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Abstract

In each round of an infinite horizon bargaining game, a proposer proposes a division
of chips, until a responder accepts. The Coase conjecture predicts that incomplete
information about responders’ preferences for fairness will lead to almost immedi-
ate agreement on an equal payoff split when discounting between rounds is small.
We experimentally test this prediction when chips are equally valuable to both bar-
gainers and when they are worth three times as much to proposers, and compare
outcomes to an ultimatum game. Behavior offers strong support for the theory. In
particular, when chips are more valuable to proposers, initial offers, initial mini-
mum acceptable offers, and responder payoffs are significantly higher in the infinite
horizon than in the ultimatum game, while proposer payoffs are significantly lower.

The Coase conjecture (Coase (1972)) is central to modern bargaining theory. It predicts

that a seller who faces a buyer with private information about her value will sell her good

almost immediately at close to the buyer’s lowest possible value when both agents are

patient.1,2 The seller’s problem is that she must compete against her future self in an

infinite horizon. For any price she offers today, high value buyers will have the greatest

incentive to accept. If today’s offer is rejected, therefore, the seller should likely infer

that she faces a low value buyer, creating an incentive to cut her price tomorrow. But in

which case high value buyers should only purchase if today’s price is already low (this is

known as demand withholding).

A rigorous theoretical proof of Coase’s idea was ultimately provided by Gul, Sonnenschein,

and Wilson (1986). It serves as a foundational result for many recent and more complex

bargaining models (e.g. two sided reputational models in the style of Abreu & Gul

(2000)). The core insight is ubiquitous: with patient bargainers, one-sided asymmetric

information leads to almost immediate agreement favorable to the informed party (as

though negotiation was exclusively with her “toughest” type).

Nonetheless, the theory is non-obvious. Another intuition is that asymmetric information

will lead to inefficient delay, with an uninformed seller trying to hold out for a high price.

Testing whether it holds in practice is therefore important. Laboratory experiments, pro-

viding a controlled environment, would seem ideally suited to that task. Discouragingly

1So long as she obtains a positive profit doing so, what is known as the “gap” case in the literature.
2In fact, Coase’s original idea was that a durable goods monopolist facing downward sloping demand

(an equivalent problem) would be forced to sell at (close to) marginal cost.
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for the theory, results from the existing experimental literature have run almost entirely

counter to even its qualitative predictions. In particular, initial prices are typically in-

creasing in the discount factor and game’s horizon (see our literature review at the end

of this section for details). Indeed, Reynolds (2000) concludes by saying: “It appears

doubtful that any experimental design would generate results consistent with the Coase

conjecture.”

One potential confound of such results is that there is an additional source of asymmetric

information. An extremely well-established finding in the bargaining literature, exempli-

fied by the simple ultimatum game, is that some people care about fairness. Subjects

routinely reject offers which give them a much smaller payoff than their opponent (for a

recent survey see Guth and Kocher (2014)). Preferences for fairness are heterogeneous

and private, and therefore represent a second source of asymmetric information. Pre-

vious Coase conjecture experiments considered the canonical model of a seller facing a

privately informed buyer, but their hypotheses were based on money maximizing sub-

jects, and these need not hold even approximately in the presence of private information

about fairness concerns. In particular, a seller who cares about fairness can resist rapidly

dropping her price if she obtains sufficient disutility from selling to a high value buyer

at an “unfair” low price.3 Money maximizing sellers may then profitably imitate such

behavior.

In this paper we provide a simple experimental test of the Coase conjecture by focusing

exclusively on the asymmetric information about naturally occurring fairness preferences

which has potentially confounded previous experiments. We consider an infinite horizon

bargaining game, where in each round a proposer can propose any division of 100 chips

between herself and a responder. If the responder accepts this offer the game ends,

otherwise the value of chips to both parties are discounted by δ and the game continues

into the next round. Each round, we use the “strategy method” to elicit responders

acceptance decision by asking them for their minimum acceptable offer.4

If there is any positive probability that a responder is a fair type, that is, one who

is unwilling to accept any unequal division, then for δ close to 1, the Coase conjecture

predicts almost immediate agreement on an almost equal monetary payoff split (we choose

δ = 0.95). The translation of the Coasean reasoning is straightforward: if a proposer’s

offer of less than an equal monetary split is rejected, she should increase her belief that her

opponent cares about fairness and so increase her offer in the next round. Anticipating

this, even purely money motivated responders should reject offers that are not close to

3See Fanning (2014).
4We elicit responders’ “strategy” in each round, not for the full infinite horizon game. We did this

both in order to save time and to have a clear measure of responder demand witholding. Oosterbeek
et al (2004) shows that this method tends to increase offers in ultimatum games, but, any such effect
should not effect our comparisons of results across treatments that all use this same method.

2



equal monetary payoffs.

The difficulty of statistically testing this prediction is that it is somewhat imprecise (how

close to an equal payoff split is close enough?). We therefore compare the infinite horizon

game outcomes to those of ultimatum games (which are equivalent to the δ = 0 case of

our infinite horizon game).

The Coasean theory predicts that initial offers and responder payoffs should be weakly

lower in the ultimatum game, proposer payoffs should be weakly higher, while initial

minimum acceptable offers should be strictly lower (due to demand withholding). The

weakly qualifier relates to the fact that if fair types are very likely then an equal payoff

split offer can be money maximizing in the ultimatum game too. Indeed, the existing

literature has documented that in ultimatum games where chips are equally valuable to

proposers and responders (i.e. the standard ultimatum game), proposer offers are already

close to an equal monetary payoff split.

Theory also predicts, however, that equal payoff split offers are less likely in ultimatum

games when chips are worth more to the proposer than the responder (this increases the

incentive to make an unequal offer). Moreover, that prediction is supported by previous

experimental evidence from Kagel, Kim & Moser (1996). In addition to the standard

equal chip value setting, therefore, we consider treatments where chips are worth three

times as much to proposers as responders. We view this second comparison as offering the

cleanest test of the theory where we expect the predictions noted above to hold strictly.

Our infinite horizon results are remarkable close to the predictions of the Coase conjecture.

Regardless of chip values, average initial offers, minimum acceptable offers, proposer

payoffs and responder payoffs were less than 9% away from an equal monetary division.

Remarkably, more than 92% of final chip allocations were within 10% of an equal division.

When chips are equally valuable to both parties, the weak inequalities of our predictions

are indeed weak: initial offers and payoffs in the infinite horizon are statistically indistin-

guishable from the ultimatum game. Nonetheless, initial minimum acceptable offers are

significantly higher in the infinite horizon (in line with theory’s strict prediction). When

chips are worth more to proposers than responders, then all the treatment differences are

strict: initial offers, initial minimum acceptable offers, responder payoffs and efficiency

are significantly higher in the infinite horizon, while proposer payoffs are significantly

lower. Moreover, the differences are qualitatively large, in particular, responder payoffs

were 52% higher in the infinite horizon and proposer payoffs were 28% lower.

We believe these results represent strong evidence in favor of the Coase conjecture. In this

simple bargaining environment, responders correctly understood that rejecting an unfair

offer would most likely lead a proposer to raise her offer in the next round. Anticipating

this, proposers made fair offers from the start of the game.
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In addition to providing support for the theory generally, it also specifically suggests that

fairness concerns may have large effects on bargaining outcomes more broadly. Even in

settings where most people care little for fairness, the Coase conjecture implies that the

mere possibility that they care can lead to an almost completely fair outcome (although

of course determining what is fair may be more difficult in more complex settings). This

may, for instance, help explain the findings of Cullen & Pakzad-Hurson (2017) in Task

Rabbit data. When multiple workers privately contracted with an employer to do the

same work in the same location, low paid workers frequently renegotiated their wages,

and conditional on doing so obtained exactly the wage of the highest paid worker (the

highest paid workers and those in different locations did not renegotiate). Co-location

appears to have enabled workers to discover their peers’ wages. Fairness concerns and

the Coase conjecture can then explain why renegotiation fully equalized wages.

