Socioeconomic Status and Macroeconomic Expectations* Sreyoshi Das[†] Cornell University Oas[†] Camelia M. Kuhnen[‡] wersity University of North Carolina & NBER Stefan Nagel[§] University of Chicago, NBER & CEPR #### Abstract We show that individuals' macroeconomic expectations are influenced by their socioeconomic status (SES). People with higher income or higher education are more optimistic about future macroeconomic developments, including business conditions, the national unemployment rate, and stock market returns. The spread in beliefs between high- and low-SES individuals diminishes significantly during recessions. A comparison with professional forecasters and historical data reveals that the beliefs wedge reflects excessive pessimism on the part of low-SES individuals. SES-driven expectations help explain why higher-SES individuals are more inclined to invest in the stock market and more likely to consider purchasing homes, durable goods, or cars. ^{*}We thank David Hirshleifer, Monika Piazessi, Andrew Karolyi, and seminar participants at the Federal Reserve Bank of Cleveland, London Business School, London School of Economics and Political Science, Michigan State University, U.C. Berkeley, Cornell University, and the University of Toronto, as well as conference participants at the 2017 NBER Behavioral Macroeconomics meeting for helpful comments. $^{^\}dagger 201$ Sage Hall, S.C. Johnson Graduate School of Management, Cornell University, Ithaca, NY 14853, USA. E-mail: sreyoshi.das@cornell.edu. [‡]University of North Carolina, Kenan-Flagler Business School, 300 Kenan Center Drive, MC #4407, Chapel Hill, NC 27599, USA. E-mail: camelia_kuhnen@kenan-flagler.unc.edu. $[\]$ University of Chicago Booth School of Business, 5807 South Woodlawn Avenue, Chicago, IL 60637, e-mail: stefan.nagel@chicagobooth.edu #### 1 Introduction Individuals' choices of consumption, saving, and investment depend on expectations about future macroeconomic conditions. As Mankiw, Reis, and Wolfers (2003), Souleles (2004), Puri and Robinson (2007), Dominitz and Manski (2007) and others have shown, there is substantial disagreement between individuals in their forecasts. Such heterogeneity can have important effects on asset prices and macroeconomic dynamics (e.g., Sims (2008), Geanakoplos (2009), Piazzesi and Schneider (2012), Guzman and Stiglitz (2015)). Consumption and investment choices induced by differences in beliefs further may have welfare consequences (Brunnermeier, Simsek, and Xiong (2014)). Yet the origins of this disagreement are still not well understood. In this paper, we show that heterogeneity in macroeconomic expectations is associated with individuals' socioeconomic status (SES), measured by income and education. Our empirical analysis is motivated by experimental evidence. Kuhnen and Miu (2017) find that experimental subjects coming from low-SES backgrounds are more pessimistic about the payoff distributions of risky assets relative to high-SES subjects. Moreover, this gap in expectations between low and high-SES individuals' beliefs arises after good news about the payoff distribution is revealed in the experiment, but not after bad news. We build on this experimental work by analyzing the relationship between people's SES and their degree of optimism about the macroeconomy, as well as the dynamics of beliefs over the business cycle. We use monthly data spanning almost four decades from the Michigan Survey of Consumers (MSC). To guide the empirical analysis, we propose a variant of the local thinking framework of Gennaioli and Shleifer (2010) that reproduces the experimental evidence we build on. As in Gennaioli, Shleifer, and Vishny (2012) we assume that a local thinker neglects states of the world that she does not view as representative. In line with the experimental evidence, we hypothesize that personal economic circumstances influence which states—good or bad ones—people view as representative. This yields a pessimism bias for people with low SES. Moreover, again in line with the experimental evidence, we hypothesize that low-SES individuals are more prone to local thinking than high-SES individuals. We show that this leads to a pro-cyclical wedge in beliefs between high and ¹See Kuhnen and Miu (2017) for references to psychology and neuroscience literature that supports this hypothesis. low-SES individuals: the relative pessimism of low-SES individuals is most pronounced following good macroeconomic news. We start by examining SES-related unconditional heterogeneity in expectations regarding future stock market returns, the national unemployment rate, and general business conditions. We find that within virtually every month during our almost four-decade sample, for each one of those expectations measures, and for both income rank within year-age groups and education as SES measures, high-SES respondents in the survey are more optimistic than low-SES respondents. These differences in beliefs are substantial, even after controlling for other demographic characteristics, age effects, and time fixed effects. For example, moving from the bottom to the top income quintile implies a change in macroeconomic optimism that is about the same magnitude as a third of a typical peak-to-trough movement over the business cycle in the monthly average beliefs in the Michigan Survey. Having a college degree corresponds to a belief difference of about 6% of a typical peak-to-trough movement. We then turn to the business-cycle dynamics of the beliefs wedge between high and low-SES people. We show that the wedge is pro-cyclical. During recessions the macroeconomic expectations of high and low-SES individuals are quite similar, but the wedge widens substantially in times of good macroeconomic performance. Thus, there is a remarkable consistency in the behavior of the beliefs wedge in our long sample of survey data and in the experimental evidence that motivates our analysis. Furthermore, the variant of the local thinking model we have set up was based on the assumption that low-SES individuals are more prone to local thinking shaped by personal economic circumstances than high-SES individuals. This implies that high-SES individuals should make forecasts that are, on average, closer to an objective forecast than low-SES individuals. We test this implication by comparing the macroeconomic expectations from the MSC with matched forecasts from the Survey of Professional Forecasters (SPF) and, for beliefs about future stock returns in the MSC, with long-run historical realizations of stock market index returns. Based on these proxies for objective forecasts, we find that forecasts of high-SES individuals are, indeed, less biased based than those of low-SES individuals. Having established the basic facts about the unconditional and the dynamic properties of SESrelated heterogeneity in macroeconomic expectations, we examine in more detail the mechanism that leads to the correlation between SES and macroeconomic beliefs. A potential alternative theory to our baseline hypothesis of a causal effect of SES on macroeconomic expectations is that that there is an underlying fixed personal characteristic—e.g., vulnerability to depression—that causes both general pessimism as well as poor economic choices that lead to low SES (see, e.g., Puri and Robinson (2007)). Relatedly, one could worry about reverse causality where pessimism causes economic choices that subsequently lead to low SES. However, using the panel sub-sample of the MSC in which respondents are re-interviewed once after six months we can difference out unobserved fixed personal characteristics. Doing so, we still find a strong positive relationship between changes in income and changes in macroeconomic optimism. These differenced results also make clear that a reverse causality story is unlikely to explain our results because a potentially plausible effect of beliefs changes on SES changes would take much longer than a few months to materialize. Furthermore, using the full MSC sample, we find that respondents who report a recent positive change in their personal financial situation or receipt of good economic news, as well as those who reside in geographic areas with positive recent changes in economic conditions have more optimistic macroeconomic beliefs. These proxies for experienced changes absorb part of the explanatory power of the SES level variables. Taken together, all of these results indicate that macroeconomic beliefs are responsive to recent changes in individuals' perceived economic circumstances, which does not fit well with fixed effects or reverse causality stories. As a final step in our analysis, we show that differences in beliefs associated with individuals' socioeconomic standing help explain their economic behavior. Since the MSC offers data on beliefs about macroeconomic conditions, as well as information about respondents' actual or intended choices, such as stock market investment decisions and attitudes towards purchasing homes, durables or cars, we can quantify the effect of SES through the beliefs channel on these choices. We find that, while SES measures like income or education on their own directly predict the interest in investing in stocks, or buying homes, durables, or cars, there exist indirect effects of income and education through the belief channel that account for a significant fraction of the total effect of the SES variables on these decisions—for example, close to 25% in the case of home buying attitudes. We also specifically analyze stock market investment decisions and beliefs regarding stock returns in particular, and show that SES-induced beliefs account for a significant fraction, up to 47%, of the total effect of the SES variables, namely, income and education, on the decision to invest, and on the share of income invested in equities. Therefore, the results in this paper can help shed light on the empirical pattern documented
by Vissing-Jorgensen (2003), Campbell (2006) and Calvet, Campbell, and Sodini (2007) that households with lower education, income or wealth are substantially less likely to participate in the stock market. The causes of non-participation are still unclear. Standard explanations involve participation costs (Vissing-Jorgensen (2002)), but they still appear to leave a substantial part of the non-participation unexplained (Andersen and Nielsen (2011)). Our findings indicate that beliefs could be part of the explanation for why some individuals do not participate: whatever the actual cost or perceived cost of participation, pessimistic expectations lead to lower perceived benefits from participation and hence to low rates of participation of low-SES individuals. Stock market non-participation can imply welfare losses for households, as discussed in Calvet, Campbell, and Sodini (2007). Thus, low macroeconomic expectations can have welfare consequence for low-SES individuals. Moreover, non-participation of low-SES households could result in heterogeneity in wealth returns that is correlated with the level of wealth, which in turn plays a role in generating wealth inequality (Favilukis (2013), Gabaix, Lasry, Lions, and Moll (2016)). By limiting their investment opportunity set, the pessimistic low-SES households may perpetuate their disadvantaged financial position. Pessimistic expectations about future business conditions or unemployment could further induce individuals from low-SES backgrounds to have low levels of investments along other dimensions also, such as pursuing higher education, better health, or starting a new business. While there is no direct evidence for this implication of our work, existing relevant findings seem to support it. For example, Kearney and Levine (2016) document that children from lower SES families are more likely to drop out of high school, relative to their better-off peers, and attribute this to more pessimistic subjective estimates of the likelihood of economic success among lower SES individuals. In this sense, our results also connect to the theory of Piketty (1995) in which individuals draw on the personal economic experience of their family dynasties to form beliefs about the returns