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1 Introduction

Since the introduction of CAPM by Sharpe (1964) and Linner (1965), linear factor pricing

models have grown into a very popular sub-field in asset pricing. Harvey, Liu and Zhu

(2016) list hundreds of papers proposing, justifying and estimating various factor pricing

models. A typical paper in this area proposes a small set (in the range of 3-5) of observed

risk factors. The classical factor is the market portfolio excess return, which was aug-

mented by the size factor ‘SMB’ (small-minus-big return) and the book-to-market factor

‘HML’ (high-minus-low return) in Fama and French (1993). Among other well-known

pricing factors are the momentum factor ‘MOM’ (Jegadeesh and Titman, 1993) and the

consumption-to-wealth ratio ‘cay’ (Lettau and Ludvigson, 2001).

Traditionally, the model is estimated using what is commonly known as the two-pass

estimation procedure (Fama and MacBeth, 1973; Shanken, 1992).1 This procedure, how-

ever, relies on an idealistic setup with strong identification of risk premia. Empirically,

in realistic circumstances such conditions often do not hold. For example, the recent

literature shows that the mismeasurement of the true risk factors leads to weakness in

the observed factors and strong cross-sectional dependence in the errors (Kleibergen and

Zhan (2015)), which may result in all sorts of distortions in estimation and inference in

theory and their non-reliability in practice (e.g., Kan and Zhang (1999), Andrews (2005),

Kleibergen (2009)). Recent papers by Kan and Zhang (1999), Kleibergen (2009), Bryz-

galova (2015), Burnside (2015), Gospodinov, Kan and Robotti (2016) all point out that

risk exposures (or betas) to some observed factors tend to be small to such an extent

that the their estimation errors are of the same order of magnitude as the betas them-

selves. The observed phenomenon is very similar to the widely studied weak instruments

problem. The remedies for some of these failures proposed in the literature rely either on

complicated inference tools robust to weak identification (Kleibergen (2009)), or require

the use of dimension-reduction techniques (Bryzgalova (2015)).

Along with a combination of problems of small betas and missing factors, we also con-

sider one very important empirical feature of typically employed datasets – the presence

of a large number of assets or portfolios often comparable to the number of periods over

which returns are observed. We consider an asymptotic framework where the number of

assets/portfolios of which returns data is used for estimation grows with its time-series

1Sometimes the two-pass procedure is referred to the Fama-MacBeth procedure (Fama and MacBeth,
1973). See Cochrane (2001, section 12.3) on their numerical equivalence when betas are time invariant.
The method of obtaining valid standard errors that account for the two step nature of the procedure was
given in Shanken (1992).
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dimension. Such dimension asymptotics is likely to provide a more accurate asymptotic

approximation to the finite sample properties of estimators and tests. As is known from

the conceptually-related literature on many instruments (Bekker, 1994) and many regres-

sors (Anatolyev, 2012), large distortions in conventional estimation and inference may

arise when the number of instruments and/or regressors ceases to be a tiny fraction of

the sample size, and corrections of estimators and tests require a framework with the

dimension asymptotics within which these fractions are asymptotically non-zero. The

many-asset asymptotic framework was already utilized previously by Gagliardini, Ossola

and Scaillet (2016).

Within the new dimensionality asymptotics we show that the presence of small be-

tas leads to a failure of the classical two-pass procedure, while the additional presence

of missing factors exacerbates the problem. We propose econometric procedures that

are robust to both of the issues with factors – the weakness of observed factors and the

presence of unobserved factors in the errors, – and, in contrast to the remedies proposed

elsewhere, are easily implementable using standard regression tools (in particular, instru-

mental variables regressions and two-stage least squares). The estimators we propose are

consistent and asymptotically mixed gaussian; moreover, using the variance estimators

whose construction we describe, the standard inference tools such as t- and Wald tests

can be applied in a conventional way.

Our usage of dimensionality asymptotics has an important implication: even though

we assume that some observed factors have small betas, it does not lead to a weak identi-

fication problem as currently defined in the literature, and we can obtain a consistent esti-

mator. This distinction is similar to the one between the literature on “weak instruments”

and the literature on “many weak instruments” (e.g., Hansen, Hausman and Newey, 2008).

In the latter, the weakness of instruments implies identification if these instruments are

numerous and, while the classical two stage least squares (TSLS) estimator has large

distortions, one can construct a consistent and asymptotically gaussian estimation pro-

cedure. Our new estimation approach uses some ideas from the many-weak-instruments

literature such as sample-splitting and the use of instrumental variables estimation at the

second step. However, we additionally face and solve a distinct problem that one does

not encounter in the many weak instrument literature, namely, that of the presence of an

unobserved factor structure in the error terms that creates strong cross-sectional depen-

dence in the panel of returns and is similar to the classical omitted-variables problem in

the second-pass regression of the two-pass procedure.

The paper is organized as follows. Section 2 introduces notation, discusses the rel-
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evance of our asymptotic approach, and argues for the presence of a significant factor

structure in the errors. Section 3 introduces and discusses technical assumptions. Section

4 explains the asymptotic failure of the classical two-pass procedure and provides detailed

intuition as to why that happens. We propose our estimation method in Section 5, de-

scribe what motivates it and explain why it works. We also state the formal theorem on

the consistency of the newly-proposed 4-split estimator. Section 6 is devoted to deriving

inference procedures that use our 4-split estimator, in particular, we show the asymptotic

validity of a properly constructed Wald test. The results of numerous simulations sup-

port our theoretical finding and are placed in Section 7. Section 8 revisits some prominent

empirical applications of the factor-pricing model.

A word on notation: 0l,m stays for a zero matrix of size l×m, Im is an m×m identity

matrix, for an m × lA matrix A and an m × lB matrix B symbol (A;B) stays for the

m× (lA + lB) matrix obtained from placing the initial matrices side-to-side.

2 Formulation of the problem

As mentioned in the Introduction, a paper in the area of financial factor models typically

proposes a small set of observed risk factors described by a kF×1 vector Ft, with a (usually)

small dimension kF . An asset or portfolio of assets i with excess return rit has exposure to

several risk factors, which is quantified by the asset’s betas βi = var(Ft)
−1cov(Ft, rit). A

typical claim in linear factor-pricing theory is that exposure to risk (betas) fully determines

the assets’ expected returns. Particularly, there exists a kF × 1-dimensional vector of risk

premia λ such that Erit = λ′βi.

The linear factor-pricing model is equivalent to the following formulation:

rit = λ′βi + (Ft − EFt)
′βi + εit, (1)

where the random error terms εit have mean zero and are uncorrelated with Ft. One

special case often mentioned in the literature occurs when the Ft factors are asset returns

themselves and are supposed to be priced by the same model; in this case, theoretically

λ = EFt. We will not make this assumption and will consider the general case when λ

may differ from EFt.

Two-pass procedure The estimation and formation of inferences on risk prices, λ, are

usually accomplished by a procedure commonly known as the two-pass estimation proce-

dure (Fama and MacBeth, 1973; Shanken, 1992), which is applied to a data set consisting
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of a panel of asset excess returns {rit, i = 1, ..., N, t = 1, ..., T} and of observations of

realized factors {Ft, t = 1, ..., T}. As a first step, one estimates βi by running a time

series OLS regression of rit on a constant and on Ft for each i = 1, ..., N . The second step

produces an estimate of λ (denote it λ̂TP ) by regressing the time-average excess return
1
T

∑T
t=1 rit on the first-step estimates, β̂i. Under suitable conditions, λ̂TP is proved to

be both consistent and asymptotically gaussian. Discussions of the statistical properties

of the two-pass procedure appear in Fama and MacBeth (1973), Shanken (1992), and

Chapter 12 of Cochrane (2001).

Recently, several prominent researchers have raised the concern that the two-pass pro-

cedure may provide misleading estimates of risk premia; see, for example, Kan and Zhang

(1999), Kleibergen (2009), Bryzgalova (2015), Burnside (2015), Gospodinov, Kan and

Robotti (2016). They surmise that the reason for these erroneous inferences is attached

to the empirical observation that either some column of β = (β1, ..., βN)
′ is close to zero,

or, more generally, the N × kF matrix β appears close to one of reduced rank (less than

kF ) for a majority of well-known linear factor-pricing models. The observed phenomenon

is similar to the widely studied weak-instruments problem (Staiger and Stock, 1998): if

some of the observed factors Ft are only weakly correlated with all of the returns in the

data set, then the noise that arises in the first-stage estimates of the corresponding com-

ponents of βi will dominate the signal, and the second-pass estimate of the risk premia λ

will be over-sensitive to small variations in the sample.

In order to model the observed phenomenon, Kleibergen (2009), Bryzgalova (2015)

and Gospodinov, Kan and Robotti (2016), among others, considered a drifting-parameters

framework in which they model some component of βi to be of order O( 1√
T
) assuming

that the number of time periods, T , increases to infinity, while the number of assets,

N , stays fixed. In such a setting the first-step estimation error is of order of magnitude

Op(
1√
T
), which is comparable to the size of the coefficients themselves. The two-pass

procedure could be reformulated as an IV-type estimation, and then the above-described

drifting-sequence asymptotics characterize the weak-instruments case. This framework

implies inconsistency of the two-pass estimates for the risk premium on small components,

poor coverage of regular confidence sets even for the risk premium of strong factors, and

asymptotic invalidity of classical specification tests and tests of hypotheses about risk

premia.

Following this tradition and acknowledging empirical evidence provided in Kleibergen

and Zhan (2015) and Bryzgalova (2015) we also make use of drifting-parameter modeling.

We assume that the kF × 1 vector of factors Ft can be divided into two subvectors: a
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k1 × 1 dimensional vector Ft,1 and a k2 × 1 vector F2,t (here kF = k1 + k2) such that

the risk exposure βi,1 to factor Ft,1 will be strong, while the risk exposure coefficients β2,i

to factor F2,t will be drifting to zero at speed 1√
T
. We make these order assumptions

for risk exposure more accurate in the next section. The most important feature of our

modeling will be that the standard error of the first-step estimator of β2,i will be of the

same order of magnitude as the coefficient itself. A more general treatment of the near-

degenerate rank condition considers some k2-dimensional linear combination of factors

(unknown to the researcher) to have a local-to-zero (of order O( 1√
T
)) exposure coefficient,

while the exposure to risk formed by the orthogonal k1-dimensional linear combination

remains fixed. All our results are easily generalizable to this setting, as we do not assume

the researcher knows which factors (or combination of factors) bear small coefficients of

exposure. However, to simplify the exposition we will stick to the division of factors into

two sub-vectors.

This paper deviates from the previous literature in two directions. First, we consider

an asymptotic setting where both N and T grow to infinity. We notice that in many

common data sets researchers use in the estimation of factor pricing models, the number

of assets, N , is large when compared to the number of time periods. The celebrated

Fama-French data set provides returns on N = 25 sorted portfolios for about T = 200

periods. The often-used Jagannathan-Wang data set (Jagannathan and Wang (1996))

contains observations on N = 100 portfolios observed for T = 330 periods. Lettau and

Ludvigson (2001) use Fama-French N = 25 portfolios, the returns for which are observed

during T = 141 quarters. Gagliardini, Ossola and Scaillet (2016) use N = 44 industry

portfolios observed during T = 546 months. In these cases it is hard to believe that the

asymptotic results derived under the assumption thatN is fixed would provide an accurate

approximation of finite-sample distributions. Indeed, among other things, Kleibergen

(2009) discovers that the bias of the two-pass estimate of risk premia is strongly and

positively related to the number of assets if the total factor strength is kept constant.

In this paper we consider asymptotics when both N and T increase to infinity without

restricting the relative growth between them.

The second and main deviation of this paper from the existing literature is our explicit

acknowledgment of high cross-sectional dependence among error terms εit in model (1).

In particular, we assume that errors have a factor structure. Namely, this means that

there exists a missing (unknown and unobserved to the researcher) factor vt and loadings

µi such that

εit = v′tµi + eit,
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where the ‘clean’ errors eit are only weakly cross-sectionally dependent to such an ex-

tent that asymptotically we may ignore their dependence (exact formulation of this as-

sumption appears in the next section). Similar weak-dependence assumptions appear in

approximate factor models (e.g., Bai and Ng (2002)). The assumptions on loadings µi

guarantee that the factor structure will be strong enough to be both detected empirically

and asymptotically important for inferences. An insightful discussion of weak vs strong

factor structure and cross-sectional dependence appears in Onatski (2012).

Below we provide two theoretical reasons as to why we expect factor structure in

many linear factor-pricing models. Then we point to empirical evidence that a missing

factor structure is indeed present in some well-known factor-pricing models.

Example 1. If one does not observe the true risk factors that price assets but only

proxies for them, this would lead to a factor structure in errors (see Kleibergen and Zhan

(2015), who show in particular that this further leads to spuriously large values of second-

pass R2). Assume for a moment that the market is priced by risk premia on risk factors

Gt. For expositional simplicity we assume that

rit = Gtβ
G
i + εGit ,

where the shocks εGit are drawn with mean zero and finite variance independently cross-

sectionally and time-series and independent from Gt. Also assume that Gt is stationary

with variance ΣG.

Assume that the econometrician does not observe Gt, but rather has a proxy for it,

Ft = α+ δGt+ ϵt, where ϵt has mean zero and is uncorrelated with Gt and shocks εGit . For

example, ϵt may stand for a measurement error or contamination by other macro variables

not connected to asset prices. Denote the variance matrix of ϵt by Σϵ. If δ is a full-rank

square matrix, then one can show that proxies Ft can price assets as well as the true risk

factors Gt. Indeed,

βi = V ar(Ft)
−1Cov(Ft, rit) = (δΣGδ

′ + Σϵ)
−1δΣGβ

G
i = AβG

i ,

where the matrix A = (δΣGδ
′ + Σϵ)

−1δΣG is a full-rank square matrix. Thus,

Erit = EGtβ
G
i = λβi,

where λ = A−1EGt. So we see that if the econometrician is trying to estimate a linear

factor-pricing model using factors Ft, she has a correctly-specified model; however, this
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model (unlike the model with the observed factors Gt) has a factor structure in its error

terms. Indeed, using some simple algebra one can show that equation (1) holds with

εit = (Σϵδ
−1Σ−1

G (Gt − EGt)− ϵt)
′βi + εGit = v′tµi + εGit .

What is interesting here is that while the factors vt (and the errors εit themselves) are

uncorrelated with the observed factors Ft, the loadings on the error factors, µi’s, and the

original loadings, βi’s, are closely related (in this particular case µi = βi). We will make

use of this observation in our discussion of the validity of the two-pass procedure. �

Example 2. Consider a situation in which one of the risk factors driving asset returns

is fully arbitraged and thus carries a risk premia of zero. If an econometrician does not

observe this factor but does have observations on all other relevant risk factors, then her

linear factor-pricing model that omits the arbitraged factor may still be correctly specified,

while the arbitraged factor is moved to the error term, resulting a missing-factor structure

to the errors. �

Kleibergen and Zhan (2015) provide numerous pieces of empirical evidence that resid-

uals from many well-known estimated linear factor-pricing models have non-trivial factor

structures. For example, they point out that the first three principle components of the

residuals from different pricing-model specifications used in the prominent paper by Let-

tau and Ludvigson (2001) explain somewhere from 82% to 95% of all residual variation

(Kleibergen and Zhan (2015, Table 3)). They also show that the largest eigenvalue of the

covariance matrix of residuals in all these examples is very large and strongly separated

from other eigenvalues that are bunched together. Combining these results on the largest

eigenvalues of the residual covariance matrix with the theoretical results on the limiting

distribution of its eigenvalues from Onatski (2012), one would suspect there is at least

one strong factor present in the residuals. At least five other prominent factor-pricing

studies cited in Kleibergen and Zhan (2015) demonstrate similar evidence of a strong

factor structure left in the residuals.

Relation between factor structure and correct specification. One may wonder

whether the fact that the errors εit in the model (1) have a factor structure implies that

the pricing model is misspecified. The answer is “No”; the linear factor-pricing model

describes the expectations of excess returns, while the factor structure in the errors is

related to the covariances or co-movements of the assets’ returns. It is easy to see that if

the risk exposure and risk premia on the variables Ft price the assets, then the variables
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Ft co-move the assets’ returns and produce factor-structure dependence in the returns.

However, not all co-movements of returns must carry non-zero risk premia; those co-

movements can be placed in the error term without causing misspecification of the pricing

model.

In this paper we assume that the correct specification of a pricing model requires

keeping in the model those pricing factors Ft,2 that carry small coefficients of exposure

β2,t and produce only a weak factor structure in returns. We show that dropping such

observed factors from the specification (as opposed to what is proposed in Bryzgalova

(2015)) leads to asymptotically misleading inferences for both the two-pass procedure and

our proposed procedure. Our method is robust to minor misspecifications that allow one

to drop those pricing factors that carry loadings of order o( 1√
NT

); the exact formulation

appears in Section 5.3.

3 Setup and assumptions

3.1 Model

We consider the problem of estimation and inference on the risk premia λ based on

observations of returns {rit, i = 1, ..., N, t = 1, ..., T} and factors {Ft, t = 1, ..., T} coming

from a correctly specified factor-pricing model:

rit = λ′βi + (Ft − EFt)
′βi + v′tµi + eit, (2)

where the ‘correct specification’ means that the random unobserved factor vt has zero

mean and is uncorrelated with Ft, the idiosyncratic error terms eit also have zero mean

and are uncorrelated with Ft. We also assume that they are uncorrelated with vt. Denote

F to represent the sigma-algebra generated by the random variables (F1, ..., FT ) and

(v1, ..., vT ); let γ
′
i =

(
β′
1i,

√
Tβ′

2i, µ
′
i

)
, and Γ′

N = (γ1, ..., γN).

3.2 Assumptions

We make the following assumptions.

Assumption FACTORS. The kF × 1 vector of observed factors Ft is stationary with

finite fourth moments, a full-rank covariance matrix ΣF , and summable auto-covariances.

The kv×1 vector of unobserved factors vt is such that the following asymptotic statements
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hold simultaneously:

1√
T

T∑
t=1

(Ft − EFt) ⇒ N(0,ΩF );

ηT =
1√
T

T∑
t=1

Σ−1
F F̃tv

′
t ⇒ η;

ηv,T =
1√
T

T∑
t=1

vt ⇒ ηv ∼ N(0kv ,1, Ikv),

where vec(η) ∼ N (0kF kv ,1,ΩvF ) and F̃t = Ft − 1
T

∑T
s=1 Fs.

Assumption LOADINGS. As bothN and T increase to infinity, we haveN−1Γ′
NΓN →

Γ, where Γ is a positive-definite k × k matrix with k = kF + kv. In addition we assume

that maxN,T
1
N

∑N
i=1 ∥γi∥4 < ∞.

We adopt the following notation: Γβ2µ is the k2 × kµ sub-block of matrix Γ corre-

sponding to the limit of N−1
∑N

i=1

√
Tβi,2µi. Other sub-matrices are denoted similarly.

Assumptions ERRORS.

(i) Conditional on F , the random vectors et = (e1t, ..., eNt)
′ are serially independent,

and E(et|F) = 0 for all t.

(ii) Let ρ(t, s) = 1√
N

∑N
i=1 eiteis. Then, supt sups ̸=t E [(1 + ∥Ft∥4)(ρ(s, t)2 + 1)] < C.

(iii) Let St =
1
N

∑N
i=1 e

2
it. Then,

√
N
T

∑T
t=1 F̃tSt = op(1) and

1
T

∑T
t=1 F̃tF̃

′
tSt →p ΣSF 2 .

(iv) Let Wt =
1√
N

∑N
i=1 γieit. Then, E [(1 + ∥Ft∥2)∥Wt∥2] < ∞.

3.3 Discussion of Assumptions

Assumptions FACTORS. As a part of the error term, vt is uncorrelated with Ft. One

can come up with a variety of assumptions on decaying dependence and moment conditions

that would guarantee some Central Limit Theorem stated in (i) and (ii). The restriction

that the asymptotic covariance matrix be the identity matrix is just normalization, as

neither vt nor loadings µi are observed.
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Assumption LOADINGS. In this paper we treat the loadings βi and µi as unknown

constant (non-random) vectors the true values of which may change with the sample

sizes N and T, which is an example of the so-called “drifting parameters asymptotics.”

Assumption LOADINGS characterizes the size of the loadings as the sample size increases.

