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1 Introduction 

 Before-and-after analysis is a highly reliable method for determining economic damages 

and providing support of causation claims in business interruption cases (Gaughan 2009) that has 

been accepted by courts in nearly every jurisdiction. See, e.g., Lloyd (2014) for an extensive list 

of court decisions regarding the before-and-after method. Broadly speaking this method refers to 

the comparison of profits during a period without damage, referred to as the “benchmark period,” 

and profits during the period when the business interruption is occurring, referred to as the 

“damage period.”1  

 While the before-and-after method is highly reliable and widely accepted, it is not 

foolproof. As Tomlin and Merrell (2006) demonstrate, “simple” forms of the before-and-after 

method may yield “phantom” damages arising from inaccurate or incomplete calculations. This 

contrasts with the “commonly held perception that simple methods of calculating damages are 

often more understandable and persuasive to a judge or jury than more complex methods (Tomlin 

and Merrell 2006, 295).” Tomlin and Merrell go on to conclude, 

                                                 
1 See Lloyd (2014) and Gaughan (2009), chap. 2 for more a detailed definition. 
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“Our results indicate that simple methods for calculating lost profits that do not take into account demand 

and supply factors are capable of being highly inaccurate. In addition, this article has shown that damages 

methodologies in general are highly manipulable.” Tomlin and Merrell (2006, 321) 

 Rudimentary methods, e.g. graphical analysis, simple correlation analysis, etcetera, are 

more commonly employed in forensic analysis than is sophisticated time series analysis, such as 

structural break models (Gaughan 2009). The simplistic approach, however, may run into three 

problems that we label: the overt omitted variable problem, the multiple comparisons problem, 

and the latent omitted variable problem. Fortunately, the court has long allowed more sophisticated 

methodology, see e.g. Vuyanich v. Republic Nat. Bank of Dallas (1984).  

 Sophisticated time series models, such as those accounting for structural breaks, do require 

more data to estimate and more effort to explain, but when appropriately applied they can add 

powerful evidence to a case. Therefore, in this article, we analyze the problems that may arise from 

before-and-after analysis, discuss under what conditions those problems may occur, and 

demonstrate how one possible path to solving these problems may be found in the structural break 

literature.  

2 The problems 

 The before-and-after method of proving damages can run into three problems that we 

attempt to solve in this paper: (i) the overt omitted variable problem, (ii) multiple comparisons 

problem, and (iii) latent omitted variable problem. In this section, we define and provide 

illustrations of each problem. 

2.1 Overt omitted variable problem 

 The overt omitted variable problem occurs when obviously influential explanatory factors 

are omitted from the analysis. It is often natural to compare the performance of a business in an 

undamaged state, i.e. either before the damage occurred or after the damage has been remedied, to 

the performance of the business during the period of damage (Gaughan 2009, 50). However, it is 

necessary to account for explanatory factors that may differ between periods. See Lloyd (2014) 

for a survey of case law regarding the analysis confounding factors. 
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 An example of an expert opinion that failed to account possible different external factors 

is found in Katskee v. Nevada Bob’s Golf of Nebraska, Inc. (1991). In this case, Nevada Bob's 

Golf of Nebraska, Inc. counterclaimed that the plaintiff denied its right of first refusal to lease and 

occupy adjacent space, thereby diminishing its profits. The expert for Nevada Bob's Golf of 

Nebraska, Inc. estimated lost profit by simply calculating profit per square foot at the alternative 

location leased and multiplied that by the square footage of the adjacent space. The court rejected 

this analysis stating, 

“The expert assumed that the only difference between the two locations was the square footage. No studies 

or comparisons were made as to differences in the customer base, relative accessibility of the facilities, 

proximity to recreation areas or other shopping areas, parking, or any other external factors.” Katskee v. 

