must have

zT k(q)z > 0.

Suppose now that the cost function satisfies Condition 5. Let v be as above, non-zero,

and not proportional to ι . We have

C(p,q;S) =
1
2

∆ḡvT k(q)v+o(∆),

and therefore for the B defined in Condition 5 there exists a ∆B such that, for all ∆ < ∆B,

C(p,q;S)< B. Therefore, we must have

C({px}x∈X ,q)≥
m
2 ∑

s∈S
(eT

s pq)||qs−q||2X .
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By Bayes’ rule, for any signal that is received with positive probability,

qs−q =
(D(q)−qqT )pT es

qT pT es
.

By convention, qs = q for any s such that eT
s pq = 0.

The support of qs is always a subset of the support of q, and therefore (by the equiva-

lence of norms),

C({px}x∈X ,q)≥
mg

2 ∑
s∈S

(eT
s pq)(qs−q)T D+(q)(qs−q)

for some constant mg > 0.

For sufficiently large ∆, eT
s pq > 0 if eT

s rs > 0, and therefore

C({px}x∈X ,q)≥
m
2 ∑

s∈S:eT
s r>0

(eT
s p(D(q)−qqT )D+(q)(D(q)−qqT )pT es)

(eT
s pq)

,

or,

C({px}x∈X ,q)≥
m
2

∆ ∑
s∈S:eT

s r>0

(eT
s φ)2 vT (D(q)−qqT )D+(q)(D(q)−qqT )v

(eT
s r)

+o(∆).

Noting that

∑
s∈S:eT

s pq>0

(eT
s φ)2

(eT
s pq)

= φ
T g(r)φ = ḡ,

and that

(D(q)−qqT )D+(q)(D(q)−qqT ) = g+(q),

we have

C({px}x∈X ,q)≥
mg

2
∆ḡvT g+(q)v+o(∆).
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It follows that we must have

1
2

vT k(q)v≥
mg

2
vT g+(q)v

for all v.

D.5 Proof of Corollary 3

Under the stated assumptions,

px = r+∆
1
2 τx +o(∆

1
2 ).

By Bayes’ rule, for any s ∈ S such that eT
s pq > 0,

qs =
D(q)pT es

qT pT es
.

It follows immediately that

lim
∆→0+

qs = D(q)
rT es

rT
s

= q.

Next,

∆
− 1

2 (qs−q) = ∆
− 1

2
(D(q)−qqT )pT es

qT pT es

= D(q)
τT es− ιqT τT es +o(1)

qT pT es
.

For any s such that qT pT es > 0,

lim
∆→0+

∆
− 1

2 (qs−q) = D(q)
τT es− ιqT τT es

rT es
.
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By Theorem 2,

C(p,q;S) =
1
2

∆ ∑
x′∈X

∑
x∈X

(eT
x k(q)ex′)τ

T
x′g(r)τx +o(∆).

By the result that ιT k(q) = 0, we have

C(p,q;S) =
1
2

∆ ∑
x′∈X

∑
x∈X

eT
x k(q)ex′ · (τx′−qτ)T g(r)(τx−qτ)

+o(∆).

By the definition of the Fisher matrix, and the observation that ιT τx = 0 for all x ∈ X ,

(τx′−qτ)T g(r)(τx−qτ) = ∑
s∈S:eT

s r>0

(eT
s r)

(τx′−qτ)T

(eT
s r)

eseT
s
(τx−qτ)

(eT
s r)

.

Substituting in the result regarding the posterior,

C(p,q;S) =
1
2 ∑

s∈S:eT
s r>0

(eT
s r)(qs−q)T D+(q)k(q)D+(q)(qs−q)+o(∆),

which is the result.

D.6 Proof of Corollary 2

The cost function is directionally differentiable with respect to signals that add to the sup-

port of the signal distribution.

By directional differentiability and the continuity of the directional derivatives, there
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exists a function

f (ω,r,q;S) = lim
∆→0+

C(p̄∆ +∆ω,q;S)−C(p̄∆,q;S)
∆

.

Observe that, if ωex is in the support of r for all x in the support of q, we must have

f (ω, p̄,q;S) = 0, by the results of Theorem 2. Relatedly, if ω and ω ′ differ only with

respect to the frequency of signals in the support of r for all x in the support of q, we must

have

f (ω,r,q;S) = f (ω ′,r,q;S).

Assuming there are signals not in the support of p̄, we can write ω = ω1 +ω2 + . . .,

where each ωi is a perturbation that contains only one signal not the support of p̄q. Let

N ≤ |S| denote the number of these perturbations. We can define

fi(ωi,r,q;S) = lim
∆→0+

C(pi−1 +∆ωi,q;S)−C(pi−1,q;S)
∆

,

where pi−1 = p̄∆+∆∑
i−1
j=1 ωi. By the assumption of the continuity of the directional deriva-

tives,

fi(ωi,r,q;S) = f (ωi,r,q;S).

It follows that

f (ω,r,q;S) =
N

∑
i=1

f (ωi,r,q;S).

By invariance, the function f (ωi,r,q;S) does not depend on r or S. By the argument

above, it is only a function of esiωi, where si ∈ S is the unique signal in ωi with eT
si

r = 0.

By Bayes’ rule,

esiωi = (esiωiq)D(q)+qsi,
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where qsi is the posterior associated with signal si. By the homogeneity of the directional

derivative, we can rewrite this as

f (ωi,r,q;S) = (esiωiq)F(qsi,q).

By the requirement that the cost of an uninformative signal structure is zero, and every-

thing else is costly, we must have

F(q,q) = 0,

F(q′,q)> 0

for all q′ 6= q. Therefore, F is a divergence, which we write D∗(q′||q). The finiteness of

D∗(q′||q) is implied by the existence of the directional derivative. The approximation of

the cost function follows from this result and Corollary 3.

By invariance, there exists a Markov congruent embedding that splits each signal in S

into M > 1 distinct signals in S′. As M becomes arbitrarily large, the probability of each

signal becomes small — and in particular, can be of order ∆. It follows for all s ∈ S′ such

that ||qs−q||= O(∆
1
2 ) (e.g. the signals described in Corollary 3), we must have

D∗(qs||q) =
1
2

∆(qT
s −q)k̄(q)(qs−q)+O(∆).

Moreover, by this argument, D∗(q′||q) must be twice differentiable for q′ in the neighbor-

hood of q.
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D.7 Proof of Lemma 3

We will show that Conditions 1-5 are satisfied. Recall the definition:

CN(p,q;S) = ∑
i∈I (q)

q̄i ∑
s∈S

eT
s p̄i Di(qi,s||qi)

D.7.1 Condition 1

Condition 1 requires that if the information structure is uninformative, the cost is zero, and

if it is not, the cost is weakly positive. If the signal is uninformative, for any signal received

with positive probability,

qi,s = qi,

and by our convention that qi,s = qi if q̄i,s = 0, this also holds for zero-probability signals.

By the definition of a divergence, Di(qi||qi) = 0 for all qi, and therefore the cost of an

uninformative information structure is zero.

The cost is weakly positive by the definition of a divergence (being weakly positive)

and the fact that probabilities are weakly positive.

D.7.2 Condition 2

Mixture feasibility requires that

C(pM,q;SM)≤ λC(p1,q;S1)+(1−λ )C(p2,q;S2).

By definition,

p̄i,M =
∑x∈Xi pMexeT

x q
q̄i
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and

qi,s,M =
Eiqs,M

∑x∈Xi eT
x qs,M

for any s such that q̄i,s,M > 0. For any (s,1) ∈ SM, if q̄i,s,M > 0, we must have q̄i,s > 0, and

therefore qi,s,M = qi,s,1 (denoting the posterior under p1). The same argument holds for the

second information structure.

It follows that

C(pM,q;SM) = ∑
i∈I (q)

q̄i ∑
s∈SM

eT
s p̄i,M Di(qi,s,M||qi)

= ∑
i∈I (q)

q̄i (λ ∑
s∈S1

eT
s p̄i,1 Di(qi,s,1||qi)+(1−λ ) ∑

s∈S2

eT
s p̄i,2 Di(qi,s,2||qi))

= λC(p1,q;S1)+(1−λ )C(p2,q;S2),

verifying that the condition holds.

D.7.3 Condition 3

By Blackwell’s theorem, for any Markov mapping Π : S→ S′, we require that

C(Πp,q;S′)≤C(p,q;S).

Consider a neighborhood i ∈I (q). By definition,

p̄
′
i =

∑x∈Xi ΠpexeT
x q

q̄i
= Πp̄i
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and

qi,s′ =
Eiqs′

∑x∈Xi eT
x qs′

=
EiD(q)pT ΠT es′

∑x∈Xi eT
x D(q)pT ΠT es′

=
D(qi)Ei pT ΠT es′

p̄T
i ΠT es′

where the second step follows by Bayes’ rule,

D(q)pT
Π

T es′ = (eT
s′Πpq)qs′.

Also by Bayes’ rule,

D(qi)Ei pT es = (eT
s pET

i qi)qi,s

= (eT
s p̄i)qi,s.

and therefore

qi,s′ =
∑s∈S qi,s p̄T

i ΠT es′

p̄T
i ΠT es′

.

It follows by the convexity of Di in its first argument that

(p̄T
i Π

T es′)Di(qi,s′||qi)≤∑
s∈S

p̄T
i Π

T es′Di(qi,s||qi).
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Therefore,

C(Πp,q;S′) = ∑
i∈I (q)

q̄i ∑
s′∈S′

eT
s′Πp̄i Di(qi,s′||qi)

≤ ∑
i∈I (q)

q̄i ∑
s′∈S′

∑
s∈S

p̄T
i Π

T es′Di(qi,s||qi).

By definition,

∑
s′∈S′

Π
T es′ = 1

and therefore

C(Πp,q;S′)≤C(p,q;S).

D.7.4 Condition 4

By the definition of the neighborhood structure,

CN(p,q;S) = ∑
i∈I (q)

q̄i ∑
s∈S

eT
s p̄i Di(qi,s||qi),

and the twice-differentiability of Di in its first argument, it is sufficient to show that p̄i and

qi,s are both twice-differentiable with respect to perturbations to p, in the neighborhood of

an uninformative information structure.

Suppose that

p(ε) = rι
T + ετ +νω,

where r ∈P(S) and the support of τex is in the support of r, and likewise for ωex, for all

x ∈ X .

By Bayes’ rule, for all s ∈ S such that eT
s r > 0,

qs(ε,ν) =
D(q)p(ε,ν)T es

qT p(ε,ν)T es
.
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Simplifying,

qs(ε,ν) = q
rT es

rT es + εqT τT es +νqT ωT es
+

εD(q)τT es

rT es + εqT τT es +νqT ωT es

+
νD(q)ωT es

rT es + εqT τT es +νqT ωT es
.

In the neighborhood around ε = ν = 0, the denominator is strictly positive, and therefore

∂

∂ν
qs(ε,ν) =−qs(ε,v)

qT ωT es

rT es + εqT τT es +νqT ωT es
+

D(q)ωT es

rT es + εqT τT es +νqT ωT es

and

∂

∂ε

∂

∂ν
qs(ε,ν) = qs(ε,v)

qT ωT es

rT es + εqT τT es +νqT ωT es

qT τT es

rT es + εqT τT es +νqT ωT es

− qT ωT es

rT es + εqT τT es +νqT ωT es

D(q)τT es

rT es + εqT τT es +νqT ωT es

−qs(ε,v)
qT ωT es

rT es + εqT τT es +νqT ωT es

qT τT es

rT es + εqT τT es +νqT ωT es

− D(q)ωT es

rT es + εqT τT es +νqT ωT es

qT τT es

rT es + εqT τT es +νqT ωT es
.

