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Abstract
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observing unusual states, producing state- and history-dependent responses akin to
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1 Introduction

Contrary to standard models where rational agents act optimally, in both real world and

experimental settings, economic agents often choose what appear to be sub-optimal actions,

especially when faced with complex situations. To account for that, the literature has become

increasingly interested in modeling cognitive limitations that constrain the agents’ ability

to reach the full information rational decision. This interest has come from different fields

including decision theory, behavioral economics, macroeconomics, finance and neuroscience

and has led to a diverse set of approaches. The common principle of these approaches is that

agents have limited cognitive resources to process payoff relevant information, and thus face

a trade-off in the accuracy of their eventual decision and the cognitive cost of reaching it.

A key modeling choice is the nature of the costly payoff-relevant information that agents

can choose to acquire. In general, a decision can be represented as a mapping from the

information about the objective states of the world to the set of considered actions. Therefore,

cognitive limitations in reaching the optimal decision may be relevant to two different layers

of imperfect perception. First, cognitive limitations may imply imperfect observation of the

objective states, such as income or interest rates. Second, cognitive limitations may imply

limited perception of the optimal mapping from information about the objective states to

the actual optimal action, such as consumption or labor.

The standard approach in the macroeconomics literature is to focus on the first layer

of uncertainty and assume that agents perceive the objective states with noise, but use

the mapping of information about the states to actions derived under full rationality. This

approach is exemplified by the Rational Inattention literature inspired by Sims (1998, 2003).1

More generally, the idea of allowing agents to choose their information about the unknown

objective states, but knowing what to do with it, is present in other parts of the literature.2

In this paper, we develop a tractable framework that focuses on the second layer

of imperfect perception. In our model agents observe all relevant objective state variables

perfectly. However, agents have limited cognitive resources that prevent them from computing

their optimal policy function and coming up with the optimal state-contingent plan of action.3

1Macroeconomic applications include consumption dynamics (Luo (2008), Tutino (2013)), price setting
(Maćkowiak and Wiederholt (2009), Stevens (2014), Matějka (2015)), monetary policy (Woodford (2009),
Paciello and Wiederholt (2013)), business cycle dynamics (Melosi (2014), Maćkowiak and Wiederholt (2015a))
and portfolio choice (van Nieuwerburgh and Veldkamp (2009, 2010), Kacperczyk et al. (2016), Valchev (2017)).
See Wiederholt (2010) and Sims (2010) for recent surveys on rational inattention in macroeconomics.

2See for example Woodford (2003), Reis (2006a,b) and Gabaix (2014, 2016). See Veldkamp (2011) for a
review on imperfect information in macroeconomics and finance.

3Such a friction is consistent with a large field and laboratory experimental literature on how the quality
of decision making is negatively affected by the complexity of the decision problem. See Deck and Jahedi
(2015) for a recent survey.
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They can expend costly reasoning effort that helps reduce the uncertainty over the unknown

best course of action, and do so optimally.4 Given their chosen reasoning effort, agents

receive signals about the optimal action at the current state of the world, and the resulting

information about the optimal policy function accumulates over time. Thus, while being

imperfect problem solvers, agents are ‘procedurally rational’ in the sense of Simon (1976)

and exhibit behavior that is the outcome of appropriate deliberation.

In particular, the agent faces a tracking problem in the form of minimizing expected

squared deviations from the unknown optimal action. Therefore, the agent’s actual action is

the best guess, i.e. the expected value conditional on the accumulated information, of the

optimal policy function evaluated at the observed objective state. We model the uncertainty

about the unknown optimal policy function as a Gaussian Process distribution over which

agents update beliefs.5 A more intense reasoning effort is beneficial because it lowers the

variance of the noise in the incoming signals. In turn, a more intense reasoning is costly,

which we model as a cost on the total amount of information about the optimal action carried

in the new signal, as measured by the Shannon mutual information.6

The defining feature of our learning framework is the accumulation of information

about the optimal action as a function of the underlying state. The prior Gaussian Process

distribution is characterized by a stationary covariance function that controls the correlation

of beliefs about the values of the unknown function at distinct values of the objective state.

In particular, the information acquired about the value of the optimal action at some state

realization is perceived to be, at least partially, informative about the optimal action at

a different state realization. These knowledge spillovers across objective states lead to

propagation of the reasoning signals. When this correlation is imperfect, the information

acquired about the function is most useful locally to the state realization where reasoning

occurs. As a result, the uncertainty over the unknown policy function is lower around states

where reasoning has occurred more often.

The emerging key property of the decision to reason is intuitive: the agent finds it

optimal to reason more intensely when observing more unusual state realizations. These are

states where, given the reasoning history entering that period, the agent has a higher prior

4Generally, reasoning processes are characterized in the literature as ‘fact-free’ learning (see Aragones
et al. (2005)), i.e. because of cognitive limitations additional deliberation helps the agent get closer to the
optimal decision even without additional objective information as observed by an econometrician.

5Intuitively, a Gaussian Process distribution models a function as a vector of infinite length, where the
vector has a joint Gaussian distribution. In addition to its wide-spread use in Bayesian statistics, Gaussian
Processes have also been applied in machine learning over unknown functional relationships – both in terms
of supervised (Rasmussen and Williams (2006)) and non-supervised (Bishop (2006)) learning.

6Following Sims (2003) a large literature has studied the choice properties of attention costs based on the
Shannon mutual information between prior and posterior beliefs. See for example Matějka and McKay (2014)
Caplin et al. (2016), Woodford (2014) and Matějka et al. (2017).
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uncertainty over the best course of action, conditional on the observed state. In contrast, at

states where past deliberation has occurred most often, the agent has accumulated sufficient

information so that further deliberation is not optimal. Thus, the deliberation choice and

actions are both state and history dependent, and display salient thinking. To characterize

the typical behavior, we focus on analyzing implications at the ergodic distribution, where

the agent has seen a long history of reasoning signals. To obtain a stable ergodic distribution

of beliefs, we also assume that the agent discounts past information at a constant rate.

The resulting behavior has several key properties. First, the ergodic policy function, i.e.

the action taken as a function of the observed state, is non-linear, even though the unknown

underlying optimal policy function is linear. This is due to the state dependent deliberation

choice. In particular, the ergodic prior uncertainty entering the period is U-shaped, being

smaller around the mean value of the objective state, where most of previous reasoning has

occurred. Therefore, for realizations in the middle of the state distribution, the agent chooses

not to reason much further and there the action is primarily driven by the prior knowledge

entering the period. In contrast, at realizations further in the tails of the state distribution, the

agent chooses to reason more intensely, and puts a larger weight on the new reasoning signal.

Thus, in this part of the state space the beliefs (and effective action) become increasingly

closer to the true unknown optimal action. Because of the resulting state-dependent weight

put on the new signal, the effective policy function becomes non-linear.

In our benchmark setup, which uses a non-informative, constant prior mean function,

the non-linearity manifests as an ergodic policy function that is relatively flat for state

realizations close to their mean (inertia), and much more responsive for tail realizations

(salience).7 Intuitively, the agent has a good understanding of the average level of the optimal

action around the mean of the state, and hence there is not much incentive to reason about

how the optimal policy changes with small movements in the state. The resulting imprecise

understanding of the shape of the optimal policy function leads towards a flat response around

usual states. In contrast, for state realizations further in the tail of the distribution, the

stronger incentive to reason leads to informative signals about the shape of the unknown

policy function, which on average point towards a more responsive action.

Second, there is endogenous persistence in both individual and aggregate actions.

This mechanism naturally arises from the knowledge spillovers acquired through reasoning.

Moreover, the interplay between the flat responses around the usual states and the salience

effects at the more unusual states generate local convexities in the ergodic policy function.

7The inertia is consistent with a widely documented ‘status-quo’ bias (Samuelson and Zeckhauser (1988)).
The stronger response at unusual states is consistent with the so-called salience bias, or availability heuristic
(Tversky and Kahneman (1975)), that makes behavior more sensitive to vivid, salient events.
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The average movement in the periods following a change in the objective state may be

dominated by salience type of reasoning so that, even with mean reverting exogenous states,

the agent takes a more reactive action than before, leading to hump-shaped dynamics.

Third, there is endogenous time-variation in the volatility of actions. In samples that

happen to have more volatile state realizations the agent not only takes more volatile actions

but also chooses to reason more intensely. These stronger and more frequent incentives for

deliberation result in a posterior belief that the optimal action is more responsive. Therefore,

in periods following such volatile times, the actions appear to respond more to the objective

state, leading to clusters of volatility in actions, even without changes to structural parameters.

Agents also exhibit stochastic choice, an important behavior characteristic observed in

experiments. In our model, an agent’s action could vary even conditioning on the observed

state, due to the idiosyncratic reasoning signals and the fact that the optimal deliberation

choice depends on the whole history of objective states. At the same time, agents observe

different histories of reasoning signals leading to heterogeneous priors and policy functions.

This appears to an outside analyst as persistent biases in systematic behavior across agents.

We study cross-sectional effects by introducing a continuum of ex-ante identical agents

who solve the same reasoning problem and observe the same aggregate objective state.

However, the agents differ in their specific history of reasoning signals. At the more unusual

state realizations, where they have accumulated less relevant information, the agents’ priors

are more anchored by their common initial prior and the dispersion of beliefs entering the

period tends to be smaller. At the same time, at these states agents decide to rely more on

their newly obtained idiosyncratic reasoning signals. When the latter effect dominates, the

cross-sectional dispersion of actions is larger at the more unusual states.8

Finally, we extend our analysis to two actions that differ in their cost of making errors.

Since the information flow friction in our model is not over the single state variable, but is

specific to the cognitive effort it takes to make decisions about each action, the errors in the

two actions are not perfectly correlated. Moreover, the resulting effective policy functions are

different, even if the true unknown policy functions are the same. This contrasts with models

of imperfect perception of the objective state, where the mistakes in the two actions tend to

be perfectly correlated, as they are driven by the same belief over the unknown state.

Overall, we find that costly cognition can act as a parsimonious friction that generates

several important characteristics of many aggregate time-series: endogenous persistence,

non-linearity and volatility clustering, as well as possible hump-shaped dynamics. Therefore,

our findings connect three important directions in macroeconomics. One is a large literature

8Potential correlated volatility at the ’micro’ (cross-sectional dispersion) and ’macro’ (volatility clustering
of the aggregate action) level is consistent with recent evidence surveyed in Bloom (2014).
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that proposes a set of frictions, typically taking the form of adjustment costs, to explain

sluggish behavior (eg. investment adjustment cost, habit formation in consumption, rigidities

in changing prices or wages).9 A second direction is to introduce frictions aimed at obtaining

non-linear dynamics (eg. search and matching labor models, financial constraints).10 Third,

there is a significant literature that documents and models exogenous variation in volatility

and structural parameters to better fit macroeconomic data.11

Relative to the literature on imperfect actions, the key property of our model is in

the dynamics of the distribution of beliefs over optimal actions. Compared to the standard

approach in macroeconomics, which analyzes imperfect perception of objective states, the

deliberation choice and the posterior uncertainty in our model are conditional on such states.12

Our emphasis on reasoning about optimal policy functions builds on a literature, mostly

in decision theory, that analyzes the costly perception of unknown subjective states.13 We

contribute to both of these strands of literature by developing a tractable model of learning

about the optimal action as an unknown function of the objective state. We characterize

how this form of learning leads to endogenous state and history dependence in the beliefs

entering the period. The resulting beliefs are instrumental to producing non-linear action

responses. Indeed, when we shut down the accumulation of information about the optimal

decision rule, we recover linear actions and uniform under-reaction to the state, a typical

result in the existing LQ Gaussian analysis of imperfect attention to objective states.14

Our costly cognition model also relates to two literatures on bounded rationality

in macroeconomics. One is a ‘near-rational’ approach that assumes a constant cost of

implementing the otherwise known optimal action. This work studies the general equilibrium

9See for example Christiano et al. (2005) and Smets and Wouters (2007).
10See Fernández-Villaverde et al. (2016) for a recent survey of non-linear methods.
11For example Stock and Watson (2002), Cogley and Sargent (2005) and Justiniano and Primiceri (2008).
12In that work the choice of attention to a state realization is typically made ex-ante, conditional on a

prior distribution over those realizations. Some recent models of ex-post attention choices, i.e conditional on
the current realization, include: the sparse operator of Gabaix (2014, 2016) that can be applied ex-ante or
ex-post to observing the state, information processing about the optimal action after a rare regime realizes
(Maćkowiak and Wiederholt (2015b)) and a decision over which information provider to use (Nimark and
Pitschner (2017)). The latter model can generate stronger agents’ responses to more extreme events because
these events are more likely to be widely reported and be closer to common knowledge. Nimark (2014)
obtains these stronger responses as a result of an assumed information structure where signals are more likely
to be available about more unusual events.

