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1 Introduction

Almost a decade after the Great Financial Crisis of 2008/09, the world economy

has yet to recover from the damage created by excessive risk-taking in the �nancial

sector. An important part of the economics profession has spent the time since trying

to understand how phenomena such as exuberance, distorted incentives and market

imperfections combined to trigger the crisis and � with even greater urgency � what

lessons we can derive to make our �nancial system more stable for the future. These

phenomena are typically studied by focusing on a representative �nancial institution,

since they a�ect the �nancial sector as a whole.

Our paper, by contrast, focuses on how the composition of the �nancial sector

drives aggregate outcomes. If most of the net worth in the �nancial sector is

controlled by high risk-takers, the sector as a whole becomes riskier, and vice versa.

The dynamics of how net worth is distributed across heterogeneous agents thus

determine aggregate risk-taking in the economy. During booms, i.e. when the

economy experiences a number of high aggregate shocks, high risk-takers earn higher

returns and their wealth grows at a faster pace. During busts, i.e. when the economy

experiences low aggregate shocks, high risk-takers incur larger losses; therefore the

relative wealth of low risk-takers increases.

Changes in the composition of the �nancial sector typically play a large role in

booms and busts, both in advanced and emerging economies. For example, in the

US mortgage market, both the boom of the �rst half of the 2000s and the subsequent

bust were driven in large part by risky players such as Countrywide Financial and

Washington Mutual: Countrywide grew to become the largest US mortgage lender,

capturing more than 20% of the market and originating loans amounting to 3.5%

of US GDP in 2006; in January 2008, it was rescued in an emergency take-over by

Bank of America. Its spin-o� Indymac followed a similar trajectory and was taken

into conservatorship by the FDIC in July 2008. Washington Mutual followed an

aggressive expansion strategy in the early 2000s and grew to be the largest savings

and loan association and the sixth-largest bank in the US, only to end in the largest

bank failure in US history in September 2008. AIG became the largest player in the

market for credit default swaps by aggressively selling credit insurance against close

to half a trillion dollar of securities; in September 2008, it experienced a run and

received the largest government bailout in US history. Conversely, institutions that

followed a safer strategy experienced the opposite dynamics: JP Morgan Chase, for

example, underperformed its peers in the �rst half of the 2000s but came to be the
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largest US �nancial institution in the aftermath of the �nancial crisis.

Similarly, in emerging economies, credit booms are commonly driven by a small

set of �nancial institutions that specialize in channeling dollar credit into the domestic

economy that comes with low interest rates but high currency risk. These institutions

grow fast during boom times but often collapse when the tide reverses.

We study these phenomena in a framework of heterogeneous �nancial market

participants that are subject to aggregate shocks but di�er in the set of investment

opportunities to which they have access. Some institutions engage in a relatively

low-risk business model � they can be interpreted e.g. as conservative savings

banks. Other institutions have a business model that produces higher risk but

higher potential rewards, e.g. investment banking or subprime lending. An important

condition for compositional changes to matter in such an environment is that risk-

sharing in the economy is imperfect � otherwise each institution would only invest

into the market portfolio. We assume that risk-sharing is limited because of agency

problems that require that each institution to have a su�ciently large equity stake in

its own business.

The �rst result of our paper is to show that the described compositional e�ects

produces �nancial market dynamics that generate pro-cyclicality � good times sow

the seeds of the next �nancial crisis. A series of high shocks increases the fraction of

net worth controlled by high risk-takers � in the language of evolutionary theory, the

�nancial sector adapts to a benign economic environment and becomes riskier. This

leads to greater risk-taking in aggregate and makes the economy more vulnerable to

low shocks. These results can also be interpreted as a formalization of the �nancial

instability hypothesis postulated by Minsky (1986). Through the lens of evolutionary

theory, pro-cyclicality is the result of temporary mal-adaptation � of a �nancial sector

that has adapted to a benign risk environment and is unprepared for bad returns.

The converse happens in response to a series of low shocks.

Secondly, we show that it is socially desirable to lean against the �uctuations in

net worth and in aggregate risk-taking in the laissez-faire economy, i.e. to stabilize

aggregate risk-taking at an intermediate level. This replicates the allocation that

would prevail if risk markets were complete: it maximizes the expected growth rate

of aggregate capital and results in a more stable �nancial system, mitigating the

described pro-cyclical dynamics. It also re�ects a broader theme in evolutionary

theory, that preserving diversity enhances the robustness of a population and allows

it to better deal with aggregate shocks.

Our third insight is to identify a novel channel through which public policy
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interventions shape risk-taking dynamics: public policy a�ects the dynamic

composition of the �nancial sector, not only the static choice set of agents in the

period it is conducted, as in traditional models of �nancial sector policy. A one-time

intervention in�uences the distribution of net worth of agents going forward, which

can have long-lasting dynamic e�ects on aggregate risk-taking. For example, �nancial

regulation that limits risk-taking during booms reduces the pro�ts of high risk-takers

and slows down the reallocation of net worth towards them, which limits the fall-out

during the next bust. There is no rationale for policies such as limits on credit growth

on speci�c sub-sectors in traditional economic models, but in our setting, regulators

are responding to the justi�ed risk of mal-adaptation of the �nancial sector.

Fourth, we show how the nature of idiosyncratic shocks to risk types a�ects

aggregate dynamics. We assume that idiosyncratic shocks are described by a

transition matrix that captures the probabilities with which risk types change. In

evolutionary terms, such idiosyncratic shocks correspond to mutation in risk types.

In the �nancial sector, by contrast, the idiosyncratic dynamics of risk types can be

interpreted as arising from three conceptually distinct phenomena: (i) idiosyncratic

shocks to the set of investment opportunties of bankers, (ii) changes in the set of

�nancial institutions that are operative or (iii) reallocations of funds by external

investors. All these phenomena are also a�ected by the regulatory environment, for

example by how much the environment encourages dynamism and experimentation in

the �nancial sector. Symmetric idiosyncratic shocks are generally desirable because

they introduce a form of mean reversion in risk types that brings the economy closer

to the optimal capital allocation. Idiosyncratic shocks that are state-dependent,

i.e. correlated with the aggregate shock, introduce the potential for momentum or

contrarian dynamics of risk types. Momentum-based dynamics in risk types generally

exacerbate the �nancial instability dynamics; contrarian reallocations generally lead

to mean reversion and reduce volatility. In fact, if the economy starts out at the

optimal capital allocation, the right magnitude of contrarian reallocation will preserve

the optimal capital ratio at all times.

Finally, we analyze the spillovers of the described �nancial sector dynamics on the

real economy. We assume that the �nancial sector intermediates capital to the real

economy and creates jobs for households. The fate of the household sector is thus

intricately linked to levels of wealth and risk-taking in the �nancial sector: during

boom times, the household sector bene�ts from ample capital investment. During

busts, losses in the �nancial system spill over into the real economy. Our earlier

lessons on boom-bust dynamics and on how desirable it is to hold capital shares
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constant carry over to this extension: Households collectively prefer a stable supply

of capital. Their welfare is maximized when the fraction of net worth allocated to the

di�erent risk types is held constant. Furthermore, spillovers to the real economy may

justify rescue packages and bailouts when the �nancial sector is under-capitalized.

We show that bailouts interfere in a major way with the natural selection process of

capitalist economies. Traditional economic theories emphasizes the incentive e�ects

of bailouts. By contrast, in our evolutionary setting, the adverse e�ects of bailouts

come from selection not incentives: a bailout allows high risk-takers to continue to

operate at the expense of low risk-takers. In the language of evolutionary theory, it

allows mal-adapted agents to continue to operate at the expense of better-adapted

agents.

Literature Our work is related to a large strand of literature that studies the

importance of net worth in the �nancial sector for the real economy. When �nancial

markets are imperfect, Jensen and Meckling (1976) and Stiglitz and Weiss (1981)

emphasize that net worth matters for economic activity. Bernanke and Gertler (1989)

and Kiyotaki and Moore (1997) emphasize furthermore that the distribution of net

worth between more and less productive agents drives aggregate economic activity. In

the aftermath of the Great Financial Crisis, a �ourishing literature including Gertler

and Karadi (2011), He and Krishnamurthy (2013) and Brunnermeier and Sannikov

(2014), among others, have emphasized that low net worth in the �nancial sector

reduces �nancial intermediation to the rest of the economy and depresses economic

activity. Our work focuses, in addition, on how dynamic changes in the composition

of net worth within the �nancial sector drive aggregate volatility.

