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Abstract

Revealed preference restrictions provide testable implications for many theories of con-
sumption behavior. Often, empirical evidence finds violations to these conditions which raises
the question of how severe these are. The severity of the violations does not only depend on
the extent of the observed deviations, but also on the sensitivity of the test to detect them.
This paper provides a joint treatment for the severity of the violations and the sensitivity
of the test in discrete choice environments by assessing the amount of information about
preferences that can be inferred from data while allowing for errors. The proposed approach
allows to compare across (limited) data sets and different models of behavior, addressing the
concern raised by De Clippel and Rozen (2014) about extensibility of bounded rationality
models.

1 Introduction

Axiomatizations provide testable implications for many theories of consumption, but often
empirical evidence finds violations to these conditions leading to the rejection of the model. This
has been extensively studied with respect to the utility maximization model by either providing
measures of the extent of the observed violations (if any), or proposing alternative models of
behavior. This paper extends the predictive approach proposed by Boccardi (2017) to discrete
choice environments where menus need not to have a budget structure. This extension allows the
researcher to asses the performance across behavioral models and within models for different data
sets by providing a measure that accounts for: (i) the severity of the violations (if any); (ii) the
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amount of preference information that can be inferred from the data and therefore the sensitivity
of the test; and (iii) the extensibility of the predictions for unobserved environments.

A series of goodness of fit measures have been proposed in the literature to assess the severity
of the violations, if any, for the utility maximization model. Some of these measures rely on the
number of violations (Famulari (1995), Houtman and Maks (1985)) but these do not provide
a sense of the significance of such deviations. Cost based measures size the significance of the
departures from rationality relying on the budget structure of the menus (Afriat (1967), Varian
(1990)) but these are extremely sensitive to one ‘bad’ violation and cannot be extended to other
menu settings. ‘Hybrid’ measures reflect both, the extent and number of violations (Echenique
et al. (2011), Dean and Martin (2016)) relying on the budget structure of the menus. Apesteguia
and Ballester (2015) proposes a measure of the severity of the violations in terms of the welfare
loss, recovering the preference relation that minimizes that metric. This approach does not rely
on the budget set structure of the menus. I show that the procedure proposed by Apesteguia
and Ballester (2015) recovers the true underlying preferences when choices are observed from a
sufficiently informative subset of all possible menus. Moreover, it can be employed to recover the
fundamentals for other theories of consumption.

For the utility maximization model, revealed preference theory provides an axiomatization
that allows to test for the consistency of the model even in limited data sets. However, the
axiomatization for many bounded rationality models assume complete datasets. When dealing
with empirical datasets it is not possible to control how exhaustive these are, and for experiments
the data requirements may be overwhelming. Dealing with incomplete datasets implies that the
information recovered from choices may not be uniquely pinned down resulting in (potential)
prediction uncertainty. I refer to this source uncertainty as ‘model uncertainty’. This multiplicity
results in low power when testing the theory, since the relative size of consistent behavior may
not be restrictive enough. Boccardi (2017) shows that model uncertainty reflects the likelihood to
detect violations to the model if behavior is not generated by it, conditional on observed behavior.
This is important because standard measures of power fail to account for the actual pattern of
choices observed, masking significant differences on the amount of information that can be learned
from data. Intuitively, consider a decision maker choosing from {a, b, c} and {a, c} and assume
utility maximization model. This design is ex-ante powerful since the probability of detecting a
violation if choices were to be generated uniformly at random is 1

3
. However, if b is chosen from

{a, b, c} then any choice from {a, c} would be consistent. An ex-ante assessment of power is
incapable of capturing this difference, while a conditional power assessment is meant to capture
it.

To measure the predictive performance of the model, I first recover the revealed preference
information from data by minimizing an Apesteguia and Ballester (2015)-like measure of incon-
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sistency. Then, I predict behavior in each menu for each possible choice rule that is consistency
with the recovered revealed preference information. The (potential) multiplicity of choice rules
is incorporated in predictions by assuming that each such rule is equally likely to be the true
underlying process that generated behavior, reflecting model uncertainty. The difference between
predicted and observed choices provides an estimate for the error process that rationalizes such
choice rule, reflecting a second source of uncertainty due to possible deviations from the considered
theory. Therefore, this construction, reflects two sources of uncertainty when predicting behavior:
(i) ‘model uncertainty’ and (ii) ‘error uncertainty’. I measure the performance of the model given
observed behavior as a negative function of the uncertainty to predict behavior in each possible
menu given observed choices.

I show the performance of the proposed measure in simulation exercises. The predictive
precision measure reflects both the severity of the observed deviations (as a reflection of the
assumed error process) and the amount of information that can be inferred from data. Additionally,
this measure has power to differentiate rational behavior with errors from random behavior as long
as there is enough information to identify underlying preferences (more than 25% of possible menus
are observed). Finally, I show that the recovered errors are significantly different from a random
process for the observed menus.

For the data on choices under risk from Harless and Camerer (1994) I show how the proposed
approach can be used for model selection. The uncertainty measure relates to the approach
adopted by the authors by favoring more ’parsimonious’ models, i.e. models that restrict the
pattern of choices that they allow for.

By allowing for multiple choices from the same menu to be observed with different frequencies
and accounting for these when inferring information from data, the proposed approach also accom-
modates for theories that rely on a stochastic choice structure of the data. Finally, I discuss how
the proposed approach can be used for bounded rationality models and for the comparison between
these and the utility maximization model; addressing some of the concerns raised by De Clippel
and Rozen (2014) for bounded rationality models by studying their empirical performance.

Outline Next section introduces the predictive ability approach for the context of discrete choice
environments by constructing the predictive distribution. Section 2 also proposed a measure of
the predictive ability of the model based on the information content of predictive distribution.
Section 4 shows the application of the proposed approach to the data gathered in Harless and
Camerer (1994) for models of generalized expected utility. Section 5 shows the power of the
proposed measures in a simulation exercise for different error processes and probability of observing
choices from any given menu. Section 3 shows the extension of the predictive approach to bounded
rationality models, showing that, the proposed measures can aid on the selection of the theory to
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model observed behavior. Section 7 offers a brief summary of the relevant literature.

2 Predictive Ability

A decision maker (DM) faces a series of decision problems in the form of a menu of alternatives
and she must choose one alternative from the menu. She is assumed to be an utility maximizer:
presented with a menu, she chooses the maximal alternative given her own preference order. As
expected, preferences are not observed but choices are. Adopting a revealed preference approach,
the model imposes acyclicality of the preference information revealed from data. In this section I
develop the predictive ability methodology for the utility maximization model; but this approach
extends to other behavioral models.

2.1 Set-up

Let X be the universe of alternatives with |X| = k < ∞. The DM faces a sequence of
decision problems where she must choose an alternative from a set A ⊆ X with |A| ≥ 2 and
let 2X∗ ≡

{
A ∈ 2X : |A| ≥ 2

}
be the set of all such possible menus.1 The behavior of a DM

is summarized by a collection of observations f ; where f(a,A) denotes de frequency with which
the DM faced menu A and chose a. I define O as the collection of all possible observations, i.e.
O ≡

{
(a,A) such that a ∈ A and A ⊆ 2X∗}. This set-up explicitly allows for incomplete data

sets.
The utility maximization model establishes that there exists a preference relation P that is

a linear order on X, that is a asymmetric, transitive and complete binary relation. The empirical
implications of the model then can be summarized on the set P of all possible linear orders on X.
A collection of observations f is said to be rationalizable given P if all observations in the data
can be generated by the maximization of the same preference relation, that is, if there exists a
P ∈ P such that f(a,A) > 0 implies that aPx for all x ∈ A. Formally,

Definition 1 (Rationalizable) Let X be the universe of alternatives with |X| = k < ∞ and
let P be the set of all linear orders on X. Let f be the observed collection of observations. f
is said to be rationalized by a preference relation P ∈ P if f(a,A) > 0 implies that aPx for all
x ∈ A and all A ∈ A.

For incomplete data sets, there may be more than one preference relation that rationalizes the
data. The degree of identification of preferences can be characterized in terms of the cardinality
of P(f). Formally,

1Note that excluding the empty set and all menus of one element can be done without loss of generality for any complete theory,
and it is done since no information can be inferred from such observations. Note that the presented approach is can be equivalently
employed for a complete data set f̄ where f̄(∅, ∅) = 0 and f(a,A) =

f̄(a,A)∑
a∈X f̄(a,a)

.
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Definition 2 (Identification of Preferences) Let P(f) be the preference information inferred
from data,

P(f) ≡ {P ∈ P : f(a,A) > 0⇒ aPx for all x ∈ A, for all A ∈ A}

then

1. If |P(f)| = 1, preferences are ’just identified’ or ’uniquely identified’;

2. If |P(f)| > 1, then preferences are ’not uniquely identified’ or there is a ’multiplicity’
of binary relations that rationalize the data; and

3. If |P(f)| = 0, observed data is ’not rationalizable’ or ’inconsistent’.

Remark 1 If A = 2X∗, then |P(f)| ≤ 1.2 However, if A ⊂ 2X∗ then |P(f)| ∈ {0, 1, 2, . . . }.

If preferences are just identified, predictions are unique for any menu. If |P(f)| > 1 there is
uncertainty when predicting behavior for some unobserved menus for which different linear orders
in P(f) select different alternatives as maximals. I refer to this uncertainty as ‘model uncertainty’
and it is studied in Section 2.2. The case when data is not rationalizable, |P(f)| = 0, is addressed
in Section 2.3 extending the approach to allow for errors.

2.2 Model Uncertainty

Let the collection of observations be rationalizable (P(f) 6= ∅). Then, there is a (potentially
incomplete) binary relation that can directly be inferred from data f . Formally,

Definition 3 (Binary relation inferred from f) The binary relation inferred from f , R(f), is
given by

R(f) ∈ X×X : (x, y) ∈ R(f)⇔ f(x,A) > 0 for x, y ∈ A and some A ∈ A

Note that R(f) needs not to be an element of P since it (i) may not be complete; and/or
(ii) may not be consistent with the model. Then, a collection of observations f is rationalizable
in P if there exists an extension3, Rext(f), such that Rext(f) ∈ P . Let Rext(f) be the set of all
such extensions. Each order in Rext(f), predicts that the chosen alternative is maximal according
to that order, that is

f̂(a,A) = f̂2X∗(A)× 1
[
a Rext(f) b ∀b ∈ A

]
(1)

2Observing all subsets of X is a strong condition, note milder conditions may suffice depending on the theory under condition. For
example, for utility maximization this condition can be swap to a condition imposing that all menus of two and three elements are
observed.

3Rext is an ’extension’ of R if R ⊆ Rext.
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where f̂2X∗(A) is the expected frequency of menu A in O. Unless further information is provided,
I assume that each menu in 2X∗ has, when constructing predictions, ex-ante equal likelihood.
Formally,

Assumption 1 (Uniform distribution across menus) All menus A ∈ 2X∗ are ’equally likely’
for the sake of predictions, i.e. f̂2X∗(A) = 1

2|X|−|X|−1
= γX.

Definitions are presented for the general case unless otherwise stated. If there exists a unique
extension to the preference information inferred from data that rationalizes behavior, |Rext(f)| =
1, predictions are uniquely defined by equation (1) for all menus. Otherwise predictions are not
unique for some menu A. Consider the following example.