to effort in the economy. Our work on macroeconomic expectations builds on earlier work that is focused on stock return beliefs. Kezdi and Willis (2011) document links between income and education and stock market return beliefs using a sample of 55- to 64-year olds from the Health and Retirement Study. Their estimation is based on a single survey wave from 2002. Kuhnen and Miu (2017) complement their experimental work with evidence on SES-related stock return beliefs heterogeneity based on a single Qualtrics survey cross-section. Our finding in this paper that SES-related beliefs heterogeneity is subject to strong business cycle dynamics—with the beliefs wedge between high and low-SES individuals almost disappearing during recessions—highlights that it is important to study samples with a much longer time dimension. Moreover, we show that SES variables are related to macroeconomic expectations more generally, not just stock return expectations. Our work is further related to an emerging literature showing that individuals' macroeconomic expectations are influenced by personal circumstances that are specific to an individual or a group of people. While our focus is on an individual's current economic situation, which is strongly influenced by a person's history of idiosyncratic shocks and initial conditions, earlier work has found links between the macroeconomic history that individuals of a given cohort have experienced, and their expectations and investment decisions. Individuals in cohorts that experienced bad macroeconomic conditions subsequently avoid risky financial choices, either as investors (Malmendier and Nagel (2011)) or as managers (Malmendier and Tate (2005), Malmendier, Tate, and Yan (2011)). Evidence in support of this belief channel is provided by Malmendier and Nagel (2015), who find that differences in inflation experiences across cohorts strongly predict differences in the expectations of these cohorts regarding future inflation levels. Experimental evidence in Kuhnen (2015) shows that individuals faced with sequences of negative payoffs form overly pessimistic beliefs about the quality of the available investments. Kuchler and Zafar (2016) show that individuals' expectations about national U.S. house prices depend on their personally experienced house price history in their local geographic area, and expectations about the national unemployment rate are influenced by personal experiences of unemployment.² A common thread in these studies is that expectations about a macroeconomic variable (e.g., house prices) are related to personal experiences of the realized cohort-specific or geographically local history of the *same* variable. In contrast, the effect that we study is one where a person's own economic situation is correlated with a broad range of *macroeconomic* expectations. ### 2 Socioeconomic Status and Macroeconomic Beliefs Our empirical work is motivated by the experimental evidence in Kuhnen and Miu (2017). To set the stage for the empirical analysis, we illustrate the key ideas with a simple model based on the "local thinking" framework of Gennaioli and Shleifer (2010) and Gennaioli, Shleifer, and Vishny (2012). The model allows us to draw connections between heterogeneity in macroeconomic beliefs, the experimental evidence, and the notion that personal experiences influence the formation of expectations, as in Malmendier and Nagel (2011) and other recent work. Let the trinomial random variable $\omega_t \in \{-1,0,1\}$ represent the current latent state of the macroeconomy. For simplicity, we assume that ω_t is IID. Every period t, individuals observe a signal $s_t \in \{0,1\}$ about the current latent state. This signal is IID over time conditional on ω_t and the distribution of s_t conditional on ω_t is shown in the following table: $$s_t = 0$$ $s_t = 1$ $$\omega_t = 1$$ $1-\pi$ π $$\omega_t = 0$$ $1/2$ $1/2$ $$\omega_t = -1$$ π $1-\pi$ We assume $1/2 \le \pi \le 1$. With $\pi = 1/2$, the signal is completely uninformative, with $\pi = 1$ it reaches its maximum informativeness (but is not perfectly informative about the state). From this table, it is straightforward to derive the probabilities of the state conditional on the signal. ²Amonlirdviman (2007) documents that people with low income or education are more pessimistic about their own personal situation, and presents a model where these individuals suffer from low self-control, and the optimal response to self-control problems is to become defensively pessimistic about one's future prospects. A rational individual would then estimate the state as $$E[\omega_t|s_t = 1] = \frac{4}{3}\pi - \frac{2}{3},$$ $$E[\omega_t|s_t = 0] = \frac{2}{3} - \frac{4}{3}\pi$$ (1) Now consider a local thinker. In Gennaioli and Shleifer (2010), an agent combines data received from the external world with information retrieved from memory to evaluate a hypothesis, with limited and selected recall of information. People can only envision a limited number of scenarios, and those that do come to mind are more representative, or stereotypical, for these individuals. As in Gennaioli, Shleifer, and Vishny (2012), we assume that a local thinker neglects some states of the world when forming expectations about the macroeconomy; only states that she regards as representative come to mind. Gennaioli, Shleifer, and Vishny (2015) suggest that the states that come to mind are those that are similar to recently observed data. Here we explore a variation of this idea. We analyze a local thinker whose views about the possible states of the economy are influenced by her own personal economic circumstances and experiences. The notion that individuals rely on personal experiences when forming macroeconomic expectations is related to the findings in Malmendier and Nagel (2011), but they analyze how personal macroeconomic experiences influence macroeconomic expectations. In contrast, here we study the influence of individuals' microeconomic situation on their macroeconomic expectations. Consider an individual with currently low socioeconomic status. On average, such an individual has accumulated relatively unfavorable experiences in the past. Moreover, the individual is currently in a relatively disadvantageous economic situation. We assume that these bad experiences lead the individual to ignore the possibility that the good state, $\omega_t = 1$, could arise. As a consequence, the local thinker perceives the following signal distribution: $$s_t = 0 \quad s_t = 1$$ $$\omega_t = 0 \quad 1/2 \quad 1/2$$ $$\omega_t = -1 \quad \pi \quad 1-\pi$$ The complete neglect of the good state is an extreme assumption that yields particularly stark and simple results, but this is not crucial. A skewed tilt towards worse states would result in qualitatively similar results. Given the neglect of the good state, the local thinker estimates the underlying state of the economy as follows: $$E^{P}[\omega_{t}|s_{t}=1] = -\frac{1-\pi}{3/2-\pi},$$ $$E^{P}[\omega_{t}|s_{t}=0] = -\frac{\pi}{1/2+\pi}$$ (2) Comparing (2) with (1) one can show that - the local thinker is always more pessimistic. - the wedge in beliefs between a rational individual and the low-SES local thinker is biggest following good signals, i.e., $$E^{P}[\omega_{t}|s_{t}=1] - E[\omega_{t}|s_{t}=1] < E^{P}[\omega_{t}|s_{t}=0] - E[\omega_{t}|s_{t}=0].$$ (3) The intuition for the second result is that the size of the wedge depends on the importance (in terms of probability) of the neglected state. Following a bad signal, the neglected good state is less likely and hence the error from neglecting it is smaller. In the extreme case, with $\pi = 1$, the error would be zero and
the local thinker would agree with a rational individual following a bad signal. Following a good signal, however, the good state is important and neglect of this state induces a big error. In line with these predictions, we conduct our empirical analysis of macroeconomic expectations in two steps: 1. We examine whether socioeconomic status is unconditionally related to individuals' relative optimism in macroeconomic expectations. In doing so, we look for the empirical counterpart—in terms of macroeconomic expectations—to the experimental evidence in Kuhnen and Miu (2017) that low-SES people are more pessimistic. 2. We explore whether low-SES individuals are more prone to local thinking of the type we sketched above. If low-SES individuals are more prone to local thinking than high-SES individuals, we should find, according to (3), a pro-cyclical beliefs wedge between high- and low-SES individuals' expectations. A time-varying wedge of this kind would be consistent with experimental evidence in Kuhnen and Miu (2017) that low-SES people update their beliefs asymmetrically in response to news. Faced with good news, they update their beliefs less than high-SES people do. In contrast, faced with bad news, high and low-SES people updated in a similar way. Moreover, we should then also find that the expectations of high-SES individuals are, on average, less biased than those of low-SES individuals. We examine both of these predictions. An alternative model based on ambiguity aversion could potentially produce observationally equivalent predictions for individuals' economic *choices*. Ambiguity aversion induces an individual to make choices as if she were pessimistic (Hansen and Sargent (2001)) and ambiguity about signal precision can induce an asymmetric reaction to news (Epstein and Schneider (2008)). To the extent that low-SES individuals are more ambiguity averse—perhaps, along the lines of Heath and Tversky (1991), because they feel less competent than high-SES individuals in judging the macroeconomic outlook—this could explain why low-SES individuals make *choices* as if they were pessimistic. However, unlike the local thinking model above, the ambiguity aversion model does not make clear predictions for the *beliefs* that individuals report in a survey. In ambiguity aversion models, the decision-maker entertains a range of beliefs and makes decisions to maximize utility under the worst-case scenario from this range of beliefs. But this does not imply that the individual would report the beliefs associated with the worst-case scenario when asked about her expectations in a survey. Bhandari, Borovička, and Ho (2016), for example, assume so, but this is an additional assumption that does not follow from ambiguity aversion theory. ## 3 Data Our data span the period 1978-2014, at a monthly frequency. Each month, approximately 400 individuals are recruited for the Michigan Survey of Consumers, and are asked to express their beliefs about future values of several macroeconomic variables. The survey is based on a nationally representative group of respondents, sampled using landline and cellular phone numbers (Curtin and Dechaux (2015)). In our analysis, we weight observations with the household sample weights provided by the MSC. These sample weights adjust, among other things, for differential non-response by demographic characteristics.³ Table 1: Data Definitions | Variable | Description | Source | Values | |----------|--|---|---| | PSTK | Percent Chance of
Invest Increase 1
Year | % Chance of investment increase in 1 year: What do you think is the percent chance that a one thousand dollar investment in a diversified stock mutual fund will increase in value in the year ahead, so that it is worth more than one thousand dollars one year from now? | 0 - 100%. Only available during 2002-2014. | | BEXP | Economy Bet-
ter/Worse Next
Year | And how about a year from
now, do you expect that in the
country as a whole business
conditions will be better, or
worse than they are at present,
or just about the same? | Better a year from
now
About the same
Worse a year from
now | | BUS12 | Economy
Good/Bad Next