Notice that the loadings on the factors Ft,1 and vt are treated differently than the loadings

on Ft,2; following Onatski (2012) we will refer to the former as “strong factors” and

the latter as “weak factors.” The cross-sectional average of squared loadings is closely

connected to the explanatory power the factors exhibit in cross-sectional variation. The

assumptions we make on the loadings βi,1 and µi guarantee that the explanatory power

of the factors Ft,1 and vt dominates that of the idiosyncratic error terms. The average

squared loading on the factor F2,t, however, converges to zero at a rate of 1/T ; if N and T

increase proportionally, this will lead to factor F2,t having explanatory power comparable

to that of the idiosyncratic errors. One characteristic of a weak factor is the following: if

it had not been observed we could neither have consistently estimated it via the method

of principle components applied to the estimated cross-sectional covariance matrix nor

consistently detected it.

The loadings βi,2 are asymptotically of the same order of magnitude as βi,1 divided

by
√
T . Assumption LOADINGS makes the standard deviation of the first-step estimate

β̂i,2 of the same order of magnitude as βi,2 itself. As we show below, this is enough to

make the two-pass estimator of the risk premia λ2 on the weak factor Ft,2 inconsistent and

to invalidate the classical confidence interval for the risk premia λ1 on the strong factor

Ft,1. The modeling assumption that makes βi,2 drift to zero at the 1/
√
T rate is similar

to assumptions Kleibergen (2009), Bryzgalova (2015) and Gospodinov, Kan and Robotti

(2016) make. In these papers the authors assume that N remains fixed, which makes the

asset premia λ2 a weakly-identified parameter. We, however, assume that N increases

to infinity which, together with this assumption, allows one to construct a consistent

estimator for λ2, the two-pass estimator still being inconsistent. Thus, our setting is not

a case of weak identification.

It is also important that the assumption on loadings µi be such that the unobserved

factor vt in the error terms is strong. This is consistent with the empirical observations

Kleibergen and Zhan (2015) present. This also guarantees that the presence of the factor

structure plays an important role in the asymptotics of two-pass estimation. The error

terms may also have weak factor structure; we do not explicitly specify this because it

will not have asymptotic importance for the estimation procedures we consider here.
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Assumption ERRORS. Assumptions ERRORS are high-level assumptions the main

goal of which is to allow very flexible weak cross-sectional dependence among the id-

iosyncratic errors, as well as flexible conditional heteroscedasticity and dependence in

higher-order moments of errors and factors. The random variables ρ(s, t) stand for a

(normalized) empirical analog of the error autocorrelation coefficient, St is an empirical

variance, and Wt is a (normalized) weighted average error. These variables are normalized

so that they are stochastically bounded when the errors are cross-sectionally i.i.d.

Serial independence of errors as stated in Assumption ERRORS(i) is consistent with

the efficient market hypothesis and the unpredictability of asset returns; and is generally

consistent with empirical evidence and the tradition in the literature. This assumption

may be weakened, though we do not pursue this in the current paper.

In order to understand Assumptions ERRORS we provide below a set of more re-

strictive primitive assumptions that are common in the literature and that guarantee the

validity of our high-level Assumptions ERRORS. We also provide an empirically relevant

example not covered by the primitive assumptions below but that satisfies the high-level

Assumptions ERRORS.

Assumptions ERRORS∗

(i) The factors {Ft, t = 1, ..., T} are independent from errors {eit, i = 1, ..., N, t =

1, ..., T}; the error terms et = (e1t, ..., eNt)
′ are serially independent and identically

distributed for different t with Eeit = 0 and supi,tEe4it < ∞.

(ii) Let EN,T = E [ete
′
t] be the N×N covariance matrix when the sample size is N and T

(in cross-section and time directions, correspondingly). For some positive constants

a, c and C,

c < lim inf
N,T→∞

min eval (EN,T ) < lim sup
N,T→∞

max eval (EN,T ) < C,

and limN,T
1
N
tr(EN,T ) = a.

(iii) E
∣∣∣ 1√

N

∑N
i=1(e

2
it − Ee2it)

∣∣∣2 < C.

Lemma 1 Assumptions LOADINGS and Assumptions ERRORS∗ imply Assumptions

ERRORS.

The primitive Assumptions ERRORS∗ are very close to the standard ones in the

literature. Numerous papers that establish inferences in factor models, commonly assume
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that the set of variables {Ft, t = 1, ..., T} is independent from the set {eit, i = 1, ..., N,

t = 1, ..., T}, though within-group dependence is allowed; see, for example, Assumption

D in Bai and Ng (2006). Many papers allow for both time-series and cross-sectional error

dependence. We exclude time-series dependence which is justified by the efficient-market

hypothesis in our application. Assumption ERRORS∗(ii) is intended to impose only weak

dependence cross-sectionally as expressed by the covariance matrix; similar assumptions

appear in Onatski (2012), and a stronger form is used in Bai and Ng (2006).

Our high-level Assumptions ERRORS are much more general than the more standard

primitive Assumptions ERRORS∗. In particular, our assumptions allow for very flexible

conditional heteroscedasticity in the error terms and time-varying cross-sectional depen-

dence, which seems relevant when we consider observed factors that characterize market

conditions like the momentum factor. Consider the following example.

Example 3. Assume that errors eit have the following weak (unobserved) factor struc-

ture:

eit = π′
iwt + ηit,

where (wt, Ft) is stationary, wt is a kw × 1 serially independent, conditional on F , times

series with E(wt|F) = 0 and E(wtw
′
t) = Ikw (which is an innocuous normalization as the

factor structure is not observed). Assume E [(∥Ft∥4 + 1)(∥wt∥4 + 1)] < ∞. We assume

that the loadings satisfy the condition
∑N

i=1 πiπ
′
i → Γπ (the factors wt are weak), and

N−1/2
∑N

i=1 πiγ
′
i → Γπγ . Assume that the random variables ηit are independent both cross-

sectionally and across time, are independent from wt and Ft, have mean zero and finite

fourth moments and variances σ2
i that are bounded above and such that N−1

∑N
i=1 σ

2
i →

σ2. As proven in the Appendix, this example satisfies Assumptions ERRORS.

An interesting feature of this example is that it allows the errors to be weakly cross-

sectionally dependent to the extent that they may possess a weak factor structure. More-

over, this factor structure may be closely related to the observed factors Ft, which causes

the cross-sectional dependence among the errors eit to change with the observed factors

Ft and allows a very flexible form of conditional heteroskedasicity. Indeed, the conditional

cross-sectional covariance is

E(eitejt|F) = π′
iE(wtw

′
t|F)πj + I{i=j}σ

2
i .

Since we do not restrict E(wtw
′
t|F) beyond the proper moment conditions, the strength

of any cross-sectional dependence as well as error variances may change stochastically
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depending on the realizations of the observed factors. This flexibility is extremely rel-

evant for such observed factors as the momentum. For example, one may consider

wt = ςtg(Ft, Ft−1, ...), where ςt ∼ N(0, 1) is independent from all other variables; then for

a proper choice of the function g(·) one may observe higher volatility and cross-sectional

dependence of the idiosyncratic error for higher values of the observed factor Ft.

4 Asymptotic properties of the two-pass procedure

In this section we derive a result concerning the asymptotic properties of the classical two-

pass procedure in different models that may or may not include weak observed factors

and may or may not have strong missing factors in errors. Let us introduce the following

notation:

λ̃ = λ+
1

T

T∑
t=1

Ft − EFt, ui =
1

T

T∑
t=1

Σ−1
F F̃teit,

where F̃t = Ft − 1
T

∑T
s=1 Fs.

Now let us introduce two asymptotically important terms, the meaning and the names

of which will be explained in the discussion following Theorem 1. The first term we call

“attenuation bias”:

AB = −

(
N∑
i=1

β̂iβ̂
′
i

)−1 N∑
i=1

uiu
′
iλ̃,

while the second is known as “omitted variable bias”

OV B =

(
N∑
i=1

β̂iβ̂
′
i

)−1 N∑
i=1

β̂i
µ′
i√
T
(ηv,T − η′T λ̃).

These terms are not biases in an exact sense as they are random, but rather they are

sample analogues of the expressions that are classically called attenuation and omitted

variable biases. Notice that both quantities are infeasible – they cannot be calculated

from the data alone as they depend on unobserved errors eit, unobserved factors vt and

unknown parameters λ and µi. Both terms are kF ×1 vectors. Let AB1 and OV B1 denote

k1 × 1 sub-vector consisting of the first k1 components, while AB2 and OV B2 are k2 × 1

sub-vectors of the last k2 components of AB and OV B correspondingly.

Theorem 1 Assume that the sample {rit, i = 1, ..., N, t = 1, ..., T} and {Ft, t = 1, ..., T}
comes from a data-generating process that satisfies the factor-pricing model (2) and as-

sumptions FACTORS, LOADINGS and ERRORS. Let λ̂TP denote the estimate obtained

13



via the conventional two-pass procedure. Let both N and T increase to infinity without

restrictions on relative rates. Then the following asymptotic statements hold simultane-

ously: ( √
TOV B1

OV B2

)
⇒
(
(Ikβ ; η̃)Γ(Ikβ ; η̃)

′ + Ik2ΣuIk2

)−1
(Γβµ + η̃Γµµ) (ηv − η′λ),( √

TAB1

AB2

)
⇒ −

(
(Ikβ ; η̃)Γ(Ikβ ; η̃)

′ + Ik2ΣuIk2

)−1 Ik2Σuλ,

√
T (λ̃− λ) ⇒ N(0,ΩF ),

and ( √
NT (λ̂TP,1 − λ̃1 − AB1 −OV B1)√
N(λ̂TP,2 − λ̃2 − AB2 −OV B2)

)
= Op(1),

where Σu = limN,T→∞
T
N

∑N
i=1 uiu

′
i, with the last convergence being established in Lemma

4 in the Appendix, Ik2 =

(
0k1,k1 0k1,k2
0k2,k1 Ik2

)
is a kF × kF matrix, η̃ = Ik2η is a kF × kv

random matrix (with η described in Assumptions FACTORS), and ΩF is the long-run

variance of Ft.

Theorem 1 states the rate of convergence for different parts of the two-pass estimator.

Notice that the theorem does not impose a relative rate of increase between N and T

as long as both increase to infinity simultaneously. One observation is that the two-pass

procedure cannot estimate λ at a rate faster than
√
T despite the fact that the dataset

has NT observations of portfolio excess returns, and one could expect the
√
NT rate.

This comes from the fact that the correct specification implies that the excess returns

satisfy equation (1), which, if averaged across time, gives:

ri = λ̃βi + εi. (3)

Thus, even if βi were known, the ‘true’ coefficient λ̃ in the only ideal regression we have

(that is, regression of average return on βi) differs from the parameter λ we want to

estimate, by the term 1
T

∑T
t=1 Ft − EFt, which, if multiplied by

√
T , is asymptotically

zero mean gaussian with variance ΩF . Notice that if all observed factors Ft are excess

returns themselves and are assumed to be priced by the same pricing model, then the

Asset Pricing Theory provides an alternative way of estimating risk premia. Namely in

such a case λ = EFt, and the alternative estimate λ̂ = 1
T

∑T
t=1 Ft = λ̃. However, this

estimate is not valid if factors themselves are not excess returns or are not priced by the

same model.
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Notice also that if the limits of the normalized OV B and AB are non-zero, then these

terms (together with λ̃1) asymptotically dominate the estimation. Below we consider

three cases covered by Theorem 1. The first one is the case with no weak observed

factors (k2 = 0). In this case the theorem delivers the validity of the two-pass procedure,

namely, the two-pass estimator is consistent and asymptotically mean-zero Gaussian. For

the other two (more empirically relevant) cases – one with weak observed factors but

no missing factors, the other with weak observed factors and missing strong factors –

the two-pass procedure fails. The two-pass estimates of the risk premia on weak factors

are inconsistent. The two-pass estimate of the risk premia on the strong observed factor

is consistent, but has a bias which is of the same order of magnitude as its standard

deviation. This invalidates all standard two-pass inferences in these two cases.

4.1 Case with no weak observed factors

Corollary 1 Assume that the samples {rit, i = 1, ..., N, t = 1, ..., T} and {Ft, t = 1, ..., T}
come from a data-generating process that satisfies the factor-pricing model (2) and as-

sumptions FACTORS, LOADINGS and ERRORS with k2 = 0 (no weak observed factors).

Then √
T (λ̂TP − λ) ⇒ Γ−1

ββΓβµ(ηv − η′λ) + lim
√
T (λ̃− λ),

where the limit of the right-hand-side is asymptotically gaussian with mean zero. If, in

addition to that, there are no strong missing factors in errors (that is, µi = 0), then

√
T (λ̂TP − λ) =

√
T (λ̃− λ) + op(1) ⇒ N(0,ΩF ).

This is a positive statement about the two-pass procedure, which claims that if all

observed factors are strong, then the two-pass procedure is
√
T -consistent and provides

asymptotically mean-zero gaussian estimate when both N, T → ∞. If the error terms

have a strong factor structure, it does not lead to a bias but may increase the asymptotic

variance. If no strong factor structure is present in the error terms, then the two-pass

procedure is asymptotically equivalent to the infeasible estimate λ̃ and has asymptotic

variance ΩF .

4.2 Case with weak observed factors but no strong missing fac-
tors

Corollary 2 Assume that the sample consisting of {rit, i = 1, ..., N, t = 1, ..., T} and

{Ft, t = 1, ..., T} comes from a data-generating process that satisfies the factor-pricing
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model (2) and assumptions FACTORS, LOADINGS and ERRORS with k2 ≥ 1 (there

are weak observed factors) and kv = 0 (no missing factor structure in errors). Then the

following asymptotic statements hold simultaneously:

√
T (λ̂TP,1 − λ1) =

√
T (λ̃1 − λ1) +

√
TAB1 + op(1),

λ̂TP,2 − λ2 = AB2 + op(1),

where ( √
TAB1

AB2

)
→p − (Γ + Ik2ΣuIk2)

−1 Ik2Σuλ. (4)

In the case when some of the observed factors have relatively small loadings (weak

observed factors) the two-pass estimator will deviate from the classical case even if the

idiosyncratic errors are not strongly correlated. The limit in (4) is non-random and is a

non-zero vector, and thus characterizes the asymptotic bias. The two-pass estimate λ̂TP,2

of the risk premia on weak factors Ft,2 is inconsistent and converges in probability to an

incorrect value. The two-pass estimate λ̂TP,1 of risk premia on strong factors Ft,1 is
√
T -

consistent but this estimate has a bias of order 1√
T
, the same order of magnitude as the

standard deviation of its asymptotically gaussian distribution. This leads to confidence

sets being misplaced and standard inferences on the risk premia being invalid.

Intuition for the case with weak observed factors and no factor structure in

the error terms. The result of Corollary 2 can be explained in terms of classical error-

in-variables bias, or the so-called attenuation bias. Indeed, the first-pass estimate β̂i of

risk exposure coefficients βi contains estimation errors which are stochastically of order

Op(1/
√
T ) each:

β̂i =

(
T∑
t=1

F̃tF̃
′
t

)−1 T∑
t=1

F̃trit = (βi + ui)(1 + op(1)),

where the op(1) term is related to the difference between ΣF = E[(Ft −EFt)(Ft −EFt)
′]

and T−1
∑

t F̃tF̃
′
t . As a result, the second-pass regression encounters an error-in-variables

problem. In the case of exposure to a strong observed factor, the estimation error in β̂i,1

is asymptotically negligible compared to the size of the coefficient βi,1 itself, and so this

estimation error does not jeopardize consistency. However, the estimation error in β̂i,2

is asymptotically of the same order of magnitude as the coefficient itself. The first-pass

estimation errors in β̂i,2 behave like a classical measurement error in the following sense:

the imposed assumptions guarantee that the estimation errors ui,2 for different assets
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are asymptotically uncorrelated and that they are asymptotically uncorrelated2 with βi

themselves in the sense that the sample correlation between βi and ui is asymptotically

negligible. The bias we observe in Corollary 2 is classic attenuation bias, with Ik2ΣuIk2

corresponding to the variance of the normalized measurement error
√
Tui,2.

Note that if Γ = Γββ is a block diagonal matrix with Γβ1β2 = 0k1,k2 , the two-pass

procedure inferences about λ1 will not be disturbed; namely, λ̂TP,1 will be
√
T -consistent

and when multiplied by
√
T will have an asymptotically mean-zero Gaussian distribution.

The block-diagonality assumption, though, is a very strong one: it requires that the values

of βi,1 be unrelated to the values of βi,2 for the same asset, which is both implausible and

not supported in applications. For example, the sample correlation coefficient between

portfolios’ betas that correspond to the market portfolio and betas that correspond to

the SMB (HML) portfolio in the Fama–French dataset is equal to 0.73 (0.47).

4.3 Case with weak observed factors and strong missing factors
in errors

Corollary 3 Assume that the sample {rit, i = 1, ..., N, t = 1, ..., T} and {Ft, t = 1, ..., T}
comes from a data-generating process that satisfies the factor-pricing model (2) and as-

sumptions FACTORS, LOADINGS and ERRORS with k2 ≥ 1 (there are weak observed

factors) and kv ≥ 1 (there is a missing factor structure in errors). Then the following

asymptotic statements hold simultaneously:

√
T (λ̂TP,1 − λ1) =

√
T (λ̃1 − λ1) +

√
TAB1 +

√
TOV B1 + op(1),

λ̂TP,2 − λ2 = AB2 +OV B2 + op(1),

where ( √
TOV B1

OV B2

)
⇒
(
(Ikβ ; η̃)Γ(Ikβ ; η̃)

′ + Ik2ΣuIk2

)−1
(Γβµ + η̃Γµµ) (ηv − η′λ),( √

TAB1

AB2

)
⇒ −

(
(Ikβ ; η̃)Γ(Ikβ ; η̃)

′ + Ik2ΣuIk2

)−1 Ik2Σuλ.

The distributions of the right-hand-side expressions are non-gaussian and are not centered

at zero.

This result covers a more general case which, as we argued before, is empirically

quite relevant. Here some observed pricing factors may have relatively small loadings

2We use the statistical terms ‘correlated’ and ‘uncorrelated’ informally here, as the loadings are not
formally random variables.
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(weak factors), while errors are highly cross-sectionally correlated to the extent that they

have strong missing factor structures. The two-pass estimate λ̂TP,2 of the risk premia on

weak factors Ft,2 is inconsistent and, asymptotically, has a poorly-centered non-standard

distribution. The two-pass estimate λ̂TP,1 of risk premia on strong factors Ft,1 is
√
T -

consistent but this estimate has a bias of order 1√
T
and an asymptotically non-standard

distribution. This makes standard inferences (based on usual t-statistics) on the risk

premia invalid.

Intuition for the case with factor structure in the error terms. In the presence

of a strong factor structure in the errors, first-pass estimates have the following asymptotic

representation:

β̂i =

(
T∑
t=1

F̃tF̃
′
t

)−1 T∑
t=1

F̃trit =

(
βi +

ηTµi√
T

+ ui

)
(1 + op(1)) , (5)

where ηT = 1√
T

∑T
t=1Σ

−1
F F̃tv

′
t ⇒ η. Again, for the strong observed factors, the estimation

error in β̂i,1 turns to be asymptotically negligible when compared to the sizes of risk

exposure βi,1 themselves, while the estimation errors in β̂i,2 – which are now equal to

ηTµi/
√
T + ui – are of the size Op(1/

√
T ), which is the same order of magnitude as the

βi,2’s themselves.

The estimation errors of β̂i,2 distort the asymptotics and invalidate classical inferences.

However, unlike the case covered by Corollary 2, the estimation errors in this setting do

not behave like classical measurement errors in two respects. First, the estimation errors

for different assets are correlated due to the presence of the common component ηT in all

of them. Second, unless µi is cross-sectionally uncorrelated with βi (so that Γβµ = 0kF ,kv),

the estimation error will be correlated with its own regressor βi.

There is an additional issue worth noting with the two-pass procedure which is classi-

cally known as omitted variable bias. Let us look at the second step (normalized) ‘ideal’

regression which we can obtain by time-averaging equation (2):

√
Tri =

√
T λ̃′βi + η′v,Tµi +

√
Tei, (6)

where ηv,T = 1√
T

∑T
t=1 vt ⇒ ηv ∼ N(0kv ,1, Ikv). Here we introduced normalization

√
T to

make regression (6) more conformable with the classical OLS setup. The regression error

terms
√
Tei all have orders of magnitude of Op(1), zero means and finite variances. Even

though in finite samples
√
Tei may be weakly cross-sectionally dependent, assumption

ERRORS guarantees that they are asymptotically uncorrelated. Imagine for a moment
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that we know βi and µi for all assets. Then, regression (6) will take the form of a classic

OLS regression, with regressors
√
Tβi,2 and µi being of order of magnitude O(1), in the

sense expressed in assumption LOADINGS,3 that in the classical regression setting would

lead to a
√
N -consistent and asymptotically gaussian OLS estimator of coefficients on

βi’s and µi’s. The regressor
√
Tβi,1 is, in contrast, of order O(

√
T ) and carries a lot of

information, which in the classical regression setting leads to an OLS estimator of the co-

efficient λ1 on this regressor that is super-consistent and asymptotically centered gaussian.