The remainder of this section discusses related literature. Section 2 then highlights our

theoretical predictions, Section 3 provides details on the experimental design, Section 4

presents the results and Section 5 is a conclusion.

Related literature

Most Coase conjecture experiments have found evidence that contradicts the theory’s

comparative statics.5 Guth, Ockenfels & Ritzberger (1995) matched a seller to 10 buy-

ers with uniformly distributed values, for either two or three trading rounds and three

different discount factor combinations. Subjects were either inexperienced or had train-

ing on the theoretical model. Behavior violated theoretical comparative statics on the

discount factor and prices were typically above the static monopoly level (i.e. above the

single round commitment price, far above the Coasean prediction). Rapoport, Erev &

Zwick (1995) paired a seller to a single buyer with uniformly distributed values in a long

horizon setting and three different discount factors. Contrary to theory, initial prices

were increasing in the discount factor and above the static monopoly level. Reynolds

(2000) compared treatments where a seller faced either one buyer or five buyers with

uniformly distributed values, and either one, two or six trading rounds (and a constant

discount factor). Again, contrary to theory, initial prices increased in the trading horizon,

although they were below the static monopoly benchmark. Cason and Reynolds (2005)

paired a seller with a buyer holding either a high or low value, for either one or two

trading rounds with four possible continuation probabilities, and imposed a restricted

grid of possible offers. Initial offers didn’t vary much with the continuation probability

and not generally in the direction suggested by theory. The authors argue that quantal

5In addition to the one-sided asymmetric information experiments highlighted here, some experiments
consider two sided asymmetric information (e.g. Embrey, Fréchette, and Lehrer (2015) investigate the
reputational bargaining model of Abreu and Gul (2000)).
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response equilibrium captures some important features of the results.

On the other hand, other experiments related to the Coase conjecture offer at least partial

support for the theory. Cason and Sharma (2001) considered a certain demand setting

where one seller faced two buyers, one of whom always had a high value and the other a

low value, and an uncertain demand treatment where with small probability both buyers

had the same value. The bargaining horizon was indefinite, with treatments also varying

the probability that the game would continue into another round. Theory predicts high

initial prices for certain demand regardless of continuation probability, and lower prices

for uncertain demand, which are declining in the continuation probability (for Coasean

reasons). However, the authors hypothesized that subjects would view both treatments

as comparable and uncertain. Initial prices in both demand treatments were indeed closer

to theory’s predictions for uncertain demand. Those prices declined in the continuation

probability for certain demand, in line with theory’s prediction for uncertain demand,

but they do not decline in the uncertain demand treatment. Guth, Kroger and Normann

(2004) considered a two round bargaining game where a seller faces a buyer with uniformly

distributed values, and both parties have private discount factors. They found support

for theory’s prediction that initial prices are increasing in the seller’s discount factor.

Slembeck (1999) investigated a repeated ultimatum game with a fixed partner (and

equally valuable chips for both players), that might be expected to share a similar Coasean

prediction with our infinite horizon game. Subjects only played the repeated game once.

Average offers across all twenty rounds were close to an equal split, although this was

also true in to a control treatment where subjects were randomly rematched after each

round. Rejection rates were significantly higher when partners were fixed, however, in

line with our finding of higher minimum acceptable offers in the infinite horizon.

Related to our infinite horizon game with unequal chip values, Roth and Malouf (1979)

considered a dynamic unstructured bargaining game where two subjects had to agree on

a division of the probability of winning a prize, worth three times as much to one of the

players. Both subjects could send freeform chat messages and propose any division at

any time within 12 minutes. Agreements clustered around two distinct fairness norms,

equal probability (50% probability for each subject) and equal expected payoffs (75%

probability for the low prize subject). We did not expect an equal chip division in our

setting to have a similar normative appeal to an equal probability of getting some prize

(as opposed to nothing)6, however, a different bargaining protocol may also explain our

different results.

6Equal expected monetary payoffs may have appeared very unfair to risk averse high prize subjects,
given their large chance of getting nothing.
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2 Theory and hypotheses

We propose a very simple model, in which agents care about fairness to different extents.

To simplify our analysis we consider a model with a continuous action space in which

responders see proposers’ offers before choosing their Minimum Acceptable (MA) offer.

Nonetheless, it is possible to show that the conclusions still hold in a fine, discrete action

space game with simultaneous choices (our actual game), in which there is a vanishingly

small probability that agents tremble over their action choices.7 Our solution concept is

Perfect Bayesian equilibrium, which requires sequential rationality at all information sets

and beliefs determined by Bayes’ rule wherever possible. Off equilibrium path beliefs are

unimportant for the analysis.

Each agent is a fair type with probability λ and is otherwise normal. A fair type’s utility

function when she receives $xi and her bargaining partner receives $xj, is uFi (xi, xj) =

xi − xj1[xj>xi]. This ensures that a fair type prefers disagreement to any agreement

that gives her opponent a higher monetary payoff. A normal (money maximizing) type’s

utility function is simply uNi (xi, xj) = xi. It does not affect the analysis if proposers

are assumed to always have normal preferences. An agreement is a division of chips

for the proposer and the responder, (cP , cR) where cP = 100 − cR ∈ [0, 100]. If agents

reach an agreement (cP , cR) in round t ∈ N (time is discrete), then monetary payoffs

are xi = δt−1eici, where ei is agent i’s exchange rate of chips to money in round 1 and

δ ∈ [0, 1). This is theoretically equivalent to having a fixed chip to money exchange

rate and agents’ who discount future payoffs exponentially using discount factor δ. No

agreement is captured by t =∞.

In both the infinite horizon and ultimatum game, at the start of a round a proposer can

make an offer, cR,t ∈ [0, 100] which the responder observes before accepting or rejecting.

In the infinite horizon game, if an offer is accepted in round t, then the game ends,

otherwise it proceeds to round t+ 1. In the ultimatum game, the game ends after round

1 regardless.

Let c̄R = 100eP
eR+eP

be the offer of chips which implies equal payoffs for both players, and

let m̄ = c̄ReR = (100 − c̄R)eP be the implied monetary payoff (so c̄R = 50 if eP = eR

and c̄R = 75 if eP = 3eR). The next proposition establishes the Coase conjecture for the

infinite horizon game. It says that there is a (generically) unique equilibrium. Moreover,

for any positive probability of fair types, λ ∈ (0, 1], if players are sufficiently patient,

δ ≈ 1, then there is almost immediate agrement on an equal payoff split. This is an

approximately efficient outcome.

Proposition 1. In the infinite horizon game there is a generically unique equilibrium

7Without such trembles our use of the “strategy method” in each round prevents sequential rationality
from having any bite.
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path of play. For any ε > 0 and any λ ∈ (0, 1] there is some δ̄ε,λ < 1 such that if δ ≥ δ̄ε,λ,

in any equilibrium cR,1 ≥ c̄R − ε, while for both players (and both types), payoffs are

within ε of m̄. If λ = 0 then cR,1 = 0, responder payoffs are 0 and proposer payoffs are

100eP (for both types).

