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Abstract 

It has become standard practice in the fund performance evaluation literature to use the 

bootstrap approach to distinguish “skills” from “luck”, while its reliability has not been 

subject to rigorous statistical analysis. This paper reviews and critiques the bootstrap schemes 

used in the literature, and provides a simulation analysis of the validity and reliability of the 

bootstrap approach by applying it to evaluating the performance of hypothetical funds under 

various assumptions. We argue that this approach can be misleading, regardless of using 

alpha estimates or their t-statistics. While alternative bootstrap schemes can result in 

improvements, they are not foolproof either. The case can be worse if the benchmark model 

is misspecified. It is therefore only with caution that we can use the bootstrap approach to 

evaluate the performance of funds and we offer some suggestions for improving it. 
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1. Introduction 

Fund performance has been under intensive scrutiny from both practitioners and researchers 

(for a relatively recent survey, see, e.g., Ferson, 2010; or Wermers, 2011). Acknowledging 

the weakness of standard parametric 𝑡 -tests (e.g., Jensen, 1968; Malkiel, 1995) and 

persistence tests (e.g., Carhart, 1997), a strand of literature stemming from Kosowski et al. 

(2006) applies the bootstrap technique to identify “skills” (abnormal returns, or “alpha”) 

among a large sample of funds and report findings that are strikingly different from those 

documented in the classical literature. Unlike the standard 𝑡-test, this approach requires no ex 

ante parametric assumptions on fund alphas. It allows for the generation of the cross-

sectional distribution of fund alphas purely due to sampling variability (“luck”), against 

which, the cross-section of realized alphas obtained from estimating a linear factor model is 

compared. Significant difference between them is regarded as evidence of genuine skills. So 

far, this approach has been extensively used in distinguishing skills from luck in mutual funds 

(e.g., Cuthbertson et al., 2008; Fama and French, 2010; Blake et al., 2014, 2017), Hedge 

funds (e.g., Kosowski et al., 2007), and pension funds (e.g., Blake et al., 2013). 

Given the popularity and the seeming superiority of the bootstrap approach in 

distinguishing skills from luck, it is surprising that little rigorous statistical analysis has been 

conducted to examine whether this approach can actually lead to correct inferences on fund 

skills as presumed (Cheng and Yan, 2017). Such analysis is of essential importance to the 

understanding of the recent literature and the appropriate application of bootstrap in future 

research. We fill this gap. Using Monte Carlo simulations, we evaluate its performance in 

detecting skills across a large number of hypothetical funds under varieties of assumptions on 

fund alphas and errors in the linear factor models.  
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Our research is also motivated by the mixed empirical results regarding mutual funds. 

We were puzzled by the fact that Kosowski et al. (2006) and Fama and French (2010) use 

similar bootstrap specifications but reach diverging conclusions, both of which contradict 

Berk and Green (2004) and Barras et al. (2010). On the one hand, while Kosowski et al. 

(2006) show that the top decile US mutual funds possess superior skills (positive alphas) 

after-cost and the superior skills persist, Fama and French (2010) find that few US mutual 

funds have the skills to cover their costs (negative alphas). On the other hand, Barras et al. 

(2010) find only 0.6% of US mutual funds are truly skillsed and little performance 

persistence after controlling for “false discoveries”, which is consistent with Berk and Green 

(2004) who predict that most funds have just sufficient skills (zero alphas) to cover their 

costs. 

In our simulations, we mainly focus on the performance of one particular bootstrap 

scheme which is the independent sampling of fund residuals (Kosowski et al., 2006), under 

three different Data Generating Processes (DGPs): (i) all funds are endowed with zero alphas 

(i.e., a scenario of no true fund skills); (ii) all fund alphas are generated randomly from a 

normal distribution with zero mean (i.e., a scenario of nonzero true fund skills);  (iii) 10% of 

funds have alphas randomly generated from a normal distribution with zero mean while the 

rest endowed with zero alphas (i.e., a small fraction of funds have nonzero true skills). We 

generate 273 monthly excess returns for each of 2000 hypothetical funds from various asset 

pricing models such as the market model (one-factor CAPM) from Jensen (1968), the four-

factor model from Carhart (1997). The number of funds and the sample length are chosen to 

match the previous literature (i.e., Fama and French, 2010).  

The statistical inference of bootstrap evaluation approach can be based on the cross-

sectional distributions of either alpha estimates or their t-statistics. The latter (i.e., the t-
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statistics of alpha estimates) are preferred than the former (i.e., the alpha estimates) as the 

econometrics literature suggests that the t-statistics correct for idiosyncratic risk and are more 

stable cross-sectionally distributed (e.g., Kosowski et al., 2006; Fama and French, 2010). We 

provide a comparison of them, as it is not clear, at least to us, whether these properties 

automatically translate into advantages of the t-statistics in distinguishing skills from luck.  

We also examine the performance of three alternative bootstrap schemes: a joint 

sampling of fund residuals, a joint sampling of factor returns and fund residuals, as well as 

block sampling of fund residuals and factor returns. The alternative bootstrap schemes can 

either capture correlations across fund returns/residuals or preserve the dependence structure 

between the factor returns and residuals. While Kosowski et al. (2006) jointly bootstrap fund 

residuals, Fama and French (2010) jointly bootstrap factor returns and fund residuals. We are 

interested in knowing whether these schemes can make differences relative to the 

independent sampling of fund residuals and reconcile the mixed findings from Kosowski et 

al. (2006) and Fama and French (2010).  

Several other concerns also necessitate a statistical analysis of the reliability of the 

bootstrap evaluation approach. First, it uses OLS regression to estimate fund alphas and 

betas, which suffer from estimation errors. Second, violations of regression assumptions may 

cause biases or inefficiency in coefficient estimates and compromise the reliability of this 

approach. Third, the limited length of fund returns may further aggravate the issue of 

estimation risk. Finally, benchmark misspecification may also cause problems. 

We report four main conclusions. First of all, the bootstrap evaluation approach may 

falsely identify fund skills and thus cast doubts on its previous applications. On the one hand, 

even when all funds are endowed with zero alphas in our Data Generating Processes (DGPs), 

the bootstrap evaluation approach may indicate superior skills among top funds. On the other 
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hand, if all funds are endowed with well-defined non-zero alphas, it can effectively establish 

the existence of skills, superior or bad. However, if the distribution of the errors terms 

exhibits much higher dispersion than the one of the alphas in DGPs, the bootstrap evaluation 

approach may also fail to detect the existence of skills.  

Second, the use of the t-statistics of alpha estimates rather than the alpha estimates 

themselves in the bootstrap evaluation approach does not guarantee any advantage in terms of 

validity and reliability. On the contrary, due to the strong robustness property of the t-

statistics of alpha estimates, a focus on t-statistics alone may hide the potential issues that can 

be detected by examining alpha estimates sometimes.  

Third, alternative bootstrap schemes that correct for correlations and preserve data 

dependence structure tend to shrink the cross-sectional distribution of bootstrapped alphas 

and can result in improvements in statistical inferences on fund skills. Nevertheless, these 

alternative bootstrap schemes are not foolproof either.  

Finally, we also investigate the possible consequences brought by the violations of 

classical OLS regression assumptions in the bootstrap evaluation framework, as the bootstrap 

evaluation approach is partially motivated by the fact that the classical OLS regression 

assumptions are often violated in earlier fund evaluation studies. We find that, in the presence 

of most problems (i.e., serial correlation, GARCH effect and contemporaneous correlation 

among errors; and multicollinearity in factor returns), the bootstrap evaluation approach may 

falsely identify fund skills when all funds are endowed with zero alphas. The consequence is 

especially severe in the presence of some omitted factor, as the bootstrap evaluation approach 

may mistake superior (inferior) skills for inferior (superior) due to underestimating 

(overestimating) realized alphas via OLS. 
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Overall we find that the bootstrap evaluation approach hinges critically on the 

appropriateness of using likelihoods as the p-values for statistical inferences on fund skills. 

Theoretically, we could obtain the empirical distribution of likelihoods at each percentile by 

generating a large number of paths of fund returns, and compare the likelihoods obtained 

from historical returns against its empirical distribution to test for the difference between 

realized and bootstrapped alphas. However, this would be computationally intensive and 

unnecessary. Once the distribution of the realized alphas is obtained, a simple variance 

decompositions and Kolmogorov-Smirnov tests can come to rescue when the bootstrap 

evaluation approach fails. When all funds are endowed with zero alphas, even if the bootstrap 

evaluation approach tends to predict skills, the variance ratio will be very close to one and the 

Kolmogorov-Smirnov test will not reject the null of no difference between the distributions 

of bootstrapped and realized alphas.  

To the best of our knowledge, we are the first to doubt the validity and reliability of 

the bootstrap approach for distinguishing skills from luck in fund performance evaluation 

from the perspective of “likelihoods”. Fama and French (2010) examine how much alpha is 

necessary to reproduce the cross-section of t-statistics of alpha estimates for actual gross fund 

returns, but do not address our questions mentioned above. They simulate an alpha for each 

fund from a normal distribution with a zero mean and standard deviation ranging from 0% to 

2% in steps of 0.5% per year and compare the percentiles of so generated alphas with those of 

realized alphas. While Fama and French (2010) show the level of standard deviation required 

to generate percentiles of realized alphas, they remain silent on our question whether the 

bootstrap evaluation procedure can effectively distinguish skills from luck.  

The rest of this paper is organized as follows. Section 2 introduces the bootstrap 

evaluation approach. Section 3 describes our baseline simulation settings with three DGP 
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scenarios. Section 4 presents our simulation results for the market model. In Section 5, we 

present simulation results from the variance decomposition analysis, Kolmogorov-Smirnov 

tests, and the bootstrap evaluation for the four-factor model. Section 6 investigates the 

possible consequences brought by the violations of classical OLS regression assumptions. 

Section 7 shows results from the bootstrap evaluation under three alternative bootstrap 

schemes when the four-factor model is used as the benchmark. Section 8 concludes. 

2. The Bootstrap Evaluation Approach 

In this section, we introduce the bootstrap approach. We start with a description of the 

benchmark linear factor models for estimating fund alphas, and provide a formal analysis of 

realized alphas, error-induced alphas, and their relationship as one of our contributions to 

improving our understanding of the bootstrap evaluation approach. We detail the bootstrap 

evaluation procedures and the rationale for the use of “likelihoods” in statistical inferences on 

fund skills by Kosowski et al. (2006) and Fama and French (2010), among others. We also 

briefly introduce another two statistical tools as the competitors of the bootstrap approach, 

variance decomposition and the Kolmogorov-Smirnov test at the end of this section.  

2.1 DGP and Benchmark Models for Fund Performance Evaluation 

The starting point of almost all fund evaluation approaches is to estimate abnormal returns 

(i.e., the alphas). There are plenty of linear factors models can be used to achieve this goal, 

and most papers find that their results are robust to the choice of the benchmark linear factor 

models. For instance, both Kosowski et al. (2006) and Cuthbertson et al. (2008) report that 

their findings based on the four-factor model are robust to the conditional beta model (Ferson 

and Schadt, 1996), the conditional alpha-beta model (Christopherson et al., 1998) and the 

market-timing models (Treynor and Mazuy, 1966; Henriksson and Merton, 1981).  
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We conjecture that the choice of the benchmark model may affect the performance of 

the bootstrap evaluation approach, as the estimation errors deteriorate when the number of 

parameters to estimate increases. The situation will be particularly serious when the 

benchmark model is not the DGP model, i.e., the benchmark model is misspecified. 

Consequently, we have tried every model above but mainly present results from two 

benchmark models which are also our DGP models to illustrate our ideas: The first one is the 

market model from Jensen (1968), which is used to generate fund returns and as the 

performance benchmark in Section 4: 

 𝑟𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖𝑟𝑚𝑡+𝜀𝑖𝑡 (1) 

where 𝑟𝑖𝑡 is the excess return on the 𝑖th fund, 𝑟𝑚𝑡 is the excess return on the market factor, 𝛼𝑖 

measures the abnormal return, 𝛽𝑖 is the factor loading for fund 𝑖 and errors 𝜀𝑖𝑡 are 𝑖. 𝑖. 𝑑. with 

zero mean and variance 𝜎𝜀
2. 

The second benchmark and DGP model is the commonly used four-factor model from 

Carhart (1997), which is used to generate fund returns and as the performance benchmark in 

Section 5: 

𝑟𝑖𝑡 = 𝛼𝑖 + 𝛽1𝑖𝑟𝑚𝑡 + 𝛽2𝑖𝑆𝑀𝐵𝑡 + 𝛽3𝑖𝐻𝑀𝐿𝑡 + 𝛽4𝑖𝑀𝑂𝑀𝑡 + 𝜀𝑖𝑡 (2) 

where 𝑆𝑀𝐵𝑡, 𝐻𝑀𝐿𝑡 and 𝑀𝑂𝑀𝑡 are the size, value and momentum factor, respectively.  

To investigate the consequence of an omitted factor from the benchmark model, we 

present the results using Ferson and Schadt’s (1996) conditional beta model to generate fund 

returns, but the market model (1) as the benchmark fund performance evaluation model in 

and only in subsection 6.5. 
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2.2 Realized and Error-Induced Alphas  

In this subsection, we provide a formal analysis of realized alphas, error-induced alphas and 

their implications for skills identification, which is one of our contributions to improving the 

understanding of the bootstrap evaluation approach.  

Realized Alphas 

The realized alpha for the 𝑖 th fund is the regression estimate of the intercept of the 

benchmark linear factor models, e.g., the market model (1) for brevity: 

 𝛼̂𝑖 = 𝑟̅𝑖 − 𝛽̂𝑖𝑟̅𝑚 (3) 

where 

 𝛽̂𝑖 =
∑ 𝑟𝑖𝑡𝑟𝑚𝑡

𝑇
𝑡=1 −𝑇𝑟̅𝑖𝑟̅𝑚

∑ 𝑟𝑚𝑡
2𝑇

𝑡=1 −𝑇𝑟̅𝑚
2  (4) 

𝑟̅𝑖 = ∑ 𝑟𝑖𝑡
𝑇
𝑡=1 /𝑇  is the average excess return on the 𝑖 th fund and 𝑟̅𝑚 = ∑ 𝑟𝑚𝑡

𝑇
𝑡=1 /𝑇  is the 

average excess return on the market factor. 

Under classical regression assumptions, 𝛼̂𝑖  is an unbiased estimator of 𝛼𝑖  and its 

standard deviation is 

𝑆𝑡𝑑(𝛼̂𝑖) = 𝜎̂𝜀√1/𝑇 + 𝑟̅𝑚/ ∑ (𝑟𝑚𝑡 − 𝑟̅𝑚)2𝑇
𝑡=1   (5) 

where 

 𝜎̂𝜀 = (𝑟𝑖𝑡 − 𝛼̂𝑖 − 𝛽̂𝑖𝑟𝑚𝑡)
2

/(𝑇 − 2) (6) 

The t-statistics of 𝛼̂𝑖  is 𝑡𝛼̂𝑖
= 𝛼̂𝑖/𝑆𝑡𝑑(𝛼̂𝑖). Percentiles of realized alphas and their t-

statistics are obtained by ranking {𝛼̂𝑖, 𝑖 = 1, 2, … , 𝑁} and {𝑡𝛼̂𝑖
, 𝑖 = 1, 2, … , 𝑁}. 

Error-Induced Alphas 

The realized alpha is subject to the influence of sampling errors (“luck”). To isolate the effect 

of sampling errors (“luck”), we remove the actual 𝛼𝑖 from fund returns 𝑟𝑖𝑡 

 𝑟𝑖𝑡
𝐸 = 𝑟𝑖𝑡 − 𝛼𝑖 = 𝛽𝑖𝑟𝑚𝑡+𝜀𝑖𝑡 (7) 
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and then re-estimate the market model using 𝑟𝑖𝑡
𝐸 in place of 𝑟𝑖𝑡 in (1). We obtain 

𝛼̂𝑖
𝐸 = 𝑟̅𝑖

𝐸 − 𝛽̂𝑖
𝐸𝑟̅𝑚 = (𝛽𝑖 − 𝛽̂𝑖 )𝑟̅𝑚 + 𝜀𝑖̅ (8) 

where 

 𝛽̂𝑖
𝐸 =

∑ 𝑟𝑖𝑡
𝐸𝑟𝑚𝑡

𝑇
𝑡=1 −𝑇𝑟̅𝑖

𝐸𝑟̅𝑚

∑ 𝑟𝑚𝑡
2𝑇

𝑡=1 −𝑇𝑟̅𝑚
2 = 𝛽̂𝑖 (9) 

𝑟̅𝑖
𝐸 and 𝜀𝑖̅ are respectively the averages of 𝑟𝑖𝑡

𝐸 and 𝜀𝑖𝑡.1 

We call 𝛼̂𝑖
𝐸 the error-induced alpha since it is purely due to sampling errors (“luck”). 

Its mean and variance are zero and 𝑉𝑎𝑟(𝛽̂𝑖)𝑟̅𝑚
2 + 𝜎𝜀

2/𝑇, respectively.2 It is related to the 

realized alpha in the following way3 

 𝛼̂𝑖 = 𝛼̂𝑖
𝐸 + 𝛼𝑖 (10) 

The above equation has two important implications. First, the distribution of realized 

alphas {𝛼̂𝑖 , 𝑖 = 1, 2, … , 𝑁} is the superimposition of those of error-induced alphas {𝛼̂𝑖
𝐸 , 𝑖 =

1, 2, … , 𝑁} (“luck”) and true alphas {𝛼𝑖, 𝑖 = 1, 2, … , 𝑁} (“skills”). If  𝛼𝑖 = 𝛼, ∀𝑖 , that is, all 

funds have identical true alpha 𝛼  (“skills”), the distribution of realized alphas will be a 

translation of the error-induced one by a constant 𝛼 . In case 𝛼𝑖 = 0, ∀𝑖 , these two 

distributions coincide. Second, the variance of 𝛼̂𝑖 partitions into the variance of 𝛼̂𝑖
𝐸 and that 

of 𝛼𝑖. When true alphas are zero, the variation of 𝛼̂𝑖 can be fully explained by the variation of 

                                                           

1 Proofs of (9) and (8): β̂i
E =

∑ rit
E rmt

T
t=1 −Tr̅i

Er̅m

∑ rmt
2T

t=1 −Tr̅m
2  =

∑ (rit−αi)rmt
T
t=1 −T(r̅i−αi)r̅m

∑ rmt
2T

t=1 −Tr̅m
2 =

∑ ritrmt
T
t=1 −Tr̅ir̅m

∑ rmt
2T

t=1 −Tr̅m
2 = β̂i; 

α̂i
E = r̅i

E − β̂i
Er̅m = βir̅m + ε̅i − β̂ir̅m = (βi − β̂i )r̅m + ε̅i . 