13As in the model of costly contemplation over tastes in Ergin and Sarver (2010) or the rationally inattentive
axiomatization in Oliveira et al. (2017). Alaoui and Penta (2016) analyze a reasoning model where acquiring
information about subjective mental states indexing payoffs is costly, but leads to higher accuracy.

14While there is interest in departures from that result, most of the focus in the literature has been
on obtaining optimal information structures that are non-Gaussian, taking the form of a discrete support
for signals (see for example Sims (2006), Stevens (2014) and Matějka (2015)). Instead, we maintain the
tractability of the LQ Gaussian setup but obtain non-linear dynamics.
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(GE) effects of the resulting individual errors, taken as state-independent stochastic forces.15

A second literature addresses the potential difficulties faced by boundedly rational agents in

computing GE effects.16 There the individual decision rule is the same as the fully rational

one, but the GE effects are typically altered. Relative to these two approaches, we share an

interest in cognitive costs and focus on how imperfect reasoning generates an endogenous

structure of errors in actions, but abstract from GE effects for our aggregate implications.

The paper is organized as follows. Section 2 develops the cognitively costly reasoning

model. In Section 3 characterizes the ergodic distribution of beliefs and actions, used in

Section 4 to describe key features for information propagation. Section 5 studies cross-sectional

properties with a continuum of agents. Section 6 extends the model to two actions.

2 Model of Cognitively Costly Reasoning

In this section we develop our costly decision-making framework. We focus on a tractable

quadratic tracking problem with Gaussian uncertainty in order to present the mechanism in

a transparent way. In addition, it also facilitates comparisons with the existing imperfect

information literature following Sims (2003).

Our focus is on limiting information flow not about an objective state variable but

instead about the policy function. We model the tracking problem of an agent that knows

the current value of the objective state, yt, which is an iid draw from N(ȳ, σ2
y). However, the

agent does not know the optimal policy function c∗(yt) (c∗ : R → R) that maps the state

value yt to the optimal action c∗t ∈ R. Our analysis will show how learning about the optimal

policy function c∗(.) makes the uncertainty facing the agent state dependent, and also leads

to interesting features in the way information accumulates and propagates through time.

The tracking problem of the agent is to choose the actual action, ct, to minimize expected

quadratic deviations from the action implied by the unknown optimal policy function c∗(.):

U = min
ct

WccEt(ct − c∗(yt))2,

where the parameter Wcc > 0 measures the utility cost of suboptimal actions.17 Therefore,

15See for example Akerlof and Yellen (1985), Dupor (2005) and Hassan and Mertens (2017).
16One such approach is parametric learning, typically through fitting linear dynamics, about the perceived

law of motion for aggregate variables, as in the the adaptive least-squares learning literature (Sargent (1993)
and Evans and Honkapohja (2011)). Other recent forms of bounded rationality include reflective equilibrium
(Garćıa-Schmidt and Woodford (2015)), level k-thinking (Farhi and Werning (2017)), or lack of common
knowledge as a result of cognitive limits (Angeletos and Lian (2017)).

17The framework could be viewed as a quadratic approximation to the value function of the agent, and
Wcc as the second derivative of the value function with respect to the action.
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the agent acts according to the conditional expectation of the true, unknown optimal action:

ct = Et(c∗(yt)).

Lastly, to highlight the endogenous non-linear features of our setup, we assume that

the unknown true policy function is linear in the state:

c∗(y) = y. (1)

2.1 Prior beliefs about the optimal policy function c∗(y)

We model learning over the space of functions using a tractable, yet flexible Bayesian non-

parametric approach. The agent’s prior beliefs over the unknown function c∗(y) are given by

a Gaussian Process (GP) distribution

c∗(y) ∼ GP(ĉ0(y),Σ0(y, y
′)),

where the mean function ĉ0(y) specifies the unconditional mean of c∗(y) for any value y,

ĉ0(y) = E(c∗(y)),

and the covariance function Σ0(y, y
′) specifies the unconditional covariance between the values

of the function at any pair of inputs y and y′:

Σ0(y, y
′) = E ((c∗(y)− ĉ0(y))(c∗(y′)− ĉ0(y′))) .

Thus, the mean function ĉ0(y) encodes any prior information about the shape of the unknown

c∗(y), and the covariance function Σ0(y, y
′) captures prior beliefs about its smoothness.

A GP distribution is the generalization of the Gaussian distribution to infinite-sized

collections of real-valued random variables, and it is often used as a prior for Bayesian

inference on functions (Liu et al. (2011)). Intuitively, a GP distribution models a function as

a vector of infinite length, where the whole vector has a joint Gaussian distribution. Often,

(especially in high frequency econometrics) Gaussian Processes are defined as a function of

time – e.g. Brownian motion. In this paper, however, we use them as a convenient and

tractable way of modeling the agent’s uncertainty over the unknown policy function c∗(y)

and thus the indexing set is the real line (and in more general applications with multiple

state variables also RN , see Section 6 below).18

18Ilut et al. (2016) use a Gaussian Process setup to model how firms learn about the relevant objective
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The defining feature of a GP distribution is that for any finite collection of points in the

domain of c∗(.), y = [y1, . . . , yN ], the resulting distribution of the vector of function values

c∗(y) is a joint Normal distribution given by:

c∗(y) ∼ N



ĉ0(y1)

...

ĉ0(yN)

 ,


Σ0(y1, y1) . . . Σ0(y1, yN)
...

. . .
...

Σ0(yN , y1) . . . Σ0(yN , yN)


 .

Using this feature, we can draw samples from the distribution of functions evaluated at any

arbitrary finite set of points y, and hence this fully describes the prior uncertainty of the

agent about the underlying policy function c∗(y).

We follow the standard practice in Bayesian statistics and assume that the agent has no

prior knowledge of the shape of the unknown c∗(y), which amounts to assuming that the prior

mean function ĉ0(y) is a constant (see Rasmussen and Williams (2006)). This way the data

(or in our case the costly reasoning signals introduced later) fully determine the estimated

shape of the unknown function. Typically, an econometrician would demean the data and

set that constant mean function equal to zero, but we make the extra assumption that the

agent’s beliefs are centered around the true steady state optimal action, which we call c̄:

ĉ0(y) = c̄ , ∀y. (2)

Note that this does not mean that the agent knows the optimal action at the steady state

value of the state ȳ – there is still uncertainty about it as the prior variance is non-zero.

Beyond standard econometric practice, the constant prior mean function is also impor-

tant conceptually. Since the basic idea of our framework is to make information about the

unknown c∗(y) subject to costly deliberation, the assumption of a constant ĉ0(y) avoids any

free back-door information flows about the relationship between the state and the optimal

action. We only assume that the agent’s prior beliefs are appropriately centered, but they do

not contain any information about the optimal action over and above the knowledge of c̄.19

Importantly, the prior mean function ĉ0(y) is only the time zero prior belief of an

agent that has spent no time thinking about the optimal behavior. As the agent optimally

deliberates and accumulates information over time, the ergodic mean belief entering a period

state, in the form of an unknown demand function. However, there the firms are assumed to use the mapping
from that imperfect information about the state to the optimal actions derived under no cognition constraints.

19The lack of a-priori knowledge about the function can also be modeled as if the agent entertains a wide
set of potential functions for ĉ0(y) that, conditional on y, is symmetrically centered around c̄. The maximum
entropy principle then implies that the agent will act as if he had a uniform prior distribution over that set,
which gives us the prior mean function in equation (2).
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would be different from ĉ0(y). Characterizing the typical information set and resulting

behavior at the ergodic distribution of beliefs is the main focus of the paper. Nevertheless,

allowing for ex-ante through a non-constant prior mean function is possible, and in fact

would have no effect on the updating process or the learning choices – it would only serve

to exogenously tilt the posterior beliefs after the fact. Thus, for most of our analysis we

stick to the conceptually appealing case of ĉ0(y) = c̄, but will also later describe the effect of

changing the time zero prior mean function.

In many ways, the most important component of the agent’s prior is the covariance

function. It determines how new information about c∗(y) is interpreted and combined with

prior information to form the posterior beliefs. We assume that the covariance function is of

the widely used squared exponential class (see Rasmussen and Williams (2006)):

Σ0(y, y
′) = σ2

c exp(−ψ(y − y′)2),

which is a good prior for smooth functions. It has two parameters: σ2
c controls the prior

variance or uncertainty about the value of c∗(y) at any given point y, and ψ controls the

smoothness of the function and the extent to which information about the value of the

function at point y is informative about its value at a different point y′.20 Intuitively, the

larger is ψ, the less smooth is the average function drawn from that GP distribution and

hence the smaller is the correlation between the function values at any pair of distinct points.

Thus, for higher ψ, information about the optimal action at one value of the state y is less

useful for inferring the optimal action at a different value y′.21

2.2 Costly deliberation

A key feature of the model is the costly deliberation choice. The agent does not simply act

on the prior beliefs about c∗(yt), but can expend costly cognitive resources to obtain a better

handle of the unknown optimal policy function. This is formalized by giving the agent access

to unbiased signals about the actual optimal action at the current state of the world yt,

ηt = c∗(yt) + εηt ,

20A Gaussian Process with a higher ψ has a higher rate of change (i.e. larger derivative) and its value is
more likely to experience a bigger change for the same change in y. For example, it can be shown that the
mean number of zero-crossings over a unit interval is given by ψ√

2π
.

21We focus on the squared exponential covariance function because it presents a good trade-off between
flexibility and the number of free parameters. However, our main results hold more generally under the class
of stationary covariance functions, i.e. ones that are a function of the distance between y and y′.
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where εηt ∼ iidN(0, σ2
η,t), and allowing the agent to choose the variability σ2

η,t of those signals.

The chosen noise in the signal models the agent’s intensity of deliberation – the more time and

effort spent on thinking about the optimal behavior, the more precise is the resulting signal,

and thus the more accurate are the posterior beliefs and the effective action ct = Et(c∗(yt)).
However, the cognitive effort is costly, modeled as a cost on the total amount of

information about the optimal action carried in the signal ηt. We measure information flow

with the reduction in entropy, i.e. Shannon mutual information, about c∗(yt), defined as

I(c∗(yt); ηt|ηt−1) = H(c∗(yt)|ηt−1)−H(c∗(yt)|ηt, ηt−1), (3)

where H(X) denotes the entropy of a random variable X, and is the standard measure of

uncertainty in information theory. Thus, equation (3) measures the reduction in uncertainty

about the unknown value of today’s optimal action c∗(yt) from seeing the new signal ηt, given

the history of past deliberation signals ηt−1. Hence, we model the cognitive deliberation cost

as an increasing function of I(c∗(yt); ηt|ηt−1), i.e. the informativeness of the chosen signal ηt.

Note that we do not make explicit statements about the actual deliberation process.

Instead, we model the basic tradeoff between accuracy and cognitive effort inherent in any

reasonable such process, in the sense that getting closer to the true optimal action takes more

costly mental effort. Costly cognition of the optimal action may reflect for example costly

contemplation over tastes (Ergin and Sarver (2010)), or the costly search and satisficing

heuristic of Simon (1955), and more generally acquiring costly information about mental

states indexing subjectively perceived payoffs (Alaoui and Penta (2016)).

2.3 Updating

In this section we detail how beliefs evolve as the agent accumulates information about the

function c∗(y). We first consider the case of signals with exogenously fixed precision and then

turn to the optimal deliberation choice, which endogenizes the precision.

We start with the simple example of updating the prior with a single signal η1 at some

value of the state y1. One can interpret this as the beginning of time, when the agent has done

no deliberation and only has the prior beliefs characterized by the ex-ante prior functions

ĉ0(y) and Σ0(y, y
′). The signal η1 updates beliefs about the whole function c∗(y), and hence

the beliefs about the optimal action at all values of the state y. In particular, for an arbitrary

y the joint distribution of c∗(y) and the signal η1 is Gaussian:[
c∗(y)

η1

]
∼ N

([
ĉ0(y)

ĉ0(y1)

]
,

[
σ2
c σ2

c exp(−ψ(y − y1)2)
σ2
c exp(−ψ(y − y1)2) σ2

c + σ2
η,1

])
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From this, it further follows that the conditional expectation of c∗(y) given η1 is

ĉ1(y) ≡ E(c∗(y)|η1) = ĉ0(y) +
σ2
ce
−ψ(y−y1)2

σ2
c + σ2

η,1

(η1 − ĉ0(y)).