The proposition’s proof is standard and is relegated to the Online Appendix. It involves

first showing that a proposer must offer c̄R within a finite number of rounds (such an

offer must be accepted). This holds because the proposer can always guarantee a positive

continuation payoff by offering c̄R, and so if she makes less generous offers, she must

expect normal types to sometimes accept, but in which case the updated probability of

facing a fair responder must increase and reach one. This induced finite horizon allows us

characterize a (generically) unique equilibrium by backward induction. The equilibrium

features offers which slowly increase up to c̄R (making normal types indifferent to waiting).

The final step is to show that there is an upper bound, T , on the number of rounds until

the proposer offers c̄R, that is uniform for all δ ∈ (0, 1). Given the option of waiting to

accept, responder payoffs are at least δT−1m̄ (which is within ε of m̄ for large δ).

The cutoff δ needed for the Coasean prediction to hold depends on the precise details

of the model. Nonetheless, the general Coasean prediction of approximately immediate

agreement, and approximately equal payoffs, for sufficiently high δ is seemingly robust to

more general forms of fairness preferences (e.g. see Lopomo & Ok (2001)). In particular,

this is the case when there is a continuum of types who differ continuously in their concern

for fairness with only a positive density refusing any offer less than c̄R. The reasoning is

identical: a proposer can guarantee a positive continuation payoff by offering c̄R and so

she must make this offer in a (uniformly) bounded number of rounds.

Hypothesis 1. In the infinite horizon game, initial offers, initial MA offers and final

agreed offers will be close to c̄R, payoffs of all agents will be close to m̄, and any efficiency

loss through bargaining will be small.

Exactly how close to the limit predictions the data need to be to satisfy this hypothesis is

a matter of judgement. To provide a cleaner baseline with which compare our results, we

also consider the ultimatum game. In the ultimatum game, there is no guarantee of ap-

proximately equal initial offers, equal payoffs or an efficient outcome. Normal responders

will accept any positive offer (a MA offer of 0), and so if λ > λ̄ = eP
eR+eP

, the proposer will

offer cR,1 = c̄R, which all responders accept (recall that λ > λ̄ in the infinite horizon we

also have cR,1 = c̄R). For smaller λ, however, she will offer cR,1 = 0, which only normal

types accept. To see this, notice that λ > λ̄ if and only if m̄ > (1− λ)eP100.

This implies that initial offers, responder payoffs and efficiency8 should be weakly higher in

8One conclusion from the proof of Proposition 1 in the appendix is that when λ > λ̄, there is agreement
in round 1 in the infinite horizon game too (not just almost immediate agreement).
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the infinite horizon while proposer payoffs should be weakly lower, although the inequality

need not be strict if fair types are very likely (λ > λ̄). Initial MA offers should always

be strictly higher, however, due to demand withholding. Fair types always set MA offer

equal to c̄R. If normal responders chose an MA offer of 0 in the infinite horizon (as well

as the ultimatum game) then proposers would offer 0 in round 1 and c̄R in round 2 for

large δ, making the responders strategy suboptimal.

As previously noted, the possibility that offers are close to an equal monetary split even

in the ultimatum game is not just a theoretical concern, this is typical in the literature

when each agent faces the same chip to money exchange rate. Notice, however, that the

cutoff λ̄ is increasing in the ratio eP
eR

. A higher ratio requires the proposer to sacrifice more

chips to buy off fair types, while she can still demand all the chips when facing a normal

type (she gets relatively more when being greedy).9 This is in line with the finding of

Kagel, Kim and Moser (1995) that offers are far from an equal monetary split and there

is significant disagreement when eP = 3eR. The Coasean prediction of Hypothesis 1 is

not affected by these exchange rates, however, and so we expect to see greater treatment

differences between the infinite horizon and ultimatum bargaining when eP
eR

is larger.

Hypothesis 2. Initial offers, responder payoffs and efficiency will be weakly higher, pro-

poser payoffs will be weakly lower and initial MA offers will be strictly higher in the

infinite horizon game than in the ultimatum game. Strict differences in these variables

are more likely when eP
eR

is larger.

Finally, we reiterate that our model of preferences shouldn’t be taken literally. The

literature is clear that in the ultimatum game (regardless of exchange rates) proposers do

not offer cR,1 = 0, nor do (any) responders accept such offers. Our qualitative predictions,

however, are robust to more complex models.

3 Experimental Design

We ran 12 sessions with a total of 236 subjects from the undergraduate student population

at the University of Virginia. They were recruited through the VeconLab and Darden

BRAD lab pools of students who had signed up to participate in experiments. No subject

participated in more than 1 session. The two treatment variables were the horizon of the

game, infinite or one-shot, and the exchange rates for chips, equal or 3 times as valuable

to proposers. Using the standard 2 × 2, design, there were 3 sessions of each of the 4

9This seems to be a robust prediction. Suppose the normal type was in fact modeled as in Fehr and
Schmidt (1999) as a type with uNi (xi, xj) = xi−αmax{xj − xi, 0} then she will accept any offer greater

than cR = 100ePα
eR(1+α)+ePα

in the ultimatum game. A proposer should therefore offer cR if λ ≤ λ =
c̄R−cR
100−cR

(and cR otherwise) where λ is again increasing in eP
eR

.
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treatments described in the following table.10

Treatments

Name Horizon Exchange Rates Subjects

1:1 DYN ∞ eP = eR = 1 60

3:1 DYN ∞ eP = 3 and eR = 1 60

1:1 UG 1 eP = eR = 1 60

3:1 UG 1 eP = 3 and eR = 1 56

In each match, subjects were matched in pairs and engaged in the infinite horizon or

ultimatum bargaining game (depending on which treatment was run in their session).11

Each round was implemented with simultaneous moves in which the proposer made an

offer and the responder an MA offer, and the offer was accepted if and only if it was larger

than the MA offer.12 In the infinite horizon treatments, discounting was implemented by

multiplying each side’s chips by 0.95t−1 when agreement was reached in round t.

Subjects received feedback about their own outcomes at the end of each round. In

particular, a responder saw the proposer’s offer, while a proposer only saw if their offer

was accepted or rejected (but not the MA offer of the responder).

Each session consisted of 10 matches where the matching procedure was the turnpike

design.13 That is, the subjects were given a fixed role, proposer or responder, and then

matched with every participant of the other role exactly once and in a way that if say

proposer A matches to responder B who later matches to proposer C who then matches

to responder D, proposer A will match with responder D before proposer C does.

All terms were neutrally framed. The experiment was programmed and run in z-tree (Fis-

chbacher 2007). Subjects were paid for 1 randomly selected match and average earnings

were $25.96.

4 Results

Our results are presented in three subsections. The first tests our two hypotheses, the

second examines behavior in infinite horizon bargaining in greater detail, and third de-

scribes evidence for subject learning. Except for that third subsection we evaluate the

10We actually used exchange rates of either eP = eR = $0.25 or eP = 3eR = $0.75, but to simplify the
exposition of the results we rescale these to eP = eR = 1 or eP = 3eR = 3.