Nevada Bob’s Golf of Nebraska, Inc. (1991, 472:379) 

 Within the context of econometric modeling, the overt omitted variable problem is simply 

the omitted variable bias that may occur in regression models when important explanatory 

variables are omitted, see e.g. Greene (2003). It is import to consider, though, that this problem is 

not limited to applications of regression. Standard graphical and correlation analysis generally 

compare only two variables at a time. Examining the co-movement of a pair of variables in 

isolation from other explanatory factors can lead to erroneous conclusions about the structural 

relationship between the variables in question. For example, it can be shown that baseball player 

salary and number of strikeouts in a season are positively correlated. It would clearly be erroneous 

to then conclude that poor hitters earn higher salaries. More formally, Tomlin and Merrell (2006) 

demonstrate how easily before-and-after analysis can be used to show loses even in the absence of 

actionable conduct.   

2.2 Multiple comparisons problem 

 Multiple comparisons problem arises when a statistical analysis encompasses a number of 

formal comparisons, with the presumption that attention will focus on the strongest differences 

among all comparisons that are made (see e.g. Miller 1981; Benjamini 2010). Erica P. John Fund, 

Inc. v. Halliburton Company (2015) is a recent example of the court dealing with multiple 

comparisons problem.  
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 In this case, Erica P. John Fund, Inc. (EPJ Fund) alleged Halliburton made a series of 

misrepresentations in an attempt to inflate the price of its stock.  Halliburton subsequently made a 

number of corrective disclosures causing its stock price to fall and EPJ Fund. to lose money (see 

also Halliburton Co. v. Erica P. John Fund, Inc. 2014). Both EPJ Fund and Halliburton provided 

export reports regarding the impact of the corrective disclosures on Halliburton stock price. 

Halliburton's expert, Lucy Allen, argued that the multiple comparison issue arose because a large 

number of price reactions were tested for statistical significance. Chad Coffman argued that Allen's 

use of a multiple comparison adjustment is novel, improper, and yields erroneous results, because 

it results in unacceptably high false negatives. The court concluded, 

“The Court is persuaded that the use of a multiple comparison adjustment is proper in this case because of 

the substantial number of comparisons, thirty-five comparisons, being tested for statistical significance… 

Moreover, there is the unverified, but not entirely refuted, specter that Mr. Coffman's predecessor, Ms. 

Nettesheim, selected her dates by looking for statistically significant dates and then looking for Halliburton-

specific news on those dates, from which Mr. Coffman selected the six events in his expert report.” Erica P. 

John Fund, Inc. v. Halliburton Company (2015) 

 As can be seen from the court's statement, the danger of appearing to cherry pick 

breakpoints in before-and-after analysis is real. This is especially true when the economist is called 

upon to testify about the timing of the damage period. Determining the point when the damage 

period begins and/or ends requires implicitly, if not explicitly, the testing of every possible 

breakpoint. Moreover, in the case of an expert who lacks significant training in time series analysis, 

that expert might not even realize there is a problem. The simple use of graphical analysis to 

determine a breakpoint is highly susceptible to this criticism. 

2.3 Latent omitted variable problem 

 The latent omitted variable problems occur when there exists an unknown or unobserved 

factor that is at least partially responsible for changes that occur during the damage period. An 

example of clear recognition of this problem by the court can be found in the United States District 

Court decision in re Live Concert Antitrust Litigation (2012), referred to hereafter  as Live Concert 

Antitrust. In this case, Clear Channel Communications, Inc. et al. (Clear Channel hereafter) is 

alleged to have “engaged in anticompetitive, predatory, and exclusionary practices in an effort to 
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acquire, maintain and extend its monopoly power in a national ticket market for live rock concerts” 

(Heerwagen v. Clear Channel Communications 2004, 435:223).2 

 In the Live Concert Antitrust decision, the court excluded the testimony of an economist 

who supported his before-and-after analysis with a simple regression model. The plaintiff’s expert, 

Owen R. Phillips, used ticket prices for all liver rock music concerts in the Denver and Los Angeles 

markets from 1981 through 1998 to predict the expected average ticket prices from 2000 through 

2006. Phillips then compared expected average ticket prices to the actual average ticket prices, and 

concluded that since actual ticket prices were higher than what Phillips’ model predicted, 

Defendants’ market entry caused an increase in ticket prices (In re Live Concert Antitrust 

Litigation 2012, 863:996–97). 