For s ∈ S such that eT
s r = 0, qs(ε,ν) = q, and therefore ∂

∂ε

∂

∂ν
qs(ε,ν) = 0. Therefore,

∂

∂ν
qs(ε,ν) can be written as a quadratic form in vec(τ) and vec(ω). It follows that qs(ε,ν),

in the neighborhood of an uninformative information structure, is twice-differentiable in the

directions that do not change the support of the distribution of signals.

For all i ∈I (q), define q̃i ∈P(X) as

eT
x q̃i =


eT

x q
q̄i

x ∈ Xi

0 otherwise.
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By definition,

p̄i(ε,ν) = pq̃i = r+ ετ q̃i +νω q̃i.

and therefore is twice-differentiable in the required directions. Moreover, by construction,

if eT
s r = 0, then eT

s p̄i(ε,v) = 0, and if eT
s r > 0, then eT

s p̄i(ε,v) > 0 in the neighborhood

around ε = ν = 0.

By definition,

qi,s(ε,ν) =
Eiqs(ε,ν)

∑x∈Xi eT
x qs(ε,ν)

.

For all i∈I (q), in the neighborhood of an uninformative information structure, ∑x∈Xi eT
x qs(ε,ν)≈

q̄i > 0, and therefore the twice-differentiability of qs in the required directions implies the

twice-differentiability of qi,s in those directions.

D.7.5 Condition 5

This condition requires that, for some m > 0 and B > 0, for all C(p,q;S)< B,

C(p,q;S)≥ m
2 ∑

s∈S
(eT

s pq)||qs−q||2X ,

where || · ||X is an arbitrary norm on the tangent space of P(X). It follows immediately by

the strong convexity of the divergence for the neighborhood that contains all states.

D.8 Proof of Lemma 4

Consider Corollary 3. Under the stated assumptions,

px = r+∆
1
2 τx +o(∆

1
2 )
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qs,x = qx +∆
1
2 qx

eT
s (τx−∑x′∈X τx′qx′)

eT
s r

+o(∆
1
2 ).

By definition,

k̄(q) = D+(q)k(q)D+(q),

and the cost function can be written as

C({px}x∈X ,q;S) =
1
2 ∑

s∈S
(eT

s r)(qs−q)T k̄(q)(qs−q)+o(∆).

Now consider the definition of neighborhood cost function (19):

CN({px}x∈X ,q;S) = ∑
i∈I (q)

q̄i ∑
s∈S

eT
s p̄i Di(qi,s||qi).

By definition,

q̄i p̄i = ∑
x∈Xi

pexeT
x q

= rq̄i +o(1).

Note that

pq = r+o(1)

as well.

By Chentsov’s theorem (Chentsov (1982)) and the approximation above,

Di(qi,s||qi) = ci(qi,s−qi)
T g(qi)(qi,s−qi)+o(∆).

The approximation described in equation (20) follows.

Define the |X | × |Xi| matrix Ei that selects the elements of X that are contained in Xi.
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We have

qi,s,x =
qs,x(∆)

∑x′∈Xi qs,x′(∆)

=
qx

∑x′∈Xi qx′
+∆

1
2

qx

∑x′∈Xi qx′

eT
s (τx−∑x′∈X τx′qx′)

eT
s r

−∆
1
2

qx

(∑x′∈Xi qx′)2 ∑
x′∈Xi

qx′
eT

s (τx′−∑x′′∈X τx′′qx′′)

eT
s r

+o(∆
1
2 ).

That is,

qi,s = qi +
1
q̄i

Ei(qs−q)− 1
q̄i

qiqT
i D+(qi)Ei(qs−q)+o(∆

1
2 ),

Using this,

(qi,s−qi)
T g(qi)(qi,s−qi) = (qi,s−qi)

T D+(qi)(qi,s−qi)

=
1

(q̄i)2 (qs−q)T ET
i D+(qi)Ei(qs−qT )− 1

(q̄i)2 (qs−q)T ET
i D+(qi)qiqT

i D+(qi)Ei(qs−q)

− 1
(q̄i)2 (qs−q)T ET

i D+(qi)qiqT
i D+(qi)Ei(qs−q)

+
1

(q̄i)2 (qs−q)T ET
i D+(qi)qiqT

i D+(qi)Ei(qs−q)+o(∆).

Therefore,

CN({px}x∈X ,q;S) = ∑
i∈I (q)

ciq̄i ∑
s∈S

(eT
s r)(qi,s−qi)

T g(qi)(qi,s−qi)+o(∆)

= ∆ ∑
i∈I (q)

ciq̄i ∑
s∈S

(eT
s r)(qs−q)T k̄i(q)(qs−q)+o(∆),

where

k̄i(q) =
1

(q̄i)2 ET
i (D

+(qi)−D+(qi)qiqT
i D+(qi))Ei.
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The k̄(q) matrix is

k̄N(q) = ∑
i∈I (q)

ciq̄ik̄i(q)

= ∑
i∈I (q)

ci

q̄i
ET

i (D
+(qi)−D+(qi)qiqT

i D+(qi))Ei. (31)

Thus, the associated k(q) matrix is

kN(q) = D(q)k̄(q)D(q)

= ∑
i∈I (q)

ci

q̄i
D(q)ET

i (D
+(qi)−D+(qi)qiqT

i D+(qi))EiD(q)

= ∑
i∈I (q)

{ciET
i D(q)Ei− ciq̄iET

i qiqT
i EiD}

= ∑
i∈I (q)

ciq̄iET
i g+(qi)Ei.

D.9 Proof of Lemma 5

Using equation (31) from the proof of Lemma 4, we have

k̄N(q) = ∑
i∈I (q)

ci

q̄i
ET

i (D
+(qi)−D+(qi)qiqT

i D+(qi))Ei.

Consider the function

HN(q) = ∑
i∈I (q)

ci

[
∑

x∈Xi

(eT
x q) ln(eT

x q)− ( ∑
x∈Xi

(eT
x q)) ln( ∑

x∈Xi

(eT
x q))

]

= ∑
i∈I (q)

ci ∑
x∈Xi

(eT
x q) ln(qi,x)

=− ∑
i∈I (q)

ciq̄iHShannon(qi).
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Differentiating,

∂HN(q)
∂qx′

= (ln(qx′)+1) ∑
i∈I (q):x′∈Xi

ci− ∑
i∈I (q):x′∈Xi

ci(1+ ln( ∑
x∈Xi

(eT
x q))).

Differentiating again,

∂ 2HN(q)
∂qx′∂qx′′

=
δx′,x′′

qx′
∑

i∈I (q):x′∈Xi

ci− ∑
i∈I (q):x′,x′′∈Xi

ci

∑x∈Xi(e
T
x q)

,

where δx′,x′′ is the Kronecker delta. By definition,

∑
i∈I (q)

ci

q̄i
eT

x′E
T
i D+(qi)qiqT

i D+(qi)Eiex′′ = ∑
i∈I (q):x′,x′′∈Xi

ci

∑x∈Xi(e
T
x q)

and

∑
i∈I (q)

ci

q̄i
eT

x′E
T
i D+(qi)Eiex′′ = δx′,x′′ ∑

i∈I (q):x′,x′′∈Xi

ci

(eT
x′q)

,

proving that k̄N(q) is the Hessian of HN(q). Differentiation of HN(q) then yields the form

given in the lemma for the associated Bregman divergence.

The posterior-separable static information-cost function is defined as

Cstatic
N (p,q;S) = ∑

s∈S
(eT

s pq)(HN(qs)−HN(q)).

Using the definitions above,

Cstatic
N (p,q;S) =−∑

s∈S
(eT

s pq) ∑
i∈I (qs)

ciq̄i,sHShannon(qi,s)

+ ∑
i∈I (q)

ciq̄iHShannon(qi).
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Note that q̄i,s = 0 for i ∈I (q)\I (qs), and I (qs)⊆I (q), and therefore

Cstatic
N (p,q;S) =−∑

s∈S
(eT

s pq) ∑
i∈I (q)

ci(q̄i,sHShannon(qi,s)− q̄iHShannon(qi)).

By Bayes’ rule,

(eT
s pq)q̄i,s = q̄i p̄i,s

and by definition,

∑
s∈S

p̄i,s = 1,

and therefore

Cstatic
N (p,q;S) =− ∑

i∈I (q)
ciq̄i ∑

s∈S
p̄i,s(HShannon(qi,s)−HShannon(qi))

= ∑
i∈I (q)

ciq̄i ∑
s∈S

p̄i,sDKL(qi,s||qi).

The claim that

Cstatic
N (p,q;S) = ∑

i∈I (q)
ci ∑

x∈X :x∈Xi

(eT
x q)DKL(pex||pET

i qi)

follows from the usual alternative ways of expressing mutual information and definitions.

D.10 Additional Definition and Lemmas

Definition 1. Let XN be a sequence of state spaces, as described in section A.2. A sequence

of policies {pN ∈P(XN)}N∈N satisfies the “convergence condition” if:

i) The sequence satisfies, for some constants cH > cL > 0, all N, and all i ∈ XN ,

cH

N +1
≥ eT

i pN ≥
cH

N +1
.
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ii) The sequence satisfies, for some constant K1 > 0, all N, and all i ∈ XN \{0,N},

N3|1
2
(eT

i+1 + eT
i−1−2eT

i )pN | ≤ K1,

and

N2|1
2
(eT

N− eT
N−1)pN | ≤ K1

and

N2|1
2
(eT

1 − eT
0 )pN | ≤ K1.

Lemma 11. Given a function p ∈P([0,1]), define the sequence {pN ∈P(XN)}N∈N,

eT
i pN =

ˆ i+1
N+1

i
N+1

p(x)dx,

where XN is the state space described in section A.2. If the function p is strictly greater

than zero for all x∈ [0,1], differentiable, and its derivative is Lipschitz continuous, then the

sequence {pN ∈P(XN)}N∈N satisfies the convergence condition, and satisfies, for some

constant K > 0, all N, and all i ∈ XN \{0,N},

N2| ln(1
2
(eT

i+1 + eT
i )qN)+ ln(

1
2
(eT

i−1 + eT
i )qN)−2ln(eT

i qN)| ≤ K

and

N| ln(1
2
(eT

1 + eT
0 )qN)− ln(eT

0 qN))|< K

and

N| ln(1
2
(eT

N + eT
N−1)qN)− ln(eT

NqN))|< K.

Proof. The function p is strictly greater than zero, and continuous, and therefore attains

a maximum and minimum on [0,1], which we denote with cH and cL, respectively. By
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construction,

eT
i pN ≥

cL

N +1

and likewise for cH , satisfying the bounds.

For all i ∈ XN \{N},

(eT
i+1− eT

i )pN =

ˆ i+1
N+1

i
N+1

(p(x+
1

N +1
)− p(x))dx

=

ˆ i+1
N+1

i
N+1

ˆ 1
N+1

0
p′(x+ y)dydx

and therefore, letting K2 be the maximum of the absolute value of p′ on [0,1] (which exists

by the continuity of p′), we have

|(eT
i+1− eT

i )pN | ≤
1

(N +1)2 K2,

satisfying the convergence condition for the endpoints.