12 Months | Now turning to business conditions in the country as a whole—do you think that during the next 12 months we'll have good times financially, or bad times, or what? | Good times Good with qualifications Pro-con Bad with qualifications Bad times | Continued on next page... ³Curtin, Presser, and Singer (2002) investigate the role of survey non-response on expectations collected by the MSC, and find that demographic characteristics, including income and education, do not have sizeable effects on the probability of agreeing to be part of the survey. Moreover, the authors find no evidence that the likelihood of participating in the survey is a function of the respondents' macroeconomic optimism. ... table 1 continued | Variable | Description | Source | Values | |--|---|---|---| | BUS5 | Economy
Good/Bad Next 5
Years | Looking ahead, which would
you say is more likely – that
in the country as a whole we'll
have continuous good times
during the next 5 years or so,
or that we will have periods of
widespread unemployment or
depression, or what? | Good times Good with qualifications Pro-con Bad with qualifications Bad times | | UNEMP | Unemployment
More/Less Next
Year | How about people out of work
during the coming 12 months
–do you think that there will
be more unemployment than
now, about the same, or less? | More unemployment About the same Less unemployment | | 1-Yr Change
in Personal
Finances | Personal Finances
Relative to A Year
Ago | Would you say that you are better off or worse off financially than you were a year ago? | Better now
Same
Worse now | | County unemployment County personal income | Bureau of Labor
Statistics
Bureau of Eco-
nomic Analysis | County Unemployment, Monthly County Income/Capita, Annual | V | | Invest Share | Overall amount invested in equities, relative to current annual | Do you have stock investments? Defined as ln (Amt Invested/Income), if Invest=1 | Yes
No | | HOM | income Home Buying Attitude | Generally speaking, do you think now is a good time or a bad time to buy a house? | Good
Pro-Con
Bad | | DUR | Durables Buying
Attitude | Generally speaking, do you think now is a good or a bad time for people to buy major household items? | Good
Pro-Con
Bad | | CAR | Car Buying Attitude | Speaking now of the automobile market –do you think the next 12 months or so will be a good time or a bad time to buy a vehicle, such as a car, pickup, van, or sport utility vehicle? | Good
Pro-Con
Bad | In total, there are 189,590 person-month observations in our sample. The macro belief variables we study are PSTK, BUS12, BUS5, BEXP and UNEMP. Table 1 presents the survey questions used to measure the belief variables, and the respondents' possible answers. PSTK is the respondent's subjective probability that the US stock market will have a positive return over the next 12 months. BUS12, BUS5 and BEXP measure expectations about the evolution of the overall business environment over the following 12 months or 5 years, and UNEMP measures expectations about the evolution of the national unemployment rate over the following 12 months. We rescale the belief variables except PSTK to vary between -1 to 1, and we set the sign such that higher values imply optimism. To calculate an aggregate measure of macroeconomic optimism, we standardize each of these individual beliefs, and average the standardized values. Because PSTK is only available starting in June 2002, OPTINDX is the average of four standardized beliefs (BUS12, BUS5, BEXP and UNEMP) prior to that time, and it is the average of five standardized beliefs (BUS12, BUS5, BEXP, UNEMP, and PSTK) after that month. One could be concerned with the inclusion of PSTK in our OPTINDX measure because the PSTK-related question is worded in a way that may be difficult for an average respondent to understand. Relatedly, stock market beliefs may be inherently different from other macroeconomic beliefs because investing in equities could be an unfamiliar or irrelevant topic for some households. Moreover, a data-driven weighting of the 5 belief measures in OPTINDX may be preferable instead of simply equally weighting them. In unreported results we experiment with alternative specifications of OPTINDX. In one case we exclude PSTK from our index; in another, we use the first principal component weights to construct our OPTINDX. We find that these alternative constructions of the OPTINDX measure yield qualitatively similar results, both in terms of point estimates and significance in our main regressions. We choose income and education as indicators of the socioeconomic status of households. We restrict our analysis to individuals 24- to 75-years old, because income or college degree completion may not be meaningful SES measures for very old or very young adults. Next we create percentiles of real income (in 2014 dollars) within each year
and age group (25-29, 30-34, ... 70-74), which we then divide by 100 and label *Income rank*. Therefore, a change of one percentile implies an income Table 2: Summary Statistics Expectations data are collected monthly during 1978-2014, with the exception of PSTK (stock market expectations), which is available only during 2002-2014. | | N | Mean | Median | StdDev | Min | Max | |----------------------------------|--------|--------|--------|--------|--------|----------| | OPTINDX | 189590 | 0.008 | 0.044 | 0.733 | -1.540 | 1.771 | | PSTK | 56821 | 0.483 | 0.500 | 0.293 | 0.000 | 1.000 | | BUS12 | 173504 | -0.014 | 0.000 | 0.964 | -1.000 | 1.000 | | BUS5 | 178834 | -0.084 | -0.500 | 0.861 | -1.000 | 1.000 | | BEXP | 186249 | 0.075 | 0.000 | 0.694 | -1.000 | 1.000 | | UNEMP | 187984 | -0.195 | 0.000 | 0.694 | -1.000 | 1.000 | | Income Rank | 189590 | 0.476 | 0.47 | 0.288 | 0.01 | 1.000 | | College Degree | 189590 | 0.341 | 0.000 | 0.474 | 0.000 | 1.000 | | 1-Yr Change in Personal Finances | 189223 | 0.057 | 0.000 | 0.848 | -1.000 | 1.000 | | County Unemployment Rate | 68548 | 6.419 | 5.800 | 2.616 | 1.100 | 31.200 | | County Personal Income (Real \$) | 68563 | 43360 | 41142 | 12211 | 15119 | 139516 | | Invest | 78825 | 0.622 | 1.000 | 0.485 | 0.000 | 1.000 | | Annual income (Real \$) | 189590 | 69926 | 57591 | 61256 | 1.6 | 1041090 | | Amt Inv(Real \$) | 43168 | 232604 | 80654 | 605282 | 985 | 14612452 | | Log(Amt Inv(Real \$)) | 43168 | 11.207 | 11.298 | 1.591 | 6.893 | 16.497 | | Log(Inv share) | 43168 | -0.157 | -0.077 | 1.402 | -5.565 | 5.085 | | HOM | 186318 | 0.384 | 1.000 | 0.913 | -1.000 | 1.000 | | DUR | 180019 | 0.466 | 1.000 | 0.858 | -1.000 | 1.000 | | CAR | 180065 | 0.307 | 1.000 | 0.936 | -1.000 | 1.000 | rank change of 0.01. We use this as one the socioeconomic status variables because relative income compared to peers may matter more than dollar income, but we obtain broadly similar effects if we use dollar income rather than income rank. *College Degree* is a binary variable which takes value 1 if the respondent has at least a college degree. To measure recent changes in an individual's personal economic situation, we use the variable 1-yr Change in Personal Situation, provided in the Michigan survey for each respondent, which takes values -1, 0 or 1 if the individual reports being worse off, the same, or better-off than a year ago, in terms of their personal finances. For a more objective measure of changes in the individual's economic environment, we use data from the Bureau of Labor Statistics on the unemployment level and data on per-capita income from Bureau of Economic Analysis of the county where the respondent resides.⁴ ⁴Because the county of residence is not publicly available in the Michigan survey, we had the county-level infor- Table 2 presents summary statistics for the variables that capture the personal economic situation, beliefs, and household economic choices of the individuals in the sample. In our data, 34.1% of people have completed at least a college degree. The median real household income (in 2014 dollars) of the participants in the survey is \$57,591, but there are clear outliers in the income distribution, as can be seen in Table 2. The average value for the overall amount a person has invested in equities as of the time of the survey is about 85% of the annual income of that individual. Given the construction of the aggregate belief measure OPTINDX as a mean of standardized variables, in our sample spanning 1978-2014 the average OPTINDX is close to zero. The average estimates for BUS12 and BUS5, which are beliefs regarding whether there will be good or bad economic times over the next 12 months or 5 year, are -0.014 and -0.084, respectively. Given that the scale for these two variables spans -1 to 1, these averages indicate that expectations about future economic times have not been overly pessimistic or overly optimistic during the 37 years studied here. The same holds true for BEXP, the belief regarding general business conditions over the next year, whose average in the sample is 0.075. The belief regarding whether unemployment will be lower or higher over the next year, UNEMP, has the most negative sample average, -0.195, indicating that survey participants were the most pessimistic about this particular aspect of future economic conditions. During 2002-2014, the time frame for which this measure is available, the average estimate of PSTK, the probability that the U.S. stock market would have a positive return in the next 12 months, is 48.3%, with a standard deviation of 29.3%. We also use several variables that capture the individuals' decisions regarding stock market investments, namely whether they invest in equity (Invest), as well as the share of income invested in the stock market $(Invest\ Share)$, and their attitudes at the time of the survey towards buying a home (HOM), buying durables (DUR) or cars (CAR). About 62% of individuals in our sample participate in the stock market, and on average responses regarding whether it is a good time to purchase a home, durables or cars are positive. For example, the variable HOM, which can take mation merged in by the staff who oversee this survey, but the resulting dataset that we can use does not have the actual county identifiers. The county level data could only be merged in for MSC observations during 2000-2014. The merging is done such that the county unemployment level is as of the month preceding the survey and the county per-capita income is as of the year preceding the survey. This is done to reflect the most current information available to the respondents. values of -1, 0 or 1, indicating either negative, neutral or positive attitudes towards buying a home, has an average of 0.384, and thus is more tilted towards the positive end of the response scale. ## 4 Expectations Heterogeneity by Socioeconomic Status #### 4.1 Beliefs and SES We start by examining differences in macroeconomic expectations by SES, measured along the dimensions of income and education. Figure 1 plots the monthly average values of our optimism index, OPTINDX, for individuals in the highest and lowest income quintiles (in their respective age groups) from 1978 to 2014. The figure shows that there is a remarkably persistent wedge in beliefs between high- and low-SES individuals: In almost every month during the sample period, individuals with higher income or higher education had more optimistic macroeconomic expectations. Moreover, the disagreement between households of different SES is pro-cyclical. During recessions, it shrinks to close to zero. This pro-cyclicality of the wedge is consistent with the prediction we discussed in Section 2 for the case in which low-SES individuals are more prone of local thinking based on extrapolation from personal economic circumstances than high-SES individuals. Among the different macroeconomic expectations variables, we are particularly interested in beliefs about future stock market returns, as we have the most direct measures of closely related economic decisions—stock market investments—for this type of belief. Figure 2 plots the monthly averages of PSTK, individuals' stated probability that the US stock market will have a positive return over the following 12 months, for high- and low-SES groups. As the figure shows, the time series of the PSTK beliefs wedge looks very similar to the wedge in OPTINDX that we examined earlier: High-SES individuals are more optimistic than low-SES individuals in virtually every month throughout the whole sample in which PSTK is available and the wedge is pro-cyclical. In the Appendix, we document that there exists an SES-induced wedge in beliefs for each component of