 

2 E[α̂i
E] = E[α̂i − αi] = E[α̂i] − αi = 0 ;  Var(α̂i

E) = Var[(βi − β̂i )r̅m] + Var[ε̅i] = Var(β̂i)r̅m
2 + σε

2/T  . 

 

3 Proof of (10): α̂i = r̅i − β̂ir̅m = r̅i
E + αi − β̂i

Er̅m = α̂i
E + αi . 
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𝛼̂𝑖
𝐸. If we take the ratio of the two variances, we should expect a value very close to one. 

However, a ratio close to one may also arise from other possibilities. For example, if 𝛼̂𝑖
𝐸 has a 

very large dispersion relative to 𝛼𝑖, the dispersion of 𝛼̂𝑖 will be largely determined by that of 

𝛼̂𝑖
𝐸, in which case, the magnitudes of alpha estimates will become important in detecting fund 

skills.  

2.3 Bootstrapped Alphas  

We see from (8) that the computation of the error-induced alpha 𝛼̂𝑖
𝐸 requires the knowledge 

of 𝛽𝑖  and 𝜀𝑖̅ , neither of which is observable. We can use bootstrapping to estimate error-

induced alphas and call them bootstrapped alphas.  

To avoid possible ambiguities, we write down explicitly the steps that Kosowski et al. 

(2006) use to obtain bootstrapped alphas.4 We first estimate the market model (1) for each 

fund and save the vector of estimates {𝛼̂𝑖, 𝛽̂𝑖, 𝜀𝑖̂𝑡, 𝑡𝛼̂𝑖
}, in which, 𝛼̂𝑖 is the realized alpha, 𝑡𝛼̂𝑖

 is 

the t-statistic of 𝛼̂𝑖, 𝛽̂𝑖 is the estimate of the factor loading and 𝜀𝑖̂𝑡 is the fund residual. Then 

we follow the procedures stated below to obtain bootstrapped alphas 

1. draw randomly a sample of length 𝑇  with replacement from fund residuals 

{𝜀𝑖̂𝑡, 𝑡 = 1, 2, … , 𝑇} and denote them as 𝜀𝑖̂𝑡
𝑏 ; 

2. obtain bootstrapped returns 𝑟𝑖𝑡
𝑏 = 𝛽̂𝑖𝑟𝑚𝑡 + 𝜀𝑖̂𝑡

𝑏  under the null hypothesis 𝛼𝑖 = 0; 

3. use {𝑟𝑖𝑡
𝑏 , 𝑡 = 1, … , 𝑇} to re-estimate the market model (1) and denote the resulting 

alpha estimate and its t-statistics by 𝛼̂𝑖
𝑏 and 𝑡𝛼̂𝑖

𝑏 , respectively; 

                                                           
4 Similar procedures are used by Cuthbertson et al. (2008) and Fama and French (2010). There is a slight 

difference Kosowski et al. (2006) and Fama and French (2010), as Kosowski et al. (2006) bootstrap fund 

residuals and factor returns independently while Fama and French (2010) sample them jointly. 
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4. rank  {𝛼̂𝑖
𝑏 , 𝑖 = 1, 2, … , 𝑁}  and {𝑡𝛼̂𝑖

𝑏 , 𝑖 = 1, 2, … , 𝑁}  to obtain their respective 

percentiles {𝛼̂𝑝
𝑏 , 𝑝 = 0.01, 0.02, … , 0.99} and {𝑡𝑝

𝑏 , 𝑝 = 0.01, 0.02, … , 0.99}. 

We repeat the above procedures 𝐵(= 5000)  times and compute the percentiles for 

bootstrapped alphas and their t-statistics as follows 

𝛼̅𝑝
𝐵 =

1

𝐵
∑ 𝛼̂𝑝

𝑏𝐵
𝑏=1 , 𝑝 = 0.01, 0.02, … , 0.99 (11) 

𝑡𝑝̅
𝐵 =

1

𝐵
∑ 𝑡𝑝

𝑏𝐵
𝑏=1 , 𝑝 = 0.01, 0.02, … , 0.99 (12) 

Let 𝛼̂𝑝
𝑅  and 𝑡𝑝

𝑅  denote the 𝑝th percentile of realized alphas and their t-statistics. We 

obtain them by ranking realized alphas {𝛼̂𝑖, 𝑖 = 1, 2, … , 𝑁}  and their t-statistics {𝑡𝛼̂𝑖
, 𝑖 =

1, 2, … , 𝑁}. Let ℒ𝑝 denote the proportion of bootstrapped alphas out of 𝐵 bootstraps that fall 

below the realized alpha at the 𝑝th percentile. We have  

ℒ𝑝 =
∑ 𝟏(𝛼̂𝑝

𝑏<𝛼̂𝑝
𝑅)𝐵

𝑏=1

𝐵
, 𝑝 = 0.01, 0.02, … , 0.99 (13) 

where 𝟏(𝛼̂𝑝
𝑏 < 𝛼̂𝑝

𝑅) takes value one if 𝛼̂𝑝
𝑏 < 𝛼̂𝑝

𝑅 and zero otherwise. 

Similarly, we can obtain the proportion of t-statistics of bootstrapped alphas out of 𝐵 

bootstraps that fall below that of the realized alpha at the 𝑝th percentile. 

2.4 Percentiles, Likelihoods, and Potential Problems 

To separate skills from luck, the current literature focuses on comparing the values of 

realized and bootstrapped alphas at selected percentiles with particular emphasis on the 

extreme tails. ℒ𝑝 in (13) is called the “likelihood” by Fama and French (2010) and plays a 

pivotal role in their statistical inference on skills.  

The rationale for likelihood-based inferences is as follows. Bootstrapped alphas are 

purely due to sampling variations and thus represent luck while realized alphas are driven by 

both luck and true alphas that represent skills. If funds do have the superior good (bad) skills, 

that is, true alphas are significantly different from zero, we should expect there is a 
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significant difference between the cross-sections of bootstrapped and realized alphas at the 

right (left) tail. In the literature, researchers focus on the difference between realized and 

bootstrapped alphas at selected percentiles, in particular, the top and bottom percentiles. For 

example, if the likelihood ℒ𝑝  at the 99 th percentile is 95%, which means that 95% of 

bootstrapped alphas out of the 𝐵 bootstraps fall below their realized counterpart, then this 

will be accepted as evidence of superior skills in the literature. Similarly, at bottom 

percentiles, if the likelihood is significantly small, then this will be regarded as evidence of 

bad skills.  

This likelihood-based inference has at least two problems. First, we use bootstrapped 

alphas to approximate error-induced alphas. In theory, we need to compare the cross-

sectional distributions of realized alphas and error-induced alphas. If all funds just match 

their benchmark, then the two distributions will coincide; otherwise, the distribution of 

realized alphas should have longer tails than that of error-induced alphas. In a finite sample, 

especially when there is an insufficient length of historical data, the distribution of 

bootstrapped alphas may significantly deviate from that of error-induced alphas, which may 

cause problems when we make inferences on skills by comparing the cross-section of 

realized alphas against that of bootstrapped alphas rather than error-induced alphas. As the 

number of parameters to estimate increases, estimation risk will aggravate, and thus the 

inference may become even less reliable. The quality of the inference will depend on the 

position of the distribution of bootstrapped alphas relative to those of error-induced and 

realized alphas, which can only be analyzed using Monte Carlo simulation in the current 

multivariate context. Second, the results can be shown for many percentiles, and the 

likelihoods are correlated. Should we look at likelihoods at each percentile? Fama and French 

(2010) choose to examine all the likelihoods with emphasis on upper and lower percentiles. 
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Furthermore, how should we interpret likelihoods? If we observe likelihood as good as 95% 

at the 99th percentile, is it correct to claim that the top 1% of funds have superior skills? Fama 

and French (2010) appear to have no doubt in this; however, our subsequent analysis shows 

that this interpretation can lead to problematic inferences on fund skills. 

2.5 Inferences Based on Alpha Estimates versus their t-statistics  

In the current literature, the likelihood-based inference mostly focuses on t-statistics of fund 

alphas rather than alpha estimates. Kosowski et al. (2006) argue that t-statistics normalize 

alpha estimates by their standard deviation, and the cross-sectional distribution of t-statistics 

is more stable than that of alphas in the presence of heterogeneous fund volatilities. It is well 

known that under classical regression assumptions, the asymptotic distribution of t-statistics 

is the standard normal. In contrast, alpha estimates are highly influenced by random errors. 

As the standard deviation of errors rises, the dispersion of alpha estimates will increase. In 

contrast, the cross-section of t-statistics is almost immune from this. However, given the 

complexity of the bootstrap evaluation approach, it is not clear that these nice properties of t-

statistics can lead to more reliable results than alpha estimates. To investigate this issue, we 

provide simulation analyses based on both alpha estimates and their t-statistics. 

2.6 Alternatives to bootstrap: Variance Decomposition or Kolmogorov-Smirnov Test 

As shown in (10), we can break the variance of the realized alpha into two parts: the variance 

of true alphas and that of bootstrapped alphas. If the realized alpha is simply due to random 

errors, the ratio of the variance of bootstrapped alphas over that of realized alphas should be 

close to one, which means that the well-known variance decomposition can help identify fund 

skills. Surprisingly, the literature focuses on the first moment of bootstrapped and realized 

alphas, but make no direct use of variances of bootstrapped and realized alphas. We, 

therefore, show how such information can be used to shed light on identifying fund skills. 
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Ideally, we should make formal statistical inferences on skills based on the 

distribution of the variance decomposition ratio. Unfortunately, its probability distribution is 

beyond our knowledge. Therefore, we just report the ratios obtained from kernel density 

estimates of the variances of the distributions of realized and bootstrapped alphas. 

A well-known formal statistical test for difference between two distributions is the 

Kolmogorov-Smirnov two-sample test. It is based on the maximal difference between 

cumulative frequency distributions of two samples and does not require the specification of 

the underlying distribution. We use it to test for difference between the cross-sectional 

distributions of realized alphas and bootstrapped alphas. 

3. Simulation Settings  

We generate 𝑁=2000 hypothetical funds and use 𝐵=5000 bootstraps to compute bootstrapped 

alphas. For each fund, we generate 𝑇=273 monthly returns from either the market model (1) 

or the four-factor model (2).5 In the following, we introduce three DGP scenarios for the 

composition of fund alphas, how to generate monthly returns using the market model and the 

four-factor model, three alternative bootstrap schemes under our consideration and alternative 

probability distributions that we use to simulate errors in the benchmark models. 

                                                           
5 The maximum number of funds covered by Kosowski et al. (2006) is 1788, while Fama and French (2010) 

include 3,156 funds in the $5 million group, 1,422 in the $250 million group, and 660 in the $1 billion group. 

The maximum length of past returns that an individual fund can have is 336 and 273 in Kosowski et al. (2006) 

and Fama and French (2010), respectively. We take the sample of 273 months from Fama and French (2010) but 

check a sample length up to 2000 whenever possible.  
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3.1 Three DGP scenarios for Fund Alphas 

We analyze the performance of the bootstrap evaluation approach under three different Data 

Generating Process (DGP) scenarios for true alphas of the 2000 hypothetical funds. 

DGP 1: 𝜶𝒊 = 𝟎, ∀𝒊 

This case is similar to Berk and Green (2004). In this DGP, all funds are endowed 

zero alphas. Since true alphas are zero, both realized and bootstrapped alphas are due to 

sampling variations. Therefore, there should be no significant difference between cross-

sectional distributions of realized and bootstrapped alphas and thus their values at selected 

percentiles. If the bootstrap evaluation approach is valid and reliable, we should expect 

likelihoods to be nowhere close to zero or one at the selected percentiles. Otherwise, we can 

conclude that it is not appropriate to use likelihoods in statistical inferences on skills.  

DGP 2: 𝜶𝒊~𝑵(𝟎, 𝟎. 𝟎𝟐𝟐), ∀𝒊 

This case is similar to Kosowski et al. (2006) and Fama and French (2010). Fund 

alphas are randomly drawn from the normal distribution with zero mean and annual standard 

deviation of 2%.6 Therefore, there exists superior skills among top-performing funds and bad 

skills among bottom-performing funds. If the likelihood-based inference is valid and reliable, 

we will see a sharp difference between realized alphas and their bootstrapped values and 

likelihoods very close to one at upper percentiles and virtually zero at lower percentiles.  

DGP 3: 𝜶𝒊~𝑵(𝟎, 𝟎. 𝟎𝟐𝟐), 𝒊 = 𝟏, … , 𝟐𝟎𝟎; 𝜶𝒊 = 𝟎, 𝒊 = 𝟐𝟎𝟏, … , 𝟐𝟎𝟎𝟎 

                                                           
6 Fama and French (2010) examine how much alpha is necessary to reproduce the cross-section of t-statistics of 

alpha estimates for actual gross fund returns. They find that the reasonable levels for the standard deviation of 

true alphas range from 0.5% to 2.0%. We set the standard deviation of true alpha to be the upper level 2.0% to 

make sure that funds have sufficiently large but also reasonable alphas to allow a normal environment for the 

bootstrap evaluation method to work in. 
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This DGP is a mixture of DGP 1 and DGP 2, and similar to Barras et al. (2010). In 

this DGP, 200 out of 2000 funds have alphas randomly generated from 𝑁(0, 0.022) and the 

other funds have zero alphas. For the 200 nonzero alphas, we make half of them positive and 

the other half negative. Given nonzero alphas for only 10% of the funds, we will see some 

difference between realized and bootstrapped alphas at top and bottom percentiles if the 

likelihood-based inference approach is valid and reliable. In terms of likelihoods, they should 

be close to 100% at top percentiles and virtually zero at bottom percentiles.  

3.2 Specifications for Other Parameters in Benchmark Models 

Having specified these three DGP scenarios for fund alphas, we detail how to obtain fund 

betas, factor returns, and errors in the benchmark models in this subsection. Depending on the 

benchmark model that we use to generate fund returns, there is a slight difference regarding 

parameter specifications.  

In Section 4, the market model (1) is used to generate fund returns and as the 

performance benchmark. Fund betas, market returns and errors in the market model are 

simulated as follows 

(i). 𝛽𝑖 is simulated from a uniform distribution on the interval [0.5, 2] 

(ii). 𝑟𝑚𝑡 is simulated from 𝑁(0.08, 0.152), the normal distribution with mean 0.08 

per year and annual standard deviation 15% 

(iii). 𝜀𝑖𝑡  is drawn from 𝑁(0, 0.082), the normal distribution with zero mean and 

annual standard deviation 8% 

In Section 5, we use the four-factor model (2) to generate fund returns and as the 

performance benchmark. We obtain data on market excess returns and returns on size, value 

and momentum factors from French’s online data library.7 The data cover the period January 

                                                           
7 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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1984 to September 2006, the same as Fama and French (2010). Fund betas with respect to the 

four factors and errors in the four-factor model are simulated in the same way as described in 

(i) and (iii). 

Given the generated fund returns, we follow the same procedures outlined in section 

2.3 to obtain realized and bootstrapped alphas, their percentiles and likelihoods at the selected 

percentiles.  

3.3 Alternative Bootstrap Schemes  

At step 2 in Section 2.3, we bootstrap fund residuals independently to obtain bootstrapped 

returns 𝑟𝑖𝑡
𝑏 in the first place. Fama and French (2010) sample fund residuals and factor returns 

jointly while Kosowski et al. (2006) do simulations independently for each fund and jointly 

for fund residuals only. In addition to the difference in the sample periods covered by them, 

Fama and French (2010) argue that their different bootstrap scheme is also part of the reason 

for the difference between their findings and those of Kosowski et al. (2006). 

We also consider three alternative bootstrap schemes: a joint sampling of fund 

residuals, a joint sampling of fund residuals and factor returns, and block sampling of fund 

residuals and factor returns (see, Politis and Romano, 1994).  While independent sampling of 

fund residuals disregards any correlation and dependence among errors and factor returns, 

these three alternative bootstrap schemes can capture respectively the contemporaneous 

correlation among fund residuals, the contemporaneous correlation among fund residuals and 

factor returns, and the serial correlations among fund residuals and factor returns. We test 

these three bootstrap schemes for the four-factor model, in which dependence and 

correlations are likely to exist among market data on factor returns.  
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3.4 Alternative Distributions for Errors in the Benchmark Model 

The cross-sectional distribution of realized alphas is usually not normal, see Kosowski et al. 

(2006). We use three alternative distributions for errors in the benchmark model: uniform, 𝑡 

and Normal-Inverse Gaussian (NIG) distributions to generate non-normality in fund returns.8  

For comparison, parameters of these three distributions are specified so that they have 

zero mean and annual standard deviation 8%, the same as the normal distribution given in 

(iii) in Section 3.2. Specifically, the uniform distribution lies on [-0.04, 0.04], the 𝑡 

distribution has a degree of freedom 3 and the NIG distribution has tail heaviness 𝜆 = 10, 

location parameter 𝜇 = 0, asymmetry parameter 𝜃 = 0 and scale parameter 𝛿 = 0.0053. For 

further details on the NIG distribution, please refer to the Appendix.  

4. Results for the Market Model from Jensen (1968) 

In this section, we first examine how realizations of fund betas and errors in the market 

model (1) from Jensen (1968) affect the percentiles and likelihoods and report the results for 

these three DGP scenarios of fund alphas detailed in Section 3.1 when the market model (1) 

also works as the performance benchmark (i.e., the benchmark model is correctly specified). 

After that, we report results from the variance decomposition analysis, Kolmogorov-Smirnov 

tests and the bootstrap evaluation for these three DGPs of fund alphas. 