For all i ∈ XN \{0,N},

(eT
i+1 + eT

i−1−2eT
i )pN =

ˆ i+1
N+1

i
N+1

(p(x+
1

N +1
)+ p(x− 1

N +1
)−2p(x))dx

=

ˆ i+1
N+1

i
N+1

ˆ 1
N+1

0
(p′(x+ y)− p′(x− y))dydx.

By the Lipschitz continuity of p′, it is absolutely continuous, and therefore

p′(x+ y) = p′(x)+
ˆ y

0
p′′(x+ z)dz.
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It follows that

(eT
i+1 + eT

i−1−2eT
i )pN =

ˆ i+1
N+1

i
N+1

ˆ 1
N+1

0

ˆ y

−y
(p′′(x+ z))dzdydx.

Let K3 denote the Lipschitz constant associated with p′. It follows that

|(eT
i+1 + eT

i−1−2eT
i )pN | ≤

2K3

(N +1)3 .

Therefore, the convergence condition is satisfied for K = max(1
2K2,K3).

By the concavity of the log function, and the inequality ln(x)≤ x−1,

ln(
1
2(e

T
i+1 + eT

i )pN

eT
i pN

)+ ln(
1
2(e

T
i−1 + eT

i )pN

eT
i pN

)≤ 2ln(
1
4(e

T
i+1 + ei−1 +2eT

i )pN

eT
i pN

)

≤
1
2(e

T
i+1 + ei−1−2eT

i )pN

eT
i pN

.

Therefore, by the bounds above,

ln(
1
2(e

T
i+1 + eT

i )pN

eT
i pN

)+ ln(
1
2(e

T
i−1 + eT

i )pN

eT
i pN

)≤ (N +1)K
N3cL

≤ 2K
N2cL

.

By the inequality − ln(1
x )≤ x−1,

ln(
1
2(e

T
i+1 + eT

i )pN

eT
i pN

)+ ln(
1
2(e

T
i−1 + eT

i )pN

eT
i pN

)≥
1
2(e

T
i+1− eT

i )pN
1
2(e

T
i+1 + eT

i )pN
+

1
2(e

T
i−1− eT

i )pN
1
2(e

T
i−1 + eT

i )pN
.

We can rewrite this as

ln(
1
2(e

T
i+1 + eT

i )pN

eT
i pN

)+ ln(
1
2(e

T
i−1 + eT

i )pN

eT
i pN

)≥

(
1
2(e

T
i+1 + eT

i−1−2eT
i )pN

1
2(e

T
i+1 + eT

i )pN
+

1
2(e

T
i−1− eT

i )pN
1
2(e

T
i+1 + eT

i )pN
(

1
2(e

T
i+1 + eT

i )pN
1
2(e

T
i−1 + eT

i )pN
−1)).
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By the bounds above,
1
2(e

T
i+1 + eT

i−1−2eT
i )pN

1
2(e

T
i+1 + eT

i )pN
≥− 2K

N2cL

and

1
2(e

T
i−1− eT

i )pN
1
2(e

T
i+1 + eT

i )pN
(

1
2(e

T
i+1 + eT

i )pN
1
2(e

T
i−1 + eT

i )pN
−1) =

1
2(e

T
i−1− eT

i )pN
1
2(e

T
i+1 + eT

i )pN
(

1
2(e

T
i+1− eT

i−1)pN
1
2(e

T
i−1 + eT

i )pN
)

≥−N2

c2
L

1
(N +1)4 (K2)

2

≥−( K2

2NcL
)2.

Therefore,

N2| ln(
1
2(e

T
i+1 + eT

i )pN

eT
i pN

)+ ln(
1
2(e

T
i−1 + eT

i )pN

eT
i pN

)| ≤ 2K
cL

+(
K2

2cL
)2.

For the end-points,

1
2(e

T
1 − eT

0 )qN
1
2(e

T
1 + eT

0 )qN
≤ ln(

1
2(e

T
1 + eT

0 )qN

eT
0 qN

)≤
1
2(e

T
1 − eT

0 )qN

eT
0 qN

and therefore

| ln(
1
2(e

T
1 + eT

0 )qN

eT
0 qN

)| ≤ K2

(N +1)cL
≤ K2

NcL
.

A similar property holds for the other endpoint, and therefore the claim holds for K1 =

max(K2
cL
, 2K

cL
+( K2

2cL
)2).

Lemma 12. Let {pN ∈P(XN)}N∈N be a sequence of probability distributions over the

state spaces associated with Theorem 4. Define the functions p̂N ∈P([0,1]) as, for x ∈
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[ 1
2(N+1) ,1−

1
2(N+1)),

p̂N(x) = (N +1)((N +1)x+
1
2
−b(N +1)x+

1
2
c)eT
b(N+1)x+ 1

2c
pN+

+(N +1)(
1
2
− (N +1)x+ b(N +1)x+

1
2
c)eT
b(N+1)x+ 1

2 c−1 pN ,

and, for x ∈ [0, 1
2(N+1)),

p̂N(x) = (N +1)eT
0 qN ,

and. for x ∈ [1− 1
2(N+1) ,1],

p̂N(x) = (N +1)eT
NqN .

If the sequence {pN ∈P(XN)}N∈N satisfies the convergence condition (Definition 1), then

there exists a sub-sequence, whose elements we denote by n, such that:

i) pn(x) converges point-wise to a differentiable function p(x)∈P([0,1]), whose deriva-

tive is Lipschitz-continuous, with p(x)> 0 for all x ∈ [0,1],

ii) the following sum converges:

lim
n→∞

n2
∑

i∈Xn\{n}
{g(eT

i pN)+g(eT
i+1 pN)−2g(

1
2
(eT

i + eT
i+1)pN)}=

1
4

ˆ 1

0

(p′(x))2

p(x)
dx,

where g(x) = x ln(x),

iii) for all a ∈ A, limn→∞ uT
a,n pn =

´ 1
0 ua(x)p(x)dx, and

iv) if the sequence {pN ∈P(XN)}N∈N is constructed from some function p̃(x), as in

Lemma 11, then p(x) = p̃(x) for all x ∈ [0,1].

Proof. We begin by noting that the functions p̂N(x) are absolutely continuous. Almost
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everywhere in [ 1
2(N+1) ,1−

1
2(N+1) ],

p̂′N(x) = (N +1)2(eT
b(N+1)x+ 1

2c
− eT
b(N+1)x+ 1

2 c−1)pN ,

and outside this region, p̂′N(x) = 0. Let f ′N(x) denote the right-continuous Lebesgue-

integrable function on [0,1] such that

p̂N(x) = p̂N(0)+
ˆ x

0
f ′N(y)dy,

which is equal to p̂′N(x) anywhere the latter exists.

The total variation of f ′N(x) is equal to

TV ( f ′N) =
N−1

∑
i=1

(N +1)2|(eT
i+1 + eT

i−1−2eT
i )pN)|+

+(N +1)2|(eT
N− eT

N−1)pN |+(N +1)2|(eT
1 − eT

0 )pN |.

By the convergence condition,

TV ( f ′N)≤
(N +1)3

N3 2K1,

and therefore the sequence of functions f ′N(x) has uniformly bounded variation. The func-

tion is also uniformly bounded at the end points, and therefore Helly’s selection theorem

applies. That is, there exists a sub-sequence, which we denote by n, such that f ′n(x) con-

verges point-wise to some p′(x).
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For any 1− 1
2(N+1) > x > y≥ 1

2(N+1) , the quantity

| f ′N(x)− f ′N(y)|= (N +1)2|
b(N+1)x+ 1

2c

∑
i=b(N+1)y+ 1

2 c
(eT

i+1 + eT
i−1−2eT

i )pN |

≤ (N +1)2((N +1)(x− y)+2)
N3 2K1.

At the end points, for all x ∈ [0, 1
2(N+1)),

| f ′N(
1

2(N +1)
)− f ′N(x)| ≤

2K1

N +1
,

and for all x ∈ [1− 1
2(N+1) ,1],

| f ′N(x)− lim
y↑1− 1

2(N+1)

f ′N(y)| ≤
2K1

N +1
.

Therefore, by the point-wise convergence of f ′n to f ′n, for all x > y,

| f ′(x)− f ′(y)| ≤ 2K1(x− y),

meaning that f ′ is Lipschitz-continuous. By the fact that f ′(0) = 0, this implies that

| f ′(x)| ≤ 2K1 for all x ∈ [0,1].

By the convergence condition, cL ≤ p̂N(0) ≤ cH . Therefore, there exists a convergent

sub-sequence. We now use n to denote the sub-sequence for which limn→∞ p̂n(0) = p(0)

and for which f ′n(x) converges point-wise to p′(x). By the dominated convergence theorem,

for all x ∈ [0,1],

lim
n→∞

p̂n(x) = lim
n→∞
{p̂n(0)+

ˆ x

0
f ′n(y)dy}= p(0)+

ˆ x

0
p′(y)dy.
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Define the function p(x) = p(0)+
´ x

0 p′(y)dy for all x ∈ [0,1]. By the convergence condi-

tions, this function is bounded, 0 < cL ≤ p(x)≤ cH , by construction it is differentiable, and

its derivative is Lipschitz continuous. Moreover,

ˆ 1

0
p(x)dx = 1,

and therefore p ∈P([0,1]).

Next, consider the limiting cost function. We have, Taylor-expanding,

g(y) = g(x)+g′(x)(y− x)+
1
2

g′′(cy+(1− c)x)(y− x)2

for some c ∈ (0,1). Therefore,

g(eT
i pN)+g(eT

i+1 pN)−2g(
1
2
(eT

i + eT
i+1)pN) =

1
8

g′′(c1eT
i pN +(1− c1)

1
2
(eT

i + eT
i+1)pN)((eT

i+1− eT
i )pN)

2

+
1
8

g′′(c2eT
i pN +(1− c2)

1
2
(eT

i + eT
i+1)pN)((eT

i+1− eT
i )pN)

2

for constants c1,c2 ∈ (0,1). Note that, by the boundedness p̂N(x) from below, eT
i pN ≥

(N +1)−1cL for all i ∈ XN . It follows that

g′′(c1eT
i pN +(1− c1)

1
2
(eT

i + eT
i+1)pN) =

1
c1eT

i pN +(1− c1)
1
2(e

T
i + eT

i+1)pN
≤ (N +1)cL.

Therefore,

0≤ g(eT
i pN)+g(eT

i+1 pN)−2g(
1
2
(eT

i + eT
i+1)pN)≤

(N +1)cL

4
((eT

i+1− eT
i )pN)

2.
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By construction,

eT
i pN =

1
(N +1)

p̂N(
2i+1

2(N +1)
).

Therefore,

(N +1)(g(eT
i pN)+g(eT

i+1 pN)−2g(
1
2
(eT

i + eT
i+1)pN)) =

g(p̂N(
2i+1

2(N +1)
))+g(p̂N(

2i+3
2(N +1)

))−2g(p̂N(
2i+2

2(N +1)
)).

and

g(eT
i pN)+g(eT

i+1 pN)−2g(
1
2
(eT

i + eT
i+1)pN)≤

cL

4(N +1)
(p̂(

2i+3
2(N +1)

)− p̂(
2i+1

2(N +1)
))2.

By the boundedness of f ′N(x),

g(p̂(
2i+1

2(N +1)
))+g(p̂(

2i+3
2(N +1)

))−2g(p̂(
2i+2

2(N +1)
))≤

K2
1 cL

(N +1)2 .