However, because µi is unobserved, it becomes a part of the error term in the second-pass

regression, making error terms cross-sectionally correlated; see, for example, Andrews

(2005) for a similar phenomenon. A more classical reference for this phenomenon is an

omitted variable bias – if Γβµ ̸= 0kF ,kv , then even if there were no first-stage estimation

error and we knew βi, running an OLS in a regression of
√
Tri on

√
Tβi would produce

invalid results due to the omission of µi.

One question that may arise is whether or not the omitted variable bias is large. The

answer to this question is closely related to the size of the cross-sectional correlation be-

tween βi and µi as expressed in Γβµ. Unfortunately, there is no reliable empirical evidence

on this, as µi is unobserved and βi is poorly estimated and biased in the direction of

µi (see equation (5)). The problem with estimation of µi is that the estimator λ̂TP,2 is

inconsistent, which makes the residuals from the two-pass procedure poor indicators of

the true errors, and estimating µi via the principle components analysis on the residuals

does not produce good estimates. However, even though direct empirical evidence on this

matter is absent, we have two indirect arguments which suggest that one should expect a

high rather than low correlation between βi and µi. One argument is the empirical obser-

vation that for many well-known factor-pricing models the estimated betas for different

factors are exceptionally highly correlated. Another argument is related to our theoretical

example 1, where the missing factor structure originates as a result of mismeasuring the

true risk factor, and the sample correlation between βi and µi equals 1.

5 Newly proposed estimator

5.1 Idea of the proposed solution

The case with no factor structure in the error terms. We begin by solving the

easier case when no unobserved factor structure is present in the errors, while some

3This is similar to the assumption from classical regression with fixed regressors that N−1
∑N

i=1 xix
′
i →

Ax, where xi is i
th observation for the regressor, and Ax is a full rank finite matrix.
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observed factors are weak. As we discussed before, in such a case the failure of the two-

pass procedure can be labeled a classical measurement error-in-variables problem, which

is often solved by finding a proper instrument. Apparently, it is relatively easy to find a

valid instrument in our setting if one is willing to employ a sample-splitting technique.

Let us divide the set of time indexes t = 1, ..., T into two non-intersecting equal subsets

T1 and T2. It is more natural to make T1 the first half of the sample, and T2 its second

half; then the procedure will have greater robustness as we discuss below. Let us run the

first step regression twice – separately on each sub-sample:

β̂
(j)
i =

∑
t∈Tj

F̃
(j)
t F̃

(j)′
t

−1∑
t∈Tj

F̃
(j)
t rit = (βi + u

(j)
i )(1 + op(1)), for j = 1, 2,

where F̃
(j)
t = Ft − 1

|Tj |
∑

t∈Tj
Ft, u

(j)
i = 1

|Tj |
∑

t∈Tj
Σ−1

F F̃
(j)
t eit, and the op(1) term is related

to the difference between ΣF and 1
|Tj |
∑

t∈Tj
F̃

(j)
t F̃

(j)′
t .

The assumption ERRORS guarantees that the two sets of estimation uncertainty,

{u(1)
i , i = 1, ..., N} and {u(2)

i , i = 1, ..., N}, are independent conditionally on F . In

fact, the asymptotic independence of the two sets of errors will hold more generally if

one makes stationarity assumptions and controls the decay of time-series dependence in

errors eit, and the sub-samples are formed to be first and second halves of the sample,

correspondingly.

Given the observation about independence of estimation errors obtained from different

sub-samples, one may use an estimate of βi from one sub-sample (for example, β̂
(1)
i ), as a

regressor while the other (in this example, β̂
(2)
i ) as an instrument. This would represent

a valid IV regression. Indeed, the second step regression we run is:

ri = λ̃′β̂
(1)
i + (ei − λ̃′u

(1)
i ).

In this regression the regressor and the instrument are correlated since they both contain

βi, hence we have a relevance condition. The validity condition holds for two reasons:

(i) the part of the second-step regression error u
(1)
i is asymptotically uncorrelated with

the instrument β̂
(2)
i ; (ii) assumption ERRORS guarantees that β̂

(2)
i is asymptotically un-

correlated with ei. As we show below, this procedure restores consistency and standard

inferences on the estimates of risk premia.

Similar ideas, such as sample splitting and jackknife-type estimators, have been previ-

ously employed in the literature on many weak instruments (e.g., Hansen, Hausman and

Newey, 2008). In that literature the term “many instruments” is related to modeling the
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number of instruments as growing to infinity proportionally (though not always) to the

sample size (so-called dimensionality asymptotics), while the term “weak” appears due to

a modeling assumption that makes the estimation error of the reduced-form coefficients

be of the same order of magnitude as the coefficients themselves (so called local-to-zero

asymptotics). This is parallel to the dimensionality asymptotics for a number of portfolios

and the local-to-zero asymptotics for risk exposures of weak factors in our setup. In the

many-weak-instruments setting, the regular TSLS estimator has a significant bias, and

classical inferences are asymptotically invalid. That problem can also be interpreted as

a classical measurement error-in-variables problem for the second stage regression, where

the regression is run on the fitted values from the first-stage projection of the original

regressor on the instruments. Some proposed solutions employ the second-stage instru-

mental variables regression where, for each observation, the regressor is obtained from a

first-stage regression run on a sub-sample that does not include that observation, and the

original instrument is still used as an instrument (Angrist, Imbens and Krueger, 1999).

This makes the first-stage error in the projection uncorrelated with the instrument for this

specific observation. Consistency and classical inferences are restored by sample-splitting

or leave-one-out type procedures.

The case with factor structure in the error terms. As we discussed before, the

situation in the model with unobserved factor structure has an additional problem that

can be described as the presence of omitted (and unobserved) variable µi in regression

(6). However, after examining formula (5) for the first-pass estimate we may notice that

we can obtain a noisy proxy for µi if we take the difference between two estimates for

the same βi obtained from different sub-samples. Indeed, consider two non-intersecting

subsets of time indexes, T1 and T2 and assume they have the same number, say τ, of time

indexes. Then

β̂
(1)
i − β̂

(2)
i =

η
(1)
τ − η

(2)
τ√

τ
µi + (u

(1)
i − u

(2)
i ).

Notice that both the coefficient on µi and the noise term u
(1)
i − u

(2)
i are of the same order

of magnitude Op(1/
√
τ). This neither means that the signal dominates the noise, and

thus we need a correction to account for the noise, nor does the noise dominate the signal,

and thus the proxy is not useless.

Assume that kv ≤ kF , which implies that we have a larger number of proxies than

needed and we have a choice among them. Now we assume that we have a fixed and
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full-rank kv × kF matrix A, and use A(β̂
(1)
i − β̂

(2)
i ) as the proxy. It is worth noting that

µi =
√
τ
(
A(η(1)τ − η(2)τ )

)−1
A(β̂

(1)
i − β̂

(2)
i )−

√
τ
(
A(η(1)τ − η(2)τ )

)−1
A(u

(1)
i − u

(2)
i ),

where η
(1)
τ and η

(2)
τ are asymptotically independent non-degenerate kF × kv gaussian (as-

suming that the size of sub-samples τ increases to infinity with T ); the kv × kv matrix

A(η
(1)
τ − η

(2)
τ ) will be invertible with probability 1.

The idea is to regress the average return ri on β̂
(1)
i and A(β̂

(1)
i − β̂

(2)
i ) instead of on

unobserved βi and µi. This solves the omitted variables part of the problem, but the

error-in-variables issue still remains. That problem we solve via instrumental variables

upon additional sample splitting. The ultimate idea goes as follows: split the sample into

four equal sub-samples along the time dimension; calculate the first-pass estimates of risk

exposures for all four sub-samples; run an instrumental variables regression using β̂
(1)
i and

A(β̂
(1)
i − β̂

(2)
i ) as regressors and β̂

(3)
i and (β̂

(3)
i − β̂

(4)
i ) as instruments.

5.2 Algorithm for constructing a 4-split estimator

Let us divide the set of time indexes into four equal non-intersecting subsets Tj, j = 1, ..., 4.

(1) For each asset i and each subset j run a time-series regression to estimate the

coefficients of risk exposure:

β̂
(j)
i =

∑
t∈Tj

F̃
(j)
t F̃

(j)′
t

−1∑
t∈Tj

F̃
(j)
t rit.

(2) Run an IV regression of ri =
1
T

∑T
t=1 rit on regressors x

(1)
i =

(
β̂
(1)′
i , (β̂

(1)
i − β̂

(2)
i )′A′

1

)′
with instruments z

(1)
i =

(
β̂
(3)′
i , (β̂

(3)
i − β̂

(4)
i )′

)′
, where A1 is a non-random kv × kF

matrix of rank kF . Denote the TSLS estimate of the coefficient on regressor β̂
(1)
i by

λ̂(1).

(3) Repeat step (2) three more times exchanging indexes 1 to 4 circularly; that is, the

first repetition is an IV regression of ri on regressors x
(2)
i =

(
β̂
(2)′
i , (β̂

(2)
i − β̂

(3)
i )′A′

2

)′
with instruments z

(2)
i =

(
β̂
(4)′
i , (β̂

(4)
i − β̂

(1)
i )′

)′
; denote the corresponding estimate

by λ̂(2), etc.

(4) Obtain the 4-split estimate as λ̂4S = 1
4

∑4
j=1 λ̂

(j).
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(5) In order to compute an estimate of the covariance matrix for λ̂4S, denote by X(j)

the N × k matrix of stacked regressors used in the IV regression where λ̂(j) was

obtained, and by Z(j) the N × kz matrix of instruments from this regression (here

kz = 2kF is the number of instruments in a single regression, and k = kF + kv is the

number of regressors). Calculate

G =


G1 0k,k 0k,k 0k,k
0k,k G2 0k,k 0k,k
0k,k 0k,k G3 0k,k
0k,k 0k,k 0k,k G4

 , where Gj =
1

N
X(j)′PZ(j)X(j),

and PZ = Z (Z ′Z)−1 Z ′. Also calculate

Σ̂0 =
1

N

N∑
i=1

 z̃
(1)
i ϵ̂

(1)
i

...

z̃
(4)
i ϵ̂

(4)
i

 z̃
(1)
i ϵ̂

(1)
i

...

z̃
(4)
i ϵ̂

(4)
i

′

,

where ϵ̂
(j)
i is ith residual from the IV regression where λ̂(j) was obtained, and z̃

(j)
i =

X(j)′Z(j)(Z(j)′Z(j))−1z
(j)
i . Also denote R = (1, 1, 1, 1)′ ⊗

(
1
4
IkF

0kv ,kF

)
, which is a

4k × kF matrix. Finally,

Σ̂4S =
1

N
R′G−1Σ̂0G

−1R +
1

T
Ω̂F ,

where Ω̂F is a consistent estimator of the long-run variance of Ft.

5.3 Consistency of the 4-split estimator

Theorem 2 Assume that the samples {rit, i = 1, ..., N, t = 1, ...T} and {Ft, t = 1, ..., T}
come from a data-generating process that satisfies the factor pricing model (2) and as-

sumptions FACTORS, LOADINGS and ERRORS. Let both N and T increase to infinity

then √
T (λ̂4S,1 − λ1) =

√
T (λ̃1 − λ1) +Op(1/

√
N) ⇒ N(0,ΩF ),

and √
min{N, T}(λ̂4S,2 − λ2) = Op(1).

Discussion. Theorem 2 establishes the speed of consistency for the new 4-split estimator

λ̂4S under exactly same assumptions used to show failure of the two-pass estimation

procedure. The 4-split estimator for the risk premia on the strong observed factor is
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√
T– consistent, asymptotically equivalent to λ̃1 and asymptotically Gaussian, while the

4-split estimate of the risk premia on the weak observed factor is consistent, and the

speed of convergence depends on the relative size of N and T . Theorem 2 shows that

the 4-split estimator has superior asymptotic properties in comparison to the classical

two-pass procedure for the risk premia.

6 Inference procedures using 4-split estimator

Theorem 2 shows that the new 4-split estimator is consistent but does not provide a basis

for statistical inference, namely, for confidence set construction or testing. In order to use

Theorem 2 the researcher has to know which observed factors are strong, and with that

knowledge s/he can construct a confidence set for the risk premia on the strong observed

factor only. However, in general there is no a pre-test that successfully discriminates

between weak and strong observed factors. The other drawback of Theorem 2 is that

it does not provide an asymptotic distribution for the estimator of the risk premia on a

weak observed factor. Apparently, the stated assumptions are not enough to obtain the

asymptotic distribution of the full 4-split estimator. We additionally need assumptions

that will guarantee the validity of some Centra Limit Theorems. Below we formulate the

needed high-level assumptions and establish a result about statistical inferences using the

4-split estimator. We also provide primitive assumptions that will guarantee that our

high-level assumptions will hold in examples and discuss how one can obtain the needed

Central Limit Theorems.

For a set of vectors aj we denote (aj)
4
j=1 = (a′1, ..., a

′
4)

′ as a long vector consisting of

the four vectors stacked upon each other, similarly for vectors ajj∗ we denote (ajj∗)j<j∗ =

(a′12, a
′
13, a

′
14, a

′
23, a

′
24, a

′
34)

′.

Assumption GAUSSIANITY Assume that the following convergence holds:

1√
N

N∑
i=1


√
Tγiei

(
√
Tγiu

(j)
i )4j=1

(Teiu
(j)
i )4j=1

(Tu
(j)
i u

(j∗)
i )j<j∗

 =
1√
N

N∑
i=1

ξi ⇒ ξ =


ξγe

(ξγj)
4
j=1

(ξej)
4
j=1

(ξj,j∗)j<j∗

 ,

where ξ is a Gaussian vector with mean zero and covariance Σξ and assume that

1

N

N∑
i=1

ξiξ
′
i →p Σξ.
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Theorem 3 Assume that the samples {rit, i = 1, ..., N, t = 1, ...T} and {Ft, t = 1, ..., T}
come from a data-generating process satisfying factor pricing model (2) and assumptions

FACTORS, LOADINGS, ERRORS and GAUSSIANITY as both N and T increase to

infinity. Then

Σ̂
−1/2
4S (λ̂4S − λ) ⇒ N(0, Ik).

Theorem 3 suggests the use of t and Wald statistics for the construction of confidence

sets for the risk premia as well as for testing hypotheses about values of the risk premia.

These inference procedures are very standard ones and can be performed using standard

econometric software.

From a theoretical perspective, however, the asymptotics of the 4-split estimator are

not fully standard. Technically, the asymptotic distribution of the 4-split estimator is not

Gaussian but rather mixed Gaussian. This is due to the fact that the limit distribution

for this estimator can be written as a Gaussian random vector with random variance. To

understand the intuition for why one gets an asymptotically-random covariance matrix

one can look at equation (6) and notice that the coefficient ηv,T on the omitted variable

µi is random, even asymptotically. This leads to a phenomenon where the amount of

information contained in the sample that is used to correct the omitted-variable problem

will be random as well, and thus, we have an asymptotically-random covariance matrix.

Theorem 3 shows that a properly constructed proxy for the asymptotic variance restores

the asymptotic gaussianity of a multidimensional t-statistic even when the estimator itself

is not asymptotically gaussian.

Another important aspect of Theorem 3 is that inferences or construction of the proxy

for variance do not assume knowledge of the number or identity of strong/weak factors.

This is a desirable feature, as we do not have a procedure that can credibly differentiate

between weak and strong factors.

As previously discussed, even though the main data set contains NT observations,

the risk premia cannot be estimated at a rate better than
√
T . This can be seen from

equation (3) as even if we know the true values of βi the regression of ri on βi has a true

coefficient equal to λ̃ = λ+F −EFt. This means that the uncertainty associated with the

deviations of 1
T

∑T
t=1 Ft from EFt is unavoidable. This also justifies the presence of the

long-run variance of factors, ΩF , in the formula for variance Σ̂4S. Theorem 2 also states

that the difference between λ̂4S and λ̃ is of order 1√
NT

. From the proof of Theorem 3 we

see that this difference is mixed Gaussian, and the variance can be deduced from Σ̂IV .
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Typically λ̃ is infeasible. However, if all observed factors are portfolios themselves

and are priced by the same model, then we have λ = EFt. In such a case the literature

suggests the use of alternative feasible estimator λ̂ = 1
T

∑T
t=1 Ft, which in this case is

equal to λ̃. Thus, in this special case we have two competing estimators for λ and can

create a test for model specification. In particular, the statistic compares the difference

between λ̂4S and λ̃ to zero. The proof of Theorem 3 shows that λ̂4S − λ̃ converges to

zero at speed 1√
NT

, is asymptotically mixed Gaussian and Σ̂IV is the proper proxy for the

variance that delivers a χ2- asymptotic distribution to the corresponding Wald statistic.

The power properties of such a test are a topic for future research.

6.1 Discussion of Assumption GAUSSIANITY and Central Limit
Theorems

Here we provide some sufficient conditions for the validity of Assumption GAUSSIANITY.

Lemma 2 Assume we have a setting as in Example 3 with additional assumptions that the

time series (FtF
′
t , Ft) is stationary, has summable covariances, maxi,t Eη8it < C, E(∥Ft∥8+

1)(∥wt∥8 + 1) < C , N−1
∑N

i=1 σ
4
i → σ4 and N−1

∑N
i=1 σ

2
i γiγ

′
i → Γσ. Then Assumption

GAUSSIANITY holds.

FIXME: We have to write up the proof of consistency of the variance estima-

tion.

Lemma 3 Assume that Assumption ERROR∗ holds as do additional assumptions that

the time series (FtF
′
t , Ft) is stationary, has summable covariances, maxi,t Ee8it < C, and

N−1γ′ETγ → Γσ. Then Assumption GAUSSIANITY holds.

FIXME: proof of this result is still missing. Likely we will need an additional

assumption that diagonal of ET dominates the sum of off-diagonal elements.

So, in our case Assumption GAUSSIANITY results from strengthening moment re-

strictions on top of already imposed assumptions. However, from a theoretical perspective

the derivation of a proper Central Limit Theorem is a major endeavor. The difficulty

here is that the assumptions accommodate the quite unrestrictive structure of the cross-

sectional dependence of idiosyncratic error terms eit by merely restricting the amount of

cross-sectional correlation. This makes ξi (introduced in Assumption GAUSSIANITY)

cross-sectionally dependent, though the correlation between ξi and ξi∗ for i ̸= i∗ converges
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to zero for large sample sizes. Without cross-sectional dependence with the proper struc-

ture, it is hard to obtain a Central Limit Theorem. We follow a different route and exploit

a time-series conditional independence of errors instead.

First, consider the following components of ξi:
√
T√
N

N∑
i=1

γiei =
1√
NT

N∑
i=1

T∑
t=1

γieit =
1√
T

T∑
t=1

γ′et√
N
;

√
T√
N

N∑
i=1

γi ⊗ u
(j)
i =

1√
T

T∑
t=1

(
γ′et√
N

)
⊗
(
Σ−1

F F̃
(j)
t

)
I{t ∈ Tj}.

Here we changed the order of summation. By collecting all terms of interest into the

vector we obtain the following expression for a part of 1√
N

∑N
i=1 ξi :

1√
T

T∑
t=1

γ′et√
N

⊗

 1{(
Σ−1

F F̃
(j)
t

)
I{t ∈ Tj}

}4

j=1

 ,

where the summands represent a martingale-difference sequence, and a proper Central

Limit Theorem could be used.

Now assume that j∗ > j and consider the following sum:

vec

(
T√
N

N∑
i=1

u
(j∗)
i u

(j)′
i

)
=

1

T
√
N

N∑
i=1

∑
t∈Tj

∑
s∈Tj∗

vec
(
Σ−1

F F̃ (j∗)
s F̃

(j)′
t Σ−1

F eiteis

)
=
∑
s∈Tj∗

∑
t∈Tj

1

T

(
Σ−1

F F̃ (j∗)
s

)
⊗
(
Σ−1

F F̃
(j)
t

) e′tes√
N
.

Similarly consider the following sum:

T√
N

N∑
i=1

eiu
(j)
i =

1

T
√
N

N∑
i=1

T∑
t1=1

∑
t2∈Tj

Σ−1
F F̃

(j)
t2 eit1eit2

=
1

T
√
N

N∑
i=1

∑
t∈Tj

Σ−1
F F̃

(j)
t e2it +

1

T

T∑
t1=1

∑
t2∈Tj ,t1 ̸=t2

Σ−1
F F̃

(j)
t2

e′t1et2√
N

.