11Potentially these games could have gone on forever. Fortunately, none did.
12Offers and MA offers could be made to the nearest one-hundredth of a chip.
13 In one session of Treatment 3:1 UG, recruitment error led to only 16 participants. In this session,

only 8 matches were possible.
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last five matches to allow subjects to first learn the game environment.14

We use non-parametric tests to calculate significance. Unless explicitly stated otherwise

these are Wilcoxon signed ranks tests for single sample tests (comparing data to theo-

retical benchmarks), or Wilcoxon-Mann-Whitney tests for two sample tests (comparing

data from two treatments). We test hypotheses match by match with each subject con-

tributing a single data point, and report the number of matches (out of 5) for which

differences are significant at the 5% level.15 It would not be correct to interpret a signif-

icant difference in any one match as clear evidence of a (non-random) treatment effect

because multiple hypotheses are being tested, however, we typically find that either all

5 matches deliver significant differences or none do so. The turnpike matching design

ensures that subjects should independently maximize utility for each match, without

considering the effect of their behavior on future matches. However, to the extent that

subjects learn about population behavior from previous matches independence might still

be violated. As a robustness check, therefore, we also report Wilcoxon-Mann-Whitney

tests for session-average data (6 observations).16,17

4.1 Hypothesis tests

Figures 1-6 display means, medians, and the interquartile range for round 1 offers, round

1 (MA) minimum acceptable offers, accepted offers, proposer payoffs, responder payoffs,

and efficiency by match and treatment respectively. We illustrate variability with the

interquartile range as much of the data is heavily skewed.

We first compare outcomes in the dynamic treatments to the theoretical benchmark of

an immediately agreed equal monetary split (Hypothesis 1) and then compare these to

ultimatum game outcomes (Hypothesis 2).

Figures 1 and 2 display round 1 offers and MA offers. Not only are means and medi-

ans close to c̄R (an equal monetary split) in both infinite horizon treatments, but the

interquartile range exhibit very little variation by the last few matches. The average offer

across matches 6-10 was 45.96 in 1:1 DYN and 69.69 in 3:1 DYN, while the average MA

14Guth, Ockenfels and Ritzberger (1995) speculate that the lack of opportunity to learn about their
complicated game environment explains why theory performed so poorly in their experiment. In a
different infinite horizon setting, the repeated prisoner’s dilemma, a survey by Dal Bó and Fréchette
2017 find that theory performs much better once subjects have had a chance to learn.

15Notice that for payoffs, efficiency and final accepted offers, independence would be badly violated by
averaging across rounds 6-10. For example, Proposer A would affect the averaged payoffs of Responder
B and C whom she is paired with in matches 6 and 7 respectively.

16In fact, for matches 9 and 10 when comparing 3:1 exchange rates we only have 5 observations due
to the recruitment issue detailed in footnote 13. In this case we use a 10% significance threshold, the
highest one feasible (when all sessions of one treatment are above all those of the other).

17Using session average data for Wilcoxon Signed Ranks tests can never give a significant difference
with only 3 data points.
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Figure 1. Offers by Match
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Figure 2. MA Offers by Match

offer was respectively 46.17 and 71.64. Each of these averages is less than 9% from c̄R.

Statistically, offers are significantly less than c̄R for every one of the last 5 matches for

each treatment while the MA offers are significantly less than c̄R in 3 of the last 5 matches

for each treatment. When offers and MA offers differ from c̄R, they almost always are less

than it. Close to, but possibly below, c̄R is precisely what the Coase Conjecture predicts

and so this is consistent with the first statement of Hypothesis 1. The fact that initial

offers were on average slightly lower than MA offers suggests that, at least occasionally,

there was delay in reaching agreement.

Figure 3 illustrates perhaps our most striking result, that final accepted offers are almost

exactly c̄R. They are not significantly different from it in any of the last 5 matches of

either treatment. The average across the last 5 matches is 50.16 for 1:1 DYN and 74.67

for 3:1 DYN, less than 0.5% from c̄R. Moreover, there is very little variation around this

average, highlighted by the degenerate interquartile ranges. Indeed, in 1:1 DYN, 67% of

accepted offers are exactly 50, and 92% are within 5 of 50. In 3:1 DYN, 76% of accepted
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Figure 3. Accepted Offers by Match
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Figure 4. Proposer Payoffs by Match

offers are exactly 75 and 97% are within 5 of 75. This is again in line with Hypothesis 1.

Figures 4 and 5 display payoffs for proposers and responders respectively. Hypothesis

1 predicted payoffs close to m̄ for both players. The average proposer payoff in the

last 5 matches is 45.96 and 71.95 for 1:1 DYN and 3:1 DYN respectively, while the

average responder payoff is 46.32 and 70.71. All these averages are less than 9% from

m̄, and moreover, the interquartile ranges indicate little variation. Statistically, payoffs

are significantly less than m̄ for all of the last 5 matches for proposers in Treatment

1:1 DYN and for responders in both treatments, while proposer payoffs in 3:1 DYN are

significantly different in only 2 matches. The difference between proposer and responder

payoffs can also be directly compared using a matched-pairs Wilcoxon signed ranks test.

This difference is significant for only 1 of the last 5 matches for each treatment. While

the small differences in magnitude of payoffs from m̄ is again in line with the Coasean

prediction, it should be noted that theory would predict proposer payoffs slightly larger

than m̄ if not exactly equal (because proposers should always be able to offer c̄R and have
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Figure 5. Responder Payoffs by Match

0

0.25

0.5

0.75

1

0 1 2 3 4 5 6 7 8 9 10

E
ff

ic
ie

n
cy

Match

Avg. DYN Med. DYN Avg. UG Med. UG

(a) 1:1 treatments

0

0.25

0.5

0.75

1

0 1 2 3 4 5 6 7 8 9 10

E
ff

ic
ie

n
cy

Match

Avg. DYN Med. DYN Avg. UG Med. UG

(b) 3:1 treatments

Figure 6. Efficiency by Match

it immediately accepted).

Figure 6 reports efficiency, which is recorded as δt−1 when there is agreement in round

t (and 0 if there is no agreement in the ultimatum game). Across the last 5 matches,

average efficiency is 92% and 95% for 1:1 DYN and 3:1 DYN respectively. This is again

in line with Hypothesis 1’s prediction of little inefficiency. Indeed, a majority of pairs

reached agreement in round 1 and at least 70% did so by round 2 for both treatments.

Statistically, efficiency is nonetheless significantly less than 100% for all of the last 5

matches in both treatments.18

In summary, we view the small differences in magnitude between observed outcomes and

an immediate agreement on an equal monetary split as strong evidence in support of

Hypothesis 1 and by extension the Coase Conjecture.

18Statistical significance here is not surprising as efficiency is bounded above by 100% so all deviations
are negative.

13



We next compare infinite horizon game outcomes to those in the ultimatum game in

order to assess Hypothesis 2. We first compare the treatments in which proposers and

responders have the same exchange rate (1:1 DYN vs 1:1 UG). As seen in Figure 1, round

1 offers are essentially identical for both game horizons and there are no statistical differ-

ences for any of the last five matches (which is robust to session-average comparisons).

Of course, theory allows for no strict treatment difference in this case, because if fair

types are sufficiently likely, an equal split offer may be optimal even in the ultimatum

game (this is why Hypothesis 2 allows for weak differences). In fact, we can verify that

this was the case. Given the empirical distribution of MA offers in the last 5 matches,

the offer which maximized proposer payoffs in the ultimatum game was exactly c̄R = 50.

Even with no difference in offers, Hypothesis 2 predicted that round 1 MA offers should

be strictly higher in the infinite horizon than in the ultimatum game (due to demand

withholding). This is indeed what we find, as illustrated in Figure 2. The difference is

significant for all of the last 5 matches (which is robust to session-average comparisons).