Notice that when updating the belief about the optimal action at y1, the updating

formula reduces to the familiar Bayesian update with signal-to-noise ratio α1 = σ2
c

σ2
c+σ

2
η,1

:

ĉ1(y1) = ĉ0(y1) + α1(η1 − ĉ0(y1)) (4)

However, when updating beliefs of c∗(y) at an arbitrary value y, the effective signal-to-

noise ratio of the signal is a decreasing function of the distance between y and y1:

α1(y; η1) = e−ψ(y−y1)
2 σ2

c

σ2
c + σ2

η,1

. (5)

This shows how the informativeness of η1 is dissipating as we move away from y1, reflecting

an unwillingness to extrapolate the acquired information too far from where the deliberation

has actually taken place. Naturally, this effect also shows up in the posterior variance:

σ̂2
1(y) ≡ Var(c∗(y)|η1) = σ2

c

(
1− σ2

c

σ2
c + σ2

η,1

e−2ψ(y−y1)
2

)
Figure 1 illustrates both of these effects. The left panel shows the posterior mean, ĉ1(y),

while the right panel plots the posterior variance σ̂2
1(y) as a function of y. The figure is drawn

for an example where the signal realization equals the truth, so η1 = y1. The moments are

drawn for two values of the signal error variance to showcase the effects of increased precision.

The left panel illustrates two important results. First, the effect of η1 on the conditional

beliefs about c∗(y) is state dependent. The signal has a stronger effect on the posterior mean

at values of y closer to y1, where it pulls the conditional expectation further away from the

prior and closer to the signal realization. As shown in equation (5), while information about

the optimal action at y1 is also useful about the optimal action at other y realizations, it is

most informative about realizations close to y1 – i.e. there are imperfect information spillovers

across states. Intuitively, the agent understands that he is learning about a somewhat smooth

function, and hence its value is unlikely to change drastically for a small change in y, but is

nevertheless unwilling to extrapolate information from a given signal too far.

Second, observing just one signal is useful for determining the level of the optimal

action in the neighborhood of the signal, but is only weakly informative about the shape of

the function c∗(y). In the example, the positive realization of η1 (relative to the prior ĉ0(y1))

11
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(b) Posterior Variance

Figure 1: Posterior mean and variance. Example with parameters σ2
c = 1, ψ = 1, and σ2

η,0 ∈ {σ2
c ,
σ2
c

4 }

increases the posterior mean at all values of y, but displays only a gentle slope upwards.

Increasing the signal precision helps little in that regard – as we will see, to acquire a good

grasp of the shape of the unknown function, one needs precise signals at distinct values of y.

In the right panel, we can further see that η1’s effect on uncertainty is strongest locally

to y1 – the posterior variance σ̂2
1(y) is lowest at y1, and increases away from y1. The resulting

U-shaped uncertainty reflects that beliefs about the optimal action are most precise within

the region of the state space where previously deliberated has occurred This is one of the key

features of our setup, and together with the optimal deliberation choice described below, it

helps generate the main result of an effectively non-linear policy function.

The next example adds a second signal η2, at some other state value y2. Given that

the three element vector [c∗(y), η1, η2]
′ is jointly Gaussian, we apply the standard Bayesian

updating formulas to obtain the posterior mean and variance:

ĉ2(y) = E(c∗(y)|η1, η2) = ĉ0(y) +
σ2
c (e
−ψ(y−y1)2 − σ2

c

σ2
c+σ

2
η,2
e−ψ((y−y2)

2+(y2−y1)2))

(σ2
c + σ2

η,1)−
σ4
ce
−2ψ(y1−y2)2

σ2
c+σ

2
η,2︸ ︷︷ ︸

=α21(y;η1,η2)

(η1 − ĉ0(y))

+
σ2
c (e
−ψ(y−y2)2 − σ2

c

σ2
c+σ

2
η,1
e−ψ((y−y1)

2+(y2−y1)2))

(σ2
c + σ2

η,2)−
σ4
ce
−2ψ(y1−y2)2

σ2
c+σ

2
η,1︸ ︷︷ ︸

=α22(y;η1,η2)

(η2 − ĉ0(y))
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Figure 2: Posterior Mean and Variance after seeing two signals at distinct y1 6= y2. The figure illustrates an

example with parameters σ2
c = 1, ψ = 1, and σ2

η,0 ∈ {σ2
c ,
σ2
c

4 }

σ̂2
2(y) = Var(c∗(y)|η1, η2) = σ2

c

(
1− (α21(y; y1, y2)e

−ψ(y−y1)2 + α22(y; y1, y2)e
−ψ(y−y2)2)

)
,

where we define the notation α21(y; η1, η2) and α22(y; η1, η2) as the effective signal-to-noise

ratios of the two signals, η1 and η2 respectively, when updating beliefs about c∗(y).

The updating equations have much of the same features as before. In particular, signals

are more informative locally. For example if y is relatively closer to y1 than y2, the weight

put on η1 is relatively larger than on η2. Moreover, if we take the limit of yi going to infinity,

the weight on its corresponding signal ηi in the updating equation falls to zero, while the

weight on the other signal converges to the weight in the single signal case. Similarly, the

posterior variance is affected more strongly by one or the other signal, depending on whether

y is closer to y1 or to y2. We illustrate these effects in Figure 2, with the resulting posterior

mean plotted in the left panel and the posterior variance in the right panel. We assume that

η2 has the same precision as η1, and that its location, y2, is symmetric to y1 around ȳ.

The new posterior mean ĉ2(y) displays a steeper slope, and captures the overall shape

of the true c∗(y) better than in the single signal case. Now the agent learns that the optimal

action is relatively high for high realizations of y, but relatively low for low realizations,

leading to an upward sloping posterior. Moreover, in this case the posterior mean does not

display a bias in its overall level, since given the two symmetric signals the agent is able to

infer that the unknown function is not higher than the prior expectation on average, but

rather has a slope. Lastly, notice that increasing the precision of the signals (the red line)

now helps significantly in getting a better understanding of the shape of the underlying c∗(y).

13



In the right panel we can also see that the posterior beliefs of the agent are most precise

in the interval between y1 and y2. Interestingly, in this example the variance is the lowest not

at y1 or y2 exactly, but in between the two. This is because we have picked y1 and y2 that are

relatively close to each other, so that they are both informative for values of y in between.

More generally, as the agent accumulates information, beliefs follow the recursion

ĉt(y) = ĉt−1(y) +
Σt−1(y, yt)

Σt−1(yt) + σ2
η,t

(ηt − ĉt−1(y)) (6)

Σt(y, y
′) = Σt−1(y, y

′)− Σt−1(y, yt)Σt−1(y
′, yt)

Σt−1(yt) + σ2
η,t

(7)

where ĉt(y) ≡ Et(c
∗(y)|ηt) and Σt(y, y

′) ≡ Cov(c∗(y), c∗(y′)|ηt) are the posterior mean and

covariance functions. These two objects fully characterize the posterior distribution of beliefs.

Lastly, we use the notation σ̂2
t (y) to denote the posterior variance at a given y, i.e. Σt(y, y).

2.4 Optimal deliberation

In this section we study the optimal deliberation choice and the resulting optimal signal

precision and action ĉt(y). We assume that the agent faces a simple linear cost in the total

information contained in ηt, and thus the information problem is22

Ut = max
σ2
η,t

−WccEt(ĉt(yt)− c∗(yt))2 − κI(c∗(yt); ηt|ηt−1)

= max
σ̂2
t (yt)
−Wccσ̂

2
t (yt)− κ

1

2
ln

(
σ̂2
t−1(yt)

σ̂2
t (yt)

)
The second line in the above equality follows from the fact that mutual information in

a Gaussian framework is simply one half of the log-ratio of prior and posterior variances. The

parameter κ controls the marginal cost of a unit of information. For example, κ will be higher

for individuals with a higher opportunity cost of deliberation – either because they have a

higher opportunity cost of time or because their particular deliberation process takes longer

to achieve a given precision in decisions. In addition, κ would also be higher if the economic

environment facing the agent is more complex, and thus the optimal action is objectively

harder to figure out (e.g. the agent is given a more difficult math problem).

Lastly, the maximization is subject to the “no forgetting constraint”

σ̂2
t (yt) ≤ σ̂2

t−1(yt),

22Assuming instead a convex cost C(I(c∗(yt); ηt|ηt−1)) in total information does not change the results.
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which ensures that the chosen value of the noise in the signal, σ2
η,t, is non-negative. Otherwise,

the agent can gain utility by “forgetting” some of his prior information.

Taking first order conditions, the optimal deliberation choice satisfies

σ̂∗2t (yt) =
κ

2Wcc

. (8)

Hence with a cognition cost linear in mutual information, there is an optimal target level for

the posterior variance that is an intuitive function of deep parameters. The desired precision

in actions (and thus deliberation effort) is larger when the cost of making mistakes (Wcc) is

higher or when the deliberation cost (κ) is lower.

Imposing the no forgetting constraint, optimal reasoning leads to the posterior variance:

σ̂∗2t (yt) = min{ κ

2Wcc

, σ̂t−1(yt)}.

So unless beliefs are already more precise than desired, the agent engages in just enough

deliberation, and hence obtain just the right σ2
ηt, so that the posterior variance equals the

target level κ
2Wcc

. In particular, the optimal signal noise variance becomes:

σ2
η,t =


κ

2Wcc
σ̂2
t−1(yt)

σ̂2
t−1(yt)−

κ
2Wcc

, if σ̂2
t−1(yt) ≥ κ

2Wcc

∞ , if σ̂2
t−1(yt) <

κ
2Wcc

(9)

In turn, the resulting optimal weight α∗(yt; ηt, η
t−1) on the current period signal ηt is:

α∗(yt; ηt, η
t−1) = max{1− κ/(2Wcc)

σ̂2
t−1(yt)

, 0} (10)

Thus the deliberation effort choice and its effect on the resulting optimal action,

ĉt(yt) = ĉt−1(yt) + α∗(yt; ηt, η
t−1)(ηt − ĉt−1(yt)), (11)

are both state and history dependent. For states where the precision of initial beliefs is

relatively far from its target (high σ̂2
t−1(yt)), the agent acquires a more precise current signal

and hence puts a bigger weight on it (high α∗(yt; ηt, η
t−1)) in the resulting action ĉt(yt). In

contrast, for states at which the agent has previously deliberated more often, the precision

of initial beliefs is high (low σ̂2
t−1(yt)) and the agent is unlikely to acquire much additional

information. As a result, α∗(yt; ηt, η
t−1) will be relatively small, and the resulting action

will be primarily driven by the beginning of period beliefs, ĉt−1(yt). This state-dependence

generates non-linear effects in the effective policy function ĉt(y).
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2.5 Comparison with imperfect perception of the objective state

The typical approach in the literature that analyzes optimal allocation of attention is to

focus on imperfect perception of the state rather than the policy function. In our setup, this

consists in assuming knowledge of the optimal policy c∗(y) = y, but imperfect observability

of the state yt. Learning about yt proceeds similarly, by observing unbiased signals

η̃t = yt + ε̃ηt ,

where the signal noise variance is σ̃2
η,t. The conditional expectation of yt becomes:

ŷt ≡ Et(yt) = ȳ +
σ2
y

σ2
y + σ̃2

η,t

(η̃t − ȳ). (12)

The optimal action under the quadratic loss is then just the above conditional expectation

of yt, since agents know that c∗(yt) = yt. Moreover, if the cognition cost is similarly linear in

the Shannon information of the signal η̃t, it results in the maximization problem:

U = max
σ̂2
y,t

−Wccσ̂
2
y,t − κ̃

1

2
ln

(
σ̂2
y,t−1

σ̂2
y,t

)
,

where we denote the posterior variance of yt as σ̂2
y,t ≡ Var(yt|ηt). The cost of information is

also linear in mutual information, but the marginal cost κ̃ could be different than κ, since

this captures information flow of a different activity – paying attention to an unknown state.