A closely related strand of literature aims to understand incentives for risk-

taking in the �nancial sector and uses the resulting insights to motivate �nancial

regulation. Geanakoplos and Polemarchakis (1986) as well as Greenwald and Stiglitz

(1986) show that �nancial market imperfections commonly give rise lead to pecuniary

externalities that call for policy intervention. This is of particular importance for

risk-taking when there are �re sales, as studied e.g. by Lorenzoni (2008), Korinek

(2011) and Davila (2014). Our paper is closely related to this literature in that it

also exhibits incomplete markets that give rise to pecuniary externalities. However,

it focuses on how compositional e�ects within the �nancial sector give rise to risk-

taking dynamics that are ine�cient in both directions � during booms and busts.

Alternative explanations for excessive risk-taking in the �nancial sector inlcude Farhi

and Werning (2016) and Korinek and Simsek (2016) who focus on aggregate demand
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externalities. Admati et al. (2010) propose moral hazard as the leading explanation

for risk-taking in the �nancial sector. A growing branch of literature also analyzes how

deviations from perfect rationality may have led to the observed risk-taking behavior.

For an example in the context of the �nancial crisis see Barberis (2013). Daniel and

Hirshleifer (2015) survey the implications of overcon�dence in �nancial markets.

A third strand of literature to which our work is related analyzes the e�ects of

hetereogeneity among �nancial market participants. A common form of heterogeneity

in this literature is that �nancial market participants di�er in their beliefes. Friedman

(1953) hypohtesized that the market always selects the investors with the most

accurate beliefs, but Blume and Easley (2006) demonstrated that this no longer holds

when �nancilal markets are incomplete. In a similar vein, Fostel and Geanakoplos

(2008) and Geanakoplos (2009) describe a leverage cycle that is driven by wealth

reallocations between optimists and pessimists. Burnside et al. (ming) analyze how

booms and busts may arise from social dynamics when agents have heterogeneous

beliefs about long-run fundamentals and when beliefs are subject to contagion

dynamics. Both papers share with our paper that there is heterogeneity among

�nancial market participants�they assume that di�erent agents arrive at di�erent

actions because of heterogeneous beliefs; in our work, by contrast, agents have

identical beliefs but di�er in their technology. The main bene�t is that this enables

us to conduct a detailed welfare analysis and arrive at a number of interesting policy

implications. As in the literature on heterogeneous �rms (see e.g. Hopenhayn, 1992),

heterogeneous agents in our setup do not have access to complete risk markets.

Finally, a number of papers study how evolutionary dynamics shape the

preferences and by implication the behavior of economic agents. See e.g. Robson

and Samuelson (2011) for a survey and Brennan and Lo (2011) for an application to

�nancial markets. Our work is similar in methodology but focuses on the implications

of the dynamics of net worth among heterogeneous actors in �nancial markets for

aggregate risk-taking.

2 Baseline Model

Population We consider a population of �nancial market participants called

�bankers� who live in in�nite discrete time t = 0, 1, 2, ... and who are of di�erent

types i ∈ I ={1, ...N}. The types di�er along three dimensions from each other:

in their beliefs, patience, and investment opportunities. More speci�ally, bankers of
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type i value consumption according to the utility function

Ui = Ei

[∑
t

(βi)
t log cit

]

where Ei [·] is an expectations operator that captures subjective beliefs and βi is their

discount rate.

Each type i consists of a continuum of agents in the unit interval z ∈ [0, 1] who

are endowed with total initial capital ki0 =
∫ 1

0
ki0(z)dz, which we assume positive

ki0 > 0 for all types. Throughout our analysis, it is su�cient to keep track of the

total capital kit =
∫ 1

0
kit(z)dz managed by bankers of each type i � how this capital

is distributed across individual bankers of type i is irrelevant since they all behave in

the same way. In the following, we will call kit the �type i capital.�

In a given time period, type i bankers have access to a set Si of investment

opportunities. An investment strategy S ∈ Si delivers a stochastic one-period return

R̃S that is distributed according to the function FS(R̃S) which satis�es FS(0) = 0.

Investment returns depends on an aggregate state of nature ωt ∈ Ω that is, for

simplicity, independent across time periods.

The optimization problem of type i bankers is

max
cit,Sit∈Si,kit+1

Ei

[∑
t

(βi)
t log cit

]
s.t. cit + kit+1 = R̃Stkit

Remark (Heterogeneity) The assumption that bankers di�er in beliefs, patience

and investment opportunities allows us to capture that there is a considerable degree

of heterogeneity in the �nancial sector � otherwise, the �nancial sector would behave

like a representative agent. It is well-documented that bankers di�er in beliefs and

patience. Furthermore, it is also clear that bankers follow di�erent business strategies

that provide access to di�erent types of investment opportunities. For example, some

bankers specialize in lending whereas others specialize in trading; some are better

at evaluating safe investments whereas others are specialists in risky opportunities.

Such heterogeneity in technologies is amply documented across �rms of all types (see

e.g. Bernard et al., 2003). Adrian and Shin (2010) provide empirical evidence of

heterogeneity in the return characteristics of di�erent �rms in the �nancial sector.

In all models of �rm heterogeneity, there is furthermore an assumption that �rms

cannot perfectly insure their idiosyncratic shocks (see Hopenhayn, 1992). If they

could, then heterogeneity would not matter and we could focus on the behavior of
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a single representative �rm. In our baseline model we assume that risk markets are

completely absent. In Section 5.1 we will consider the case that individual bankers can

share up to a fraction 1− φ of their business risk. This assumption deserves further

discussion since economists generally believe that the �nancial sector is extremely

e�cient at allocating and sharing risk. However, the risk that is shared e�ciently

is portfolio risk and is distinct from the business risk of individual bankers: the

portfolio risk of the �nancial assets that a �nancial institution holds on its balance

sheet (e.g. mortgages, business loans, or even equities) can be shared relatively easily

via re-trading, syndication, securitization, or credit default swaps. By contrast, the

risk inherent in the franchise of a �nancial institution is much more di�cult to share:

for example, it is di�cult for an investment bank to insure against the risk of primary

markets drying up which deprives them of much of their business, or for a mortgage

lender to insure against the risk of mortgage markets drying up, which inhibits their

main business activity. This is the incompleteness in risk markets that we consider

here. In the following we spell out two examples for di�erent sets of investment

strategies to make our setup more tangible.

Example 1 (Choice of Leverage). One of the classic decision variables of bankers

is to choose the leverage at which they are operating. Assume that type i bankers

have access to a risky return Q̃i with minimum realization Qmin
i , for example from

lending to their natural type i constituency, as well as the risk-free return r, which

represents the risk-free world interest rate. Then the set of investment strategies and

the corresponding returns can be described as a function of the leverage choice xi
such that1

Si =

{
Si (xi) : xi <

r

r −Qmin
i

}
where R̃i (xi) = xiQ̃i + (1− xi) r

Example 2 (Diversi�cation). Another typical decision problem for bankers is how

much to diversify their risk exposure in �nancial markets. We capture this by

assuming that each banker type i has access to a risky investment opportunity with

return Q̃i that stems from its speci�c sector of activity, for example mortgage lending,

or business lending, or securities investments. We assume that a type i banker has to

invest at least a fraction φ of its capital in its own sector at return Q̃i to guarantee

1Given log-utility, bankers would otherwise always avoid bankruptcy in our setup, as captureed
by the constraint on xi. The example could also be extended to allow for bankruptcy protection
that provides a minimal subsistence return R̃it to bankers that is positive but close to zero.
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proper e�ort, but it can diversify the remaining fraction 1 − φ in the returns Q̃j

of the remaining banker types I\ {i}. Then the set of investment strategies and the

corresponding returns can be parameterized as a function of the portfolio weights

{xij} such that

Si =

{
Si ({xij}) : xii ≥ φ,

∑
j

xij = 1

}
where R̃i ({xij}) =

∑
xijQ̃j

Naturally, the examples can be combined with each other and/or with additional

decision variables of bankers.

The following lemma characterizes the optimal behavior of a given type i banker.

Lemma 1 (Optimal Strategy). In the decentralized equilibrium, type i bankers follow

a �xed investment strategy Si ∈ Si each period that maximizes the geometric mean

return

Si = arg max
S∈Si

Ei

[
log R̃S

]
(1)

They earn a return R̃it = R̃Sit each period t, consume a constant fraction (1− βi) of

their wealth, and accumulate capital according to the law-of-motion

kit+1 = βiR̃itkit (2)

(ii) If the frontier of investment strategies is described by a continuously

di�erentiable parameter xi for type i bankers, then the optimal interior portfolio choice

is described by

Ei

[
R̃′ (xi)

R̃ (xi)

]
= 0∀i, t (3)

Proof. (i) Given the log-utility and i.i.d. nature of shocks, the terms Ei

[
log R̃S

]
enters the optimization problem of bankers additively. Statement (1) follows

immediately. Log-utility furthermore implies the law-of-motion (2).