Writing the limiting cost as an integral, and switching to the sub-sequence n defined

above,

n2
∑

i∈Xn\{n}
{g(eT

i pn)+g(eT
i+1 pn)−2g(

1
2
(eT

i + eT
i+1)pn)}=

n3

n+1

ˆ 1

0
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}dx.

By the bound above,

n3

n+1

ˆ 1

0
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}dx≤

n3

(n+1)3

ˆ 1

0
K2

1 cLdx.
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Applying the dominated convergence theorem,

lim
n→∞

n2
∑

i∈Xn\{n}
{g(eT

i pn)+g(eT
i+1 pn)−2g(

1
2
(eT

i + eT
i+1)pn)}=

ˆ 1

0
lim
n→∞

n3

n+1
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}dx.

By the Taylor expansion above,

lim
n→∞

n3

n+1
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}=

lim
n→∞

1
8

n3

n+1
{g′′(·)+g′′(·)}(p̂n(

2bnxc+3
2(n+1)

)− p̂n(
2bnxc+1
2(n+1)

))2.

By definition,

(n+1)(p̂n(
2bnxc+3
2(n+1)

)− p̂n(
2bnxc+1
2(n+1)

)) = f ′n(
2bnxc+2
2(n+1)

)

and

lim
n→∞

g′′(p̂n(
2bnxc+2
2(n+1)

)+ cn(p̂n(
2bnxc+3
2(n+1)

)− p̂n(
2bnxc+2
2(n+1)

))) =
1

p(x)
,

with cn ∈ (0,1) for all n, and therefore

lim
n→∞

n3

n+1
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}=

lim
n→∞

1
4
(p′(x))2

p(x)
,

proving the second claim.
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Turning to the third claim, recall that, by definition,

eT
i ua,N =

´ i+1
N+1

i
N+1

ua(x) f (x)dx

´ i+1
N+1

i
N+1

f (x)dx.

We define the function, for x ∈ [0,1), as

ua,N(x) = eT
b(N+1)xcua,N ,

and let ua,N(1) = eT
Nua,N . We also define the function

x̃(x) =
2b(N +1)xc+1

2(N +1)
.

By construction, p̂N(x̃(x)) = (N +1)eT
b(N+1)xcpa,N for all x ∈ [0,1), and equals eT

N pa,N for

x = 1. Therefore,

uT
a,N pN = ∑

i∈XN

(eT
i ua,N)(eT

i pN)

=

ˆ 1

0
p̂N(x̃(x))ua,N(x)dx.

By the measurability of ua(x),

lim
N→∞

ua,N(x) = ua(x).

Therefore, by the boundedness of utilities and the dominated convergence theorem,

lim
n→∞

uT
a,n pn =

ˆ 1

0
p(x)ua(x)dx.
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Finally, suppose that, for all N

eT
i pa,N =

ˆ i+1
N+1

i
N+1

p̃(x)dx.

It follows that limn→∞ p̂a,N(x) = p̃(x) for all x ∈ X , and therefore p̃(x) = p(x).

Lemma 13. Let πN(a) ∈P(A) and {qa,N ∈P(XN)}a∈A denote optimal policies in the

discrete state setting described in section A.2. For each a∈ A, the sequence {qa,N} satisfies

the convergence condition (Definition 1).

Proof. We begin by noting that the conditions given for the function f (x) satisfy the condi-

tions of Lemma 11, and therefore the sequence qN satisfies the convergence condition. We

will use the constants cH and cL to refer to its bounds,

cH

N +1
≥ eT

i qN ≥
cL

N +1
,

and the constants K1 and K to refer to the constants described by convergence condition

and Lemma 11 for the sequence qN . By the convention that qa,N = qN if πN(a) = 0, qa,N

also satisfies the convergence condition whenever πN(a) = 0.

The problem of size N is

VN(qN ; θ̄) = max
πN∈P(A),{qa,N∈P(XN)}a∈A

∑
a∈A

πN(a)(uT
a,N ·qa,N)− θ̄ ∑

a∈A
πN(a)DN(qa,N ||qN)

subject to

∑
a∈A

πN(a)qa,N = qN .

Let un denote that |XN |× |A| matrix whose columns are ua,N . Using Lemma 5, we can
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rewrite the problem as

VN(qN ; θ̄) = max
{px,N∈P(A)}i∈X

∑
a∈A

eT
a pD(q)uNea

− θ̄N2
N−1

∑
i=0

(eT
i qN)DKL(pi,N ||

pi,N(eT
i qN)+ pi+1,N(eT

i+1qN)

(eT
i + eT

i+1)qN
)

− θ̄N2
N

∑
i=1

(eT
i qN)DKL(pi,N ||

pi,N(eT
i qN)+ pi−1,N(eT

i−1qN)

(eT
i + eT

i−1)qN
)

− θ̄N−1
N−1

∑
i=0

(eT
i qN)DKL(pi,N ||pNqN).

The FOC for this problem is, for all i ∈ [1,N−1] and a ∈ A such that eT
a pi,N > 0,

eT
i ua,N− θ̄N2 ln(

eT
a pi,N(eT

i + eT
i+1)qN

eT
a (pi,N(eT

i qN)+ pi+1,N(eT
i+1qN))

)

−θ̄N2 ln(
eT

a pi,N(eT
i + eT

i−1)qN

eT
a (pi,N(eT

i qN)+ pi−1,N(eT
i−1qN))

)− θ̄ ln(
eT

a pi,N

eT
a pNqN

)− eT
i κN = 0,

where κN ∈RN+1 are the multipliers (scaled by eT
i qN) on the constraints that ∑a∈A eT

a pi,N =

1 for all i ∈ X . Defining q−1,N = qN+1,N = 0, and defining p−1,N and pN+1,N in arbitrary

fashion, we can recover this FOC for all i ∈ X .

Rewriting the FOC in terms of the posteriors, for any a such that πN(a)> 0,

eT
i (ua,N−κN) =−θ̄N2 ln(

(eT
i qa,N)(1+

eT
i+1qN

eT
i qN

)

(ei+1 + ei)T qa,N
)− θ̄N2 ln(

(eT
i qa,N)(1+

eT
i−1qN

eT
i qN

)

(ei−1 + ei)T qa,N
)− θ̄ lnN−1(

eT
a pi,N

eT
a pNqN

)

= θ̄N2 ln(1+
eT

i+1qa,N

eT
i qa,N

)− θ̄N2 ln(1+
eT

i+1qN

eT
i qN

)+ θ̄N2 ln(1+
eT

i−1qa,N

eT
i qa,N

)

− θ̄N2 ln(1+
eT

i−1qN

eT
i qN

)− θ̄ lnN−1(
eT

i qa,N

eT
i qN

)

= θ̄N2(ln(
1
2
(eT

i+1 + eT
i )qa,N)+ ln(

1
2
(eT

i−1 + eT
i )qa,N)− (2+N−3) ln(eT

i qa,N)+2ln2)

− θ̄N2(ln(
1
2
(eT

i+1 + eT
i )qN)+ ln(

1
2
(eT

i−1 + eT
i )qN)− (2+N−3) ln(eT

i qN)+2ln2).
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Using Lemma 11, for all i ∈ XN \{0,N},

N2| ln(1
2
(eT

i+1 + eT
i )qN)+ ln(

1
2
(eT

i−1 + eT
i )qN)−2ln(eT

i qN)| ≤ K.

By the boundedness of the utility function,

eT
i κN ≥−ū− θ̄K+ θ̄N2(ln(

eT
i qa,N

1
2(e

T
i+1 + eT

i )qa,N
)+ln(

eT
i qa,N

1
2(e

T
i−1 + eT

i )qa,N
))+ θ̄N−1 ln(

eT
i qa,N

eT
i qN

).

By the concavity of the log function,

ln(
1
2
(eT

i+1 + eT
i )qa,N)+ ln(

1
2
(eT

i−1 + eT
i )qa,N)+N−3 ln(eT

i qN)≤

(2+N−3) ln(
1

2(2+N−3)
(eT

i+1 + eT
i−1 +2eT

i )qa,N +
N−3

2+N−3 eT
i qN).

and therefore

ln(
1
2
(eT

i+1 + eT
i )qa,N)+ ln(

1
2
(eT

i−1 + eT
i )qa,N)+N−3 ln(eT

i qN)− (2+N−3) ln(eT
i qa,N)

≤ (2+N−3) ln(
1

2(2+N−3)
(eT

i+1 + eT
i−1 +2eT

i )qa,N + N−3

2+N−3 eT
i qN

eT
i qa,N

).

It follows that

eT
i κN ≥−ū− θ̄K− (2+N−3)θ̄N2 ln(

1
2(2+N−3)

(eT
i+1 + eT

i−1 +2eT
i )qa,N + N−3

2+N−3 eT
i qN

eT
i qa,N

).
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Exponentiating,

(eT
i qa,N)exp(− 1

2+N−3 θ̄
−1N−2(ū+ θ̄K + eT

i κN))≤

1
2(2+N−3)

(eT
i+1 + eT

i−1 +2eT
i )qa,N +

N−3

2+N−3 eT
i qN . (32)

Summing over a, weighted by πN(a),

(eT
i qN)exp(− 1

2+N−3 θ̄
−1N−2(ū+ θ̄K + eT

i κN))≤

1
2(2+N−3)

(eT
i+1 + eT

i−1 +2eT
i )qN +

N−3

2+N−3 eT
i qN .

Taking logs,

− 1
2+N−3 θ̄

−1N−2(ū+ θ̄K + eT
i κN)≤ ln(

1
2(2+N−3)

(eT
i+1 + eT

i−1 +2eT
i )qN + N−3

2+N−3 eT
i qN

(eT
i qN)

)

≤ ln(1+
N−3

2+N−3 +
1

2+N−3
K1N−3

cLN−1 ),

where the last step follows by Lemma 11, recalling that cL is the lower bound on f (x). We

have

eT
i κN ≥−2θ̄N2 ln(1+

N−3

2+N−3 +
1

2+N−3
K1

cL
N−2)− ū− θ̄K

≥−ū− θ̄K− N−1

2+N−3 −
1

2+N−3
K1

cL

≥−ū− θ̄K− 1
2
− 1

2
K1

cL
.

where the second step follows by the inequality ln(1+ x)< x for x > 0.
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Turning to the end points, the FOC can be simplified to

eT
0 (ua,N−κN) = θ̄N2(ln(

1
2
(eT

1 + eT
0 )qa,N)− ln(eT

0 qa,N))

− θ̄N2(ln(
1
2
(eT

1 + eT
0 )qN)− ln(eT

0 qN))− θ̄N−1 ln(
eT

0 qa,N

eT
0 qN

).

By the concavity of the log function,

ln(
1
2
(eT

1 + eT
0 )qa,N)+N−3 ln(eT

0 qN)− (1+N−3) ln(eT
0 qa,N)

≤ (1+N−3) ln(
1

(1+N−3)
1
2(e

T
1 + eT

0 )qa,N + N−3

1+N−3 eT
0 qN

eT
0 qa,N

). (33)

Therefore,

θ̄n2 ln(
1
2(e

T
1 + eT

0 )qa,N

eT
0 qa,N

)+ θ̄n−1 ln(
eT

0 qN

eT
0 qa,N

)− θ̄K

≤ eT
0 (ua,N−κN)+ θ̄N2(ln(

1
2
(eT

1 + eT
0 )qN)− ln(eT

0 qN))

≤ θ̄(1+N−3) ln(
1

(1+N−3)
1
2(e

T
1 + eT

0 )qa,N + N−3

1+N−3 eT
0 qN

eT
0 qa,N

)+ θ̄K.