“Dr. Phillips' ‘Before-and-After’ analysis is significantly less robust than the analysis rejected by the Court 

in In re REMEC Inc. Sec. Litig.[3] There, the expert's analysis accounted for two independent variables (the 

‘market index’ and the ‘industry index’), in addition to the corrective disclosures that allegedly caused the 

declines in stock price. Here, Dr. Phillips' ‘Before-and-After’ analysis accounts for no independent variables 

other than time. Moreover, in In re REMEC Inc. Sec. Litig., the expert observed stock declines after several 

corrective disclosures by the defendants, arguably supporting his hypothesis that the disclosures were, in 

fact, the cause of the declines. Here, only one ‘event’ (i.e., the entry of Defendants into the market in 2000) 

was considered. Finally, as discussed in more detail below, Dr. Phillips improperly excluded data from the 

year 1999 from his analysis.” (In re Live Concert Antitrust Litigation 2012, 863:978) 

The court excluded Philips’ testimony stating while a model need not include all measurable 

variables to be admissible (Bazemore v. Friday 1986), a model may be too incomplete to be 

admissible (Bickerstaff v. Vassar College 1999).  

 In his rebuttal report, Phillips conducted a structural break test at the year 2000 using a 

sample including concerts in both Los Angeles and Denver for the complete sample period (1986-

2006). The court rejected this analysis as well stating, 

                                                 
2 Heerwagen v. Clear Channel Communications (2004) sought national class action status. The United States Court 
of Appeals, Second Circuit upheld the lower court’s denial of national class action status, citing, among other reasons, 
that monopolization claims should be proved with reference to a specific market. Litigation in several districts, 
including United States District Court, C.D. California, ensued.  
3 In In re REMEC Inc. Securities Litigation (2010) the expert testimony was excluded on similar grounds. 
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“This ‘pooled sample’ analysis is fatally flawed for the same basic reason discussed above; namely, it fails 

to account for any ‘major factors’ (other than Defendants' entry into the market in 2000) that could have 

caused and/or contributed to an increase in ticket prices. Moreover, the ‘pooled sample’ analysis fails even 

to consider whether a so-called ‘structural break’ occurred in any year other than 2000. To the contrary, 

Dr. Phillips concedes that there may be ‘structural breaks’ in other years; he simply did not test for them.” 

Live Concert Antitrust (2012, 863:982–83) 

 The court was clearly concerned about overt omitted variables, but in the court's assessment 

of Phillips’ analysis, we see two references to the latent omitted variable problem. First, in its 

assessment of Phillips’ initial report, the court is critical of only one event being considered. 

Second, in its assessment of Phillips’ rebuttal report, the court is critical of testing for only one 

structural break date (In re Live Concert Antitrust Litigation 2012). If the actual break occurred in 

1999, then a Chow test would likely indicate that a break in 2000 is significant. Thus, testing for 

a single breakpoint is likely insufficient to establish causation.   

3 Structural break testing: solving the problems 

3.1 The overt omitted variables problem: Testing for a known structural break 

 We can deal with the overt omitted variables problem by including all major factors that 

are measurable in the model. Chow (1960) proposes a method which allows for the comparison of 

a benchmark period and a damage period and the inclusion of multiple explanatory variables.  

 Suppose we have a dataset of T  observations, N  explanatory variables and wish to test if 

the relationship between the explanatory variables and the dependent variable changes at period 

0t , then consider the following simple implementation of a Chow (1960) structural change test. 

Let y  is a 1T ×  vector of observations of the dependent variable, X  is a T N×  matrix of 

explanatory variables, Γ  is a 1T ×  vector indicating the hypothesized structural change, i.e.  