(ii) The optimality condition represents the �rst-order condition to the problem

maxxi Ei

[
log R̃ (xi)

]
.

The optimal strategy for each type i maximizes the geometric mean return, i.e. the

growth rate of its capital. This criterion follows in a straightforward manner from the

utility function of bankers. It is well-known in the literature on optimal investment

strategies, in which it is frequently referred to as the �Kelly Criterion� after Kelly
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(1956) or the capital growth criterion since it maximizes the average growth rate of

the bankers' portfolio. Given the law-of-motion for capital, the log of type i capital

log kit follows a martingale with drift E[ln βiR̃Si ].

The second part of the lemma applies if the portfolio choice of bankers can be

described by a continuous parameter xi, as in our examples above. It captures

that the optimal value of xi is then such that the excess return from varying

xi is zero at the optimum, given the pricing kernel of bankers, which satis�es

u′ (cit) = 1/ [(1− βi) kit] ' 1/
[
R̃ (xi) kit−1

]
' 1/R̃ (xi) where kit−1 drops out of

the optimality condition since it is given at the time of the portfolio choice for period

t.

Vector Notation For compactness of notation, let us denote by R̃i = R̃Si the

random variable that describes the return process of the optimal strategy Si chosen

by type i bankers, and by R̃it the period t realization of that random variable.

Furthermore, we collect in the diagonal matrix R̃t = diag[R̃1t, R̃2t, ...R̃Nt] the

stochastic returns of the strategies chosen by all bankers. Then the vector of capital

positions kt = (k1t, k2t, ...knt)
′ follows the law-of-motion

kt+1 = R̃tkt (4)

We denote the aggregate capital stock in the economy by the capital letter Kt =∑
i∈I kit = ιNkt where ιN = (1, ...1)N is a row vector of ones. Given a vector kt, the

aggregate capital stock in the following period will be

Kt+1 =
∑

R̃itkit = ιN R̃tkt

Only bankers who earn the maximum geometric mean return in the economy will

survive over time. Conversely, those who earn a geometric mean return below the

maximum will be excluded over time by natural selection. We denote the maximum

geometric mean return across all types of bankers i ∈ I by

ln R̄ = max
i∈I

E
[
ln R̃Si

]
Then we �nd:

Lemma 2. (Exclusion of Inferior Strategies) Bankers who earn a geometric

mean return below the maximum E[lnRSj ] < ln R̄ will see the fraction of their capital
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in the economy converge to zero,

lim
T→∞

kjT/KT = 0 a.s.

Proof. The proof follows from the weak law of large numbers applied to the logged

variables.

Order by Increasing Riskiness We assume w.l.o.g. that the set of bankers I is

ordered by increasing variance of the investment strategy V ar(R̃i), i.e. if i > j then

V ar(R̃i) > V ar(R̃j). Accordingly, we call i the risk type of bankers. This proves

useful since the bankers that survive over time will not signi�cantly di�er in their

geometric mean return according to Lemma 2 � types with geometric mean return

that is signi�cantly below R̄ will be rapidly excluded from the population � but may

di�er greatly in riskiness. This makes the riskiness of each type its main distinguishing

feature.

Let us de�ne an ordinal measure of the riskiness of di�erent capital allocations:

De�nition 1. (Riskiness of Capital Allocation) For two capital allocations kt
and k′t with aggregate capital Kt and K

′
t respectively, we call allocation kt riskier than

k′t if
∑

0≤i≤n kit/Kt ≤
∑

0≤i≤n k
′
it/K

′
t∀n ∈ {1, ...N} with strict inequality for some n.

Intuitively, an allocation kt is riskier than another allocation k′t if for any risk

level n, there is a smaller fraction of capital allocated to strategies safer than n under

allocation kt than under allocation k′t.

Let us also de�ne a measure of the volatility of the aggregate capital stock:

De�nition 2. (Volatility) The n-period-ahead volatility of the aggregate capital

stock is

Vt+n =
Std (Kt+n)

Kt

Our measure Vt+n consists of the average standard deviation of returns of the

di�erent investment strategies weighted by the fraction kit/Kt of each risk type. If

n = 1, we will simply speak of the period-ahead volatility.

2.1 A Two-by-Two Example

Let us now consider an economy in which there are two states of nature in every

period (low or high) and two types of bankers (safe and risky). Following the logic of

Lemma 2, we limit our attention to the case in which the two types of bankers have
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each access to a single investment opportunity that earns the same geometric mean

return R̄ but with di�erent riskiness. Technically speaking, the logs of the di�erent

types of capital are martingales with equal drift log R̄ but increasing variance. This

implies that the two types exhibit zero selective di�erence in the long run and, in

expectation, all survive with a positive share of capital.

In the short run, however, di�erent types of bankers have di�erent exposure to the

aggregate shock. In each period, selection favors those types that are better adapted

to the realized shock: in response to a high aggregate shock, risky types earn higher

returns than safe types, and the relative fraction of risky capital in the economy rises.

Conversely, in response to a negative shock, risky types su�ers greater losses than

safe types, and the relative fraction of risky capital declines.

The aggregate state that is realized in each period is �low� with probability p and

�high� with probability 1− p. When there are only two states of nature, all random

variables with geometric mean return R̄ are of the form

R̃s =

{
R̄(1 + s)−

1
p in the low state L (with prob. p)

R̄(1 + s)
1

1−p in the high state H (with prob. 1− p)

for some return dispersion s ≥ 0. For the resulting family of random variables,

although the geometric mean return is the same, the simple average return E[R̃s]

and the variance V ar(R̃s) are increasing functions of s. Intuitively, higher variance is

compensated by higher return so that the expected log utility of the di�erent options

is the same. In the described class of random variables, each risk type i ∈ I is thus

fully described by a return dispersion si. Since we ordered risk types by increasing

riskiness, the return dispersion si is increasing in i. Furthermore, Condition ?? is

satis�ed, i.e. all higher moments are an increasing function of i.

Volatility and Pro-cyclicality We now use the described setup to analyze the

dynamics of aggregate risk-taking and capital in the economy. A few immediate

results follow:

Proposition 1. (Volatility) For any horizon n, the n-period ahead volatility of the

aggregate capital stock Vt+n increases the riskier the period t capital allocation kt of

the banking sector.

(Pro-Cyclicality) Risk-taking in the economy is pro-cyclical, i.e. starting

from an initial allocation of capital kt, the more positive shocks the economy has

experienced,
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(i) the greater the absolute and relative loss of aggregate capital from a negative

shock (and the greater the gain from a positive shock) in the following period,

(ii) the greater the n-period ahead volatility Vt+n of the aggregate capital stock for

any horizon n.

Proof. We observe that the n-period-ahead volatility of the aggregate capital stock

is given by

Vt+n =
Std (Kt+n)

Kt

=

∑
i∈I Std

(
R̃n
it

)
kit

Kt

=
ιNStd

(
R̃n
t

)
kt

Kt

(5)

where Std(R̃n
t ) is taken element-by-element. The additivity of standard deviations in

the second equality follows since all returns are perfectly correlated with the aggregate

shock. The variance of the n-th power of R̃s is

V ar
(
R̃n
s

)
= p (1− p) R̄2n

[
(1 + s)−

n
p − (1 + s)

n
1−p

]2
and is strictly increasing in s. This observation together with equation (5) and the

de�nition of riskiness implies the result on volatility.

For the results on pro-cyclicality, observe that a positive shock in a given period

t increases Kt+1 and renders the capital distribution kt+1 riskier than kt. The riskier

the capital allocation, the greater the relative loss from a low shock and, since Kt+1 is

higher, the greater the absolute loss from a low shock, proving point (i). Furthermore,

equation (5) implies that the n-period-ahead volatility is greater.

Financial Instability Hypothesis It is straightforward to interpret the �nancial

instability and pro-cyclicality as articluated e.g. by Minsky (1986) through the lens of

our framework: Minsky's the observation was that �booms sow the seeds of the next

crisis;� in our framework, booms reallocate capital into the hands of riskier bankers

who invest the economy's capital stock in riskier investments. When the next adverse

shock hits the economy, the economy is highly exposed to aggregate risk and there is

a large correction.