By the boundedness of the utility function,

−θ̄(1+N−3) ln(
1

(1+N−3)
1
2(e

T
1 + eT

0 )qa,N + N−3

1+N−3 eT
0 qN

eT
0 qa,N

)− ū

≤ eT
0 κN + θ̄N2 ln(

eT
0 qN

1
2(e

T
1 + eT

0 )qN
)

≤−θ̄N2 ln(
1
2(e

T
1 + eT

0 )qa,N

eT
0 qa,N

)+ θ̄N−1 ln(
eT

0 qa,N

eT
0 qN

)+ ū.
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By the inequality ln(x)≤ x−1,

θ̄N−1 ln(
eT

0 qa,N

eT
0 qN

)≤ θ̄N−1(
eT

0 qa,N

eT
0 qN

−1)

≤ θ̄c−1
L ,

where the latter follows from eT
0 qN ≥ cLN−1. Exponentiating,

(eT
0 qa,N)exp(−θ̄

−1(1+N−3)−1N−2
µ̄)≤

(
1

(1+N−3)

1
2
(eT

1 +eT
0 )qa,N+

N−3

1+N−3 eT
0 qN)exp(θ̄−1(1+N−3)−1N−2eT

0 κN)
eT

0 qN
1
2(e

T
1 + eT

0 )qN

and

(
1
2
(eT

1 + eT
0 )qa,N)exp(θ̄−1N−2eT

0 κN)
eT

0 qN
1
2(e

T
1 + eT

0 )qN
≤ (eT

0 qa,N)exp(θ̄−1N−2(µ̄ + θ̄c−1
L )).

Summing over a, weighted by πN(a),

(eT
0 qN)exp(−θ̄

−1(1+N−3)−1N−2
µ̄)≤

(
1

(1+N−3)

1
2
(eT

1 +eT
0 )qN+

N−3

1+N−3 eT
0 qN)exp(θ̄−1(1+N−3)−1N−2eT

0 κN)
eT

0 qN
1
2(e

T
1 + eT

0 )qN
,

(
1
2
(eT

1 + eT
0 )qN)exp(θ̄−1N−2eT

0 κN)
eT

0 qN
1
2(e

T
1 + eT

0 )qN
≤ (eT

0 qN)exp(θ̄−1N−2(µ̄ + θ̄c−1
L )).

Taking logs,

−θ̄N2(1+N−3)(ln(
1

(1+N−3)
1
2(e

T
1 + eT

0 )qN + N−3

1+N−3 eT
0 qN

1
2(e

T
1 + eT

0 )qN
)− ū≤ eT

0 κN ≤ ū+ θ̄c−1
L .

112



We can write

ln(
1

(1+N−3)
1
2(e

T
1 + eT

0 )qN + N−3

1+N−3 eT
0 qN

1
2(e

T
1 + eT

0 )qN
) = ln(

1
1+N−3 +

N−3

1+N−3 eT
0 qN

1
2(e

T
1 + eT

0 )qN
)

≤ 1
1+N−3 +

2N−3

1+N−3 −1.

Therefore,

−θ̄N2(1+N−3)(ln(
1

(1+N−3)
1
2(e

T
1 + eT

0 )qN + N−3

1+N−3 eT
0 qN

1
2(e

T
1 + eT

0 )qN
)≥−θ̄N−1 ≥−θ̄ .

By Lemma 11,

−θ̄ − ū≤ eT
0 κN ≤ ū+ θ̄c−1

L .

A similar argument applies to the other end-point (eT
NκN). Summarizing, eT

i κN ≥−BL for

some constant BL > 0, and eT
i κN ≤ BH for some BH > 0 if i ∈ {0,N}.

Returning to the FOC, for all i ∈ XN \{0,N},

eT
i κN ≤ ū+ θ̄K + θ̄N2(ln(

eT
i qa,N

1
2(e

T
i+1 + eT

i )qa,N
)+ ln(

eT
i qa,N

1
2(e

T
i−1 + eT

i )qa,N
))+ θ̄N−1 ln(

eT
i qa,N

eT
i qN

),

and as argued above,

θ̄N−1 ln(
eT

i qa,N

eT
i qN

)≤ θ̄c−1
L .

Using this bound,

θ̄N2(ln(
eT

i qa,N
1
2(e

T
i+1 + eT

i )qa,N
)+ ln(

eT
i qa,N

1
2(e

T
i−1 + eT

i )qa,N
))≥−(ū+ θ̄K +BL + θ̄c−1

L ).
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For the end-points, the FOC requires that

eT
0 κN ≤ ū− θ̄N2 ln(

eT
0 qN

1
2(e

T
1 + eT

0 )qN
)+ θ̄N2 ln(

eT
0 qa,N

1
2(e

T
1 + eT

0 )qa,N
)+ θ̄N−1 ln(

eT
0 qa,N

eT
0 qN

)

and

eT
NκN ≤ ū− θ̄N2 ln(

eT
Nqa,N

1
2(e

T
N + eT

N−1)qa,N
)+ θ̄N2 ln(

eT
Nqa,N

1
2(e

T
N + eT

N−1)qa,N
)+ θ̄N−1 ln(

eT
Nqa,N

eT
NqN

).

Using Lemma 11, we can rewrite these inequalities as

θ̄N ln(
eT

Nqa,N
1
2(e

T
N + eT

N−1)qa,N
)≥−N−1(ū+BL + θ̄c−1

L )+ θ̄N ln(
eT

Nqa,N
1
2(e

T
N + eT

N−1)qa,N
)

≥−N−1(ū+BL + θ̄c−1
L )− θ̄K

≥−(ū+ θ̄K +BL + θ̄c−1
L ),

and likewise

θ̄N ln(
eT

0 qa,N
1
2(e

T
1 + eT

0 )qa,N
)≥−(ū+ θ̄K +BL + θ̄c−1

L ).

Define q̂a,N(x) as in Lemma 12. Define the function

la,N(x) = (N +1)(ln(q̂a,N(x))− ln(q̂a,N(x−
1

2(N +1)
)))

for any x ∈ [ 1
2(N+1) ,1]. For any i ∈ XN \{0},

la,N(
2i+1

2(N +1)
) = (N +1) ln(

(N +1)eT
i qa,N

1
2(N +1)(eT

i + eT
i−1)qa,N

),
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and for any i ∈ XN \{N},

la,N(
2i+2

2(N +1)
) = (N +1) ln(

1
2(N +1)(eT

i + eT
i+1)qa,N

(N +1)eT
i qa,N

).

Therefore, for any i ∈ XN \{0,N}, the lower bound can be written as

θ̄
N2

N +1
(la,N(

2i+2
2(N +1)

)− la,N(
2i+1

2(N +1)
))≤ (ū+ θ̄K +BL + θ̄c−1

L ).

The lower endpoint bound is

θ̄
N

N +1
la,N(

1
(N +1)

)≤ (ū+ θ̄K +BL + θ̄c−1
L ).

The upper endpoint bound is

θ̄
N

N +1
la,N(1)≥−(ū+ θ̄K +BL + θ̄c−1

L ).

We also have, for all i ∈ XN \{N}

θ̄
N2

N +1
(la,N(

2i+3
2(N +1)

)− la,N(
2i+2

2(N +1)
))

= θ̄N2(ln(
(N +1)eT

i+1qa,N
1
2(N +1)(eT

i+1 + eT
i )qa,N

)− ln(
1
2(N +1)(eT

i + eT
i+1)qa,N

(N +1)eT
i qa,N

))

≤ 0,

by the concavity of the log function. Therefore, for all j ∈ {2,3, . . . ,2(N +1)}

θ̄
N2

N +1
(la,N(

j+1
2(N +1)

)− la,N(
j

2(N +1)
))≤ (ū+ θ̄K +BL + θ̄c−1

L ).
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It follows that, for all j ∈ {2,3, . . . ,2(N +1)}

la,N(
j

2(N +1)
) = la,N(

2
2(N +1)

)+
j−1

∑
k=2

(la,N(
k+1

2(N +1)
)− la,N(

k
2(N +1)

))

≤ θ̄
−1(ū+ θ̄K +BL + θ̄c−1

L )
N +1

N
(1+

j−2
N

).

Similarly, for all j ∈ {2,3, . . . ,2(N +1)},

la,N(1) = la,N(
j

2(N +1)
)+

2N

∑
k= j−1

(la,N(
k+1

2(N +1)
)− la,n(

k
2(N +1)

))

and therefore

−la,N(
j

2(N +1)
) =−la,n(1)+

2N

∑
k= j−1

(la,N(
k+1

2(N +1)
)− la,n(

k
2(N +1)

))

≤ θ̄
−1(ū+ θ̄K +BL + θ̄c−1

L )
N +1

N
(1+

2(N +1)− j
N2 ).

It follows that

|la,N(
j

2(N +1)
)| ≤ 2θ̄

−1(ū+ θ̄K +BL + θ̄c−1
L )

N +1
N

≤ 4θ̄
−1(ū+ θ̄K +BL + θ̄c−1

L ).

Note that there must exist some ĩa,N ∈ XN such that eT
ĩa,N

qa,N ≥ 1
N+1 , implying that

ln((N +1)eT
ĩa,n

qa,N)≥ 0.

By the definition of la,N , for any i ∈ XN \{0},

la,N(
2i+1

2(N +1)
)+ la,N(

2i
2(N +1)

) = (N +1) ln(
(N +1)eT

i qa,N

(N +1)eT
i−1qa,N

).
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For any i > ĩa,N ,

ln((N +1)eT
i qa,N) = ln((N +1)eT

ĩa,n
qa,N)+

i

∑
j=ĩa,n+1

ln(
(N +1)eT

j qa,N

(N +1)eT
j−1qa,N

)

= ln((N +1)eT
ĩa,n

qa,N)+
1

N +1

i

∑
j=ĩa,n+1

la,N(
2 j+1

2(N +1)
)+ la,N(

2 j
2(N +1)

)

≥− 1
N +1

i

∑
j=ĩa,n+1

8θ̄
−1(ū+ θ̄K +BL + θ̄c−1

L )

≥−8θ̄
−1(ū+ θ̄K +BL + θ̄c−1

L ).

Similarly, for any i < ĩa,N ,

ln((N +1)eT
ĩa,n

qa,N) = ln((N +1)eT
i qa,N)+

ĩa,n

∑
j=i+1

ln(
(N +1)eT

j+1qa,N

(N +1)eT
j qa,N

).

Therefore,

ln((N +1)eT
i qa,N)≥−

ĩa,n

∑
j=i+1

ln(
(N +1)eT

j+1qa,N

(N +1)eT
j qa,N

)

≥−8θ̄
−1(ū+ θ̄K +BL + θ̄c−1

L ).

Repeating this argument, there must be some îa,N such that eT
îa,N

qa,N ≤ N−1, and using the

bounds on la,N in similar fashion yields

ln((N +1)eT
i qa,N)≤ 8θ̄

−1(ū+ θ̄K +BL + θ̄c−1
L ).

It follows that there exists a constant c ∈ (0,1) such that, for all N, a ∈ A such that πN(a)>

0, and i ∈ XN ,
c−1

(N +1)
≥ eT

i qa,N ≥
c

N +1
,
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demonstrating that qa,N satisfies the first part of the convergence condition.