Moreover, the magnitude of the difference is large, across the last 5 matches, the average

MA offer is 66% larger in the infinite horizon than in the ultimatum game (46.17 vs

27.83). This suggests that most subjects who didn’t care much about fairness, nonetheless

understood the logic of the Coase Conjecture (i.e. they could profitably hold out for close

to an equal split in the infinite horizon).19

Given that initial offers were close to an equal split for both game horizons it is unsur-

prising that payoffs are also close to each other for both proposers and responders, as

seen in Figures 4 and 5. As a result, there is just one case of a significant treatment

difference for payoffs, match 8 for proposers where payoffs are significantly lower in the

infinite horizon game, and this difference is not robust to session-average comparisons.

Figure 6 suggests that mean efficiency is slightly higher in the infinite horizon than in

the ultimatum game. Indeed, averaging over the last 5 matches efficiency is 82% in

the ultimatum game compared to 92% in the infinite horizon. Nonetheless, the only

significant difference is in match 8. This is perhaps not surprising given that the medians

and interquartile ranges are tightly clustered around 100% for both treatments. However,

it may also reflect the fact that the ranksum test is not entirely appropriate here, because

efficiency in the ultimatum game is binary rather than continuous, whereas in the infinite

horizon it can be any multiple of 0.95. On the other hand, our robustness check using

session averages finds significant differences in 3 of the 5 matches.

19One fact that isn’t entirely in line with theory is that 57% of round 1 MA offers were (at least) c̄R in
1:1 DYN compared to only 20% in 1:1 UG. Theory predicts that only (perfectly) fair types should have
such high acceptance thresholds in either treatment. Other subjects should accept slightly less than c̄R
in the infinite horizon when anticipating c̄R in the following round (e.g. a money maximizing type should
accept anything above δc̄R = 47.5). This perhaps suggests that subjects used rules of thumb rather than
a precise tradeoff between higher future offers and the cost of delay.
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According to Hypothesis 2, the best test for the Coase Conjecture (with strict treatment

differences) is the comparison between the ultimatum game and the infinite horizon when

chips are worth three times as much to proposers (3:1 DYN vs 3:1 UG). This is because

there is less incentive for proposers to make equal split offers in the ultimatum game

for these exchange rates. Not only do we observe significant differences where theory

predicts, but these differences are large in magnitude

Averaging across the last 5 matches, round 1 offers are 26% higher in the 3:1 DYN than

in 3:1 UG (69.69 vs 55.29), while MA offers are as much as 98% higher (71.64 vs 36.10).

The treatment differences are significant for every one of the last 5 matches for both

variables (and robust to session-average comparisons). Unlike for 1:1 exchange rates, the

empirical distribution of MA offers in the ultimatum game implies that the expected

payoff maximizing offer is not c̄R = 75 but rather 50. This incentive to make offers below

c̄R in the ultimatum game is exactly what is needed to deliver strict treatment differences

(for offers, payoffs and efficiency).

As a consequence, proposer payoffs are 28% lower (71.95 vs 99.81), while responder

payoffs are 52% higher payoffs (70.71 vs 46.57), averaging across the last 5 matches. For

both roles, these payoff differences are significant for every one of the last 5 matches (the

comparisons are all robust to session-averages for responders, but only robust for 3 out

of 5 matches for proposers).

Finally, average efficiency in the infinite horizon, at 95%, is again higher than in the

ultimatum game, at 80%, averaging across the last 5 matches. This difference is not

significant for any match, however, recall that the ranksum test is perhaps not entirely

appropriate here. For session averages, the difference is significant for 4 of the 5 matches.

In summary, subject behavior is very much consistent with Hypothesis 2. While large

strict treatment differences for some variables are only observed when the exchange rate

ratio is 3:1 rather than 1:1, this is exactly what theory led us to expect. The finding that

infinite horizon outcomes are both very close to an immediate agreement on an equal

monetary split (Hypothesis 1) and closer to that outcome than the ultimatum game

(Hypothesis 2), appears to offer strong support for the Coase Conjecture.

4.2 Infinite Horizon Bargaining

In this subsection, we explore subject behavior in the infinite horizon game in greater

detail. As previously mentioned, a majority of matches reached agreement in round 1

for both infinite horizon treatments, however, here we focus on those that did not. The

(unique) equilibrium of the infinite horizon game which provides the basis for the Coase

conjecture predicts that if proposers do not offer an equal monetary split c̄R immediately,
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Figure 7. Average Offers by Round

then after a less generous offer is rejected it should be increased (although not above c̄R).

In the simple two type model developed in the theory section this rate of increase of offers

is 1−δ
δ
≈ 5% in order to make money maximizing responders indifferent to waiting. With

a richer set of “somewhat fair” types in the model the rate of increase may be smaller,

but it should not be larger or else all responders would find it worthwhile to wait for c̄R.

Figure 7 plots the average offers in each round for all offers, accepted offers, and rejected

offers for the first 5 rounds.20 Lines are placed between all offers in round t and rejected

offers in round t− 1 to highlight the change in offer after an offer is rejected.

The figure illustrates several things. First, we confirm the previous result that accepted

offers are almost exactly c̄R. This seems to hold regardless of how long the bargaining

game lasts. Second, we see that proposers do indeed increase their offers after rejection.

This is true for all but the change from round 4 to 5 in Treatment 1:1 DYN (and that

case accounts for only n = 7 observations).

The average increase of round 2 offers given a rejected round 1 offer is as much as 11%

in 1:1 DYN (41.78 to 46.44) and 8% in 3:1 DYN (64.09 to 69.41), although the rate is

slightly lower between later rounds. This suggests that it was profitable on average for

responders to reject the round 1 offers which they in fact rejected. However, this clearly

does not mean that it was profitable to reject all offers, in particular those already close

to c̄R. To provide a clearer assessment of which offers were worth rejecting, Figure 8

plots rejected round 1 offers against the percentage increase of offer in round 2 as well

as a smoothed lowess line of best fit.21 The lowess line is monotonically decreasing in a

proposer’s initial offer for both treatments. In 1:1 DYN the lowess line falls below 5%

at 47.5, which is exactly δc̄R (if proposers never offer above c̄R then money maximizing

2092% of matches last less than or equal to 5 rounds.
21The 3:1 DYN figure excludes one round 1 offer of 60 which fell 100% to 0.
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Figure 8. Percentage increase of round 2 offer by rejected round 1 Offer

responders should always accept offers above δc̄R). In 3:1 DYN the lowess line falls below

5% at 67.5. Below these cutoffs, proposers’ were not able to credibly commit to not

substantially increasing offers, making it optimal for even money maximizing responders

to reject. Very few round 1 offers of at least c̄R were rejected (15% in 1:1 DYN and 7%

in 3:1 DYN), but the average increase among these was 1.5% in 1:1 DYN and 2.5% in

3:1 DYN (a majority of such offers in each treatment remained constant).

Theory’s predictions for MA offers are less clear. In our simple two type model, a money

maximizing responder mixes over her acceptance decision. This mixing could potentially

be done at the population level, however, so that each responder’s MA offers are constant.

In fact, this was typically the case. Figure 9 shows the fraction of round 2 offers and

MA offers which represent a big (strictly more than 5%) decrease, a small (between 5%

and 0%) decrease, no change, a small increase and a big increase compared to round 1.