                                                           
8 Instead of directly simulating fund alphas from uniform, 𝑡 or NIG distribution, we focus on simulating errors 

from these distributions for the following reasons. First, it does allow us to inject non-normality into simulated 

fund returns. Second, the bootstrap evaluation approach involves using OLS regression, which is more sensitive 

to the error specifications than to the underlying distribution of fund alphas. Third, in untabulated results which 

are available from the authors upon request, we have investigated and found that different distributions of fund 

alphas will affect the performance of the bootstrap evaluation approach.  
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4.1 Effects of Different Realizations of Fund Betas and Errors  

In the literature, mutual fund performance is typically evaluated based on the history of fund 

returns. Since we generate fund returns from the market model (1), we can have different 

realizations for parameters in the market model (1) and thus different histories of fund 

returns. We conduct our analysis based on one particular history of fund returns. While this 

reduces the computational burden substantially, there is a concern about the sensitivity of the 

results to the history of fund returns. In the first place, we provide a sensitivity analysis of 

percentiles and likelihoods with respect to realizations and distributions of fund betas and 

errors in market model (1). 

Table 1 presents the annualized realized (Rea) and bootstrapped (Bstrap) alphas (in 

percentages) and likelihoods (%<Rea) at the selected percentiles (Pct) for DGP 1, in which 

all funds are endowed zero alphas. The likelihood is the proportion of bootstrapped alphas 

out of 5000 bootstraps that fall below their realized counterparts at the selected percentiles. 

In our simulation, fund returns are generated from the market model (1), in which all 

funds are endowed zero alphas. Panels A, B and C allow us to examine whether the 

simulation results are sensitive to different distributions of fund betas. They are based on the 

same realizations of market returns and errors, drawn randomly from 𝑁(0.08, 0.152) and 

𝑁(0, 0.082), respectively. However, 𝛽s in Panels A, B and C are simulated from 𝑈[0.5, 2], 

𝑈[0.5, 3.5] and 𝑁(1.25, 0.432), respectively. Panels A and D allow us to investigate whether 

the results are sensitive to different realizations of errors in the market model. Otherwise 

identical to Panel A, Panel D is based on different realizations of errors from the same 

distribution 𝑁(0, 0.082).  

We observe that percentiles and likelihoods are not sensitive to the distribution of 𝛽. 

At the selected percentiles (e.g., Percentile 3%, 4%, 5% and 20%), Panels A and B have the 
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same realized and bootstrapped alphas, and very close likelihoods even though 𝛽 s are 

randomly drawn from two different uniform distributions 𝑈[0.5, 2]  and 𝑈[0.5, 3.5] , 

respectively. In Panel C, 𝛽s are simulated from the normal distribution with the same mean 

and variance as the uniform distribution in Panel A. Again, we find virtually no difference in 

realized and bootstrapped alphas and negligible difference in likelihoods at the selected 

percentiles (e.g., Percentile 3%, 4%, 5% and 20%). 

However, percentiles of realized alphas are very sensitive to the change in the 

realization of errors. In Panels A and D, errors in the market model have different realizations 

from the same distribution 𝑁(0, 0.082) . We find that while bootstrapped alphas are 

approximately the same in Panels A and D at the selected percentiles (e.g., Percentile 3%, 

4%, 5% and 20%), the realized values are apparently different. Accordingly, likelihoods 

exhibit an obvious difference. In untabulated simulation results which are available from the 

authors upon request, we find that this remains true even if we extend the sample length from 

𝑇 =273 to 2000.  

The sensitivity of percentiles and likelihoods to the realization of errors implies that 

the likelihoods are not reliable for statistical inference on fund skills. The reason is that the 

likelihood at a selected percentile is arising from a particular path of fund returns and can be 

regarded as one realization from its underlying distribution. To make any valid statistical 

inference, we need to know the distribution for likelihoods at the same percentile. While it is 

challenging if not impossible to derive the distribution for likelihoods at each percentile 

analytically, we could use Monte Carlo simulations to estimate it. However, this would be 

computationally insensitive. We also notice that while bootstrapped alphas are approximately 

symmetric about zero, realized alphas could be slightly skewed. The reason is that 

bootstrapped alphas at the selected percentiles are the averages across 5000 bootstraps while 
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realized alphas are simply based on one realization of asset returns generated from the market 

model and thus suffer more severely from estimation errors. 

DGPs 2 and 3 result in similar inferences and are not reported here. 

4.2 Results under Classical Regression Assumptions 

In the previous subsection, we show that percentiles and likelihoods are very sensitive to the 

history of generated fund returns. To highlight the potential issues of the bootstrap evaluation 

approach, in this subsection, we base our analyses on a carefully chosen path of fund returns 

generated from the market model and present the results for these three DGP scenarios of 

fund alphas described in Section 3.1 under classical regression assumptions.9 In addition to 

the normal distribution 𝑁(0, 0.082), we also consider three alternatives distributions of errors 

in the market model: uniform, 𝑡 and NIG. Their parameters are set so that errors have zero 

means and annualized standard deviations 0.08.  

DGP 1: 𝜶𝒊 = 𝟎, ∀𝒊 

In this DGP, all funds are endowed with zero alphas and thus no fund has skills. If the 

likelihood-based approach is valid and reliable, we should see that at both upper and lower 

percentiles, there is no significant difference between realized and bootstrapped alphas. In 

terms of likelihoods, they should be nowhere close to 100% or zero.  

We find that the graphs of probability density functions, the variance decomposition, 

and the Kolmogorov-Smirnov test reveal that funds have no skills. However, the likelihood-

based approach leads to incorrect inferences on funds skills and thus is not reliable. 

To be specific, Figure 1 plots the kernel density estimates of probability density 

functions (PDF) for realized and bootstrapped alphas. As we see, regardless of the 

                                                           
9 Actually, this carefully chosen path of fund returns is frequently encountered in our simulation. 
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distribution of errors, there is no significant difference between their PDFs, which is 

consistent with the assumption of zero alphas.  

Table 2 presents the kernel density estimates of mean and variance of bootstrapped 

and realized alphas and the results of the Kolmogorov-Smirnov tests for the difference 

between them. First, regardless of the error distribution, bootstrapped and realized alphas 

have approximately the same mean and variance estimates. The ratio of variances of 

bootstrapped and realized alphas are very close to one, which implies the variance of 

bootstrapped alphas accounts for virtually all the variation in realized alphas. Second, the 

Kolmogorov-Smirnov test fails to reject the null of no difference between the distributions of 

realized and bootstrapped alphas under all the four error distributions.  

However, the percentiles and likelihoods of realized and bootstrapped alphas lead to 

problematic inferences on fund skills. Table 3 reports realized and bootstrapped alphas and 

likelihoods at the selected percentiles for DGP 1 under the four error distributions: uniform, 

normal, 𝑡 and NIG in Panels A, B, C and D, respectively. 

Fama and French (2010) interpret very large likelihoods at top percentiles as evidence 

of superior skills and very small likelihoods at bottom percentiles as evidence of bad skills. In 

Panel A, we see that from the 96th to 99th percentiles, realized alphas are above their 

bootstrapped values with likelihoods above 95%, indicating that more than 95% of alpha 

estimates out of the 5000 bootstraps fall below their realized counterparts. According to Fama 

and French (2010), this would be accepted as strong evidence of superior skills among top 

funds. 

With normal errors in Panel B, realized alphas are slightly below their bootstrapped 

values at upper percentiles and lower percentiles. However, the corresponding likelihoods 

indicate no significant evidence of skills at 5% level. In Panel C, errors are drawn randomly 
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from the 𝑡 distribution. We find that starting from the third percentile, realized alphas are 

smaller than their bootstrapped values. In particular, at the third, fourth, fifth and sixth 

percentiles, all the likelihoods are below 5%, implying bad skills. For the NIG errors in Panel 

D, at the 90th (and 95th) percentile, the bootstrapped alpha 2.07 (2.71) is below its realized 

counterpart 2.20 (2.88) with the likelihood equal to 98.50% (97.10%), indicating the 

existence of superior skills. At even higher percentiles, bootstrapped alphas stay below their 

realized counterparts for at least 80% of the 5000 bootstraps. 

The tests used by Fama and French (2010), among others, lead to the inference that 

there is superior and bad skills among funds at extreme tails. The cause for this incorrect 

inference lies in the misinterpretation of likelihoods. Fama and French (2010) treat 

likelihoods as if they were the p-values commonly used in statistical tests, which is common 

in the literature using the bootstrap evaluation approach. However, this interpretation is not 

appropriate. As we point out in the previous subsection, we need to compare the observed 

likelihood against its underlying distribution at a particular percentile to make statistical 

inference on skills. We could use Monte Carlo simulations to estimate the distribution of 

likelihoods at each percentile and find out the correct p-value of the test; however, this would 

be computationally intensive. Moreover, the bootstrapped distribution of likelihoods may be 

very sensitive to the assumptions on parameters and is of little value in empirical 

performance evaluation. 

Table 4 shows the results based on t-statistics of alpha estimates. We find that t-

statistics have no advantage over alpha estimates. The patterns of likelihoods based on t-

statistics are very similar to what we observe in Table 3. Likelihoods indicate substantial 

evidence of inferior skills at third, fourth and fifth percentiles in Panel C and evidence of 

superior skills at the 95th percentile in Panel D. 
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In summary, when all funds are endowed with zero alphas, the bootstrap evaluation 

approach can conclude the existence of skills. This is true regardless of using alphas or their 

t-statistics. In contrast, the graphs of PDFs, the variance decomposition, and the Kolmogorov-

Smirnov test result in the correct inference. The cause for the incorrect inferences resulting 

from the bootstrap evaluation lies in the misinterpretation of likelihoods. Given the history of 

fund returns, the likelihood obtained at each selected percentile is just one realization from its 

underlying distribution; however, most literature that uses this approach treats it as if it were 

the p-value commonly employed in statistical tests.  

DGP 2: 𝜶𝒊~𝑵(𝟎, 𝟎. 𝟎𝟐𝟐), ∀𝒊 

In this DGP, fund alphas are generated randomly from the normal distribution with 

zero mean and annual standard deviation of 2%, which means that almost all funds either 

outperform or underperform the benchmark. If the bootstrap evaluation approach works 

effectively, we should expect that at upper percentiles, realized alphas are greater than their 

bootstrapped values with likelihoods close to 100% and at lower percentiles, realized alphas 

below bootstrapped values with likelihoods close to zero.  

Table 5 reports the results based on alpha estimates and their t-statistics under two 

different error distributions 𝑁(0, 0.082) and 𝑁(0,1) in Panels A and B, respectively.10 As 

before, fund returns are generated from the market model (1). Market returns and fund betas 

are identical to those used in Table 3.  

                                                           
10  In untabulated results which are available from the authors upon request, variance decompositions and 

Kolmogrov-Smirnov tests show strong evidence for the difference between the distributions of realized alphas 

and bootstrapped alphas for Cases 2 and 3.  
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In Panel A of Table 5, errors in the market model have an annual standard deviation 

8%. In Panel B, we specify a substantial annual standard deviation 100% for errors for two 

reasons. First, we are interested in knowing if a large dispersion in errors will make it 

difficult to test for difference between realized and bootstrapped alphas when true alphas of 

funds are non-zero. This is actually the primary cause for the misgivings in the current case if 

we interpret likelihoods as Fama and French (2010) do. Second, the current literature 

emphasizes the advantage of using the t-statistics of alpha estimates instead of alpha 

estimates themselves for the reason that the distribution of t-statistics is standardized and 

more stable. However, we show that if we follow Fama and French (2010)’s  interpretation of 

likelihoods, this can be a disadvantage when the dispersion of errors is so large that the t-

statistics of alpha estimates at selected percentiles become virtually indistinguishable from 

those of bootstrapped alphas. As we show later, in such situation, it is better to adhere to 

alpha estimates. We obtain similar findings for uniform, 𝑡 or NIG errors and do not report 

them here. 

 From Panel A of Table 5 we see that even if we treat likelihoods as if they were p-

values, we still can arrive at the correct inferences about fund skills regardless of using alpha 

estimates or their t-statistics here. We see that at lower percentiles realized alphas (and their t-

statistics) are far smaller than their bootstrapped values (and their t-statistics). At upper 

percentiles, the opposite is true. Moreover, likelihoods are zero below the 50th percentile and 

100% above the 50th percentile, implying inferior skills at the bottom and superior skills at 

the top. 

The results from Panel A imply that we can treat likelihoods as if they were p-values 

without making incorrect inferences on skills here. One reasonable explanation is that had we 

know the distribution of likelihoods at the selected percentile; we would find a substantial 
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probability for the likelihood to take the value that we see in Panel A at the selected 

percentile. In fact, as we generate many different histories of fund returns from the same 

data-generating process as in Panel A, we find that we always obtain the same pattern for 

likelihoods. 

The sharp distinction between realized and bootstrapped alphas at extreme tails is due 

to the high dispersion in realized alphas compared to that of bootstrapped values. 

Bootstrapped alphas have a monthly standard deviation 0.14%, in sharp contrast to 0.58%, 

the standard deviation of true alphas.11 The dispersion in realized alphas should be even 

higher because of estimation errors.  

The challenge is whether this approach remains capable of separating skills from luck 

as the dispersion of errors in the market model increases substantially. To investigate this 

issue, we increase the annual standard deviation of errors to 100% while fixing the annual 

standard deviation of fund alphas at 2%.  

We present the results in Panel B of Table 5. We see that at all the selected 

percentiles, the gaps between realized and bootstrapped alphas narrow substantially relative 

to that we have seen in Panel A. First, the dispersion of bootstrapped alphas increases 

substantially due to the rise in the standard deviation of errors. As a result, the dispersion of 

realized alphas also grows but to a lesser extent. For example, for realized alphas, the 

difference between the 99th and 1st percentiles increases to 102.45 in Panel B from 34 in 

                                                           
11 The monthly standard deviation for bootstrapped alphas is σε/√12T, in which, σε denotes the annual standard 

deviation of errors and T is the sample length. In the current setting, we have σε = 0.08 and T = 273, which 

implies a standard deviation 0.14%. Since actual alphas are simulated from N(0, 0.022), their monthly standard 

deviation is 0.02/√12 =0.58%. As the sample size T increases, the distribution of bootstrapped alphas will 

shrink further while the distribution of realized alphas, largely determined by that of actual alphas, will not 

change qualitatively. This means that the separation of skill from luck will become even more obvious. 
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Panel A. For bootstrapped alphas, the difference is 97.30, compared to 7.79 in Panel A. 

While at upper percentiles, realized alphas remain above their bootstrapped values, we cannot 

reject the null of no difference between them at the significance level of 5%.  

Inferences based on t-statistics are even worse. First, we see that there is virtually no 

change in the t-statistics of bootstrapped alphas as we increase the standard deviation of 

errors from 8% in Panel A to 100% in Panel B. From regression analysis, we know that t-

statistics are normalized alpha estimates and follow the standard normal distribution given a 

large sample, which explains why we see almost no change in the t-statistics of bootstrapped 

alphas as the standard deviation of errors increases. However, the t-statistics of realized 

alphas have shrunk substantially. The intuition is that while the standard deviation of realized 

alphas rises dramatically due to the increase in the standard deviation of errors, realized 

alphas are determined mainly by true alphas and thus change to a far less extent. As the ratios 

of realized alphas to their standard deviations, t-statistics will decline dramatically. Actually, 

as we can see from Panel B, the t-statistics of realized alphas are quite similar to those of 

bootstrapped alphas, and even closer to those for normal errors in Panel B of Table 4 in 

which all funds are endowed with zero alphas. As in the case of alpha estimates, the 

likelihoods imply that we cannot reject the null of no difference between the t-statistics of 

realized alphas and those of bootstrapped alphas at upper percentiles.  

To sum up, given reasonably large errors, the bootstrap evaluation approach works 

very well when all funds are assumed to either outperform or underperform the market 

benchmark. Likelihoods can be treated as if they were p-values without causing incorrect 

inferences on skills here. This is true of inferences based on both alpha estimates and their t-

statistics. However, as the standard deviation of errors becomes extremely large, we could 

draw problematic inferences on skills if we treat likelihoods as if they were p-values for 
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statistical tests. In this situation, results from alpha estimates are more informative because 

they reveal the level of dispersion in bootstrapped alphas, which cannot be known from their 

statistics because their distribution is not sensitive to the change in the standard deviation of 

errors. 

DGP 3: 𝜶𝒊~𝑵(𝟎, 𝟎. 𝟎𝟐𝟐), 𝒊 = 𝟏, … , 𝟐𝟎𝟎; 𝜶𝒊 = 𝟎, 𝒊 = 𝟐𝟎𝟏, … , 𝟐𝟎𝟎𝟎 

In this DGP, 200 of the 2000 funds have zero alphas and the remaining funds have 

alphas generated randomly from 𝑁(0, 0.022) with half being set to be positive and half being 

set to be negative. This DGP lies somewhere between DGP 1 and DGP 2. Given 90% of all 

funds either outperform or underperform their benchmark, we should expect that realized 

alphas are above their bootstrapped counterparts with likelihoods close to one at top 

percentiles and below their bootstrapped values with likelihoods close to zero at bottom 

percentiles.  

Panels A and B of Table 6 show the results based on alpha estimates and their t-

statistics under two error distributions 𝑁(0, 0.082)  and 𝑁(0,1) , respectively. In our 

simulation, fund returns are generated from the market model (1), in which, 200 funds have 

zero alphas and the remaining funds have alphas drawn randomly from 𝑁(0, 0.022) with half 

being set to be positive and half being set to be negative. We simulate market returns from 

𝑁(0.08, 0.152) and 𝛽s from 𝑈[0.5, 2]. The errors in Panels A and B are generated randomly 

from 𝑁(0, 0.082) and 𝑁(0, 0.642), respectively. 

In Panel A, the approach works very well. At both top and bottom percentiles, there 

are significant differences between realized alphas and their bootstrapped values. Likelihoods 

are uniformly zero at percentiles below 10th and 100% at percentiles above 80th.  

However, as we increase the standard deviation of errors to 0.64, the approach starts 

losing its power. As shown in Panel B of Table 6, at top percentiles, the realized and 
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bootstrapped alphas are virtually indistinguishable. At bottom percentiles, the likelihoods are 

above 10%, indicating no significant difference between realized and bootstrapped alphas. 