Assumption ERRORS (iii) guarantees that
(
T
√
N
)−1∑N

i=1

∑
t∈Tj

Σ−1
F F̃

(j)
t e2it = op(1).

Thus, we are only interested in gaussianity of the second sum.

In both cases we are interested in making use of a Central Limit Theorem for quadratic

forms of
e′tes√
N

with some random coefficients depending on {Ft}. That is, the summation

goes both over t and s. The idea for deriving such statements comes from the Central Limit

Theorem for quadratic forms established by de Jong (1987) who refers to a martingale

Central Limit Theorem by Heyde and Brown (1970). We follow a similar path.
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6.2 Open question: weak identification

(I am not sure if we need this as a subsection or just a note at the end of the previous as

we do not have all the answers yet)

Statement: this is not weak identification.

if betas are even smaller then weak identification.

we’ll address this in later research?

7 Simulations

FIXME: this section is to be fully re-done

In this Section, we verify how the asymptotic theory works for finite samples.

Simulation design The simulation design takes as a starting point the 3-factor Fama–

French model estimated on N0 = 25 Fama–French portfolios observed during T0 = 209

quarters. We generate the artificial data on factors and excess returns of the size N =

mN0, T = mT0, i.e. m times larger than both original dimensions. The 3 × 1 vectors

of N betas are generated independently from a normal distribution with the mean and

variance obtained as corresponding estimates from the original sample on the first pass

of the two-pass procedure:

(mβ, vβ) ≃

 0.96
0.53
0.19

 ,

 0.110 0.060 0.020
0.061 0.008

0.016

 .

The 3×1 vectors of T factors are generated independently from a normal distribution with

the mean and variance obtained as empirical values obtained from the original sample:

(mf , vf ) ≃

 1.59
0.89
0.85

 ,

 74.7 24.9 −9.2
33.5 0.3

40.0

 .

The true factor prices λ corresponding to the Market, SMB and HML factors are set to

values obtained from the second pass of the two-pass procedure: λ ≃ (2.70, 0.69, 1.96)′ .

The idiosyncratic errors are generated from a mean zero normal distribution independently

over time and across the assets; the diagonal variance matrix contains the N ×N residual

variance matrix replicated m times.

In the baseline design described above, there is no cross-sectional dependence in the

errors. To induce cross-sectional dependence with controllable strength, we generate the
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missing factors that are correlated with the observed factor j (j = 1, 2, 3) according to

µ = mµ + ρ
v
1/2
µ

v
1/2
βj

(
βj −mβj

)
,

where ρ is intended correlation coefficient, andmµ and vµ are the mean and variance of the

loadings corresponding to the first principal component of the residuals from the the first

pass of the two-pass procedure applied to the original data. If there are missing factors,

the variance of the generated idiosyncratic errors is decreased by the sample variance

corresponding to the first principal component of the residuals.

Then the total errors are generated as

ε = p · vµ′ + e,

where p is a coefficient of intended inflation of strength of the missing factor, and v is a

missing factor vector of IID normals with mean zero and variance corresponding to the

variance accountable by the first principal component of the residuals.

Finally, given the he N × 1 vector of returns at time t is generated as

rt = λ′β + (Ft − EFt)β + εt.

Results Tables 1a–1d contain simulation results; Table 1a presents biases of estimates

(larger figures) and their standard deviations (smaller figures) from estimation by the

conventional two-pass procedure and two variations of the proposed ‘average’ four-split

procedure. One variation uses only the second element of the estimated beta from the

first and second subsamples to form the proxy for the missing factor (designated as ‘four-

split2’), i.e. A = (0, 1, 0) ; the other variation averages across the three elements, i.e. A =
1
3
(1, 1, 1) . We set up pretty severe correlation between the missing factor and the included

(strongest) ‘Market’ factor (the figures resulting when the missing is correlated with the

second strongest ‘SMB’ factor are very similar), and a quite high inflation coefficient p = 5.

The four parts of the table correspond to increasing dimension of data m = 1, 2, 4, 8, and

simultaneous reduction by
√
m the generated betas corresponding to the weakest ‘HML’

factor (which means that the average squared beta is reduced by m).

When m = 1, i.e. the generated samples are of the original size, the two-pass risk

premium estimate of the weakest factor, ‘HML’, is most problematic, and exhibits both

high (and negative) bias (−0.37 which amounts for almost 20% of the true value) and high

variance. Both the bias and variance are partially offset (by about 30%) from using the
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four-split2 estimate, and both are further reduced, the bias by a half, when one instead

uses averaging the three differences in estimated betas to construct the proxy. When m

increases, i.e. the sample size goes up with simultaneous weakening of the ‘HML’ risk

exposures, the bias problem persists and even slightly exacerbates, while the variance

slowly goes down. The four-split estimate dominates the conventional two-pass and four-

split2 estimates, so from this point on we report evidence only on the averaging four-split

variation. Table 1b shows 95% coverage rates of the confidence intervals; the conventional

two-pass estimator exploits the Shanken (1992) corrected standard errors. Generally, the

four-split estimator has an advantage over the conventional two-pass estimator, though the

problem for the weakest factor persists and worsens with the weakness degree deteriorates,

and it is not compensated by an increase in the sample size.

In next experiment whose results are reported in Tables 1c and 1d, we further strengthen

the cross-sectional dependence in the error term and set p = 10. We also further enlarge

the sample by setting m to higher powers of two: to 4, 8, 16 and 32, while keeping the

weakness of the ‘HML’ factor at the weakest level of the previous experiment (i.e. corre-

sponding to the factor of 8). As we drive m from 4 to 32 (i.e. 8-fold), both the bias of

the HML risk premium estimate from the conventional two-pass procedure diminishes by

the factor of three, while the bias of the estimator from the four-split procedure vanishes

much faster as the sample size increases, and the ratio between the two increases from

3-fold to 10-fold. The standard deviation of both estimators goes down by about the

factor of three as m goes up by 8, while the 95% coverage rates are kept pretty stable

along the way. The coverage rates from the four-split procedure are clearly much closer

to the nominal one, though still there is a significant gap.

Figure 1 depicts the kernel estimates of the SMB and HML risk premium estimates

from the two procedures in one of experiments. One can clearly notice a higher bias and

higher variance of the conventional two-pass estimates, as well as more symmetric distri-

butions of the estimates from the four-split procedure for this design. The distributions

of four-split estimates are clearly very close to gaussian.

Summarizing, the four-split procedure has definite advantages when compared to the

conventional two-pass procedure, in terms of mean bias, dispersion, and coverage rates,

when both weak priced factors are included and strong missing factors remain in the

errors. However, it still has problems related to the bias and, as a result, to confidence

interval coverage. These problems may be attributed to possible weak identification at

the second pass of the four-split procedure.
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8 Revision of Empirical Applications

FIXME: this section is to be fully re-done

Setup We run the conventional two-pass procedure and proposed ‘average four-split’

two-pass procedure on a few well-known databases using some classical and extended

factors such as the market portfolio excess return (‘Market’), size factor (small-minus-big

return, ‘SMB’), book-to-market factor (high-minus-low return, ‘HML’) (Fama and French,

1993), consumption-to-wealth ratio (cay) (Lettau and Ludvigson, 2001) and momentum

factor (MOM) (Jegadeesh and Titman, 1993). The first three exercises (no. 1–3) use the

quarterly data on N = 25 Fama–French portfolios from 1963Q3 to 2015Q3 (T = 209)4;

the next two exercises (no. 4–5) use the monthly data on N = 44 industry portfolios from

1963:07 to 1990:12 (T = 546).5

Results Tables 2a–2c contain results of estimation by the conventional two-pass pro-

cedure and proposed ‘average’ four-split procedure, together with some auxiliary output.

Table 2 reports average estimated betas and beta squared from the first pass of the con-

ventional two-pass procedure. These figures provide information of how strong or weak

the factors being used are. Table 2b reports variance fractions corresponding to five main

principal components in the residuals from the first pass of the conventional two-pass

procedure. These figures give a feel of the strength of cross-sectional correlation in the er-

rors: according to Onatski (2012), under the dimensionality asymptotics (N/T → const),

the eigenvalues corresponding to strong factors are asymptotically isolated and separated

from the eigenvalues corresponding to weak factors, the latter ones clustering together.

Finally and most importantly, Table 2c reports the risk premia estimates and standard

errors by the conventional and proposed procedures.

Experiment 1 is the cleanest case with the three classical factors from Fama and French

(1993). All three factors seem to be strong, though the HML factor may raise slight doubt.

However, the factor structure of the residuals does not seem to have strong components.

Indeed, the penalized estimation methods of Bryzgalova (2015) do not classify the HML

factor as useless or weak. The two estimation procedures produce qualitatively similar

(though a bit different) estimates of risk premia.

4The data on returns and factors are taken from Kenneth French’s and Martin Lettau’s webpages.
5The data on returns are taken from Kenneth French’s webpage. The data on factors are taken from

Gagliardini, Ossola and Scaillet (2016)’s supplementary materials.
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In experiment 2, we exclude the strong factor SMB and expect that this may induce

presence of a strong factor in the residuals, and indeed, the largest eigenvalue is well

separated from the others. The two estimation procedures produce sharply different

estimates of the risk premium for the HML factor. When we add in experiment 3 to

the remaining two strong return factors a macroeconomic factor, cay, which is strong but

barely priced (see the tiny estimate of its risk premium), the cross-sectional structure of

residuals stays the same. The additional factor cay is little priced from the viewpoint of

both estimation procedures, and there is less disagreement among the two procedures as

far as the other factors are concerned.

Experiment 4 repeats experiment 1 for the industry portfolios. All three factors seem

to be strong, and the residual variance seems to be clean of common factors; the estimation

procedures tend to agree on values of risk premia though the proposed procedure delivers

higher (in absolute value) estimates with a bit higher standard errors. In experiment 5,

we add a clearly weak momentum factor, which does not distort the (absence of) factor

structure of residuals. As a result, the estimates of risk premia change little, with the

proposed procedure being sharper on the SMB factor and the conventional procedure on

the momentum factor. While the standard errors are higher with the proposed procedure,

the discrepancy in estimation efficiency is small if one takes the width of a confidence

interval as an indicator of efficiency.
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9 Appendix A with proofs

Proof that Example 3 satisfies Assumptions ERRORS. Assumption ERRORS(i)

follows from wt being serially uncorrelated conditionally on F , and time series indepen-

dence of ηit. For Assumption ERRORS(ii), note that for t ̸= s,

ρ(t, s) =
N∑
i=1

π′
i

wsw
′
t√

N
πi +

1√
N

N∑
i=1

ηitηis +
1√
N

N∑
i=1

(π′
iwtηis + π′

iwsηit) .

By assumptions made we have E(wtw
′
s|F) = 0 and ηit’s independent from F and wt’s

with mean zero, so E(ρ(s, t)|F) = 0. This also implies that in E(ρ(s, t)2|F) all interaction

terms are zero, so we have:

E(ρ(s, t)2|F) = E

( N∑
i=1

π′
i

wsw
′
t√

N
πi

)2

|F

+ E

(
1√
N

N∑
i=1

ηitηis

)2

+ E

( 1√
N

N∑
i=1

π′
iwtηis

)2

|F

+ E

( 1√
N

N∑
i=1

π′
iwsηit

)2

|F


We can note that∣∣∣∣∣

N∑
i=1

π′
iwsw

′
tπi

∣∣∣∣∣ =
∣∣∣∣∣tr(wsw

′
t

N∑
i=1

πiπ
′
i)

∣∣∣∣∣ ≤ kw max eval

(
wsw

′
t

N∑
i=1

πiπ
′
i

)

≤ kw∥ws∥∥wt∥max eval

(
N∑
i=1

πiπ
′
i

)
≤ C∥ws∥∥wt∥.

Here we used that the scalar product can be represented as a trace, tr(ABC) = tr(BCA),

and the trace equals to a sum of eigenvalues and as such is bounded by dimensionality

times the maximal eigenvalue. In the last inequality we used that loadings πi imply only

weak factor structure. Due to independence of ηit’s, it is easy to see that

E

(
1√
N

N∑
i=1

ηitηis

)2

=
1

N

N∑
i=1

σ2
i < C,

and

V ar

(
1√
N

N∑
i=1

π′
iwtηis|F

)
=

1

N

N∑
i=1

π′
iE(wtw

′
t|F)πiσ

2
i <

CE(∥wt∥2|F)

N
.

Thus,

E
[
(∥Ft∥4 + 1)ρ(s, t)2

]
= E

[
(∥Ft∥4 + 1)E(ρ(s, t)2|F)

]
≤ E

[
(∥Ft∥4 + 1)

(
C
(∥wt∥2 + 1)(∥ws∥2 + 1)

N
+ C

)]
< ∞,
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this proves validity of Assumption ERRORS(ii).

Now consider

St =
1

N

∑
i

e2it =
N∑
i=1

π′
i

wtw
′
t

N
πi + 2w′

t

∑
i πiηit
N

+
1

N

∑
i

(η2it − σ2
i ) +

1

N

∑
i

σ2
i .

Denote Φt = (1, F ′
t , vec(FtF

′
t)

′)′. First, let us prove that

√
N

T

∑
t

(St −
1

N

∑
i

σ2
i )Φt = op(1). (7)

The only non-trivial parts are 1√
NT

∑N
i=1

∑T
t=1Φtw

′
tπiηit = op(1) and

1√
NT

∑N
i=1

∑T
t=1Φt(η

2
it−

σ2
i ) = op(1). For them we use Chebyshev’s inequality:

E

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

Φtw
′
tπiηit

∥∥∥∥∥
2

=
1

NT 2

N∑
i=1

σ2
iE

(
T∑

t,s=1

Φ′
tΦsπ

′
iwtw

′
sπi

)

=
1

NT 2

N∑
i=1

σ2
i π

′
iE

(
T∑
t=1

∥Φt∥2E(wtw
′
t|F)

)
πi

≤ kw
NT 2

max eval

(
N∑
i=1

πiπ
′
iσ

2
i

)
max evalE

(
T∑
t=1

∥Φt∥2E(wtw
′
t|F)

)

For the first equality we used that ηit are independent from each other and from all

Ft’s and wt’s; for the second – that wt is conditionally serially uncorrelated and have

conditional mean zero. By the moment assumptions,

max evalE

(
T∑
t=1

∥Φt∥2E(wtw
′
t|F)

)
= max evalE

(
T∑
t=1

∥Φt∥2wtw
′
t

)
≤ TE(∥Ft∥4 + ∥Ft∥2 + 1)∥wt∥2 ≤ CT.

The variances σ2
i are all bounded and the factors are weak, which leads to

1√
NT

N∑
i=1

T∑
t=1

Φtw
′
tπiηit = op(1).

Similarly,

E

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

Φt(η
2
it − σ2

i )

∥∥∥∥∥
2

=
1

NT 2

N∑
i=1

T∑
t=1

E
(
η2it − σ2

i

)2
E∥Φt∥2 → 0.

This gives the validity of statement (7).
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Let us now prove the first statement in Assumption ERRORS(iii):

√
N

T

T∑
t=1

F̃tSt =

√
N

T

T∑
t=1

Ft(St −
1

N

∑
i

σ2
i ) +

1

T

T∑
t=1

Ft

√
N

(
1

N

∑
i

σ2
i −

1

T

T∑
t=1

St

)
.

The first term is op(1) according to statement (7) as Ft is part of Φt. Statement (7)

also implies that
√
N( 1

N

∑
i σ

2
i − 1

T

∑T
t=1 St) = op(1), that gives negligibility of the second

term.

Now consider the second statement in Assumption ERRORS(iii):

1

T

T∑
t=1

F̃tF̃
′
tSt =

1

T

T∑
t=1

FtF
′
tSt − F

1

T

T∑
t=1

F̃ ′
tSt −

1

T

T∑
t=1

FtStF
′
.

We have proved above that the second term is op(1). By equation (7), the first term equals
1
T

∑T
t=1 FtF

′
t
1
N

∑
σ2
i + op(1) →p σ2EFtF

′
t , while the third term equals to −FF

′ 1
N

∑
σ2
i +

op(1) →p −σ2EFtEF ′
t . So, the second statement in Assumption(iii) holds with ΣSF 2 =

σ2V ar(Ft).

Finally, for Assumption ERRORS(iv), consider

Wt = wt
1√
N

∑
i

πiγi +
1√
N

∑
i

γiηit.

Thus

E
[
(1 + ∥Ft∥2)∥Wt∥2

]
= E

(1 + ∥Ft∥2)

∥∥∥∥∥ 1√
N

∑
i

γiπ
′
iwt

∥∥∥∥∥
2


+ E
[
(1 + ∥Ft∥2)

]
E

∥∥∥∥∑i γiηit√
N

∥∥∥∥2 .
Notice that E(wt|F) = 0 and that ηit’s are independent from all other variables, thus

there are no terms containing the first power of ηit. Now,

∥∥∥∥∥ 1√
N

∑
i

γiπ
′
iwt

∥∥∥∥∥
2

=

(
1√
N

∑
i

γiπ
′
i

)
wtw

′
t

(
1√
N

∑
i

γiπ
′
i

)′

= tr

[
wtw

′
t

(
1√
N

∑
i

γiπ
′
i

)′(
1√
N

∑
i

γiπ
′
i

)]

≤ kw∥wt∥2max eval

[(
1√
N

∑
i

γiπ
′
i

)′(
1√
N

∑
i

γiπ
′
i

)]
< C∥wt∥2.
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The assumptions on the loadings guarantee that the maximal eigenvalue is bounded above

by a constant. Next,

E

∥∥∥∥∑i γiηit√
N

∥∥∥∥2 = 1

N

N∑
i=1

∥γi∥2σ2
i < C.

Thus Assumption ERRORS (iv) is valid as well. �
Proof of Lemma 1. Assumption ERRORS∗(i) implies Assumption ERRORS(i).

Given the independence between the two groups of variables and the moment condition

for Ft stated in Assumption FACTORS, in order to prove Assumption ERRORS(ii) we

need to show that sups ̸=tEρ(s, t)2 is bounded from above. Indeed,

Eρ(s, t)2 =
1

N

N∑
i,j=1

E[eiteisejtejs] =
1

N

N∑
i,j=1

E[eitejt]E[eisejs] =
1

N
tr(EN,TEN,T ).

Here we used serial independence in Assumption ERRORS∗(i) and the definition of co-

variance matrices. For any positive definite matrix A we have tr(A2) =
∑N

i=1 λi(A)
2 ≤

N (max eval(A))2, where λi(A) are eigenvalues of an N × N matrix A. Thus, due to

Assumption ERRORS∗(ii), we have tr(EN,TEN,T ) ≤ NC2. Thus, the right-hand-side of

the last displayed equation is bounded from above.

Assumption ERRORS (iii): Notice that since
∑T

t=1 F̃t = 0 we have

√
N

T

∑
t

F̃tSt =

√
N

T

∑
t

F̃t

(
St − σ2

N

)
,

where we denote σ2
N = N−1

∑N
i=1Ee2it. Let us check the that the second moment of the

last expression converges to zero:

E

∥∥∥∥∥
√
N

T

∑
t

F̃t

(
St − σ2

N

)∥∥∥∥∥
2

=
N

T 2

T∑
t=1

T∑
s=1

E
[
F̃ ′
t F̃s

(
St − σ2

N

)(
Ss − σ2

N

)]
Given Assumption ERRORS∗(i), only those terms survive that have s = t:

N

T 2

T∑
t=1

E
[
F̃tF̃

′
t

]
E
(
St − σ2

N

)2
.

Notice that

NE
(
St − σ2

N

)2
= E

∣∣∣∣∣ 1√
N

N∑
i=1

(e2it − Ee2it)

∣∣∣∣∣
2

< C,
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using Assumption ERRORS∗(iii). Thus, the first statement in ERRORS (iii) holds. For

the second statement, note that

E

(
1

T

T∑
t=1

F̃tF̃
′
tSt

)
= ΣF

1

N
tr(ET ) → aΣF = ΣSF 2 .

In order to prove the second statement in Assumption ERRORS(iii) we will show that

T−1
∑T

t=1 F̃tF̃
′
t

(
St − σ2

N

)
→p 0. Following the same steps as in the proof of the first

statement,

E

∥∥∥∥∥ 1T
T∑
t=1

F̃tF̃
′
t

(
St − σ2

N

)∥∥∥∥∥
2

=
1

T 2

T∑
t=1

∥F̃t∥4E
(
St − σ2

N

)2
,

and we showed before E
(
St − σ2

N

)2
→ 0. This finishes a proof of validity of Assumption

ERRORS(iii).

Lastly,

E∥Wt∥2 =
1

N
γ′EN,Tγ ≤ 1

N
∥γ∥2max eval(EN,T ) < C.