Example 1 (Predictions with ’multiplicity’ of preferences that rationalize f) Let X ≡
{a, b, c} and f(a, {a, b}) = 1

2
, f(c, {b, c}) = 1

2
. Given f , |Rext(f)| = 2 since R(f) ≡

{(a, b); (c, b)}; and there exists two possible extensions Rext
1 (f) = {(a, b); (c, b); (a, c)} and

Rext
2 (f) = {(a, b); (c, b); (c, a)}. Consider the predictions for A = {a, c}, f̂Rext1 (f)(a,A) =

f̂2X∗(A) > 0; while f̂Rext2 (f)(a,A) = 0.

Without additional information, I assume that all possible extensions of the revealed preference
information are equally likely. Formally,

Definition 4 (Predictions for 2X∗) Given a collection of observations f , predictions are given
by

f̂R(f)(a,A) =
γf (a,A)

r
× f̂2X∗(A) (2)

for all a ∈ A with A ∈ 2X∗ and where γf (a,A) ≡
∑

Ri∈Rext(f) 1[a Ri b ∀ b ∈ A \ {a}], with∑
A∈2X∗ f̂2X∗(A) = 1 and r = |Rext(f)|.

Note that γf (a,A)

r
is the relative likelihood of a being maximal according to some well behaved

preference relation in A that extends the information inferred from the observed collection f . If
no order in Rext(f) sets a ∈ A as the maximal element in A, then γf (a,A) = 0. On the other
end, if all extensions set a as the maximal element in A then γf (a,A) = r. The following example
illustrates this construction.

Example 2 (Predictions with RT (f) not complete) Let X = {a, b, c, d, e} and let
f(a, {a, b, c}) = α and f(d, {a, c, d, e}) = 1 − α with α > 0. The inferred preference rela-
tion from data is given by R(f) = {(a, b); (a, c); (d, a); (d, c); (d, e)} and its transitive extension
is given by RT (f) = {(a, b); (a, c); (d, a); (d, c); (d, e); (d,b)}, which is not complete. Then

• f̂(d,Ad) = f̂2X∗(Ad) with Ad = {A ∈ 2X∗ : d ∈ A}

6



• f̂(a,Aa∗) = f̂2X∗(Aa∗) with Aa∗ = {A ∈ 2X∗ : a ∈ A and {d, e} ∩ A = ∅}

However predictions for all other subsets are not unique. Out of the 120 possible linear orders on
X only 8 extend RT (f); i.e. |Rext(f)| = 8.4 Consider for example A = {b, c, e}, predictions are
given by,

f̂R(f)(b, A) =
1

4
f̂2X∗(A); f̂R(f)(c, A) =

1

4
f̂2X∗(A) and f̂R(f)(e, A) =

1

2
f̂2X∗(A).

2.2.1 ’Model Uncertainty’

Definition 4 provides the machinery to construct predictions over all possible menus. If
preferences are just identified, then there is no model uncertainty. On the other extreme, there
is complete uncertainty or no information to predict behavior when all alternatives in each menu
are predicted to be seen with the same probability; that is f̂(x,A) = 1

|A|γX for all x ∈ A and all
A ∈ 2X∗. This can only occurs if f = ∅. Any observation provides information to narrow down
predictions. The following example illustrates how adding more observations reduces predictive
uncertainty.

Example 3 (From no information to zero model uncertainty) Let X ≡ {a, b, c}. Under
assumption 1, if f = ∅ then

f̂(a,A) =
1

|A|
γX =

1

|A|
1

4
∀a ∈ A and all A ∈ 2X∗

Any observation improves predictions by reducing |Rext(f)|. For example, consider f(a, {a, b}) =

1, and f(x,A) = 0 for all x ∈ A and all A ∈ 2X∗. Under assumption 1 predictions update to

• f̂(a, {a, b}) = 1
4
and f̂(b, {a, b}) = 0;

• f̂(x,A) = 0 for x ∈ A and A ∈ {{a, c}; {b, c}} and

• f̂(a, {a, b, c}) = 2
3

1
4

= 1
6
, f̂(c, {a, b, c}) = 1

3
1
4

= 1
12

and f̂(b, {a, b, c}) = 0

On the other extreme consider

f ′ ≡
{
f(a, {a, b}) =

1

3
; f(a, {a, c}) =

1

3
; f(b, {b, c}) =

1

3

}
The only complete and transitive preference relation that rationalizes these observations is given
by Rext

f = (a, b, c); and predictions are given by

4Namely these linear orders are given by Rext1 (f) = (d, e, a, b, c), Rext2 (f) = (d, e, a, c, b), Rext3 (f) = (d, a, e, b, c), Rext4 (f) =
(d, a, e, c, b), Rext5 (f) = (d, a, b, c, e), Rext6 (f) = (d, a, b, e, c), Rext7 (f) = (d, a, c, b, e) and Rext8 (f) = (d, a, c, e, b).
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• f̂(a,A) = 1
4
and f̂(x,A) = 0 for all A ∈ 2X∗ such that a ∈ A and x ∈ A \ {a} and

• f̂(b, {b, c}) = 1
4
and f̂(c, {b, c}) = 0

The example illustrates how as the number of observations increases – measured by
|{A∈2X∗:

∑
a∈A f(a,A)>0}|

2X−|X|−1
–, the uncertainty to predict behavior within menus (weakly) diminishes.

The uncertainty for predicting behavior for each given menu can be size by the entropy of the
predictive distribution, that is,

Entropy(f̂R(f)|A) = − 1

f̂2X∗(A)

[∑
a∈A

f̂R(f)(a,A)ln
(
f̂R(f)(a,A)

)]
+ ln

(
f̂2X∗(A)

)
= −

∑
a∈A

γf (a,A)

r
ln

(
γf (a,A)

r

)

Example (Example 3 continued) For Example 3 the case of ’no information’ corresponds to
the case of ’maximal entropy’, i.e. if f̂R(f)(a,A) = 1

|A|γX for all a ∈ A, then f̂R(f)(a,A|A) =
f̂(a,A)

f̂
2X∗ (A)

= 1
|A| is a uniform distribution over the alternatives in menu A, and its entropy is maximal,

since Entropy(f̂R(f)|A) = H(f̂R(f)|A) =
∑

a∈A
1
|A| ln(|A|) = ln(|A|).

When preferences are just identified, then f̂R(f)(a,A) = f̂2X∗(A) for a ∈ Amaximal according
to inferred preferences, and f̂(x,A) = 0 for x ∈ A \ {a}. In this case the entropy is zero, since
Entropy(f̂R(f)|A) = H(f̂R(f)|A) =

∑
x∈A\{a} 0× ln(0) + 1× ln(1) = 0.

An intermediate case is, for example, when f(a, {a, b}) = 1. For this case H(f̂R(f)|{a, b}) =

0, H(f̂R(f)|{a, c}) = H(f̂R(f)|{b, c}) = ln(|A|) = ln(2) while H(f̂R(f)|{a, b, c}) = −2
3
ln
(

2
3

)
−

1
3
ln
(

1
3

)
= ln(3)− 2

3
ln(2) < ln(3).

Overall uncertainty is defined as the entropy of the predictive distribution over O.

Definition 5 (’Overall Entropy’) Let f be a collection of observations and let f̂R(f) be the
predictive distribution as given in Definition 4 for any menu A ∈ 2X∗. Then the ’Overall Entropy’
is defined as

H(f̂R(f)) ≡ Entropy(f̂R(f)) = −
∑
A∈2X∗

∑
a∈A

f̂R(f)(a,A)ln
(
f̂R(f)(a,A)

)
.

Proposition 1 shows the relation between the entropy of the predictive distribution for each
menu A, and the overall entropy of the predictive distribution.
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Proposition 1 (’Menu Entropy’ and ’Overall Entropy’) Let f̂R(f) be the predicted distri-
bution of choices constructed as in Definition 4 Then,

H(f̂R(f)) = Ef̂
2X∗

[
H(f̂R(f)|A)

]
− Ef̂

2X∗

[
ln(f̂2X∗)

]
= Ef̂

2X∗

[
H(f̂R(f)|A)

]
+H(f̂2X∗)

where Ef̂
2X∗

[·] it is the expectation with respect to the probability distribution over menus for the

sake of prediction, i.e. Ef̂
2X∗ (A) [X(A)] =

∑
A∈2X∗ f̂2X∗X(A).

Otherwise stated all proofs are relegated to Appendix A.
Under Assumption 1, Equation (3) collapses to

H(f̂R(f)) = γX

[ ∑
A∈2X∗

∑
a∈A

γf (a,A)

r
ln

(
γf (a,A)

r

)]
+ ln γX

Note that, as defined above, the Overall Entropy reflects H(f̂2X∗(A)) which is not in itself a
source of uncertainty. This is due to the structure of the construction of the predictive distribution
to reflect the uncertainty to predict behavior for all menus. Moreover, H(f̂2X∗(A)) changes with
the number of alternatives in X irrespective of the information contained in the collection of
observations f . I normalize the entropy to only reflect changes in Ef̂

2X∗

[
H(f̂R(f)|A)

]
and lie in

the interval [0, 1]. Formally,

Definition 6 (’Normalized Entropy’) Let the conditions be given as in Definition 5. The
’Normalized Entropy’ is given by

NEX(f̂R(f)) =
H(f̂R(f))−H(f̂2X∗)

MEX −H(f̂f=∅(A))
=
Ef̂

2X∗ (A)

[
H(f̂R(f)|A)

]
Ef̂f=∅

(A)
[
H(f̂f=∅|A)

]
where MEX = H(f̂f=∅) and

f̂f=∅(a,A) =
1

|A|
γX

for all (a,A) ∈ O.

Remark 2 Under Assumption 1

NEX(f̂R(f)) =

∑
A∈2X∗ H(f̂R(f)|A)∑|X|
n=2C

|X|
n ln (n)

with C |X|n = |X|!
n!(|X|−n)!

.
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Normalized entropy reflects changes in the per-menu-entropy, and their impact depends on the
size of the grand set X; since

∂NEX(f̂R(f))

∂H(f̂R(f)|A)
=

1

Ef̂f=∅
(A)

[
H(f̂f=∅|A)

]2 > 0

for all A ∈ 2X∗.
Additional information that reduces the entropy of one or more menus – in the sense that

reduces the cardinality of the set of extensions– reduces the overall entropy. On one extreme, if
there is no ’model uncertainty’ then NEX(f̂R(f))|’no uncertainty’ = 0; on the other extreme if there
is ’no information’ then NEX(f̂R(f)) = 1. More information either keeps Rext(f) unaltered or
reduces it cardinality by discarding some preferences relations that are not longer consistent with
the observed collection f , therefore reducing uncertainty.