The reason for this is the same as for DGP 2.  

In untabulated results which are available from the authors upon request, we have 

found qualitatively similar inferences drawn from results based on t-statistics, qualitatively 

similar results for uniform, 𝑡 and NIG errors. 

In untabulated results which are available from the authors upon request, the variance 

decompositions and Kolmogorov-Smirnov tests show strong evidence for a difference 

between the distributions of realized alphas and bootstrapped alphas for DGPs 2 and 3.  

In summary, given reasonably large errors, the bootstrap evaluation approach works 

well when a significant fraction of funds is assumed to either outperform or underperform the 

market benchmark. The likelihood-based tests used by Fama and French (2010) among 

others, will lead to correct inferences on fund skills, based on either alpha estimates or their t-

statistics. However, as the standard deviation of errors in the market model increases to 0.64, 

Fama and French (2010)’s interpretation of likelihoods can result in problematic inferences 

on fund skills.  

5. Results for the Four-Factor Model from Carhart (1997) 

In this section, we use the four-factor model (2) to generate fund returns and examine how 

the bootstrap evaluation approach performs when the four-factor model is used as the 

performance benchmark. 

We obtain monthly data for 𝑟𝑚𝑡, 𝑆𝑀𝐵𝑡, 𝐻𝑀𝐿𝑡,and 𝑀𝑂𝑀𝑡 from French’s online data 

library. The data cover the period from January 1984 to September 2006, the same as in Fama 

and French (2010). Details on simulation settings are described in Sections 3.1 and 3.2. 
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We report the results for DGP 1 only since the bootstrap evaluation approach 

typically fails in DGP 1 as shown in Section 4. Results based on t-statistics are reported 

whenever necessary. 

5.1 Percentiles and Likelihoods Based on the Four-Factor Model 

Table 7 displays realized and bootstrapped alphas and likelihoods at the selected percentiles 

for DGP 1 under four different distributions of errors in the four-factor model: uniform, 

normal, 𝑡  and NIG in Panels A, B, C and D, respectively. The results are based on 

independent sampling of fund residuals.  

We simulate 𝛽s from the uniform distribution on [0.5, 2] and sample errors from one 

of the four distributions: uniform, normal, 𝑡 and NIG distributions. Parameters of the four 

distributions are set so that errors have zero mean and annual standard deviation of 0.08. 

Specifically, the uniform distribution lies on the interval [−0.04,0.04] , the normal 

distribution has zero mean and annual standard deviation of 0.08, the 𝑡 distribution has a 

degree of freedom of 3, and the NIG distribution has tail heaviness 𝜆=10, location 𝜇=0, 

asymmetry parameter 𝜃=0 and scale parameter 𝛿=0.0053. 

In Panel A, we find that the approach works very well. At both tails, the realized and 

bootstrapped alphas are quite close to each other. From the first to fifth percentiles, 

bootstrapped values are below their realized counterparts in a minimum of 45.84% to a 

maximum of 86.58% of the 5000 bootstraps, indicating no significant difference between 

them. A similar conclusion can be drawn from the top percentiles. 

However, in Panel B with normal errors, the approach loses its power. At the 97th 

percentile, the bootstrapped value is 3.33, smaller than the realized value 3.57 in 99.08% of 

the 5000 bootstraps, which, according to Fama and French (2010), should be accepted as 

evidence of superior skills. In addition, likelihoods are above 70% at most of the selected 
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percentiles and above 90% at the 98th and 99th percentiles. It seems that realized alphas at 

these percentiles tend to be upward biased.  

The approach is also invalid in Panel C, in which errors are sampled from the 𝑡 

distribution. At the 95th percentile, the realized alpha is 3.03, above its bootstrapped value 

2.84. The likelihood 98.46% indicates superior skills among top funds.  

In Panel D, errors are sampled from the NIG distribution. We find that likelihoods are 

below 50% at most percentiles; however, there is no strong evidence of skills at both tails. 

Therefore, the approach gives correct inferences on skills. 

In summary, similar to what we find from the market model, the bootstrap evaluation 

approach can produce incorrect inferences on fund skills when all funds are endowed with 

zero alphas. Therefore, in this case, likelihoods cannot be relied on to make statistical 

inferences on fund skills.  

5.2 Results from Variance Decompositions and Kolmogorov-Smirnov tests 

Figure 2 displays PDFs and CDFs of realized and bootstrapped alphas under four different 

error distributions. We see that under each of the four error distributions, both PDF and CDF 

(dashed line) for realized alphas almost coincide with those of bootstrapped alphas (solid 

line), which indicates no skills.  

Table 8 reports the kernel density estimates of mean and variance of alpha estimates 

and their t-statistics and the results for Kolmogorov-Smirnov tests. The variance ratio is 

computed as the ratio of kernel estimates of variances of bootstrapped and realized alphas. 

The Kolmogorov-Smirnov test is used to test for difference between realized and 

bootstrapped alphas.  

In Panel A, we see that regardless of the error distribution, the variance ratio is very 

close to one. Therefore, the variation of realized alphas can be largely attributed to random 
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errors. The variance ratios of the t-statistics are also close to one as shown in Panel B. In 

addition, the Kolmogorov-Smirnov tests in both Panels A and B demonstrate that we cannot 

reject the null of no difference between realized and bootstrapped alphas. 

In contrast to percentiles and likelihoods, the variance decomposition and the 

Kolmogorov-Smirnov test can help us to make correct inferences on fund skills when all 

funds have zero alphas.  

6. Consequences of Violations of Regression Assumptions 

The bootstrap evaluation approach is partially motivated by the fact that the classical OLS 

regression assumptions are often violated in earlier fund evaluation studies. In this section, 

we investigate the possible consequences brought by the violations of classical OLS 

regression assumptions: including serial correlation, GARCH effect and contemporaneous 

correlation among errors; multicollinearity in factor returns; and omitted factor. 

6.1 Serial Correlation among Errors  

We assume that errors in (1) follow an AR(1) process 

𝜀𝑖𝑡 = 𝜙𝜀𝑖𝑡−1 + 𝑢𝑖𝑡, 𝑖 = 1, 2, … , 2000 (14) 

where 𝑢𝑖𝑡~𝑖. 𝑖. 𝑑 𝑁(0, 𝜎𝑢
2). 

The mean, variance and the 𝑘th order correlation of the AR(1) process are 𝐸(𝜀𝑖𝑡) = 0, 

𝜎𝜀
2 = 𝜎𝑢

2/(1 − 𝜙2) , and 𝜌(𝑘) = 𝜙𝑘 , respectively. In our simulation, we set 𝜙 =0.10 and 

𝜎𝑢=0.0796 so that the annualized standard deviation 𝜎𝜀 of errors is 0.08. Other parameters are 

specified the same as in (i) and (ii) in Section 3.2. 
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Panels A, B and C of Table 9 report the results for DGP 1 based on alpha estimates, 

standard t-statistics, and Newey-West t-statistics (Newey and West (1987)), respectively. 12  

We find that the approach does not work. In Panel A, we observe strong evidence of 

superior skills at top percentiles and evidence of inferior skills at bottom percentiles. At top 

five percentiles, 100% of the 5000 bootstrapped values are below their realized counterparts, 

indicating of superior skills. In contrast, at bottom five percentiles, all the likelihoods are 

zero, indicating inferior skills. The same conclusion can be drawn from results based on t-

statistics in Panel B. In Panel C, the realized t-statistics are shrunk compared to those in Panel 

B. However, the Newey-West t-statistics remain revealing significant superior skills among 

top-performing funds and inferior skills among bottom-performing funds even though 

likelihoods are different from 100% at top and zero at bottom. 

From regression analysis, we know that serial correlations among errors affect the 

efficiency of OLS estimators, which implies the increase in the standard deviation of realized 

alphas. Compared to realized alphas in Panel B of Table 3, we do find that the dispersion of 

realized alphas has increased. Furthermore, for a positive serial correlation as in our case, the 

standard errors of coefficient estimates will be underestimated. As a result, their t-statistics 

will be inflated. We find that the dispersion in the standard t-statistics in Panel B of Table 9 

increases relative to that of the t-statistics in Panel B of Table 4. While Newey-West t-

statistics make some improvements by shrinking the standard t-statistics, it is not enough to 

                                                           
12  To compute Newey-West serial-correlation-robust standard errors, we set the lag length to be five in 

accordance with the current practice. In the current practice, the commonly used lag length is the smallest 

integer greater than or equal to T1/4, see Greene (2011). The sample length T is 273 in our simulation. 
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produce correct inferences on skills.13 In addition, bootstrapped alphas and their t-statistics 

are not affected by serial correlations among errors. 

Interestingly, in untabulated results which are available from the authors upon 

request, we find that the bootstrap approach works well for DGPs 2 and 3. 

6.2 GARCH Effects among Errors  

Empirical studies show that financial returns exhibit volatility clustering. To examine its 

impact on the performance of the bootstrap evaluation approach, we use the following 

GARCH (1, 1) process to model errors in the market model (1)  

 𝜀𝑖𝑡   = 𝜎𝑖𝑡𝑢𝑖𝑡, 𝑖 = 1, 2, … , 2000 (15) 

 𝜎𝑖𝑡
2 = 𝜔 + 𝜃𝜀𝑖𝑡−1

2 + 𝛾𝜎𝑖𝑡−1
2  (16) 

where 𝑢𝑖𝑡~𝑖. 𝑖. 𝑑 𝑁(0, 1), 𝜔 > 0, 𝛾 > 0, 𝜃 > 0, and 𝜃 +  𝛾 < 1. 

Under the assumption of covariance stationarity, the unconditional variance of errors 

is 𝜎𝜀
2 = 𝜔/(1 − 𝜃 − 𝛾). In our simulation, we set 𝜔= 0.000027, 𝜃=0.05 and 𝛾=0.90 so that 

the annualized standard deviation 𝜎𝜀 is equal to 0.08. Other parameters are specified as in (i) 

and (ii) in Section 3.2.  

Panels A, B, and C of Table 10 report the results based on t-statistics for DGPs 1, 2, 

and 3, respectively.14  In Panel A, at top percentiles, the realized alphas are below their 

                                                           
13 From results unreported, we find other things being equal, as serial correlations rise from zero, the inflation in 

t-statistics of realized alphas will exacerbate. On the other hand, a negative correlation leads to the shrinkage of 

realized alphas and their t-statistics. As the correlation decreases from zero, the shrinkage will aggravate. In both 

cases, the cross-section of bootstrapped alphas stays approximately the same as in the absence of serial 

correlations. For negative serial correlations, the pattern of likelihoods is also reversed: virtually zero at upper 

percentiles while very close to 100% at lower percentiles. 
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bootstrapped counterparts with likelihoods below 5%, which is evidence of inferior skills 

among top-performing funds and inconsistent with our assumption of no skills. However, this 

approach works well in DGPs 2 and 3 as shown in Panels B and C.15  

6.3 Contemporaneous Correlations among Errors  

To examine the effect of contemporaneous correlations among errors on the bootstrap 

evaluation approach, we simulate errors in the market model (1) from a multivariate normal 

distribution with zero means, annual standard deviations 0.08 and an identical and constant 

correlation across all funds 0.1. Other parameters are specified the same as in (i) and (ii) in 

Section 3.2. 

Panels A, B, and C of Table 11 report results based on t-statistics for DGPs 1, 2 and 3 

under two different bootstrap schemes: an independent sampling of fund residuals (Bstrap1) 

and joint sampling of fund residuals (Bstrap2).  

We find that while the joint sampling scheme leads to the shrinkage of the distribution 

of bootstrapped alphas and thus an improvement in some situations, it can also produce 

incorrect inferences on skills. First, comparing Bstrap1 and Bstrap2 in Panels A, B, and C, 

we find the joint sampling scheme shrinks bootstrapped alphas in all these three DGPs. 

Second, likelihoods in Column 3 of Panel A indicate that there is inferior skills among 

bottom funds. In contrast, likelihoods based on a joint sampling of fund residuals in Column 

5 show that the approach works very well. In Panel B, the approach also works well 

                                                                                                                                                                                     
14 Results based on alpha estimates and Newey-West t-statistics provide no additional insights and thus are not 

reported here. 

 

15 From results unreported, we find that similar to what we observe in Section 4.2, as the ratio of the standard 

deviations of errors and actual alphas increases, it will be more and more difficult to differentiate the t-statistics 

of realized alphas and bootstrapped alphas. 
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regardless of the bootstrap scheme. However, in Panel C, both schemes fail. At all the 

selected percentiles, the bootstrapped values based on independent sampling (Bstrap1) are 

above their realized counterparts. Furthermore, likelihoods in Column 3 of Panel C are zero 

at all the selected percentiles, indicating of no superior skills among top-performing funds, in 

contradiction to our assumption. The bootstrapped values based on joint sampling (Bstrap2) 

are also uniformly above their realized counterparts; however, likelihoods in Column 5 of 

Panel C indicate of neither superior nor inferior skills. 

Even though our assumption of a constant and identical correlation of 0.1 between all 

funds is far away from reality, it does highlight how sensitive the bootstrap evaluation 

approach is to contemporaneous correlations among errors. Moreover, even with the 

knowledge of contemporaneous correlations among errors, the use of joint sampling of fund 

residuals is not foolproof as shown in DGP 3. 

6.4 Multicollinearity in Factor Returns 

To examine the impact of multicollinearity on the performance of the bootstrap evaluation 

approach, we simulate factor returns in the four-factor model (2) from a multivariate normal 

distribution with mean vector 𝜇=[0.8, 0.8, 0.8, 0.8], standard deviations 𝜎=[0.15, 0.17, 0.19, 

0.21] and correlation coefficient 𝜌=0.5 among all the factors. Other parameters are simulated 

in the same way as in (i) and (iii) in Section 3.2 except that for each fund, we have to 

generate four factor loadings from 𝑈[0.5, 2]. 

Table 12 reports percentiles and likelihoods for DGPs 1, 2 and 3 based on t-statistics 

of alpha estimates.  

We find that the approach works in all these three DGPs although the t-statistics at 

virtually all percentiles in DGPs 2 and 3 are slightly shrunk toward zero compared to those in 

Panel A of Table 5 and those in Panel A of Table 6, respectively. We know that in regression 
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analysis, the standard errors of coefficient estimates tend to be large in the presence of 

multicollinearity in explanatory variables. Consequently, the t-statistics tend to be smaller, 

which explains the shrinkage in the t-statistics of realized alphas in Panels B and C.  

6.5 Omitted Factor 

In this subsection, we examine how the omitted factor from the benchmark model will affect 

the performance of the bootstrap evaluation approach. We use Ferson and Schadt’s (1996) 

conditional beta model to generate fund returns, but the market model (1) as the benchmark 

fund performance evaluation model. 

Ferson and Schadt’s (1996) Conditional Beta Model  

In market model (1), fund betas are measured as averages over the evaluation period without 

regard to the state of financial markets. Now we extend the market model (1) to the 

conditional beta model developed by Ferson and Schadt (1996) 

𝑟𝑖,𝑡+1 = 𝛼𝑖 + 𝛽1𝑖𝑟𝑚,𝑡+1 + 𝛽′[𝑟𝑚,𝑡+1 ⊗ 𝑍𝑡] + 𝜀𝑖,𝑡 (17) 

where 𝑟𝑖,𝑡+1 is the excess return of fund 𝑖, 𝑍𝑡 is the vector of lagged conditioning variables in 

demeaned form. The symbol ⊗ denotes the Kronecker product. This model amounts to a 

multifactor model by treating 𝑟𝑚,𝑡+1 ⊗ 𝑍𝑡 as a vector of additional factors, see Jagannathan 

and Wang (1996). It can also be written as a market model with a time-varying beta 𝛽(𝑍𝑡) 

 𝑟𝑖,𝑡+1 = 𝛼𝑖 + 𝛽(𝑍𝑡) 𝑟𝑚,𝑡+1 + 𝜀𝑖,𝑡 (18) 

where 𝛽(𝑍𝑡) = 𝛽1𝑖 + 𝛽′𝑍𝑡.  

In our simulation, we assume that there is only one state variable 𝑍𝑡 , representing 

some predictor of 𝑟𝑚, and simulate 𝑍𝑡 from 𝑁(0, 0.152). We generate 𝑟𝑚,𝑡+1 from 

 

 𝑟𝑚,𝑡+1 = 𝛾𝑍𝑡 + 𝑢𝑡+1 (19) 
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where 𝑢𝑡+1~𝑁(0, 0.082) and 𝛾=0.5. We simulate funds’ exposures to the factor 𝑟𝑚,𝑡+1 ⊗ 𝑍𝑡 

from 𝑈[0.5, 2]. Other parameters are specified the same as described in Sections 3.1 and 3.2. 

As before, the market model (1) is used for performance evaluation. The resulting 

problem is equivalent to omitting the factor rm,t+1 ⊗ Zt . In regression analysis, if some 

explanatory variable is omitted, the coefficient estimates will be biased upward or downward, 

depending on the correlation between the omitted factor and other explanatory variables. 

Moreover, the standard error of coefficient estimates will be biased positively. The biases on 

the coefficient estimate can either cancel or reinforce the bias in the standard error. Therefore, 

the net effect on t-statistics is not clear.  

Simulation Results 

Figure 3 plots the kernel density estimates of probability density functions (PDFs) of realized 

(dashed line) and bootstrapped (solid line) alphas for DGP 1: all funds are endowed with zero 

alphas.  

We see that the PDF of realized alphas lies to the right of that for bootstrapped alphas, 

implying that at all the percentiles, realized alphas should be larger than those bootstrapped. 

This is at odds with the assumption that all funds have zero alphas. 

Panels A, B and C of Table 13 show the percentiles and likelihoods (%<Rea) for 

realized (Rea) and bootstrapped (Bstrap) alphas at the selected percentiles (Pct) for DGPs 1, 

2 and 3, respectively. We also report the percentiles for realized alphas (Rea_No) when the 

factor 𝑟𝑚,𝑡+1 ⊗ 𝑍𝑡 in (17) is taken into account for estimation. 