the optimism index OPTINDX (in addition to PSTK), namely, BUS5, BUS12, BEXP and UNEMP, and that recessions lead to a lower SES-related gap for each of these types Figure 1: Macroeconomic optimism during 1978-2014 by SES level. Monthly data. Income quintiles are defined within year-age groups. Shaded areas represent NBER recession periods. Figure 2: Stock market expectations during 2002-2014 by SES level. Expectations refer to individuals' stated probability that the US stock market will have a positive return over the following 12 months. Monthly data. Income quintiles are defined within year-age groups. Shaded areas represent NBER recession periods. Table 3: Macroeconomic Expectations, Socioeconomic Status, and the Business Cycle The table presents OLS regressions with macroeconomic expectations as the dependent variable (where higher values indicate optimism). OPTINDX: Overall macroeconomic optimism index; PSTK: Probability of stock market gain in next 1 year; BUS12: Financially good times in next 12 months; BUS5: Financially good times in next 5 years; BEXP: Overall business environment in next 1 year; UNEMP: Unemployment increase/decrease in next 1 year. Controls include dummies for year-month, age, gender, and marital status. Standard errors are clustered by year-month, and t-statistics are shown in parentheses. | | OPTINDX | PSTK | BUS12 | BUS5 | BEXP | UNEMP | |-----------------------------------|---------|---------|---------|---------|---------|---------| | | | | | | | | | Income Rank | 0.304 | 0.164 | 0.317 | 0.392 | 0.133 | 0.141 | | | (30.06) | (28.02) | (23.87) | (34.85) | (14.31) | (13.76) | | College Degree | 0.058 | 0.072 | 0.021 | 0.083 | 0.019 | 0.029 | | | (10.42) | (23.75) | (3.34) | (14.93) | (3.76) | (5.53) | | Recession × Income Rank | -0.076 | -0.053 | -0.242 | -0.067 | 0.094 | -0.110 | | | (-2.57) | (-2.58) | (-7.21) | (-2.28) | (3.00) | (-3.53) | | Recession \times College Degree | -0.039 | -0.016 | -0.067 | -0.025 | 0.012 | -0.054 | | | (-3.16) | (-2.25) | (-4.44) | (-1.77) | (0.90) | (-4.69) | | Observations | 188614 | 56747 | 172646 | 177951 | 185310 | 187032 | | Adjusted R^2 | 0.115 | 0.114 | 0.136 | 0.082 | 0.052 | 0.071 | of macroeconomic expectations. Table 3
presents these results more formally in terms of a regression. Dependent variables in the models in the table are measures of macroeconomic expectations: the aggregate optimism measure OPTINDX in the first column, and its separate components in the following five columns. Independent variables include the person's income rank as a percentile (defined with respect to the person's year-age group), an indicator for whether the person has a college degree or higher education, and interactions of an NBER recession indicator with the two SES measures. All the regressions in the paper also include fixed effects for the year-month of the survey, as well as indicators for the respondents' age, gender, and marital status. The standard errors are clustered by time, specifically by year-month. In line with the patterns seen in the figures, Table 3 shows that people's SES characteristics are highly significant predictors of their beliefs regarding future macroeconomic conditions (*PSTK*, BUS12, BUS5, BEXP, UNEMP), as well as of their aggregate optimism index OPTINDX. For each of our five measures of beliefs, we find that having a higher income rank among people in the same age category and in the same year, and having a college degree are significant predictors of the level of optimism in the respondents' expectations. When the dependent variable captures expectations about future stock market returns (PSTK), we find that during non-recession months, for an increase from the bottom to the top most rank of respondents' income, the probability they estimate for the U.S. stock market to have a positive return over the next year increases by 16.4%. People with at least a college degree, on average believe that the probability of positive stock market return is 7.2% higher than people without a college education. Similarly, we find that during non-recession months, those with higher SES have significantly more optimistic expectations for BUS12, BUS5, BEXP, UNEMP and have higher values for the overall belief measure OPTINDX. For example, an increase of a person's income rank from bottom to top most rank leads to an average increase of 0.304 in OPTINDX. In other words, a change of 20 percentile (or, 1 quintile) in income rank leads to and increase of 0.304x0.2= 0.06 in OPTINDX. Having a college degree has a similar effect, as it leads to an increase in OPTINDX of 0.058. All of these effects are statistically significant at p < 0.05 or better. Judging economic significance is not quite straightforward as the survey-based beliefs measures we use as dependent variables have quite substantial measurement noise, including occasionally non-sensical outliers. One way to gauge the economic significance is to compare the cross-sectional variation related to the SES variables with typical business cycle time-variation in the macroeconomic belief variables. Based on Figure 1 we can see that OPTINDX averaged across high and low income moves, at the most extreme, by about one unit from peak-to-trough during the business cycle. In comparison, focusing on non-recession months (i.e., ignoring the interaction term for now) the regression results in Table 3 imply that moving from the bottom percentile of the income distribution to the top percentile changes OPTINDX by a third, i.e., by about a third of the peak-to-trough movement in OPTINDX. Having a college degree implies a change of about 6% of peak-to-trough OPTINDX. For PSTK, the typical peak-to-through movement in Figure 2 is about 0.30, and so a change from the lowest to the highest income percentile implies a change in PSTK of a little more than half this amount. A change in the college education status implies a change in PSTK of about a quarter of the peak-to-trough movement. This comparison to business-cycle variation shows that the SES-related heterogeneity in expectations is substantial and economically significant. The regression results in Table 3 further show that the size of the beliefs wedge between high- and low-SES individuals is state-dependent. Consistent with Figures 1 and 2, the coefficient estimates on the interaction terms of the NBER recession indicator and either SES measure show that the SES-related wedge in expectations is significantly smaller during recessions. In the case of education, the effect of a college degree on OPTINDX is two thirds smaller during recessions (instead of 0.058, it is 0.058-0.039, or 0.019). The effect of income percentile rank is a quarter smaller (instead of 0.304 it is 0.304-0.076, or 0.228) during recessions, although Figure 1 shows that the wedge even completely disappeared between the lowest and highest income quintiles for a few months during the last three recessions. Our analysis so far has documented two broad empirical patterns: first, lower SES people hold more pessimistic macroeconomic beliefs, and second, during recessions the difference in macroeconomic beliefs between those with high and low SES diminishes considerably. These findings are consistent with the simple model we sketched in Section 2 in which individuals are prone local thinking shaped by their own personal circumstances and experiences and in which this tendency for local thinking is particularly strong for low-SES individuals. #### 4.2 Heterogeneity in forecast bias An additional implication of the specific local thinking framework we set up on in Section 2 is that high-SES individuals' forecasts should, on average, be closer to the "truth." We now examine this prediction. This is not quite a straightforward exercise, though. First, it is not clear what the "truth"—i.e., the rational forecast—is. With learning about parameters and model uncertainty, we, as econometricians, do not have knowledge of the true model of macroeconomic dynamics. We deal with this issue by taking the median from the Survey of Professional Forecasters (SPF) as our benchmark forecasts. These are arguably among the most sophisticated macroeconomic forecasts available.⁵ The SPF does not have one-year stock market return forecasts, so we need a different benchmark for PSTK. We assume that stock returns are close to unpredictable, and so we use an estimate of the unconditional probability of a positive 12-month stock market returns as benchmark. We estimate it based on the fraction of positive 12-month returns (using overlapping monthly windows) of the CRSP value-weighted index since 1926. Second, for some of the expectations variables in the Michigan Survey, there is no directly corresponding forecast in the SPF. We deal with this issue as follows: - UNEMP can be matched with the unemployment forecast in the SPF. Since the Michigan Survey asks about the change in unemployment over the next 12 months, we compare it with the difference between the three-quarter ahead forecast, t + 3 of the level of unemployment, and the end of prior quarter t 1 "nowcast". - For the three business conditions variables in the Michigan Survey, BEXP is the one that is closest to a change in real GDP so we match BEXP with RGDP forecasts in the SPF. BEXP is based on the question "And how about a year from now, do you expect that in the country as a whole business conditions will be better, or worse than they are at present, or just about the same?" (see Table 1). It seems reasonable to think of good business conditions as a high RGDP growth rate and bad business conditions as a low RGDP growth rate, similar to typical classifications into recessions and non-recession periods. Therefore, we calculate a change in the forecasted growth rate of RGDP. Since the SPF contains RGDP level forecasts, we calculate the average forecasted change in log GDP over the four quarters from the end of the current quarter t to quarter t+4 and we subtract the change from the end of the prior quarter, t-1 to t. ⁵Carroll (2003) compares the time series of mean inflation forecasts from the SPF and the Michigan Survey with subsequently realized inflation and finds that the SPF forecast has a much smaller mean-squared error than the Michigan forecast. Croushore (1998) cannot reject unbiasedness of the mean SPF forecast and Mankiw, Reis, and Wolfers (2003) cannot reject unbiasedness of the median forecast. ⁶Using the prior quarter rate from the SPF rather than from published unemployment series avoids the problem that current versions of the unemployment series have been revised ex-post and do not represent information that was available in real time. PSTK is matched to a benchmark computed from realized stock returns as explained above. The third issue is that the UNEMP and BEXP in the Michigan Survey of Consumers are categorical and hence do not directly map into the continuous SPF unemployment and RGDP forecasts. To make them comparable, we discretize the SPF forecast based on the assumption that any forecasted change in the unemployment rate or the RGDP growth rate within one standard deviation (calculated over the full sample since 1978) above or below zero corresponds to the "Same" category for BEXP and UNEMP, while a change above or below corresponds to better or worse conditions for BEXP and more or less unemployment for UNEMP. Finally, the SPF is conducted only quarterly, while the Michigan Survey is monthly. The SPF is carried out in the middle month each quarter. We match the first two Michigan Survey months each quarter with the SPF from the prior quarter and the Michigan Survey wave from the third month each quarter to the SPF from the same quarter. Thus, the Michigan Survey is lagged somewhat relative to the SPF. This seems reasonable, as professionals are presumably faster in noticing and reacting to very recent information.⁷ Based on these definitions, we now calculate each month a forecast bias by subtracting from PSTK, BEXP, and UNEMP, the corresponding value of the professional forecast. We then average these forecast biases for each (within age group-year) income percentile over the whole sample period. The results are