 0

0

0 (0, 1)
1 ( , )

t t
t t T
∈ −

Γ =  ∈
, (1) 

and Z  be a subset of regressors whose parameter will be allowed to vary between regimes. The 

Chow test can be conducted first by estimating the following equation 
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γ
 

Γ 


°= +


,  (2) 

where ZΓ°  Hadamard, or element-wise, product, and then testing the hypothesis 0γ = . Rejecting 

this hypothesis indicates parameter instability, or a structural break. 

 It is worth noting that this is not the typical textbook version of the Chow test, see e.g. 

Green (2003, 130). However, this version yields two advantages for forensic analysis. First, it 

produces individual t-statistics for each parameter that is allowed to vary. Thus, an analysis of the 

stability of each parameter in the model is possible. Second, equation (2) may be used to determine 

normal values of y  but for the damage that occurred.  

 Given that multiple explanatory factors may be included in (2), the Chow method avoids 

the overt omitted variable problem of simple before-and-after analysis that may lead to the 

exclusion of testimony as in Katskee v. Nevada Bob’s Golf of Nebraska, Inc. (1991). This method 

does not, however, solve the multiple comparisons problem in that the validity the Chow test is 

dependent on knowing, a priori, the date of the structural change. Therefore, if the break date is 

chosen via graphical or other data based analysis, then the test statistic resulting from the Chow 

test has a non-standard distribution. Moreover, unless the existence of an unknown or unobserved 

factor that can explain any structural breakpoints can be eliminated, testing a single breakpoint can 

provide only weak evidence in an argument for causation. 

3.2 The multiple comparisons problem: Testing for an unknown breakpoint 

 In order to solve the multiple comparisons problem, we must be able to account for the fact 

that when testing for the existence of a breakpoint, we may (either implicitly or explicitly) be 

selecting the one breakpoint out of many possible breakpoints that is most likely to yield a 

statistically significant result. Thus to solve this problem we need to be able to test for a breakpoint 

that is not known in advance. 

 Quandt (1960) proposed generalizing the Chow method to test for an unknown breakpoint 

by first calculating Wald statistic for each of the possible breakpoints within a range of dates within 

the sample. Then finding the supremum of the individual Wald statistics (sup-Wald statistic 
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hereafter). However, this approach clearly suffers from the multiple comparisons problem; thus, 

the sup-Wald statistic calculated has a non-standard distribution. Andrews (1993) derived the 

distribution of this sup-Wald statistics,4 solving the multiple comparisons problem, and Hansen 

(1997) determined the approximate p-values for the sup-Wald statistic. Thus, the Quandt-Andrews 

sup-Wald test both avoids the overt omitted variable problem and accounts for multiple 

comparisons problem,5 but this method does not account for the latent omitted variable problem 

as Quandt-Andrews tests for a single breakpoint. 

3.3 The latent omitted variable problem: Testing for multiple unknown structural breaks 

 In the Live Concert Antitrust decision, the court was concerned about testing for a single 

breakpoint. Implicitly, the court was concerned that the change in ticket price was due to a factor 

for which the expert for the plaintiff did not account. Therefore, to account for an unobserved, or 

possibly unobservable, factors we must allow for multiple unknown breakpoints. Moreover, we 

must allow for more breakpoints than what the facts of the case suggest as a prior.   

 Bai (1997) and Bai and Perron (1998) further extend the Quandt-Andrews test to allow for 

multiple unknown breakpoints. Consider a standard multiple linear regression with T   

observations and m  potential breakpoints and 1m +  potential regimes. For regimes 0, ,j m=  , 

define { }j m
T T∈  to be the first date of each regime. Then for the thj  regime, i.e. the subsample 

1,, 1j jT T + −   we have 

 t t t j ty X Z εβ γ′ ′+ += ,  (3) 

where X  is a matrix of regressors whose parameters are regime invariant and Z  is a matrix of 

regressors whose parameters are allowed to vary between regimes. 