The first order conditions again imply a target level for the posterior variance:

σ̂∗2y,t =
κ̃

2Wcc

, ∀t (13)

Thus, the resulting optimal signal-to-noise ratio, given the “no forgetting constraint”, is

α̃∗y = max{1− κ̃/(2Wcc)

σ2
y

, 0}, ∀t (14)

The key difference between the optimal α̃∗y in equation (14) and that of our benchmark

framework, given by equation (10), is that in our model the prior uncertainty σ̂2
t−1(yt), and

in turn the resulting signal to noise ratio α∗(y; ηt, η
t−1), are state and history dependent.

Instead, here α̃∗y is the same for all current and past realizations of the state yt.
23 The state

23The assumption that yt is iid over time makes the optimal attention solution particularly simple, but the
fact that it is not state or history dependent is a more general result. If yt was persistent, then we would
simply substitute the steady state Kalman filter second moments for σ2

y in the updating equations.
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and history dependence of the deliberation choice is a fundamental feature of our setup.

Because the agent is not learning about the current realization of the state yt, but about the

optimal policy function c∗(y), deliberation at different past values of the state carry different

amount of information about the optimal action at today’s state yt.

Our reasoning setup includes a special case that delivers the same qualitative features

as learning about the objective state. In the first period of reasoning in our model (i.e. time

1), the prior uncertainty is neither state- nor history- dependent since σ̂2
0(y) = σ2

c , ∀y. Hence,

the optimal signal-to-noise ratio in that period is qualitatively similar to equation (14),

α∗(y; η1) = max{1− κ/(2Wcc)

σ2
c

, 0}, (15)

with no state or history dependence. The first period of learning is special in our reasoning

setup because it is the only instance where the agent has accumulated no previous information,

and hence the remaining uncertainty is the same at all values of the state. As soon as

information starts accumulating, however, the implications of the two models diverge.

The general relation to models of errors in actions can also be made by connecting to

the control cost literature. More specifically, the deliberation choice in our setup can be

rewritten ‘as if’ it is a control cost problem where the agent has a ‘default’ distribution of

actions, conditional on the state, and chooses a current distribution, subject to a cost that is

increasing in the distance between the two distributions, as measured by relative entropy.24

In our model, the default distribution is the beginning of period belief over the unknown

c∗(yt) and the current distribution is the posterior belief after seeing ηt. While many models

of imperfect actions, including those generated from known policy functions but imperfect

perception of objective states, fit in such an ‘as if’ control cost interpretation, the differential

property of our model is in the particular endogenous dynamics of the ‘default’ distribution.25

3 Ergodic Distribution of Beliefs and Actions

Since the deliberation choice is history dependent we focus on analyzing the ergodic behavior

of our agent. In this section, we characterize the typical optimal deliberation choice and

resulting effective policy function ĉt(y) after having seen and previously deliberated at a long

history of state realizations. In the following Section 4, we study how a change in deliberation

and resulting information about the unknown c∗(y) propagates into subsequent actions.

24The control cost approach appears for example in game theory (see Van Damme (1987)) and the entropy
based cost function is studied in probabilistic choice models such as Mattsson and Weibull (2002).

25Matějka and McKay (2014) and Matějka et al. (2017) show the mapping between an entropy-based
attention cost and a control problem leading to logit choices in static and dynamic environments, respectively.
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3.1 Discounting information

To describe the ergodic behavior of the agent we need a characterization of learning in the

long-run. Of particular relevance for this objective is the informational content of past signals.

We model a declining informational content of past signals by allowing the agent to

discount past information. There are at least two interpretations of such discounting. The

first is to introduce shocks to the true unknown policy function c∗(yt), for example modeled

as an AR(1) Gaussian Process:

c∗t (y) = c̄(1− ρc) + ρcc
∗
t−1(y) + εt(y). (16)

In this case the object that the agent is trying to learn about is changing over time and hence

eventually the weight put on past signals decays to zero.

The second is to directly assume that the informational content of past signals is

decaying over time even if there are no shocks to c∗(y). This may occur either because the

agent happens to entertain the possibility of the time-variation in equation (16), or because

of costly or imperfect memory recall. For example, we can assume that at the beginning of

each period, the precision of past signals is discounted at a constant rate δ ∈ [0, 1] so that

1

σ2
η,t,t−k

=
δ

σ2
η,t−1,t−k

,

where 1
σ2
η,t,t−k

is the effective precision of the t− k signal at time t. In the benchmark results

presented in the main text we follow the second approach, as it appears more general and

does not complicate the analysis with actual time-variation in c∗t (y). But we note that the

time varying c∗t (y) framework leads to essentially identical results.26

Consider two extreme versions of how information accumulation proceeds with δ ∈ [0, 1].

One is that δ = 0, so that the agent, either because he believes the true c∗(y) constantly

resets or because there is no memory recall, entirely discounts past information. In that case,

the model predicts that each period looks like the very first period analyzed in section 2.5. It

follows that even in the long-run the prior uncertainty entering every period is not state- or

history- dependent. Hence, the optimal signal-to-noise ratio at every period is a constant α∗,

given by the right hand side of equation (15), which generates the linear policy function:

ĉt(yt) = c+ α∗(ηt − c).
26A related approach would be to assume an OLG structure where information about the optimal policy

function transmits imperfectly across generations. In that model aggregation is more difficult compared to an
economy, which we study in section 5, of ex-ante identical agents that discount information at a constant rate.
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This extreme is a special case of our setup that replicates the qualitative features of

imperfect perception about the objective state (see section 2.5). Importantly, there is no

non-linearity in the effective policy function, nor information propagation through time.

A second extreme case is given by δ = 1, so that the agent does not discount at all past

information. In this case the important characteristic of the limiting beliefs is that as time

passes, it becomes increasingly likely that the agent stops reasoning altogether. Recall that

each time the agent decides to reason, i.e. when σ2
η,t <∞, the amount of reasoning is chosen

so that the resulting posterior variance σ̂t(yt) equals the optimal target level κ/(2Wcc) in

equation (8). Without discounting past information, it follows that the perceived uncertainty

at state values in the neighborhood of past realizations yt would typically be either equal

or even smaller than that target, since there are information spillovers across states. As

information accumulates through time, further learning in the neighborhood of past state

realizations stops altogether. In particular, the agent chooses not to reason in period t, i.e.

sets σ2
η,t =∞, with a probability that converges to one as t goes to infinity.

Therefore, there are two important implications of setting δ = 1. First, even if further

reasoning eventually stops, the beliefs still do not converge to c∗(y) because the optimal

posterior variance is positive, since reasoning is costly. Second, the flow of new information

eventually stops almost everywhere, and the agent simply acts according to the prior ĉt−1(y).

Moreover, the limiting beliefs of the agent will depend on specific signals accumulated in the

very distant past, hence there is no ergodic distribution of beliefs as t goes to infinity.

We find the behavioral assumptions and implications of not discounting past information

as implausible. Such a view relies on the extreme assumptions of perfect memory recall and

no perceived structural changes. Furthermore, this view implies that agents do not further

adjust their beliefs as the economy evolves through time, but dogmatically use their priors.

We relax the extreme assumptions of either full or no discounting of past information

and study the ergodic distribution of beliefs resulting for intermediate values of δ ∈ (0, 1). In

that case, there will be further reasoning even in the long-run and the agents’ beliefs will

respond to new information, features that we find plausible. Moreover, there is a well defined

long-run ergodic distribution of beliefs and resulting actions, which we characterize next.

3.2 Properties of the ergodic distribution of beliefs

To obtain the ergodic distribution, we simulate the economy for 100 times, each of a length

of 1000 periods, where in each period we draw a new value of the state and the agent makes

optimal deliberation choices given the history of signals. Then we consider the average

resulting prior conditional variance, optimal deliberation choice and effective policy function
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(b) Optimal Signal-to-Noise ratio

Figure 3: Ergodic Uncertainty – beginning of period prior variance and the resulting optimal signal-to-
noise ratio after 1000 periods of optimal deliberation. The figure illustrates an example with parameters
Wcc = 1, κ = 0.5, σ2

c = 1, ψ = 1, and δ = 0.9.

as a function of possible state realizations y.

In the left panel of Figure 3 we plot the mean of the ergodic distribution of the prior

conditional variance of beliefs (i.e. the conditional variance coming into a typical period t),

σ̂ss0 (y) =

∫
Var(c(y)|ηt−1)dF (ηt−1),

where dF (ηt−1) is the ergodic distribution of histories of optimal past signals. In the right

panel we plot the resulting ergodic optimal signal-to-noise ratio for the new signal, αss(y).

The ergodic prior conditional variance has a characteristic U-shape, and is lowest around

the mean of the distribution of states, ȳ. The reason is that this is the part of the state

space where the agent has deliberated at most often in the past, and hence most of the past

signals η are for values of y near their mean. Intuitively, coming into the typical period, the

agent feels most certain about what is the optimal thing to do for state realizations near

their mean, and is increasingly less certain about what to do if the state happens to be far

from ȳ. Moreover, notice that there is an interval of y values where the ergodic prior variance

is in fact below the target level κ
2Wcc

. This occurs because while no individual signal ever

lowers the conditional variance below the optimal level by itself, the combined effects of the

large concentration of signals around ȳ and the accompanying information spillovers do so.

The U-shape in the ergodic prior variance leads to a similar shape in the optimal signal

to noise ratio αss(y) – it is the lowest for values of the state close to ȳ, and grows larger for
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Figure 4: Ergodic distribution of reasoning signals and associated precision, after 1000 periods of optimal
deliberation. The figure illustrates an example with parameters Wcc = 1, κ = 0.5, σ2

c = 1, ψ = 1, and δ = 0.9.

realizations of y further out. The reason is that in order to achieve the optimal precision of

posterior beliefs, the agent has to do less additional thinking for state realizations around the

mean, as there the initial beliefs are already quite precise. Thus, the ergodic deliberation

choice is akin to salient thinking – the agent finds it optimal to reason harder at more unusual

realizations of the state. Not because those tend to “stand out” more, but because the agent’s

prior understanding of the optimal action in that part of the state space is worse.

In Figure 4 we illustrate the properties of the ergodic distribution of past reasoning

signals, F (ηt−1). In the left panel we plot the ergodic distribution of y realizations for which

the agent has deliberated in the past. Note that the agent does not necessarily deliberate (and

thus obtain an informative signal) in every period – costly deliberation is only triggered if the

prior uncertainty is relatively large, as evidenced by the right panel of Figure 3. Nevertheless,

the ergodic distribution of the incidence of reasoning is quite similar to the distribution of y.

Still, this is not the whole story, since we just saw that the optimal signal precision is state

dependent. For this purpose, the right panel of Figure 4 plots the ergodic mean precision of

optimal signals at each value of the state y. Unsurprisingly, we see that individual signals

are most precise for values of y further away from ȳ, and the least precise right around ȳ.

In other words, the agent tends to have deliberated most often for realizations around ȳ,

but the typical deliberation in that region has been relatively imprecise. Intuitively, the agent

spends a lot of time near ȳ, and ends up reasoning there often. But since the typical history

is already quite informative about c∗(y) in that region, there is no need for much additional
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Figure 5: Ergodic Policy Function. The figure plots the ergodic average action, computed from a cross-section
of 100 agents and 1000 time periods, with parameters Wcc = 1, κ = 0.5, σ2

c = 1, ψ = 1, and δ = 0.9

reasoning effort, hence the typical signal in that region is imprecise. At the same time, the

agent tends to see and deliberate at unusual y values more rarely, but conditional on doing so,

invests a significant amount of effort, and thus obtains more precise signals. As a result, the

typical history of deliberations delivers a large concentration of relatively imprecise signals

around ȳ, and fewer but more individually precise signals at values further away from ȳ.

3.3 Non-linearity in ergodic policy function

The red line in Figure 5 plots the resulting mean ergodic policy function,

ĉss(y) ≡ ĉss0 (y) + αss(y)(η(y)− ĉss0 (y)), (17)

where η(y) = c∗(y) is the new mean signal at y, and ĉss0 (y) is the mean ergodic prior belief:

ĉss0 (y) ≡
∫
E(c∗(y)|ηt−1)dF (ηt−1).