Proposition 2 (Normalized Entropy) Let f be a collection of observations, and f̂R(f) be
the predictive distribution as in Definition 4 and let NEX(f̂R(f)) be the normalized predictive
uncertainty as in Definition 6. Then,

NEX

(
f̂R(f)

)
∈ [0, 1]

2.3 Error Uncertainty

Empirical evidence finds violations supporting the presence of errors/mistakes in consumers’
decisions.5 Errors may occur because of the lack of attention, misunderstanding of the choice
problem, mistakes when selecting the desire alternative, inability to implement the optimal choice
among others. In this paper, I abstract from the source of the error but assume that they may
occur with certain probability. The question remains with respect to how significant and systematic
the observed deviations are and whether they support or not rationality as the model of behavior.
In this section, I extend the approach to allow for error, under the assumption that errors are such
that they assign decreasing probability to alternatives worse ranked by the underlying preference
relation. Formally,

Assumption 2 (Error structure) Let R ⊆ X×X be a complete and transitive preference rela-
tion that generates behavior. For each A ∈ 2X∗, let gR(·, A) : A→ {1, . . . , |A|} be the (injective)
rank function, i.e. gR(a,A) = 1 ⇔ a = m(R, A), gR(a,A) = 2 ⇔ a = m (R, A \m(R, A)),

5From the empirical point of view, several studies have shown the existence of GARP violations in different settings, cross section
data (Blundell et al. (2003), Beatty and Crawford (2011) and Echenique et al. (2011), among others); laboratory experiments (Andreoni
and Miller (2002), Sippel (1997), Choi et al. (2007), among others); as well as in field experiments (for example in Harbaugh et al.
(2001)).
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etc; where x = m(R,X)⇔ xRa for all a ∈ X \ {x}. Then, for all A ∈ 2X∗ the ‘error process’
is assumed to be such that gR(a,A) < gR(b, A) implies ηR(a,A) ≥ ηR(b,A); where η

R
(a,A) is the proba-

bility of a being chosen from set A. Then, the expected frequency distribution over menu A given
preference R is given by

E(f(a,A)R|model|A) = ηR(a,A)

with
∑

a∈A η
R
(a,A) = 1 for all A ∈ 2X∗.

Assumption 2 implicitly defines the (discrete) distribution of the error process. Note that, with
probability ηRm(R,A),A the error is equal to zero, that is, the decision maker chooses the alternative
that maximizes her underlying utility function. Errors are defined as the magnitude of the rank
deviations from optimal choice. Therefore, its maximum value for menu A is |A| − 1 and this is
observed with the lowest probability among all possible values for the error process. In particular,
the implied distribution for the error process by Assumption 2 is given by,

ε = 0 with probability ηR(m(R,A),A)

...

= gR(a,A)− 1 with probability ηR(a,A)

...

= |A| − 1 with probability ηR(b,A) where a R b for all a ∈ A \ {b}.

Assumption 2 relies on menus being countable and does not require a budget structure. Under
this assumption, the expectation of the errors within menu weighted by the probability used for
prediction sake is given by,

Ef̂
2X∗

[
ε(a,A)

]
=

∑
A∈2X∗

f̂2X∗(A)
∑
a∈A

[
gR(a,A)− 1

]
ηR(a,A)

=
∑

(a,A)∈O

|{x ∈ A : xRa}|
(
f̂2X∗(A)× ηR(a,A)

)

Example 4 Let X = {a, b, c} and let R be the underlying complete and preference relation such
that aRbRc. Assume that f̂2X∗(A) = 1

4
for all A ∈ 2X∗, and let the error process be such that,

ηR(a,{a,b,c}) =
5

8
; ηR(b,{a,b,c}) =

1

4
; ηR(c,{a,b,c}) =

1

8
;

ηR(a,{a,b}) = ηR(b,{b,c}) = ηR(a,{a,c}) =
5

7
; ηR(b,{a,b}) = ηR(c,{b,c}) = ηR(a,{a,c}) =

2

7

11



Then

Ef̂
2X∗ (A)

[
ε(a,A)

]
= f̂2X∗({a, b, c})

[
0× 5

8
+ 1× 1

4
+ 2× 1

8

]
+ f̂2X∗({a, b})

[
0× 5

7
+ 1× 2

7

]
+ f̂2X∗({b, c})

[
0× 5

7
+ 1× 2

7

]
+ f̂2X∗({a, c})

[
0× 5

7
+ 1× 2

7

]
=

19

46

The definition for the error process in Assumption 2 coincides with the ‘tremble model’ discussed
in Apesteguia and Ballester (2015) by fTM−pro allowing for menu specific trembles, under the
assumption that the maximal alternative in the menu is chosen with probability greater than 1

2
.

The alternative specifications discussed in Apesteguia and Ballester (2015) can be alternatively
assumed and the identification results and construction proposed in Section 2.4 can be extended
to contemplate these alternative error structures.

2.3.1 Identification of Underlying Preferences

Underlying preferences can be recovered as the ’Swaps Preference’ defined by Apesteguia
and Ballester (2015). Consider the expression for the expectation of the error process now as a
function of a preference relation R.

Ef̂
2X∗

[
εR(a,A)

]
=
∑
A∈2X∗

∑
a∈A

|{x ∈ A : xRa}|
(
f̂2X∗(A)× ηR(a,A)

)
(3)

Under the assumption that all menus are observed with equal probability, i.e. f̂2X∗(A) = γX =
1

2|X|−|X|−1
for all menus A,

Ef
2X∗

[
εR(a,A)

]
= γX

∑
A∈2X∗

∑
a∈A

(
gR(a,A)− 1

)
ηR(a,A)

= γX

( ∑
A∈2X∗

∑
a∈A

gR(a,A)× ηR(a,A)

)
− 1

Assume now that a researcher has observed the collection f generated by R plus an error
process that satisfies Assumption 2; but mistakenly infers that the underlying process generating
the data is R′ with R′ 6= R. Given assumption 2, the researcher is assigning higher probability
to bigger errors. Fixing the observed collection of observations f , I show that any change to the
estimated preference order changes the estimated error, affecting the term

∑
a∈A g

R(a,A)× ηRa,A
in the above expression through gR(a,A). Consider the following example.

12



Example (Example 4 continued) Assume the conditions of Example 4 and let f̂2X∗(A) = 1
4

for all A ∈ 2X∗. In this case the true underlying preferences R is such that aRbRc, and therefore
the expected sum of errors is given by, then

Ef̂
2X∗

[
ε(a,A)

]
=

∑
(a,A)∈O

|{x ∈ A : xRa}|
(
f̂2X∗(A) × ηR(a,A)

)
=

1

4

[
ηR(b,{a,b,c}) + 2ηR(c,{a,b,c}) + ηR(b,{a,b}) + ηR(c,{b,c}) + ηR(c,{a,c})

]
Assume that the researcher mistakenly assumes that the underlying order is given by R′ such that
aR′cR′b, then given the same data generating process, the sum of expected errors is given by

Ef̂
2X∗

[
ε(a,A)′

]
=

∑
(a,A)∈O

|{x ∈ A : xRa}|
(
f̂2X∗(A)× ηR(a,A)

)
=

1

4

[
2ηR(b,{a,b,c}) + ηR(c,{a,b,c}) + ηR(b,{a,b}) + ηR(b,{b,c}) + ηR(c,{a,c})

]
where the difference is given by

Ef̂
2X∗ (A)

[
ε(a,A)′ − ε(a,A)

]
=

1

4

[
ηR(b,{a,b,c}) − ηR(c,{a,b,c}) + ηR(b,{b,c}) − ηR(c,{b,c})

]
Since the underlying generating process is given by R and the error process is consistent with
Assumption 2, ηR(b,{a,b,c}) ≥ ηR(c,{a,b,c}) and ηR(b,{b,c}) ≥ ηR(c,{b,c}) and thus Ef̂

2X∗ (A)

[
ε(a,A)′

]
≥

Ef̂
2X∗ (A)

[
ε(a,A)

]
.

Claim 1 (Identification of Preferences) Let the observed collection f being generated from
preferences R with an error process consistent with Assumption 2, but the researcher mistakenly
assumes that preferences are given by R′, then

Ef̂
2X∗

[
εR
′

(a,A)

]
− Ef̂

2X∗

[
εR(a,A)

]
≥ 0

and the inequality is strict if the process ηX is assumed to be strictly decreasing.

Underlying preferences are therefore identified, and can be estimated from data by minimizing
the empirical counterpart of expression (3). Since f̂2X∗(A) × ηR(a,A) can be understood as the
expected frequency of a being chosen from A; its empirical counterpart is just f(a,A). Now the
empirical counterpart of equation 3 is given by∑

(a,A)∈O

|{x ∈ A : xRa}|f(a,A) (4)

13



and R can be estimated as the minimization of this expression. Therefore, Assumption 2 provides
the rationale for AB ‘swaps index’ and ’swaps preference relation’, namely

I(f) = min
R

∑
(a,A)∈O

f(a,A) |{x ∈ A : xRa}| (5)

R̂ε(f) ∈ argmin
R

∑
(a,A)∈O

f(a,A) |{x ∈ A : xRa}| (6)

The connection between these measures and others proposed in the literature has been studied in
Apesteguia and Ballester (2015).

Example (Example 4 continued) Assume the conditions of Example 4 and let f̂2X∗(A) = 1
4

for all A ∈ 2X∗ and the observed collection f as specified above. There are 6 possible linear orders
that could rationalize the data; let Rijk be the linear order such that iRjRk with i, j, k ∈ X.
Then the swaps index for each of these candidate preference orders are given by,

I(f)|Rabc =
19

46
; I(f)|Racb =

107

124
>

19

46
;

I(f)|Rbac =
121

124
>

19

46
; I(f)|Rbca =

173

124
>

19

46
;

I(f)|Rcab =
159

124
>

19

46
; I(f)|Rcba =

204

124
>

19

46
;

therefore R̂ε(f) = Rabc.

The swaps index defined in equation 5 provides a measure of the inconsistency of the error
process, by reflecting the expectation of the error process.6 Moreover, it can be interpreted as a
measure, in sample, of the certainty to predict behavior based on R̂ε(f) given that there are some
‘mistakes’ that have been made. For the just identified case, the swaps theory deliver a unique
prediction for each of the observed budget sets. However, observed data may not coincide with
the predictions of the data, if I(f) 6= 0. By summarizing the level of inconsistency of observed
data relying solely on the revealed preference information inferred from data, this index provides
a measure of the certainty to predict behavior based on the recovered theory.

The stochastic satisfies P−monotonicity as defined in AB if η(m(R,A),A) >
1
2
for all menus;

therefore the inferred preference relation is a swaps preference and, if all menus are observed
with positive probability, then it is the unique swaps preference of f , as follows from Theorem 1
in Apesteguia and Ballester (2015); and their axiomatization carries through.

6Note that since by construction the error process is assumed to be always positive, the mean (expectation) of the error process
corresponds to the mean absolute deviation.
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2.4 Predictions based on the stochastic extension

The stochastic extension presented above induces a new source of uncertainty which I refer as
’Error Uncertainty’. For each complete and transitive extension of recovered preferences, expected
behavior is a probability distribution on the set of alternatives available in the menu. Based
on this stochastic extension the predictive distribution should reflect both, the uncertainty due
to (potential) partial identification of the underlying preferences –’model uncertainty’–, and the
uncertainty due to possible mistakes –’error uncertainty’–.