Thus, Assumption ERRORS (iv) holds as well. �

Lemma 4 Under Assumptions FACTORS, LOADINGS and ERRORS we have the fol-

lowing convergence as N, T → ∞:

(1). 1√
N |Tk||Tj |

∑N
i=1

∑
t∈Tj

∑
s∈Tk

F̃teitF̃
′
seis = Op(1) for Tj ∩ Tk = ∅,

(2). 1√
N |Tk||Tj |

∑N
i=1

∑
t∈Tj

∑
s∈Tk

F̃teiteis = Op(1) for Tj ∩ Tk = ∅,

(3). Σ−1
F

(
1

NT

∑N
i=1

∑T
t=1 F̃tF̃

′
te

2
it

)
Σ−1

F →p Σu = Σ−1
F ΣSF 2Σ−1

F ,

(4). 1
T
√
N

∑N
i=1

(∑T
t=1

∑T
s=1,s ̸=t F̃t(F̃

′
s, 1)eiteis

)
= Op(1),

(5).
√

|Tj |
N

∑N
i=1 γi ⊗

(
u
(j)
i

1
|Tj |
∑

t∈Tj
eit

)
= Op(1).

Proof of Lemma 4.

Preamble. Notice that due to the absence of serial correlation of idiosyncratic errors

stated in Assumption ERRORS(i), for t ̸= s and t1 ̸= s1 we have

E(ρ(s, t)ρ(s1, t1)|F) = 0
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unless t = t1 and s = s1 or t = s1 and s = t1.

Part (1). Note that

1√
N |Tk||Tj|

N∑
i=1

∑
t∈Tj

∑
s∈Tk

F̃teitF̃
′
seis =

1√
|Tk||Tj|

∑
t∈Tj

∑
s∈Tk

F̃tF̃
′
sρ(t, s).

The expectation of the square of the last expression is equal to

1

|Tk||Tj|
∑
t∈Tj

∑
t1∈Tj

∑
s∈Tk

∑
s1∈Tk

E
(
F̃tF̃

′
sF̃t1F̃

′
s1
E(ρ(t, s)ρ(t1, s1)|F)

)
.

Using the preamble statement, we reduce four summation signs to only two, with each

summand bounded above by Assumption ERRORS(ii). This implies that the second

moment of the last sum is bounded, and hence implies statement (1).

Part (2). Analogously to Part (1).

Part (3). Note that

1

NT

N∑
i=1

T∑
t=1

F̃tF̃
′
te

2
it =

1

T

T∑
t=1

F̃tF̃
′
tSt.

Part (3) follows from Assumption ERRORS(iii).

Part (4). Note that

1

T
√
N

N∑
i=1

(
T∑
t=1

T∑
s=1,s ̸=t

F̃teiteis

)
=

1

T

(
T∑
t=1

T∑
s=1,s ̸=t

F̃tρ(s, t)

)
.

The second moment of this expression contains four summations – over t, s ̸= t, t1 and

s1 ̸= t1. However, by the preamble statement many terms are zero and the expression

can be written as a double sum. Assumption ERRORS(ii) guarantees that all summands

are bounded by the same constant, which leads to boundedness of the second moment of

the expression of interest. Chebyshev’s inequality delivers statement (4).

Part (5). Observe that√
|Tj|
N

N∑
i=1

γi ⊗

(
u
(j)
i

1
|Tj |
∑

t∈Tj
eit

)
=

1√
|Tj|

∑
t∈Tj

N∑
i=1

1√
N

(
γi ⊗

(
Σ−1

F F̃
(j)
t

1

))
eit

=
1√
|Tj|

∑
t∈Tj

Wt ⊗
(

Σ−1
F F̃

(j)
t

1

)
,

where Wt is defined in Assumption ERRORS(iv). Given serial independence of et condi-

tional on F , we get that Wt is conditionally serially independent and mean zero, and as
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such

E

∥∥∥∥∥∥ 1√
|Tj|

∑
t∈Tj

Wt ⊗
(

Σ−1
F F̃

(j)
t

1

)∥∥∥∥∥∥
2

=
1

|Tj|
∑
t∈Tj

E

∥∥∥∥Wt ⊗
(

Σ−1
F F̃

(j)
t

1

)∥∥∥∥2
≤CE

[
(1 + ∥Ft∥2)∥Wt∥2

]
< C.

�

Proof of Theorem 1. Assumptions FACTORS guarantee that the Central Limit The-

orem holds for sums of Ft and thus
√
T (λ̃ − λ) ⇒ N(0,ΩF ), where ΩF is the long-run

variance of Ft.

The first pass (time series) regression yields

β̂i =

(
βi +

ηTµi√
T

+ ui

)
(1 + op(1)) , (8)

where we have used assumption FACTORS. The op(1) appears from the difference between

ΣF and T−1
∑T

t=1 F̃tF̃
′
t .

Denote QT =

(
Ik1 0k1,k2
0k2,k1

√
TIk2

)
. Notice that QT/

√
T → Ik2 . Let us prove that as

N, T → ∞ we have

N−1

N∑
i=1

QT β̂iβ̂
′
iQT ⇒ (Ikβ ; η̃)Γ(Ikβ ; η̃)

′ + Ik2ΣuIk2 . (9)

Indeed,

1

N

N∑
i=1

QT β̂iβ̂
′
iQT =

1

N

N∑
i=1

(
QTβi +QT

ηT√
T
µi +QTui

)(
QTβi +QT

ηT√
T
µi +QTui

)′

=
1

N

N∑
i=1

(
(Ikβ ; η̃T )γi +QTui

) (
(Ikβ ; η̃T )γi +QTui

)′
, (10)

where η̃T = QTηT/
√
T ⇒ Ik2η = η̃ is kF × kv gaussian random matrix. Let us show that

T

N

∑
i

uiu
′
i → Σu. (11)

Indeed, due to statement (4) of Lemma 4 we have that

1

TN

N∑
i=1

T∑
t=1

T∑
s=1,s ̸=t

F̃tF̃
′
seiteis = op(1).
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Thus,

T

N

∑
i

uiu
′
i = Σ−1

F

(
1

TN

N∑
i=1

T∑
t=1

T∑
s=1

F̃tF̃
′
seiteis

)
Σ−1

F

= Σ−1
F

(
1

TN

N∑
i=1

T∑
t=1

F̃tF̃
′
te

2
it

)
Σ−1

F + op(1) →p Σu,

where the last convergence comes from statement (3) of Lemma 4. Statement (5) of

Lemma 4 implies that √
T

N

N∑
i=1

γiu
′
i →p 0k,kF . (12)

Combining equations (10)–(12) with Assumption LOADINGS we arrive to the validity of

equation (9).

Attenuation bias:( √
TAB1

AB2

)
= Q−1

T

√
TAB = −

(
1

N
QT

∑
i

β̂iβ̂
′
iQT

)−1
QT√
T

T

N

∑
i

uiu
′
iλ̃.

Combining equations (9), (11), λ̃ →p λ and QT/
√
T → Ik2 , we arrive at:( √

TAB1

AB2

)
⇒ −

(
(Ikβ ; η̃)Γ(Ikβ ; η̃)

′ + Ik2ΣuIk2

)−1 Ik2Σuλ.

Omitted variable bias:( √
TOV B1

OV B2

)
= Q−1

T

√
TOV B =

(
1

N

∑
i

QT β̂iβ̂
′
iQT

)−1
1

N

∑
i

QT β̂iµ
′
i(ηv,T − η′T λ̃).

Let us consider the following expression:

1

N

N∑
i=1

QT β̂iµ
′
i =

1

N

N∑
i=1

(
QTβi +QT

ηTµi√
T

+QTui

)
µ′
i. (13)

By assumption LOADINGS, N−1
∑

iQTβiµ
′
i → Γβµ and N−1

∑
i µiµ

′
i → Γµµ, while

QTηT/
√
T ⇒ η̃. The last term in equation (13) is oP (1) by statement (5) of Lemma

4. Thus,

1

N

N∑
i=1

QT β̂iµ
′
i ⇒ Γβµ + η̃Γµµ,

We also note that

ηv,T − η′T λ̃ ⇒ ηv − η′λ.

This implies the validity of asymptotic statement about OV B contained in Theorem 1.
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The remainder part: By time averaging equation (2) we get:

ri = β′
iλ̃+ µ′

i

ηv,T√
T

+ ei.

Combining last equation with equation (8) we obtain

ri = β̂′
iλ̃− u′

iλ̃+
µ′
i√
T
(ηv,T − η′T λ̃) + ei.

Thus, we arrive at

λ̂TP − λ̃− AB −OV B =

(∑
i

β̂iβ̂
′
i

)−1(
−
∑
i

(β̂i − ui)u
′
iλ̃+

∑
i

β̂iei

)

=

(∑
i

β̂iβ̂
′
i

)−1(
−
∑
i

(βi +
ηTµi√

T
+ op(1))u

′
iλ̃+

∑
i

β̂iei

)
.

After the proper normalization we get:

√
NTQ−1

T (λ̂TP − λ̃− AB −OV B)

=

(
1

N

∑
i

QT β̂iβ̂
′
iQT

)−1√
T

N

(
−
∑
i

QT (βi +
ηTµi√

T
)u′

iλ̃+
∑
i

QT β̂iei

)
.

Let us prove that the numerator is asymptotically Op(1):√
T

N

(
−
∑
i

QT (βi +
ηTµi√

T
)u′

iλ̃+
∑
i

QT β̂iei

)

= (Ikβ ; η̃T )

√
T

N

∑
i

γi(ei − u′
iλ̃) +

√
T

N

∑
i

QTuiei +Op(1). (14)

According to statement (5) of Lemma 4 we have that
√

T
N

∑
i γiei = Op(1) and

√
T
N

∑
i γiu

′
i =

Op(1), which makes the first summand in equation (14) Op(1). Consider the second term

in equation (14) and recall that QT/
√
T = O(1):√

T

N

∑
i

QTuiei =
QT√
T
Σ−1

F

1√
NT

∑
i

∑
t

∑
s

F̃seiseit

=
QT√
T
Σ−1

F

1√
NT

∑
i

∑
t

∑
s̸=t

F̃seiseit +
QT√
T
Σ−1

F

√
N

T

∑
t

F̃tSt.

The first term is Op(1) by statement (4) of Lemma 4, while the second term is Op(1) by

Assumption ERRORS(iii). This ends the proof of Theorem 1. �

41



Proof of Corollary 2 When we have weak included factors (k2 ≥ 1) but no strong

excluded factors (kv = 0), the expression for the omitted variable bias (µi = 0) equals to

zero exactly: OV B = 0. In this case, vt = 0 and hence ηT = 0 as well as η = 0 and η̃ = 0.

That gives the expression (4) for the limit of the attenuation bias. �

Proof of Corollary 1 If all observed factors are strong, then there is no second com-

ponent to the risk premia, i.e., k2 = 0 and λ = λ1. We also have Ik2 = 0kF ,kF and η̃ = 0.

When applied to the result of Theorem 1 we get that
√
TAB →p 0 and

√
TOV B ⇒ (Γββ)

−1 Γβµ(ηv − η′λ),

which is a zero mean gaussian limit. Thus in this case we have

√
T (λ̂− λ) =

√
T (λ̃− λ) +

√
TOV B + op(1).

Finally, if in addition to k2 = 0 we also have kv = 0 (no missing factor structure), then

OV B = 0 exactly. �

Proof of Theorem 2. We first discuss asymptotics of just one IV regression described

on step (2), then this argument will be repeated for the other three IV regressions from

step (2) of the algorithm. Denote τ = ⌊T
4
⌋ = |Tj|.

The time-series regression on a sub-sample j gives us that:

β̂
(j)
i =

(
βi + u

(j)
i +

ηj,Tµi√
τ

)
(1 + op(1)),

where

ηj,T =
1√
τ

∑
t∈Tj

Σ−1
F F̃

(j)
t v′t ⇒ ηj,

ηj is random kF × kv matrix with the following distribution vec(ηj) ∼ N(0kF kv ,1,ΩvF ),

the op(1) term is related to the difference between ΣF and 1
τ

∑
t∈Tj

∑
t F̃

(j)
t F̃

(j)′
t .

On step (2) we run an IV regression of yi =
1
T

∑T
t=1 rit on regressor

x
(1)
i =

(
β̂
(1)
i

A1(β̂
(1)
i − β̂

(2)
i )

)
=

(
β̂
(1)
i

A1
η1,T−η2,T√

τ
µi + A1(u

(1)
i − u

(2)
i )

)
,

with instruments

z
(1)
i =

(
β̂
(3)
i

β̂
(3)
i − β̂

(4)
i

)
=

(
β̂
(3)
i

η3,T−η4,T√
τ

µi + (u
(3)
i − u

(4)
i )

)
.
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The main estimation equation can be written in the following way:

yi =
1

T

∑
t∈T

rit = λ̃′βi +
η′v,T√
T
µi + ei

=λ̃′β̂
(1)
i +

(
η′v,T√
T

− λ̃′η1,T√
τ

)
µi + ei − λ̃′u

(1)
i

=λ̃′β̂
(1)
i + a1,TA1(β̂

(1)
i − β̂

(2)
i ) + ei − λ̃′u

(1)
i − a1,TA1(u

(1)
i − u

(2)
i ).

Thus, we can write it as follows:

yi = (λ̃′, a1,T )x
(1)
i + ϵ

(1)
i . (15)

Here we use the following notation

a1,T =

(
η′v,T√
T

− λ̃′η1,T√
τ

)(
A1

η1,T − η2,T√
τ

)−1

=

(
η′v,T
2

− η1,T

)
(A1(η1,T − η2,T ))

−1 ⇒
(
η′v
2

− η1

)
(A1(η1 − η2))

−1,

and

ϵ
(1)
i = ei − λ̃′u

(1)
i − a1,TA1

(
u
(1)
i − u

(2)
i

)
.

Notice that a1,T is random 1×kv matrix, that is well defined with probability approaching

1 (as η1,T and η2,T weakly converge to two independent random gaussian matrices) and

a1,T is asymptotically of order Op(1).

The estimator calculated on the step (2) of the 4-split algorithm is:

λ̂(1) = (IkF , 0kF ,kv)
(
X(1)′Z(1)(Z(1)′Z(1))−1Z(1)′X(1)

)−1
X(1)′Z(1)(Z(1)′Z(1))−1Z(1)′Y.

Using equation (15) we obtain:

λ̂(1) − λ̃ = (IkF , 0kF ,kv)
(
X(1)′PZ(1)X(1)

)−1
X(1)′PZ(1)ϵ(1), (16)

where PZ is the projection matrix onto Z. Let us introduce two normalizing matrices:

Qx =

(
Q 0kF ,kv

0kv ,kF
√
TIkv

)
, Qz =

(
Q 0kF ,kF

0kF ,kF

√
TIkF

)
.

The dimension of Qx is k×k, where k = kF +kv is the number of regressors in the second

stage regression, while Qz is 2kF × 2kF , where 2kF is the number of instruments. Matrix

Q =

(
Ik1 0k1,k2
0k2,k1

√
TIk2

)
was defined in the proof of Theorem 1.
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Qxx
(1)
i =

(
Ã1,Tγi +

(
Q 0kF ,kF√
TA1 −

√
TA1

)(
u
(1)
i

u
(2)
i

))
,

where

Ã1,T =

(
IkF Q

η1,T√
τ

0kv ,kF 2A1(η1,T − η2,T )

)
⇒
(

IkF 2Ik2η1
0kv,kF 2A1(η1 − η2)

)
= Ã1,

1√
T

(
Q 0kF ,kF√
TA1 −

√
TA1

)
→
(

Ik2 0kF ,kF

A1 −A1

)
.

Here Ik2 =

(
0k1,k1 0k1,k2
0k2,k1 Ik2

)
is kF × kF matrix which was introduced in Theorem 1. We

also have

Qzz
(1)
i =

(
A∗

1,Tγi +

(
Q/

√
T 0kF ,kF

IkF −IkF

)√
T

(
u
(3)
i

u
(4)
i

))
,

where

A∗
1,T =

(
IkF Q

η3,T√
τ

0kF ,kF 2(η3,T − η4,T )

)
⇒
(

IkF 2Ik2η3
0kF ,kF 2(η3 − η4)

)
= A∗

1,(
Q/

√
T 0kF ,kF

IkF −IkF

)
→
(

Ik2 0kF ,kF

IkF −IkF

)
.

Statements (1) and (5) of Lemma 4 imply that:

T√
N

N∑
i=1

u
(j)
i u

(j∗)′
i = Op(1) for j ̸= j∗, (17)√

T

N

N∑
i=1

(γ′
i, 1)

′u
(j∗)′
i = Op(1). (18)

This together with Assumption LOADINGS gives us that

1

N

N∑
i=1

Qxx
(1)
i z

(1)′
i Qz ⇒ Ã1ΓA

∗′
1 . (19)

According to Assumption LOADINGS Γ is full rank, matrices Ã1 and A∗′
1 are full rank

with probability 1. Statements (3) and (4) of Lemma 4 say:

τ

N

N∑
i=1

u
(j)
i u

(j)′
i →p Σu. (20)
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Thus we get:

1

N

N∑
i=1

Qzz
(1)
i z

(1)′
i Qz ⇒ A∗

1ΓA
∗′
1 + 4

(
Ik2 0kF ,kF

IkF −IkF

)(
Σu 0kF ,kF

0kF ,kF Σu

)(
Ik2 IkF

0kF ,kF −IkF

)
= A∗

1ΓA
∗′
1 + 4

(
Ik2ΣuIk2 Ik2Σu

ΣuIk2 2Σu

)
. (21)

Let us now show that √
T

N

N∑
i=1

Qzz
(1)
i ϵ

(1)
i = Op(1). (22)

We have

ϵ
(1)
i = ei − λ̃′u

(1)
i − a1,TA1(u

(1)
i − u

(2)
i ).

The sum in (22) contains summands of the form
√

T
N

∑
i γi(ei, u

(j)
i ), T√

N

∑
i eiu

(j)
i and

T√
N

∑
i u

(j∗)′
i u

(j)
i . All three types of summands are Op(1) due to Lemma 4 statements (5),

(2) and (1) correspondingly. Putting equations (19) and (21) together we get:

NQ−1
x ΘN,T,1Q

−1
z =NQ−1

x

(
X(1)′Z(1)(Z(1)′Z(1))−1Z(1)′X(1)

)−1
X(1)′Z(1)(Z(1)′Z(1))−1Q−1

z

=

(
QxX

(1)′Z(1)Qz

N

(
QzZ

(1)′Z(1)Qz

N

)−1
QzZ

(1)′X(1)Qx

N

)−1

·QxX
(1)′Z(1)Qz

N

(
QzZ

(1)′Z(1)Qz

N

)−1

= Op(1).

Putting everything together, we have:

√
NTQ−1(λ̂(1) − λ̃) = (IkF , 0kF ,kv)NQ−1

x ΘN,T,1Q
−1
z

√
T

N

N∑
i=1

Qzz
(1)
i ϵ

(1)
i = Op(1).

Since
√
NTQ−1 =

( √
NTIk1 0k1,k2
0k2,k1

√
NIk2

)
, we got different rates of estimation of risk

premia λ1 and λ2 on strong and weak observed factors. We have
√
NT (λ̂

(1)
1 − λ̃1) = Op(1),

while
√
N(λ̂

(1)
2 − λ̃2) = Op(1). Thus

√
T (λ̂

(1)
1 − λ1) =

√
T (λ̃1 − λ1) +

√
T (λ̂

(1)
1 − λ̃1) =

√
T (λ̃1 − λ1) +Op(1/

√
N),

and √
T (λ̃1 − λ1) ⇒ N(0,ΩF ).

As about the estimator of the risk premia on the weak factor:

λ̂
(1)
2 − λ2 = (λ̃2 − λ2) + (λ̂

(1)
2 − λ̃2) = Op(1/

√
T ) +Op(1/

√
N) = Op(1/

√
min{N, T}).

45



So far we have proved the statement of Theorem 2 for an estimator obtain using one step

of algorithm, but the same line of reasoning applies to λ̂(2), λ̂(3), λ̂(4) and their average.