The key emerging property of the ergodic policy function is that it is non-linear, even

though the underlying optimal policy function (c∗(y)) is linear. The non-linearity is a result

of the fact that the optimal deliberation choice is state dependent, and hence the optimal

signal to noise ratio αss(y) is a non-constant function of y. In particular, we have seen that

the ergodic prior uncertainty σ̂ss0 (y) is U-shaped, hence the agent finds it optimal not to

reason much for realizations of y near ȳ. Thus in that region the optimal αss(y) is low and
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so the action is primarily driven by the ergodic prior mean ĉss0 (y). On the other hand, at

more unusual state realizations y, the agent’s prior beliefs are more uncertain, prompting the

agent to invest more costly cognitive effort, and obtain a more precise signal. This leads to

a higher αss(y), and hence for those values of y the agent’s beliefs and resulting action are

closer to the actual signal realization. As a result of the changing weight attached to the

revision in his prior beliefs, αss(y), the ergodic policy function of the agent is non-linear.

In our benchmark setup, this non-linearity generates both inertia and salience-like

effects in the ergodic policy function, as it is relatively flat in the middle, and more responsive

in the tails. This is due to the interaction of the U-shaped ergodic signal-to-noise ratio αss(y)

and the endogenous shape of the ergodic prior belief ĉ0(y). At state realizations around

ȳ, the agent does not engage in much further deliberation and his action is mainly driven

by the relatively flat prior belief ĉss0 (y) (see yellow dashed line). However, at more unusual

realizations of y the action puts a heavier weight on the new, informative signal η, which

deviates from the ergodic prior beliefs and leads to a stronger response.

The shape of the ergodic prior belief ĉss0 (y) is due to the characteristics of the endogenous

distribution of past reasoning signals F (ηt−1). The majority of the “fresh” signals in the

agent’s memory are from around ȳ, where the agent has seen seen numerous, but individually

imprecise signals (Figure 4). The large number of imprecise signals helps pin down the

average level of c∗(y), but not its shape. The agent’s ergodic prior beliefs are still somewhat

upwards sloping (as is the true policy c∗(y)) because of the fewer, but more precise signals

further out in the tails, but their effect is dominated by the fact that the bulk of the prior

information has come in the form of many, but imprecise signals. Intuitively, the agent has

a good grasp of the overall level of the optimal action around ȳ, so finds it unnecessary to

spend much extra effort to understand how the optimal action varies with small changes in y.

It is also worth nothing that this is the typical or average ergodic behavior of the agent.

At any given point in time, agents in this economy behave differently due to having seen

different particular histories of signals. These histories lead to effective policy functions that

are either more or less upward sloping than the average, and could also exhibit a number of

other types of non-linearity. We discuss such heterogeneity in more detail in Section 5.

Lastly, the purple line plots the ergodic policy function of an agent who observes the

state y imperfectly, but knows the optimal policy function c∗(y). The key property of that

policy function is that it is linear, since it inherits the known form of c∗(y). It displays a

constant under-reaction to changes in y, because the only mistake the agent is making is in

tracking the true value of y, and is (on average) slow in recognizing changes.
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Figure 6: Comparative statics. Benchmark values – Wcc = 1, κ = 0.5, σ2
c = 1, ψ = 1, and δ = 0.9. Changing

values: κ = 0.15, ψ = 3, and δ = 0.99.

3.4 Comparative statics

The comparative statics of the model are quite intuitive. In this univariate framework (for

multivariate extensions see Section 6) the effect of increasing the cost of making errors in the

action (Wcc) is observationally equivalent to the effect of lowering the deliberation cost κ. A

lower κ means that deliberation is cheaper, and as a result the agent deliberates more often

and more intensively. As illustrated in the left panel of Figure 6 the basic properties of the

ergodic policy function ĉss(y) survive – it is non-linear, relatively flatter in the middle, and

more upward sloping towards the ends. With a lower κ the overall level of the non-linearity

is smaller, and in fact the action will converge to the true underlying linear c∗(y) as κ→ 0.27

Increasing ψ, the parameter that controls the correlation between c∗(y) and c∗(y′) for

distinct values of the state y′ 6= y, has a similar effect. A higher ψ makes the informativeness

of any given signal more localized. Hence, past deliberations have generally lower effects on

today’s deliberation choice and this weakens the history dependence in the reasoning choice.

Since past deliberation is less useful, the agent finds it optimal to reason more intensely

in any given period. Thus, the effective action ĉss(y) becomes closer to the true c∗(y). In

particular, the resulting ergodic distribution of signals will feature more individually precise

signals at distinct values of y, which transmits more information about the shape of c∗(y).

We have discussed the qualitative features of full discounting, δ = 0, or no discounting,

27Our comparative static is therefore consistent with a large field and laboratory experimental literature
on the effects of the complexity of the decision problem. See for example Caplin et al. (2011), Kalaycı and
Serra-Garcia (2016) and Carvalho and Silverman (2017)) for some recent experimental evidence.
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δ = 1, in subsection 3.1. We now describe the effects of changing the discounting parameter

within these two extreme versions. For a fixed sequence of past signals ηt−1, increasing δ

would increase the overall informativeness of the signals, and lead to a lower optimal level of

current deliberation. Since past signals are more informative the agent chooses to reason less

at any given period. As a result, at the new ergodic distribution with a higher δ the agent

has an effectively longer typical history of signals, but individual signals tend to have lower

precision. In turn, the effective residual uncertainty and the resulting policy function are

similar to the case of lower δ, as exemplified by the right panel of Figure 6, for δ = 0.99.

Lastly, we consider changing the ex-ante prior mean function ĉ0(y). Importantly, ĉ0(y)

has no effect on the deliberation choice of the agent, or the weight put on the reasoning

signals in updating beliefs. The deliberation choice and the updating process depend only

on second moments, and those are unaffected by ĉ0(y). Thus, the main results about the

U-shaped ergodic uncertainty, salient thinking and the non-linear ergodic policy function

remain unchanged. Still, changing ĉ0(y) would serve to tilt the resulting posterior beliefs,

as a non-constant prior mean function implies that the agent has some a priori belief about

c∗(y) that would apply over and above the information extracted from the reasoning signals

η. It is one way, for example, to model ex-ante biases in agent behavior.

To illustrate, consider the possibility that ĉ0(y) is given by the linear function

ĉ0(y) = c̄+ b0(y − ȳ). (18)

Figure 7 plots two such cases, one where b0 < 1 so that ĉ0(y) is flatter than the truth, and

one where b0 > 1 and ĉ0(y) is steeper than c∗(y). The main insight that the ergodic policy

function is non-linear, and that its shape is different close to ȳ, as opposed to out in the tails,

remains unchanged. This basic feature is due to the state-dependent deliberation choice that

resembles salient thinking, a result that does not depend on ĉ0(y). In the left panel (b0 < 1),

the policy is qualitatively similar to our benchmark case – relatively flatter in the middle, and

steeper in the tails. The right panel, however, is the opposite – the ergodic policy is steeper in

the middle, and flatter in the tails. In this case, the ergodic prior mean ĉss0 (y) is steeper than

the truth (although less steep than the ex-ante prior ĉ0(y)), and hence the strong revisions in

beliefs that happen for tail y realizations actually flatten the posterior mean.

While it is straightforward to incorporate different ex-ante prior means ĉ0(y), we find it

conceptually unappealing because it represents extra information about the optimal policy

that the agent receives for free. The basic premise of the model is to make deliberation and

information about c∗(y) subject to costly reasoning effort, hence playing with the ex-ante

prior would represent back-door information flows. Moreover, the most empirically relevant
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Figure 7: Different prior mean function ĉ0(y). Benchmark values – Wcc = 1, κ = 0.5, σ2
c = 1, ψ = 1, and

δ = 0.9. Changing values: b0 ∈ { 13 , 3} in equation (18).

case is perhaps the one where b0 < 1, since it implies inertia for “familiar” values of the

state, and salience like effects for others. This conforms with experimental evidence, and also

can help explain a number of other features of the macro data, as we detail in the next few

sections. Thus, the best parsimonious model would appear to be b0 = 0.

4 Propagation of Information

We have described the properties of the ergodic distribution of beliefs and actions. In this

section we study the typical propagation of information so as to analyze the time-series

patterns of actions. The key emerging property is that reasoning about the function c∗(y)

endogenously leads to persistence in the first and second moment of actions.

4.1 Persistent actions

We focus first on the persistence of the conditional mean belief about the optimal action,

following the recursion in equation (6), with ergodic properties described in section 3.3.

4.1.1 Impulse response

Let us analyze a change in the state from y to some particular realization yt. To understand

the effect on beliefs it is useful to separate its mechanisms into impact and then propagation.
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The initial effect of the shock appears in the revision of beliefs term in the ergodic

policy function ĉss(y) in equation (17). The weight put on the new information obtained at

yt, α
ss(yt), depends on the ergodic prior uncertainty, while the ergodic prior mean determines

the perceived innovation ηt − ĉss0 (yt). For example, in the benchmark case shown in Figure

5, where the ergodic prior mean ĉss0 (y) is flatter than the true c∗(y), the sign of the average

perceived innovation c∗(yt)− ĉss0 (yt) is given by the sign of the true average innovation yt − ȳ.

The propagation of the new information depends crucially on the knowledge spillovers

implied by our learning framework. For a large enough value of ψ, the agent’s prior is that a

signal about c∗(yt) is essentially useless about c∗(y) at some y 6= yt. In that case, the relevant

effect of the new signal is to update beliefs only about the optimal action at yt. But since the

probability of a future realization being very near to that specific value of yt is close to zero,

there are no significant persistent effects. In contrast, for a smaller ψ, the signal obtained at

yt shifts beliefs about the entire unknown function c∗(y). As new states realize after period t,

this shift in beliefs persists before it converges back to the ergodic belief ĉss0 (y). In this case,

a signal about the optimal action at yt is likely to have persistent effects on the resulting

actions, even if the objective state is iid.

Consider a graphical representation of the impulse response function of the agent’s

effective action ct.
28 The blue solid line in the left panel of Figure 8 plots the impulse response

starting from t for a value of the state yt = ȳ − 2σy for the benchmark parametrization. The

initial effect on the action can be read off directly from the ergodic policy function ĉss(yt)

discussed in section 3.3. On impact, the action incorporates about 25% of the change in the

state, dropping by 0.05 compared to the reduction of 0.2 in yt.

While such underreaction appears more generally in models of partial attention to the

objective states, an important additional property of our model is the resulting propagation.

As described above, the negative shock to yt results in a negative perceived innovation about

the optimal action at yt. Due to the knowledge spillovers, this innovation affects beliefs

about the unknown policy function not only at yt but even further away from it, producing a

persistently lower average action following the shock.

The left panel illustrates the role of parameters in driving the propagation. The response

on impact is stronger and there is less persistence when the cognition cost is lower (‘low

κ’, dotted yellow line), or when the signal at yt is less informative at other states (‘high ψ’,

dashed orange line), because in both cases the agent is more likely to reason harder at any

given period. Hence the initial impact is greater, but the value of this information declines

28Given the non-linear nature of our model we compute a generalized impulse response function to a
particular realization of the state yt as IRFj(yt) = E(ct+j |yt) − E(ct+j |yt = y). Moreover, to isolate the
typical effects, we set the signal realization equals to its average value, so that εt = 0 in this analysis.
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(b) Alternative shock realizations

Figure 8: Impulse response function. The figure plots the typical path of the action following an innovation
of yt = ȳ − 2σy. The figure illustrates an example with parameters Wcc = 1, κ = 0.5, σ2

c = 1, ψ = 1, and
δ = 0.9. In the left panel we change parameters to κ = 0.1, ψ = 5 and δ = 1, respectively. In the right panel
we change persistence to ρy = .9 (dashed line), or we feed in future values of yt+j that always equal to y
(starred line), or set the current shock to yt = ȳ − 3σy (dotted line).

quickly as more relevant new information comes in the following periods. When there is no

discounting of past information (‘δ = 1’, starred purple line), the agent has accumulated so

much information that he does not further deliberate and instead only uses the ergodic prior

mean at yt to inform his action ct. The lack of further updating leads to no persistent effects.

The right panel of Figure 8 illustrates the strong non-linearity by plotting three

alternative assumptions on the shock realizations. First, in the dotted orange line, the state

realization is more unusual (yt = ȳ − 3σy). On impact, the action now incorporates about

33% of the change in the state, dropping by 0.11 compared to the reduction of 0.3 in yt. The

larger proportional reduction than in the baseline case reflects the more pronounced steepness

of the ergodic policy for tail yt realizations. Moreover, since the state is now more unusual,

the agent chooses to reason more intensely. This results in a larger weight applied to the new

signal and stronger updating about the whole function, and therefore longer persistence.