In Panel A, all funds are endowed with zero alphas. We find that the approach is 

invalid. First, realized alphas (Rea) are overestimated relative to their counterparts (Rea_No) 

when 𝑟𝑚,𝑡+1 ⊗ 𝑍𝑡  is taken into account. Consequently, at all the selected percentiles, the 

realized values are larger than their bootstrapped counterparts with likelihoods virtually equal 
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to 100%. The reason is, given the positive value of 𝛾, the omission of 𝑟𝑚,𝑡+1 ⊗ 𝑍𝑡  in the 

benchmark model leads to a positive bias in alpha estimates. As a result, the entire 

distribution of realized alphas shifts to the right as illustrated in Figure 3.16  

In Panel B, all funds have alphas randomly generated from 𝑁(0, 0.022). We find that 

realized alphas are larger than those when 𝑟𝑚,𝑡+1 ⊗ 𝑍𝑡 is taken into account. However, the 

approach works since the difference between realized alphas and their bootstrapped values 

are sufficiently large.17 In Panel C, the approach remains valid.  

Results based on t-statistics are similar and thus are not reported here. 

To sum up, the bootstrap evaluation approach can lose its power in the presence of the 

following issues: serial correlation, GARCH effect and contemporaneous correlation among 

errors; multicollinearity in factor returns; and omitted factor especially when all funds are 

endowed with zero alphas. For example, when errors in the market model follow an AR(1) 

process and all funds are endowed with zero alphas, likelihoods indicate strong evidence of 

superior skills among top-performing funds and of inferior skills among bottom-ranking 

funds. This is true regardless of using alpha estimates or their t-statistics. When errors follow 

GARCH (1,1) and all funds are endowed with zero alphas, likelihoods can result in evidence 

of inferior skills among top-performing funds. When all funds are endowed with non-zero 

alphas, likelihoods can usually lead to correct inferences on skills at extreme tails.  

                                                           
16 From unreported results, we find that when γ is negative, realized alphas will be underestimated relative to 

their counterparts when rm,t+1 ⊗ Zt is taken into account. The PDF of realized alphas will lie to the left of the 

PDF of bootstrapped alphas. Likelihoods in Case 1 will be virtually zero at the selected percentiles. 

 

17 However, from unreported results, we find that as γ in (19) rises, the distribution of realized alphas when 

rm,t+1 ⊗ Zt is omitted will get closer and closer to that of bootstrapped alphas. Nevertheless, other things being 

equal, at extreme tails, the method remains valid even if γ reaches the level 0.9. 
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7. Performance of Alternative Bootstrap Schemes 

The independent sampling of fund residuals disregards the correlation and dependence 

among errors and factor returns. In this section, we consider three alternative bootstrap 

schemes: (1) joint sampling of fund residuals (2) joint sampling of fund residuals and factor 

returns and (3) joint sampling of fund residuals and factor returns using block bootstrap. It is 

worth noting that different bootstrap schemes influence statistical inferences on skills by 

affecting bootstrapped alphas but not realized alphas. Likelihoods will change in response to 

the change in bootstrapped alphas. 

For comparison, we use the four-factor model (2) as the benchmark and use the same 

factor loadings and errors generated in Table 7, Section 5. 

Panels A, B and C of Table 14 report realized and bootstrapped alphas at the selected 

percentiles for DGP 1 under the alternative bootstrap schemes (1), (2) and (3), respectively.  

In Panel A, we see that the percentiles of bootstrapped alphas are slightly shrunk 

toward zero compared to those obtained from independent sampling of fund residuals in 

Panel A of Table 7. This is true for all the four error distributions. For example, in the case of 

uniform errors, at the first, second and third percentiles, the likelihoods are respectively 

43.80%, 49.88% and 71.30%, down from their respective values 45.84% 55.34%, and 

86.58% in Table 7; at the 97th, 98th and 99th percentiles, likelihoods are respectively 

64.10%, 77.38% and 79.42%, down from 68.28%, 86.34% and 85.12%. Therefore, compared 

to the independent sampling of fund residuals, the joint sampling of fund residuals tends to 

shrink the distribution of bootstrapped alphas and thus likelihoods at tails.  

Results in Panel B are based on jointly sampling fund residuals and factor returns. We 

find that likelihoods at lower percentiles slightly increase while those at upper percentiles 

slightly decrease. More importantly, these likelihoods lead to correct inferences on fund 
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skills. For example, under uniform errors, at the first, second and third percentiles, 

likelihoods increase to 48.80%, 55.26% and 71.80% from 43.80%, 49.88% and 71.30% in 

Panel A. At the 97th, 98th and 99th percentiles, likelihoods are respectively 55.12%, 66.56% 

and 68.46%, further down from 64.10%, 77.38% and 79.42 %, their values in Panel A. For 

normal errors, likelihoods at all the percentiles are below 90% with the maximum 87.44% 

occurring at the fifth percentile. We also see reduced dispersions across likelihoods under 𝑡 

and NIG errors. Under 𝑡 errors, the likelihood ranges from 13.20% to 81.36% in Panel B 

while it ranges from 7.30% to 91.06% in Panel A. Under NIG errors, the minimum likelihood 

increase to 8.82% from 4.62% in Panel A while the maximum is roughly the same as in Panel 

A.   

All the prior bootstrap schemes ignore the serial dependence in fund residuals and 

factor returns. The block bootstrap considers this issue. In our simulation, there are virtually 

zero serial correlations among errors because we generate them from 𝑖. 𝑖. 𝑑. distributions. The 

major concern is due to the market data on factor returns. While the block length can be 

arbitrarily chosen, we consider the block lengths of {3, 4, 6, 10, 12} months, at which lags, 

the returns on at least one of the factors have autocorrelations above 10%. 

Table 15 displays the autocorrelations of factor returns and the results of Ljung-Box 

Q-tests up to 15 lags. At some lags, the autocorrelations are not negligible: -11% and 11% at 

lags 4 and 11 for the Market Factor, -13% at lag 3 for Size(SMB), 10% for Value (HML) at 

lag 1, and 13% at lag 6 for Momentum. At lag 12, the autocorrelation for Momentum is 19% 

and the p-value for the Q-test indicates that we can reject the null of no serial correlation at 

the significance level of 0.01. Given these numbers, it is interesting to know whether the 

block bootstrap can improve the likelihood-based statistical inferences on fund skills.  
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Panel C of Table 14 shows the results for a block length of 10. 18  We find that 

depending on the error distribution, likelihoods at tails can be either increase or decrease 

relative to those in Panel B. As a result, likelihoods lead to correct inferences on fund skills: 

all funds have zero alphas. Under the uniform errors, at the third, fourth and fifth percentiles, 

likelihoods are reduced to 54.82%, 54.78% and 54.20% in Panel C from 71.80%, 71.50% and 

70.72% in Panel B. Under the normal errors, at the third, fourth and fifth percentiles, 

likelihoods decrease to 47.04%, 61.72% and 65.16% in Panel C from 62.34%, 83.06% and 

87.44% in Panel B. At top percentiles, there is not much change in both cases. In contrast, for 

t and NIG errors, significant changes occur at top percentiles. For example, under NIG errors, 

at the 95th to 99th percentiles, likelihoods are respectively 53.24%, 52.16%, 54.86%, 52.86% 

and 42.78%, up from 42.96%, 39.84%, 45.46%, 41.36% and 26.28% in Panel B.  

In summary, we find that while the independent sampling of fund residuals is not 

reliable, both the joint sampling of fund residuals and factor returns and block bootstrap are 

valid when alpha estimates are used. The block bootstrap scheme seems to be more reliable 

given the dependence structure in the market data on factor returns.19  

We also conduct similar analyses for these three alternative schemes using t-statistics. 

From results unreported here, we find that the block bootstrap remains valid and reliable 

when t-statistics are used; however, the joint sampling of fund residuals and factor returns 

can be misleading. In this sense, t-statistics have no advantage over alpha estimates in 

inferences on fund skills. Our findings also support Fama and French (2010)’s claim that the 

                                                           
18 For other block lengths, similar results are found and thus are not reported here. 

 

19 We also check the variance decomposition and Kolmogrov-Smirnov tests for these three alternative bootstrap 

schemes and find that they allow us to make correct inferences on skill when all funds are endowed with zero 

alphas.  
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bootstrap scheme used by Kosowski et al. (2006) may well be one of the reasons behind their 

strong results. 

8. Concluding Remarks 

We provide a Monte Carlo simulation analysis of the validity and reliability of a bootstrap 

evaluation approach, which has recently been applied to identifying skills in a large strand 

literature but with striking different results. In general, we find that the bootstrap approach 

can lead to problematic inferences about fund skills and thus cast doubts on its recent 

applications. On the one hand, our analyses show that when all funds are endowed with zero 

alphas, the approach can lead to the problematic inference that there exists superior skills 

among top funds. On the other hand, if the funds are endowed with non-zero alphas, it can 

effectively establish the existence of skills, superior or bad. However, if errors in the market 

model exhibit extremely high dispersion relative to fund alphas, the approach can also fail to 

detect the existence of skills.  

The major problem with this approach lies in the inappropriate use of what Fama and 

French (2010) call “likelihoods” in testing for difference between realized and bootstrapped 

alphas at the selected percentiles. Fama and French (2010), among others, treat likelihoods as 

if they were the p-values of statistical tests. However, this is not correct even though it does 

not always lead to problematic inferences. Fama and French (2010)’s likelihood at the 

selected percentile is obtained based on historical returns of mutual funds, which is just one 

realization from the underlying distribution of fund returns.  

The use of t-statistics rather than alpha estimates in the bootstrap evaluation does not 

guarantee any advantage in terms of validity and reliability of the bootstrap evaluation 

approach. On the contrary, because of the strong robustness property of the t-statistics, a 
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focus on t-statistics alone may hide the potential issues that can be detected from examining 

alpha estimates sometimes.  

Alternative bootstrap schemes that correct for correlations and preserve data 

dependence structure tend to shrink the cross-sectional distribution of bootstrapped alphas 

and can result in improvement in statistical inferences on fund skills. This is in support of 

Fama and French (2010)’s claim that different bootstrap schemes may explain the difference 

between their findings on US mutual fund performance and those by Kosowski et al. (2006). 

However, these alternative bootstrap schemes are not foolproof either.  

The bootstrap evaluation approach is partially motivated by the fact that the classical 

OLS regression assumptions are often violated in earlier fund evaluation studies. 

Consequently, we investigate the possible consequences brought by the violations of classical 

OLS regression assumptions: including serial correlation, GARCH effect and 

contemporaneous correlation among errors; multicollinearity in factor returns; and omitted 

factor. We find that, in the presence of most problems (i.e., serial correlation, GARCH effect 

and contemporaneous correlation among errors; and multicollinearity in factor returns), the 

bootstrap evaluation approach may falsely identify fund skills when all funds are endowed 

with zero alphas. The consequence is particularly serious in the presence of some omitted 

factor, as the bootstrap evaluation approach may mistake superior (inferior) skills for inferior 

(superior) due to underestimating (overestimating) realized alphas via OLS. 

Overall, we find that the bootstrap evaluation approach hinges critically on the 

appropriateness of using likelihoods as the p-values for statistical inferences on fund skills. 

Theoretically, we could obtain the empirical distribution of likelihoods at each percentile by 

generating a large number of paths of fund returns, and compare the likelihoods obtained 

from historical returns against its empirical distribution to test for the difference between 
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realized and bootstrapped alphas. However, this would be computationally intensive and 

unnecessary. Once the distribution of the realized alphas is obtained, a simple variance 

decompositions and Kolmogorov-Smirnov tests can come to rescue when the bootstrap 

evaluation approach fails. When all funds are endowed with zero alphas, even if the bootstrap 

evaluation approach tends to predict skills, the variance ratio will be very close to one and the 

Kolmogorov-Smirnov test will not reject the null of no difference between the distributions 

of bootstrapped and realized alphas. For researchers and practitioners who are interested in 

fund performance evaluation, this paper provides guidance and intuition regarding the 

possible deficiency of using the bootstrap approach in various ways, and insights for 

improving the existing bootstrap schemes as well as alternative non-bootstrap performance 

evaluation approaches (e.g., Chen et al., 2017; Ferson and Chen 2017; Harvery and Liu, 

2017).  
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Table 1. Sensitivity Analysis of Realized and Bootstrapped Alphas (DGP 1) 

The table reports annualized realized (Rea) and bootstrapped (Bstrp) alphas in percentages and likelihoods 

(%<Rea) at selected percentiles (Pct) for DGP 1, in which, all funds are endowed with zero alphas. Details 

on how to obtain percentiles and likelihoods are given in Sections 2.2 and 2.3. The likelihood (%<Rea) 

refers to the proportion of bootstrapped alphas out of 5000 bootstraps that fall below their realized 

counterparts at the selected percentiles. In our simulation, fund returns are generated from the market 

model (1), in which market returns and errors are drawn randomly from 𝑁(0.08, 0.152) and 𝑁(0, 0.082), 

respectively. Otherwise identical, Panels A, B and C have 𝛽 s simulated randomly from 𝑈[0.5, 2] , 

𝑈[0.5, 3.5]  and 𝑁(1.25, 0.432) , respectively. Otherwise identical, Panels A and D are based on two 

different realizations of errors from 𝑁(0, 0.082).  

 

 

 

 

 

  

Pct Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea

1 -3.75 -3.90 86.80 -3.75 -3.90 84.70 -3.75 -3.89 85.40 -3.95 -3.90 37.50

2 -3.42 -3.44 58.90 -3.42 -3.44 56.50 -3.42 -3.43 54.70 -3.48 -3.44 35.80

3 -2.97 -3.15 97.00 -2.97 -3.15 97.70 -2.97 -3.14 98.10 -3.19 -3.15 33.40

4 -2.78 -2.93 95.80 -2.78 -2.93 95.90 -2.78 -2.93 96.00 -2.88 -2.93 72.10

5 -2.63 -2.75 95.10 -2.63 -2.75 94.00 -2.63 -2.75 94.70 -2.73 -2.75 62.80

10 -2.07 -2.14 87.90 -2.07 -2.14 87.10 -2.07 -2.14 89.30 -2.18 -2.14 25.20

20 -1.28 -1.41 98.90 -1.28 -1.40 98.70 -1.28 -1.40 98.70 -1.43 -1.40 34.40

30 -0.81 -0.87 89.00 -0.81 -0.87 88.80 -0.81 -0.88 89.30 -0.89 -0.88 39.50

40 -0.40 -0.42 62.80 -0.40 -0.42 63.30 -0.40 -0.42 65.10 -0.46 -0.42 19.20

50 -0.02 0.00 31.50 -0.02 0.00 34.20 -0.02 0.00 36.70 0.02 0.00 67.90

60 0.35 0.43 6.90 0.35 0.42 5.80 0.35 0.42 6.30 0.46 0.42 78.40

70 0.89 0.88 61.00 0.89 0.88 60.40 0.89 0.88 62.00 0.88 0.87 53.80

80 1.42 1.40 61.30 1.42 1.41 56.00 1.42 1.41 59.80 1.38 1.40 30.40

90 2.15 2.14 55.90 2.15 2.14 54.30 2.15 2.14 53.40 2.05 2.14 8.30

95 2.76 2.75 55.00 2.76 2.75 54.60 2.76 2.75 54.30 2.65 2.75 10.30

96 2.94 2.93 57.80 2.94 2.93 55.80 2.94 2.93 56.90 2.85 2.93 19.30

97 3.15 3.14 50.50 3.15 3.15 49.60 3.15 3.15 51.00 3.09 3.15 25.70

98 3.57 3.43 88.90 3.57 3.44 86.70 3.57 3.44 88.70 3.35 3.44 21.80

99 4.04 3.89 84.80 4.04 3.89 84.80 4.04 3.89 85.20 3.74 3.90 12.00

Panel A: Baseline Panel B: βi ~ U[0.5, 3.5] Panel C: βi ~ N[1.25, 0.43
2 

] Panel D: εi,t ~ N[0, 0.08
2 

]
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Table 2. Variance Ratios and Kolmogorov-Smirnov Tests (DGP 1) 

This table presents the kernel density estimates of means and variances of realized (Rea) and bootstrapped 

(Bstrap) alphas and the results of Kolmogorov-Smirnov tests for difference between realized and 

bootstrapped alphas. The variance ratio is the ratio of the variance of bootstrapped alphas to that of 

realized alphas. In our simulation, fund returns are generated from the market model (1), in which all funds 

are endowed with zero alphas, market returns are randomly drawn from 𝑁(0.08, 0.152), 𝛽s are simulated 

from 𝑈[0.5, 2] and errors are randomly sampled from one of the four distributions: uniform, normal, 𝑡 and 

NIG. Parameters of the four distributions are set so that errors have zero mean and annual standard 

deviation 0.08. Specifically, the uniform distribution lies on [−0.04,0.04], the 𝑡 distribution has a degree 

of freedom 3 and the NIG distribution has tail heaviness 𝜆=10, location 𝜇=0, asymmetry parameter 𝜃=0 

and scale parameter 𝛿=0.0053. For Kolmogorov-Smirnov tests, “0” indicates of no rejection of the null of 

no difference in the two distributions.  

 

 

 

  

Rea Bstrap Rea Bstrap Rea Bstrap Rea Bstrap

Mean 0.10 0.00 0.04 0.00 0.00 0.00 -0.07 0.00

Variance 2.90 2.95 2.88 2.94 2.97 2.94 2.97 2.93

Variance ratio

Kolmogorov-

Smirnov
0 0

Uniform Normal

0.98 0.98 1.01

Student-t NIG

0 0

1.02
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Table 3. Percentiles of Alpha Estimates (DGP 1) 

The table shows annualized realized (Rea) and bootstrapped (Bstrap) alphas in percentages and likelihoods 

(%<Rea) at the selected percentiles (Pct) for DGP 1 under four different error distributions: uniform, 

normal, 𝑡  and NIG in Panels A, B, C and D, respectively. Details on how to obtain percentiles and 

likelihoods are given in Sections 2.2 and 2.3. The likelihood (%<Rea) is the proportion of bootstrapped 

alphas out of 5000 bootstraps that fall below their realized counterparts at the selected percentiles. In our 

simulation, fund returns are generated from the market model (1), in which all funds are endowed with 

zero alphas, market returns are randomly generated from 𝑁(0.08, 0.152), 𝛽s are simulated from 𝑈[0.5, 2] 

and errors in Panels A, B, C and D are sampled from uniform, normal, 𝑡  and NIG distributions, 

respectively. Parameters of the four distributions are set so that errors have zero mean and annual standard 

deviation 0.08. Specifically, the uniform distribution lies on [−0.04,0.04], the 𝑡 distribution has a degree 

of freedom 3 and the NIG distribution has tail heaviness 𝜆=10, location 𝜇=0, asymmetry parameter 𝜃=0 

and scale parameter 𝛿=0.0053. 