 Global Maximizer Tests. Bai and Perron (1998) develop a procedure for testing the 

hypothesis of m  breaks versus 0  breaks. They begin by obtaining the least squares estimate 

                                                 
4 Andrews (1993) also showed that a sup-LM test to be asymptotically equivalent to the sup-Wald test; however, 
Vogelsang (1999) showed that in finite samples for the special case of a change in mean the sup-LM test can lose 
power rapidly as the change in mean increases. Hence our focus on the sup-Wald test.  
5 An alternative solution to the multiple comparisons problem is the CUSUMS test, but Andrews (1993) and others 
have noted that the CUSUMS test suffers serious power problems.  
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( ),β γ  for all possible sets of breakpoints, and then select the optimum set of breakpoints by 

choosing the set of breakpoints, { }ˆ
m

T , that minimizes the sum of squared residuals across all 

possible sets of breakpoints,6 i.e. they choose { }ˆ
m

T  to minimize 

 { }( ) ( )1 1ˆ

ˆ0

ˆ ˆˆ ˆ, ˆ
j

j

Tm

j t T
t t t jm

S T y X Zβ γ β γ
+

= =

− 
′ ′= + 

  
−∑ ∑ ,  (4) 

where ( )ˆ ˆ,β γ  are the least squares estimate of ( ),β γ  for a given set of breakpoints. Next Bai and 

Perron formulate a test of m  breaks versus 0  breaks by calculating an F-statistic to evaluate the 

null hypothesis that 0 1ˆ ˆ ˆmγ γ γ= = = .  

 Double maximum testing. If the number of breaks is unknown, then Bai and Perron 

(1998) show it is possible to test the null of no structural break versus an unknown number of 

breakpoints up to some upper bound by extending the above procedure to include various values 

of m . In other words, the global maximize F-statistic is calculated for 1, ,l m=   breaks. Then 

these test statistics are aggregated either by selecting the maximum value, i.e. UDMax test statistic 

(see e.g. Andrews, Lee, and Ploberger 1996), or by using a weighting scheme, i.e. WDMax test 

statistic (see Bai and Perron 1998). This type of testing, referred to as double maximum testing, 

results in a test statistic with a non-standard distribution for which Bai and Perron (2003b) provide 

critical values. 

 Sequential tests. Finally, Bai and Perron (1998) develop a test of l  versus 1l +  breaks, 

which can be used as the basis of a sequential testing procedure to estimate the number of 

breakpoints. For a model with l  breakpoints, each of the 1l +  regimes is tested for an additional 

breakpoint. One can then sequentially test 0l = , 1l = ,… until a non-rejection occurs. There also 

exist information criteria methods (see e.g. Liu, Wu, and Zidek 1997; Yao 1988); however 

                                                 
6  For large T  and/or m , this process is computationally intensive. Bai and Perron (2003a) develop practical 
algorithms for computing global optimizers for multiple breakpoint models. 
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simulation results of Bai and Perron (2006) show that sequential testing of l  versus 1l +  

breakpoints preforms much better than the information criteria methods. 

 General procedure. Though the sequential test outperforms other methods, Perron (2006) 

warns that it is possible that these tests will select fewer than the true number of breaks, and thus 

should not be used mechanically. Perron recommends first using a double maximum test to 

determine if any breaks are present, and he argues that it is important to begin with the double 

maximum test for three reasons:  

(i) Some types of structural breaks are difficult to detect with single breakpoint models. 

This is especially relevant to before-and-after analysis as it is particularly difficult to 

detect change when the first and third regimes are identical. This may well be the case 

if the sample contains an undamaged period both before and after the damage period. 

(ii) Tests for a fixed number of breakpoints may have power problems if the actual number 

of breakpoints is greater than the number tested. Moreover, to avoid the latent omitted 

variable problem, we should allow for more structural breaks than our prior belief in 

order to allow for an unknown change agent. 

(iii) The simulation results of Bai and Perron (2006) show that the power of double 

maximum tests is nearly as high as when using a test that accounts for the correct 

number of breakpoints. 