In evolutionary terms, the phenomenon can be interpreted as an instance of

temporary maladaptation � after a series of good shocks, the risk pro�le of the capital

stock has adapted to a safer environment than what is appropriate as high risk types

own an ever larger fraction of the aggregate capital stock. When a negative shock

hits, it turns out that the sector is maladapted to a low return environment.
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Simulation 1 (Volatility and Pro-Cyclicality) Let us illustrate the pro-

cyclicality in a simple example: assume N = 2 risk types i = 1, 2 with si = ir

for r = 5% and with initial capital distributed equally so ki0 = 1
N
. We may call the

capital invested under two types risky capital and safe capital. We assume that the

probability of the low state is π = 10%. For simplicity we set R̄ = 1 so there is no

trend growth in our illustration. Figure 1 shows a typical path of the two types of

capital kit as well as the aggregate capital position of the economy Kt and the relative

fraction κt = k2t/Kt of the risky type.
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Figure 1: Simulation of Risk-Taking Dynamics

The results of Proposition 1 can be seen clearly: at �rst, a series of good shocks

favors riskier bankers and causes aggregate capital to quadruple � at the height of the

boom, the capital of risky bankers has increased more than �ve-fold and makes up

70% of the total, as displayed in the bottom panel, whereas the capital of safe bankers

declines to 30% of the total. As the economy experiences a number of negative shocks

around period 30, the fortunes reverse � risky bankers loose 96% of their capital,

contributing heavily to an 89% decline in the aggregate capital stock. Towards the

end of the simulation period, the risky type catches up again due to a series of positive

shocks.

2.2 First-Best Capital Allocation

This raises the question of what the optimal allocation of capital among the di�erent

types of bankers would be in order to maximize the growth of the aggregate capital

14



stock. As a benchmark, we start by characterizing the �rst best. This corresponds

to a situation in which the planner can freely allocate capital to di�erent types of

bankers, instruct each type which investment strategy to choose, and then optimally

redistribute the returns according to a set of welfare weights θi ≥ 0 that satisfy∑
i θi = 1. The planner's optimization problem can then be expressed as

max
cit,kit,Sit

∑
t

βt
∑
i

E [log cit] where
∑

cit + kit =
∑

R̃ (Sit) kit−1∀t (6)

Proposition 2. (First Best) (i) The �rst best features �xed capital shares κ∗i =

kit/Kt∀t allocated to the di�erent types of bankers and �xed investment strategies S∗i
for each type that solve the static optimization problem

max
κi∈[0,1],Si∈Si

E

[
log
∑
i

κiR̃ (Si)

]
(7)

(ii) For types i ∈ I for which the portfolio choice κi is interior, the planner

equalizes risk-adjusted returns,

E
[
λ∗ ˜R (Si)

]
= c (8)

where the planner's pricing kernel λ∗ ' 1/
∑
κ∗i R̃ (S∗i ) is time-invariant.

(iii) If returns are continuously di�erentiable in a strategy parameter Si for type

i, then the planner's optimality condition is

E
[
λ∗R̃′ (Si)

]
= 0 (9)

(iv) The planner's allocation leads to faster growth, i.e. denoting by Kt and

K∗t the path of aggregate capital under the planner's optimum and the decentralized

equilibrium, we �nd limT→∞KT/K
∗
T = 0 a.s.

Proof. For part (i), de�ning the capital shares κit = kit/Kt, the argument of the
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planner's dynamic optimization problem (6) can be re-written as

E [lnKT ] = E

[
ln
∑
i

R̃ (Sit)κiT−1

]
+ E [lnKT−1] =

=
T−1∑
t=0

E

[
ln
∑
i

R̃ (Sit)κit

]
+ lnK0

The terms E[log
∑

i R̃ (Sit)κit] enter the dynamic optimization problem additively

without any interactions. Therefore setting the �xed portfolio weights κit = κ∗i and

strategies Sit = S∗i that solve the static problem (7) in each period also maximizes

the dynamic optimization problem. If the objective is continuously di�erentiable and

the solution is interior, the optimality conditions (9) are the �rst-order conditions to

the static problem.

Parts (ii) and (iii) are standard �rst-order optimality conditions to the static

optimization problem. The pricing kernel λ∗ is proportional to marginal utility, which

satis�es u′ (cit) = 1/cit = (1− β) θiKit '
∑

i κ
∗R̃ (S∗i ).

For part (iv), denote by κit the capital shares in the decentralized equilibrium and

observe that E[
∑

i log κitR̃it] ≤ E[
∑

i log κ∗i R̃ (S∗i )]∀t with strict inequality except

when κit = κ∗i and Sit = S∗i since the starred values maximize the objective. The

result then follows from the weak law of large numbers.

Part (i) of the proposition captures that the �rst-best is described by a standard

static portfolio allocation problem every period. This makes it desirable to choose

a �xed strategy for each type of banker and to keep the weights attached to each

investment strategy constant over time. This contrasts markedly with the booms and

busts under the free market allocation described in Proposition 1. The di�erence

arises because the planner can reassign the economy's capital across to di�erent

investment opportunities every period to optimize the risk/return trade-o� of the

aggregate capital stock. By contrast, individual bankers in the laissez faire equilibrium

can only invest in their own techologies. As a result, part (ii) of the proposition shows

that the planner's allocation will, in the long run, always outperform the decentralized

boom-and-bust dynamics.

Simulation 2 (First Best) We include an illustration of the optimal capital

allocation in our earlier Simulation 1 of decentralized capital dynamics. For N = 2

risk types, we denote by κ = k1/K the capital share in strategy 1 and express the
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portfolio allocation problem of the planner as

max
κ∈[0,1]

E
[
u
(
R̃
)]

where R̃ = κR̃1 + (1− κ) R̃2

If the optimum is interior, then it equates the risk-adjusted returns of the two

investment opportunities,

E
[
u′
(
R̃
)(

R̃1 − R̃2

)]
= 0

which can be solved for

κ∗ =
pRH

2

RH
2 −RH

1

+
(1− p)RL

2

RL
2 −RL

1

(10)
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Figure 2: Decentralized risk-taking dynamics versus optimal capital allocation

Given our earlier parameters, we �nd that the optimal share of capital allocated

to investment opportunity 1 is κ∗ = 46.6%. Figure 2 compares the decentralized

dynamics from Simulation 1 (in solid lines) to the socially optimal capital allocation

(dashed lines), using the same realizations of the stochastic process as in the original

�gure. The aggregate capital stock grows faster under the socially optimal allocation.

Furthermore, it leads to constant volatility whereas the volatility in the decentralized

allocation �uctuates greatly.
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2.3 Constrained Optimal Investment Strategies

Next we consider the planner's constrained optimal choice of investment strategies if

she has to respect the internal capital accumulation decisions of bankers given by (4),

but can instruct each type to choose a particular investment strategy Ŝit ∈ Si∀i, t and
can reallocate payouts. This corresponds to a private ownership economy in which

the risk-taking strategies of bankers are regulated and dividend payments are subject

to taxation and transfers. Given the ability to redistribute dividend payouts, the

planner's optimization problem in such an economy is to maximize the log of the sum

of dividends each period, i.e.

max
kit,Sit,Kt

∑
t

βtE
[
log
∑

(1− β) kit

]
where kit = R̃Sit−1

kit−1∀t (11)

Proposition 3. (Constrained Optimal Investment Strategies) (i) Given

capital shares κit = kit/Kt in a given period, the constrained planner instructs each

type i to invest in the strategy

Sit = arg max
Sit∈Si

E

[
log
∑
i

R̃Sitκit

]
(12)

If the frontier of investment strategies is continuous in a parameter xit for each i ∈ I,
then the planner's optimality condition is

E

[
∂R̃Sit/∂xit

R̃t

]
= 0∀i, t (13)

where R̃t =
∑
R̃Sitκit is the state-contingent return on the aggregate portfolio at date

t.

(ii) The constrained optimal strategies can be implemented by imposing a tax on

the portfolio decision of bankers of

(iii) The planner's allocation leads to faster growth, i.e. denoting by Kt and K̂t

the path of aggregate capital in the decentralized equilibrium, the constrained optimum,

and the �rst best, we �nd limT→∞KT/K̂T = 0 a.s. and limT→∞ K̂T/K
∗
T = 0 a.s.

Proof. The proof is analogous to the proof of Proposition 2.

The proposition describes how a constrained planner would optimally regulate the

investment choices of bankers if she cannot interfere in their law-of-motion of capital

accumulation. It provides several notable insights:
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First, the optimal investment strategies of di�erent banker types are time-varying

as their capital shares κit in the economy vary.

Secondly, comparing optimality conditions (9) and (13), we can see that the

3 Spillovers to the Real Economy

Our baseline model assumed that investment opportunities did not require any

inputs other than capital and delivered constant returns to scale. This section

extends the baseline by assuming that production requires not only capital but also

complementary factors such as labor and land, which cannot easily be reproduced.

As the capital stock in the economy grows, the limited supply of these complementary

factors reduces the returns to capital. Conversely, declines in the aggregate capital

stock imply that complementary factors are more abundant and capital earns higher

returns. The resulting decreasing returns to capital lead to selection dynamics that

imply that the aggregate capital stock in the economy is bounded and �uctuates

around an ergodic steady state, no matter how productive (or unproductive) the

economy's investment opportunities are.