In case of incomplete data sets we can only recover η(a,A) for those menus that are observed.
In order to extend the prediction analysis to menus that have not yet been observed, I propose
further structure on the error process assuming that the relative probability of observing different
magnitudes for the error process only depends on the relative ranking of the alternatives and the
size of the menu. Formally,

Assumption 3 (Common relative likelihood of errors (CRLE)) Let ηX :

{0, 1, . . . , |X| − 1} → [0, 1] be an injective and (strictly) decreasing function, i.e.
ηX(n)(>) ≥ ηX(n+ 1).7 Then,

ηR(a,A) =
ηX(gR(a,A)− 1)∑
b∈A η

X(gR(b, A)− 1)

where gR(a,A) is the ranking function as in Assumption 2. Without loss of generality further
assume that

∑|X|−1
i=0 ηX(i) = 1.

The estimation can be performed by employing maximum likelihood methods either depen-
dent on the underlying preference relation, or it can be assumed that there is a unique function
distribution of the error process irrespective of the preference order considered, case in which
η̂XR,f = η̂Xf for all R ∈ Rε(f), and then pool all the observations. This is particularly recom-
mended when the number of observations is small with respect to the number of parameters to
be estimated (|X| − 1); and further assumptions may be required.8

There is a connection between the Inconsistency index for any recovered preference order and
the variance of the process implied by the structure of ηX; under assumptions 2 and 3,

E(I(f)) =

|X|∑
n=2

βn
ηXn

n∑
i=1

(i− 1)ηX(i− 1) (7)

7Note that ηX(n) can be interpreted as the relative likelihood of making errors of size n where the grand set is observed. For this
interpretation to follow though you need to assume that

∑|X|−1
i=0 ηX(i) = 1; normalization that can be done without loss of generality.

8For example, if ηk is not identified and
∑
A∈A

∑|X|
i=k+1 f(x : gR(i, A), A) = 0, then one can impose ηk, ηk+1, . . . , η|X| = 0.

Moreover, before normalization, if ηk is not identified but η̂k−1 = α and η̂k+1 = β with α > β, then η̂k = α+β
2

.
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where βn =
∑

A∈2X∗|f(A)>0 1 [|A| = n] and ηXn =
∑n

i=1 η
X(i − 1). Equation 7 shows that if

ηX(·) is such that the error process assigns higher probability to worse ranked alternatives (i.e.
ηX → UX) then E(I(f)) would also be higher.

The following definition combines the estimation of the error process with Definition 4 to
construct the predictive distribution based on the stochastic extensions.

Definition 7 (Predictive distribution based on ’Stochastic Extension’) Under Assump-
tion 2, let η̂XR,f be the estimation of the error process. Let f be the collection of observations,
with f ⊆ O; then the predictive distribution over O is given by,

f̂
Rε(f)

η̂XR,f
(a,A) = f̂2X∗(A)

 ∑
R∈Rextε (f)

1

|Rext
ε (f)|

η̂XRi,f (g
Ri(a,A)− 1)∑|A|

j=1 η̂
X
Ri,f

(j − 1)


for all (a,A) ∈ O with

Rext
ε (f) = {R ∈ P : ∃Rε(f) ⊆ R with Rε(f) ∈ Rε(f)}

where
Rε(f) = {R ⊂ X×X : R ∈ argmin

R

∑
(a,A)∈O

f(a,A) |{x ∈ A : xRa}|}

Example 5 (’Model uncertainty’) Assume the conditions of Example 4 and let f2X∗(A) = 1
4

for all A ∈ 2X∗. Then, f̂Rε(f)

η̂XR,f
(a,A) = f with R such that aRbRc and

η̂XR,f (i) =


5
8

if i = 0

1
4

if i = 1

1
8

if i = 2

and f̂Rε(f)

η̂XR,f
(a,A) = f .

If the observed collection is given by f ′(a, {a, b}) = 5
7
, f ′(b, {a, b}) = 2

7
, f ′(a, {a, c}) = 5

7

and f ′(c, {a, c}) = 2
7
; then further assumptions are necessary to estimate η̂XR,f . The preference

order recovered is Rf ′ such that aRf ′b and aRf ′c. There are two possible complete and transitive
extensions Rext1

f ′ and Rext2
f ′ such that aRext1

f ′ bRext1
f ′ c and aRext2

f ′ cRext2
f ′ b.
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Further structure (I) One possible assumption is that η̂XR,f (2) = 0 which results in

η̂XR,f (i) =


5
7

if i = 0

2
7

if i = 1

0 if i = 2.

Under this assumption, the predictions for the unseen menus are given by

f̂
Rε(f)

η̂XR,f
(i, {a, b, c}) =


5
7
f({a, b, c}) if i = a

1
7
f({a, b, c}) if i = b

1
7
f({a, b, c}) if i = c

and

f̂
Rε(f)

η̂XR,f
(i, {b, c}) =

1
2
f({b, c}) if i = b

1
2
f({b, c}) if i = c

Further structure (II) An alternative assumption is that η̂XR,f (2) = αη̂XR,f (1) with α ∈ (0, 1).
In this example, if α = .5 we recover the exact distribution when data is complete. Then

f̂
Rε(f)

η̂XR,f
(i, {a, b, c}) =


5
8
f({a, b, c}) if i = a

3
16
f({a, b, c}) if i = b

3
16
f({a, b, c}) if i = c

and

f̂
Rε(f)

η̂XR,f
(i, {b, c}) =

1
2
f({b, c}) if i = b

1
2
f({b, c}) if i = c

if η̂XR,f (2) = αη̂XR,f (1) and α = .5.

If the collection of observations f is rationalizable without error, then Definition 7 coincides
with Definition 4, since |Rε(f)| = 1, extending the prediction for rationalizable data to allow for
mistakes; reflecting not only Model Uncertainty but also Error Uncertainty. The above definition
highlights the two sources of uncertainty when predicting behavior: ’Model Uncertainty’ due to
many possible partial orders that rationalize the data while allowing for error (as long as the
data set is incomplete) and to many possible complete linear orders that extend each partial
order recovered from data; and ’Error Uncertainty’ due to the chance of observing ’mistakes’. In
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particular,

f̂
Rε(f)

η̂XR,f
(a,A) = f̂2X∗(A)


∑

R∈Rextε (f)

1

|Rext
ε (f)|︸ ︷︷ ︸

’Model Uncertainty’

η̂XRi,f (g
Ri(a,A)− 1)∑|A|

j=1 η̂
X
Ri,f

(j − 1)︸ ︷︷ ︸
’Error Uncertainty’

 (8)

2.5 Measuring Predictive Ability

Previous section extends the predictive distribution to reflect the uncertainty due to observed
mistakes. Here I extend the proposed measure to reflect the ’Error uncertainty’, and then I propose
a (positive) measure of ’Predictive Ability’.

Definition 8 (Uncertainty to Predict Behavior: Model and Error Uncertainty) Let
f̂
Rε(f)

η̂XR,f
(a,A) be the predictive distribution as in Definition 7. The ’Prediction Uncertainty’ (PU)

that reflects both model and error uncertainty is given by

PUf ≡ H
(
f̂
Rε(f)

η̂XR,f

)
As in Proposition 1,

PUf = Ef̂
2X∗

[
H
(
f̂
Rε(f)

η̂XR,f
|A
)]

+H(f̂2X∗)

I normalize this measure to remove the dependency with respect to the probability distribution
across menus, formally,

Definition 9 (Normalized PU: Model and Error Uncertainty) Let f̂Rε(f)

η̂XR,f
(a,A) be the pre-

dictive distribution as in Definition 7. The ’Normalized Prediction Uncertainty’ (NPU) that
reflects both model and error uncertainty is given by

NPUf ≡
PUf −H(f̂2X∗)

H(f̂f=∅)−H(f̂2X∗)
=
Ef̂

2X∗

[
H
(
f̂
Rε(f)

η̂XR,f
|A
)]

γX
∑|X|

n=2 C
|X|
n ln (n)

Even when extending the predictive distribution to allow for error, the maximum entropy
corresponds to the case of no information, since it induces a uniform distribution on the menu
leading to the maximum level of uncertainty when predicting behavior. On the other hand, the
minimum entropy is attained when there is no ’Error Uncertainty’ and no ’Model Uncertainty’, i.e.
ηX(0) = 1, ηX(i) = 0 for all i > 0 and |Rext

ε (f)| = 1.
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Proposition 3 (Properties of PUf) Let f̂Rε(f)

η̂XR,f
(a,A) be the predictive distribution as in Def-

inition 7; and let PUf the predictive uncertainty measure as in Definition 8, then

• minf :O→[0,1]H
(
f̂
Rε(f)

η̂XR,f

)
= H(f̂2X∗) = −ln (γX) with γX = 1

2|X|−|X|−1
. The mini-

mum is attained when there is no ’Model’ and no ’Error Uncertainty’, i.e. f̂(a,A) =

f̂(A)1 [a ∈ A : aRb ∀b ∈ A \ {a}] for all (a,A) ∈ O where R is a complete linear order in
X×X; therefore minNPUf = 0

• maxf :O→[0,1]H
(
f̂
Rε(f)

η̂XR,f

)
= Ef̂

2X∗

[
maxH

(
f̂
Rε(f)

η̂XR,f
|A
)]

+H(f̂2X∗) = γX
∑|X|

n=2C
|X|
n ln (n)−

ln (γX) with γX = 1
2|X|−|X|−1

and C |X|n = |X|!
n!(|X|−n)!

. The maximum entropy is attained when

there is no information, i.e. f̂Rε(f)

η̂XR,f
|A = UA; therefore maxNPUf = 1.

The measures of predictive uncertainty presented above reflect the amount of information (or
lack of) when predicting behavior for all possible economic scenarios. Therefore, the predictive
ability of the model given the observed collection f can be measured by a negative function of
the predictive uncertainty, that is, the lower is the uncertainty to predict behavior the better the
ability of the model when predicting behavior given observed choices.

Definition 10 (Measure of Predictive Ability) Let NPUf be the normalized predictive un-
certainty measure given in Definition 9. Then, the ’Measure of Predictive Ability’ is defined as the
complement of the NPU measure, that is

PAMf = 1−NPUf

PAMf reflects both Model and Error uncertainty. One may expect that as ’steepness’ of
the error process decreases, i.e. ηX(·) → U|X| the overall uncertainty increases. Given the ’error
process’, an increase in |Rext

ε (f)| is expected to cause an increase in the uncertainty to predict
behavior. This intuitively hints to measures of these two sources of uncertainty to estimate their
impact on overall uncertainty.

2.5.1 Error Uncertainty

Conditional on the potential multiplicity of complete preferences that rationalize choices,
uncertainty to predict behavior is driven by the dispersion of the error process. Intuitively, the
’steeper’ the estimated process η̂ is, the lower the uncertainty when predicting behavior. For
example, consider two alternative processes η(i) ∈ [0, 1] and θ(i) ∈ [0, 1] for all i ∈ {0, 1, . . . , n}
with

∑n
i=0 η(i) =

∑n
i=0 θ(i) = 1; η(j) = θ(j) + ε; η(k) = θ(k) − ε for j < k and η(i) = θ(i)

for all i 6= j, k . Note that η is a mean preserving spread of θ, therefore, by the concavity of
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the logarithmic function we have that H(η) = −Eη(ln(η)) > −Eθ(ln(θ)) = H(θ); that is, the
’steeper’ the function the lower the entropy.

Definition 11 (’Error Uncertainty Measure’) Let η̂X(·) be the estimated error process that
satisfies Assumption 3. For any given menu A ∈ 2X∗, I define the ’Error Uncertainty Measure’ as
the entropy of the distribution implied by ηX on {0, . . . , |A| − 1}, i.e.