This finishes the proof of Theorem 2. �

Proof of Theorem 3. Following the steps of the proof of Theorem 2 we get the following

two statements

1

N

N∑
i=1

Qxx
(j)
i z

(j)′
i Qz ⇒ÃjΓA

∗′
j , (23)

1

N

N∑
i=1

Qzz
(j)
i z

(j)′
i Qz ⇒A∗

jΓA
∗′
j + 4

(
Ik2ΣuIk2 Ik2Σu

ΣuIk2 2Σu

)
, (24)

where A∗
j and Ãj are random matrices that are deterministic functions of random vec-

tors (η1, ..., η4). Indeed, let us adopt the following notation. Let j1, ..., j4 be the circu-

lar indexes used for calculating λ̂(j). In particular, estimate λ̂(j) is calculated from the

IV regression with regressor x
(j)
i =

(
β̂
(j1)′
i , (β̂

(j1)
i − β̂

(j2)
i )′A′

j

)′
with instruments z

(j)
i =(

β̂
(j3)′
i , (β̂

(j3)
i − β̂

(j4)
i )′

)′
. Then, similarly to the proof of Theorem 2, we obtain:

A∗
j =

(
IkF 2Ik2ηj3

0kF ,kF 2(ηj3 − ηj4)

)
, Ãj =

(
IkF 2Ik2ηj1
0kv ,kF 2Aj(ηj1 − ηj2)

)
.

So,

NQ−1
x

(
X(j)′Z(j)(Z(j)′Z(j))−1Z(j)′X(j)

)−1
X(j)′Z(j)(Z(j)′Z(j))−1Q−1

z

=NQ−1
x ΘN,T,jQ

−1
z ⇒ Θj.

The limit Θj in the last expression is a known deterministic function of random vectors

(η1, ..., η4), which can be explicitly written in terms of A∗
j and Ãj.

We have the following expression for the estimates obtained on the steps (2) and (3)

of the 4-split algorithm:

√
NTQ−1(λ̂(j) − λ̃) = (IkF , 0kF ,kv)NQ−1

x ΘN,T,jQ
−1
z

√
T

N

N∑
i=1

Qzz
(j)
i ϵ

(j)
i ,

where

ϵ
(j)
i =ei − λ̃′u

(j1)
i − aj,TAj(u

(j1)
i − u

(j2)
i ),

Qzz
(j)
i =

(
A∗

j,Tγi +

(
Q/

√
T 0kF ,kF

IkF −IkF

)√
T

(
u
(j3)
i

u
(j4)
i

))
.
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Consider the following term which could be re-written in terms of ξi from Assumption

GAUSSIANITY:√
T

N

N∑
i=1

Qzz
(j)
i ϵ

(j)
i = A∗

j,T

√ T

N

N∑
i=1

γi

 ei
u
(j1)
i

u
(j2)
i

′
 1

−λ̃− A′
ja

′
j,T

A′
ja

′
j,T



+

(
Q/

√
T 0kF ,kF

IkF −IkF

) T√
N

N∑
i=1

(
u
(j3)
i

u
(j4)
i

) ei
u
(j1)
i

u
(j2)
i

′
 1

−λ̃− A′
ja

′
j,T

A′
ja

′
j,T


= Aj,T

1√
N

N∑
i=1

ξi,

where Aj,T is kz×kξ matrix which is a deterministic function of A∗
j,T , Aj, aj,T , λ̃. The exact

expression for Aj,T is though obvious but complicated to write down. We have discussed

before the convergence of all terms separately, it implies that Aj,T ⇒ Aj, where the limit

is a deterministic function of (η1, ..., η4).

Given assumption GAUSSIANITY we have:√
T

N

N∑
i=1

Qzz
(j)
i ϵ

(j)
i ⇒ Ajξ.

Following step (4) of the 4-split algorithm, we can put all pieces together:

√
NTQ−1(λ̂4S − λ̃) ⇒ (IkF , 0kF ,kv)

(
1

4

4∑
j=1

ΘjAj

)
ξ. (25)

As we can see, the 4-split estimator has asymptotic mixed Gaussian, that is, the limit

distribution conditionally on η1, ..., η4 (which is independent of ξ due to assumption ER-

RORS) is gaussian with mean zero and variance depending on η1, ..., η4.

Denote Σ̂IV = 1
N
R′G−1Σ̂0G

−1R. Below we show Σ̂IV has the following asymptotic

distribution:

NTQ−1Σ̂IVQ
−1 ⇒ (IkF , 0kF ,kv)

(
1

4

4∑
j=1

ΘjAj

)
Σξ

(
1

4

4∑
j=1

ΘjAj

)′

(IkF , 0kF ,kv)
′. (26)

Statement (26) implies the statement of the Theorem 3. Indeed, equations (25) and (26)

imply that

Σ̂
−1/2
IV (λ̂4S − λ̃) ⇒ N(0, Ik)
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where the limiting gaussian vector is independent from the limiting gaussian vector in the

following convergence: √
TΩ

−1/2
F (λ̃− λ) ⇒ N(0, Ik).

The expression Σ̂
−1/2
4S (λ̂4S − λ) is the weighted sum of the expressions staying on the left-

hand-side of the last two convergence with weights asymptotically independent from both

limiting N(0, Ik). This leads to the validity of the statement of Theorem 3.

In order to prove validity of statement (26) we first notice that

√
TQzz

(j)
i ϵ

(j)
i = Aj,T ξi,

and thus

T

N

N∑
i=1

 Qz z̃
(1)
i ϵ

(1)
i

...

Qz z̃
(4)
i ϵ

(4)
i

 Qz z̃
(1)
i ϵ

(1)
i

...

Qz z̃
(4)
i ϵ

(4)
i

′

=

 A1,T

...
A4,T

 1

N

N∑
i=1

ξiξ
′
i

 A1,T

...
A4,T

′

⇒

 A1

...
A4

Σξ

 A1

...
A4

′

. (27)

Let us consider an infeasible variance estimator Σ̃IV which is constructed in the same way

as Σ̂IV but uses ϵ
(j)
i in place of ϵ̂

(j)
i . That is, denote

Σ̃0 =
1

N

N∑
i=1

 z̃
(1)
i ϵ

(1)
i

...

z̃
(4)
i ϵ

(4)
i

 z̃
(1)
i ϵ

(1)
i

...

z̃
(4)
i ϵ

(4)
i

′

,

and consider Σ̃IV = 1
N
R′G−1Σ̃0G

−1R. By putting together statements (23), (24) and (27)

we obtain:

NTQ−1Σ̃IVQ
−1 ⇒ (IkF , 0kF ,kv)

(
1

4

4∑
j=1

ΘjAj

)
Σξ

(
1

4

4∑
j=1

ΘjAj

)′

(IkF , 0kF ,kv)
′.

The only thing left to show is that the difference between Σ̂IV and Σ̃IV is asymptotically

negligible. In particular, we will show for any j and j∗

T

N

N∑
i=1

Qzz
(j)
i z

(j∗)′
i Qz

[
ϵ
(j)
i ϵ

(j∗)
i − ϵ̂

(j)
i ϵ̂

(j∗)
i

]
→p 0, (28)

where ϵ̂
(j)
i are the residuals from the j-th IV regression. Indeed, this last statement implies

that

Σ̂IV = Σ̃IV (1 + op(1)),
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and usage of residuals in place of true errors does not have asymptotic effect on estimation

of variance.

In order to prove (28) we would write down an equation analogous to equation (15):

yi = (λ̃′, aj,T )x
(j)
i + ϵ

(j)
i = θ′jx

(j)
i + ϵ

(j)
i .

From the proof of Theorem 2 we have:
√
NTQ−1

x (θ̂j − θj) = Op(1),

where θ̂j is the IV estimator obtained on Steps (2) for j = 1 or on Step (3) for j = 2, 3 or

4. The residuals for this regression are:

ϵ̂
(j)
i = yi − θ̂′jx

(j)
i = ϵ

(j)
i − (θ̂j − θj)

′x
(j)
i = ϵ

(j)
i − (Q−1

x (θ̂j − θj))
′Qxx

(j)
i .

The left hand expression of (28) equal to:

T

N

N∑
i=1

Qzz
(j)
i z

(j∗)′
i Qz

(
ϵ
(j)
i (θ̂j∗ − θj∗)

′x
(j∗)
i + ϵ

(j∗)
i (θ̂j − θj)

′x
(j)
i − (θ̂j∗ − θj∗)

′x
(j∗)
i (θ̂j − θj)

′x
(j)
i

)
.

(29)

The expression in (29) equals to three sums. We can show that each of these sums is

asymptotically negligible. For example, consider the first of the three sums:

1

N3/2

N∑
i=1

(√
TQzz

(j)
i ϵ

(j)
i

)(
Qzz

(j∗)
i

)′ (
Qxx

(j∗)
i

)′ (√
NTQ−1

x (θ̂j∗ − θj∗)
)

=
1

N3/2

N∑
i=1

Aj,T ξi

(
Qzz

(j∗)
i

)′ (
Qxx

(j∗)
i

)′ (√
NTQ−1

x (θ̂j∗ − θj∗)
)
.

Notice that
√
NTQ−1

x (θ̂j∗−θj∗) = Op(1).As beforeQzz
(j)
i = Op(1)γi+Op(1)

√
T (u

(j3)
i , u

(j4)
i )′,

while Qxx
(j)
i = Op(1)γi + Op(1)

√
T (u

(j1)
i , u

(j2)
i ), where all mentioned Op(1) terms are not

indexed by i. Thus, the sum

1

N3/2

N∑
i=1

Aj,T ξi

(
Qzz

(j∗)
i

)′ (
Qxx

(j∗)
i

)′
= Op(1)

1

N3/2

N∑
i=1

ξiξ
′
i +Op(1)

1

N3/2

N∑
i=1

ξi ⊗ (γiγ
′
i).

By Assumption GAUSSIANITY, 1
N3/2

∑N
i=1 ξiξ

′
i →p 0 and thus

1

N3/2
∥

N∑
i=1

ξi ⊗ (γiγ
′
i)∥ ≤ 1

N3/2

√√√√ N∑
i=1

∥ξi∥2

√√√√ N∑
i=1

∥γi∥4 →p 0.

This gives the asymptotic negligibility of the first sum in expression (29), the negligibility

of the other two sums is proved in a similar manner.

This ends the proof of Theorem 3. �
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10 Appendix B: Gaussianity and Central Limit The-

orems

This Appendix contains some preliminary statements, including Central Limit Theorem

for quadratic forms, and the proof of Lemmas 2 and 3.

10.1 Preliminary Results

The idea coming from the proof of the CLT for quadratic forms by de Jong (1987) who

refers to a martingale CLT by Heyde and Brown (1970) and suggests to apply it for δ = 1:

Theorem 4 (reformulation of the CLT by Heyde and Brown (1970)) Let (zt,Ft), t =

1, .., T , be a martingale difference sequence with σ2
T = var

(∑T
t=1 zt

)
. If the following

two conditions hold for some δ ∈ (0, 1] as T → ∞,

(1) 1

σ2+δ
T

∑T
t=1 E|zt|2+2δ → 0,

(2) E
∣∣∣∑T

t=1 z
2
t

σ2
T

− 1
∣∣∣1+δ

→ 0,

then 1
σT

∑T
t=1 zt ⇒ N(0, 1).

The following Theorem is a reformulation of this result for the vector case.

Theorem 5 Let (Zt,T ,Ft,T ), t = 1, .., T, be a martingale difference sequence of r × 1

random vectors for each T with, ΣT = var
(∑T

t=1 Zt,T

)
. If the following two conditions

hold as T → ∞,

(1) 1
(min eval(ΣT ))2

∑T
t=1E∥Zt,T∥4 → 0,

(2) 1
(min eval(ΣT ))2

E
∥∥∥∑T

t=1 Zt,TZ
′
t,T − ΣT

∥∥∥2 → 0,

then Σ
−1/2
T

∑T
t=1 Zt,T ⇒ N(0, Ir).

The following useful lemma is a new CLT for quadratic forms. Henceforth, the quan-

tities Wst are implicitly indexed by the sample sizes N, T which are omitted to reduce

clutter; in full notation they are indexed as Wst,N,T .

50



Lemma 5 Let Wst = Wst(Xst, es, et) be a set of random vectors defined for all s > t,

where s, t ∈ {1, ..., T}, such that Wst(·, ·, ·) is a deterministic function, Xst is random

vector measurable with respect to σ-algebra F , and all et are independent from each other

conditional on F . Assume that

E(Wst|F , et) = 0 and E(Wst|F , es) = 0. (30)

Define W (T,N) =
∑T

s=1

∑
t<sWst and ΣW (T,N) = var(W (T,N)). Assume the following

statements hold as T,N → ∞:

(i) ΣW (T,N) → ΣW , where ΣW is a full rank matrix;

(ii) T 4 sups,t E∥Wst∥4 < C;

(iii)

T 4 max
t1<s1,t2<s2,t1 ̸=t2,s1 ̸=s2

∣∣cov(∥Ws1t1∥2, ∥Ws2t2∥2)
∣∣→ 0;

(iv)

T 4 max
s1 ̸=s2,t1 ̸=t2,max{t1,t2}<min{s1,s2}

∣∣EW ′
s1t2

Ws2t1W
′
s2t2

Ws1t1

∣∣→ 0.

Then,

W (T,N) ⇒ N(0,ΣW )

as T,N → ∞.

Lemma 6 Let Wst = Wst(Xst, es, et) be a set of random vectors defined for all s > t,

where s, t ∈ {1, ..., T}, and satisfying all conditions of Lemma 5. Let Vs = Vs(Xs, es) be

a random vector defined for all s ∈ {1, ..., T} such that Vs(·, ·) is a deterministic func-

tion, Xs is random vector measurable with respect to σ-algebra F , and E(Vs|F) = 0.

Define W (T,N) =
∑T

s=1

∑
t<sWst, V (T,N) =

∑T
s=1 Vs , ΣW (T,N) = var(W (T,N)) and

ΣV (T,N) = var(V (T,N)). Assume the following statements hold as T,N → ∞:

(a) ΣV (T,N) → ΣV , where ΣV is a full rank matrix;

(b) T supsE∥Vs∥4 → 0;

(c)

E

∥∥∥∥∥
T∑

s=1

VsV
′
s − ΣV (T,N)

∥∥∥∥∥
2

→ 0;
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(d)

T 3 max
s1,s2,t<min{s1,s2}

∥∥Ws1tV
′
s1
Vs2W

′
s2t

∥∥→ 0.

Then, (
V (T,N)
W (T,N)

)
⇒ N

((
0

0

)
,

(
ΣV 0
0 ΣW

))
as T,N → ∞.

10.2 Proofs of auxiliary statements

Proof of Theorem 5 Indeed the statement of Theorem 5 holds if for any non-random

r × 1 vector λ we have

(λ′ΣTλ)
−1/2

T∑
t=1

λ′Zt,T ⇒ N(0, 1).

Let us define zt = λ′Zt,T and σ2
T = var

(∑T
t=1 λ

′Zt,T

)
= λ′ΣTλ. Let us check that all

conditions of Theorem 4 are satisfied for δ = 1. Indeed,

1

σ4
T

T∑
t=1

E|zt|4 =
1

(λ′ΣTλ)2

T∑
t=1

E|λ′Zt,T |4 ≤
1

(∥λ∥2min eval(ΣT ))2

T∑
t=1

E∥λ∥4∥Zt,T∥4 → 0,

and

E

∣∣∣∣∣
∑T

t=1 z
2
t

σ2
T

− 1

∣∣∣∣∣
2

= E

∣∣∣∣∣
∑T

t=1(λ
′Zt,T )

2

λ′ΣTλ
− 1

∣∣∣∣∣
2

=
1

(λ′ΣTλ)2
E

∣∣∣∣∣λ′

(
T∑
t=1

Zt,TZ
′
t,T − ΣT

)
λ

∣∣∣∣∣
2

≤ 1

(∥λ∥2 min eval(ΣT ))2
∥λ∥4E

∥∥∥∥∥
T∑
t=1

Zt,TZ
′
t,T − ΣT

∥∥∥∥∥
2

→ 0.

This finishes the proof of this theorem. �

Proof of Lemma 5 We call Wst clean if

EWs1t1 ⊗Ws2t2 ....⊗Wsktk = 0

when at least one index among {s1, t1, ..., sk, tk} has value occurring only once. Here 0

is a zero vector of a proper dimensions. The functional form of Wst and ,the condition

stated in (30) guarantee that in our case Wst is clean. Indeed, if, for example, the index

s1 occurred only once, then

EWs1t1 ⊗Ws2t2 ⊗ ....⊗Wsktk = EE(Ws1t1 ⊗Ws2t2 ⊗ ....⊗Wsktk |F , et1 , es2 , et2 , ..., etk)

= E [E(Ws1t1 |F , et1 , es2 , et2 , ..., etk)⊗Ws2t2 ⊗ ....⊗Wsktk ]

= E [E(Ws1t1 |F , et1)⊗Ws2t2 ⊗ ....⊗Wsktk ] = 0.
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Now,

W (T,N) =
T∑

s=1

∑
t<s

Wst =
T∑

s=1

Zs,T ,

where Zs,T =
∑

t<sWst. We denote by Fs the σ-algebra generated by F (all factors) and

et for all t < s. Then, (Zs,T ,Fs) is a martingale difference sequence. Below we check that

all conditions of Theorem 5 are satisfied.

Assumption (i) implies that min eval(Σ(T,N)) → C > 0. Now let us check condition

1 of Theorem 5:

E∥Zs,T∥4 = E

∥∥∥∥∥∑
t<s

Wst

∥∥∥∥∥
4

= E

[(∑
t1<s

Wst1

)′(∑
t2<s

Wst2

)(∑
t3<s

Wst3

)′(∑
t4<s

Wst4

)]
≤
∑
t<s

E∥Wst∥4 + C
∑
t1<s

∑
t2<s,t2 ̸=t1

E
(
∥Wst1∥2∥Wst2∥2

)
.

The last statement follows from the fact thatWst is clean, and non-zero summands are only

those where either t1 = t2 = t3 = t4 or the set {t1, t2, t3, t4} consists of two index pairs. We

also notice that E (∥Wst1∥2∥Wst2∥2) ≤ 1
2
(E (∥Wst1∥4) + E (∥Wst2∥4)) ≤ sups,tE∥Wst∥4 <

CT−4. Hence, we have E∥Zs,T∥4 ≤ CT−2. Thus,
∑T

s=1 E∥Zs,T∥4 ≤ CT−1, implying that

condition 1 of Theorem 5 holds.

Now let us turn to condition 2. First, consider

Σ(T,N) = var(W (T,N)) = var

(
T∑

s=1

∑
t<s

Wst

)
=

T∑
s=1

∑
t<s

var(Wst),

the last equality holding because Wst is clean. Next,

E

∥∥∥∥∥
T∑

s=1

Zs,TZ
′
s,T − Σ(T,N)

∥∥∥∥∥
2

2

= E

∥∥∥∥∥
T∑

s=1

(∑
t1<s

Wst1

)(∑
t2<s

Wst2

)′

− Σ(T,N)

∥∥∥∥∥
2

2

= E

∥∥∥∥∥
T∑

s=1

∑
t<s

(WstW
′
st − EWstW

′
st) +

T∑
s=1

∑
t1 ̸=t2<s

Wst1W
′
st2

∥∥∥∥∥
2

2

= E

∥∥∥∥∥
T∑

s=1

∑
t<s

(WstW
′
st − EWstW

′
st)

∥∥∥∥∥
2

2

+ E

∥∥∥∥∥
T∑

s=1

∑
t1 ̸=t2<s

Wst1W
′
st2

∥∥∥∥∥
2

2

. (31)
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The last equality again obtains because of the clean form, as the expectation of the

Frobenius norm equals the trace of the sums of different products of four terms, and any

such product that contains two of the same indexes t and two different indexes t1 ̸= t2

has a zero expectation. Now,

E

∥∥∥∥∥
T∑

s=1

∑
t<s

(WstW
′
st − EWstW

′
st)

∥∥∥∥∥
2

2

=
T∑

s1=1

∑
t1<s1

T∑
s2=1

∑
t2<s2

Etr
[
(Ws1t1W

′
s1t1

− EWs1t1W
′
s1t1

)′(Ws2t2W
′
s2t2

− EWs2t2W
′
s2t2

)
]
.

Notice that tr(WstW
′
st) = ∥Wst∥2, while

tr(Ws1t1W
′
s1t1

Ws2t2W
′
s2t2

) = tr(W ′
s1t1

Ws2t2W
′
s2t2

Ws1t1)

= ∥W ′
s1t1

Ws2t2∥2 ≤ ∥Ws1t1∥2∥Ws2t2∥2.

Thus,

E

∥∥∥∥∥
T∑

s=1

∑
t<s

(WstW
′
st − EWstW

′
st)

∥∥∥∥∥
2

2

≤
T∑

s1=1

∑
t1<s1

T∑
s2=1

∑
t2<s2

∣∣cov(∥Ws1t1∥2, ∥Ws2t2∥2)
∣∣ .

We divide the last summation into a summation where all indexes are different, s1 ̸=
s2, t1 ̸= t2, and a summation where some of indexes {s1, s2, t1, t2} appear twice. In the

first summation, there are at most T 4 such summands, each of them being o(T−4) as

N, T → ∞ according to Assumption (iii) of the Lemma. In the second summation, there

are at most CT 3 such summands, each of them being less than C sups,t E∥Wst∥4 < CT−4.