Using the bound on la,N , and a Taylor expansion, for some a ∈ (0,1)

|(N +1) ln(
1
2(N +1)(eT

i + eT
i+1)qa,N

(N +1)eT
i qa,N

)|=
(N +1)|12(e

T
i+1− eT

i )qa,N |
eT

i qa,N + a
2(e

T
i+1− eT

i )qa,N

≤ 4θ̄
−1(ū+ θ̄K +BL + θ̄c−1

L ),

and therefore, by the bound on eT
i qa,N ,

(N +1)2|1
2
(eT

i+1− eT
i )qa,N | ≤ B

for some B > 0. By a similar argument,

(N +1)2|1
2
(eT

i+1− eT
i−1)qa,N | ≤ 4B.

Returning to the first-order condition, for i∈ XN \{0,N}, and using some of the bounds

employed previously,

eT
i κN ≤ ū+ θ̄K + θ̄cL + θ̄N2(ln(

eT
i qa,N

1
2(e

T
i+1 + eT

i )qa,N
)+ ln(

eT
i qa,N

1
2(e

T
i−1 + eT

i )qa,N
)).

By the inequality ln(x)≤ x−1,

eT
i κN ≤ ū+ θ̄K + θ̄cL + θ̄N2(

1
2(e

T
i − eT

i+1)qa,N
1
2(e

T
i+1 + eT

i )qa,N
+

1
2(e

T
i − eT

i−1)qa,N
1
2(e

T
i−1 + eT

i )qa,N
)
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Multiplying through,

1
2
(eT

i−1 + eT
i )qa,N(eT

i κN− ū− θ̄K− θ̄cL)

≤ θ̄N2(
1
2
(eT

i − eT
i+1)qa,N +

1
2
(eT

i − eT
i−1)qa,N

1
2(e

T
i+1 + eT

i )qa,N
1
2(e

T
i−1 + eT

i )qa,N
).

≤ θ̄N2(
1
2
(2eT

i − eT
i+1− eT

i−1)qa,N +
1
2
(eT

i − eT
i−1)qa,N(

1
2(e

T
i+1− eT

i−1)qa,N
1
2(e

T
i−1 + eT

i )qa,N
)).

Using the bounds above,

1
2
(eT

i−1 + eT
i )qa,N(eT

i κN− ū− θ̄K− θ̄cL)≤ θ̄N2(
1
2
(2eT

i − eT
i+1− eT

i−1)qa,N +
B

(N +1)2 (

4B
(N+1)2

c
N+1

))

≤ θ̄N2(
1
2
(2eT

i − eT
i+1− eT

i−1)qa,N)+
4B2N2

c(N +1)3 .

Therefore,

c(eT
i κN− ū− θ̄K− θ̄cL)≤ θ̄

N +1
N

N3(
1
2
(2eT

i − eT
i+1− eT

i−1)qa,N)+
4B2

c
.

Summing over a, weighted by πN(a), and applying Lemma 11,

c(eT
i κN− ū− θ̄K− θ̄cL)≤ 2θ̄K1 +

4B2

c
.

Therefore, |eT
i κN | is bounded below by some Bκ > 0 for all i ∈ XN (recalling that this was

shown for i ∈ {0,N} previously). It also follows the term

(N +1)3(
1
2
(2eT

i − eT
i+1− eT

i−1)qa,N)≥
(N +1)2

N2 c(eT
i κN− ū− θ̄K− θ̄cL−

4B2

c2 )

≥−2c(Bκ + ū+ θ̄K + θ̄cL +
4B2

c2 )

is bounded below.
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Recalling equation (32), and employing the upper bound on |eT
i κN |,

(eT
i qa,N)exp(− 1

2+N−3 θ̄
−1N−2(ū+ θ̄K +Bκ))

≤ 1
2(2+N−3)

(eT
i+1 + eT

i−1 +2eT
i )qa,N +

N−3

2+N−3 eT
i qN .

Rewriting this,

(eT
i qa,N)(exp(− 1

2+N−3 θ̄
−1N−2(ū+ θ̄K +Bκ))−1)

≤ 1
2(2+N−3)

(eT
i+1 + eT

i−1 +2eT
i )qa,N +

N−3

2+N−3 eT
i (qN−qa,N)

By the upper bound on eT
i qN ≤ cH

N+1 and eT
i qa,N ≥ c

N+1 ,

(N +1)3

2
(eT

i+1 + eT
i−1−2eT

i )qa,N ≥

(2+N−3)(N +1)2(exp(− 1
2+N−3 θ̄

−1N−2(ū+ θ̄K +Bκ))−1)− cH− c
N3 (N +1)2.

By the inequality exp(x)−1≥ x,

(N +1)3

2
(eT

i+1 + eT
i−1−2eT

i )qa,N ≥−
(N +1)2

N2 θ̄
−1(ū+ θ̄K +Bκ)−

cH− c
N3 (N +1)2

≥−2θ̄
−1(ū+ θ̄K +Bκ)−2cH + c.

Therefore, the first statement in the second part of the convergence condition (Definition 1)

is satisfied.
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Finally, we consider the endpoints. The first-order condition is

θ̄N2(ln(
1
2
(eT

1 + eT
0 )qa,N)− ln(eT

0 qa,N)) =

eT
0 (ua,N−κN)+ θ̄N2(ln(

1
2
(eT

1 + eT
0 )qN)− ln(eT

0 qN))+ θ̄N−1 ln(
eT

0 qa,N

eT
0 qN

).

We can bound this as

−N−1(ū+Bκ)− θ̄K + θ̄N−2 ln(
c

cH
)

≤ θ̄N(ln(
1
2
(eT

1 + eT
0 )qa,N)− ln(eT

0 qa,N))

≤ N−1(ū+Bκ + θ̄c−1
L )+ θ̄K,

and note that because ∑i∈XN eT
i qa,N = ∑i∈XN eT

i qN = 1, we must have cH ≥ c. Therefore,

θ̄ ln(
c

cH
)≤ θ̄N−2 ln(

c
cH

).

Using a Taylor expansion,

ln(
1
2
(eT

1 + eT
0 )qa,N)− ln(eT

0 qa,N) =
1
2(e

T
1 − eT

0 )qa,N

eT
0 qa,N + a

2(e
T
1 + eT

0 )qa,N

for some a ∈ (0,1). Therefore,

N2|1
2
(eT

1 − eT
0 )qa,N | ≤

c
θ̄
(ū+Bκ + θ̄K + θ̄ max(ln(

cH

c
),c−1

L )).

A similar logic holds for the other endpoint, and therefore the convergence condition is

satisfied.
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D.11 Proof of Theorem 4

By the boundedness of P(A), there exists a convergent sub-sequence of the optimal policy

πN(a), which we denote by n. Define

π(a) = lim
n→∞

πn(a).

By Lemma 13, for all a ∈ A, each sequence of optimal policies {qa,N} satisfies the conver-

gence condition (Definition 1). Therefore, by Lemma 12, each sequence {q̂a,N(x)} has a

convergent sub-sequence that converges to a differentiable function f ∗a (x), whose deriva-

tive is Lipschitz continuous, with full support on [0,1]. We can construct a sub-sequence in

which πn(a) and all {q̂a,n(x)} converge by iteratively applying this argument. Denote this

sequence by n.

We can write the discrete value function as, using Lemma 5, as

VN(qN ; θ̄) = max
{px,N∈P(A)}i∈X

∑
a∈A

eT
a pD(q)uNea

− θ̄N2
∑
a∈A

(eT
a pq)

N−1

∑
i=0

[(eT
i qa,N) ln(

eT
i qa,N

q̄i,a,N
)+(eT

i+1qa,N) ln(
eT

i+1qa,N

q̄i,a,N
)]

+ θ̄N2
N−1

∑
i=0

[(eT
i qN) ln(

eT
i qN

q̄i,a,N
)+(eT

i+1qN) ln(
eT

i+1qN

q̄i,a,N
)]

− θ̄N−1
N−1

∑
i=0

(eT
i qN)DKL(pi,N ||pNqN).
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We can re-arrange this to

VN(qN ; θ̄) = max
{px,N∈P(A)}i∈X

∑
a∈A

eT
a pD(q)uNea

− θ̄N2
∑
a∈A

(eT
a pq)

N−1

∑
i=0

[g(eT
i qa,N)+g(eT

i+1qa,N)−2g(
1
2
(eT

i + eT
i+1)qa,N)]

+ θ̄N2
N−1

∑
i=0

[g(eT
i qN)+g(eT

i+1qN)−2g(
1
2
(eT

i + eT
i+1)qN)]

− θ̄N−1
N−1

∑
i=0

(eT
i qN)DKL(pi,N ||pNqN).

By Lemma 12 and the boundedness of the KL divergence,

lim
n→∞

Vn(qn; θ̄) = ∑
a∈A

π(a)
ˆ 1

0
ua(x) fa(x)dx

− θ̄

4 ∑
a∈A
{π(a)

ˆ 1

0

( f ′a(x))
2

fa(x)
dx}+ θ̄

4

ˆ 1

0

( f ′(x))2

f (x)
dx.

Suppose that π(a) and the fa(x) functions do not maximize this expression (subject to the

constraints stated in Theorem 4). Let π∗(a) and f ∗a (x) be maximizers. Define, for all N ∈N,

π̃N(a) = π
∗(a),

eT
i q̃a,N =

ˆ i+1
N+1

i
N+1

f ∗a (x)dx.

Note that, by construction, q̃a,N ∈P(XN) and ∑a∈A π̃N(a)q̃a,N = qN . That is, the con-

straints of the discrete-state problem are satisfied for all N. Denote the value function

under these policies as ṼN(qN ; θ̄).

Because of the constraints stated in Theorem 4, each f ∗a satisfies the conditions of

Lemma 11, and therefore the sequence q̃a,N satisfies the convergence condition for all

a ∈ A. It follows by Lemma 12 that this sequence of policies delivers, in the limit, the
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value function V ( f ; θ̄). If this function is strictly larger than limn→∞Vn(qn; θ̄), there must

exist some n̄ such that

Ṽn̄(qn̄; θ̄)>Vn̄(qn̄; θ̄),

contradicting optimality. Therefore, the functions fa(x) and π(a) are maximizers.

It remains to show that

lim
n→∞

bxnc

∑
i=0

eT
i qa,n =

ˆ x

0
fa(y)dy.

Note that

eT
i qa,n = (n+1)

ˆ i+1
n+1

i
n+1

q̂a,n(
2i+1

2(n+1)
)dy,

where q̂a,n is the function defined in Lemma 12. Therefore, the sum is equal to

bxnc

∑
i=0

eT
i qa,n =

ˆ bxnc+1
n+1

0
q̂a,n(
b(n+1)y+ 1

2c+
1
2

(n+1)
)dy.

By the boundedness of q̂a,n (which follows from the convergence condition) and the domi-

nated convergence theorem,

lim
n→∞

ˆ bxnc+1
n+1

0
q̂(
b(n+1)y+ 1

2c+
1
2

(n+1)
)dy =

ˆ x

0
fa(y)dy,

as required.

D.12 Proof of Lemma 7

We begin by observing that any information structure p ∈PLipG(A) defines unconditional

action frequencies π ∈P(A) and posteriors fa ∈PLipG([0,1]) satisfying (26), using def-

initions (27). And conversely, any unconditional action frequencies and posteriors satisfy-
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ing (26) define an information structure, using definitions (28). Hence the set of candidate

structures is the same in both problems, and the problems are equivalent if the two objective

functions are equivalent as well. It is also easily seen that in each problem, the first term

of the objective function is the expected value of the DM’s reward u(x,a), integrating over

the joint distribution for (x,a). Hence it remains only to establish that the remaining terms

of the objective function are equivalent as well.