A second important insight from this section is that the net worth of the �nancial

sector is an important driver of output and labor income in the real economy. The

boom and bust dynamics in the �nancial sector that we analyzed before generate

spillovers to the real economy. This implies that the policies to smooth booms and

busts in the �nancial sector also stabilize the real economy � �nancial policy is a key

element of macroeconomic stabilization policy.

Let us introduce a unit mass of households h ∈ [0, 1] who each supply one

unit of labor every period. We assume that households themselves do not have

access to �nancial markets and live hand-to-mouth � they derive period utility

u(wt) = lnwt from their wage income.2 Bankers invest capital in their desired

investment opportunity, and after the returns R̃t are realized, they lend all capital

K ′t =
∑

i R̃iki to competitive �rms in the real economy who have access to a

Cobb-Douglas production technology y = Akα`1−α that combines capital and labor

to produce output. Capital fully depreciates, and the output from production is

consumed or invested as future capital. Given this setup, we �nd:

2This is a reasonable characterization for a majority of households worldwide. In the US, for
example, 76% of households are living paycheck-to-paycheck as de�ned by having liquid savings of
less than three months worth of income (CNN Money, 2013). Only 18% participated in markets for
aggregate risk as de�ned by holding liquid equity investments (see Kennickel, 2013).
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Lemma 3. (Bank Capital and Wages) Wages and the return on capital in the economy

are given by

wt = w (K ′t) = (1− α)A(K ′t)
α (14)

rt = r (K ′t) = αA(K ′t)
α−1

Proof. The result follows since �rms competitively maximize pro�t and markets for

capital and labor have to clear at the available quantities ` = 1 and K
′
t .

The lemma shows that both wages and the return to capital depend crucially

on the capital of the banking sector. Higher capital leads to greater wages but

decreasing returns on capital. Both wages and the return on capital are taken as

given by individual agents � the e�ects of aggregate capital in the banking sector on

the two variables thus represent pecuniary externalities.

The law-of-motion for net worth of sector i bankers is now

kit+1 = rtR̃itkit

The optimal behavior of bankers as well as that of a social planner in our extended

setting is unchanged from the baseline model:

Lemma 4. (i) The optimal strategy of type i bankers continues to be given by the

maximum geometric mean criterion described in Lemma 1.

(ii) The optimal strategy of a social planner who maximizes either banker welfare,

worker welfare, or aggregate welfare is given by the constant capital shares described

in Proposition 2.

Proof. (i) The optimization problem of a type i banker is described by the period-

by-period problem

max
S∈Si

E
[
ln rtR̃S

]
= E [ln rt] + max

S∈Si
E
[
ln R̃S

]
Since individual bankers take rt as given and the term enters the optimization problem

additively, the solution to the problem is the same as in Lemma 1.

(ii) The optimal strategy of a planner who maximizes banker welfare U = E[lnKT ]

is given by the period-by-period problem

max
κi∈[0,1]

E [ln rtK
′
t] = max

κi∈[0,1]
E [lnαA(K ′t)

α] = max
κi∈[0,1]

αE

[
ln
∑
i

R̃iκi

]
+ E [lnαA]
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The solution to this problem is given by Proposition 2.

The optimal strategy of a planner who maximizes worker welfare Uw =
∑
βt lnwt

is given by

arg max
κit∈[0,1]

∑
t

βtE
[
ln (1− α)A (K ′t)

α]
= arg max

κit∈[0,1]

∑
t

βtE [lnK ′t] where K ′t =
∑
i

R̃iκi

where we drop constant additive and multiplicative terms. For t = 0, the solution

is given by the optimal capital shares described in Proposition 2. To maximize the

term E[lnK ′t] in the sum above for any given t, we observe that

max
κit∈[0,1]

E [lnK ′t] = max
κit∈[0,1]

E

[
lnKt

∑
i

R̃itκit

]
= max

κit∈[0,1]
E

[
lnαA(K ′t−1)

α
∑
i

R̃iκi

]

= αE
[
lnK ′t−1

]
+ E [lnαA] + max

κit∈[0,1]
E

[
ln
∑
i

R̃iκi

]
(15)

where the second step employs the relationship Kt = rt−1K
′
t−1 = αA(K ′t−1)

α.

Following the logic of induction, if the strategy of Proposition 2 solves the

maximization problem for all terms up to period t − 1, then equation (15) shows

that the same strategy also solves the maximization problem in period t.

A planner who maximizes aggregate welfare maximizes a weighted sum of banker

and worker welfare U + γUw. The proof follows along the same lines as for bankers

and workers separately.

Let us now investigate the e�ects of the strategies of decentralized bankers and of

the social planner on the dynamics in the real economy. We �nd the following:

Proposition 4. (Smoothing Spillovers to the Real Economy) The social

planner's allocation exhibits (i) a smaller range of �uctuations for capital, output

and wages and (ii) higher geometric mean levels for the three variables compared to

the decentralized equilibrium.

Proof. In the decentralized equilibrium, the lower bound K (upper bound K̄) on

capital is reached asymptotically if all capital is held by the type with the lowest

(highest) possible shock realization R̃ (or R̃) and a large number of the lowest (highest)

shocks materialize. The capital level then coverges towards a level de�ned by the �xed

point K = r(K)R̃K (or K̄ = r(K̄)R̃K̄) or, equivalently,

K =
[
αA
(
R̃
)α] 1

1−α
and K̄ =

[
αA
(
R̃
)α] 1

1−α
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In the planner's allocation, capital is always allocated in constant fractions, resulting

in stochastic returns R̃∗ that satisfy R̃
∗

= min{R̃∗} > R̃ and R̃
∗

= max{R̃∗} < R̃

and corresponding bounds on capital that satisfy K < K∗ < K̄∗ < K̄. Output and

wages are strictly monotonic transformations of the aggregate capital stock, so this

proves point (i). Next observe that the planner's strategy in any period t amounts

to maximizing the E[logK ′t]. Given the Cobb-Douglas production function, this also

maximizes the geometric mean of output and wages, proving point (ii).

Simulation 4 (Decreasing Returns and Spillovers to the Real Economy)

We simulate the described dynamics building on the parameterization and shock

process in Simulation 1 and setting the capital share α = 1/3 and productivity A

such that αA = 1. The result is depicted in Figure 3. Compared to our earlier

Figures 1 and 2, the decreasing returns introduce two novel considerations: �rst, as

illustrated in the top panel, growth in the capital of one type comes at the expense

of the other type, i.e. due to the decreasing returns, the sector that experiences the

relatively lower return shock R̃it shrinks (even if the return shock R̃it is positive). For

example, during the initial boom, the capital of safe bankers declines both in relative

and absolute terms. Secondly, there is strong mean reversion � as a result, aggregate

capital never exceeds an upper threshold K̄ that satis�es αA(RH
2 K̄)α = K̄ or a lower

threshold K that satis�es αA(RL
2K)α = K, as illustrated in the second panel of the

�gure (the two thresholds are indicated by dotted lines).

The third panel shows the dynamics of the wage wt (top line) and the rental rate

of capital rt (bottom line), which follow the dynamics of the aggregate capital stock.

Finally, the bottom panel shows that the relative fraction of capital held by the risky

versus the safe type is unchanged from our baseline simulation.

3.1 Bailouts

The welfare of workers in the real economy depends critically on a well-capitalized

�nancial sector since wages are a function w(K ′t). When the �nancial sector is under-

capitalized, workers may thus �nd it collectively desirable to provide transfers (or

�bailouts�) to the bankers. In particular, we observe the following:

Lemma 5. (Bailout ThresholdIf K ′t < K̂ then the welfare of workers increases if

they provide a transfer of T (K ′t) = K̂ −K ′t to bankers where the threshold K̂ is given

by w′(K̂) = 1 or, equivalently,

K̂ = [α (1− α)A]
1

1−α
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Proof. As long as K ′t < K̂, we �nd w′(K ′t) > 1, i.e. a marginal unit of additional

capital transferred to the banking sector raises wages by more than a marginal unit

and raises the consumption of workers by w′(K ′t)−1 > 0. Their period t consumption

thus increases to ct = w(K̂)− (K̂ −K ′t) > w(K ′t).

The lemma thus provides a simple theory of endogenous bailouts that are

voluntarily provided from workers to bankers. The role of bailouts is simply to

mitigate the �nancial market imperfection that makes a shortage of capital in the

banking sector so costly.