Second, in the starred purple line, we compute the impulse response as in a linear model

by ignoring the distribution of future states and instead feeding in yt+j = ȳ for all j > 0.

Since the agent would now constantly see ȳ and hence not reason any further, the effect of the

initial update at yt would be longer lasting. In contrast, with shocks to yt+j , it is more likely

that some of those realizations trigger reasoning. The larger chance of future reasoning on

average decreases the weight put in the future on the signal at yt, generating less persistence.

Finally, consider the case of an ex-ante prior mean ĉ0(y) that is not constant as in our
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benchmark case. As discussed in Section 3.4, when the prior ĉ0(y) is upward sloping but

flatter (steeper) than c∗(y), the ergodic prior mean ĉss0 (y) is also still flatter (steeper) than

c∗(y). As a consequence, the sign of the perceived innovation at yt is given by the same

(opposite) sign of the true innovation. We illustrate the behavior of the latter case in Figure

13 in Appendix A. Since the average innovation in the signal, ηt − ĉss0 (yt), is now positive it

updates upwards the beliefs about c∗(y). As a result, the impulse response converges from

above. Appendix A discusses further details on the effects of parameters in this case.

4.1.2 Hump-shaped dynamics

The model may predict hump-shaped dynamics in the action even when the exogenous state is

mean reverting. For that result we note that an important characteristic of the non-linearity

of the ergodic policy function in Figure 5 is convexity above y and concavity below y, i.e. the

function |ĉss(y)− c̄| is convex. This convexity arises from the interplay between the inertial

effects around the usual states and the salience effects at the more unusual states. Consider

now a positive innovation from y to some yt. From mean reversion, future states are on

average closer to y, i.e. Et(yt+1) < yt. If the effective action would be linear in the state then

the action would also mean revert, i.e. Et(ct+1) < ct. However, given the convexity of the

function, Jensen’s inequality implies

Et(ct+1) > c(Et(yt+1)). (19)

The inequality allows for the possibility that Et(ct+1) > ct so that even if the future state

is closer on average to its mean, the average observed action is not. This convex effect can

dominate the mean reversion effect and lead to hump-shaped dynamics when the response

function is convex enough and when the persistence in the state is high enough.

In the right panel of Figure 8 we plot as the dashed line the non-linear impulse response

function when the state follows an AR(1) process with an autocorrelation coefficient ρy = 0.9.

On impact, the effect is smaller because the size of the innovation has been reduced to

match the same unconditional variance, i.e. we now set σy = .1
√

1− ρ2y. Importantly, for

this parameterization the Jensen’s inequality effect of equation (19) is strong enough so the

propagation is characterized by hump-shaped dynamics.

Lastly, when the time-zero prior mean is steeper than the truth, the resulting ergodic

policy function presented in Section 3.4 exhibits instead local concavity so the Jensen

inequality effect works in reverse. In the right panel of Figure 13 in Appendix A, the dashed

line plots the impulse response for ρy = 0.9. The speed of convergence back to steady state,

measured by its half-life, is larger for the action than for the shock.
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4.2 Persistence of volatility of actions

A general property of our model is that particular realizations of the objective state change

the actions’ responsiveness to those realizations as well as to subsequent ones. For an

econometrician using a standard model, such changes may look like structural shifts in

parameters. In particular, in this section we show how our model predicts endogenous

time-variation in the volatility of actions. To explain this variation, an econometrician may

conclude that there are shocks to the volatility of the objective state, i.e. changes in σy.

4.2.1 Volatility clustering

We illustrate how the model generates clusters of volatility through the following experiment.

Once the economy reaches its ergodic distribution, at some point t we feed in a randomly

drawn sequence of states of length s. We directly affect the variability of that vector by

multiplying it by a scalar V. Denote the resulting vector of chosen actions in this first stage

as a1. At time t+ s, we feed in another random sequence of states of length s, also multiplied

by V. Collect the vector of chosen actions in this second stage as a2. We simulate repeatedly

over the draws, vary V and report σ(a2), the standard deviation of actions in the vector a2,

compared to the action vector a1, σ(a1). Notice that, on average, the standard deviation of

the states generating the two actions is the same, given by V σy.

At the ergodic distribution there are two main implications for actions when observing

a sample with more volatile states. One is a direct effect through which the actions are also

more volatile, since they respond to the observed states. More importantly, there is a second,

propagating effect arising from the fact that given more unusual states, the agent chooses

to reason more intensely. By reasoning, the agent obtains more informative signals about

the unknown policy function. In our benchmark case, the more intense reasoning leads, on

average, to an updated belief at t + s − 1 characterized by stronger responses to y. This

updated belief generates more variable actions starting at t+ s, as the belief converges back

to the ergodic ĉss0 (y). Therefore, the more intense reasoning, stimulated by more variable

state realizations, leads to an endogenous persistent increase in the variability of actions.

In our experiment we therefore find that the ratio σ(a2)/σ(a1) is increasing in V , or,

put differently, it is increasing in σ(a1), since the latter is increasing in V. An econometrician

analyzing this data finds that, conditioning on a sample where the variability of states is

larger than usual, the variation in actions following that sample is also larger than usual. The

left panel of Figure 9 illustrates the effect graphically. We use the baseline parametrization

and simulate vectors of state realizations of length s = 20. We set V = 0.5 and V = 1.5,

corresponding to a ’low’ and ’high’ variance sample, respectively. Figure 9 plots the resulting
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policy functions. As described above, the posterior belief assigns stronger responses following

more volatile innovations, leading to subsequent more variable actions.
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Figure 9: Optimal action and variability of states. In the left panel the policy function conditions on samples
of shocks with lower or higher than typical variability. In the right panel the policy function conditions on
the previous state demeaned innovation ranging from −σ to −3σ. The figure illustrates an example with
parameters Wcc = 1, κ = 0.5, σ2

c = 1, ψ = 1, and δ = 0.9.

4.2.2 More variable actions after a large shock

We use a second experiment to illustrate how after a large shock, the measured response of

actions endogenously changes. In particular, consider again the ergodic distribution where

at some point t we feed in a state yt = ȳ + ασy. Starting at t+ 1, we repeatedly simulate a

vector of length s = 20 of draws for the state and report how the resulting standard deviation

of actions based on that vector changes as we vary α.

The main finding is that the variability of actions following the shock yt increases with

|α|. This again works through the persistent effect of learning. After more unusual states, the

agent finds it optimal to reason more intensely. In our benchmark analysis, this leads to an

updated belief that is more responsive to changes in y around the realized yt. This posterior

forms the prior for subsequent periods, predicting on average a larger variability in actions.

The right panel of Figure 9 illustrates the point graphically. There we plot the policy

functions for α taking three values, −1,−2 and −3, respectively, and we note that the effects

discussed here are symmetric for α = 1, 2 and 3, respectively. There are two important effects.

One is that the average level of the posterior mean is shifted down, as the agent updates

downward over the whole function. The second effect is on the shape of the posterior belief.
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The downward shift implied by the signal at yt is stronger locally, around the realized state,

and thus results into a steeper posterior belief.

Appendices B and C document more systematically how an econometrician analyzing

time-series data from our model recovers evidence of persistence in the mean and variance

of actions. For example, even with iid states we find significant volatility clustering, as well

as a mean action whose persistence is given by an autoregressive coefficient of 0.6. Both

types of persistence decrease when either the cognition cost, κ, or the local informativeness

of signals, ψ, is lower. Appendix A discusses how implications change if the ex-ante prior

ĉ0(y) is steeper than c∗(y). In that case, more intense reasoning at unusual states leads to

posterior beliefs that are flatter and to subsequent actions that are less volatile. Figure 14

illustrates the point graphically by plotting the corresponding experiments of Figure 9.

5 Cross-sectional Distributions

In our analysis so far we have described the typical individual behavior by focusing on the

average realization of the reasoning error. In this section we expand the analysis to include

the effects of such errors. We do so at the individual level, where we emphasize the stochastic

nature of choices, and then analyze implications for the cross-sectional distribution.

5.1 Stochastic choice from reasoning errors

Experimental studies have widely documented that a given subject does not always make the

same choice even when the same set of alternatives is presented, a phenomenon the literature

has termed “stochastic choice”.29 Our model generates this type of behavior endogenously.

There are three different layers to the stochastic choice exhibited by our agents, two of which

depend on the idiosyncratic noise in the reasoning signals ηi,t, and the third is due to the

fact that optimal deliberation choice depends on the history of objective states.

To show this, we introduce a continuum of agents indexed by i that are ex-ante identical:

have the same initial prior ĉi,0(y), solve the same problem and face the same parameters. Each

agent’s objective is to choose the current action that minimizes expected quadratic deviations

from the otherwise identical optimal function c∗(y). There are no strategic considerations

between agents. The only source of heterogeneity is the specific history of reasoning signals

that each agent has received about c∗(y), leading to different prior conditional means ĉi,t−1(y).

The history of observed states is common to all agents, given by the history of aggregate

states yt. Therefore, the choice of the reasoning intensity is also common across i at each t,

29See Mosteller and Nogee (1951) and more recently Hey (2001) and Ballinger and Wilcox (1997).
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since this choice only depends on the observed objective states and the structural parameters,

which are the same across agents. It follows that agents share the same prior covariance

function Σt−1(y, y
′) and variance σ2

η,t for the noise term in their signal,

ηi,t = c∗(yt) + ση,tεi,t,

where εi,t is the resulting idiosyncratic reasoning error made by agent i.

The posterior beliefs about the optimal policy function thus follow

ĉi,t(y) = ĉi,t−1(y) + α∗(yt; ηt, η
t−1) [ηi,t − ĉi,t−1(y)] . (20)

The previous analysis on the optimal signal-to-noise ratio applies, and we obtain that when

σ̂2
t−1(yt) <

κ
2Wcc

, then agents choose not to reason and set ση,t =∞. Otherwise,

α∗(yt; ηt, η
t−1) = 1− κ

2Wccσ̂2
t−1(yt)

. (21)

There are three reasons for which an agent’s action, ĉi,t(yt), could vary even if we hold

the realization of the objective state yt constant. First, since the deliberation choice depends

on the whole history of objective states yt, the optimal signal-to-noise ratio α∗(yt; ηt, η
t−1)

depends not only on today’s state, yt, but also on the past realizations. Thus, if experimenters

hold constant yt, but not yt−1, they might observe a change in the action because the history

of observed states is different, and hence the optimal deliberation, and the weight put on

the new signal is different. Intuitively, this might occur if a subject is presented with the

same problem twice, but at different times during the experiment, and hence comes into that

problem with a different history of observations and deliberation choices. One would observe

such “stochastic” behavior even if there is no idiosyncratic noise in the reasoning signal.

Second, the observed behavior could differ even conditional on the whole history of

objective states yt, because of the reasoning error εit. This works through two channels –

the effect of accumulation of past errors εt−1i and the effect of the new error εi,t. The first

component, due to accumulation of past reasoning, leads to persistent biases in the systematic

behavior of agents, and operates through heterogeneity in the agent’s belief coming into the

period, i.e ĉi,t−1(yt). This effect is operational even if an agent decides not to obtain a new

signal at time t, and hence does not depend on the current period error εi,t.

We illustrate this heterogeneity of priors in Figure 10 which plots two policy functions

conditional on different histories of reasoning signals. To isolate the effect of the history, the

current error εit is set to zero. In the left panel, an agent has experienced a string of reasoning

signals that point towards a low overall prior ĉi,t−1(y) (the dotted line). As a result, for high
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values of y the new signal tends to indicate a significant rise in the best course of action,

making the effective action in that region more responsive than the truth. On the other

hand, there is a range of lower y, where the policy function is in fact decreasing in y. This is

because as y decreases, the agent deliberates more and puts a higher weight α∗(y; ηt, η
t−1) on

the new signal, which is indicating a higher overall action. Thus, when we take into account

the effect of past reasoning errors, the agent’s action could be (i) lower than the truth on

average, (ii) non-monotonic and changing curvature, and (iii) steeper than the true c∗(y).
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Figure 10: Policy functions for different history of reasoning signals. The figure illustrates an example with
parameters Wcc = 1, κ = 0.5, σ2

c = 1, ψ = 1, and δ = 0.9.