More than 68% (in 1:1 DYN) and 54% (in 3:1 DYN) of rejected round 1 offers increased

by more than 5%, while 53% (in 1:1 DYN) and 70% (in 3:1 DYN) of MA offers did not

change at all. It seems that while proposers’ increased their offer following a rejection

(eventually up to c̄R), responders were more content to wait for that to happen. This is

broadly consistent with the predicted equilibrium dynamics. To statistically confirm that

impression, we compare the change in round 2 offers averaged at the proposer level (4.11

in 1:1 DYN and 4.77 in 3:1 DYN) with the negative change (change×(−1)) in round 2

MA offers averaged at the responder level (0.78 in 1:1 DYN and 2.41 in 3:1 DYN). The

null hypothesis of no difference between these changes is rejected at 1% level in a rank

sum test for both exchange rates.

Figure 8 shows that given proposer behavior, responders should have optimally rejected

(round 1) offers which were not close to an equal monetary split. Figure 2 shows that on

average responders did in fact do this. Given responder behavior, what was a proposers’

optimal strategy? We can attempt an answer to this question by treating a proposer’s
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Figure 9. Change in Offers and MA Offers in round 2
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Figure 10. Initial Offers and Proposer Payoffs

round 1 offer as a proxy for her (infinite horizon) strategy. Figure 10 plots a proposer’s

payoff in a match against her round 1 offer as well as a smoothed lowess line. In both

treatments the lowess line is initially monotonically increasing and then monotonically

decreasing, reaching a maximum at exactly c̄R.22 Figure 1 established that proposers’

average round 1 offers were indeed very close to c̄R. Such approximate optimality from

both proposers and responders suggests that behavior was in fact not very far from (a

Coasean) equilibrium.

4.3 Learning

Finally, we investigate how behavior changed over the course of the experiment. Figures

1-6 suggest that learning was more important for 3:1 DYN than for other treatments.

22Notice that if responders always accept offers above c̄R, then this line mechanically decreases for
offers above c̄R.
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Much of this learning occurs in the first few matches.

Comparing the first and last match in 3:1 DYN, proposers’ round 1 offers increased by

52% (46.62 to 70.85), while responders’ MA offers increased by 19% (59.62 to 70.83).

A matched-pairs Wilcoxon signed ranks test finds that both changes are significantly

different from zero at the 1% level. Proposer payoffs decreased 26% (99.98 to 73.60) from

the first to the last match, while responder payoffs increased by 24% (57.28 to 71.25),

with both changes significant at the 1% level. Average efficiency increased from 91%

to 96%, which is significant at the 10% level (for the efficiency change associated with

proposers).23

By contrast in the other treatments there was little evidence for learning. In 1:1 DYN,

the 13% increase of round 1 offers between the first and last match (43.33 to 48.88) is

significant at the 10% level, but all other changes are insignificant. In 1:1 UG, the 24%

increase in proposer payoffs (36.07 to 44.60) is significant at the 10% level, but all other

changes are insignificant. Finally in 3:1 UG the 11% increase of offers (51.25 to 56.80) is

significant at the 10% level, but all other changes are insignificant.

Learning in 3:1 DYN, seems to occur in two stages. First, responder behavior converges to

the Coasean prediction, and only then does proposer behavior adapt. Round 1 MA Offers

(and final accepted offers) are already close to c̄R = 75 by round 3, with an essentially

degenerate interquartile range. Round 1 offers, meanwhile take longer to converge (the

interquartile range overlaps with c̄R = 75 for the first time only in match 5).

It is perhaps not surprising that learning was most important in one of the infinite

horizon treatments, a more complicated bargaining environment. Within the infinite

horizon treatments, the fact that significant learning occurs only for the 3:1 exchange

rate, is perhaps because of proposers’ stronger temptation to make unequal payoff offers

in this case (as in 3:1 UG). Only with experience did they come to understand that such

low ball offers were not worthwhile in the infinite horizon (due to the Coase conjecture),

and merely led to delay.

5 Conclusion

It is often difficult to obtain enough experimental control to convincingly test important

theoretical results in lab. Subjects’ heterogenous, unobserved preferences for fairness

represent an important potential confound for game theoretic predictions. In this paper,

rather than ignoring such naturally occurring preferences, we embraced them, and sought

23For payoffs and efficiency, the assumption of independence may be quite suspect here, because
Proposer A and B’s change of payoff may both be affected by the behavior of Responder C (with whom
they are paired with in matches 1 and 10 respectively).
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to directly use this source of private information to test the Coase conjecture. For an

infinite horizon bargaining game in which proposers make all offers, the theory predicts

that patient players will agree almost immediately on close to an equal monetary split.

This prediction seems to perform very well. Initial offers, initial minimum acceptable

offers, proposer payoffs, responder payoffs and efficiency are all less than 9% away from the

immediate equal split benchmark (theory’s limit prediction as players become infinitely

patient).

One problem with our theoretical prediction is that it lacked precision (how close is

close?). We, therefore, also compared the infinite horizon game outcomes to those in an

ultimatum game. Our finding that it is impossible to statistically distinguish outcomes

(apart from minimum acceptable offers) for the two different game horizons when chips

are equally valuable to both players, is consistent with the theory (because immediately

offering an equal split may always be profitable when fair types are very prevalent).

According to theory, however, strict treatment differences are more likely when chips are

worth more to proposers than responders, which is exactly what we find. Not only are

initial offers, initial minimum acceptable offers and proposer payoffs significantly lower

in the infinite horizon, and responder payoffs significantly higher, but the magnitude of

the treatment differences is large. We view our findings as strong evidence that subjects

comprehend the basic message of the Coase conjecture, that with one sided asymmetric

information the uniformed party must “give in” to the informed party almost immediately

(as if she was bargaining with the informed party’s toughest type).

It might be argued that while the Coase conjecture performs well in our narrowly defined

setting, this is at the expense of sacrificing its reach. As a result, we may not be able to

make a clear prediction about what will happen in Coase’s original setting of a seller facing

a buyer who is privately informed about her value (because the real world is messy and

has additional sources of private information, including those about fairness preferences).

Two responses are in order. First, bargaining theorists have long acknowledged that

clear predictions are rare when there are multiple sources of private information. Some

progress has been made, however, for instance in two-sided reputational models (Abreu

& Gul (2000), and those models are still built on Coasean foundations (with one-sided

private information). In this light, our experiment is important because it shows that

those foundations appear secure. Second, our result highlights how fairness preferences

in particular, may play an outsized role in real world bargaining situations. Even in

settings where people are unlikely care much about fairness (e.g. CEOs of multinational

corporations), the mere possibility that they do combined with the Coase conjecture may

be enough to profoundly affect outcomes.
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6 Online Appendix (not for publication)

Proof of Proposition 1

I first define a series of equilibrium offers q(n) = δnc̄R, which will apply when there are

n rounds of bargaining remaining. Notice that this makes a normal responder indifferent

between accepting immediately or waiting for an additional round.