 

 

 

Pct Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea

1 -3.99 -3.89 22.20 -3.95 -3.90 37.50 -3.89 -3.98 69.60 -4.23 -4.08 20.20

2 -3.55 -3.44 15.30 -3.48 -3.44 35.80 -3.48 -3.42 30.80 -3.63 -3.50 14.40

3 -3.20 -3.14 26.00 -3.19 -3.15 33.40 -3.30 -3.10 2.10 -3.16 -3.15 45.60

4 -3.00 -2.93 18.80 -2.88 -2.93 72.10 -3.07 -2.87 1.50 -2.92 -2.90 42.30

5 -2.86 -2.75 8.00 -2.73 -2.75 62.80 -2.87 -2.68 1.60 -2.73 -2.71 38.50

10 -2.19 -2.14 23.60 -2.18 -2.14 25.20 -2.22 -2.06 0.60 -2.11 -2.06 26.80

20 -1.41 -1.41 45.70 -1.43 -1.40 34.40 -1.41 -1.34 9.80 -1.32 -1.33 57.40

30 -0.87 -0.88 58.40 -0.89 -0.88 39.50 -0.89 -0.83 12.50 -0.82 -0.82 54.70

40 -0.39 -0.42 78.20 -0.46 -0.42 19.20 -0.46 -0.40 7.40 -0.34 -0.40 90.30

50 0.03 0.00 74.10 0.02 0.00 67.90 -0.05 0.00 14.30 0.05 0.00 87.80

60 0.45 0.42 69.50 0.46 0.42 78.40 0.35 0.40 14.50 0.44 0.40 86.10

70 0.86 0.87 37.00 0.88 0.87 53.80 0.77 0.83 11.90 0.88 0.82 90.10

80 1.41 1.41 49.00 1.38 1.40 30.40 1.35 1.34 62.20 1.38 1.33 85.00

90 2.13 2.14 45.60 2.05 2.14 8.30 2.01 2.06 20.90 2.20 2.07 98.50

95 2.87 2.75 92.50 2.65 2.75 10.30 2.62 2.68 25.50 2.88 2.71 97.10

96 3.07 2.92 96.30 2.85 2.93 19.30 2.79 2.86 20.00 3.05 2.91 92.70

97 3.31 3.15 95.80 3.09 3.15 25.70 3.03 3.10 25.40 3.31 3.16 91.10

98 3.63 3.43 96.70 3.35 3.44 21.80 3.35 3.42 29.50 3.65 3.51 87.00

99 4.15 3.89 96.00 3.74 3.90 12.00 3.84 3.96 25.70 4.25 4.09 84.40

Panel A: Uniform Panel B: Normal Panel C: Student-t Panel D: NIG
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Table 4. Percentiles of t-Statistics of Alpha Estimates (DGP 1) 

The table shows the t-statistics of realized alphas (Rea) and bootstrapped alphas (Bstrap) and likelihoods 

(%<Rea) at selected percentiles (Pct) for DGP 1 under four different distributions for errors: uniform, 

normal, 𝑡  and NIG in Panels A, B, C and D, respectively. Details on how to obtain percentiles and 

likelihoods are given in Sections 2.2 and 2.3. The likelihood (%<Rea) is the proportion of t-statistics of 

bootstrapped alphas out of 5000 bootstraps that fall below those of realized alphas at the selected 

percentiles. In our simulation, fund returns are generated from the market model (1), in which all funds are 

endowed with zero alphas, market returns are simulated from 𝑁(0.08, 0.152), 𝛽s are generated randomly 

from 𝑈[0.5, 2] and errors in Panels A, B, C and D are sampled from the four distributions: uniform, 

normal, 𝑡 and NIG, respectively. Parameters of the four distributions are set so that the errors have zero 

mean and annual standard deviation 0.08. Specifically, the uniform distribution lies on [−0.04,0.04], the 𝑡 

distribution has a degree of freedom 3 and the NIG distribution has tail heaviness 𝜆=10, location 𝜇=0, 

asymmetry parameter 𝜃=0 and scale parameter 𝛿=0.0053.  

 

  

Pct Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea

1 -2.37 -2.34 35.70 -2.31 -2.34 64.90 -2.48 -2.40 18.00 -2.22 -2.44 99.20

2 -2.13 -2.06 14.30 -2.09 -2.06 35.70 -2.19 -2.10 9.60 -2.03 -2.13 92.10

3 -1.95 -1.89 12.70 -1.92 -1.89 29.60 -2.03 -1.92 2.80 -1.87 -1.94 88.90

4 -1.79 -1.76 25.40 -1.74 -1.76 66.70 -1.88 -1.78 3.40 -1.74 -1.80 88.00

5 -1.70 -1.65 12.00 -1.62 -1.65 72.40 -1.76 -1.67 3.90 -1.65 -1.69 81.90

10 -1.31 -1.28 24.60 -1.30 -1.28 30.70 -1.35 -1.30 11.30 -1.27 -1.31 87.50

20 -0.85 -0.84 40.60 -0.86 -0.84 30.70 -0.89 -0.85 14.00 -0.81 -0.86 93.50

30 -0.51 -0.53 68.50 -0.53 -0.52 38.90 -0.56 -0.53 19.30 -0.52 -0.54 71.00

40 -0.23 -0.25 79.70 -0.28 -0.25 19.50 -0.28 -0.26 17.80 -0.21 -0.26 94.10

50 0.02 0.00 74.30 0.01 0.00 67.10 -0.03 0.00 14.50 0.03 0.00 87.80

60 0.26 0.25 66.00 0.28 0.25 79.00 0.22 0.26 10.30 0.30 0.26 89.90

70 0.51 0.52 28.20 0.52 0.52 43.70 0.49 0.53 8.60 0.57 0.54 85.70

80 0.84 0.84 41.70 0.82 0.84 25.00 0.85 0.85 48.10 0.87 0.86 60.80

90 1.28 1.28 47.30 1.22 1.28 5.90 1.24 1.30 8.40 1.35 1.31 83.90

95 1.70 1.65 85.70 1.59 1.65 11.20 1.61 1.67 11.30 1.77 1.68 96.20

96 1.83 1.76 92.50 1.68 1.76 5.70 1.69 1.78 6.10 1.86 1.79 90.90

97 1.98 1.89 94.10 1.85 1.89 25.40 1.79 1.91 1.90 2.00 1.93 89.20

98 2.16 2.06 93.40 1.98 2.06 10.20 1.92 2.09 0.70 2.13 2.12 61.70

99 2.48 2.34 93.70 2.24 2.34 13.60 2.26 2.39 7.60 2.48 2.42 74.40

Panel A: Uniform Panel B: Normal Panel C: Student-t Panel D: NIG
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Table 5. Percentiles of Alpha Estimates and Their t-Statistics (DGP 2) 

The table reports annualized realized (Rea) and bootstrapped (Bstrap) alphas (in percentages), their t-

statistics and likelihoods (%<Rea) at selected percentiles (Pct) for DGP 2 under two different error 

distributions 𝑁(0, 0.082) and 𝑁(0,1) in Panels A and B, respectively. Details on how to obtain percentiles 

for alphas and their t-statistics are given in Sections 2.2 and 2.3. The likelihood (%<Rea) is the proportion 

of alpha estimates or their t-statistics out of the 5000 bootstraps that fall below their realized counterparts 

at the selected percentiles. In our simulation, fund returns are generated from the market model (1), in 

which, fund alphas are simulated from 𝑁(0, 0.022) , market returns are generated randomly from 

𝑁(0.08, 0.152) and 𝛽s are drawn from 𝑈[0.5, 2]. Errors in Panels A and B are generated randomly from 

𝑁(0, 0.082) and 𝑁(0,1), respectively, which is the only difference between them. 

 

 

 

 

Pct Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea

1 -17.01 -3.90 0 -9.94 -2.34 0 -51.27 -48.63 7.10 -2.45 -2.34 8.70

2 -14.95 -3.44 0 -9.06 -2.06 0 -44.38 -42.89 13.20 -2.11 -2.06 27.90

3 -13.41 -3.15 0 -8.24 -1.89 0 -41.40 -39.28 4.20 -1.98 -1.89 4.70

4 -12.79 -2.93 0 -7.63 -1.75 0 -38.27 -36.56 5.60 -1.85 -1.76 3.70

5 -11.86 -2.75 0 -7.19 -1.65 0 -36.60 -34.36 1.40 -1.77 -1.65 0.60

10 -9.07 -2.14 0 -5.38 -1.28 0 -28.58 -26.71 1.00 -1.37 -1.28 1.30

20 -5.67 -1.40 0 -3.41 -0.84 0 -18.89 -17.52 1.80 -0.90 -0.84 3.40

30 -3.54 -0.87 0 -2.11 -0.52 0 -11.00 -10.93 47.00 -0.53 -0.53 47.50

40 -1.50 -0.42 0 -0.90 -0.25 0 -4.93 -5.29 74.20 -0.23 -0.25 78.00

50 0.37 0.00 100 0.21 0.00 100 0.04 -0.02 53.90 0.00 0.00 54.00

60 2.05 0.42 100 1.26 0.25 100 5.30 5.25 54.00 0.26 0.25 60.40

70 4.01 0.87 100 2.42 0.53 100 11.88 10.90 95.10 0.56 0.52 88.90

80 6.14 1.40 100 3.67 0.84 100 18.99 17.52 98.80 0.90 0.84 96.50

90 9.43 2.14 100 5.56 1.28 100 28.07 26.71 94.60 1.33 1.28 88.20

95 11.71 2.75 100 7.09 1.65 100 35.46 34.33 86.50 1.70 1.65 84.80

96 12.51 2.92 100 7.49 1.75 100 37.09 36.54 69.30 1.77 1.76 58.40

97 13.47 3.14 100 8.07 1.89 100 39.34 39.29 51.00 1.91 1.89 63.50

98 14.71 3.44 100 9.02 2.06 100 43.36 42.94 63.40 2.14 2.06 89.70

99 16.99 3.89 100 10.47 2.34 100 51.18 48.67 92.20 2.38 2.34 68.50

Alpha (%) t-statistics

Panel B: Normal (0, 1)

Alpha (%) t-statistics

Panel A: Normal (0, 0.08)
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Table 6. Percentiles of Alpha Estimates and Their t-Statistics (DGP 3) 

The table reports annualized realized (Rea) and bootstrapped (Bstrap) alphas in percentages, their t-

statistics and likelihoods (%<Rea) at selected percentiles (Pct) for DGP 3 under two different error 

distributions 𝑁(0, 0.082)  and 𝑁(0, 0.642)  in Panels A and B, respectively. Details on how to obtain 

percentiles and likelihoods are given in Sections 2.2 and 2.3. The likelihood (%<Rea) is the proportion of 

alpha estimates or their t-statistics out of 5000 bootstraps that fall below their realized counterparts at the 

selected percentiles. In our simulation, fund returns are generated from the market model (1). 90% of funds 

have zero alphas and the remaining 10% have alphas generated randomly from 𝑁(0, 0.022) with half being 

positive and half being negative. We simulate market returns from 𝑁(0.08, 0.152) and 𝛽s from 𝑈[0.5, 2]. 

The only difference between Panels A and B lies in the errors. They are generated randomly from 

𝑁(0, 0.082) in Panel A and from 𝑁(0, 0.642) in Panel B. 

 

  

Pct Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea

1 -9.92 -3.89 0.00 -5.89 -2.34 0.00 -31.38 -31.18 42.30 -2.41 -2.34 21.60

2 -6.49 -3.43 0.00 -3.84 -2.06 0.00 -28.19 -27.44 19.80 -2.11 -2.06 25.00

3 -4.83 -3.15 0.00 -2.85 -1.89 0.00 -26.12 -25.13 10.90 -1.93 -1.89 22.70

4 -3.84 -2.93 0.00 -2.35 -1.76 0.00 -24.08 -23.39 15.60 -1.81 -1.76 14.80

5 -3.56 -2.75 0.00 -2.08 -1.65 0.00 -22.28 -21.99 31.60 -1.64 -1.65 59.60

10 -2.38 -2.14 0.00 -1.43 -1.28 0.00 -17.23 -17.12 41.60 -1.28 -1.29 52.50

20 -1.46 -1.40 15.40 -0.87 -0.84 19.10 -11.58 -11.23 21.50 -0.86 -0.84 31.70

30 -0.90 -0.87 27.20 -0.54 -0.52 28.20 -7.21 -7.00 29.10 -0.53 -0.53 36.70

40 -0.44 -0.42 34.70 -0.26 -0.25 39.70 -3.45 -3.38 41.40 -0.26 -0.25 39.20

50 0.00 0.00 51.80 0.00 0.00 51.80 -0.03 0.00 45.80 0.00 0.00 45.90

60 0.38 0.42 16.20 0.22 0.25 14.80 3.32 3.38 43.90 0.24 0.25 36.60

70 0.98 0.87 98.50 0.59 0.52 98.60 6.92 7.00 40.50 0.52 0.53 37.70

80 1.60 1.40 100.00 0.96 0.84 100.00 11.25 11.22 51.20 0.84 0.84 42.60

90 2.42 2.14 100.00 1.43 1.28 100.00 18.03 17.11 96.10 1.33 1.29 88.80

95 3.54 2.75 100.00 2.10 1.65 100.00 23.02 21.97 94.20 1.73 1.65 95.50

96 3.93 2.93 100.00 2.37 1.76 100.00 24.53 23.40 94.60 1.81 1.76 84.10

97 4.98 3.14 100.00 2.89 1.89 100.00 25.88 25.14 83.80 1.96 1.89 90.40

98 6.67 3.43 100.00 3.92 2.06 100.00 28.80 27.47 92.60 2.16 2.06 91.60

99 10.16 3.89 100.00 6.18 2.34 100.00 32.53 31.11 89.20 2.50 2.34 97.10

Alpha (%) t-statistics Alpha (%) t-statistics

Panel A: Normal (0, 0.08) Panel B: Normal (0, 0.64)
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Table 7. Percentiles of Alpha Estimates (the Four-Factor Model, DGP 1) 

This table shows annualized realized (Rea) and bootstrapped (Bstrap) alphas in percentages and 

likelihoods (%<Rea) at selected percentiles (Pct) for DGP 1: all funds are endowed with zero alphas under 

four different error distributions: uniform, normal, 𝑡 and NIG. Details on how to obtain percentiles and 

likelihoods are given in Sections 2.2 and 2.3. The likelihood (%<Rea) is the proportion of bootstrapped 

alphas out of the 5000 bootstraps that fall below their realized counterparts at the selected percentiles. 

Factor returns over the period January 1984 to September 2006 are obtained from French’s online data 

library. We simulate 𝛽s from the uniform distribution on [0.5, 2] and sample errors from one of the four 

different distributions: uniform, normal, 𝑡 and NIG distributions. Parameters of the four distributions are 

set so that errors have zero mean and annual standard deviation of 0.08. Specifically, the uniform 

distribution lies on [−0.04,0.04], the normal distribution has zero mean and annual standard deviation 

0.08, the 𝑡 distribution has a degree of freedom 3 and the NIG distribution has tail heaviness 𝜆=10, location 

𝜇=0, asymmetry parameter 𝜃=0 and scale parameter 𝛿=0.0053.  

 

 

 

Pct Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea

1 -4.12 -4.11 45.84 -4.35 -4.13 7.34 -4.26 -4.20 34.64 -4.24 -4.43 81.32

2 -3.61 -3.63 55.34 -3.59 -3.64 65.46 -3.71 -3.63 26.90 -3.83 -3.75 30.20

3 -3.21 -3.32 86.58 -3.27 -3.33 70.56 -3.30 -3.29 44.60 -3.39 -3.36 39.86

4 -2.99 -3.09 86.40 -2.92 -3.10 97.84 -3.11 -3.04 22.74 -3.18 -3.08 17.26

5 -2.82 -2.91 85.54 -2.72 -2.91 99.00 -2.96 -2.84 9.76 -3.02 -2.86 5.16

10 -2.22 -2.27 74.50 -2.16 -2.26 94.22 -2.34 -2.18 1.08 -2.35 -2.15 0.34

20 -1.45 -1.49 75.56 -1.41 -1.49 91.48 -1.51 -1.42 4.06 -1.49 -1.37 2.08

30 -0.91 -0.93 63.02 -0.86 -0.93 90.46 -0.96 -0.88 5.48 -0.94 -0.84 2.78

40 -0.48 -0.45 28.36 -0.40 -0.45 80.80 -0.49 -0.42 10.56 -0.44 -0.40 17.22

50 0.00 0.00 48.86 0.02 0.00 67.20 0.01 0.00 55.04 0.00 0.00 48.44

60 0.41 0.45 24.06 0.52 0.45 93.48 0.46 0.42 78.96 0.37 0.41 21.00

70 0.90 0.93 29.90 0.96 0.92 77.24 0.91 0.88 74.74 0.83 0.85 35.06

80 1.49 1.49 49.68 1.51 1.49 67.30 1.50 1.42 93.72 1.40 1.38 67.58

90 2.33 2.26 84.02 2.27 2.26 52.68 2.32 2.18 97.92 2.20 2.15 77.14

95 2.98 2.91 79.26 2.96 2.91 73.46 3.03 2.84 98.46 2.83 2.85 40.36

96 3.09 3.09 48.60 3.20 3.10 88.66 3.12 3.03 81.66 3.03 3.07 36.60

97 3.37 3.32 68.28 3.57 3.33 99.08 3.30 3.28 58.38 3.34 3.35 47.18

98 3.76 3.63 86.34 3.81 3.64 93.88 3.55 3.62 30.30 3.71 3.74 42.78

99 4.27 4.11 85.12 4.34 4.12 93.04 4.01 4.19 15.60 4.24 4.41 20.94

Panel A: Uniform [-0.04, 0.04] Panel B: N(0, 0.08
2
) Panel C: Student-t Panel D: NIG
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Table 8. Variance Ratios and Kolmogorov-Smirnov Tests (Four-Factor, DGP 1) 

This table presents the kernel density estimates of mean and variance of the bootstrapped and realized 

alphas and their t-statistics, variance ratios and the results for Kolmogorov-Smirnov tests for DGP 1. 