The right panel illustrates the opposite case, where the past signals of the agent have

generated a relatively high initial prior ĉi,t−1(y), and we observe properties of the action that

are the reverse of those in the left panel. This shows that even conditional on the history

of observed states yt and the current period signal ηit, the behavior of an agent could differ

depending on the history of prior reasoning signals. This leads to differences in the systematic

behavior of the agents – for example there is a range of y values for which the policy on the

left is decreasing, while that on the right is increasing. Thus, an experimenter could observe

a difference in behavior even when conditioning on the whole history of yt, and giving the

subjects a familiar task so that they choose to do no more additional reasoning.

Lastly, the observed behavior of the agent could differ even conditional on the whole

history of objective states yt and history of past reasoning signals ηt−1i , because of the

idiosyncratic reasoning error εit in the new signal ηit. The amount of noise present in the

agent’s action depends on the realization of the objective state yt, because of the state-

dependent deliberation choice. In particular, the standard deviation of the noise due to εit
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is
√
.5α∗(yt; ηt, ηt−1)κ/Wcc. Given the U-shape of the optimal α∗(yt; ηt, η

t−1), the observed

action is noisier at more unusual states.

5.2 Aggregate action

In this section we are interested in the properties of the aggregate action and in their

connection to basic stylized facts of many macroeconomic aggregates.

Let c̄t denote the time t cross-sectional average action, i.e. c̄t ≡
∫
ci,tdi, where ci,t is

the action of agent i. The law of large numbers implies that the reasoning errors εi,t average

out, so that the average action has a recursive structure that is similar to the evolution of

the posterior mean for an individual agent in equation (20):

c̄t = (1− α∗(yt; ηt, ηt−1))c̄t−1 + α∗t (yt; ηt, η
t−1)yt, (22)

and so the same properties for the typical individual action apply to c̄t.

The costly cognition friction that we propose has therefore an array of implications,

both for individual and aggregate data. Some of those properties, like inertial and salience

effects, are particularly important to explain individual behavior, as observed for example in

experiments. Some other implications, especially related to the time-series patterns of actions

and the propagation of information may be of particular relevance for aggregate actions.

The macroeconomics literature has focused on two important properties of the first

moment of the aggregates. First, a sluggish behavior, reflected in a slow reaction or hump-

shaped response of major aggregates to identified shocks. Second, non-linear dynamics,

in the form of stronger responses to more unusual aggregate states. To produce inertial

behavior the literature has typically appealed to a set of adjustment costs, including in

capital accumulation, consumption habit formation or nominal rigidities in changing prices

or wages.30 In turn, the interest in non-linear dynamics has resulted in additional frictions,

such as search and matching or financial constraints.31 In terms of the behavior of second

moments, a significant literature documents time-variation in the volatility of many major

aggregates. A typical approach has been to model those patterns by allowing for stochastic

volatility in the underlying shocks or by shifts in the structural parameters.32

Our model produces behavior at the aggregate level that is consistent with all of these

important empirical properties. First, persistence in the conditional expectation of the

30See for example Christiano et al. (2005) and Smets and Wouters (2007) for representative models of
fitting macroeconomic aggregate data with a combination of persistent shocks and set of frictions.

31See Fernández-Villaverde et al. (2016) for a recent survey of non-linear methods.
32See for example Stock and Watson (2002), Cogley and Sargent (2005) and Justiniano and Primiceri

(2008) for empirical evidence and models of stochastic volatility and time-varying parameters.
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aggregate action occurs because the information obtained at some observed objective state is

used to update beliefs about the optimal action more generally, at other state realizations.

Second, non-linearities emerge as a result of the endogenous state-dependent reasoning choices

of agents populating our model economy. Third, endogenous reasoning implies that the

responsiveness of the economy to shocks changes due to particular realizations of the state,

even if no structural shifts occur. For example, the conditional variance of the aggregate

action in our model is larger after a sample that includes more unusual aggregate shocks.

5.3 Cross-sectional dispersion of actions

Endogenous reasoning choices lead to time-variation not only in the conditional expectation

and variance of the aggregate action, but also in the cross-sectional dispersion of individual

actions. Let σt ≡
∫

(ci,t − c̄t)2 di denote that dispersion. Given the optimal choice of

α∗(yt; ηt, η
t−1) in equation (21), the average action from equation (22), and noting the

orthogonality property of the reasoning errors, we obtain

σ̄t = (1− α∗(yt; ηt, ηt−1))2
∫ [

ĉi,t−1(yt)−
∫
ĉi,t−1(yt)di

]2
di+

α∗(yt; ηt, η
t−1)κ

2Wcc

. (23)

Consider now the cyclical movements in σ̄t. There are two types of state-dependency in

equation (23). First, the dispersion of priors is state-dependent, since agents have different

priors about the optimal action at different y. The source of this dispersion is the variability

in the past signals about the optimal action obtained by different agents. It is useful to recall

that the ergodic uncertainty is lowest around ȳ (see Figure 3). The higher precision of initial

beliefs in that region is due to the fact that agents have accumulated more reasoning signals

there. The larger dependence on these idiosyncratic signals creates a larger dispersion of

priors ĉi,t−1(y) there. In contrast, further away from ȳ, there is less relevant information

accumulated through time and as a consequence the agents’ priors ĉi,t−1(y) are less dispersed.

Therefore, we expect that the dispersion of priors decreases with |yt − ȳ|. The dashed line in

Figure 11 illustrates this property at the ergodic distribution.

Second, the signal-to-noise ratio is state-dependent: as |yt − ȳ| increases, the prior

uncertainty is larger, which in turn increases the optimal α∗(yt; ηt, η
t−1) as agents deliberate

more about the optimal action. The effect of a larger α∗(yt; ηt, η
t−1) works in two opposing

directions. On the one hand, the larger reliance on new idiosyncratic signals reduces the

dispersion through the lower weight attached to differences in priors, as given by the first term

of equation (23). This force amplifies the fact that the dispersion of priors tends to be lower

for larger |yt − ȳ|. On the other hand, the new signals have errors with an optimally chosen
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Figure 11: Cross-sectional dispersion from reasoning errors. The figure plots then ergodic dispersion of
actions, as well as in priors, together with the ergodic signal-to-noise ratio. illustrates an example with
parameters Wcc = 1, κ = 0.5, σ2

c = 1, ψ = 1, and δ = 0.9.

standard deviation of ση,t and update the posteriors by α∗(yt; ηt, η
t−1))ηi,t. These idiosyncratic

signals increase the dispersion in posterior beliefs by a factor proportional to α∗(yt; ηt, η
t−1),

given by the second term of equation (23). The dotted line in Figure 11 illustrates this effect.

Overall, the effect of |yt− ȳ| on σ̄t depends on the relative strength of these effects. The

increase in dispersion of actions when the state is unusual, from the newly acquired reasoning

signals, tends to dominate when the dispersion of priors is relatively flat with respect to the

state, as illustrated in Figure 11 for the ergodic distribution in the baseline parametrization.

In this case, more unusual states are characterized by correlated volatility at the ‘micro’ level

(cross-sectional dispersion) and ‘macro’ (volatility clustering of the aggregate action).33

6 Two Actions

In this section we consider an extension to multiple actions, which we call c and l (e.g.

consumption and labor). In this extension we further highlight how in our model the

information flow is specific to the cognitive effort it takes to make decisions about actions,

now extended to two, rather than about the single objective state.

The agent seeks to minimize the sum of squared deviations of both actions from the

unknown policy functions c∗(y) and l∗(y):

WccEt(ct − c∗(yt))2 +WllEt(lt − l∗(yt))2,
33Such potential correlated clusters is consistent with recent evidence surveyed in Bloom (2014).
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where Wcc and Wll are the costs of making the respective errors. We use a similar approach

as for the single action to model learning about the vector of functions [c∗(y), l∗(y)] as a

vector Gaussian Process distribution. The cognition cost is again a linear function of the

total information acquired about the vector, as measured by Shannon mutual information.

In Appendix D we present details on the setup and updating formulas. The optimal

precision of the deliberation signals about the two functions is to target, similarly to equation

(8) but this time potentially action specific, an optimal level for the posterior uncertainty

σ̂∗2c,t(yt) =
κ

2Wcc

; σ̂∗2l,t(yt) =
κ

2Wll

, (24)

where κ is the marginal cost of acquired information. The optimal signal-to-noise ratios and

the resulting actions ĉt(yt), l̂t(yt) are the counterpart of equations (11) and (10), respectively.

The basic features of the ergodic distribution of beliefs are thus similar to the univariate

case. The most interesting new implications of the multidimensional problem presented here

arise when there is an asymmetry in the costliness of mistakes. We assume that Wcc > Wll

and illustrate the ergodic effective policy functions of such an example in Figure 12.
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Figure 12: Two Actions Optimal Policy. Benchmark values – Wcc = 1,Wll = 0.5, κ = 0.5, σ2
c = 1, σ2

l =
1, σ2

cl = 0, ψ = 1, and δ = 0.9. Changing values: κ = 0.15, ψ = 3, and δ = 0.99.

Both policy functions display the non-linearity of the univariate case, with a region of

relative inertia around ȳ, and salience-like effects for more distant values. However, there are

differences in how the two effective policy functions, ĉ and l̂, display those basic non-linear

features. Since the cost of mistakes is lower for the second action the agent optimally

deliberates less about it. At the ergodic distribution, this results in a function l̂ that is much

flatter than ĉ, and that also displays less reaction even in the tails of yt realizations.
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The differential non-linearity across the two effective actions has implications for the

correlations in the errors made in the two actions. If the friction was in observing the objective

state yt, the resulting errors in the two actions would be perfectly correlated. In that case,

any information about the unknown yt informs both actions equally because the agent has

full knowledge of the two (linear) optimal policy functions. As a result, errors in both are

due to perceptions in the state yt, and are thus perfectly correlated. To the contrary, in our

model the errors are action specific. Moreover, because of the ergodic distribution of beliefs,

the errors will be more correlated for yt closer to ȳ, where the agent relies more on the ergodic

prior beliefs (which are increasing for both actions). And the errors in the two actions will

be less correlated for unusual realizations of yt, where the agent leans more heavily on the

new reasoning signals, which feature uncorrelated error terms. For example, to an outside

observed this could look like a shift in preferences.

Our setup also affects inference about the size of the underlying cognitive friction.

Consider an analyst that looks at our data through the lenses of a model of imperfect

perception of states but known policy functions. Suppose the analyst then estimates the

constant signal-to-noise ratio, corresponding to α̃∗y in equation (14), that best fits a linear

function through the observed ct action (dashed line in Figure 12). While the fitted response

cannot deliver the non-linear features of the optimal ĉt(y), it will at least imply behavior that

is on average correct with respect to that generated by our model.

However, if the analyst uses the estimated model to predict the agent’s behavior in

terms of the other action, the prediction will be biased on average, as illustrated in the right

panel of Figure 12. The predicted policy function l̂t is the same as that for ĉt, since they are

both driven by the same underlying belief about yt. When the analyst’s model sees data on

ct, which tracks the optimal c∗(y) better, it infers that the agent pays a lot of attention to

yt. With precise beliefs about yt, a model of imperfect perception of states implies that the

agent sets both actions accurately, resulting in a responsive l̂t. To the contrary, however, in

our model the agent generally does not respond much in lt, and in particular much less than

ct. Moreover, in our model changing the costliness of mistakes (e.g. Wcc) will affect only

the precision in the ct action. However, in the other model changing information about yt is

chosen based on the weighted average of the costliness of mistakes in terms of both ct and lt.

Thus, changing Wcc would increase the precision in both actions.

7 Conclusion

In this paper we have developed a tractable and parsimonious model to study costly cognition.

We have assumed that agents perfectly observe state variables, but have limited cognitive
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resources that prevent them from computing their optimal policy function. We have shown

that the resulting actions are characterized by several empirically plausible features: (i)

endogenous persistence: even if the observed states are iid, there is persistence in the

agent’s beliefs about the conditional optimal course of action; (ii) non-linearity: typical

behavior exhibits inertia and ‘salience’ effects; (iii) stochasticity: the action is stochastic, even

conditioning on the perfectly observed objective state, as it is driven by random reasoning

signals; (iv) cross-sectional heterogeneity in policy functions: agents’ experiences may lead

to average biases and local changes that are non-monotonic; (v) endogenous persistence in

the volatility of actions: following unusual times both the time-series and the cross-sectional

variance increases; (vi) state-dependent accuracy in different actions.