The equilibrium probability that the responder is fair with n rounds of bargaining re-

maining is η(n), and the proposer’s value function divided by her exchange rate eP is

W (n). We shall refer to this as simple her value function (rescaling by eP in this way

does not affect the analysis). A simple application of Bayes’ rule implies that if beliefs are

given by η(n) today and η(n−1) tomorrow and only normal types accept, then a fraction
η(n−1)−η(n)

η(n−1)
of responders do in fact accept today. The variables η(n) and W (n) are defined

recursively from η(n − 1) and W (n − 1) starting with η(0) = 1 and W (0) = 100 − c̄R
using the equality:24

η(n− 1)− η(n)

η(n− 1)
(100− q(n)) +

η(n)

η(n− 1)
δW (n− 1) (1)

=
η(n− 1)− η(n)

η(n− 1)
(100− q(n− 1)) +

η(n)

η(n− 1)
W (n− 1)

with W (n) defined as the value at which equality is obtained. This means that η(n)

represents the belief at which the proposer is just indifferent between offering q(n) today

followed by q(n − 1) tomorrow, or immediately offering q(n − 1). Although the lower

offer may be desirable other things equal, it involves some delay. Meanwhile, W (n)

simply represents good accounting for the proposer’s value function. Using the equality

q(n− 1)− q(n) = (1− δ)q(n− 1) and rearranging the above equation gives:

η(n− 1)− η(n)

η(n− 1)
=

W (n− 1)

q(n− 1) +W (n− 1)
(2)

Plugging this in to evaluate W (n) gives:

W (n) =
100W (n− 1)

q(n− 1) +W (n− 1)
(3)

24The second line of this equality is equal to W (0) if n = 1 and η(n−2)−η(n)
η(n−2) (100 − q(n − 1)) +

η(n)
η(n−2)δW (n− 2) if n = 2.
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We are now ready to characterize the equilibrium.

Lemma 1. There is a generically unique equilibrium path. If λ ∈ (η(N), η(N − 1)) then

bargaining must finish by round N . On the equilibrium path offers are:25

cR,t = q(N − t) for t ∈ {1, ..., N}

Beliefs that responder is a fair type are:

µt = η(N − t) for for t ∈ {2, ..., N}

Notice that equation 2 implies η(1) = c̄R
100

= eP
eR+eP

, so that if λ > λ̄ = eP
eR+eP

then we

must have cR,1 = c̄R, as claimed in the main text.

Given the characterization of the lemma the proof of the Proposition is almost immediate.

Notice thatW (n−1) ≥ 100−c̄R and q(n−1) ≤ c̄R imply that the probability of acceptance

in each round is bounded away from zero:

η(n− 1)− η(n)

η(n− 1)
=

W (n− 1)

q(n− 1) +W (n− 1)
≥ 100− c̄R

100
> 0

Hence, given any λ > 0, Bayesian updating then implies for t ≥ 1 that µt+1 ≥ µt
100
c̄R
≥

λ
(

100
c̄R

)t
≥ 1. Clearly, therefore, bargaining must end before round T =

⌈
ln( 1

λ)
ln
(

100
c̄R

)
⌉

+ 1 for

any δ, or else µT+1 > 1. Given this, we must have that cR,1 ≥ q(T − 1) = δT−1c̄R, and

responder payoffs for both types are certainly greater than δT−1c̄ReR (given their option

of waiting to accept the offer c̄R), while proposer payoffs are certainly greater than m̄

(given the option to offer c̄R immediately). Choosing δ̄λ < 1 appropriately, therefore,

gives the result (notice in particular that if the responder expected payoff is greater than

m̄− ε then the proposer’s payoff must be smaller than m̄+ eP ε
eR

).

Proof of Lemma 1

First, we claim that bargaining must end if the proposer ever offers at least c̄R. Let q

be the supremum of equilibrium offers and initially suppose that q > c̄R. In which case,

there exists some ε ∈ (0, q− c̄R) such that q−ε > δq so that all responders should accept,

but in which case the proposer should never make an offer above q − ε, a contradiction.

Hence, q̄ ≤ c̄R, and if the proposer every offers c̄R in equilibrium, it must certainly be

accepted (as cR > δcR).

A history ht is sequence of past offers. Let µt+j(ht) and cR,t+j(ht) describe beliefs and

25For λ = η(N) there are two possible price and belief paths one corresponding to the equilibrium
where λ ∈ (η(N), η(N − 1)), the other corresponding to the equilibrium where λ ∈ (η(N + 1), η(N)).

24



offers in round t + j consistent with some continuation equilibrium after ht (such that

offers have not yet hit c̄R, ending bargaining). The proposition then follows from the

statements below, which are proved by induction on n.

1. If µt(ht) > η(n) then bargaining last at most n more rounds including the current

one, cR,t+j(ht) ≥ q(n− 1− j) for j ∈ {0, ..., n− 1} and µt+j(ht) ≥ η(n− 1− j) for

j ∈ {1, ..., n− 1}.

2. If µt(ht) ∈ (η(n), η(n− 1)) then the proposer’s continuation value is given by:

Vn−1(µt(ht)) =
η(n− 1)− µt
η(n− 1)

(100− q(n− 1)) +
µt

η(n− 1)
W (n− 1)

3. If µt(ht) ≤ η(n) and cR,t ∈ (q(n), q(n− 1)) then µt+1(ht, cR,t) = η(n− 1).

4. If µt(ht) ≤ η(n) and cR,t < q(n), then µt+1(ht) ≤ η(n).

5. If µt(ht) = η(n) then the proposer’s continuation value is W (n).

6. If µt(ht) < η(n) then bargaining lasts at least n + 1 more rounds including the

current one with cR,t+j(ht) ≤ q(n− j) and µt+j(ht) ≤ η(n− j) for j ∈ {0, ..., n}.

Consider the above claims for n = 0, and let η(−1) = 1 and W (−1) = q(−1) = 100− c̄R.

1) and 2) and 3) are then true immediately because their antecedents cannot be activated.

4) is true because µt+1(ht, cR,t) ≤ 1 = η(0). For 5), recall that any offer of at least c̄R

must be accepted. If µt(ht) = 1 then the best possible continuation value the proposer

can obtain is from proposing c̄R immediately, because the fair responder will not accept

less. This gives a continuation value of W (0) = 100− c̄R. For 6) given that the game has

not ended it is immediate that if bargaining lasts at least 1 round, and given that both

types will immediately accept an offer of c̄R = q(0) we must have cR,t(ht) ≤ q(0).

Given that the claims are true for arbitrary (n− 1) we proceed to show that they must

also be true for n, with n > 0. The true statements for (n-1) referred to by 1),...,6)

while the statements to be proven for n are instead referred to by 1’),...,6’).

1’) we need only consider µt(ht) ∈ (η(n), η(n − 1)] because for µt(ht) > η(n − 1) this is

true by claim 1. We first make a subclaim that there can be at most a finite number of

rounds j such that µt+j(ht) ≤ η(n − 1). This is ultimately because the proposer always

has the option of offering (fractionally more than) c̄R, which will be accepted and thus

ensures a continuation value of at least 100− c̄R.

Suppose there is an equilibrium offer path which lasts an infinite number of rounds

without agreement and gives the proposer 100− c̄R but never has µt+j(ht) > η(n− 1) for

any j ∈ N. Let at+s(ht) be the equilibrium implied probability of acceptance in round
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t + s (conditional on ht). Given that the proposer can obtain 100 − c̄R > 0 for any

µt(ht)in[η(n− 1), η(n)] we must have:

lim
m→∞

m∑
j=0

δjat+j(ht)100 ≥ 100− c̄R

However, for N such that δN < 100−c̄R
200

we must have:

N∑
j=0

at+j(ht) >
100− c̄R

200

And so in N rounds at least fraction 100−c̄R
200

of the responders accept (all normal types).

The same argument can be repeated k times implying that:

µt+kN(ht) ≥ µt

(
200

100 + c̄R

)k
The right hand side of this equation is greater than 1 for large k, giving a contradiction,

and so eventually we must have µt+j(ht) > η(n− 1).