’Error Uncertainty Measure’A = −
|A|∑
i=1

ηX(i− 1)∑|A|
j=1 η

X(j − 1)
ln

[
ηX(i− 1)∑|A|
j=1 η

X(j − 1)

]

If there is no ’Model Uncertainty’, i.e. |Rext
ε (f)| = 1 then the predictive distribution is given

by,

f̂
Rε(f)

η̂XR,f
(a,A) = f̂2X∗(A)

 ∑
R∈Rextε (f)

1

|Rext
ε (f)|︸ ︷︷ ︸
=1

η̂XRi,f (g
Ri(a,A)− 1)∑|A|

j=1 η̂
X
Ri,f

(j − 1)


= f̂2X∗(A)

[
η̂XR(gR(a,A)− 1)∑|A|

j=1 η̂
X
R,f (j − 1)

]

and the normalized predictive uncertainty is

NPUf =
Ef̂

2X∗
{’Error Uncertainty Measure’A}

γX
∑|X|

n=2C
|X|
n ln (n)

2.5.2 Model Uncertainty

The other source of uncertainty is driven by the (potential) multiplicity of complete preference
relation that rationalize observed data, i.e. |Rext

ε (f)| > 1.

Definition 12 (’Model Uncertainty Measure’) Let X be the grand set of alternatives with
|X| < ∞ and let O ≡

{
(a,A) such that a ∈ A and A ∈ 2X∗

}
. Let f be the collection of

observations, with f ⊆ O; and f̂Rε(f)

η̂XR,f
(a,A) be the predictive distribution as in Definition 7. For

any given menu A ∈ 2X∗, I define the ’Model Uncertainty Measure’ as the as the entropy of the
distribution over preference orders on A implied by the distribution over Rext(f)

’Model Uncertainty Measure’A = −
∑

RA∈R∩A×A

P (RA) ln(RA)
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with P (RA) =
∑

R∈Rext(f)
1

|Rext(f)|1[R ∩ A× A ≡ RA]

To develop the intuition for this measure note that there are two channels for changes in
information to have an effect on predictions: an intensive and an extensive margin. Fixing errors,
predictions for any given menu A may change either because (i) there are fewer swaps preferences
that rationalize the data with error (extensive margin); and/or (ii) at least one of the swaps
preference orders contain more information in the sense that there are fewer complete linear orders
that extend it (intensive margin). Taking a menu A for which either of these channels had an
impact on the implied distribution over linear orders, such a change moves mass probability from
linear orders that now have zero probability to all or a subset of the remaining linear orders in the
support; decreasing the entropy of the distribution over linear orders in A.

In the case of no ’Error Uncertainty’ that is, if ηX(0) = 1 and ηX(i) = 0 for all i ∈
{1, 2, . . . , |X| − 1}, the predictive distribution is given by,

f̂
Rε(f)

η̂XR,f
(a,A) = f̂2X∗(A)


∑

R∈Rextε (f)

1

|Rext
ε (f)|

η̂XRi,f (g
Ri(a,A)− 1)∑|A|

j=1 η̂
X
Ri,f

(j − 1)︸ ︷︷ ︸
=1[aRib∀b∈A\{a}]


= f̂2X∗(A)× P (RA)× 1[a RA b ∀ b ∈ A \ {a}]

and the normalized predictive uncertainty is then given by,

NPUf =
Ef̂

2X∗

[
H
(
f̂
Rε(f)

η̂XR,f
|A
)]

γX
∑|X|

n=2C
|X|
n ln (n)

=

Ef̂
2X∗

{
E
f̂
Rε(f)

η̂X
R,f

|A

[
ln
[
f̂
Rε(f)

η̂XR,f
|A
]]}

γX
∑|X|

n=2 C
|X|
n ln (n)

=
Ef̂

2X∗
{’Model Uncertainty Measure’A}

γX
∑|X|

n=2C
|X|
n ln (n)

3 Bounded Rationality Models

De Clippel and Rozen (2014) (DR henceforth) shows that for bounded rationality models,
rationalization does not guarantee that the theory has bite when predicting behavior for unobserved
menus. In this section, I revisit the examples proposed by DR and I compare the predictive ability
of those models with respect to the utility maximization model that allows for errors in choices.

Bounded rationality models have risen to explain behavior that cannot be rationalized by
standard models. However, when enhancing the ‘fit’ of the model, one may allow for ‘too much’,
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therefore hurting the power of the model. In this section I compare the limited attention and
categorization models with the performance of the utility maximization model if we were to allow
for error. This application shows that, models of bounded rationality, in general, have higher data
requirements to identify primitives, and therefore may lack of power to predict behavior.

3.1 Extending the Predictive Ability Approach

The approach presented above can be extended to other theories of consumption behavior.
Consider a theory T , such that each T ∈ T describes a collection of observations that is consistent
with the theory T . A collection of observations f is rationalized by some rule under theory T , if
a is prescribed to be chosen from A by theory T ∈ T , whenever f(a,A) > 0. Let T (f) be the
(potentially incomplete) preference information that can be inferred from data, that is, T (f) ⊆ T

with T ∈ T . Let T (f) the set of all complete extensions (i.e. predictions for all elements in O)
such that T (f) ⊆ T (f), that is

T (f) = {T ∈ T : f(a,A) > 0⇒ a T x ∀x ∈ A \ {a} ∀A ∈ A} (9)

For the utility maximization model, the existence of an incomplete preference relation that
rationalizes the observed collection implies the non-emptiness of T (f) while this needs not to be
true for models of bounded rationality.

Definition 13 (Predictions for 2X∗) For a theory T , let T (f) be the collection of (complete)
decision rules that is consistent with the observed collection f under theory T as in equation (9).
Then,

f̂T (f)(a,A) =
γTf (a,A)

t
× f̂2X∗(A) (10)

for all a ∈ A with A ∈ 2X∗ and where γTf (a,A) ≡
∑

T∈T (f) 1[a T b ∀ b ∈ A\{a}] and t = |T (f)|.

3.2 Limited Attention

The limited attention model assumes that the DM facing a menu A selects the best alternative
given a preference order P over a consideration set Γ(A) ⊂ A, assuming that not considered
alternatives do not change the consideration set. In particular,

f(a,A) > 0⇒ a = arg max
P

Γ(A) and Γ(A) ⊂ B ⊂ A⇒ Γ(B) = Γ(A) for all A,B ∈ 2X
∗

Example 6 (Example 3 in DR) Consider the following slight modification of Example 3 in DR

A ae ef abd ade bde af be
{x ∈ A : f(x,A)} e f d a b f b
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Limited Attention From the analysis in DR it follows that the revealed preference informa-
tion from data under the limited attention model is: (i) aPd, (ii) dPa or bPe and (iii) dPb or aPe.
By relying on the test on out of sample predictions proposed by DR, the only revealed preference
relation that can be extended such that predictions are non-empty for all possible menus, reduces
to aPd, bPe and aPe. When predicting choices for Ã = {b, e, f} the model predicts that either
b or f can be chosen.

In this case, assuming equal ex-ante probability, the predictive ability measure of the model
for the menu {b, e, f} is given by

PAMf |A = 1−
H
(
f̂
Rε(f)

η̂XR,f
|{b, e, f}

)
H
(
f̂f=∅|{b, e, f}

) = 1−
−
(

1
2

ln 1
2

+ 1
2

ln 1
2

)
−
(

1
3

ln 1
3

+ 1
3

ln 1
3

+ 1
3

ln 1
3

) = 1− 0.6931

1.0986
= 0.3691

Utility Maximization Note that the above data cannot be rationalized by a well-behaved
preference relation, since, for example f(e, {a, e}) > 0 and f(a, {a, d, e}) > 0 generate a violation
to acyclicality. Assuming an error process that satisfies assumption 2, and under the assumption
that the DM faced each menu only once, or that the probability of observing each menu is 1

7
,

|Rε(f)| = 9. Since all R ∈ Rε(f) can be recovered by swapping three times one alternative
for a dominated one, I am pooling the observation across all menus and all preference orders. In
particular, we have that η̂X1 = 4

7
and η̂X2 = 3

7
. When constructing the predictive distribution for

{b, e, f} it is important to notice that 3 out of the 9 orders in Rε(f) prescribe bRfRe while the
other 6 prescribe fRbRe. Then, the predictive distribution for {b, e, f} is given by

f̂
Rε(f)

η̂XR,f
(x, {b, e, f}) =


f̂2X∗ ({b, e, f})

[
1
3
η̂X1 + 2

3
η̂X2
]

= 10
21
f̂2X∗ ({b, e, f}) if x = b

f̂2X∗ ({b, e, f})
[

1
3
η̂X2 + 2

3
η̂X1
]

= 11
21
f̂2X∗ ({b, e, f}) if x = f

0 if x = e

and the predictive ability measure conditional for this set is given by

PAMf |A = 1−
H
(
f̂
Rε(f)

η̂XR,f
|{b, e, f}

)
H
(
f̂f=∅|{b, e, f}

) = 1−
−
(

10
21

ln 10
21

+ 11
21

ln 11
21

)
−
(

1
3

ln 1
3

+ 1
3

ln 1
3

+ 1
3

ln 1
3

) = 1− 0.6920

1.0986
= 0.3701

Therefore, the predictive ability for the utility maximization model is slightly higher.
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3.3 Categorization and Rationalization

Rationalization and Categorization are observationally equivalent to the maximization of a
complete, asymmetric relation P over a psychological filter Ψ. The filter is such that satisfies that
the DM pays attention to it in any subset in which it is contained. The filter probability implies
that the DM certainly pays attention to alternatives in

Ψ(A) ≡ {b ∈ B : f(b, B) > 0|A ⊂ B,B ∈ A, b ∈ A}

However, in limited data sets ψ may not qualify as a filter since it may be empty-valued for some
out of sample menus.

Example 7 (Example 4 in DR) Consider the following observed menus and choices

A ab ad ae bd be de abd abe bde
{x ∈ A : f(x,A)} b d a d e e b a d

Rationalization/Categorization Observed choices yield dP ∗b, bP ∗a, aP ∗e, eP ∗d, eP ∗b
and dP ∗a which is a complete order. Moreover it imposes the following restrictions (i) dPa or
dPb from R = {a, b, d} and dP ∗b, (ii) bPa or bPe, from R = {a, b, e} and bP ∗a; and (iii) ePb
or ePd from R = {b, d, e} and eP ∗d. The out of sample prediction for {a, d, e} is that either a
or d can be picked, but e would not be consistent.