Details on how to obtain realized alphas, bootstrapped alphas and their t-statistics are given in Sections 2.2 

and 2.3. The variance ratio is the ratio of the variance of bootstrapped alphas (or their t-statistics) to that of 

realized alphas (or their t-statistics). Errors are sampled from one of the four different distributions: 

uniform, normal, 𝑡 and NIG distributions. Parameters of the four distributions are set so that the errors 

have a zero mean and an annual standard deviation of 0.08. Specifically, the uniform distribution lies on 

[−0.04,0.04], the 𝑡 distribution has a degree of freedom 3 and the NIG distribution has tail heaviness 

𝜆=10, location 𝜇=0, asymmetry parameter 𝜃=0 and scale parameter 𝛿=0.0053. For Kolmogorov-Smirnov 

tests, “0” indicates of no rejection of the null of no difference in the two distributions. 

 

 

 

 

  

Rea Bstrap Rea Bstrap Rea Bstrap Rea Bstrap

Panel A: alpha estimates 

Mean 0.01 0.00 0.05 0.00 -0.01 0.00 -0.05 0.00

Variance 3.31 3.29 3.26 3.29 3.43 3.22 3.31 3.28

Variance ratio

Kolmogorov-

Smirnov

Panel B: t-statistics of alpha

Mean 0.01 0.00 0.03 0.00 -0.01 0.00 -0.03 0.00

Variance 1.05 1.06 1.03 1.06 1.10 1.09 1.05 1.14

Variance ratio

Kolmogorov-

Smirnov

NIG

1.01 0.99 1.06 1.01

0 0 0 0

Model 1: 

Independent 

0.99 0.97 1.02 0.92

0 0 0 0

Uniform Normal Student-t



55 

 

 

Table 9. Percentiles of Alpha Estimates and t-Statistics (AR(1) Errors, DGP 1) 

The table reports annualized realized (Rea) and bootstrapped (Bstrap) alphas in percentages, their standard 

and Newey-West t-statistics and likelihoods (%<Rea) at selected percentiles (Pct) in Panels A, B and C, 

respectively. Details on how to obtain percentiles and likelihoods are given in Sections 2.2 and 2.3. The 

likelihood is the proportion of alpha estimates or their t-statistics out of the 5000 bootstraps that fall below 

their realized counterparts at the selected percentiles. In our simulation, fund returns are generated from the 

market model (1) with errors simulated from the AR(1) model (14). We set fund alphas to be zero, 

simulate market returns from 𝑁(0.08, 0.152) and sample 𝛽s from 𝑈[0.5, 2]. We let 𝜙=0.10 and 𝜎𝑢=0.0796 

in (14) so that the annualized standard deviation of errors 𝜎𝜀 is 0.08. We use the lag length of 5 to compute 

Newey-West serial-correlation-robust standard errors. 

 

 

 

  

Pct Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea

1 -4.40 -3.91 0.00 -2.70 -2.34 0.00 -2.48 -2.40 18.00

2 -3.90 -3.44 0.00 -2.36 -2.06 0.00 -2.25 -2.11 1.70

3 -3.56 -3.15 0.00 -2.15 -1.89 0.00 -2.03 -1.93 5.70

4 -3.31 -2.93 0.00 -2.00 -1.76 0.00 -1.90 -1.79 2.60

5 -3.06 -2.75 0.00 -1.81 -1.65 0.00 -1.78 -1.68 2.10

10 -2.41 -2.14 0.00 -1.44 -1.28 0.00 -1.34 -1.30 15.20

20 -1.52 -1.41 1.20 -0.91 -0.84 1.70 -0.84 -0.85 68.50

30 -0.96 -0.88 3.70 -0.57 -0.53 6.70 -0.53 -0.53 50.80

40 -0.48 -0.42 10.70 -0.29 -0.25 11.30 -0.27 -0.26 36.60

50 -0.02 0.00 30.90 -0.01 0.00 30.20 -0.01 0.00 30.60

60 0.49 0.43 90.70 0.28 0.26 82.30 0.26 0.26 57.90

70 0.99 0.88 98.90 0.59 0.53 98.60 0.55 0.53 75.60

80 1.63 1.41 100.00 0.96 0.84 100.00 0.88 0.85 76.80

90 2.43 2.14 100.00 1.44 1.28 100.00 1.33 1.30 77.10

95 3.18 2.75 100.00 1.91 1.65 100.00 1.78 1.68 97.50

96 3.40 2.93 100.00 2.02 1.75 100.00 1.88 1.79 95.30

97 3.63 3.15 100.00 2.16 1.89 100.00 2.06 1.93 98.60

98 4.01 3.44 100.00 2.37 2.06 100.00 2.23 2.11 95.90

99 4.41 3.90 100.00 2.57 2.33 99.30 2.44 2.40 69.20

Panel A:    Panel C:   (Newey-West) Panel B: 
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Table 10. Percentiles of t-Statistics (GARCH(1, 1) Errors) 

The table shows the t-statistics of realized (Rea) and bootstrapped (Bstrap) alphas and likelihoods (%<Rea) 

at selected percentiles (Pct) for DGPs 1, 2, and 3 in Panels A, B and C, respectively. Details on how to 

obtain percentiles and likelihoods are given in Sections 2.2 and 2.3. The likelihood (%<Rea) is the 

proportion of the t-statistics out of the 5000 bootstraps that fall below those of realized alphas at the 

selected percentiles. In Panel A, all funds are endowed with zero alphas. In Panel B, all the funds have 

alphas generated randomly from 𝑁(0, 0.022) . In Panel C, 10% of the funds have alphas generated 

randomly from 𝑁(0, 0.022) while the remaining funds have zero alphas. In our simulation, fund returns are 

generated from the market model (1) with market returns are simulated from 𝑁(0.08, 0.152), 𝛽s are 

sampled from 𝑈[0.5, 2] and errors are generated from GARCH(1, 1) described in (15) and (16). We set 𝜔= 

0.000027, 𝜃=0.05 and 𝛾=0.90 so that the annualized standard deviation 𝜎𝜀 is equal to 0.08.  

 

 

 

Pct Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea

1 -2.31 -2.33 58.30 -11.36 -2.34 0.00 -5.69 -2.34 0.00

2 -2.09 -2.06 27.20 -10.07 -2.06 0.00 -4.32 -2.06 0.00

3 -1.89 -1.88 47.40 -9.19 -1.89 0.00 -2.86 -1.89 0.00

4 -1.77 -1.75 35.10 -8.76 -1.76 0.00 -2.41 -1.76 0.00

5 -1.68 -1.65 23.90 -8.18 -1.65 0.00 -2.17 -1.65 0.00

10 -1.29 -1.28 37.10 -5.88 -1.29 0.00 -1.52 -1.29 0.00

20 -0.86 -0.84 32.50 -3.77 -0.84 0.00 -0.93 -0.84 0.50

30 -0.54 -0.52 34.20 -2.19 -0.53 0.00 -0.58 -0.53 3.00

40 -0.26 -0.25 37.40 -1.03 -0.25 0.00 -0.30 -0.25 6.10

50 -0.03 0.00 14.00 0.06 0.00 98.60 -0.04 0.00 9.50

60 0.23 0.25 20.30 1.30 0.25 100.00 0.25 0.25 45.10

70 0.49 0.53 14.40 2.43 0.52 100.00 0.53 0.53 60.90

80 0.80 0.84 7.60 3.75 0.84 100.00 0.87 0.84 77.30

90 1.21 1.28 1.30 5.83 1.29 100.00 1.42 1.28 100.00

95 1.53 1.65 0.50 7.57 1.65 100.00 1.97 1.65 100.00

96 1.61 1.76 0.00 8.11 1.76 100.00 2.18 1.76 100.00

97 1.73 1.89 0.10 8.77 1.89 100.00 2.74 1.89 100.00

98 1.92 2.06 1.00 9.42 2.06 100.00 3.90 2.06 100.00

99 2.17 2.34 1.90 10.40 2.34 100.00 5.74 2.34 100.00

Panel A: Case 1 Panel B: Case 2 Panel C: Case 3
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Table 11. Percentiles of t-Statistics (Contemporaneously Correlated Errors) 

The table shows the t-statistics of realized (Rea) and bootstrapped (Bstrap) alphas and likelihoods (%<Rea) 

at selected percentiles (Pct) for DGPs 1, 2, and 3 in Panels A, B and C, respectively. We use two bootstrap 

schemes to obtain bootstrapped t-statistics: independent sampling of fund residuals (Bstrap1) and joint 

sampling of fund residuals (Bstrap2). Details on how to obtain percentiles and likelihoods are given in 

Sections 2.2 and 2.3. The likelihood (%<Rea) is the proportion of the t-statistics out of the 5000 bootstraps 

that fall below those of realized alphas at the selected percentiles. In Panel A, all funds are endowed with 

zero alphas. In Panel B, all the funds have alphas generated randomly from N(0, 0.022). In Panel C, 10% 

of the funds have alphas generated randomly from N(0, 0.022) while the remaining funds have zero 

alphas. In our simulation, fund returns are generated from the market model (1), in which, market returns 

are simulated from N(0.08, 0.152) , β s are sampled from U[0.5, 2]  and errors are drawn from the 

multivariate normal distribution with zero means, annual standard deviations 0.08 and a constant 

correlation across all the funds 0.1. 

 

 

 

 

Pct Rea Bstrap1%<ReaBstrap2%<Rea Rea Bstrap1%<ReaBstrap2%<Rea Rea Bstrap1%<ReaBstrap2%<Rea

1 -2.43 -2.34 12.60 -2.21 24.90 -3.70 -2.34 0 -2.20 0 -2.67 -2.34 0 -2.22 8.50

2 -2.18 -2.06 3.00 -1.95 23.80 -3.35 -2.06 0 -1.94 0 -2.34 -2.06 0 -1.96 12.20

3 -2.03 -1.89 0.70 -1.78 22.90 -3.13 -1.89 0 -1.78 0 -2.11 -1.89 0 -1.79 16.20

4 -1.91 -1.76 0.10 -1.66 22.30 -2.94 -1.76 0 -1.66 0 -2.01 -1.76 0 -1.67 14.60

5 -1.85 -1.65 0 -1.56 19.20 -2.73 -1.65 0 -1.56 0 -1.89 -1.65 0 -1.57 15.70

10 -1.48 -1.28 0 -1.21 21.40 -2.24 -1.28 0 -1.21 0.10 -1.53 -1.28 0 -1.22 18.00

20 -1.10 -0.84 0 -0.79 17.70 -1.61 -0.84 0 -0.79 0.40 -1.12 -0.84 0 -0.81 16.80

30 -0.79 -0.52 0 -0.49 18.10 -1.08 -0.53 0 -0.49 2.30 -0.82 -0.52 0 -0.50 16.70

40 -0.51 -0.25 0 -0.23 18.90 -0.72 -0.25 0 -0.23 5.70 -0.53 -0.25 0 -0.25 20.20

50 -0.28 0.00 0 0.01 18.40 -0.32 0.00 0 0.01 15.70 -0.27 0.00 0 -0.01 21.00

60 -0.04 0.25 0 0.26 18.10 0.09 0.25 0 0.25 29.20 -0.02 0.25 0 0.24 21.90

70 0.20 0.53 0 0.51 17.20 0.54 0.53 69.20 0.51 53.70 0.23 0.53 0 0.49 21.70

80 0.47 0.84 0 0.82 14.60 1.00 0.84 100.00 0.81 72.10 0.53 0.84 0 0.79 21.60

90 0.94 1.29 0 1.24 18.00 1.65 1.29 100.00 1.23 91.00 0.99 1.28 0 1.21 25.60

95 1.29 1.65 0 1.59 18.70 2.08 1.65 100.00 1.57 94.00 1.36 1.65 0 1.56 28.80

96 1.39 1.76 0 1.69 19.10 2.31 1.76 100.00 1.67 97.50 1.47 1.76 0 1.66 29.80

97 1.50 1.89 0 1.81 18.40 2.50 1.89 100.00 1.80 98.50 1.57 1.89 0 1.78 26.70

98 1.66 2.07 0 1.97 17.30 2.67 2.06 100.00 1.96 98.80 1.76 2.06 0 1.94 30.50

99 1.92 2.35 0 2.23 18.20 3.04 2.34 100.00 2.22 99.60 2.07 2.34 0 2.20 36.30

Panel A: Case 1 Panel C: Case 3Panel B: Case 2
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Table 12. Percentiles of t-Statistics When Factor Returns are Correlated  

The table reports t-statistics of realized (Rea) and bootstrapped (Bstrap) alphas and likelihoods (%<Rea) at 

the selected percentiles (Pct) for DGPs 1, 2, and 3 in Panels A, B and C, respectively. Details on how to 

obtain percentiles and likelihoods are given in Sections 2.2 and 2.3. The likelihood (%<Rea) is the 

proportion of the t-statistics out of the 5000 bootstraps that fall below those of realized alphas at the 

selected percentiles. In Panel A all funds are endowed with zero alphas. In Panel B, the funds have alphas 

generated randomly from 𝑁(0, 0.022). In Panel C, 10% of the funds have alphas generated randomly from 

𝑁(0, 0.022) while the remaining funds have zero alphas. In our simulation, fund returns are generated 

from the four-factor model (2), in which, factor loadings 𝛽s are drawn randomly from 𝑈[0.5, 2], errors are 

simulated from 𝑁(0, 0.082) and factor returns are drawn randomly from a multivariate normal distribution 

with mean vector 𝜇=[0.8, 0.8, 0.8, 0.8], standard deviations 𝜎=[0.15, 0.17, 0.19, 0.21] and correlation 

coefficient 𝜌=0.5 among all the factors. 

 

 

Pct Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea

1 -2.33 -2.34 53.90 -9.61 -2.34 0.00 -5.71 -2.34 0.00

2 -2.04 -2.06 62.80 -8.48 -2.06 0.00 -4.06 -2.06 0.00

3 -1.93 -1.89 24.60 -7.79 -1.89 0.00 -2.78 -1.89 0.00

4 -1.76 -1.76 50.80 -7.39 -1.76 0.00 -2.28 -1.76 0.00

5 -1.64 -1.65 59.00 -6.98 -1.65 0.00 -2.06 -1.65 0.00

10 -1.28 -1.29 55.20 -5.56 -1.28 0.00 -1.49 -1.28 0.00

20 -0.84 -0.84 47.40 -3.55 -0.84 0.00 -0.93 -0.84 0.50

30 -0.54 -0.53 27.90 -2.32 -0.53 0.00 -0.61 -0.53 0.40

40 -0.31 -0.25 2.20 -1.03 -0.25 0.00 -0.33 -0.25 0.20

50 -0.04 0.00 6.20 0.05 0.00 97.40 -0.06 0.00 1.90

60 0.21 0.25 7.40 1.11 0.25 100.00 0.22 0.25 15.50

70 0.46 0.53 1.60 2.34 0.53 100.00 0.51 0.52 28.20

80 0.80 0.84 6.30 3.68 0.84 100.00 0.87 0.84 73.50

90 1.23 1.28 6.40 5.26 1.29 100.00 1.42 1.28 100.00

95 1.63 1.65 32.80 6.95 1.65 100.00 2.00 1.65 100.00

96 1.75 1.76 43.50 7.37 1.76 100.00 2.19 1.76 100.00

97 1.87 1.89 38.90 8.01 1.89 100.00 2.49 1.89 100.00

98 2.02 2.07 25.10 8.48 2.07 100.00 3.13 2.06 100.00

99 2.22 2.34 6.70 9.29 2.34 100.00 5.28 2.34 100.00

           Panel A: Case 1           Panel B: Case 2 Panel C: Case 3
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Table 13. Percentiles of Alpha Estimates in the Presence of Omitted Factor  

The table reports annualized realized (Rea) and bootstrapped (Bstrap) alphas (in percentages) and 

likelihoods (%<Rea) at selected percentiles (Pct). Whereas Rea_No is based on realized alphas when 

𝑟𝑚,𝑡+1 ⊗ 𝑍𝑡 in (17) is taken into account, Rea is based on realized alphas when 𝑟𝑚,𝑡+1 ⊗ 𝑍𝑡 is omitted 

from the benchmark model. Btrap are the average values of alpha estimates at the selected percentiles from 

5000 bootstraps based on independent sampling of fund residuals. The likelihood (%<Rea) is the 

proportion of the t-statistics out of 5000 bootstraps that fall below those of realized alphas at the selected 

percentiles. In Panel A, all funds are endowed with zero alphas. In Panel B, the funds have alphas 

randomly generated from 𝑁(0, 0.022). In Panel C, 10% of the funds have alphas randomly drawn from 

𝑁(0, 0.022) while the remaining funds have zero alphas. In our simulation, excess returns on the market 

factor 𝑟𝑚,𝑡+1  are generated from (19), in which, 𝛾  is set to be 0.5, 𝑢𝑡+1  and 𝑍𝑡  are simulated from 

𝑁(0, 0.082) and 𝑁(0, 0.152), respectively. Fund returns are generated from the conditional beta model 

(17), in which, factor loadings 𝛽s and errors 𝜀𝑖,𝑡  are randomly drawn from 𝑈[0.5, 2] and 𝑁(0, 0.082), 

respectively.  