Once the existence of breakpoints is established, a sequential test starting at some value of l  

greater than zero is used to determine the number of breakpoints. The starting value of l  should 

be consistent with the facts of the case, i.e. if the sample period is suspected to have before, during 

and after periods, it is reasonable to set the starting value of l  at least one and test to a maximum 

number of break of at least four. 

4 Using structural break analysis as evidence of causation 

 It is not possible to use inferential statistics, absent a statistically designed experiment, to 

establish a causal relationship between variables with absolute certainty. Take, for example, the 

Granger causality test, which establishes a structural relationship but cannot determine causation 

in the legal sense (Granger 1969). However, as Gaughan states,  “[E]ven in the liability phase [of 
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a trial], there can also be important economic and financial issues for which the expert [economist] 

may provide evidence” Gaughan (2009, 54). While econometric techniques may not be able to 

establish causation with absolute certainty, it is possible to either lend significant support to the 

case for causation or raise significant doubt of a causal relationship. Moreover, structural break 

analysis can provide support for, or help to refute, the period in which damages were incurred. 

 While structural break analysis can provide strong support for an argument, for or against, 

causation, there are at least three objections that can be raised with this type of analysis. One, 

because timing of a breakpoint is a key part of the evidence there is risk of committing the post 

hoc ergo propter hoc fallacy. Two, more than one causal event might occur in a single time period. 

And three, there may be a lag between cause and effect. 

 Post hoc ergo propter hoc. An obvious challenge to the use of structural break analysis 

as evidence of causation is that we are relining on timing evidence, i.e. condition ‘A’ ensues, then 

effect ‘B’ is observed, thus ‘A’ causes ‘B.’ This line of reasoning may well suffer either the post 

hoc ergo propter hoc or the cum hoc ergo propter hoc fallacies, but it should be noted that any 

before-and-after analysis that relies on timing evidence alone is subject to this criticism (see e.g. 

Young v. Hickory Business Furniture 2000). Therefore, before-and-after analysis, regardless of 

method, should never rely on time as its only explanatory variable. Further, structural break 

analysis allows the expert to control for both major explanatory factors that may differ between 

periods (see e.g. Katskee v. Nevada Bob’s Golf of Nebraska, Inc. 1991; Bickerstaff v. Vassar 

College 1999) and possibility of unknown and/or unobserved causal factors (see e.g. In re Live 

Concert Antitrust Litigation 2012). 

 Data frequency. At issue is whether more than one casual factor could have occurred 

within the same time period, or within a small neighborhood of time periods. This challenge is 

most apparent when working with annual data. For example, consider Live Concert Antitrust. In 

this case, the expert for the plaintiff conducted a structural break test at the year 2000 because that 

was the year the defendant entered the market. The expert then concluded that because the year 

2000 was a significant breakpoint, the defendant’s entry into the market was the cause of increased 

ticket prices. Clearly, there are several problems with this analysis (several of which are discussed 

above), but if we assume away the issues already discussed, we are left with at least one additional 
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problem. How do we know something else did not happen during the year 2000 that could increase 

ticket prices? This challenge can be met with higher frequency data. It is much less likely that an 

unknown casual event will happen in the same month as our hypothesized cause than it would be 

to occur in the same year.  

 Causal lag. A third challenge to using structural break analysis as evidence of causation is 

that ‘A’ may cause ‘B,’ but does so with a lag. In this situation, we would not expect to see a 

breakpoint occur in the same time period as the hypothesized causal event. In fact, for sufficiently 

high-frequency data, i.e. the data’s periodicity is shorter than the causal lag, the breakpoint 

occurring at the same time as the hypothesized causal event would tend to refute, rather than 

support, an argument for causation. This problem is less severe in lower frequency, but the better 

solution is to avoid conducting statistical analysis in a vacuum. Good analysis will be done in 

reliance on other expert witness, underlying scientific theory and industry norms to determine 

reasonable causal lag. 