Thus, we obtain

E

∥∥∥∥∥
T∑

s=1

∑
t<s

(WstW
′
st − EWstW

′
st)

∥∥∥∥∥
2

2

→ 0 as N, T → ∞. (32)

Now manipulate the second term in (31):

E

∥∥∥∥∥
T∑

s=1

∑
t1 ̸=t2<s

Wst1W
′
st2

∥∥∥∥∥
2

2

=
T∑

s1=1

∑
t1 ̸=t2<s1

T∑
s2=1

∑
t3 ̸=t4<s2

Etr[Ws1t1W
′
s1t2

Ws2t3W
′
s2t4

]

= C
T∑

s1=1

T∑
s2=1

∑
t1 ̸=t2,max{t1,t2}<min{s1,s2}

Etr[Ws1t1W
′
s1t2

Ws2t1W
′
s2t2

],

the last equality holding because Wst is clean. The last summation can be divided into the

category when s1 ̸= s2, and there are at most CT 4 such summands, each being asymptot-

ically o(T−4) according to assumption (iv) of Lemma; and the category when s1 = s2, and
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there are at most CT 3 such summands, each being less than C sups,tE∥Wst∥4 < CT−4.

Thus,

E

∥∥∥∥∥
T∑

s=1

∑
t1 ̸=t2<s

Wst1W
′
st2

∥∥∥∥∥
2

2

→ 0. (33)

Putting statements (31), (32) and (33) together we obtain that condition 2 of Theorem 5

is satisfied. Thus, the CLT holds. �

Proof of Lemma 6. Let us define Zs = (V ′
s ,
∑

t<sW
′
st)

′, and let Fs be defined as in the

proof of Lemma 5. We will show that all conditions of Theorem 5 are satisfied. Notice

that

E[VsW
′
st] = EE[VsW

′
st|F , es] = E(VsE[W ′

st|F , es]) = 0.

Thus,

ΣT = var

(
T∑

s=1

Zs

)
=

(
ΣV (T,N) 0

0 ΣW (T,N)

)
→
(

ΣV 0
0 ΣW

)
.

The right-hand-side is a full rank matrix by Assumption (i) of Lemma 5 and Assumption

(a) of Lemma 6. Thus, the minimal eigenvalue of ΣT is separated away from zero for large

N and T . Now,

T∑
s=1

E∥Zs∥4 ≤ C
T∑

s=1

E∥Vs∥4 + C
T∑

s=1

E

∥∥∥∥∥∑
t<s

Wst

∥∥∥∥∥
4

.

The first term here is bounded by T sups E∥Vs∥4 which goes to zero by assumption (b)

of Lemma 6, while convergence to zero of the second sum has been already shown in the

proof of Lemma 5. Thus, condition 1 of Theorem 5 holds. Next,

E

∥∥∥∥∥
T∑

s=1

ZsZ
′
s − ΣT

∥∥∥∥∥
2

≤ E

∥∥∥∥∥
T∑

s=1

ZsZ
′
s − ΣT

∥∥∥∥∥
2

2

= E

∥∥∥∥∥
T∑

s=1

VsV
′
s − ΣV (T,N)

∥∥∥∥∥
2

2

+ 2E

∥∥∥∥∥
T∑

s=1

(∑
t<s

Wst

)
V ′
s

∥∥∥∥∥
2

2

+ E

∥∥∥∥∥
T∑

s=1

(∑
t<s

Wst

)(∑
t<s

Wst

)′

− ΣW (T,N)

∥∥∥∥∥
2

2

.

Here we use that the Frobenius norm of a matrix equals to the sum of squares of all

elements and can be decomposed into sums over four blocks of the matrix. Assumption
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(c) guarantees that

E

∥∥∥∥∥
T∑

s=1

VsV
′
s − ΣV (T,N)

∥∥∥∥∥
2

2

≤ CE

∥∥∥∥∥
T∑

s=1

VsV
′
s − ΣV (T,N)

∥∥∥∥∥
2

→ 0.

In the proof of Lemma 5 we showed that

E

∥∥∥∥∥
T∑

s=1

(∑
t<s

Wst

)(∑
t<s

Wst

)′

− ΣW (T,N)

∥∥∥∥∥
2

2

→ 0.

Finally,

E

∥∥∥∥∥
T∑

s=1

(∑
t<s

Wst

)
V ′
s

∥∥∥∥∥
2

2

=
T∑

s1=1

∑
t1<s1

T∑
s2=1

∑
t2<s2

tr
(
E
(
Ws1t1V

′
s1
Vs2W

′
s2t2

))
=

T∑
s1=1

T∑
s2=1

∑
t<min{s1,s2}

tr
(
E
(
Ws1tV

′
s1
Vs2W

′
s2t

))
≤ CT 3 max

s1,s2,t<min{s1,s2}

∥∥EWs1tV
′
s1
Vs2W

′
s2t

∥∥→ 0.

Here we used that E
(
Ws1t1V

′
s1
Vs2W

′
s2t2

)
= 0 if t1 ̸= t2. To conclude, condition 2 of

Theorem 5 also holds. �

10.3 Gaussianity assumption in different examples.

Let us write all ξi terms from Assumption GAUSSIANITY in the form used in Lemma 6.

First, consider the following desired gaussianity statements:

√
T√
N

N∑
i=1

γiei =
1√
T

T∑
s=1

γ′es√
N
;

√
T√
N

N∑
i=1

γi ⊗ u
(j)
i =

1√
T

T∑
s=1

(
γ′es√
N

)
⊗
(
Σ−1

F F̃ (j)
s

)
I{s ∈ Tj}.

Collect all terms of interest into the vector

Vs ≡

 V 0
s{

V
(j)
s

}4

j=1

 =
1√
T

γ′es√
N

⊗ vs,

where

vs =

 1{
v
(j)
s

}4

j=1



56



and v
(j)
s =

(
Σ−1

F F̃
(j)
s

)
I{s ∈ Tj}. Note that v

(j)
s v

(j∗)′
s = 0 whenever j ̸= j∗. Also note that

vs is measurable with respect to the σ-algebra F , and ∥vs∥ ≤ C
(
∥F̃ (js)

s ∥+ 1
)
, where

js ∈ {1, ..., 4} is the index of the sub-sample to which s belongs.

Now assume that j∗ > j and consider the following sum:

vec

(
T√
N

N∑
i=1

u
(j∗)
i u

(j)′
i

)
=

1

T
√
N

N∑
i=1

∑
t∈Tj

∑
s∈Tj∗

vec
(
Σ−1

F F̃ (j∗)
s F̃

(j)′
t Σ−1

F eiteis

)
=
∑
s∈Tj∗

∑
t∈Tj

1

T

(
Σ−1

F F̃ (j∗)
s

)
⊗
(
Σ−1

F F̃
(j)
t

) e′tes√
N
.

Let us define for each 1 ≤ t < s ≤ T ,

W
(j,j∗)
st =

1

T

(
Σ−1

F F̃ (j∗)
s

)
⊗
(
Σ−1

F F̃
(j)
t

)
I{t ∈ Tj, s ∈ Tj∗}

e′tes√
N
.

Consider the following sum:

T√
N

N∑
i=1

eiu
(j)
i =

1

T
√
N

N∑
i=1

T∑
t1=1

∑
t2∈Tj

Σ−1
F F̃

(j)
t2 eit1eit2

=
1

T
√
N

N∑
i=1

∑
t∈Tj

Σ−1
F F̃

(j)
t e2it +

1

T
√
N

N∑
i=1

T∑
t1=1

∑
t2∈Tj ,t1 ̸=t2

Σ−1
F F̃

(j)
t2 eit1eit2 .

Assumption ERRORS (iii) guarantees that
(
T
√
N
)−1∑N

i=1

∑
t∈Tj

Σ−1
F F̃

(j)
t e2it = op(1).

Thus, we are only interested in gaussianity of the second sum. For those summands when

t1 < t2, we denote t1 = t and t2 = s, while when the opposite happens, we denote t1 = s

and t2 = t. Then, we obtain the following:

1

T
√
N

N∑
i=1

T∑
t1=1

∑
t2∈Tj ,t1 ̸=t2

Σ−1
F F̃

(j)
t2 eit1eit2 =

T∑
s=1

∑
t<s

1

T
Σ−1

F (F̃ (j)
s I{s ∈ Tj}+F̃

(j)
t I{t ∈ Tj})

e′tes√
N
.

Denote

W
(j)
st =

1

T
Σ−1

F

(
F̃ (j)
s I{s ∈ Tj}+ F̃

(j)
t I{t ∈ Tj}

) e′tes√
N
.

Now we can stack all vectors W
(j,j∗)
st on top of each other for different combinations

of two indexes j < j∗, and below them, all W
(j)
st for all value of a single index j. Call the

resulting vector Wst = (W
(1,2)′
st ,W

(1,3)′
st , ...,W

(1)
st , ..)′. Notice that

Wst =
1

T
wst

e′tes√
N
,

where wst is measurable with respect to F . We also have ∥wst∥ ≤ C(∥F̃ (js)
s ∥+1)(∥F̃ (jt)

t ∥+
1), where js ∈ {1, ..., 4} is a sub-sample number to which index s belongs.
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Proof of Lemma 2. In order to apply Lemma 6 we check assumptions (i)-(iv) of Lemma

5 and assumptions (a)-(d) of Lemma 6.

Let us check condition (i) of Lemma 5 for W (T,N) =
∑T

s=1

∑
t<sWst. Indeed,

ΣW (T,N) ≡
T∑

s=1

∑
t<s

var(Wst) =
1

T 2

T∑
s=1

∑
t<s

E

[
wstw

′
stE

((
e′tes√
N

)2

|F

)]
.

Notice that (e′tes)
2 = tr ((e′set) (e

′
tes)) = tr ((ete

′
t) (ese

′
s)) , and hence, given the conditional

independence assumption,

E

((
e′tes√
N

)2

|F

)
=

1

N
tr [E(ete

′
t|F)E(ese

′
s|F)] .

Recall that et = πwt + ηt, where π is N × kw matrix of πi’s, and ηt = (η1t, ..., ηNt)
′. We

also use notation Ση = Eηtη
′
t = dg{σ2

i }Ni=1. Then,

E

((
e′tes√
N

)2

|F

)
=

1

N
tr ((πE(wtw

′
t|F)π′ + Ση) (πE(wsw

′
s|F)π′ + Ση))

=
1

N

N∑
i=1

σ4
i +∆N,T ,

where

∆N,T ≤ C

N
E((∥wt∥2 + 1)(∥ws∥2 + 1)|F).

Indeed, ∆N,T has three terms each of which is easy to bound. For example,

1

N
tr (ΣηπE(wsw

′
s|F)π′) ≤ 1

N
max
1≤i≤N

σ2
i · tr (E(wsw

′
s|F)π′π)

≤ 1

N
max
1≤i≤N

σ2
i ·max eval(π′π) · E(∥ws∥2|F),

as we assumed that max1≤i≤N σ2
i < C and that π′π → Γπ.

Since ∥wst∥ ≤ C
(
∥F̃ (js)

s ∥+ 1
)(

∥F̃ (jt)
t ∥+ 1

)
, it follows that∥∥∥∥∥ 1

T 2

T∑
s=1

∑
t<s

E [wstw
′
st∆N,T ]

∥∥∥∥∥
≤ C

NT 2

T∑
s=1

∑
t<s

E(∥F̃t∥2 + 1)(∥F̃s∥2 + 1)(∥wt∥2 + 1)(∥ws∥2 + 1) ≤ C

N
→ 0,
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where the last inequality is due to moment assumptions. So, we obtain that

ΣW (T,N) =
1

T 2

T∑
s=1

∑
t<s

E [wstw
′
st]

1

N

N∑
i=1

σ4
i + o(1)

→ σ2
4 lim
N,T→∞

1

T 2

T∑
s=1

∑
t<s

E [wstw
′
st] = ΣW .

Consider now various sub-blocks of ΣW and show that it is a full rank matrix.

First, notice that W
(j,j∗)
st W

(j1,j∗1 )′
st is zero matrix when (j, j∗) ̸= (j1, j

∗
1). In the same

way, W
(j,j∗)
st W

(j1)′
st is zero matrix when j1 /∈ (j, j∗). Hence, there are a number of zero

blocks in limΣW (T,N). For (j, j∗) block we have and

E
[
(F̃

(j)
t F̃

(j)′
t )⊗ (F̃ (j∗)

s F̃ (j∗)′
s )

]
= (EF̃

(j)
t F̃

(j)′
t )⊗ (EF̃ (j∗)

s F̃ (j∗)′
s )

+ E
[
(F̃

(j)
t F̃

(j)′
t − EF̃

(j)
t F̃

(j)′
t )⊗ (F̃ (j∗)

s F̃ (j∗)′
s − EF̃ (j∗)

s F̃ (j∗)′
s )

]
.

In the (j, j∗)th block of ΣW (T,N), before the limit is taken, it has T−2
∑

s∈Tj∗

∑
t∈Tj

of

the last displayed expression. Due to summability of covariances, the double average of

covariances coming from the second term becomes negligible in the limit.6 Thus, the

diagonal block corresponding to the variance of the (j, j∗)th terms comes only from the

first term and is, in the limit,

Σj,j∗(T,N) → lim

(
|Tj||Tj∗|

T 2

)
σ4(EF̃tF̃

′
t)⊗ (EF̃tF̃

′
t) =

σ4

16
ΣF ⊗ ΣF .

6For generic stationary matrix functions ϕ1 and ϕ2, denote Υϕ
k = E

[
ϕ1(F̃t)⊗ ϕ2(F̃t+k)

]
. If Υϕ

k are

summable, then∥∥∥∥∥∥ 1

T 2

∑
t∈Tj

∑
s∈Tj∗

E
[
ϕ1(F̃t)⊗ ϕ2(F̃s)

]∥∥∥∥∥∥ ≤ 1

T 2

∑
t∈Tj

∑
s∈Tj∗

∥∥∥Υϕ
|t−s|

∥∥∥ ≤ 1

T 2

∑
t∈Tj

∞∑
k=−∞

∥Υϕ
k∥ ≤ C

T
→ 0.

In the text, this is applied for ϕ1(x) = ϕ2(x) = xx′ − Exx′, ϕ1(x) = ϕ2(x) = x, and ϕ1(x) = xx′,
ϕ2(x) = x.
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Let us now focus on the block corresponding to the variance of the jth term:

1

T 2

T∑
s=1

∑
t<s

E

[(
F̃ (j)
s I{s ∈ Tj}+ F̃

(j)
t I{t ∈ Tj}

)(
F̃ (j)
s I{s ∈ Tj}+ F̃

(j)
t I{t ∈ Tj}

)′]

=
1

T 2

T∑
s=1

∑
t<s

(
EF̃ (j)

s F̃ (j)′
s I{s ∈ Tj}+ EF̃

(j)
t F̃

(j)′
t I{t ∈ Tj}

+(EF̃ (j)
s F̃

(j)′
t + EF̃

(j)
t F̃ (j)′

s )I{s, t ∈ Tj}
)

=
1

T 2

T∑
t1=1

∑
t2∈Tj

EF̃
(j)
t2 F̃

(j)′
t2 +

1

T 2

∑
t1∈Tj

∑
t2∈Tj

EF̃
(j)
t1 F̃

(j)′
t2 .

Again, due to stationarity and summability of covariances, the second term is negligible,

so we have, in the limit,

Σj(T,N) → lim

(
|Tj|T
T 2

)
σ4E

[
F̃tF̃

′
t

]
=

σ4

4
ΣF .

By the same arguments, the jth and j∗th blocks converge to zero matrices when j ̸= j∗,

1

T 2

T∑
s=1

∑
t<s

E
[
(F̃ (j∗)

s I{s ∈ T ∗
j })(F̃

(j)
t I{t ∈ Tj})′

]
=

1

T 2

∑
s∈Tj∗

∑
t∈Tj

E
[
F̃

(j)
t F̃ (j∗)′

s

]
→ 0,

as well as the jth and (j, j∗)th blocks,

1

T 2

T∑
s=1

∑
t<s

E
[(

F̃
(j)
t ⊗ F̃ (j∗)

s

)
I{s ∈ Tj∗ , t ∈ Tj}F̃ (j)′

t

]
=

1

T 2

∑
s∈Tj∗

∑
t∈Tj

E
[
(F̃

(j)
t F̃

(j)′
t )⊗ F̃ (j∗)

s

]
→ 0.

To summarize, we have shown that ΣW is a block diagonal matrix, with each block

being a full-rank matrix. Thus, condition (i) of Lemma 5 is satisfied.

Let us check condition (ii). Notice that

e′tes√
N

=
1√
N
w′

tπ
′πws +

1√
N
w′

tπ
′ηs +

1√
N
w′

sπ
′ηt +

1√
N
η′tηs.

Using the Marcinkiewicz–Zygmund inequality with p = 2 applied twice we notice that in

order to bound E

((
e′tes/

√
N
)4

|F
)

from above it is enough to bound 4th moment of

each summand. Using serial and cross-sectional conditional independence of η’s as well

as their conditional independence from w’s, we obtain

E

(
1√
N

N∑
i=1

ηitηis

)4

=
1

N2

N∑
i=1

E(ηitηis)
4 + C

1

N2

∑
i1 ̸=i2

E(η2i1tη
2
i1s
η2i2tη

2
i2s
) ≤ C,
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E

(
1√
N

N∑
i=1

πiηis

)4

≤ 1

N2

N∑
i=1

E(πiηis)
4 + C

1

N2

∑
i1 ̸=i2

E(π2
i1
η2i1sπ

2
i2
η2i2s) ≤

C

N2
,

as maxs E|ηis|8 < C and
∑

i π
4
i ≤ (

∑
i π

2
i )

2 ≤ C. Hence,

E

((
e′tes√
N

)4

|F

)
≤ C

N2
E(∥wt∥4∥ws∥4|F) +

C

N2
(E(∥wt∥4|F) + E(∥ws∥4|F)) + C.

Finally,

T 4E∥Wst∥4 ≤ E

∥∥∥∥wst
e′tes√
N

∥∥∥∥4 ≤ E

(
(∥F̃ (js)

s ∥+ 1)4(∥F̃ (jt)
t ∥+ 1)4E

((
e′tes√
N

)4

|F

))
≤ CE

(
∥F̃ (js)

s ∥+ 1)4(∥F̃ (jt)
t ∥+ 1)4(∥wt∥4 + 1)(∥ws∥4 + 1)

)
≤ Cmax

t
E
[
(∥Ft∥8 + 1)(∥wt∥8 + 1)

]
< C.

Thus, condition (ii) of Lemma 5 holds.

Let us check condition (iii). By the analysis of (co)variance formula, for two random

variables ξ1 and ξ2 and σ-algebra A,

cov(ξ1, ξ2) = E [cov(ξ1, ξ2|A)] + cov(E(ξ1|A), E(ξ2|A)).

Assume that s1 ̸= s2, t1 ̸= t2, and define ξ1 = ∥Ws1t1∥2 = 1
T 2∥ws1t1∥2

(
e′s1et1√

N

)2
, ξ2 =

∥Ws2t2∥2 and A = F ∪ {wt, t = 1, ..., T}. One observation is that our assumptions are

sufficient to obtain that cov(ξ1, ξ2|A) = 0, because ηit’s are independent from each other

and independent from F ’s and w’s. In particular, this implies that
e′s1et1√

N
, conditionally

on A, is independent from
e′s2et2√

N
, and hence

(
e′s1et1√

N

)2
is conditionally uncorrelated with(

e′s2et2√
N

)2
. Let us now write

T 2E(∥Wst∥2|A) = E

(
∥wst∥2

1

N
[(πws + ηs)

′(πwt + ηt)]
2 |A

)
= E

(
∥wst∥2

1

N
[w′

sπ
′πwt]

2 |A
)

=
1

N
∥wst∥2 [w′

sπ
′πwt]

2
.

Then we have

T 4
∣∣cov(∥Ws1t1∥2, ∥Ws2t2∥2)

∣∣
=
∣∣cov(T 2E(∥Ws1t1∥2|A), T 2E(∥Ws2t2∥2|A))

∣∣
=

1

N2

∣∣∣cov (∥ws1t1∥2
[
w′

s1
ππ′wt1

]2
, ∥ws2t2∥2

[
w′

s2
ππ′wt2

]2)∣∣∣
≤ 1

N2
var

(
∥ws1t1∥2

[
w′

s1
ππ′wt1

]2) 1
2
var

(
∥ws2t2∥2

[
w′

s2
ππ′wt2

]2) 1
2
.
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Notice that

var
(
∥wst∥2 [w′

sππ
′wt]

2
)
≤ E

(
∥wst∥2 [w′

sππ
′wt]

2
)2

≤ CE
(
(∥F̃ (js)

s ∥+ 1)4(∥F̃ (jt)
t ∥+ 1)4∥wt∥4∥ws∥4

)
≤ Cmax

t
E
(
(∥F̃t∥8 + 1)∥wt∥8

)
< C.