 

Pct Rea_No Rea Bstrap %<Rea Rea_No Rea Bstrap %<Rea Rea_No Rea Bstrap %<Rea

1 -3.96 -3.70 -3.89 91.50 -16.50 -16.43 -3.90 0 -9.96 -9.72 -3.91 0

2 -3.46 -3.18 -3.44 99.40 -14.42 -14.28 -3.44 0 -6.32 -6.10 -3.44 0

3 -3.16 -2.96 -3.15 98.50 -13.49 -13.22 -3.15 0 -4.50 -4.20 -3.15 0

4 -3.01 -2.77 -2.93 96.30 -12.59 -12.41 -2.93 0 -3.91 -3.64 -2.93 0

5 -2.83 -2.53 -2.75 99.50 -11.84 -11.57 -2.75 0 -3.47 -3.23 -2.75 0

10 -2.16 -1.92 -2.14 100 -9.49 -9.18 -2.14 0 -2.51 -2.24 -2.14 6.10

20 -1.35 -1.16 -1.41 100 -6.28 -5.97 -1.40 0 -1.55 -1.33 -1.41 93.30

30 -0.86 -0.61 -0.88 100 -3.97 -3.68 -0.88 0 -0.95 -0.70 -0.88 100

40 -0.39 -0.15 -0.42 100 -1.96 -1.69 -0.42 0 -0.44 -0.22 -0.42 100

50 0.03 0.27 0.00 100 0.04 0.17 0.00 100 0.03 0.27 0.00 100

60 0.48 0.68 0.42 100 1.80 2.13 0.42 100 0.53 0.73 0.42 100

70 0.92 1.15 0.88 100 3.84 4.09 0.88 100 1.02 1.27 0.88 100

80 1.51 1.69 1.41 100 6.27 6.42 1.41 100 1.65 1.88 1.41 100

90 2.20 2.37 2.14 100 9.57 9.85 2.14 100 2.45 2.66 2.14 100

95 2.74 2.95 2.75 99.40 12.01 12.06 2.75 100 3.55 3.76 2.75 100

96 2.98 3.18 2.93 99.90 12.67 12.79 2.93 100 3.92 4.17 2.93 100

97 3.21 3.42 3.15 99.70 14.09 14.21 3.15 100 4.62 4.74 3.15 100

98 3.45 3.70 3.44 99.20 14.98 15.27 3.44 100 6.65 6.54 3.44 100

99 3.91 4.11 3.91 92.40 16.95 17.16 3.90 100 10.25 10.37 3.90 100

Panel A: Case 1 Panel B: Case 2 Panel C: Case 3
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Table 14. Percentiles of Alpha Estimates (Other Bootstrap Schemes, DGP 1) 

The table reports annualized realized (Rea) and bootstrapped (Bstrap) alphas (in percentages) and 

likelihoods (%<Rea) at the selected percentiles (Pct) under four error distributions: uniform, normal, 𝑡 and 

NIG. We consider three alternative bootstrap schemes: joint sampling of fund residuals (Panel A), joint 

sampling of fund residuals and factor returns (Panel B) and joint sampling of fund residuals and factor 

returns using block bootstrap (Panel C). Details on how to obtain percentiles and likelihoods are given in 

Sections 2.2 and 2.3. The likelihood (%<Rea) is the proportion of bootstrapped alphas out of 5000 

bootstraps that fall below their realized values at the selected percentiles. All funds are endowed with zero 

alphas and the four-factor model is used as the benchmark. Factor returns from January 1984 to September 

2006 come from French’s online data library. 𝛽s and errors are the same as those in Table 7.  
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Pct Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea Rea Bstrap %<Rea

Panel A: Joint sampling of fund residuals only

1 -4.12 -4.09 43.80 -4.35 -4.11 15.30 -4.26 -4.17 36.20 -4.24 -4.42 72.72

2 -3.61 -3.61 49.88 -3.59 -3.63 56.42 -3.71 -3.61 31.22 -3.83 -3.75 35.18

3 -3.21 -3.31 71.30 -3.27 -3.32 58.94 -3.30 -3.28 43.78 -3.39 -3.36 43.24

4 -2.99 -3.08 71.30 -2.92 -3.09 86.58 -3.11 -3.03 28.94 -3.18 -3.08 28.02

5 -2.82 -2.90 69.68 -2.72 -2.91 90.50 -2.96 -2.83 19.74 -3.02 -2.86 15.02

10 -2.22 -2.26 62.56 -2.16 -2.26 81.28 -2.34 -2.18 7.30 -2.35 -2.16 4.62

20 -1.45 -1.49 66.40 -1.41 -1.49 82.28 -1.51 -1.42 11.22 -1.49 -1.38 7.08

30 -0.91 -0.93 58.46 -0.86 -0.93 85.56 -0.96 -0.88 8.32 -0.94 -0.84 5.90

40 -0.48 -0.45 29.24 -0.40 -0.45 79.80 -0.49 -0.42 10.90 -0.44 -0.40 20.08

50 0.00 0.00 48.32 0.02 0.00 66.92 0.01 0.00 55.44 0.00 0.00 46.96

60 0.41 0.45 25.44 0.52 0.45 90.34 0.46 0.42 77.98 0.37 0.41 22.06

70 0.90 0.93 35.36 0.96 0.93 71.38 0.91 0.88 71.54 0.83 0.85 37.94

80 1.49 1.49 51.74 1.51 1.49 60.32 1.50 1.42 86.68 1.40 1.38 61.92

90 2.33 2.26 73.90 2.27 2.27 51.20 2.32 2.18 89.58 2.20 2.15 68.26

95 2.98 2.90 69.92 2.96 2.91 63.66 3.03 2.83 91.06 2.83 2.85 43.68

96 3.09 3.08 52.28 3.20 3.10 75.54 3.12 3.03 73.80 3.03 3.07 41.58

97 3.37 3.31 64.10 3.57 3.33 91.44 3.30 3.27 57.54 3.34 3.35 48.04

98 3.76 3.62 77.38 3.81 3.63 82.72 3.55 3.61 40.50 3.71 3.74 45.94

99 4.27 4.09 79.42 4.34 4.11 84.20 4.01 4.17 26.92 4.24 4.41 29.92

Panle B: Joint sampling of fund residuals and factor returns

1 -4.12 -4.14 48.80 -4.35 -4.15 24.34 -4.26 -4.24 44.66 -4.24 -4.48 73.76

2 -3.61 -3.66 55.26 -3.59 -3.67 60.12 -3.71 -3.66 39.64 -3.83 -3.79 40.98

3 -3.21 -3.35 71.80 -3.27 -3.36 62.34 -3.30 -3.31 48.62 -3.39 -3.38 46.82

4 -2.99 -3.12 71.50 -2.92 -3.13 83.06 -3.11 -3.06 37.80 -3.18 -3.10 33.30

5 -2.82 -2.93 70.72 -2.72 -2.94 87.44 -2.96 -2.86 29.58 -3.02 -2.87 21.88

10 -2.22 -2.29 64.68 -2.16 -2.29 80.70 -2.34 -2.20 15.76 -2.35 -2.16 9.92

20 -1.45 -1.50 68.18 -1.41 -1.50 82.06 -1.51 -1.43 18.46 -1.49 -1.37 11.30

30 -0.91 -0.93 60.32 -0.86 -0.94 84.70 -0.96 -0.89 13.72 -0.94 -0.84 8.82

40 -0.48 -0.45 30.66 -0.40 -0.45 79.52 -0.49 -0.43 13.20 -0.44 -0.40 21.56

50 0.00 0.00 46.40 0.02 0.00 64.04 0.01 0.00 55.62 0.00 0.00 48.60

60 0.41 0.46 22.34 0.52 0.46 85.46 0.46 0.43 72.52 0.37 0.41 24.18

70 0.90 0.94 31.66 0.96 0.94 63.56 0.91 0.89 64.42 0.83 0.85 41.14

80 1.49 1.51 44.26 1.51 1.51 53.84 1.50 1.43 76.78 1.40 1.38 61.94

90 2.33 2.29 62.70 2.27 2.29 46.00 2.32 2.20 79.10 2.20 2.16 64.24

95 2.98 2.94 60.00 2.96 2.94 55.16 3.03 2.86 81.36 2.83 2.87 42.96

96 3.09 3.13 45.60 3.20 3.13 64.78 3.12 3.06 64.04 3.03 3.09 39.84

97 3.37 3.36 55.12 3.57 3.36 81.42 3.30 3.31 51.60 3.34 3.38 45.46

98 3.76 3.66 66.56 3.81 3.67 72.20 3.55 3.65 37.70 3.71 3.78 41.36

99 4.27 4.14 68.46 4.34 4.16 73.48 4.01 4.23 26.48 4.24 4.48 26.28

Panle C: Block sampling of fund residuals and factor returns (Block length=10)

1 -4.12 -4.05 41.42 -4.35 -4.06 26.44 -4.26 -4.15 39.06 -4.24 -4.40 57.38

2 -3.61 -3.59 44.46 -3.59 -3.58 46.34 -3.71 -3.58 36.80 -3.83 -3.72 37.44

3 -3.21 -3.29 54.82 -3.27 -3.28 47.04 -3.30 -3.25 42.22 -3.39 -3.32 41.20

4 -2.99 -3.06 54.78 -2.92 -3.06 61.72 -3.11 -3.00 35.28 -3.18 -3.04 33.06

5 -2.82 -2.88 54.20 -2.72 -2.87 65.16 -2.96 -2.80 30.62 -3.02 -2.83 26.76

10 -2.22 -2.24 49.80 -2.16 -2.24 58.64 -2.34 -2.16 21.44 -2.35 -2.12 17.88

20 -1.45 -1.47 53.00 -1.41 -1.47 60.52 -1.51 -1.40 23.70 -1.49 -1.35 18.44

30 -0.91 -0.92 49.78 -0.86 -0.91 66.44 -0.96 -0.87 18.90 -0.94 -0.83 13.90

40 -0.48 -0.44 28.80 -0.40 -0.44 69.26 -0.49 -0.42 15.14 -0.44 -0.40 21.42

50 0.00 0.00 47.34 0.02 0.00 66.80 0.01 0.00 54.68 0.00 0.00 47.00

60 0.41 0.45 33.22 0.52 0.44 85.02 0.46 0.42 74.72 0.37 0.40 35.66

70 0.90 0.92 46.12 0.96 0.92 66.92 0.91 0.87 66.26 0.83 0.83 50.32

80 1.49 1.48 55.62 1.51 1.47 61.46 1.50 1.40 74.16 1.40 1.35 63.30

90 2.33 2.25 64.90 2.27 2.24 56.96 2.32 2.16 75.72 2.20 2.12 65.16

95 2.98 2.88 63.68 2.96 2.88 62.22 3.03 2.80 76.96 2.83 2.82 53.24

96 3.09 3.07 55.34 3.20 3.06 67.62 3.12 3.00 66.24 3.03 3.04 52.16

97 3.37 3.29 60.94 3.57 3.29 77.36 3.30 3.24 58.70 3.34 3.32 54.86

98 3.76 3.59 67.84 3.81 3.59 72.12 3.55 3.58 50.30 3.71 3.72 52.86

99 4.27 4.06 68.98 4.34 4.07 72.94 4.01 4.14 42.62 4.24 4.40 42.78

Uniform [-0.04, 0.04] N(0, 0.08
2
) Student-t NIG
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Table 15. Q-Tests for Autocorrelations in Factor Returns 

This table presents results of Ljung-Box Q-test up to 15 lags for returns on the four factors: Market, Size 

(SMB), Value (HML), and Momentum. In the table, AC refers to the autocorrelation, Q is the Q-test statistic 

and Prob represents the p-value of the test. We obtain the returns on the four factors (Market, HML, SMB 

and Momentum) over the period from January 1984 to September 2006 from French’s online data library. 

We make the autocorrelation coefficients bold if they are no less than 10%. 

 

 

 

 

  

Lags AC Q Prob AC Q Prob AC Q Prob AC Q Prob

1 0.04 0.35 0.56 -0.03 0.29 0.59 0.10 2.62 0.11 -0.04 0.52 0.47

2 -0.06 1.22 0.54 0.02 0.44 0.80 0.05 3.19 0.20 -0.06 1.66 0.44

3 -0.05 1.99 0.58 -0.13 5.31 0.15 0.06 4.30 0.23 0.03 1.93 0.59

4 -0.11 5.47 0.24 -0.05 6.04 0.20 0.07 5.58 0.23 -0.09 4.14 0.39

5 0.04 5.92 0.31 0.05 6.80 0.24 -0.05 6.40 0.27 -0.02 4.29 0.51

6 0.04 6.31 0.39 0.01 6.84 0.34 0.04 6.93 0.33 0.13 9.37 0.15

7 0.04 6.80 0.45 0.08 8.60 0.28 0.04 7.36 0.39 -0.09 11.46 0.12

8 -0.05 7.37 0.50 -0.02 8.66 0.37 0.01 7.37 0.50 -0.04 11.91 0.16

9 -0.02 7.45 0.59 -0.02 8.81 0.46 -0.03 7.55 0.58 0.00 11.91 0.22

10 0.11 10.76 0.38 -0.03 9.14 0.52 0.05 8.33 0.60 -0.07 13.22 0.21

11 0.01 10.80 0.46 -0.04 9.56 0.57 0.09 10.43 0.49 -0.10 15.83 0.15

12 -0.03 11.01 0.53 0.01 9.62 0.65 -0.05 11.06 0.52 0.19 26.25 0.01

13 -0.01 11.06 0.61 0.03 9.90 0.70 -0.06 12.03 0.53 0.01 26.29 0.02

14 0.02 11.18 0.67 0.01 9.92 0.77 0.04 12.56 0.56 -0.04 26.64 0.02

15 -0.04 11.68 0.70 -0.04 10.46 0.79 -0.09 14.96 0.45 -0.04 27.02 0.03

Market SMB HML Momentum
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Figure 1. PDFs of Alpha Estimates (DGP 1) 

This figure plots the kernel density estimates of probability density functions (PDF) of realized (dashed 

line) and bootstrapped (solid line) alphas for DGP 1, in which, all funds are endowed with zero alphas. 

Details on how to obtain realized and bootstrapped alphas are given in Sections 2.2 and 2.3. In our 

simulation, fund returns are generated from the market model (1), in which, market returns are drawn 

randomly from 𝑁(0.08, 0.152), 𝛽s are simulated from 𝑈[0.5, 2] and errors are sampled randomly from one 

of the four distributions: uniform, normal, 𝑡 and NIG. Parameters of the four distributions are set so that 

errors have zero mean and annual standard deviation 0.08. Specifically, the uniform distribution lies on 

[−0.04,0.04], the 𝑡 distribution has a degree of freedom 3, and the NIG distribution has tail heaviness 

𝜆=10, location 𝜇=0, asymmetry parameter 𝜃=0 and scale parameter 𝛿=0.0053. The four subplots are the 

estimated PDFs corresponding to the four different error distributions. 
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Figure 2. PDFs and CDFs of Alpha Estimates (the Four-Factor Model, DGP 1) 

This figure plots kernel density estimates of cross-sectional distributions for the realized (dashed line) and 

bootstrapped (solid line) alphas for DGP 1: all funds are endowed with zero alphas. The eight subplots are 

estimated PDFs and CDFs under four different error distributions: uniform, normal, 𝑡  and NIG, 

respectively. Details on how to obtain alpha estimates are given in Sections 2.2 and 2.3. We download 

factor returns over the period January 1984 to September 2006 from French’s online data library. 𝛽s are 

sampled from the uniform distribution on [0.5, 2] and errors are drawn from one of the four distributions: 

uniform, normal, 𝑡 and NIG. Parameters of the four distributions are set so that errors have zero mean and 

an annual standard deviation 0.08. Specifically, the uniform distribution lies on [−0.04,0.04] , the 𝑡 

distribution has a degree of freedom 3 and the NIG distribution has tail heaviness 𝜆=10, location 𝜇=0, 

asymmetry parameter 𝜃=0 and scale parameter 𝛿=0.0053.  
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Figure 3. PDFs of Alpha Estimates in the Presence of Omitted Factor (DGP 1)  

The figure shows kernel density estimates of probability density functions (PDFs) of realized (dashed line) 

and bootstrapped (solid line) alphas for DGP 1: all funds are endowed with zero alphas. Details on how to 

obtain percentiles for the t-statistics of alpha estimates are given in Sections 2.2 and 2.3. In our simulation, 

excess returns on the market factor 𝑟𝑚,𝑡+1 are generated from (19), in which, 𝛾 is set to be 0.5, 𝑢𝑡+1 is 

simulated from 𝑁(0, 0.082) and 𝑍𝑡  is sampled from 𝑁(0, 0.152). Fund returns are generated from the 

conditional beta model in (17), in which, factor loadings 𝛽s and errors 𝜀𝑖,𝑡  are drawn randomly from 

𝑈[0.5, 2] and 𝑁(0, 0.082), respectively.  
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Appendix: The Normal-Inverse Gaussian Distribution 

Developed by Barndorff-Nielsen (1977), the Normal-Inverse Gaussian distribution (NIG) has 

been widely used in modeling financial asset returns, see Eberlein and Keller (1995) and 

Barndorff-Nielsen (1997). The density function for the NIG family can be expressed as  

𝑓(𝑥; 𝜆, 𝜃, 𝜇, 𝛿) =
𝜆

𝜋𝛿
exp (𝛿√𝜆2 − 𝜃2 + 𝜃(𝑥 − 𝜇))

𝐾1(𝜆𝛿√1+(
𝑥−𝜇

𝛿
)

2

√1+(
𝑥−𝜇

𝛿
)

2
  

where 𝑥 ∈ 𝑅, 𝜆 > 0, 𝛿 > 0, 𝜇 ∈ 𝑅, 0 < |𝜃| < 𝜆 and 𝐾1 is the modfied Bessel function of the 

third kind with index 1 (see Abramowitz (1974)).  

 

The parameters 𝜇, 𝜆, 𝜃 and 𝛿 control respectively the location, tail heaviness, skewness and 

the scale of the distribution. The Gaussian distribution obtains as 𝜆 goes to infinity.  

 

This class of distributions is characterized by the first four moments 

 

𝐸[𝑥] = 𝜇 +
𝛿𝜃

√𝜆2−𝜃2
   

𝑉𝑎𝑟[𝑥] =
𝛿𝜆2

(√𝜆2 − 𝜃2)
3 

𝑆𝑘𝑒𝑤[𝑥] =
3𝜃

𝜆√𝛿√𝜆2−𝜃2
  

𝐸𝑥𝑐𝑒𝑠𝑠 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠[𝑥] =
3

𝛿√𝜆2 − 𝜃2
(1 +

4𝜃2

𝜆2
) 

In our simulation, 𝜇 and 𝜃 are set to be zero and 𝜆 and 𝛿 are chosen to match the assumed 

variance. 