Consider any information structure p ∈PLipG(A) and the corresponding unconditional

action frequencies and posteriors, and let x be any point at which f (x) > 0, and at which

pa(x) is twice differentiable for all a (and as a consequence, fa(x) is twice differentiable

for all a as well). (We note that, given the Lipschitz continuity of the first derivatives, the

set of x for which this is true must be of full measure.) Then the fact that ∑a∈A pa(x) = 1

for all x implies that

∑
a∈A

p′′a(x) = 0, (34)

and similarly, constraint (26) implies that

∑
a∈A

π(a) f ′′a (x) = f ′′(x). (35)
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At any such point, the definition of the Fisher information implies that

IFisher(x) ≡ ∑
a∈A

(p′a(x))
2

pa(x)

= ∑
a

p′′a(x) − ∑
a∈A

pa(x)
∂ 2 log pa(x)

∂x2

= −π(a) fa(x)
f (x)

∂ 2

∂x2 [logπ(a)+ log fa(x)− log f (x)]

=
1

f (x)

[
∑
a∈A

π(a)
( f ′a(x))

2

fa(x)
−∑

a∈A
π(a) f ′′a (x) −

( f ′(x))2

f (x)
+ f ′′(x)

]

=
1

f (x)

[
∑
a∈A

π(a)
( f ′a(x))

2

fa(x)
− ( f ′(x))2

f (x)

]
.

Here the first line is the definition of the Fisher information (given in the lemma), and the

second line follows from twice differentiating the function log pa(x) with respect to x. In

the third line, the first term from the second line vanishes because of (34); the remaining

term from the second line is rewritten using (28). The fourth line follows from the third

line by twice differentiating each of the terms inside the square brackets with respect to x.

The fifth line then follows from (35).

Since this result holds for a set of x of full measure, we obtain expression

ˆ 1

0
f (x)IFisher(x)dx = ∑

a∈A
π(a)

ˆ 1

0

( f ′a(x))
2

fa(x)
dx −

ˆ 1

0

( f ′(x))2

f (x)
dx

for the mean Fisher information. This shows that the information-cost terms in both objec-

tive functions are equivalent, and hence the two problems are equivalent, and have equiva-

lent solutions.

D.13 Proof of Lemma 8

Write the value function in sequence-problem form:
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W (q0,λ ;∆) = max
{p∆ j},τ

E0[û(qτ)−κτ)]−

λE0[∆
1−ρ

τ∆−1

∑
j=0
{ 1

ρ
C({p∆ j,x}x∈X ,q∆ j(·))ρ −∆

ρcρ}].

Define

ū = max
a∈A,x∈X

u(a,x).

By the weak positivity of the cost function C(·), it follows that

W (q0,λ ;∆)≤ ū+max
τ

E0[−κτ +∆

τ∆−1−1

∑
j=0

λcρ ].

Because λ ∈ (0,κc−ρ), the expression

−κτ +∆

τ∆−1−1

∑
j=0

λcρ = (λcρ −κ)τ

is weakly negative, and therefore

W (q0,λ ;∆)≤ ū.

By a similar argument, there is a smallest possible decision utility u, and because stopping

now and deciding is always feasible,

W (q0,λ ;∆)≥ u.

Therefore, W (q0,λ ;∆) is bounded for all λ ∈ (0,κc−ρ) and all ∆. Note that this argument
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also shows that

E0[τ](κ−λcρ)≤ ū−W (q0,λ ;∆),

and hence that

E0[τ]≤
ū−u

(κ−λcρ)
.

We can define the “state-specific” value function, W (qt ,λ ;∆,x) , which is the value

function conditional on the true state being x. The state-specific value function has a recur-

sive representation, in the region in which the DM continues to gather information:

W (qt ,λ ;∆,x) = −κ∆+λ∆
1−ρ(∆ρcρ − 1

ρ
C(·)ρ)+

∑
s∈S: eT

s ptex>0

(eT
s p∗t ex)W (q∗t+∆,s,λ ;∆,x).

In this equation, we take the optimal information structure as given. Note that, by con-

struction, wherever the DM does not choose to stop, the expected value of the state-specific

value functions is equal to the value function.

∑
x∈X

qt,xW (qt ,λ ;∆,x) =W (qt ,λ ;∆).

By the optimality of the policies, we have

W (qt ,λ ;∆)≥ ∑
x∈X

qt,xW (q′,λ ;∆,x),

for any q′ in P(X). Suppose not; then the DM could simply adopt the information structure

associated with beliefs q′ and achieve higher utility, contradicting the optimality of the

policy.
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The convexity of the value function follows from the observation that

W (αq+(1−α)q′,λ ;∆) = α ∑
x∈X

qxW (αq+(1−α)q′,λ ;∆,x)+

(1−α) ∑
x∈X

q′xW (αq+(1−α)q′,λ ;∆,x),

and using the inequality above,

W (αq+(1−α)q′,λ ;∆)≤ αW (q,λ ;∆)+(1−α)W (q′,λ ;∆).

D.14 Proof of Lemma 9

Consider an alternative policy that mixes (in the sense of Condition 2) the optimal signal

structure and an uninformative signal, with probabilities 1−a and a, respectively. We must

have

−∑
s∈S

(eT
s r∗t,n)(W (q∗t,n,s,λ ;∆n)−W (qt,n,λ ;∆n))−λ∆

1−ρ
n C(p∗t,n,qt,n)

ρ−1 ∂C(pt,n(a),qt,n)

∂a
|a=0+ ≤ 0,

which is the first-order condition at the optimal policy in the direction of adding a little bit

of the uninformative signal (decreasing a). By the convexity of C(·) and Condition 1,

C(p∗t,n,qt,n)+
∂C(pt,n(a),qt,n)

∂a
|a=0+ ≤ 0,

and therefore we must have

∑
s∈S

(eT
s r∗t,n)(W (q∗t,n,s,λ ;∆n)−W (qt,n,λ ;∆n))≥ λ∆

1−ρ
n C(p∗t,n,qt,n)

ρ .
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Applying the Bellman equation in the continuation region,

(κ−λcρ)∆n +
λ

ρ
∆

1−ρ
n C(p∗t,n,qt,n)

ρ ≥ λ∆
1−ρ
n C(p∗t,n,qt,n)

ρ .

Therefore,

λ (1− 1
ρ
)∆−ρ

n C(p∗t,n,qt,n)
ρ ≤ (κ−λcρ).

It follows by the assumption that λ ∈ (0,κc−ρ) and that ρ > 1 that

C(p∗t,n,qt,n)≤ ∆n(
θ

λ
)

1
ρ−1 ,

for the constant θ = λ (ρ κ−λcρ

λ (ρ−1))
ρ−1

ρ > 0.

D.15 Proof of Lemma 10

We begin by discussing the convergence of stopping times. We have assumed that

E0[τn]≤ τ̄,

for some strictly positive constant τ̄ and all n. It follows by the positivity of τn that the

laws of τn are tight, and therefore there exists a sub-sequence that converges in measure.

Pass to this sub-sequence (which we will also index by n), and let τ denote the limit of this

sub-sequence.

The beliefs qt,n are a family of R|X |-valued stochastic processes, with qt,n ∈P(X) for

all t ∈ [0,∞) and n ∈ N. Construct them as RCLL processes by assuming that q∆n j+ε,n =

q∆n j,n for all m, ε ∈ [0,∆n), and j ∈ N. We next establish that the laws of qt,n are tight. By
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Condition 5 and Lemma 9,

m
2 ∑

s∈S
(eT

s pn(qt,n)qt,n)||qs,n(qt,n)−qt,n||22 ≤C(pn(qt,n),qt,n;S)≤ ∆n(
θ

λ
)

1
ρ−1 ,

where qs,n(q) is defined by pn(q) and Bayes’ rule. It follows that, for any ε > 0, there exists

an Nε such that, for all n > Nε ,

P(||qt+∆n,n−qt,n||> ε)≤ Kε∆n,

for the constant Kε = 2m−1ε−2θ
1

ρ−1 . By Theorem 3.21, Condition 1 in chapter 6 of Ja-

cod and Shiryaev (2013), and the boundedness of qt,n, it follows that the laws of qt,n are

tight. By Prokhorov’s theorem (Theorem 3.9 in chapter 6 of Jacod and Shiryaev (2013)),

it follows that there exists a convergent sub-sequence. Pass to this sub-sequence, and let

qt denote the limiting stochastic process. By Proposition 1.1 in chapter 9 of Jacod and

Shiryaev (2013), qt is a martingale with respect to the filtration it generates. By Skorohod’s

representation theorem, there exists a probability space and random variables (which we

will also denote with qt,n and qt) such the convergence is almost sure. We refer to this

probability space and these random variables in what follows.

Note that, by Bayes’ rule, if eT
x qt,n = 0 for some x ∈ X and time t, then eT

x qs,n = 0 for

all s > t. By Proposition 2.9 and Corollary 2.38 in chapter 2 of Jacod and Shiryaev (2013),

we can write the “good” version of the martingale with characteristics

B =−
ˆ t

0
(

ˆ
R|X |\{0}

ψs(x)xdx)dAs

C =

ˆ t

0
ΣsdAs

ν = dAsψs(x).
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Because beliefs remain in the simplex, ψs(x) has support only on x such that qs + x ∈

P(X). Relatedly, ιT Σs = 0. By the property mentioned above, qs + x� qs, and Σs can be

decomposed as Σs = D(qs−)σsσ
T
s D(qs−).

By the convexity of the cost function and Corollary 2,

C(pn(qt,n),qt,n;S)≥∑
s∈S

(eT
s pn(qt,n)qt,n)D∗(qs,n(qt,n)||qt,n).

Defining the process, for arbitrary stopping time T ,

Ds,n = lim
ε→0+

D∗(qs−+ε,n||qs−,n),

Dt,T,n = Et [

ˆ T

t
Ds,nds]≤ θ

1
ρ−1 ∆nEt [d∆−1

n (T − t)e],

we have by Ito’s lemma, almost sure convergence, and the dominated convergence theorem,

Dt,T = lim
n→∞

Dt,T,n = Et [

ˆ T

t
{1

2
tr[σsσ

T
s k(qs−)]+

ˆ
R|X |\{0}

ψs(x)D∗(qs−+ x||qs−)dx}dAs].

Hence, for all such stopping times T ,

Et [

ˆ T

t
{1

2
tr[σsσ

T
s k(qs−)]+

ˆ
R|X |\{0}

ψs(x)D∗(qs−+ x||qs−)dx}dAs]≤ (
θ

λ
)

1
ρ−1 Et [T − t].

Note also by this argument that

lim
n→∞

E0[

ˆ
τn

0
∆

1−ρ
n C(pn(qt,n),qt,n;S)ρdt]

≥ Et [

ˆ
τ

0
{1

2
tr[σsσ

T
s k(qs−)] +

ˆ
R|X |\{0}

ψs(x)D∗(qs−+x||qs−)dx}ρ(
dAs

ds
)ρds].
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D.16 Proof of Theorem 3

Let m index a sequence of Markov optimal policies, p∗m(q), and of stopping times τ∗m. Let

q∗t,n denote the associated process for beliefs. By the uniform boundedness and convexity

of the family of value functions W (q,λ ;∆m), a uniformly convergent sub-sequence exists.