5 An empirical example: Poppler v. Wright Hennepin Co-Op. Electric (2014) 

 In this section, we present an empirical example involving damages to a dairy farm due to 

a phenomena known as “stray voltage.” Stray voltage is the presence of electrical current on items 

that are not part of the electrical system that injures dairy livestock by suppressing milk production, 

reproduction, and longevity (see e.g. Hultgren 1990; James v. Beauregard Elec. Co-op., Inc. 1999). 

Key to determining economic loss in these cases is the determination of lost milk production but 

for the presence of stray voltage. Thus, we present a model of milk production and apply structural 

break analysis to support a case for causation and to determine the damage period.7 

5.1 Background 

 The plaintiffs, Poppler, et. al., own and operate a dairy of approximately 200 registered 

Holstein dairy cows located a farm near Waverly, Minnesota, which they purchased in 2003. After 

several years of operation, the herd began exhibiting increased herd-health issues, decreased 

pregnancy rates, higher mortality, and reduced milk production. After eliminating other possible 

                                                 
7 Note that is beyond the scope of this paper to provide a complete model of economic damages in dairy litigation. 
Here we provide only part of such analysis in order to demonstrate the usefulness of structural break analysis. For 
further discussion of dairy litigation see e.g. Kelly and Sienko (2016). 



14 
 

causes, the plaintiffs hired an independent electrical consultant who determined that Wright-

Hennepin’s electrical distribution system caused stray voltage on the Poppler dairy in levels that 

are problematic to dairy cows. In the ensuing litigation, the court ruled in favor of the plaintiff and 

awarded damages. For further details, see Kelly and Sienko (2016) and Poppler v. Wright 

Hennepin Co-Op. Electric (2014). A partial remedy, installation of an isolation transformer, was 

implemented July 2009, and the definitive remedy, installation of a new 3-phase electrical supply 

line, was implemented June 2012. 

5.2 The data 

 In order to model milk production, we use data obtained from two sources: (i) the National 

Dairy Herd Improvement Association (DHIA), which is a service that provides herd records and 

testing to the dairy industry (see http://www.dhia.org/). The data relevant to our analysis is reported 

the monthly herd summary (either report number DHI-202 or DHI-302). And (ii) the monthly milk 

sale summary, commonly referred to as the milk check. 

5.3 Modeling milk production 

Annualized monthly average of pounds of milk produced per cow (MHA), was modeled 

using production data from January 2008 through May 2014 ( 77T = ). Equation (5) is the basic 

model of MHA that will be tested for structural breaks: 

 

1 2 1 2 3 4 3t t t t t tMHA TREND HS SCC DIM Lα α β β β β ε= + + + + + +   (5) 

where TREND  is a deterministic time trend, HS  is the heard size, SCC  is the somatic cell count, 

DIM  is the average number of days lactating, referred to as “days in milk,” and 1L  is the 

percentage of cows in their first lactation cycle. The constant, 1α , and the trend coefficient, 2α  

are allowed to break while the parameters 1 4, ,β β… , coefficients on control variables, are not 

allowed to break.   

Figure 1 plots each of the control variables. Research in dairy science regarding stray 

voltage (see e.g. Gustafson and Albertson 1982; A. Lefcourt 1982; Appleman and Gustafson 1985; 

A. M. Lefcourt 1991) and predicting milk production (see e.g. Ray, Halbach, and Armstrong 1992) 
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indicates that the indicators of animal health most likely to impact milk production are somatic 

cell count, days in milk, and stage of lactation.  

[Figure 1 about here] 

Visual inspection of figure 1 indicates the possibility of changes in somatic cell count, and 

days in milk within the range of July 2009 and June 2012. Before-and-after analysis is complicated 

in this case because:  

(i) Both a partial fix and a definitive occurred, thus there is a before, transition, and after 

periods. In somatic cell count, and days in milk three periods can be seen with 

breakpoints roughly in line with the remedies. 