In this case, assuming equal ex-ante probability, the predictive ability measure of the model
for the menu {a, d, e} is given by

PAMf |A = 1−
H
(
f̂
Rε(f)

η̂XR,f
|{b, e, f}

)
H
(
f̂f=∅|{b, e, f}

) = 1−
−
(

1
2

ln 1
2

+ 1
2

ln 1
2

)
−
(

1
3

ln 1
3

+ 1
3

ln 1
3

+ 1
3

ln 1
3

) = 1− 0.6931

1.0986
= 0.3691

Utility Maximization Note that the above data cannot be rationalized by a well-behaved
preference relation, since, for example f(d, {b, d}) > 0 and f(b, {a, b, d}) > 0 generate a violation
to acyclicality. However, it is easy to check that, under the assumption that all menus are observed
with equal probability 1

9
, the only well-behaved preference order that minimizes the swap index,

and it is given by Rε(f) such that dRε(f)bRε(f)aRε(f)e; and the estimation of the error process
delivers η̂X1 = 5

9
and η̂X2 = 4

9
. Then, the predictive distribution for {a, d, e} is given by

f̂
Rε(f)

η̂XR,f
(x, {a, d, e}) =


f̂2X∗ ({a, d, e})

[
ηX2
]

= 4
9
f̂2X∗ ({a, d, e}) if x = a

f̂2X∗ ({a, d, e})
[
η̂X1
]

= 5
9
f̂2X∗ ({a, d, e}) if x = d

0 if x = e
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and the predictive ability measure conditional for this set is given by

PAMf |A = 1−
H
(
f̂
Rε(f)

η̂XR,f
|{a, d, e}

)
H
(
f̂f=∅|{a, d, e}

) = 1−
−
(

4
9

ln 4
9

+ 5
9

ln 5
9

)
−
(

1
3

ln 1
3

+ 1
3

ln 1
3

+ 1
3

ln 1
3

) = 1− 0.6870

1.0986
= 0.3747

3.4 Model Comparison

Examples 6 and 7 show that even when theories of bounded rationality can perfectly explain
observed behavior, the much simpler utility maximization model provides more informative predic-
tions if we allow for error. These examples illustrate that, when dealing with limited datasets is
important to understand the empirical content of considered models beyond their fit. More com-
plex models of behavior may help understanding deviations but, the additional complexity may
induce additional uncertainty when predicting behavior for unobserved economic environments.

4 Empirical Application: GEU Models

The proposed predictive approach can easily be extended to other models of consumption
behavior and therefore used for model comparison. I consider the data discussed in Harless and
Camerer (1994), but I restrict the analysis to the following theories: Expected Utility, Fan-out, Fan-
in, Mixed Fanning, Reference Dependence with concave indifference curves; Reference Dependence
with convex indifference curves; and Prospect theory. The authors discuss the importance of not
just focusing on fit but also on parsimonia, understood as the number of feasible pattern allowed
by each theory. Harless and Camerer (1994) explores the predictive ability of a series of choice
models, which by allowing for errors in choices, explores all the information contained in observed
behavior; penalizing for both: (i) systematic variation in unpredicted patterns; and (ii) the number
of patterns that a given theory allows for.

Tables 2-6 in the Appendix summarize the results for the data analyzed in Harless and
Camerer (1994) reporting the main criteria proposed by the authors and the measures proposed in
this paper. The tables also report the ranking prescribed by these criteria in the horse race among
the generalized expected utility models. The results show that the predictive measure trades off
parsimonia, measured as the number of patterns allowed by each theory, with the error rate that
is required by each of them to rationalized behavior. Therefore, the predictive measures follow the
same intuition as the predictive odds criteria proposed by Harless and Camerer (1994). The main
difference between predictive odds and predictive uncertainty is that the measure proposed in this
paper penalize for the number of patterns allowed by each theory even when these are observed
with zero frequency in sample.
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5 Power vs. Uniformly Random Behavior: Simulations

In this section I present the results of simulation exercise where X = {a, b, c, d, e} where
choices are generated as the result of the maximization of the preference order a R b R c R d R e

with different error process and a probability of menus to be observed that ranged from 0.1 to
1. The simulations were run for fully rational behavior, random generated behavior, and five
alternative error processes as described in Table 1. For each of these treatments, 6 different
assumptions on the observability of the menus are considered, p ≡ {0.10, 0.25, 0.50, 0.75, 0.90, 1}
where pi is the probability of observing menu A for all menus in 2X∗ under treatment i.

Figure 1 shows the distributions of predictive uncertainty for different levels of observability
of menus for all assumptions on the data generating process. Table 1 reports the p-values for the
test of difference in means with respect to randomly generated behavior for the same probability of
observing menus. difference in means and p-values in [] are reported; while Table 7 in Appendix B,
shows the means and standard deviation for the normalized measure of predictive precision. The
test results for the differences in means confirm that, as long as the dataset is sufficiently informa-
tive –in the sense that P (f(A) > 0) > 1

4
, the predictive ability measure can distinguish rational

behavior with error with respect to random uniform behavior for processes generated by an error
process significantly different to random errors for sets with more than three alternatives.

Table 8 displays the mean and standard deviations per η treatment for the error uncertainty
measure, where the distribution of η is estimated across all swaps preferences. Table 9 displays
the same statistics for model uncertainty measure for all treatments, for the same estimated
distribution of the eta.

When regressing the normalized measure of predictive uncertainty (or predictive ability) with
respect to the two sources of uncertainty the estimates of the correlation are, as expected, fairly
stable and significant for all cases but when the probability of observing menus is 0.1 and the
assumption on the error process is either random or disperse. The results for these estimates are
shown in Figure 2. The results are displayed per assumption on the probability of observing menus.
The expected pattern to be observed is increasing coefficients within subfigure for error uncertainty
while decreasing across figures for model uncertainty. Figure 3 displays the same coefficient across
assumptions for the error process where the expected pattern is the opposite.

26



Figure 1: Distribution of Predictive Uncertainty per level of observability of menus and assumption on
the error process.
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Table 1: Test for differences in means for Predictive Ability Measure with respect to random behavior.

Probability of observing choices from A ∈ 2X∗

Assumption ηX 0.10 0.25 0.50 0.75 0.90 1.00

ηX1 0.0053 -0.0109 -0.0074 -0.0012 0.0031 0.0000

[.25;.20;.20;.20;.15] [0.6481] [0.2866] [0.2418] [0.7757] [0.3238] [0.9866]

ηX2 0.0086 0.0064 0.0091 0.0165 0.0122 0.0148

[.35;.25;.20;.15;.05] [0.4585] [0.0136] [0.1692] [0.0002] [0.0001] [0.0000]

ηX3 0.0078 0.0201 0.0165 0.0280 0.0255 0.0250

[.40;.30;.20;.10;0] [0.5043] [0.0545] [0.0123] [0.0000] [0.0000] [0.0000]

ηX4 0.0307 0.0435 0.0514 0.0594 0.0671 0.0653

[.50;.30;.20;0;0] [0.0089] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

ηX5 0.0531 0.1616 0.2157 0.2407 0.2534 0.2594

[.70;.20;.075;.025,0] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

ηX6 0.1644 0.4794 0.7338 0.8398 0.8726 0.8901

(Rational) [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

-2
0

2
4

-2
0

2
4

Error Uncertainty Model Uncertainty Error Uncertainty Model Uncertainty Error Uncertainty Model Uncertainty

P=0.1 P=0.25 P=0.5

P=0.75 P=0.9 Complete

Rational Eta1 Eta2 Eta3

Eta4 Eta5 Random

Figure 2: Correlations Predictive Uncertainty, Model Uncertainty and Error Uncertainty. Confidence
intervals at 95% for all treatments.
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6 Discussion and Extensions

6.1 Experimental Design

The predictive approach can be used to design experiments to better identify underlying
behavior. Given an incomplete collection of observations, additional questions can be efficiently
selected to maximize the predictive ability of the extended data for the considered model. As-
suming that new observations are drawn from the same data generating process as f , one may
select additional menus to observed choices from by maximizing the expected impact on model
uncertainty. This procedure follows the one proposed by Boccardi (2017) and the intuition of the
optimal placement index of Andreoni et. al (2013) for data from budget sets.

6.2 Random Utility Models

Model Uncertainty resembles Random Utility models where all ’utility models’ inRext(f) have
equal relative probably. However, the nature of this uncertainty is fundamentally different from
classical random utility models. The assumption insofar is that there exist a unique preference
relation that generates observed behavior with potential errors); but this may only be partially
recovered from data. Partial identification of the underlying complete linear order induces uncer-
tainty with respect to the unique preference relation that generates data; where all processes that
are consistent with the collection of observations are deemed to be equally likely.

In the limit, preferences are fully identified, i.e. if A = 2X∗, |Rext(f)| = 1. On the contrary,
under RUM many alternative utility orders may coexist, and observed choices can be the result of
any of these preference orders, with a specified likelihood.

Correctly identifying the process generating the data is not only important in order to improve
predictions but also to fully understand the welfare implications of the violations. Recovering
the revealed preference information by minimizing the inconsistency index would confound the
existence of multiple preference orders that jointly rationalized the data with errors if the utility
maximization model is assumed, inducing misspecification errors.

Liang (2016) proposes a statistical regularization approach to select the number of distinct
orderings that rationalize the data by establishing a data driven trade-off that seeks for parsimo-
nious models (penalizing for the ’complexity’ of the model) and fit (penalizing for the unexplained
portion of the data by the considered orderings). This approach proposes a methodology to select
the number of alternative by simultaneously minimizing the number of orderings and the number
of implied choice errors for those orderings by establishing a linear trade off between these two.

Allowing for a multiplicity of preferences implies an additional level for ’Model Uncertainty’
that, in principle, does not vanish with size of the sample. Given a series of candidate models,
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Bayesian Model Averaging provides a framework to compute an ’average’ predictive distribution by
constructing a weighted average of the predictive distributions delivered by each of the candidate
models, where the weights are constructed to reflect the empirical evidence of the relative likelihood
of each of the considered models.

Definition 14 (Average Predictive Distribution) Consider a set of K of candidate orderings
RK ≡ {R1, . . . , RK} and let wk(f) be the weight for model k that reflects the relative likelihood
of ordering Rk and such that wk(f) ∈ [0, 1] for all k ∈ {1, . . . , K} and

∑K
j=1 w

j(f) = 1. Let

f̂
Rk(f)
χ (a,A) be the predictive distribution constructed for ordering Rk as in Definition 7 where
χ(·) the estimated error process and k ∈ {1, . . . , K}. Then the ’average predictive distribution’
is defined as

f̂APD(RK)(a,A) =
K∑
j=1

wk(f)f̂R
k(f)

χ (a,A)

Definition 15 (Weights to reflect multiplicity) Consider a set of K of candidate orderings
RK ≡ {R1, . . . , RK} with weights to reflect multiplicity that can be constructed as

wk’multiplicity’(f) =

1
I(f)|Rk∑J
j=1

1
I(f)|Rj

However, it is important to highlight that in order to extend the construction to accommodate
for multiple preference orders, restrictive assumptions should be consider on the error process and
the nature of this multiplicity to allow for separately identify the different components of this
extension.

6.3 ’DGP Uncertainty’

An alternative approach to soften the unique ordering assumption has a similar flavor though
a slightly different interpretation. Instead of assuming that there are multiple preferences that can
be context-dependent or accommodate for pooling cross-sectional data, the researcher may simply
consider that the swaps preference maybe the most likely underlying ordering under assumptions,
but it is not the only likely outcome. Consider again example 4. The true underlying order aRbRc
which induces the lowest inconsistency index (∼ 0.413); however the ordering aR′cR′b induces the
second lowest inconsistency index ∼ 0.863. Therefore the researcher knows that, under maintain
assumptions on the structure of the error process, R is the most likely order; but may not want
to discard the information contained but alternative orderings that may have generated behavior.