Thus, condition (iii) holds.

Finally, let us check condition (iv):

T 4E
[
W ′

s1t2
Ws2t1W

′
s2t2

Ws1t1

]
=

1

N2
E
(
w′

s1t2
ws2t1w

′
s2t2

ws1,t1E(e′s1et1e
′
t1
es2e

′
s2
et2e

′
t2
es1|F)

)
,

where we used that the scalar products e′tes = e′set are scalars and they can be reshuffled

to make two et with the same index stand back to back. Let us bound the N ×N matrix

E(ete
′
t|F) = πE(wtw

′
t|F)π′ + Ση:

max eval(E(ete
′
t|F)) ≤ max eval(π′E(wtw

′
t|F)π) + max eval (Ση)

≤ tr(π′E(wtw
′
t|F)π) + max

1≤i≤N
σ2
i

≤ max eval(ππ′)E(∥wt∥2|F) + C

≤ CE(∥wt∥2 + 1|F). (34)

As a result, ∣∣E(e′s1et1e
′
t1
es2e

′
s2
et2e

′
t2
es1 |F)

∣∣
=
∣∣tr(E(et1e

′
t1
|F)E(es2e

′
s2
|F)E(et2e

′
t2
|F)E(es1e

′
s1
|F))

∣∣
≤ N max eval

 ∏
t∈{s1,s2,t1,t2}

E(ete
′
t|F)


≤ N

∏
t∈{s1,s2,t1,t2}

max eval (E(ete
′
t|F))

≤ NC
∏

t∈{s1,s2,t1,t2}

E
(
∥wt∥2 + 1|F

)
.

Also using that ∥wst∥ ≤ C(∥F̃ (js)
s ∥+ 1)(∥F̃ (jt)

t ∥+ 1), we obtain that

T 4
∣∣E [W ′

s1t2
Ws2t1W

′
s2t2

Ws1t1

]∣∣ ≤ C

N
sup
t

E
[
(∥Ft∥8 + 1)(∥wt∥8 + 1)

]
.

Thus, condition (iv) holds as well.
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Now we will check assumptions (a)-(d) of Lemma 6. First, we find the limit of the

covariance matrix ΣV (T,N). Note that for any s = 1, ..., T,

E

((
γ′es√
N

)2

|F

)
=

1

N
E
(
(γ′πws + γ′ηs)

2 |F
)

=

(
γ′π√
N

)
E[wsw

′
s|F ]

(
π′γ√
N

)
+

1

N

N∑
i=1

σ2
i γiγ

′
i

→ Γ′
πγE[wsw

′
s|F ]Γπγ + Γσ.

Here we used the assumptions that N−1/2π′γ → Γπγ and N−1
∑N

i=1 σ
2
i γiγ

′
i → Γσ. There-

fore,

ΣV (T,N) = var

(
T∑

s=1

Vs

)
= E

(
1

T

T∑
s=1

E

((
γ′es√
N

)2

|F

)
⊗ (vsv

′
s)

)

=
1

T

T∑
s=1

E
[(
Γ′

πγwsw
′
sΓπγ + Γσ

)
⊗ (vsv

′
s)
]
+ o(1).

Taking into account the structure of vs and that |Tj|/T = 1
4
, we compute that

var

(
T∑

s=1

V 0
s

)
→ Γ′

πγE[wsw
′
s]Γπγ + Γσ,

var

(
T∑

s=1

V (j)
s

)
→ 1

4
E
[(
Γ′

πγwtw
′
tΓπγ + Γσ

)
⊗
(
Σ−1

F (Ft − EFt)(Ft − EFt)
′Σ−1

F

)]
,

cov

(
T∑

s=1

V 0
s ,

T∑
s=1

V (j)
s

)
→ 1

4
E
[(
Γ′

πγwtw
′
tΓπγ + Γσ

)
⊗
(
Σ−1

F (Ft − EFt)
)]

,

and

cov

(
T∑

s=1

V (j)
s ,

T∑
s=1

V (j∗)
s

)
= 0 for j ̸= j∗.

Our moment assumptions guarantee that the limit matrix ΣV is finite. One can see that

the matrix ΣV can be written as a covariance matrix of a non-degenerate random vector

and hence is of a full rank. Indeed, take a random variable χ which takes values in the

set {1, 2, 3, 4} with equal probabilities independently of any other variable, and define

χj = I{χ = j}, then the covariance of random vector

(
Γ′

πγwt + Γ1/2
σ

)
⊗
(

1{
Σ−1

F (Ft − EFt)χj

}
j=1,...,4

)
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coincides with the matrix under consideration. Thus, condition (a) of Lemma 6 is satisfied.

Now note that

E

(∥∥∥∥ γ′et√
N

∥∥∥∥4 |F
)

=
1

N2
E
(
∥γ′πwt + γ′ηt∥4|F

)
≤ CE

(
∥wt∥4|F

)
+

C

N2
E
(
∥γ′ηt∥4

)
,

because, in particular, N−1/2π′γ → Γπγ . Now,

E
(
∥γ′ηt∥4

)
= E

∥∥∥∥∥
N∑
i=1

γ′
iηit

∥∥∥∥∥
4

≤
N∑
i=1

∥γi∥4Eη4it + C

N∑
i1,i2=1

∥γi1∥2∥γi2∥2σ2
i1
σ2
i2
.

Since N−1
∑N

i=1 ∥γi∥2 < C and N−1
∑N

i=1 ∥γi∥4 < C and max1≤i≤N σ2
i < C, we have that

E (∥γ′ηt∥4) ≤ CN2, and thus

E

(∥∥∥∥ γ′et√
N

∥∥∥∥4 |F
)

≤ CE
(
∥wt∥4 + 1|F

)
.

Collecting the pieces,

TE∥Vs∥4 ≤ CTE

[
1

T 2
E

(∥∥∥∥γ′es√
N

∥∥∥∥4 |F
)

⊗ ∥vs∥4
]
≤ T

C

T 2
E
[(
∥ws∥4 + 1

)
(∥Fs∥4 + 1)

]
→ 0.

This gives us the validity of condition (b) of Lemma 6.

Let us establish the validity of condition (c). Denote Γσ,N = N−1
∑N

i=1 σ
2
i γiγ

′
i → Γσ.

Then,

T∑
t=1

VtV
′
t − ΣV (T,N)

=
1

T

T∑
t=1

(
γ′et√
N

e′tγ√
N

)
⊗ (vtv

′
t)−

1

T

T∑
t=1

E

[(
γ′π√
N
wtw

′
t

π′γ√
N

+ Γσ,N

)
⊗ (vtv

′
t)

]

=
1

T

T∑
t=1

(
γ′et√
N

e′tγ√
N

− γ′π√
N
wtw

′
t

π′γ√
N

− Γσ,N

)
⊗ (vtv

′
t)

+
1

T

T∑
t=1

[(
γ′π√
N
wtw

′
t

π′γ√
N

+ Γσ,N

)
− E

(
γ′π√
N
wtw

′
t

π′γ√
N

+ Γσ,N

)]
⊗ (vtv

′
t)

= A1 + A2.

Notice that given the conditional independence of ηit’s, the two terms in the last expres-

sion, A1 and A2 are uncorrelated, so in order to check condition (c) of Lemma 6 we can
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prove convergence to zero of E∥A1∥2 and E∥A2∥2 separately. First,

E∥A1∥2 = E

∥∥∥∥∥ 1T
T∑
t=1

(
γ′π√
N
wt

η′tγ√
N

+
γ′ηt√
N
w′

t

π′γ√
N

+

(
γ′ηt√
N

η′tγ√
N

− Γσ,N

))
⊗ (vtv

′
t)

∥∥∥∥∥
2

≤ 1

T 2

T∑
t=1

E

∥∥∥∥( γ′π√
N
wt

η′tγ√
N

+
γ′ηt√
N
w′

t

π′γ√
N

+

(
γ′ηt√
N

η′tγ√
N

− Γσ,N

))∥∥∥∥2 · ∥vt∥4
≤ 1

T
CE

[
(∥wt∥2 + 1)(∥Ft∥4 + 1)

]
→ 0.

The former inequality above is due to ηt’s being conditionally serially uncorrelated, and

thus the summation over t could be taken outside the expectation of the square; the latter

inequality uses bounds on the moments of η′tγ/
√
N we derived before. Second,

E∥A2∥2 =

∥∥∥∥∥var
(

1

T

T∑
t=1

(
γ′π√
N
wtw

′
t

π′γ√
N

+ Γσ,N

)
⊗ (vtv

′
t)

)∥∥∥∥∥
≤ 1

T 2

∥∥∥∥∥
T∑
t=1

var

((
γ′π√
N
wtw

′
t

π′γ√
N

+ Γσ,N

)
⊗ (vtv

′
t)

)∥∥∥∥∥ ≤ C

T
→ 0.

Here we use serial conditional independence of wt’s which allows the sum to be taken

outside the variance. Putting all terms together we obtain that condition (c) is satisfied.

Finally, we check the condition (d):

T 3
∥∥EWs1tV

′
s1
Vs2W

′
s2t

∥∥ =

∥∥∥∥E [ws1tv
′
s1
vs2w

′
s2t
E

(
e′s1γ√
N

γ′es2√
N

e′s1et√
N

e′s2et√
N

|F
)]∥∥∥∥ .

Using that scalars could be reshuffled to make two et with the same index stand back to

back and employing conditional independence we obtain:∣∣∣∣E (e′s1γ√
N

γ′es2√
N

e′s1et√
N

e′s2et√
N

|F
)∣∣∣∣ = 1

N2

∣∣tr(γγ′E(es2e
′
s2
|F)E(ete

′
t|F)E(es1e

′
s1
|F))

∣∣
≤ 1

N2
tr(γγ′)

∏
s∈{s1,s2,t}

max eval(E(ese
′
s|F))

≤ C

N

∏
s∈{s1,s2,t}

E(∥ws∥2 + 1|F)

=
C

N
E

 ∏
s∈{s1,s2,t}

(∥ws∥2 + 1)|F

 .

We use the assumption N−1tr(γγ′) < C and the bound (34) we derived before. In the

last equality we also exploit that wt’s are conditionally independent of each other. Given
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the bounds on ∥vs∥ and ∥wst∥ and the moment conditions we obtain that

T 3 max
s1,s2,t<min{s1,s2}

∥∥EWs1tV
′
s1
Vs2W

′
s2t

∥∥ ≤ C

N
→ 0.

Thus, condition (d) of Lemma 6 is satisfied as well. This concludes the proof of Lemma

2.

66



References

Anatolyev, S. (2012): “Inference in regression models with many regressors,” Journal

of Econometrics, 170(2), 368-382.

Andrews, D.W.K. (2005): “Cross-Section Regression with Common Shocks,” Econo-

metrica, 73(5), 1551-1585.

Angrist, J.D., G.W. Imbens and A. Krueger (1999): “Jackknife instrumental variables

estimation,” Journal of Applied Econometrics, 14, 57-67.

Bai, J. and Ng, S. (2002): “Determining the Number of Factors in Approximate Factor

Models,” Econometrica, 70, 191-221.

Bai, J. and S. Ng (2006): “Confidence intervals for diffusion index forecast and infer-

ence with factor-augmented regressions”, Econometrica, 74, 1133-1155.

Bekker, P. A. (1994): “Alternative approximations to the distributions of instrumental

variable estimators,” Econometrica, 62, 657-681.

Bryzgalova S. (2015): “Spurious Factors in Linear Asset Pricing Models”, unpublished

manuscript.

Burnside, C. (2015): “Identification and Inference in Linear Stochastic Discount Fac-

tor Models with Excess Returns,” Journal of Financial Econometrics, 2015, 1-36.

Cochrane, J. (2001): Asset Pricing. Princeton University Press.

Fama, E.F. and K.R. French (1993): “Common Risk Factors in the Returns on Stocks

and Bonds,” Journal of Financial Economics, 33(1), 3-56.

Fama, E.F., and J. MacBeth (1973): “Risk, Return and Equilibrium: Empirical

Tests,” Journal of Political Economy, 81, 607-636.

Gagliardini, P., E. Ossola and O. Scaillet (2016) “Time-Varying Risk Premium in

Large Cross-Sectional Equity Data Sets,” Econometrica 86, 985–1046.

Gospodinov, N., R. Kan, and C. Robotti (2016): “Spurious Inference in Reduced-

Rank Asset-Pricing Models,” unpublished manuscript.

Hansen, C., J. Hausman and W.K. Newey (2008): “Estimation with many instrumen-

tal variables,” Journal of Business & Economics Statistics, 26, 398-422.

Harvey, C.R., Y. Liu, and H. Zhu (2016): “... and the Cross-Section of Expected

Returns,” Review of Financial Studies, 29(1), 5-68.

Heyde, C. and B. Brown (1970): “On the departure from normality of a certain class

of martingales,” Annals of Mathematical Statistics, 41(6), 2161–2165.

Jagannathan, R. and Wang, Z. (1996) The conditional CAPM and the cross-section

of expected returns. Journal of Finance, 3–53.

67



Jegadeesh, N. and S. Titman (1993): “Returns to Buying Winners and Selling Losers:

Implications for Stock Market Efficiency,” Journal of Finance, 48(1), 65-91.

de Jong, P. (1987): “A central limit theorem for generalized quadratic forms,” Prob-

ability Theory and Related Fields, 75, 261–277.

Kan, R. and Zhang, C. (1999): “Two-Pass Tests of Asset Pricing Models with Useless

Factors,” Journal of Finance, 54, 203-235.

Kleibergen, F. (2009): “Tests of risk premia in linear factor models,” Journal of

Econometrics, 149(2), 149-173,

Kleibergen, F. and Z. Zhan (2015): “Unexplained factors and their effects on second

pass R-squared’s,” Journal of Econometrics, 189, 101-116.

Lettau, M. and S. Ludvigson (2001): “Resurrecting the (C)CAPM: A Cross-Sectional

Test When Risk Premia Are Time-Varying,” Journal of Political Economy, 109(6), 1238-

1287.

Lintner, J. (1965): “Security Prices, Risk, and Maximal Gains from Diversification,”

Journal of Finance, 20, 587-615.

Onatski, A. (2012): “Asymptotics of the Principal Components Estimator of Large

Factor Models with Weakly Influential Factors,” Journal of Econometrics, 168, 244-258.

Shanken, J. (1992): “On the Estimation of Beta-Pricing Models,” Review of Financial

Studies, 5, 1-33.

Sharpe, W. F. (1964): “Capital Asset Prices: A Theory of Market Equilibrium under

Conditions of Risk,” Journal of Finance, 19, 425-442.

Staiger, D. and J.H. Stock (1997): “Instrumental variables regression with weak in-

struments,” Econometrica, 65(3), 557-586.

68



Table 1a. Mean biases and standard deviations, from simulations. The correlation of

missing factor with ‘Market’ betas is ρ = 0.9. The empirical missing factor is multiplied

by p = 5. The HML betas weakened by
√
m.

m 1 2 4 8
factor Mkt SMB HML Mkt SMB HML Mkt SMB HML Mkt SMB HML

beta2 0.92 0.51 0.136 0.92 0.51 0.068 0.92 0.51 0.034 0.92 0.51 0.017
two-pass 0.01

0.89
0.12
0.88

−0.37
1.24

0.02
0.60

0.06
0.524

−0.40
1.13

0.03
0.41

0.03
0.31

−0.43
1.08

0.03
0.29

0.01
0.19

−0.45
1.06

four-split2 0.01
0.72

0.06
0.68

−0.25
0.92

0.02
0.50

0.03
0.46

−0.27
0.87

0.02
0.36

0.01
0.32

−0.28
0.85

0.02
0.25

0.00
0.22

−0.29
0.83

four-split −0.05
0.67

0.11
0.57

−0.11
0.74

−0.01
0.47

0.05
0.40

−0.12
0.69

0.01
0.33

0.02
0.27

−0.15
0.66

0.01
0.24

0.01
0.20

−0.16
0.65

Table 1b. Coverage of confidence intervals, from simulations. The correlation of miss-

ing factor µ with ‘SMB’ betas is ρ = 0.9. The empirical missing factor is multiplied by

p = 5. The HML betas weakened by
√
m.

m 1 2 4 8
factor Mkt SMB HML Mkt SMB HML Mkt SMB HML Mkt SMB HML

beta2 0.92 0.51 0.136 0.92 0.51 0.068 0.92 0.51 0.034 0.92 0.51 0.017
two-pass 0.87 0.83 0.81 0.87 0.86 0.71 0.87 0.89 0.60 0.86 0.90 0.47
four-split 0.95 0.94 0.94 0.94 0.93 0.88 0.94 0.91 0.77 0.93 0.88 0.62
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Table 1c. Mean biases and standard deviations, from simulations. The correlation of

missing factor µ with ‘Market’ betas is ρ = 0.9. The empirical missing factor is multiplied

by p = 10. The HML betas weakened by
√
8.

m 4 8 16 32
factor Mkt SMB HML Mkt SMB HML Mkt SMB HML Mkt SMB HML

beta2 0.92 0.51 0.017 0.92 0.51 0.017 0.92 0.51 0.017 0.92 0.51 0.017
two-pass 0.05

0.57
0.05
0.55

−1.05
3.25

0.04
0.43

0.03
0.37

−0.78
2.42

0.03
0.30

0.01
0.23

−0.57
1.67

0.02
0.22

0.01
0.14

−0.38
1.08

four-split 0.03
0.34

0.02
0.28

−0.38
1.05

0.01
0.24

0.01
0.20

−0.18
0.69

0.00
0.17

0.01
0.14

−0.07
0.46

0.00
0.12

0.00
0.10

−0.04
0.33

Table 1d. Coverage of confidence intervals, from simulations. The correlation of miss-

ing factor µ with ‘Market’ betas is ρ = 0.9. The empirical missing factor is multiplied by

p = 10. The HML betas weakened by
√
8.

m 4 8 16 32
factor Mkt SMB HML Mkt SMB HML Mkt SMB HML Mkt SMB HML

beta2 0.92 0.51 0.017 0.92 0.51 0.017 0.92 0.51 0.017 0.92 0.51 0.017
two-pass 0.78 0.76 0.28 0.76 0.74 0.25 0.73 0.76 0.25 0.71 0.78 0.28
four-split 0.94 0.93 0.69 0.93 0.90 0.66 0.93 0.89 0.65 0.92 0.87 0.61
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Table 2a. Average estimated betas and beta squared from the first pass of the con-

ventional two-pass procedure.

no. risk factor Market SMB HML cay MOM

1 average betas 0.96 0.53 0.19
average squared betas 0.92 0.51 0.14

2 average betas 1.14 0.23
average squared betas 1.31 0.15

3 average betas 1.13 0.23 −0.62
average squared betas 1.32 0.15 124.

4 average betas 1.03 0.18 0.18
average squared betas 1.10 0.10 0.12

5 average betas 1.03 0.18 0.17 −0.036
average squared betas 1.08 0.10 0.11 0.014

Table 2b. Variance fractions corresponding to five main principal components in the

residuals from the first pass of the conventional two-pass procedure.

no. 5 main principal components in residuals

1 0.29 0.14 0.11 0.07 0.04

2 0.62 0.10 0.05 0.03 0.03

3 0.62 0.10 0.05 0.03 0.03

4 0.14 0.12 0.08 0.07 0.04

5 0.14 0.12 0.08 0.06 0.04
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Table 2c. Risk premia estimates by the conventional two pass and proposed average

four-split procedures, with standard errors.

no. risk factor Market SMB HML cay MOM

1 conventional two-pass 2.70
0.61

0.69
0.48

1.96
0.58

average four-split 2.80
0.62

0.46
0.47

1.29
0.84

2 conventional two-pass 2.50
0.61

2.01
0.63

average four-split 2.32
0.60

−4.25
2.60

3 conventional two-pass 2.55
0.61

1.92
0.62

0.027
0.019

average four-split 2.06
0.63

2.44
0.68

−0.009
0.005

4 conventional two-pass 1.02
0.20

−0.35
0.20

−0.07
0.15

average four-split 1.28
0.21

−1.00
0.28

−0.24
0.22

5 conventional two-pass 1.05
0.20

−0.27
0.19

−0.00
0.15

1.05
0.35

average four-split 1.15
0.21

−1.10
0.24

0.03
0.18

0.03
0.40
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