presented in Figure 3. The plots also include a local linear regression fitted based on those income percentile averages. The top panel shows that forecasts of individuals in all income ranks are, on average, too pessimistic relative to historical stock market performance. But beliefs of high-income individuals are closest to the historical frequencies. The middle panel presents the average forecast bias for RGDP. In this case, high-income individuals have forecasts that are on average unbiased while low-income individuals are too pessimistic. The bottom panel shows that high-income individuals are close to getting the unemployment forecast right on average, while low-income individuals forecast an unemployment rate that is too high, i.e., they are again too pessimistic. In summary, the forecast bias results are consistent with the local thinking framework we set ⁷For evidence on this, see Carroll (2003). Figure 3: Average forecast bias by income percentile Table 4: Changes in Macroeconomic Expectations and Changes in Socioeconomic Status: Evidence from the Panel Sub-Sample The table presents OLS regressions where the dependent variable is the within-individual change in a specific macroeconomic expectation and the independent variable of interest is the the within-individual change in income rank. Changes are calculated over six-month intervals between the two interview dates of the Michigan Survey panel sub-sample. The regression includes dummies for year-month. Standard errors are clustered by year-month, and t-statistics are shown in parentheses. | | OPTINDX | PSTK | BUS12 | BUS5 | BEXP | UNEMP | |--------------------|---------|--------|--------|--------|--------|--------| | Income Rank change | 0.0719 | 0.0589 | 0.0398 | 0.0622 | 0.0381 | 0.0711 | | | (3.36) | (3.07) | (1.21) | (2.16) | (1.58) | (2.83) | | | | | | | | | | Observations | 67287 | 20896 | 57398 | 60807 | 65325 | 66397 | | Adjusted R^2 | 0.063 | 0.021 | 0.056 | 0.018 | 0.028 | 0.033 | up on in Section 2. Specifically, the fact that higher-income individuals' forecasts are closer to the "truth" is consistent with the notion that they are less prone to local thinking and extrapolation from their own personal circumstances and experiences than low-income individuals. #### 4.3 Inspecting the mechanism So far we have looked for a relationship between the *level* of SES and macroeconomic expectations. Our local thinking hypothesis implies a causal effect of SES on beliefs. However, the correlation between SES and expectations in levels could potentially be explained by alternative theories as well. One potential alternative theory is that there is an underlying fixed personal characteristic—e.g., vulnerability to depression—that causes both general pessimism as well as poor economic choices that lead to low SES. Puri and Robinson (2007), for example, study the economic effects of dispositional optimism. This type of theory would imply an unobserved person fixed effect. To address this issue, we use the panel sub-sample of the MSC. While most of the MSC sample consists of newly sampled respondents each month, a random sub-sample of them are re-interviewed once six months after the initial interview. We can use this panel structure to difference out unobserved fixed effects by looking at the relationship between changes in beliefs and changes in SES. Specifically, we use this panel dimension to re-run a version of the baseline regressions in Table 3 with the dependent variable (expectations) and explanatory variable (income rank) differenced over the six-month window between the initial interview and the re-interview. As Table 4 shows, with the change in OPTINDX as the dependent variable, we still obtain a positive coefficient that is statistically significant. In terms of magnitude, it is about one-fourth of the coefficient in the levels regression in Table 3, indicating that the change in personal income rank over a short period of six months accounts for a substantial portion of the levels effect that we identified in Table 3. Given that measurement noise in SES is magnified when regressions are run with short-run differences, this is a large effect. Thus, the fixed effects alternative mechanism is at best a partial explanation of the SES-expectations relationship. The regressions with the individual components of OPTINDX in the other columns on Table 4 all have positive coefficients on the income rank change and the difference from zero is statistically significant only for three out of the five variables. These differenced results also address a potential reverse causality story for our findings. Pessimistic beliefs could perhaps directly cause poor economic choices (e.g., portfolio and human capital investment decisions) that affect the SES measures that we use as explanatory variables in our baseline regressions. However, given the differenced panel regression results, this type of story seems a highly implausible explanation. To the extent that beliefs do affect choices, the effects of these choices on SES would presumably take much longer than six months to materialize in any significant way. Therefore, this story is an unlikely explanation for the contemporaneous correlation of belief changes and SES changes that we find in Table 4. We can use the full sample of the MSC, without relying the panel structure, to provide further evidence that recent changes in economic circumstances affect individuals' expectations. Instead of direct measures of changes in income, we have to rely, however, on respondents' statements about past changes that they recall to have experienced. The survey variable we use for this purpose is the 1-yr Change in Personal Situation, which can take the values -1, 0 or 1 to indicate whether people feel their finances have gotten worse, stayed the same, or improved in the past year. The regressions reported in Table 5 in the second column add this variable to our baseline regression. Doing so raises the R^2 substantially and it lowers the coefficients on income rank by about a third. Thus, the change in economic situation captured by the added variable absorbs part Table 5: Macroeconomic Expectations and Socioeconomic Status, controlling for Changes to Individuals' Personal Circumstances The table presents OLS regressions with the macroeconomic optimism index OPTINDX as the dependent variable. Controls include dummies for year-month, age, gender, and marital status. Standard errors are clustered by year-month, and t-statistics are shown in parentheses. | | OPTINDX | OPTINX | OPTINDX 2000-2014 | OPTINDX 2000-2014 | |--|---------|---------|-------------------|-------------------| | Income Rank | 0.304 | 0.214 | 0.347 | 0.221 | | | (30.06) | (22.61) | (22.78) | (13.69) | | College Degree | 0.058 | 0.050 | 0.112 | 0.098 | | | (10.42) | (9.34) | (13.71) | (12.35) | | ${\it Recession} \times {\it Income~Rank}$ | -0.076 | -0.057 | -0.224 | -0.191 | | | (-2.57) | (-2.01) | (-5.68) | (-5.07) | | Recession \times College Degree | -0.039 | -0.039 | -0.070 | -0.067 | | | (-3.16) | (-3.20) | (-3.71) | (-3.69) | | 1-yr Change in Personal Situation | | 0.159 | | 0.184 | | | | (49.19) | | (31.82) | | County Unemployment(%) | | | | -0.004 | | | | | | (-2.72) | | County Personal Income(Real, \$000) | | | | 0.002 | | | | | | (5.11) | | Observations | 188614 | 188252 | 68450 | 68386 | | Adjusted R^2 | 0.115 | 0.145 | 0.101 | 0.145 | of the SES level effect. While the interpretation is not as clean as in the differenced regression in Table 4, it would be difficult to explain this strong relationship between OPTINDX and recent changes in the survey respondents' personal financial situation under a personal fixed effects or reverse causality stories. Finally, our baseline regressions are potentially subject to the concern that individual-specific variation in mood could lead to spurious correlation between self-reported SES measures and reported macroeconomic beliefs. For example, someone who is depressed at the time of the interview might report a pessimistic expectation and, at the same time, provide the interviewer with an underestimate of her income. As a consequence, there could be a spurious positive correlation between income rank and macroeconomic expectation. Our results already indicate to some extent that this story is unlikely to be important since education, in addition to income rank, also plays an important role in shaping expectations. While underestimation of income rank by an individual in a depressed state may be plausible, underreporting of the own education level does not seem plausible. Nonetheless, a concern about spurious correlation of beliefs and income could remain. To address this concern, we add local economic condition variables to the regression that are based on official economic statistics rather than on self-reports by survey respondents. Specifically, we use county-level data on the unemployment rate (monthly, from the Bureau of Labor Statistics) and the level of personal income (annually, in December 2014 dollars, from the Bureau of Economic Analysis) for the 2000-2014 period.⁸ As Table 5 shows, these local economic condition variables help explain cross-sectional variation in macroeconomic beliefs. Both are statistically significant, and in terms of magnitudes a decrease of 0.5% in the local unemployment rate or an increase of \$1,000 in local income have the same effect as a one percentile increase in the personal income rank of an individual. An alternative approach (untabulated) is to use the local economic conditions variables as instruments for income rank. Instrumented in this way, income rank still enters the regression significantly. Overall, the results in this section are supportive of a causal effect of SES on beliefs. Unobserved personal fixed effects, reverse causality, and spurious correlation through correlated measurement error can at most
play a partial role, but they cannot be the main reasons for the strong empirical relationship between SES and macroeconomic expectations. # 5 Importance of SES-driven expectations for household choices The results so far indicate that a person's socioeconomic situation shapes their beliefs about future macro-level economic conditions, such that higher SES individuals hold more optimistic beliefs about future stock returns, unemployment and business conditions. In the next step of the analysis, ⁸This merge of the MSC with county-level data cannot be done for times prior to year 2000 since the MSC does not include county identifiers before 2000. our goal is to quantify the impact of SES, specifically through its influence on beliefs, on households' economic choices. It is natural to expect that aspects of a person's SES will have a direct effect on that person's economic choices. For example, higher income individuals or those who are better educated are likely to be in a better position to invest in stocks relative to lower income individuals, perhaps because of access to retirement accounts at work, lower participation costs relative to wealth, or simply because they have money left to save after paying their bills each months. Similarly, higher SES individuals are less likely to face financial constraints and thus are more likely to consider purchasing homes, cars or durable goods. Therefore, the total effect of SES on household choices comes from two sources: (1) the direct effect of SES on these choices—for example, because higher income leads to easier access to retirement accounts, and (2) the indirect effect of SES on these choices through the belief channel—for example, because higher SES individuals hold more optimistic beliefs about the distribution of stock returns, or other macroeconomic developments. We can measure the relative importance of the direct and indirect effects of SES on people's economic choices using the analysis in Table 6. The dependent variables in columns two to six capture the respondent's investments in stocks (Invest and InvestShare) and their assessment that it is a good time to purchase homes, durables or cars (HOM, DUR, CAR). The explanatory variables include our two SES dimensions (income rank and education), as well as the person's aggregate belief