The construction as in Definition 14 can be employed to reflect ’DGP uncertainty’ where
weights are given by the relative likelihood of the considered process to be the true underlying
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process. The example above hints that the inconsistency measure provides a (negative) metric, in
sample, of the likelihood of a preference relation to have generated the data, the bigger the errors
implied by an ordering, the less likely the ordering is the one generating the data.

7 Relation to Existing Literature

This paper relates to the literature on revealed preference testing by extending previous
approaches to: (i) account for fit and power; (ii) be applicable in a discrete choice environment
where menus do not respond to budget structures; (iii) be used for other models of behavior to
allow for model comparison and (iv) design experiments to maximize the certainty when predicting
behavior.

The present approach relates to the welfare measure proposed by Apesteguia and Ballester
(2015) by employing their machinery to recover the revealed preference information from data.
Extending the model to allow for error I provide a theoretical justification to the swap preference
to construct the predictive distribution as in Boccardi (2017) reflecting uncertainty due to the
error process and the (potential) multiplicity of preferences that rationalize observed (projected)
behavior.

Recovered errors measure the uncertainty related to the literature on goodness of fit. That
is, errors size the extent of the adjustments to observed data in order for it to be rationalized
by a well-behaved preference relation. There is a vast literature on goodness of fit but it mostly
relies on the budget structure of the problem, as in Afriat (1967), Varian (1990), Echenique et al.
(2011) and Dean and Martin (2016). This paper does not assume such a menu structure and
therefore is closer in spirit to counting measures as in Houtman and Maks (1985) and Famulari
(1995). Apesteguia and Ballester (2015) accounts for the number of deviations penalizing for the
welfare implications of the number of swaps that are required to rationalized observed behavior.

A problem that plagues the literature on goodness of fit is that results can be hardly interpreted
when dealing with limited datasets, due to the potential lack of power. In the discrete choice
environment, there is a direct relation between incomplete data sets and the power of the test
to detect violations. The most prominent approach in the literature is to compare the results to
those that would have been obtained if data were to be generated uniformly at random, Bronars
(1987). This paper follows the approach proposed by Boccardi (2017) by exploiting conditional
power instead. The predictive ability measure reflects conditional power in terms of the potential
multiplicity of preferences that rationalize behavior induced by incomplete datasets. Additionally,
I show that when the assume error process is ‘steep enough’ and the incompleteness of the data is
limited, the proposed measure has power to differentiate rational behavior from uniformly generated
one.
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Finally, this paper relates to the observation that, for model of bounded rationality, the
empirical accuracy of the model for limited data sets does not imply extensibility of the model,
De Clippel and Rozen (2014). The proposed approach accounts for this possibility and allows for
the comparison across different models with different levels of complexity.

8 Conclusion

This paper extends the predictive approach proposed by Boccardi (2017) to models of con-
sumption choices from finite menus of alternatives. Predictions reflect the uncertainty about
preferences due to partial recoverability from data and potential errors that need to be allowed for
to rationalize data. Therefore, measuring the uncertainty when predicting behavior over all menus
provides a measure of both: (i) fit, through the dispersion of the error process; and (ii) power, as
a negative function of the degree of partial observability. I show the performance of the proposed
measures in controlled simulation exercises and its application to generalized expected utility mod-
els for the data from Harless and Camerer (1994). By relying on the predictive performance of
the model, the proposed approach addresses the concerns raised by De Clippel and Rozen (2014)
with respect to the extensibility of model of bounded rationality for out of sample menus. This is
done by focusing on those underlying functionals that are extensible to all menus from the grand
set of alternatives.
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A Proofs

A.1 Proof of Proposition 1

Proof. The entropy of the predictive distribution for any particular menu A ∈ 2X∗ can be written
as

Entropy(f̂ |A) = −
∑
a∈A

f̂(a,A)

f̂(A)
ln

(
f̂(a,A)

f̂(A)

)

= − 1

f̂(A)

∑
a∈A

f̂(a,A)
[
ln
(
f̂(a,A)

)
− ln

(
f̂(A)

)]
= − 1

f̂(A)

[∑
a∈A

f̂(a,A)ln
(
f̂(a,A)

)
−
∑
a∈A

f̂(a,A)ln
(
f̂(A)

)]

= − 1

f̂(A)

[∑
a∈A

f̂(a,A)ln
(
f̂(a,A)

)]
+ ln

(
f̂(A)

) 1

f̂(A)

∑
a∈A

f̂(a,A)

= − 1

f̂(A)

[∑
a∈A

f̂(a,A)ln
(
f̂(a,A)

)]
+ ln

(
f̂(A)

)
while the overall entropy is given by

Entropy(f̂) = −
∑

a∈A,A∈2X∗

f̂(a,A)ln
(
f̂(a,A)

)
= −

∑
A∈2X∗

∑
a∈A

f̂(a,A)ln
(
f̂(a,A)

)

Then,
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Entropy(f̂) = −
∑
A∈2X∗

[
−f̂(A)

(
Entropy(f̂ |A)− ln(f̂(A))

)]
=

∑
A∈2X∗

f̂(A)
[(
Entropy(f̂ |A)− ln(f̂(A))

)]
= Ef̂(A)

[
Entropy(f̂ |A)

]
− Ef̂(A)

[
ln(f̂(A))

]
= Ef̂(A)

[
Entropy(f̂ |A)

]
+ Entropy(f̂(A))

where Ef̂(A) [·] it is the expectation with respect to the probability distribution over menus for the
sake of prediction, i.e. Ef̂(A) [X(A)] =

∑
A∈2X∗ f̂(A)X(A).

A.2 Proof of Proposition 2

Proof. To prove that NE(f̂) ∈ [0, 1] first note that

NE(f̂) =

∑
A∈2X∗ H(f̂ |A)∑|X|
n=2C

|X|
n ln(n)

Since
∑|X|

n=2C
|X|
n ln(n) does not depend on observed information but on X the lower and upper

bounds for NE(f̂) depend uniquely on
∑

A∈2X∗ H(f̂ |A).

It is straightforward to see then that the lower bound of NE(f̂) is given when there is ’no
uncertainty’, i.e. predictions are certain for all A ∈ 2X∗. If that is the case, then H(f̂ |A) = 0

for all menus A ∈ 2X∗; while for any other predictive distribution H(f̂ |A) ≥ 0 for all A with
H(f̂ |A) > 0 for some A ∈ 2X∗; and γX = 1

2|X|−|X|−1
> 0 for all X such that |X| > 2.

Then, NE(f̂) ≥ 0 and, NE(f̂) = 0 ⇔ H(f̂ |A) = 0 for all A ∈ 2X∗ which only occurs when
|Rext(f)| = 1.

On the other hand, the upper bound of NE(f̂) is given when there is total uncertainty or ’no
information’ for all menus A ∈ 2X∗, since the ’Menu Entropy’ is maximal for each menu A ∈ 2X∗.
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That is, for any given menu H(f̂ |A) ≤ ln(|A|), therefore, under Assumption 1

NE(f̂) =

∑
A∈2X∗ H(f̂ |A)∑|X|
n=2C

|X|
n ln(n)

≤
∑

A∈2X∗ ln(|A|)∑|X|
n=2C

|X|
n ln(n)

=

∑|X|
n=2

[∑
A∈2X∗ 1 [|A| = n]

]
ln(n)∑|X|

n=2C
|X|
n ln(n)

=

∑|X|
n=2C

|X|
n ln(n)∑|X|

n=2C
|X|
n ln(n)

= 1

Moreover H(f̂ |A) = ln(|A|)⇔ f̂(a,A) = 1
|A| for all a ∈ A and A ∈ 2X∗.

Proof of Claim 1.

EA∈D
[
εR
′

(a,A)

]
− EA∈D

[
εR(a,A)

]
= γX

( ∑
A∈2X∗

∑
a∈A

(
gR
′
(a,A)− gR(a,A)

)
× ηR(a,A)

)

= γX

 ∑
A∈2X∗

1 [{a, b} ⊆ A]
∑
c∈{a,b}

(
gR
′
(c, A)− gR(c, A)

)
× ηR(c,A)


Since only the ranking among a, b is changed, ∆g(a,A) = −∆g(b, A) where ∆g(c, A) ≡
gR
′
(c, A)− gR(c, A) = 1, therefore

EA∈D
[
εR
′

(a,A)

]
− EA∈D

[
εR(a,A)

]
= γX

( ∑
A∈2X∗

1 [{a, b} ⊆ A]
(
∆g(a,A)× ηR(a,A) + ∆g(b, A)× ηR(b,A)

))

= γX

( ∑
A∈2X∗

1 [{a, b} ⊆ A] ∆g(a,A)
(
ηR(a,A) − ηR(b,A)

))
> 0

where the last inequality follows from ∆g(a,A) ≡ gR
′
(a,A) − gR(a,A) > 0 and(

ηR(a,A) − ηR(b,A)

)
> 0 by assumption 2.

B Tables and Figures

B.1 Harless and Camerer (1994) data

The following tables replicate the results presented in Harless and Camerer (1994) together
with the computation of the average leave one out computation for the predictive uncertainty and
the normalized predictive uncertainty; as well as the ranking prescribed for the selected criteria for
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the considered theories. The criteria considered are: (i) the percentage of explained choices by
the patterns allowed by each theory; (ii) the proportion of explained choices with respect to the
percentage of allowed patterns; (iii) the ratio between the percentage of explained choices and
the maximum percentage of choices that could have been explained given the number of allowed
patterns; (iv) the z-statistic for the likelihood of predicted patterns versus randomly generated
behavior; (v) the Selten score for the difference between explained choices by the theory and what
would have been explained if choices were to be generated uniformly at random; (vi) the error
rate that should be allowed in order to rationalize observed behavior by each of these theories;
(vii) the posterior odds for the model with respect to expected utility as computed by Harless
and Camerer (1994); (viii) the distance between the distribution implied by the model and the
observed distribution of data (a negative function of the performance of the model); and (ix)
the distance between the distribution of choices implied by each theory and random behavior (a
positive function of the power of the model).
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Table 2: Table V.- Harless real gains from unit triangle interior. Outcomes: $0,$3,$6. Probabilities:
S1(.84, .14, .02); R1(.89, .01, .10); S3(.04, .94, .02); R3(.09, .81, .10); S5(.44, .14, .42); R5(.49, .01, .50);
S7(.04, .14, .82); R7(.09, .01, .90) - Summary of the results

Criteria EU Fan-out Fan-in MF RDcave RDvex PT

Results

% Explained .310 .429 .631 .583 .905 .571 .857

% Allowed .063 .125 .375 .375 .813 .563 .563

# patterns 2 6 6 13 9 9 5

% Max .310 .429 .774 .774 .964 .893 .893

Z-stat 5.245 6.051 5.376 4.702 2.922 .870 5.924

Selten .247 .304 .256 .208 .092 .009 .295

Error .366 .219 .166 .216 .092 .216 .108

χ2-stat 59.92 29.22 15.37 29.18 6.88 29.18 8.55

Avg. LOO .656 1.095 1.411 1.392 2.056 1.567 1.845

NEU .886 .855 .885 .837 .885 .839 .885

Ranking

% Explained 7 3 4 1 5 2 6

Expl/Allowed 1 2 4 6 7 5 3

Expl/Max 1 4 5 3 7 2 6

Z-stat 1 3 4 6 7 2 5

Selten 1 3 4 6 7 2 5

Error 7 3 4 1 4 2 4

PO vs EU - HC 1 2 5 6 7 3 4

Avg. LOO 1 2 4 3 7 5 6

Dist. true 4 3 4 1 4 2 4

Dist. rnd 7 3 4 1 4 2 4
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Table 3: Table VI Harless real losses from unit triangle interior. Outcomes: -$4,-$2,$0. Probabili-
ties: S1(.8, .18, .02); R1(.88, .02, .10); S3(.02, .96, .02); R3(.1, .8, .1); S5(.41, .18, .41); R5(.49, .02, .49);
S7(.02, .18, .80); R7(.10, .02, .88)