One of the most hotly debated questions after the recent �nancial crisis was how

bailouts may introduce distortions into the �nancial sector. A unifying theme in

the related literature was that bailouts distort incentives. By contrast, we identify a

novel channel through which bailouts introduce distortions into the �nancial sector

� borrowing from the language of evolutionary theory, bailouts interfere with the

natural selection mechanism in capitalist economies. To isolate this novel mechanism

from the traditional argument about distorted incentives, let us assume that the set of

investment opportunities Si of each risk type is a singleton, i.e. the optimal strategy

Si of each risk type with returns R̃i is pre-determined.

The e�ects of bailouts generally depend on the manner in which they are allocated

to individual bankers. We generally believe that the least distortive manner of

providing bailouts is if they are given in a lump-sum fashion. This implies in particular

that they are provided independently of any endogenous variables that are a�ected

by the choices of the banker. In the following, we make the following assumption:

Assumption 1. (Uniform lump-sum transfers) Bailouts are provided as uniform

lump-sum transfers across bankers, i.e. each type i banker receives an exogenous

transfer

T it =
T (K ′t)

N

We then observe the following e�ects:

Proposition 5. (Interfering with the Capitalist Natural Selection Process)

(i) Bailouts allow for the survival of high risk types with inferior geometric mean

return that would go extinct in the decentralized equilibrium.

(ii) They may instead cause safer risk types with superior geometric mean return

to go extinct.

(iii) In the extreme, only high risk types to which a planner would assign zero

weight will survive.
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Proof. Let us de�ne the (multiplicative) bailout return factor that is earned by each

type as RB
it = 1 + T it /k

′
it = 1 + T (K ′t)/(Nk

′
it) which is decreasing in k′it, i.e. for a

given bailout T (K ′t) > 0, risk types with higher k′it have a lower bailout return factor.

In the presence of bailouts, the long-run survival of each risk type depends on the

expected geometric mean return E[log R̃i + logRB
it ]. (The return rt a�ects all types

equally and can thus be left out of the comparison.)

Critically, bailouts are given when aggregate capital K ′t is low, which occurs after

low shock realizations. However, after low shock realizations, high risk types have on

average lost more than low risk types so k′it < k′jt for i > j. This implies that high

risk types experience a higher bailout return factor, which raises their geometric mean

return compared to low risk types and allows for their long-run survival, proving part

(i). If the comparison of expected geometric mean returns results in a strict inequality

in favor of a high risk type, lower risk types with superior geometric mean return may

go extinct, proving part (ii).

Intuitively, bailouts that are distributed uniformly to all risk types bene�t risky

bankers most since these su�er from the largest capital shortfalls precisely in those

states of nature in which bailouts are provided. This interferes with the capitalist

natural selection process and allows for the survival of ine�cient risk types that would

otherwise become extinct.3

The channel through which bailouts a�ect aggregate risk-taking is in marked

contrast to much of the existing literature on the topic: we �nd that bailouts increase

risk-taking via their e�ects on the capitalist natural selection process, whereas much

of the existing literature emphasizes how bailouts adversely a�ect the incentives of

individual bankers. The existing view on the adverse incentive e�ects of bailouts

has been put in question in recent years since there is little evidence to support the

hypothesis that bankers knowingly exposed their �rms to existential risk (see e.g.

Cheng et al, 2014). Our setup explains how bailouts can have deleterious e�ects on

risk-taking even though the incentives of bankers are una�ected.

3The Proof of Proposition 5 also hints at how bailouts would have to be provided to be neutral
for the selection process � they would have to deliver equal RB

it to all types. In practice, this is
unfortunately very di�cult to implement since it would imply smaller bailouts to those who need
them most in the sense that they have recently su�ered the highest losses.
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4 Capital Reallocations

So far our analysis has assumed that the net worth of heterogeneous �rms follows

purely the dynamics that result from internal accumulation of earnings. In practice,

there are a number of mechanisms that are wide-spread in �nancial markets and

by which capital is reallocated among risk types in a predictable manner. This

section extends our analysis to study such dynamics. The mechanisms for capital

reallocations include the following phenomena:

First, they may capture idiosyncratic shocks to the type of bankers. For a given

bank, such shocks may arise from stochastic changes in management, from changes

in the set of insiders who have decisionmaking power, e.g. a shift of managerial power

from traditional lending to the trading desk, or changes in the information set of

decisionmakers. Secondly, they may also capture changes in the set of �nancial

institutions that are operative. For example, �nancial institutions may be subject

to mergers and take-overs, or they may exit the market and be replaced by new

bankers of di�erent types. Third, capital reallocations may capture public policy

actions whereby a policymaker imposes taxes and subsidies or equivalent measures on

bankers that redistribute among types. Fourth, in a somewhat broader interpretation

of our setup, the law of motion may capture reallocations of funds by external investors

that are not modeled in further detail.

Building on our baseline setup, all such reallocations are described by a Markov

process with transition matrixM = (mij), where elementmij captures the probability

that a banker of risk type i turns into risk type j in a given time period. An equivalent

interpretation is that the elementmij in the transition matrix captures the probability

that a dollar of risk type i moves under risk type j in a given time period. The

diagonal elements mii capture the probability that a banker remains of type i. We

assume that the matrixM satis�es the standard properties of a transition matrix and

is irreducible. The resulting law of motion of the vector of capital positions is

kt+1 = MR̃tkt

First-Best Capital Reallocation If we ask what transition matrix M would

maximize long-run capital growth in the economy without imposing any restrictions,

we �nd a familiar result:

Proposition 6. (First-Best Reallocations) The optimal transition matrix is time-
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invariant and has identical columns

M∗ =

 κ∗1 · · · κ∗1
· · · · · · · · ·
κ∗N · · · κ∗N

 (16)

where (κ∗1, ..., κ
∗
N) are the optimal fractions of aggregate capital to be invested in

opportunities 1 to N that we characterized in Proposition 2.

Proof. The matrix M∗ implements the �rst-best allocation characterized in

Proposition 2 for any initial vector of capital holdings kt.

This hints at what kind of dynamics policy should aim to encourage: since it is

desirable for capital to be allocated in constant proportions, policy should aim to

encourage dynamics that undo the ine�cient boom-bust dynamics that arise in the

decentralized equilibrium.

However, it is unlikely that the four phenomena described above will give rise

to these optimal dynamics in practice. Let us thus investigate two alternative

scenarios that capture risk type dynamics that are more likely to be encountered

in the real world: random symmetric capital reallocation and state-dependent capital

reallocations that capture momentum and contrarian dynamics of risk types. We

limit our attention to two risk types I = {1, 2} to obtain simple analytic results.

4.1 Symmetric Capital Reallocations

Symmetric shocks can be interpreted in the four ways listed in the beginning of the

section as long as the capital reallocations are independent from the realization of

aggregate shocks, i.e. as long as idiosyncratic shocks to banker types, changes in the

set of �nancial institutions who are active, and the reallocations driven by policy

or by external investors are determined by factors unrelated to the aggregate shock

process.

For two risk types, symmetric capital reallocations are described by a transition

probability µ ∈ (0, 1] and a transition matrix

M sym =

(
1− µ µ

µ 1− µ

)

This matrix is no longer able to implement the optimal capital allocation that we

described above. However, under random reallocation, we can make two interesting
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observations:

Proposition 7. (Symmetric Reallocations, Two Risk Types) (i) Introducing

a small transition probability µ > 0 is desirable if κt < min {κ∗, 1/2} or κt >

max {κ∗, 1/2} and undesirable for κt ∈ (κ∗, 1/2);

(ii) The optimal transition probability µ is a function µ(κt) of the relative capital

allocation κt at time t; for κt 6= 1/2 it is given by

µ∗ (κt) = min {max {0, µ (κt)} , 1} where µ (κt) =
κt − κ∗

1− 2κt
(17)

For κt = 1/2, any µ is optimal since random symmetric reallocation does not a�ect

the allocation of capital and is irrelevant.

Proof. We drop the time subscript and observe that for a given capital allocation κ,

the transition probability µ that maximizes geometric mean growth in the following

period solves

max
µ∈[0,1]

E
[
ln K̃

]
where K̃ = [(1− µ)κ+ µ (1− κ)] R̃1 + [µκ+ (1− µ) (1− κ)] R̃2

The optimality condition to this problem is

dE
[
ln K̃

]
dµ

=
p (1− 2κ)

(
RL

1 −RL
2

)
KL

+
(1− p) (1− 2κ)

(
RH

1 −RH
2

)
KH

= 0

Evaluating the derivative at µ = 0, we obtain

dE
[
ln K̃

]
dµ

∣∣∣∣∣∣
µ=0

= Θ (1− 2κ) (κ− κ∗) where Θ < 0

This immediately delivers point (i).