about future macroeconomic conditions (OPTINDX). If beliefs were measured without error, we could use OLS estimates of the coefficients on OPTINDX in these regressions combined with the results from the regression of OPTINDX on the SES variables in the first column to calculate how much of the effect of SES on choices is direct (SES \Rightarrow Choice) and how much of it is indirect (SES \Rightarrow Macroeconomic expectations \Rightarrow Choice). There is, however, substantial measurement error in *OPTINDX*. People's willingness and ability to carefully and precisely state their expectations in a survey is arguably limited and their responses could be influenced by random mood fluctuations that are not substantial and persistent enough to have consequences for economic choices. This measurement problem is likely much more Table 6: Macroeconomic Expectations, SES, and Household Choices The table presents IV regressions with the measures of investment choices and attitudes to consumption decisions as dependent variable in the panel sub-sample. OPTINDX is instrumented with lagged OPTINDX. Invest: Indicator for investment in equities; Invest Share: Log(Amt Invested/Income); HOM: Home buying Attitude; DUR: Durables Buying Attitude; CAR: Car Buying Attitude. Controls include dummies for yearmonth, age, gender, and marital status. Standard errors are clustered by year-month, and t-statistics are shown in parentheses. | | OPTINDX | Invest | Invest Share | HOM | DUR | CAR | |----------------|---------|---------|--------------|---------|---------|---------| | Income Rank | 0.324 | 0.714 | 0.296 | 0.311 | 0.156 | 0.263 | | | (24.90) | (64.48) | (5.37) | (19.03) | (10.15) | (16.07) | | College Degree | 0.055 | 0.100 | 0.280 | 0.065 | -0.010 | 0.044 | | | (7.70) | (18.33) | (13.08) | (8.53) | (-1.32) | (5.28) | | OPTINDX | | 0.057 | 0.204 | 0.308 | 0.312 | 0.363 | | | | (9.02) | (7.59) | (27.54) | (28.70) | (31.92) | | Observations | 69593 | 32143 | 18226 | 68492 | 66511 | 66540 | | Adjusted R^2 | 0.111 | 0.287 | 0.228 | 0.181 | 0.095 | 0.084 | severe for a relatively elusive concept like expectations of "general business conditions" than for a relatively clearly defined concept like family income or education level. In this sense, including a substantially mis-measured OPTINDX along with more precisely measured SES variables in the regression could lead to a severe underestimation of the role of OPTINDX. Alternatively, rather than attenuation of the OPTINDX coefficient, this type of measurement error could also induce spurious correlation between the choice measures and OPTINDX if the mood fluctuations of the survey respondents affect the responses to the choice questions as well. To address these issues, we return to the panel sub-sample of the MSC and we use each respondent's lagged OPTINDX from the prior interview six months earlier as a instrument for current OPTINDX. This approach eliminates the effects of high-frequency mood fluctuations (e.g., due to a bad night's sleep) on survey responses. This approach is also reasonable in the sense that only persistent beliefs variation (rather than high-frequency fluctuations) should have an effect on investment decisions and consumption choices. The first stage of these regressions are reported in the Appendix in Table A1. The direct effects of the two SES measures on household choices are given by the estimated regression coefficients in the models in Table 6 for each of the two measures. As expected, we find that higher SES people are more likely to participate in the stock market, invest more money relative to their income in equities, and are more likely to believe that it is a good time to purchase homes, cars or durable goods. For example, the regression in the second column in Table 6 shows that an income rank increase from the bottom to the top most rank corresponds to 71% (p < 0.01) increase in the probability that the person invests in stocks. This is a large effect, considering that in our data, as shown in the summary statistics in Table 2, 62% of respondents invest in the stock market. Individuals with a college or higher education have a 10% (p < 0.01) higher probability of investing in stocks, compared to those less educated. Similarly, the results in the third column in Table 6 show that people with higher incomes and a college or higher education, conditional on investing in equities, have a higher amount of money, expressed as a fraction of their annual income, invested in stocks. The regression models in the last three columns in Table 6 show that, in general, both dimensions of SES are significant and positive predictors of people's assessment that it is a good time to purchase a home, or a car or durable goods. For example, having a college or higher education translates into an improvement of 0.065 (p < 0.01) in the person's attitude towards buying a home, which is sizeable, given that the mean of this variable is 0.384 in our sample. The effect of increasing one's income rank by one quintile on the attitude towards buying a home is similar in magnitude $(0.311 \times 0.2 = 0.06, p < 0.01)$ to that of having a college education. When the dependent variable captures the attitude towards buying durables, or cars, the estimated direct effects of the bottom to top income rank change are 0.156 and 0.263 respectively (both effects at p < 0.01). The only exception is that college educated people are not significantly different than those without a college degree to indicate that it is a good time to purchase durables. For car buying attitude, the direct effect of college education is an increase of 0.044 (p < 0.01) in attitude. Since in the regression models in Table 6 we control for the person's beliefs about future macroeconomic conditions, as measured by their overall optimism, OPTINDX, the above effects of SES on the person's decisions regarding investments and purchases represent the direct effects of SES on these decisions, holding fixed any indirect effects of SES through the belief channel. To measure the indirect effects of SES, and the relative importance of the direct versus the indirect effects, we follow standard methodology used in mediation analysis. The results are presented in Table 7, and show that SES changes household choices through both the direct channel and the indirect, belief-related, channel. For example, looking at the decision to invest or not in stocks (first row in Table 7), the direct effect of an increase of 100 percentile in a person's income rank is an increase of 0.714 in the probability of investing, as shown earlier in the regression analysis in Table 6. The indirect effect of the same increase in the income rank, through the belief channel, is equal to the product of two quantities: the coefficient estimate on $Income\ Rank$ in the regression model predicting the belief OPTINDX in the first column of Table 6, and the coefficient estimate on OPTINDX in the regression model from Table 6 that predicts the Invest variable. Thus, the indirect effect is $0.324 \times 0.057 = 0.0184$. The total effect of an increase from bottom to top most income rank on the probability of investing in stocks is the sum of the direct (0.714) and indirect (0.018) effects, namely 0.733. The importance of the indirect, belief-related channel, is given by the ratio of the indirect to total effect, which is equal to 2.52%. In other words, a person's income rank is a positive predictor of the decision to invest in stocks, and about 2.52% of the positive effect of income on the probability to invest is attributable to the beliefs that the person holds about
future macroeconomic conditions. The rest of the effect is attributable to other income-related factors that are not about differences in beliefs. The importance of the indirect beliefs channel is higher for other SES measures and household decisions. For example, analyzing the decision to invest in stocks, the indirect channel accounts for 3.06% of the positive effect of a college education. When analyzing the share of income invested in stocks, the indirect, belief-related channel, accounts for 18.26% of the positive effect of higher income rank, and 3.87% of the positive effect of a college education. When analyzing people's home buying attitude, the indirect, belief-related channel, accounts for 24.28% of the positive effect of higher income rank, and 20.75% of the positive effect of a college education. The indirect, belief-related channel accounts for 39.29% of the positive effect of higher income rank on attitudes Table 7: SES effects on Choices and Attitudes, Direct and Indirect through Macroeconomic Expectations | Model | Direct | Indirect | Total | Indirect/Total (%) | |-------------------------|--------|----------|-------|--------------------| | Invest: Income | 0.714 | 0.018 | 0.733 | 2.52 % | | Invest: Education | 0.100 | 0.003 | 0.103 | 3.06~% | | Invest Share: Income | 0.296 | 0.066 | 0.362 | 18.26~% | | Invest Share: Education | 0.280 | 0.011 | 0.291 | 3.87~% | | Home: Income | 0.311 | 0.100 | 0.411 | 24.28~% | | Home: Education | 0.065 | 0.017 | 0.082 | 20.75~% | | Durables: Income | 0.156 | 0.101 | 0.257 | 39.29 % | | Durables: Education | 0 | 0.017 | 0.017 | 100~% | | Car: Income | 0.263 | 0.117 | 0.381 | 30.82~% | | Car: Education | 0.044 | 0.020 | 0.064 | 31.07 % | towards durables purchases, and for 30.82% of the positive effects of either higher income rank, or higher education, on attitudes towards car purchases. Thus, the effects of SES on household choices and attitudes are in part driven by the differences in macroeconomic expectations of people with different SES.⁹ So far in the analysis we have related several decisions of individuals to their aggregate belief about future economic conditions, OPTINDX. We will now turn towards analyzing a specific aspect of these beliefs, namely, the subjective probability that the U.S. stock market return will be positive over the next year (PSTK), to understand how it relates to the respondents' decision regarding making investments in stocks. While SES-related variables such as income and participation costs impact whether a household invests in the stock market (e.g., Vissing-Jorgensen (2002)), our results so far suggest that SES-driven variation in beliefs about stock returns may also explain the variation across SES levels in terms of the decision to invest, and the fraction of income invested in stocks. We thus investigate the relative importance of the SES-related stock market belief channel, relative to that of other SES-related factors, on stock investment decisions. The results in Table 8 indicate that SES measures, as well as PSTK, are positive predictors of a ⁹An additional way to quantify the role of the SES-induced beliefs on household economic choices is to examine the contribution of these beliefs to the standard deviation of households' choices. In untabulated analyses, we find that this alternate approach leads to similar results as documented here. Table 8: Stock Market Expectations, SES, and Investment Choices The table presents IV regressions with the measures of investment choices as dependent variable in panel sub-sample. PSTK is instrumented with lagged PSTK. Invest: Indicator for investment in equities; Invest Share: Log(Amt Invested/Income). Controls include dummies for year-month, age, gender, and marital status. Standard errors are clustered by year-month, and t-statistics are shown in parentheses. | | PSTK | Invest | Invest Share | |----------------|---------|---------|--------------| | Income Rank | 0.159 | 0.625 | 0.229 | | | (17.05) | (43.10) | (3.48) | | College Degree | 0.071 | 0.064 | 0.235 | | | (15.95) | (9.89) | (8.83) | | PSTK | | 0.424 | 1.251 | | | | (14.95) | (11.00) | | Observations | 23019 | 21400 | 13500 | | Adjusted R^2 | 0.121 | 0.251 | 0.219 | person's decision to invest in equities, and conditional on investing, of the share of income invested in stocks. The relative importance of the direct effect of SES measures, and their indirect effect through expectations, is illustrated in the results in Table 9. In columns (2)-(6) in Table 8, PSTK is instrumented with 6-month prior PSTK. The first stage of these regressions are reported in the Appendix in Table A2. As expected, the results in Table 8 show that, controlling for the belief about stock market returns, our SES measures are positive and significant predictors of both the invest decision, as well as of the share of income invested in stocks. In other words, income rank, and education directly influence a household's stock market investment decisions. However, as shown in our analysis in Table 3 and in the first column in Table 8, these SES measures also impact PSTK, the belief about whether the stock market return will be positive over the next year, which by itself, as seen in Table 8, influences the households' decision whether, and how much, to invest in stocks. 