(ii) The Poppler’s, due to financial stress resulting from lower milk production, were forced 

to sell 2nd lactation cows. Leading a herd with a higher percentage of cows in their 1st 

lactation. See figure 3. Cows produce more milk with each lactation cycle they go 

through (Ray, Halbach, and Armstrong 1992). 

(iii) Cows that have been exposed to stray voltage for an extended period do not 

immediately recover upon secession of exposure. 

[Figure 3 about here] 

5.4 Before-and-after analysis 

 We check parameter stability of (5) using the double maximum structural break testing 

procedure as suggested by Perron (2006) with trimming set to 20% and the maximum number of 

breaks set to three. The WDMax test statistic calculated to be 40.20 (10.98 critical value at 95% 

confidence level).8 Table 1 reports the results of the double maximums structural break analysis. 

Both UDMax and WDMax statistics indicate one significant, 0.5α = , breakpoint at October 2009. 

The breakpoint is consistent with a recovery beginning in 2009. 

[Table 1 about here] 

                                                 
8 Note that test statistics employ HAC covariances (Quadratic-Spectral kernel, Andrews bandwidth). 
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Figure 4 plots the breakpoint model of MHA, equation (5), and table 2 parameter estimates. 

We see that the trend coefficient is negative in the first regime (2008M01 – 2009M09) and the 

trend coefficient is positive but insignificant during the second regime (2009M10 – 2014M05). 

This result is consistent with the conjecture that the installation of an isolation transformer in July 

2009 began the recovery process for the dairy. 

[Figure 4 about here] 

[Table 2 about here] 

  

6 Conclusion 

 Before-and-after analysis is a highly reliable method for determining economic damages 

and providing support of causation claims in business interruption cases, but though widely 

accepted, three problems may arise: the overt omitted variable problem, the multiple comparisons 

problem, and the latent omitted variable problem. Structural break models can provide solutions 

to these problems. Though structural breaks do require more data to estimate and more effort to 

explain.  
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Table 1: Double maximum structural break analysis of somatic cell count 

Number of  Scaled Weighted Critical 
Breaks F-statistic F-statistic F-statistic Value 

1 * 20.10 40.20 40.20 10.98 
2 * 12.48 24.96 30.52 8.98 
3 * 10.10 20.19 31.10 7.13 
UDMax statistic*  40.20  critical value**  11.16 
WDMax statistic*  40.20  critical value**  12.15 
* Significant at the 0.05 level. 
** Bai-Perron (Econometric Journal, 2003) critical values. 
 

Estimated break dates: 
1:  2009M10   
2:  2009M10,  2012M07   
3:  2009M10,  2011M05,  2012M12   
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Table 2: Breakpoint Model of MHA 

Variable Coefficient Std. Error t-Statistic Prob. 

2008M01 - 2009M09 -- 21 obs 
 Constant 30811.85 4331.852 7.112859 0.0000 
 Trend -232.1087 36.19975 -6.411888 0.0000 

2009M10 - 2014M05 -- 56 obs     
 Constant 29066.22 4148.954 7.005675 0.0000 
 Trend 11.60879 15.79990 0.734738 0.4650 

Non-Breaking Variables 
 HS -36.29178 15.70141 -2.311371 0.0238 
 SCC -2284.438 650.7707 -3.510358 0.0008 
 DIM 53.44965 14.99331 3.564900 0.0007 
 L3 30056.98 5229.953 5.747085 0.0000 
R-squared 0.573894 Mean dependent var 29704.69 
S.E. of regression 1325.250 S.D. dependent var 1934.447 
F-statistic 13.27595 Prob(F-statistic) 0.000000 
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Figure 1: Milk model explanatory variables 
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Figure 2: Actual vs. fitted values for MHA model 
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Figure 3: Percent of herd in various lactation stages 
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Figure 4: Three breakpoint model of somatic cell count 
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Figure 5: Normal, actual, and fitted average milk production per lactating cow 
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