Let t′ be the supremum of times such that µt′(ht) ≤ η(n− 1). For n = 1 bargaining must

end in round t′ with cR,t′ = c̄R. For n > 1, we must have µt′+1(ht) > η(n − 1). This

immediately implies that cR,t′+1(ht) ≥ q(n−2) by claim 1). If cR,t′ < q(n−1) the normal

type responder would then strictly prefer to wait an extra round to obtain the lower price

(because cR,t′ < δq(n− 2)), which would imply µt′(ht) = µt′+1(ht) a contradiction. This

means that cR,t′(ht) ≥ q(n− 1).

If µt′(ht) < η(n− 1) we must have cR,t′+j(ht) ≤ q(n− j) for j ≤ n by claim 6) and so in

conjunction with the argument of the previous paragraph ct′+j = q(n− j). This in turn

implies the proposer’s continuation payoff in round t′ is given by Vn−1(µt′(ht)) where this

is defined in equation 3. If µt′(ht) = η(n − 1) on the other hand, then the proposer’s

continuation value is W (n− 1) = Vn−1(µt′(ht)) by claim 5).

Now suppose t′ 6= t and consider time t′ − 1 where µt′−1(ht) ∈ (η(n), η(n − 1)]. For the
proposer’s offer to be accepted with positive probability it must be that cR,t′−1(ht) ≥ q(n)
or else the responder would wait for the offer of cR,t′(ht) = q(n − 1). But in which case
this strategy cannot obtain the proposer the continuation value of Vn−1(µt−1) which we
know she could obtain by offering (fractionally more) than q(n − 1). To see this notice
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that her continuation value in the supposed equilibrium can be written as follows:

µt′(ht)− µt′−1

µt′(ht)
(100− cR,t′−1(ht)) +

µt′−1(ht)

µt′(ht)
δVn−1(µt′(ht))

=
µt′(ht)− µt′−1(ht)

µt′(ht)
(100− cR,t′−1(ht)) +

µt′−1(ht)

µt′(ht)

η(n− 1)− µt′(ht)
η(n− 1)

δ(100− q(n− 1)) +
µt′−1(ht)

η(n− 1)
δW (n− 1)

≤η(n− 1)− µt′−1(ht)

η(n− 1)
(100− q(n)) +

µt′−1(ht)

η(n− 1)
δW (n− 1)

<Vn−1(µt′−1(ht))

Where the first inequality follows because of the cR,t′−1(ht) ≥ q(n), and the second

inequality follows from the fact that µt′−1(ht) > η(n), and from remembering that η(n)

is defined as the lowest belief at which the third line would be equal to the fourth (see

equation 1). And so finally we have a contradiction, proving that t′ = t. We have

established that if µt(ht) ∈ (η(n), η(n − 1)] then cR,t(ht) ≥ q(n − 1) and the proposer’s

continuation payoff must be at least Vn−1(µt′(ht)). Furthermore, µt+1(ht) ≥ η(n− 2) for

n > 1 or else the proposer would not obtain Vn−1(µt′(ht)). The claims for cR,t+j(ht) ≥
q(n− j) and µt+j(ht) ≥ η(n− 1− j) for j ≥ 1 then follow from claim 1).

2’) This is simply accounting given claim 1’) and 6).

3’) By assumption µt(ht) ≥ η(n) and cR,t ∈ (q(n), q(n − 1)). Suppose then that equi-

librium acceptance of this offer implies µt+1(ht, cR,t) < η(n − 1), then by claim 6)

cR,t+j(ht, cR,t) ≤ q(n − j) for j > 0, but in which case all high types would optimally

accept cR,t and so µt+1(ht) = 1. But that in turn implies cR,t+1(ht) = c̄R. This presents a

contradiction for n > 1 and immediately implies the claim 3’) for n = 1. In either case,

however, it must be true that µt+1(ht) ≥ η(n− 1).

If on the other hand µt+1(ht, cR,t) > η(n − 1) for n > 1 then by claim 1) we have

cR,t+1(ht, cR,t) ≥ q(n − 2), but in which case it is not optimal to accept cR,t in round t,

and so µt(ht, cR,t) = µt+1(ht) < η(n−1), a contradiction. And so, µt+1(ht, cR,t) = η(n−1).

4’) By assumption µt(ht) ≤ η(n) and cR,t < q(n). Suppose that µt+1(ht, cR,t) > η(n). By

claim 1’) this implies that cR,t+1(ht, cR,t) ≥ q(n−1), and so the normal type of responder

would not optimally accept, ensuring µt(ht) = µt+1(ht, cR,t) ≤ η(n), a contradiction.

5’) If µt(ht) = η(n), then the proposer can obtain at least the value Vn−1(η(n)) = W (n) as

given by equation 3, by offering (fractionally more than) cR,t = q(n) or cR,t = q(n−1) (by

claims 3, 3’ and 5). Offering any particular cR,t ∈ [0, q(n))∪(q(n), q(n−1)) cannot obtain

this value. In particular, notice that offering cR,t < q(n) implies µt+1(ht, cR,t) = µt(ht) by

claim 4’), and so it simply delays proceedings, and means the proposer cannot obtain a

payoff as great as W (n). This means the proposer’s equilibrium continuation value must

be exactly W (n).
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6’) Suppose µt(ht) < η(n), then by Claims 3’) and 5 the proposer can guarantee a

value Vn(µt(ht)) by offering (fractionally more than) q(n). Notice that Vn(µt(ht)) >

Vn−j(µt(ht)) for j > 0 (for j = 1 this follows given how η(n) is defined), which implies

that offering strictly more than q(n) cannot obtain such a utility. This then must imply

that cR,t ≤ q(n).

If the time t offer is not accepted with positive probability then µt+1(ht) = µt(ht) <

η(n− 1) and so claim 6’) is true immediately due to claim 6). If on the other hand this

time t offer is accepted with positive probability but cR,t+j > q(n−j) for some j > 0, then

it is not optimal for the normal responder to accept the time t offer, (she prefers instead

to wait until time t + j), contradicting a positive probability of acceptance. Finally if

µt+j(ht) > η(n − j) for some j > 0 then this would imply ct+j(ht) > q(n − j) by claim

1), but we have just claimed that this leads to a contradiction.

This proves statements 1’) through 6’). These being true for all n implies that any

equilibrium must have the properties described in the Lemma. To prove that such an

equilibrium does exist, all that remains is to specify is off path strategies and beliefs for

the proposer, the responder’s strategy being fully outlined above.

Suppose that µt ∈ (η(n), η(n − 1)]. If the proposer makes an offer, which is strictly less

than q(n), then as specified above no responder accepts. Given the responder continuation

strategies laid out above then the proposer is content to follow the price path (q(n −
1), q(n−2), ..., q(0)) from the next round onward making the responders rejection optimal.

If the proposer instead offers cR,t ∈ (q(n− k), q(n− k − 1)] with k ≥ 0 then as specified

above, a responder will accept so that µt+1 = η(n−k−1). Given responder continuation

strategies the proposer is then indifferent between charging the offer path ((q(n − k −
1), q(n− k− 2), ..., q(0)) or the path ((q(n− k− 2), q(n− k− 3), ..., q(0)). By mixing and

following the first price path with probability
cR,t−δq(n−k−2)

δ(q(n−k−1)−q(n−k−2))
and the second with

the complimentary probability, we can ensures that responders’ behavior is optimal. If

an offer above c̄R is rejected, we can specify that µt(ht) = 1 forever afterwards and the

proposer optimally offers c̄R, which is always accepted by both types.

Strategies then represent optimal choices for both the responder and proposer by con-

struction at every possible history given the other’s strategy, and beliefs are determined

by Bayes’ rule wherever possible, hence this is an equilibrium.
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