10 ¹⁰A possible concern is that there is a mechanical correlation between the expectations expressed by survey respondents and their declared choices, stemming from people's desire to look "consistent" in their survey answers. Specifically, an individual who declared that he does not invest in the stock market may later express pessimistic expectations about future stock market returns, to justify to himself and the experimenter why he holds no equities. Fortunately, the survey design used by the MSC staff alleviates this concern, because people are first asked to estimate the probability that the stock market will have a positive return, and only later are asked to calculate how much Table 9: SES effects on Investment Choices, Direct and Indirect through Stock Return Expectations | Model | Direct | Indirect | Total | Indirect/Total (%) | |-------------------------|--------|----------|-------|--------------------| | Invest: Income | 0.625 | 0.068 | 0.693 | 9.76 % | | Invest: Education | 0.064 | 0.030 | 0.094 | 31.97~% | | Invest Share: Income | 0.229 | 0.200 | 0.428 | 46.56~% | | Invest Share: Education | 0.235 | 0.089 | 0.324 | 27.50~% | The coefficient estimates in Table 8 allow us to estimate the direct and indirect (via the belief channel) effects of each of the SES measures on stock market investment decisions. Specifically, increasing a person's income rank by 100 percentile increases the probability of stock market participation by 0.625, and the share of income invested by 0.229. The indirect effects of the same change in income rank on these two outcomes, through the belief channel, are obtained by multiplying the coefficient estimates on PSTK in the first column in Table 8 and those in the second, and third column, respectively. Namely, the indirect effects of increasing the income rank by 100 percentile on the probability of participation and on the share of income invested in stocks are increases of about $0.159 \times 0.424 = 0.067$ and $0.159 \times 1.251 = 0.199$, respectively. The indirect effect of higher income, though inducing more optimistic beliefs about the stock market, represents 9.76% of the total effect of income on the participation decision (= 0.625 + 0.067), and 46.56% of its total effect on the share of income invested in stocks (=0.229+0.199). When examining the effects of education on the decision to invest in stocks and on the share of income invested, we also find sizeable indirect effects of this SES measure on the two decisions. Specifically, following the same procedure described earlier for quantifying the direct and indirect effects of income rank on stock investment decisions, we find that having a college degree increases the probability of investing in stocks by 9.4%, and 31.97% of this total effect of education on participation is coming from the indirect, belief-related channel. Also, having a college or better education increases the share of income invested in stocks by 32.4% and the fraction of this total effect that is driven by the belief channel is 27.50%. These results are summarized in Table 9. Thus, we find that people who have higher incomes and are more educated are more likely to invest in stocks, and are willing to invest more of their income in these assets, and this is in part money, if any, they invest in stocks. because they hold more optimistic beliefs about the stock market return distribution. ### 6 Robustness checks, caveats and limitations In this section, we discuss several potential alternative explanations of our results and the extent to which they are addressed by our evidence. We also discuss a number of caveats and limitations that one should keep in mind in interpreting our findings. #### 6.1 Information flows It is possible that the reason why there are differences across SES strata in the expectations people form about the macroeconomy is that low- and high-SES individuals have access to different information sets, rather than having a different interpretation of the same information. While here we can not fully control for the information set available to individuals, as could be done in an experimental setting (e.g., Kuhnen and Miu (2017))), we are able to construct a proxy for the information that the survey respondents have about business conditions. Specifically, we use MSC data regarding the volume and tone of business news that survey respondents report to have heard recently to construct the variable Business News Heard. This variable takes the value of -2,-1,0,1,or 2, depending on how many business news the responded reported having heard recently (0, 1, or 2), and whether they were positive or
negative in nature (as coded by the MSC interviewer). A value of 2 means the respondent reported having heard 2 pieces of positive business news, while a value of -2 means the respondent reported having heard 2 pieces of negative business news. A value of 1 indicates the responded only reported having heard one piece of business news, and that it was positive. If the one piece of news heard was negative, the value of Business News Heard would be -1. Finally, this variable has the value 0 if either the responded did not recall hearing any business news lately, or whether one piece of news recalled was positive, and another was negative. In Table 10 we estimate OLS regressions of various macroeconomic expectations on SES measures, as in Table 3, but we also include as a control the variable *Business News Heard*, to proxy for the information available to each respondent. We find that the higher is the value of *Business* Table 10: Macroeconomic Expectations, Socioeconomic Status, and News Heard The table presents OLS regressions of macroeconomic expectations on SES measures while controlling for the business news heard by the survey respondents. The variable $Business\ News\ Heard$ takes the value of -2,-1,0,1, or 2, depending on how many business news the respondents reported having heard recently (0,1, or 2), and whether they were positive or negative. Specifically, a value of 2 means the respondent reported having heard 2 pieces of positive business news. A value of -2 means the respondent reported having heard 2 pieces of negative business news. A value of 1 indicates the responded only reported having heard one piece of business news, and that it was positive. If the one piece of news heard was negative, the value of $Business\ News\ Heard\ is\ -1$. Finally, this variable has the value 0 if either the respondent did not recall hearing any business news lately, or whether one piece of news recalled was positive, and another was negative. Other controls include dummies for year-month, age, gender, and marital status. Standard errors are clustered by year-month, and t-statistics are shown in parentheses. | | OPTINDX | PSTK | BUS12 | BUS5 | BEXP | UNEMP | |-----------------------------------|---------|---------|---------|---------|---------|---------| | Income Rank | 0.290 | 0.161 | 0.298 | 0.380 | 0.122 | 0.131 | | | (33.25) | (27.62) | (24.41) | (35.15) | (14.32) | (14.34) | | | | | | | | | | College Degree | 0.057 | 0.071 | 0.019 | 0.082 | 0.018 | 0.028 | | | (11.34) | (24.24) | (3.32) | (14.56) | (3.83) | (5.80) | | Recession × Income Rank | -0.023 | -0.041 | -0.182 | -0.025 | 0.134 | -0.072 | | recession × meome ream | (-0.85) | (-1.97) | (-5.87) | (-0.86) | (4.62) | (-2.48) | | | (-0.65) | (-1.91) | (-0.01) | (-0.60) | (4.02) | (-2.40) | | Recession \times College Degree | 0.002 | -0.007 | -0.020 | 0.008 | 0.045 | -0.024 | | | (0.17) | (-0.94) | (-1.37) | (0.50) | (3.59) | (-2.22) | | Business News Heard | 0.210 | 0.031 | 0.233 | 0.167 | 0.163 | 0.154 | | Dusiness News Heard | | | | | | | | | (76.86) | (24.67) | (68.33) | (47.93) | (58.98) | (58.77) | | Observations | 188614 | 56747 | 172646 | 177951 | 185310 | 187032 | | - | | | | | | | | Adjusted R^2 | 0.207 | 0.128 | 0.203 | 0.125 | 0.114 | 0.126 | News Heard, that is, the more positive economic news people have heard lately, the more optimistic they are when assessing future macroeconomic conditions, which is a natural result. Importantly, we continue to find that the respondents' income rank and education continue to be strong and positive drivers of their macroeconomic optimism, even after controlling for their information set as proxied by the Business News Heard variable. This suggests that our main results are not simply an indication of exposure of low- and high-SES individuals to different information sets. Table 11: Macroeconomic Expectations and Socioeconomic Status in only College educated The table presents OLS regressions with macroeconomic expectations as dependent variables on SES only within the college-educated population. Controls include dummies for year-month, age, gender, and marital status. Standard errors are clustered by year-month, and t-statistics are shown in parentheses. | | OPTINDX | PSTK | BUS12 | BUS5 | BEXP | UNEMP | |--|---------|---------|---------|---------|--------|---------| | Income Rank | 0.252 | 0.140 | 0.249 | 0.320 | 0.115 | 0.129 | | | (17.48) | (16.18) | (12.94) | (19.58) | (8.13) | (8.83) | | ${\it Recession} \times {\it Income~Rank}$ | -0.077 | -0.009 | -0.236 | -0.054 | 0.084 | -0.148 | | | (-2.00) | (-0.36) | (-4.60) | (-1.22) | (2.45) | (-3.50) | | Observations | 69448 | 25470 | 64272 | 66156 | 68405 | 69002 | | Adjusted R^2 | 0.114 | 0.088 | 0.155 | 0.074 | 0.061 | 0.098 | ## 6.2 Financial literacy Another possible concern regarding the finding that lower income individuals have more pessimistic macroeconomic expectations is that the effect is driven by a lack of financial literacy, which might induce low income people to be more confused, in a pessimistic manner, about the macroeconomy. To address this concern, in the analysis in Table 11 we estimate similar models as in Table 3, but only for people with a college degree. We continue to find a significant and positive effect (0.252, p < 0.01) of IncomeRank on people's aggregate expectations as measured by OPTINDX. This effect is similar in magnitude to that estimated in the specification in the first column in Table 3 (i.e., 0.304). In other words, even among those with high education, we find that individuals earning more money are more optimistic about future macroeconomic developments than their lower-income peers. #### 6.3 Indirectness of choice measures We also interpret the respondents' answers regarding household decisions—such as choices concerning investing in the stock market, or attitudes towards buying homes, cars and durable goods—as good proxies for these individuals' actual economic behavior. That being said, we do not have administrative data to verify these survey answers. However, there are two reasons to believe that people's survey responses are truthful. First, as shown earlier in our analysis, there is a clear relationship between respondents' expectations and their own household decisions as reported during the survey, which implies that the data on decisions can not be simply noise. This correlation between expectations and behavior is also found at the aggregate level, as shown for example in Carroll, Fuhrer, and Wilcox (1994), who document that the degree of optimism in MSC expectations is a strong positive predictor of the change over the following year in the aggregate level of personal consumption, including purchases of cars, other goods, and services. Second, the survey measures of household behavior are strong predictors of aggregate macroeconomic outcomes. For example, Cai, Deggendorf, and Wilcox (2015) find that the MSC aggregate response regarding whether it is a good time to buy a home is a strong and positive predictor of the volume of transactions in the housing market measured over the following year. In additional analyses of our own we find that the MSC respondents' monthly aggregate attitude DUR regarding purchasing durables is highly correlated (ρ =0.5, p < 0.01) with the aggregate contemporaneous monthly demand for durable goods, obtained from the FRED database of the Federal Reserve Bank of St. Louis. Similarly, we find that there is a high correlation (ρ =0.6, p < 0.01) between the MSC aggregate monthly attitude CAR towards buying cars, and the contemporaneous total car sales reported in the FRED database.