The model has potentially important policy implications. First, it offers a cohesive

framework to understand an array of features for the individual behavior. The errors made by

these agents do not arise from mechanical decision rules, but instead respond to the state and

the characteristics of the environment, including policy changes, in the spirit of Lucas (1976).

Second, the friction may help understand macroeconomic phenomena such as non-linearity,

persistence, volatility clustering, and in the process may change inference on the underlying

sources of economic mechanisms and shocks. Indeed, an econometrician that fits a standard

fully rational agent model to the equilibrium outcomes generated by our model may conclude

that there are policy-invariant sources of non-linearity and time-variation in parameters.

Instead, through the lenses of our model, these non-linearities and apparent time-varying

parameters are a manifestation of a single cognitive friction that leads economic agents to

act according to state-dependent reasoning rules.

Finally, our aggregate-level implications have abstracted from general equilibrium type

of interactions. Incorporating these interactions involves studying the propagation effects of

the state-dependent individual errors in actions, as well as modeling the agents’ reasoning

choice of computing potentially complex general equilibrium effects, issues that we find

promising for future research.
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A Additional figures for section 4

In this Appendix we discuss in more detail how information propagates in the case of a
time-zero prior mean that is steeper than the truth, i.e. a b0 > 1 in equation (18). Recall
that the right panel of Figure 7 plots the mean ergodic policy function in such a case.

Consider the impulse response experiment discussed in section 4.1.1 and plotted in
Figure 13. In the left panel we see how on impact the action drops by more than the change
in the state because the ergodic policy is now steeper. On the other hand, the innovation in
the new signal, ηt − ĉss0 (yt), is now positive on average which updates upwards the beliefs
about c∗(y). As a result, the impulse response converges from above. The learning parameters
have the usual effect as in the benchmark case: the response on impact is closer to the true
optimal policy function and there is less propagation of the innovation for a lower κ and a
higher ψ. Without discounting, there are no persistent effects. In the right panel, we see that
when the true innovation is even more unusual the action further drops, but proportionally
less. The reason for this diminished impact effect is that the ergodic policy function becomes
now flatter as the state becomes more unusual. However, the reasoning precision is not
affected by the prior mean so the agent still obtains a more precise signal at the unusual
state. Therefore, in terms of propagation, the response conditional on a more unusual state
is still more persistent as in the benchmark case.

2 4 6 8 10 12 14 16 18

time

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

P
er

ce
nt

 d
ev

ia
tio

n 
fr

om
 m

ea
n

(a) Alternative parameterizations
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(b) Alternative shock realizations

Figure 13: Impulse response function. The figure plots the typical path of the action when the time-zero
prior mean is steeper than the truth, i.e. ĉ0(y) = c̄+ b0(y − ȳ) with b0 = 3. The left panel plots the response
following an innovation of yt = ȳ − 2σy. The figure illustrates an example with parameters Wcc = 1, κ = 0.5,
σ2
c = 1, ψ = 1, and δ = 0.9. In the left panel we change parameters to κ = 0.1, ψ = 5 and δ = 1, respectively.

In the right panel we change persistence to ρy = .9 (dashed line), or we feed in future values of yt+j that
always equal to y (starred line), or set the current shock to yt = ȳ − 3σy (dotted line).

Figure 14 plots the experiments analyzed in section 4.2 in the case of b0 = 3. The
state-dependent reasoning choice leads to more informative signals following periods of more
unusual states. Since in this case, the ergodic mean prior is steeper than the truth, the new
signals lead to updated beliefs characterized by flatter responses to y. We see this effect in
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the left panel, where following a period of high variability of states, the posterior conditional
expectation is flatter, as well as in the right panel, where following a more unusual state
realization the posterior mean also becomes less steep. Therefore, these posteriors, which
become the new priors entering into subsequent periods, generates less variable actions.
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(a) Conditional on recently low or high variance of
states
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(b) Conditional on recently unusual states

Figure 14: Optimal action and variability of states. The figure plots the mean policy function when the
time-zero prior mean is steeper than the truth, i.e. ĉ0(y) = c̄+ b0(y − ȳ) with b0 = 3. In the left panel the
policy function conditions on samples of shocks with lower or higher than typical variability. In the right
panel the policy function conditions on the previous state demeaned innovation ranging from −σ to −3σ.
The figure illustrates an example with parameters Wcc = 1, κ = 0.5, σ2

c = 1, ψ = 1, and δ = 0.9.

B Statistical fit of persistence in the time-series

In this appendix section we document in a more systematic way how an econometrician
analyzing time-series data on actions from our model recovers evidence of persistence as well.
For this purpose, we consider an Autoregressive process of order p (AR(p)) for the action:

ct = c+

p∑
i=1

ρict−i + σεt (25)

Table 1 summarizes results for the baseline model and some alternative specifications.34

The model is characterized by significant evidence against the null of no persistence in actions.
We focus there on an AR(1) process and find that the estimated ρ1 parameter is significantly
positive indicating a strong departure from the iid assumption on the evolution of the state
yt. The intuition for the presence of endogenous persistence follows the logic of the impulse
response function presented in section 4.1. The key mechanism is that the information
acquired about the optimal action at some particular realization of the state yt is perceived

34We simulate 10000 periods and drop the first 500 so to compute long run moments.
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Table 1: Time-series properties of the action

Moment \Model Baseline Lower κ Higher ψ

Persistence ρ̂1 .61 .18 .19

[.59,.63] [.17,.21] [.17,.21]

Note: This table reports results for estimating ρ1 in equation (25).The baseline parametrization is Wcc =

1, κ = 0.5, σ2
c = 1, ψ = 1, and δ = 0.9. In the third column κ = .1, while in the fourth column ψ = 5. In

squared brackets we report the 95% confidence interval.

to be informative about the optimal action at a different value y′. The discussion in sections
3.3 and 4.1 highlights the two essential structural forces for these time-series results. In
Table 1 both for the alternative parameterizations of ’Lower κ’ and ’Higher ψ’, the effects of
reasoning about the optimal function are weaker, in the form of smaller estimated ρ1.

In Table 2, we also estimate an AR(2) process and the best fitting AR(p) model. For
the baseline parametrization the AR(2) improves the fit over the AR(1) with significant
coefficients at both lags. The best fit, according to the Akaike information criterion, has 6
lags with a sum of coefficients equal to 0.71. While in the baseline model the state is iid, we
explore the effects of increasing that persistence to 0.5 and 0.9, respectively. In the former
case, the cognition friction leads to a higher persistence in actions, equal to 0.83. In the latter
case, the model also generates significant hump-shape dynamics. In particular, when we fit
an AR(2) process, the impulse response function transmits a raise in ct into an increase in
ct+j that mean reverts only at j = 6. This confirms the hump-shape dynamics in Figure 8.

Table 2: AR(p) processes for action

Model/Moment AR(1) AR(2) AR(p)

Persistence in actions ρ ρ1 ρ2 p∗
p∗∑
i=1

ρi

Baseline .61 .48 .2 6 .71

Shock persistence ρy = .5 .83 .85 -.02 5 .83

Shock persistence ρy = .9 .97 1.15 -.18 8 .95

Note: This table reports results for estimating AR(p) processes for the average action, as in equation (25). .

C Statistical fit of volatility clustering in the time-series

To measure volatility clustering, we first use the AR(p) regression in equation (25) to
compute squared residuals ε̂2t . We then regress them on the previous absolute value of actions
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c̃t−1 ≡ ct−1I(|ct−1| > σ), where the latter indicator equals one if the absolute value of the
action ct−1 is larger than a threshold proportional to the measured unconditional standard
deviation of actions, denoted by σ. The regression states:

ε̂2t = α + β|c̃t−1|+ ε̃t (26)

Table 3: Time-series properties of the action

Moment \Model Baseline Lower κ Higher ψ

Volatility cluster β̂ .6 .48 .5

[.3,1] [-.01,1] [0,1]

Note: This table reports results for estimating β in equation (26) for the baseline and alternative parametriza-

tions of Table 1. In squared brackets we report the 95% confidence interval.

Table 3 reports evidence for volatility clustering, in the form of a significantly positive
β in equation (26).35 The intuition for this finding is presented in section 4.2.1. After more
unusual states, which in turn generate more unusual actions compared to the ergodic action,
in the form of a higher |ct−1|, the agent finds it optimal to reason more intensely. This
increased deliberation leads on average to an updated belief that is more responsive, which
on average generates a larger variability in actions in the next period, resulting in larger
residuals ε2t . The effects are smaller for the ’Lower κ’ and ’Higher ψ’ cases.

D Two Actions

In this appendix we present details on the extension to multiple actions introduced in section
6. We model uncertainty over the vector of functions [c∗(y), l∗(y)] as a vector Gaussian
Process distribution,[

c∗(y)
l∗(y)

]
∼ GP

([
ĉ0(y)

l̂0(y)

]
,

[
Σc

0(y, y
′) Σcl

0 (y, y′)
Σcl

0 (y, y′) Σl
0(y, y

′)

])
,

where now ĉ0(y) and l̂0(y) represent the prior mean functions over c∗(y) and l∗(y), respectively,
and Σc

0(y, y
′) and Σl

0(y, y
′) are the covariances within the two functions c∗(y) and l∗(y)

respectively, and Σcl
0 (y, y′) is the covariance across the two functions. All covariance functions

are of the squared exponential family

Cov(c∗(y), c∗(y′)) = σ2
ce
−ψc(y−y′)2 ; Cov(l∗(y), l∗(y′)) = σ2

l e
−ψl(y−y′)2

35If instead of the threshold σ in the indicator function in (26), we use a value of 0, then the point estimate
for β is still positive but not significant at a 95% confidence level.
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including the cross-term Cov(c∗(y), l∗(y′)) = σ2
cle
−ψcl(y−y′)2 , where the respective parameters

play the same role as before. We focus on the case where ψc = ψl = ψcl = ψ.
The deliberation process is modeled as a choice over the precision of unbiased signals

ηct = c∗(yt) + εηct ; ηlt = l∗(yt) + εηlt

Lastly, the cognition cost is again a linear function of the total information the agent acquires
about his (vector of) optimal actions, as measured by Shannon mutual information:

I(

[
c∗(y)
l∗(y)

]
;η(yt),η

t−1) = H(

[
c∗(y)
l∗(y)

]
|ηt−1)−H(

[
c∗(y)
l∗(y)

]
|ηt,ηt−1)

where we define the bold symbol ηt as the vector of signals ηct , η
l
t.

Hence the costly deliberation framework is an extension of the univariate case. The
agent faces the following reasoning problem:

U = max
σ̂2
c,t,σ̂

2
l,t

−Wccσ̂
2
c,t(yt)−Wllσ̂

2
l,t(yt)− κI(

[
c∗(y)
l∗(y)

]
;ηt,η

t−1)

s.t. σ̂2
c,t(yt) ≤ σ̂2

c,t−1(yt); σ̂
2
l,t(yt) ≤ σ̂2

l,t−1(yt)

where for convenience we define the notation

σ̂2
c,t(yt) = Vart(c

∗(yt)); σ̂
2
l,t(yt) = Vart(l

∗(yt))

Given an optimal choice of the signal error variance, there are corresponding effective
signal to noise ratios α∗c(yt;ηt,η

t−1) and α∗l (yt;ηt;η
t−1) respectively, and the resulting effective

actions taken by the agent are given by:

ĉt(yt) = Et(c
∗(yt)) = ĉt−1(yt) + α∗c(yt;ηt,η

t−1)(ηct − ĉt−1(yt))

l̂t(yt) = Et(l
∗(yt)) = l̂t−1(yt) + α∗l (yt;ηt,η

t−1)(ηlt − l̂t−1(yt))

We focus on the case where the agent has a prior belief that there is no correlation
between the values of his two actions and hence σ2

cl = 0.36 The optimal deliberation choice is
represented by, this time potentially action specific, optimal target levels for the posterior
uncertainty, which lead to the equation (24) in the text

σ̂∗2c,t(yt) = min{ κ

2Wcc

, σ̂c,t−1(yt)}; σ̂∗2l,t(yt) = min{ κ

2Wll

, σ̂l,t−1(yt)}

36This is a particularly straightforward case to analyze because the optimal deliberation about each action
is independent of the choice of deliberation about the other. Moreover, it is still an interesting special case
because some of the fundamental features of the more general problem are quite transparent here.
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