Criteria EU Fan-out Fan-in MF RDcave RDvex PT

Results

% Explained .279 .380 .595 .886 .595 .684 .317

% Allowed .125 .375 .375 .813 .563 .563 .188

# patterns 2 6 6 13 9 9 3

% Max .279 .646 .646 .949 .823 .823 .392

Z-stat 3.785 .614 4.720 2.505 1.627 3.298 3.420

Selten .154 .005 .220 .074 .032 .121 .129

Error .281 .281 .222 .141 .248 .234 .362

χ2-stat 18.72 18.72 7.46 3.08 11.31 10.19 22.79

Avg. LOO 1.266 1.456 1.866 2.369 1.772 1.962 1.256

NEU .965 .965 .942 .930 .950 .948 .969

Ranking

% Explained 7 5 3 1 3 2 5

Expl/Allowed 1 7 3 5 6 4 2

Expl/Max 1 7 3 2 6 4 5

Z-stat 2 7 1 5 6 4 3

Selten 2 7 1 5 6 4 3

Error 5 5 2 1 4 3 7

PO vs EU - HC 1 4 2 7 6 5 3

Avg. LOO 2 3 5 7 4 6 1

Dist. true 6 6 2 1 4 3 4

Dist. rnd 6 6 2 1 4 3 5
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Table 4: Table VII Chew and Waller: $0,-$40,$100. Probabilities: So(0, 1, 0); Ro(.5, 0, .5); Si(0, 1, 0);
Ri(.05, .9, .05); Sl(.9, .1, 0); Rl(.95, 0, .05); Sh(0, .1, .9); Rh(.05, 0, .95)

Criteria EU Fan-out Fan-in MF RDcave RDvex PT

Results

% Explained .212 .697 .323 .879 .374 .838 .798

% Allowed .125 .375 .375 .813 .563 .563 .625

# patterns 2 6 6 13 9 9 10

% Max .374 .758 .758 .990 .899 .899 .929

Z-stat 3.07 6.86 -2.33 2.65 -4.80 6.14 4.55

Selten .087 .322 -.052 .066 -.189 .276 .173

Error .339 .178 .339 .121 .458 .143 .158

χ2-stat 81.99 15.16 89.89 10.35 90.19 11.15 14.17

Avg. LOO 1.204 1.824 1.376 2.143 1.763 2.056 1.959

NEU .985 .866 .985 .858 1.000 .859 .863

Ranking

% Explained 7 4 6 1 5 2 3

Expl/Allowed 2 1 6 5 7 3 4

Expl/Max 5 2 6 3 7 1 4

Z-stat 4 1 6 5 7 2 3

Selten 4 1 6 5 7 2 3

Error 5 4 5 1 7 2 3

PO vs EU - HC 5 1 6 4 7 2 3

Avg. LOO 1 4 2 7 3 6 5

Dist. true 5 4 7 1 6 2 3

Dist. rnd 5 3 6 2 7 1 4
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Table 5: Table VIII - Sopher and Gigliotti - Common consequence Hypothetical large gains on unit
triangle boundary: $0,$1M,$5M. Probabilities: S1(0, 1, 0); R1(.01, .89, .1); S2(.89, .11, 0); R2(.9, 0, .1);
S3(0, .11, .89); R3(.01, 0, .99); S4(.79, .11, .1); R4(.8, 0, .2); S5(.01, .89, .1); R5(.02, .78, .2)

Criteria EU Fan-out Fan-in MF RDcave RDvex PT

Results

% Explained .220 .538 .258 .936 .667 .376 .796

% Allowed .063 .250 .250 .656 .406 .406 .563

# patterns 2 8 8 21 13 13 18

% Max .333 .747 .747 .968 .887 .887 .952

Z-stat 5.906 8.666 1.230 8.489 8.093 -2.395 7.521

Selten .158 .288 .008 .279 .260 -.030 .233

Error .299 .198 .299 .061 .147 .280 .126

χ2-stat 189.90 97.40 189.90 15.36 53.91 186.11 48.93

Avg. LOO .949 1.593 1.074 2.535 1.951 1.364 2.174

NEU .921 .865 .921 .788 .826 .916 .820

Ranking

% Explained 7 4 6 1 3 5 2

Expl/Allowed 1 2 6 4 3 7 5

Expl/Max 5 4 7 1 3 6 2

Z-stat 5 1 6 2 3 7 4

Selten 5 1 6 2 3 7 4

Error 7 5 7 2 4 6 3

PO vs EU - HC 5 3 6 2 1 7 4

Avg. LOO 1 4 2 7 5 3 6

Dist. true 6 4 6 1 3 5 2

Dist. rnd 6 4 6 1 3 5 2
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Table 6: Table IX. Sopher and Gigliotti - Common consequence Hypothetical large gains on
unit triangle interior: $0,$1M,$5M. Probabilities: S1(.01, .98, .01); R1(.02, .87, .11); S2(.80, .19, .01);
R2(.81, .08, .11); S3(.01, .19, .80); R3(.02, .08, .90); S4(.70, .19, .11); R4(.71, .08, .21); S5(.02, .87, .11);
R5(.03, .76, .21)

Criteria EU Fan-out Fan-in MF RDcave RDvex PT

Results

% Explained .424 .484 .538 .853 .734 .630 .669

% Allowed .063 .250 .250 .656 .406 .406 .219

# patterns 2 8 8 21 13 13 7

% Max .446 .745 .745 .973 .870 .870 .712

Z-stat 10.205 7.491 8.628 6.719 9.465 7.292 12.263

Selten .361 .234 .288 .197 .327 .224 .450

Error .186 .184 .150 .104 .111 .173 .119

χ2-stat 102.60 102.34 81.46 43.79 49.53 95.89 52.56

Avg. LOO 1.041 1.159 1.460 2.129 1.787 1.351 1.683

NEU .818 .818 .801 .769 .766 .810 .771

Ranking

% Explained 7 6 5 1 2 4 3

Expl/Allowed 1 4 3 7 5 6 2

Expl/Max 1 7 6 3 4 5 2

Z-stat 2 5 4 7 3 6 1

Selten 2 5 4 7 3 6 1

Error 7 6 4 1 2 5 3

PO vs EU - HC 2 5 4 6 3 7 1

Avg. LOO 1 2 4 7 6 3 5

Dist. true 7 6 4 1 2 5 3

Dist. rnd 6 7 4 2 1 5 3
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B.2 Simulation Results

Table 7: Means for measure of normalized predictive uncertainty.

Assumption ηX Probability of observing choices from A ∈ 2X∗

0.10 0.25 0.50 0.75 0.90 1.00

Random 0.6120 0.6524 0.7843 0.8541 0.8785 0.8925

(0.2600) (0.2428) (0.1513) (0.1017) (0.0698) (0.0613)

ηX1 0.6057 0.6616 0.7910 0.8555 0.8750 0.8923

(0.2617) (0.2238) (0.1356) (0.0869) (0.0751) (0.0623)

ηX2 0.6031 0.6241 0.7743 0.8373 0.8654 0.8771

(0.2622) (0.2456) (0.1503) (0.0971) (0.0721) (0.0721)

ηX3 0.6036 0.6295 0.7670 0.8259 0.8520 0.8669

(0.2638) (0.2358) (0.1484) (0.1002) (0.0817) (0.0721)

ηX4 0.5803 0.6056 0.7298 0.7936 0.8101 0.8262

(0.2692) (0.2412) (0.1530) (0.1065) (0.0890) (0.0867)

ηX5 0.5574 0.4852 0.5638 0.6114 0.6232 0.6314

(0.2672) (0.2525) (0.1937) (0.1589) (0.1489) (0.1341)

ηX6 0.4449 0.1652 0.0434 0.0109 0.0031 0.0000

(Rational) (0.2566) (0.1346) (0.0506) (0.0201) (0.0090) (0.0000)

Table 8: Mean and standard deviations for the error uncertainty measure.

Assumption ηX Probability of observing choices from A ∈ 2X∗

0.10 0.25 0.50 0.75 0.90 1.00

Random 0.1976 0.5644 0.7723 0.8573 0.8861 0.9009

(0.3048) (0.2810) (0.1579) (0.1027) (0.0694) (0.0604)

ηX1 0.2027 0.5714 0.7799 0.8585 0.8818 0.9009

(0.3030) (0.2712) (0.1393) (0.0866) (0.0751) (0.0619)

ηX2 0.2126 0.5288 0.7624 0.8401 0.8723 0.8859

(0.3126) (0.2883) (0.1543) (0.0976) (0.0729) (0.0723)

ηX3 0.2159 0.5372 0.7545 0.8292 0.8588 0.8745

(0.3077) (0.2755) (0.1516) (0.1002) (0.0816) (0.0720)

ηX4 0.1815 0.5143 0.7166 0.7950 0.8149 0.8335

(0.2955) (0.2776) (0.1591) (0.1064) (0.0886) (0.0870)

ηX5 0.1335 0.3699 0.5417 0.6080 0.6251 0.6349

(0.2601) (0.2876) (0.1972) (0.1596) (0.1484) (0.1350)

ηX6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(Rational) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
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Table 9: Means for measure of model uncertainty

Assumption ηX Probability of observing choices from A ∈ 2X∗

0.10 0.25 0.50 0.75 0.90 1.00

Random 0.2479 0.1701 0.1036 0.0772 0.0657 0.0661

(0.0515) (0.0898) (0.0918) (0.0880) (0.0834) (0.0843)

ηX1 0.2450 0.1694 0.1012 0.0798 0.0697 0.0647

(0.0535) (0.0907) (0.0911) (0.0901) (0.0845) (0.0823)

ηX2 0.2436 0.1668 0.1029 0.0743 0.0627 0.0594

(0.0546) (0.0917) (0.0928) (0.0864) (0.0801) (0.0796)

ηX3 0.2451 0.1688 0.1056 0.0687 0.0627 0.0634

(0.0540) (0.0872) (0.0902) (0.0836) (0.0813) (0.0789)

ηX4 0.2460 0.1668 0.0944 0.0681 0.0574 0.0506

(0.0521) (0.0877) (0.0872) (0.0827) (0.0748) (0.0712)

ηX5 0.2484 0.1741 0.0899 0.0535 0.0372 0.0311

(0.2601) (0.2876) (0.1972) (0.1596) (0.1484) (0.1350)

ηX6 0.2485 0.1823 0.0936 0.0342 0.0118 0.0000

(Rational) (0.0476) (0.0775) (0.0820) (0.0682) (0.0616) (0.0000)
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Figure 3: Correlations Predictive Uncertainty, Model Uncertainty and Error Uncertainty. Confidence
intervals at 95% for all treatments.
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