For point (ii), the optimality condition is satis�ed for any µ if κ = 1/2. Otherwise,

substituting for KL and KH delivers an optimality condition for µ that depends on

κ and that be solved for the expression µ(κt) in (17). If µ(κt) is outside the unit

interval, then the corner of the interval [0, 1] that is closest to µ(κt) represents the

constrained optimum transition probability, since the objective function is monotonic

in µ in the relevant range. This is captured by the min-max expression in equation

(17).
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Figure 4: Bene�t of random symmetric reallocation dE[ln K̃]/dµ at µ = 0

To further illustrate the results of the Proposition, the e�ect of introducing a small

probability of symmetric reallocation is depicted in Figure 4. The �gure evaluates

dE[ln K̃]/dµ at µ = 0 over the domain κ ∈ [0, 1] for the case κ∗ < 1/2. If the capital

allocation is close to the corners of the interval [0, 1] then it is far from the e�cient

value κ∗ and symmetric reallocation is desirable. By contrast, if the capital allocation

is in the interval (κ∗, 1/2), symmetric reallocation moves the capital allocation away

from κ∗ towards 1/2, which is undesirable. Intuitively, symmetric reallocation leads

to mean regression in risk types that pushes the capital shares towards 1/2. This is

desirable if it brings the capital shares closer to the optimum κ∗.

Simulation 3

(E�ects of Symmetric Capital Reallocations) We incorporating symmetric

capital reallocation dynamics into the example of Simulation 1. Figure 5 compares

the wealth dynamics without capital reallocations (solid lines) to those with capital

reallocations (dashed lines) for the two risk types for µ = 5%. It can be seen that

the dynamics with symmetric capital reallocations are generally less extreme (top

panel) and exhibit smaller variation in relative capital shares (bottom panel). In the

simulation, the aggregate capital stock also ends up growing at a slightly higher rate

since the allocation of capital to the risky type is, on average, closer to its optimum

κ∗.

4.2 State-Dependent Capital Reallocations

In �nancial markets, capital reallocations are frequently correlated with the aggregate

state of nature. For example, aggregate shocks may lead to systematic changes in

management that a�ect the set of investment opportunities of banks, or to mergers,

take-overs, exit decisions that systematically a�ect the set of �nancial institutions that
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continues operation, or to systematic reallocations of funds by external investors who

either chase momentum or act as contrarians. We capture such e�ects by assuming

a stochastic transition matrix M̃t that is a function of the aggregate state of nature.

The law of motion for the vector of capital positions is then

kt+1 = M̃tR̃tkt

By imposing further structure on the transition matrices, state-dependent capital

reallocation allows us to capture the following interesting phenomena that are of

particular interest in �nancial markets. Let us denote by ML and MH the transition

matrices in the low and high state.

De�nition 3. (Momentum) We call a state-dependent capital reallocation process

momentum-based if the matrix ML is upper-triangular and MH is lower-triangular.

(Contrarian) Conversely, we call it contrarian if the matrix ML is lower-

triangular and MH is upper-triangular.

A momentum-based reallocation process implies that capital is, on average,

reallocated from risk types that have just performed relatively poorly to risk types

that have just performed relatively well. In practice, momentum-based reallocations

of capital can occur because traders or managers who have performed well are

promoted whereas those who under-perform are replaced, because �rm exit and

corporate take-overs are often concentrated on underperforming �rms, or because

funds are moved by external investors who chase momentum. A contrarian shock

process implies the opposite: capital is reallocated from well-performing strategies to

recently under-performing strategies. This type of shock process is somewhat rarer

in �nancial markets.

Two Risk Types We introduce momentum-based and contrarian reallocation

processes in our example with two risk types by considering the two matrices

M+ =

(
1− ν+ 0

ν+ 1

)
and M− =

(
1 ν−

0 1− ν−

)
(18)

The transition matrix M+ moves a fraction ν+ ∈ (0, 1] of capital from risk type 1 to

type 2 and therefore increases the average riskiness of the economy. The matrix M−

reallocates a fraction ν− ∈ (0, 1] from type 2 to type 1 and decreases the aggregate

riskiness of the economy. A momentum-based reallocation shock process implies that
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ML = M− and MH = M+; conversely, a contrarian shock process implies that

ML = M+ and MH = M−.

Optimal Capital Allocation There is one particular con�guration of triangular

state-contingent transition matrices that preserves optimal capital allocations:

Proposition 8. (Optimal Contrarian Capital Reallocation) Starting from an

optimal capital allocation kt = (κ∗, 1 − κ∗)Kt, the contrarian reallocation matrices

M+ and M− with

ν+ = (1− κ∗)
(

1− RL
2

RL
1

)
and ν− = κ∗

(
1− RH

1

RH
2

)
preserve the optimal capital ratio (κ∗, 1− κ∗) at all times.

Proof. Starting from a capital allocation kt, the capital positions after a low shock

realization is

kt+1 = M+RLkt =

(
1− ν+ 0

ν+ 1

)(
RL

1 0

0 RL
2

)(
κ∗

1− κ∗

)
Kt

=
[
κ∗RL

1 + (1− κ∗)RL
2

]( κ∗

1− κ∗

)
Kt

which is an optimal allocation. A similar result can be veri�ed for M−RHkt.

The role of the transition matrices M+ and M− de�ned in the Proposition is

to precisely undo the di�erential capital growth of the two sectors: a low shock

realization increases the fraction of capital allocated to the low risk strategy, but

the transition matrix M+ undoes the increase by reallocating capital from the low-

risk strategy to the high-risk strategy. Conversely, a high shock realization leads

to disproportionate growth of the high risk strategy, but the transition matrix M−

restores the optimal ratio (κ∗, 1− κ∗).

Momentum and Contrarian Capital Reallocation For allocations that di�er

from the optimal ratio κ∗, it is useful to denote the capital ratio after the period t

shock is realized but before reallocation has taken place by prime variables,

k′t = R̃tkt and κ′t = k′t1/(k
′
t1 + k′t2)

This allows us to establish the following result:
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Lemma 6. The optimal triangular reallocation matrix for given κ′t satis�es

if κ′t ∈ [0, κ∗) then M = M− with ν− =
κ∗−κ′t
1−κ′t

if κ′t = κ∗ then M = IN

if κ′t ∈ (κ∗, 1) then M = M+ with ν+ =
κ′t−κ∗
κ′t

Proof. The proof for the �rst case follows readily from observing that(
1

κ∗−κ′t
1−κ′t

0 1− κ∗−κ′t
1−κ′t

)(
κ′t

1− κ′t

)
=

(
κ∗

1− κ∗

)

The proof of the other two cases is analogous.

In the �rst case of the lemma, κ′t is suboptimally low and it is desirable to increase

it, making it optimal to apply the reallocation matrixM+ with the given value of ν+.

The third case re�ects the opposite situation. Naturally, at κ′t = κ∗, no reallocation

is indicated.

Next let us observe that there are two thresholds κL < κ∗ < κH such that κ′t < κ∗

for St = L and κ′t > κ∗ for St = H for any κt ∈
[
κL, κH

]
. In other words, if κt < κL,

then the capital ratio is su�ciently far below the optimal value κ∗ that it will still be

below κ∗ if the next shock is L; if κt > κH , then the ratio is su�ciently far above the

optimal value κ∗ that it will still be above if the next shock is H. This observation

has the following straightforward implication for the desirability of momentum-based

vs. contrarian capital reallocation processes:

Proposition 9. (State-Dependent Reallocation and Volatility) (i) For κt ∈[
κL, κH

]
, the optimal capital reallocation process is contrarian. For κt < κL, it is

always desirable to apply the transition matrix M+; conversely, for κt > κH it is

always desirable to apply the transition matrix M−, with the optimal transition rates

ν+ and ν− given by Lemma 6.

(ii) For κt ∈
[
κL, κH

]
, contrarian reallocation reduces period-ahead volatility Vt+1

whereas momentum-based reallocation increases period-ahead volatility.

Proof. The proofs follow directly from the lemma and the discussion above.

The proposition captures that it is generally desirable to have contrarian

reallocation for intermediate capital ratios κt ∈
[
κL, κH

]
, and that this reduces

volatiltiy. By contrast, momentum-based reallocation generally increases volatility.

33



However, these results no longer apply if the capital ratio has veered towards one of

the two corners of the unit interval as a result of consecutive shocks that go in the

same direction � in that case, it becomes desirable to move back towards κ∗ no matter

what the prior shock.

The general desirability of contrarian forces for intermediate capital ratios poses

a dilemma, since many of the drivers of idiosyncratic shocks that we described have

an inherent tendency to introduce momentum. Sometimes, the best that policy can

do is to aim to stem against the momentum-based shocks inherent in the �nancial

system.