Rockafellar (1970) Theorem 10.9 demonstrates that a uniformly convergent sub-sequence

exists on the relative interior of the simplex, and Rockafellar (1970) Theorem 10.3 demon-

strates that there is a unique extension to a convex and continuous function on the boundary

of the simplex.

Pass to this sub-sequence, which (for simplicity) we also index by m, and let W (q,λ )

denote its limit. By Lemmas 8 and 9, the sequence of optimal policies and stopping time

satisfies the conditions of Lemma 10. It follows by that lemma that

lim
n→∞

E0[

ˆ
τ∗n

0
∆

1−ρ
n C(p∗n(q

∗
t,n),q

∗
t,n;S)ρdt]

≥ Et [

ˆ
τ

0
{1

2
tr[σ∗s σ

∗T
s k(q∗s−)] +

ˆ
R|X |\{0}

ψ
∗
s (x)D

∗(qs−+x||qs−)dx}ρ}ρ(
dA∗s
ds

)ρds],

where q∗s is the limiting stochastic process and σ∗s ,ψ
∗
s ,dA∗s are associated with the charac-

teristics of the martingale q∗s .

We also have, by weak convergence,

lim
n→∞

E0[û(qτ∗n ,n)− (κ−λcρ)τ∗n )] = E0[û(qτ∗)− (κ−λcρ)τ∗)].

Recall also the bound, for any stopping time T measurable with respect filtration generated

by q∗s ,

Et [

ˆ T

t
{1

2
tr[σ∗s σ

∗T
s k(qs−)]+

ˆ
R|X |\{0}

ψ
∗
s (x)D

∗(q∗s−+ x||q∗s−)dx}dA∗s ]≤ (
θ

λ
)

1
ρ−1 Et [T − t].
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It follows that

W (q,λ )≤W+(q,λ )

for all q ∈P(X), where

W+(qt ,λ ) = sup
{σs,ψs,dAs,τ}

Et [û(qτ)− (κ−λcρ)(τ− t)]−

− λ

ρ
Et [

ˆ
τ

t
{1

2
tr[σsσ

T
s k(qs)]+

ˆ
R|X |\{0}

ψs(x)D∗(qs−+ x||qs−)dx}ρ(
dAs

ds
)ρds],

subject to the constraints, for all stopping times T measurable with respect filtration gener-

ated by q∗s ,

Et [

ˆ T

t
{1

2
tr[σsσ

T
s k(qt)]+

ˆ
R|X |\{0}

ψs(x)D∗(qs−+ x||qs−)dx}dAs]≤ (
θ

λ
)

1
ρ−1 Et [T − t]

and

E0[τ]≤ τ̄,

and the evolution of beliefs as implied by the characteristics derived from σs,ψs,dAs. Ob-

serve, by the arguments in the proof of Lemma 8, that W+(q,λ ) is convex in q.

Also note that, for W+, it is without loss of generality to set dAs = ds. Scaling dAs up

and scaling σsσ
T
s and ψs down, or vice versa, does not change the constraint, and setting

dAs = 0 is clearly sub-optimal by the assumption that κ−λcρ > 0. Note also that there is

a version of the optimal policies which satisfy the constraint everywhere:

1
2

tr[σsσ
T
s k(qs−)]+

ˆ
R|X |\{0}

ψs(x)D∗(qs−+ x||qs−)dx≤ (
θ

λ
)

1
ρ−1 .
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The associated Bellman equation, in the continuation region, is

0=max
σs,ψs

E[dW+(qs,λ )]−(κ−λcρ)ds− λ

ρ
{1

2
tr[σsσ

T
s k(qs)]+

ˆ
R|X |\{0}

ψs(x)D∗(qs−+x||qs−)dx}ρ .

Let σ+
s and ψ+

s denote optimal policies for this problem (which we have yet to show are

equal to σ∗s and ψ∗s ). Suppose that the constraint does not bind, and consider a perturbation

which scales σ+
s σ+T

s and ψ+
s be some constant (1+ ε). Note that such a perturbation

would also scale E[dW+] by (1+ ε), and that at least one of σ+
s and ψ+

s must be non-zero

by the assumption that κ−λcρ > 0. The first order condition for this perturbation is

(κ−λcρ)+
λ

ρ
{1

2
tr[σ+

s σ
+T
s k(qs−)]+

ˆ
R|X |\{0}

ψ
+
s (x)D∗(qs−+ x||qs−)dx}ρ =

λ{1
2

tr[σ+
s σ

+T
s k(qs−)]+

ˆ
R|X |\{0}

ψ
+
s (x)D∗(qs−+ x||qs−)dx}ρ ,

which must hold at the optimal policies for this problem. It follows by the definition of θ

(see the proof of Lemma 9) that the constraint binds.

Consider a sub-optimal policy which sets ψs(x) = 0 and satisfies the constraint. The

above FOC applies, and therefore we must have

tr[σ̃sσ̃
T
s (D(qs−)W

+
qq(qs−,λ )D(qs−)−θk(qs−))]≤ 0,

where W+
qq is understood in a distributional sense. It follows that, for all feasible x,

W+(qs−+ x,λ )−W+(qs−,λ )− xTW+
q (qs−,λ ;−x)≤ 1

2

ˆ 1

0
xT k̄(qs−+ lx)xdl.

By Condition 6, this implies that

W+(qs−+ x,λ )−W+(qs−,λ )− xTW+
q (qs−,λ ;−x)≤ θD∗(qs−+ x||qs−).
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Hence, it is without loss of generality to assume that ψ+
s (x) = 0 for all x. Note that, if there

is a strict preference for gradual learning, the above inequality is strict for all non-zero x.

As a result, in this case ψ+
s (x) = 0 for all x. Note also that our control problem involves

direct control of the diffusion coefficients, and hence satisfies the standard requirements

for the existence and uniqueness of a strong solution to the resulting SDE (Pham (2009)

sections 1.3 and 3.2).

Noting that W+(q,λ ) ≥W (q,λ ), it follows that if there exists a sequence of policies

that converge to the stochastic process q+t , characterized by σ+, and whose costs ∆−1
n C(·)

converge to θ
1

ρ−1 , then such a sequence of policies achieves, in the limit, at least as much

utility as any other sequence of policies. It would then be the case that there must be

sequence of optimal policies that converges a.s. (as in Lemma 10) to some optimal policy

of W+ (not necessarily σ c and ψc, but this does not matter for our argument). Note,

however, that if there is a strict preference for gradual learning, and W+ is achievable,

all optimal policies of W+ generate diffusions, and hence all convergent sub-sequences of

beliefs induced by optimal policies in the discrete-time model must converge to diffusions.

Define the function

Σ
+(q) = D(q)σ+(q)σ+(q)T D(q).

We will construct a sequence that converges to this diffusion process.

Consider the eigenvector decomposition of the matrix

L(q)ϒ(q)L(q)T = αn(q)Σ+(q),

where αn(q)> 0 is a scalar function of q. For each pair (si,si+1)∈ S, where i∈{1,2, . . . , |X |}
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is an even integer, set eT
si

rn = eT
si+1

rn =
1

2|X | , and set

qsi,n(q)−q =

q−qsi+1,n(q) =

L(q)ϒ
1
2 (q)ei.

Set all other eT
s rn = 0. By construction,

∑
s∈S

(eT
s rs,n)(qs,n(q)−q) = 0,

and

∑
s∈S

(eT
s rn)(qs,n(q)−q)(qs,n(q)−q)T = αn(q)Σ+(q)

and

∑
s∈S

(eT
s rn) = 1.

We would like to have, for this policy, C(pn(q),q;S) = ∆nθ
1

ρ−1 always. Note that under

this policy, C(·) is a function of αn and q. By the convexity of C(·) and the definition of its

derivatives,

C(·)≥ αn(q)
∂C
∂α
|α=0 = αn(q)(

1
2

tr[k(q)σ+(q)(σ+(q))T ]),

and hence

C(·)≥ αn(q)θ
1

ρ−1 .

It follows that αn(q)≤ ∆n, it is feasible to have C(pn(q),q;S) = ∆nθ
1

ρ−1 .

Note, by the finiteness of Σ+(q) (due the positive definiteness of k̄(q)), that qs,n(q)−q=
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O(∆
1
2
n ). It follows from lemmas 11.2.1 and 11.2.2 in Stroock and Varadhan (2007) that the

law of qn under this process converges to a solution to the martingale problem associated

with the coefficients σ+(q). By the uniqueness of this solution established earlier, this law

is the law of q+t , a diffusion. Let τn be the first hitting time of qn for the boundary defined

by the stopping region of W+(q,λ ) (that is, W+(q,λ ) = û(q) ). Therefore, by construction

(and similar to the arguments of Amin and Khanna (1994)), the value functions of the

discrete time problem converge to W+(q,λ ). Therefore, this value function is achievable,

and W (q,λ ) = W+(q,λ ). Note also that we have constructed a sequence of policies that

converge to an optimal policy of W (q,λ ).

We next demonstrate equality of the primal and dual. We have shown that

W (q,λ ) = E0[û(qτ∗)− (κ−λcρ)τ∗)]− λ

ρ
E0[

ˆ
τ∗

0
(

θ

λ
)

ρ

ρ−1 ds].

Recall the definition of θ ,

θ = λ (ρ
κ−λcρ

λ (ρ−1)
)

ρ−1
ρ .

Define λ ∗ by
κ−λ ∗cρ

λ ∗(ρ−1)
= cρ ,

which is

λ
∗ =

κ

ρcρ
.

Note that λ ∗ ∈ (0,κc−ρ), as required. For this value of λ ,

W (q0,λ
∗) = E0[û(qτ∗)−κτ

∗],
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and the limit of the constraint is satisfied:

λ ∗

ρ
E0[

ˆ
τ∗

0
(

θ

λ ∗
)

ρ

ρ−1 ds] = λ
∗E0[

ˆ
τ∗

0
cds].

Consider a convergent sub-sequence of V (q0;∆n) (which exists by the uniform bound-

edness and convexity of the problem), and denote its limit V (q0) (again, we will index this

sequence by n). By the standard duality inequalities, for all λ ,

V (q0;∆n)≤W (q0,λ ;∆n),

for all n, and therefore

V (q0)≤W (q0,λ ).

Consider the value function Ṽ (q0), which is the value function under the feasible optimal

policies for W (q0,λ
∗). It follows that Ṽ (q0) = W (q0,λ

∗), and Ṽ (q0) ≤ V (q0), and there-

fore V (q0) =W (q0,λ
∗).

We can define

θ
∗ = λ

∗(ρ
κ−λ ∗cρ

λ ∗(ρ−1)
)

ρ−1
ρ

= λ
∗
ρ

ρ−1
ρ cρ−1

=
κ

c
ρ
−ρ−1

.

Note that every convergent sub-sequence of V (q0;∆n) converges to the same function. By
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the boundedness of value function, it follows that

V (q0) = lim
∆→0+

V (q0;∆).

= E0[û(qτ∗)−κτ
∗].

The constraint can be written as

1
2

tr[σsσ
T
s k(qs−)]≤ (

θ ∗

λ ∗
)

1
ρ−1 ,

with

(
θ ∗

λ ∗
)

1
ρ−1 = (ρ1−ρ−1

cρ−1)
1

ρ−1 = cρ
ρ−1

= χ.

The optimal policy satisfies this constraint, and hence it follows that the value function is

the maximized over all policies satisfying

1
2

tr[σsσ
T
s k(qs)]≤ χ,

concluding the proof.
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