¹¹ Therefore, while we can not verify for each respondent whether their household decisions are truthfully reported, at least we observe that in the aggregate, the reports of individuals in the MSC correspond to actual macroeconomic outcomes. # 7 Conclusion Using a sample of more than 180,000 responses from participants in the Michigan Survey of Consumers each month from 1978 to 2014, we show that socioeconomic status (SES) has a strong influence on individuals' beliefs about future macroeconomic conditions such as changes in unemployment, business conditions in general, and stock market performance. Specifically, we find ¹¹The durable goods demand data and the total car sales data are available on the website of the Federal Reserve Bank of St. Louis at https://fred.stlouisfed.org/series/DGORDER, and https://fred.stlouisfed.org/series/TOTALSA, respectively. For our analysis we detrend these monthly time series to account for population growth. that higher SES individuals—namely, those with higher income and higher education—are more optimistic about future macroeconomic conditions. Consistent with a model of asymmetric belief updating in which low-SES individuals have a tendency to neglect good states of the world, we find that the beliefs wedge between high- and low-SES individuals is strongly pro-cyclical: in recessions, the beliefs wedge almost disappears. This SES-related heterogeneity in macroeconomic expectations in turn has significant effects on people's economic choices. Specifically, we find that the relative macroeconomic optimism of individuals with higher SES is in part responsible for these households' higher propensity to invest in stocks or to be inclined to purchase homes, cars or durable goods. Our findings suggest that differences in macroeconomic expectations across people with different socioeconomic standing could potentially contribute to wealth inequality in the population over time, since these expectations influence household decisions such as investing in stocks or in real estate. An interesting avenue for future work is to quantify the importance of divergence in expectations across SES strata for the dynamics of the wealth distribution in the population, possibly by incorporating the SES-related belief heterogeneity
in models like those of Piketty (1995), Favilukis (2013), and Gabaix, Lasry, Lions, and Moll (2016). The implications for the wealth distribution are not quite straightforward. For example, while high-SES individuals' beliefs about stock market returns appear to be less biased on average than the more pessimistic beliefs of low-SES individuals, the fact that the optimism about stock returns of high-SES people is more pro-cyclical may imply that they mis-time the stock market, which tends to have counter-cyclical expected returns. We believe that this is a fruitful direction for future research. ## References - Amonlirdviman, K. (2007). Pessimism in household macroeconomic expectations. Working paper. - Andersen, S. and K. M. Nielsen (2011). Participation constraints in the stock market: Evidence from unexpected inheritance due to sudden death. *Review of Financial Studies* 24(5), 1667–1697. - Bhandari, A., J. Borovička, and P. Ho (2016). Identifying ambiguity shocks in business cycle models using survey data. Working Paper, National Bureau of Economic Research. - Brunnermeier, M. K., A. Simsek, and W. Xiong (2014). A welfare criterion for models with distorted beliefs. *Quarterly Journal of Economics* 129(4), 1753–1797. - Cai, Q., S. Deggendorf, and J. A. Wilcox (2015). Building a home purchase sentiment index. Fannie Mae White Paper. - Calvet, L. E., J. Y. Campbell, and P. Sodini (2007). Down or out: Assessing the welfare costs of household investment mistakes. *Journal of Political Economy* 115(5), 707–747. - Campbell, J. Y. (2006). Household finance. Journal of Finance 61(4), 1553–1604. - Carroll, C. D. (2003). Macroeconomic expectations of households and professional forecasters. **Quarterly Journal of Economics 118(1), 269–298.** - Carroll, C. D., J. C. Fuhrer, and D. W. Wilcox (1994). Does consumer sentiment forecast household spending? If so, why? *American Economic Review* 84(5), 1397–1408. - Croushore, D. (1998). Evaluating inflation forecasts. Working Paper, Federal Reserve Bank of Philadelphia. - Curtin, R. and P. Dechaux (2015). University of Michigan's Survey of Consumers: Measuring and interpreting economic expectations. Working Paper, University of Michigan. - Curtin, R., S. Presser, and E. Singer (2002). The impact of nonresponse bias on the index of consumer sentiment. *Economic Surveys and Data Analysis*, 307–323. - Dominitz, J. and C. F. Manski (2007). Expected equity returns and portfolio choice: Evidence - from the Health and Retirement Study. Journal of the European Economic Association 5 (2-3), 369–379. - Epstein, L. G. and M. Schneider (2008). Ambiguity, information quality, and asset pricing. *The Journal of Finance* 63(1), 197–228. - Favilukis, J. (2013). Inequality, stock market participation, and the equity premium. *Journal of Financial Economics* 107(3), 740–759. - Gabaix, X., J.-M. Lasry, P.-L. Lions, and B. Moll (2016). The dynamics of inequality. *Econometrica* 84(6), 2071–2111. - Geanakoplos, J. (2009). The leverage cycle. In D. Acemoglu, K. Rogoff, and M. Woodford (Eds.), NBER Macroeconomics Annual. - Gennaioli, N. and A. Shleifer (2010). What comes to mind. Quarterly Journal of Economics 125(4), 1399–1433. - Gennaioli, N., A. Shleifer, and R. Vishny (2012). Neglected risks, financial innovation, and financial fragility. *Journal of Financial Economics* 104(3), 452–468. - Gennaioli, N., A. Shleifer, and R. Vishny (2015). Neglected risks: The psychology of financial crises. *American Economic Review: Papers & Proceedings* 105(5), 310–314. - Guzman, M. M. and J. E. Stiglitz (2015). Pseudo-wealth and consumption fluctuations. Working Paper, Columbia University. - Hansen, L. P. and T. J. Sargent (2001). Robust control and model uncertainty. *American Economic Review* 91(2), 60–66. - Heath, C. and A. Tversky (1991). Preference and belief: Ambiguity and Competence in Choice under Uncertainty. *Journal of Risk and Uncertainty* 4(1), 5–28. - Kearney, M. S. and P. B. Levine (2016). Income inequality, social mobility, and the decision to drop out of high school. *Brookings Papers on Economic Activity Spring*, 333–396. - Kezdi, G. and R. J. Willis (2011). Household stock market beliefs and learning. *NBER Working Paper*. - Kuchler, T. and B. Zafar (2016). Personal experiences and expectations about aggregate outcomes. Working Paper, New York University. - Kuhnen, C. M. (2015). Asymmetric learning from financial information. *Journal of Finance* 70(5), 2029–2062. - Kuhnen, C. M. and A. C. Miu (2017). Socioeconomic status and learning from financial information. *Journal of Financial Economics* 124(2), 349–372. - Malmendier, U. and S. Nagel (2011). Depression babies: Do macroeconomic experiences affect risk-taking? *Quarterly Journal of Economics* 126, 373–416. - Malmendier, U. and S. Nagel (2015). Learning from Inflation Experiences. *Quarterly Journal of Economics*, forthcoming. - Malmendier, U. and G. Tate (2005). CEO overconfidence and corporate investment. *Journal of Finance* 60(6), 2661-2700. - Malmendier, U., G. Tate, and J. Yan (2011). Overconfidence and early-life experiences: The effect of managerial traits on corporate financial policies. *Journal of Finance* 66(5), 1687–1733. - Mankiw, N. G., R. Reis, and J. Wolfers (2003). Disagreement about inflation expectations. In M. Gertler and K. Rogoff (Eds.), NBER Macroeconomics Annual 2003. - Piazzesi, M. and M. Schneider (2012). Inflation and the price of real assets. Working Paper, Stanford University. - Piketty, T. (1995). Social mobility and redistributive politics. Quarterly Journal of Economics 110(3), 551–584. - Puri, M. and D. T. Robinson (2007). Optimism and economic choice. *Journal of Financial Economics* 86(1), 71–99. - Sims, C. A. (2008). Inflation expectations, uncertainty, and monetary policy. Working Paper, Princeton University. - Souleles, N. S. (2004). Expectations, heterogeneous forecast errors, and consumption: Micro evidence from the Michigan Consumer Sentiment Surveys. *Journal of Money, Credit, and* Banking 36(1), 39-72. - Vissing-Jorgensen, A. (2002). Towards an explanation of household portfolio choice heterogeneity: Nonfinancial income and participation cost structure. Working Paper, UC Berkeley. - Vissing-Jorgensen, A. (2003). Perspectives on Behavioral Finance: Does "irrationality" disappear with wealth? Evidence from expectations and actions. In *NBER Macroeconomics Annual*. ## **APPENDIX** Figure A1: UNEMP by SES, over time Figure A2: BUS12 by SES, over time Figure A3: BUS5 by SES, over time Figure A4: BEXP by SES, over time Table A1: Macroeconomic Expectations, SES, and Household Choices The table presents the first stage results for each IV regression shown in Table 6 in the main text where the dependent variable is a measure of investment choices or attitudes to consumption decisions (Invest, Invest Share, HOM, DUR, CAR), using solely the panel sub-sample, that is, observations from the same individual, acquired six months apart. The macroeconomic expectations index OPTINDX is instrumented with lagged OPTINDX. Invest: Indicator for investment in equities; Invest Share: Log(Amt Invested/Income); HOM: Home buying attitude; DUR: Durables buying attitude; CAR: Car buying attitude. Controls include dummies for year-month, age, gender, and marital status. Standard errors are clustered by year-month, and t-statistics are shown in parentheses. | | Observations | Observations | Observations | Observations | Observations | |--------------------|--------------|-----------------|--------------|--------------|--------------| | | for which | | | Invest | $Invest\ Share$ | HOM | DUR | CAR | | | is available | | | | | | | | | Dependent variable | | | OPTINDX | | | | Lagged OPTINDX | 0.532 | 0.538 | 0.482 | 0.481 | 0.483 | | | (69.58) | (57.75) | (91.83) | (90.67) | (91.27) | | Income Rank | 0.153 | 0.116 | 0.172 | 0.174 | 0.171 | | | (9.24) | (5.33) | (15.87) | (15.62) | (15.48) | | College Degree | 0.045 | 0.044 | 0.026 | 0.024 | 0.026 | | | (5.31) | (4.27) | (4.18) | (3.92) | (4.30) | | Observations | 32143 | 18226 | 68492 | 66511 | 66540 | Table A2: Macroeconomic Expectations, SES, and Household Choices The table presents the first stage results for each IV regression shown in Table 8 in the main text where the dependent variable is a measure of investment choice (Invest or Invest Share), using solely the panel sub-sample, that is, observations from the same individual, acquired six months apart. The stock market belief variable PSTK is instrumented with lagged PSTK. Invest: Indicator for investment in equities; InvestShare: Log(Amt Invested/Income). Controls include dummies for year-month, age, gender, and marital status. Standard errors are clustered by year-month, and t-statistics are shown in parentheses. | Observations for which | Observations for which | | | |------------------------|--|--|--| | Invest is available | $Invest\ Share$ is available | | | | | | | | | P | STK | | | | 0.372 | 0.361 | | | | (50.36) | (39.39) | | | | 0.103 | 0.075 | | | | (11.45) | (6.94) | | | | 0.048 | 0.045 | | | | (11.25) | (8.57) | | | | 21400 | 13500 | | | | | 0.372
(50.36)
0.103
(11.45)
0.048
(11.25) | | |