Simulation 3 (E�ects of Momentum-Based Capital Reallocation) Given the

prevalence of forces that lead to momentum-based reallocation in �nancial markets in

practice, we illustrate their e�ects in a variant of our earlier Simulation 1 that includes

the state-dependent transition matrices MH = M+ and ML = M− as de�ned in

equation (18) where we set ν+ = 5% and ν− such that (1− ν−)
π

= (1− ν+)
(1−π).

Intuitively, momentum reinforces the tendency of our economy to exhibit boom-bust

patterns since the reallocations favor recent high performers and penalize recent poor

performers.

Panel 1 of Figure 6 shows that �uctuations of the high and low risk types are

accentuated by momentum-based reallocation, increasing risk-taking in booms and

reducing it in busts. As a result, panel 2 shows that aggregate capital is more

volatile than it would be in the absence of momentum-based reallocation. In the given

example, a long series of positive shocks raises the capital stock that is allocated to

high risk types to close to 100% towards the end of the simulation period as indicated

in panel 3. However, the momentum-based reallocation also implies that a fraction

ν− of capital is returned to the low risk type after a bad shock strikes at the end

of the simulation period, which prevents the low type from going extinct in the long

run.

5 Extensions

5.1 Improvements in Risk-Sharing / Financial Development

This section relaxes our ealier assumption on incomplete risk markets by considering

the case that bankers can invest up to a fraction φ of their net worth into the

investment opportunities of other bankers. The microfoundation is that bankers need

to invest a minimum fraction 1− φ of their net worth in their own set of investment
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opportunities to guarantee proper e�ort. The case φ = 0 nest our baseline model.

Increases in φ beyond zero capture a form of �nancial development.

We �nd the following results for this extension:

Proposition 10 (Financial Development). (i) As long as φ < 1 − κi∀i, all bankers
diversify a fraction φ of their net worth by investing in the investment opportunities

of other risk types. Their geometric mean return increases, but they do not achieve

the optimal risk allocation. The economy continues to experience volatility and

procyclicality.

(ii) For min {1− κi} ≤ φ < max {1− κi}, those risk types i for whom φ ≥ 1− κi
can achieve the �rst-best allocation. Their geometric mean return exceeds that of all

other risk types, and the other risk types for whom φ < 1− κi will go extinct. In the

long run, the economy achieves the �rst-best.

(iii) For φ ≥ max {1− κi}, all risk types will invest in the optimal capital

allocation and the economy immediately achieves the �rst-best.

Proof. See appendix.

Intuitively, �nancial development allows bankers to improve risk-sharing and

overcome the incompleteness in risk markets. If the fraction κi that should optimally

be allocated to a given type is high enough, κi ≥ 1 − φ, then bankers of this type

simply keep κi in their own investment opportunities and allocate the remaining 1−κi
to other risk types. This allows them to implement the optimal risk allocation in the

economy.

6 Policy Interventions

Our evolutionary framework creates a novel role for public policy interventions that

is quite distinct from the way policy is traditionally evaluated � policy a�ects the

economy through dynamic changes in the composition of the �nancial sector rather

than by constraining the static choice set of agents. Risk-taking dynamics are driven

primarily by such compositional e�ects, i.e. by changes in the relative wealth of

di�erent types of bankers. In the simple framework described so far, the �rst welfare

theorem holds � private agents engage in optimizing behavior and do not a�ect each

other � so there is no role for policy intervention to improve welfare. However, it is

useful to analyze the e�ects of di�erent policy interventions in our baseline model to

provide lessons for more general versions of the model, for example the ones in which

the �nancial sector creates spillovers to the real economy.
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We start by considering restrictions on the set S∗ of investment strategies, for

example in the form of limits on risk-taking. Formally, this corresponds to imposing

a ceiling V̄ on the volatility of investment opportunities of bankers. We denote the

remaining set of investment opportunities by S∗ = {S ∈ Si : Std(RS) ≤ V̄ } and
assume that it is non-empty.

We can then decompose the e�ects of limits on risk-taking in the following manner:

Corollary 1. (Limits on risk-taking) Imposing a ceiling V̄ on risk-taking for a

given period t leads to

(i) the static e�ect of reducing period t risk-taking, which lowers one period-ahead

volatility to

Vt+1 = k′t ·min
{
V̄ , ln R̃,

}
(ii) the dynamic e�ect of changing the composition of capital in the following period,

(ii.a) which lowers future volatilities Vt+2, Vt+3 etc. if the period t shock is high;

(ii.b) which raises future volatilities Vt+2, Vt+3 etc. if the period t shock is low.

Proof. The proof of part (i) is immediate. For the proof of part (ii.a), observe that

a high shock increases the riskiness of the capital stock distribution. It follows from

Proposition 1 that future volatilities are higher. For part (ii.b), a low shock reduces

the riskiness of the distribution of the capital stock, and the opposite conclusions

apply.

The static e�ect in part (i) of the corollary corresponds to the usual model of

�nancial regulation as restricting the choice set of economic agents. By contrast,

the e�ects in part (ii) of the corollary represent dynamic e�ects that are not present

in traditional models of homogenous agents and that are introduced by dynamic

changes in the composition of the �nancial sector, i.e. in how capital is allocated

across di�erent risk types. As illustrated by the corollary, these dynamic e�ects of

regulation have a long-lasting impact on the volatility of the sector.

Furthermore, as described in points (ii.a) and (ii.b), the impact of the dynamic

e�ects on future volatility is counter-cyclical � they reduce volatility following high

shocks and increase it following low shocks. In other words, they counteract

the natural pro-cyclical tendencies of the �nancial system that are described in

Proposition 1.

In practice, such changes in the composition of the �nancial sector play a major

role during booms and busts in the �nancial sector. For example, most of the

�nancial institutions that went bust during the Financial Crisis of 2008/09, such
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as Countrywide, Washington Mutual, etc. were among the fastest-growing players in

the �nancial sector � in large part due ot their aggressive risk-taking practices during

the upswing.

Given the importance of the dynamic e�ects in Corollary 1, it is natural that

regulators in some jurisdictions have directly imposed limits on the growth of �nancial

institutions. Limits on asset growth are often viewed as an archaic intstrument since

they are di�cult to motivate in standard models of regulation. In an evolutionary

framework, by contrast, their role is straightforward: they ensure that the �nancial

sector does not come to be dominated by the riskiest types. This has a stabilizing

e�ect on the economy, again without reducing the utility of bankers.

Let us return to our example with two types of bankers only. Formally, we assume

a restriction on the capital growth of bankers to a factor G over any n time periods,

or
∏t

k=t−n+1Rst < G. This implications of such regulation are as follows:

Corollary 2. (Limits on Asset Growth) A restriction to grow at most by a factor

G over n time periods,

(i) will never a�ect low risk types with s s.t.
(
RH
s

)n ≤ G,

(ii) but will restrict the risk-taking of high risk types s if their cumulative return

over the previous m periods satis�es

t∏
k=t−m+1

Rsk > G/(R̄n−m−1RH
s ) for some m < n, (19)

(iii) and lowers the volatility of the capital stock Vt+1 if condition (19) is satis�ed for

any risk type.

Proof. Part (i) holds since a banker satisfying the condition will meet the growth

restriction even after n positive aggregate shocks. For part (ii), observe that if

condition (19) holds, then the return of type s over the preceding m periods is

su�ciently high that another high return realization of strategy s would violate the

growth limit, even if the banker's funds are parked in the risk-free strategy for the

remaining n − m − 1 periods. In that case, type s bankers are forced to switch to

a safer strategy s′ < s, which reduces the one-period ahead volatility of the capital

stock Vt+1, proving point (iii).

Aside from the two policy measures discussed in Corollaries 1 and 2 that directly

a�ect the set of permissible investment strategies of bankers, the risk composition of
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the �nancial sector is a�ected by many other public policy measures. For example,

it has been argued that low interest rates may favor high-risk investment strategies

and shift bankers in that direction, with long-lasting e�ects on the composition of the

�nancial sector.

Capital Reallocations: Policy can also be aimed at a�ecting the capital

reallocation process. Examples include:

• Competition policy that favors take-overs and management changes accelerates

momentum-based selection and thus tends to increase aggregate �nancial sector

volatility. This e�ect is absent in traditional economic models.

� conservative, boring banks are desirable

• Arranged take-overs, e.g. during �nancial crises

The commonality of the described policy interventions is that they all work primarily

by a�ecting the dynamic composition of the �nancial sector, not the static incentives.

This e�ect has not been systematically studied in the existing literature.

7 Conclusion

In short, our paper follows the evolutionary dynamics of heterogeneous bankers in a

traditional economic model based on individual optimization in order to leverage the

bene�ts of both approaches and develop more robust models of �nancial markets and

�nancial policies. We �nd that an explicit focus on these dynamics delivers a number

of novel insights about both positive dynamics in �nancial markets and the e�ects of

public policy interventions.
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