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Abstract

Existing theoretical and experimental studies have established that unanimity is a poor de-
cision rule for promoting information aggregation. Despite this, two-sided unanimity (con-
sensus) is frequently used in committees making decisions on behalf of society. This paper
shows that a consensus rule can facilitate truthful communication and optimal information
aggregation when voters face consequences not only for the outcome of the collective de-
cision, but also for how they personally voted. Theoretically, we show that majority rule
suffers from a free-rider problem in this setting, since agents’ votes are not always pivotal.
Consensus mitigates free-riding since responsibility for the committee’s decision is equally
distributed across all agents. We test our predictions in a controlled laboratory experiment.
As predicted, if consensus is required, subjects are more truthful, respond more to others’
messages, and are ultimately more likely to make the optimal decision. Our work there-
fore provides a rationale for consensus rule in settings where committee members are held
accountable, formally or informally, for their individual voting decisions.
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1 Introduction

Committees are a ubiquitous institution for making social decisions in the presence of uncer-
tainty. Ideally, committees aggregate the private information of their members and thus make
more informed decisions than could be made by any one individual in isolation. This intuition
was first formalized by de Condorcet (1785), who showed that if all individuals hold private
information that is more likely to be “right” than “wrong,” and if all individuals vote according
to their private information, then a sufficiently large committee that votes via a majority rule
will choose the “right” option with arbitrary precision. However, in many real-world settings,
committee members may face consequences not only for the outcome of the collective decision,
but also for how they personally voted. For example, FDA experts may seek to avoid blame for
approving a drug that proves to have severe side-effects, members of parliament may wish to
signal their ideological position to the electorate, and members of criminal-trial juries may be
exposed to ex-post guilt for voting to convict a defendant who is later shown to be innocent. In
these cases, the assumption that individuals will vote sincerely may fail since, relative to deci-
sions made by a single agent, decision-making by majority dilutes individual responsibility for
the committee’s decision, making committee members more likely to vote according to their
vote-contingent biases.

In this paper, we explore the effect of vote-contingent payoffs on communication and infor-
mation aggregation in committees. Additionally, we consider the impact of the decision rule
on behavior. In practice, committees use a wide range of rules to reach decisions: For example,
FDA committees use a majority rule when deciding whether to approve a new pharmaceutical
drug for general use, while convictions in many criminal trials require the jury to unanimously
vote to either convict or acquit. Based on the findings of the existing theoretical and exper-
imental literature, however, the use of a unanimity rule to aggregate information is puzzling
– existing studies have shown that unanimity is a uniquely poor decision rule for promoting
information aggregation (see Feddersen and Pesendorfer, 1998, Guarnaschelli et al., 2000, Per-
sico, 2004, Austen-Smith and Feddersen, 2006, and Bouton et al., 2017a), and at best produces
the same results as majority (Coughlan, 2000, Guarnaschelli et al., 2000 and Goeree and Yariv,
2011).1

In contrast, our analysis suggests that the use of a two-sided unanimity (consensus) rule can
have a beneficial impact when committee-members are exposed to vote-contingent payoffs—
we show, theoretically and experimentally, that a consensus rule can facilitate truthful commu-
nication of private information and optimal voting behavior. By holding all members equally

1One important exception is a recent paper by Chan et al. (2017), who consider the impact of the decision rule
on the length of the committee’s deliberation process – they show that a unanimity rule can promote information
aggregation by committees, since it gives more patient members control over when to terminate deliberation.
In contrast, the mechanism we present here operates via the committee member’s communication and voting
behavior, rather than the length of deliberation.
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responsible for the committee decision, a consensus rule avoids the coordination problems that
occur when the committee votes via majority.

Our analysis builds on two largely independent strands of literature. On one hand, the
lack of robustness of information aggregation when committee members face vote-contingent
payoffs has been well-documented by a number of theoretical studies, and payoffs linked to
a committee member’s vote are relevant across a range of settings: committee members may
face expressive or moral biases (Brennan and Buchanan, 1984, Tyran, 2004, Huck and Kon-
rad, 2005, Feddersen et al., 2009, and Morgan and Várdy, 2012), career concerns (Visser and
Swank, 2007 and Levy, 2007), and guilt or blame for supporting an incorrect decision (for
an application concerning FDA committees see Friedman and Friedman, 1990, p. 208, and
Midjord et al., 2017). Additionally, vote-contingent payoffs are highly relevant for commit-
tee members that face electoral pressures: e.g., individual voting records affect the reelection
chances of legislators (Canes-Wrone et al., 2002) and reelection concerns affect the decisions
of elected judges on state supreme courts (Hall, 1992).

On the other hand, a similarly comprehensive literature analyzes information aggregation
and decision rule design when voting is preceded by open discussion. Deliberation can sig-
nificantly improve a committee’s ability to aggregate information in equilibrium under any
decision rule (for a theoretical argument, see Coughlan, 2000 and Gerardi and Yariv, 2007; for
experimental evidence, see Guarnaschelli et al., 2000, and Goeree and Yariv, 2011). Pre-vote
deliberation has also been widely studied in the case where committee members have conflict-
ing preferences over the committee decision (that is, when agents disagree about the optimal
committee decision for some information set). For example, Li (2001) and Austen-Smith and
Feddersen (2006) show that, theoretically, heterogenous preferences lead to the non-existence
of truthful communication as an equilibrium strategy. Experimentally, however, Goeree and
Yariv (2011) show that in committees with heterogeneous payoffs, deliberation results in a high
degree of truthful communication and information aggregation despite theoretical predictions
to the contrary.2

Our paper merges these two strands of the literature and shows that the impact of vote-
contingent payoffs on the effectiveness of pre-vote deliberation and information aggregation
is fairly drastic, implying a strong rationale for the widespread occurrence of consensus rules.
That is, while the standard Condorcet model assumes that agents have preferences over the
committee outcome and the revealed state, we generalize this model to include the possibility
that agents also have preferences over their individual vote. We show that under majority, such
vote-contingent payoffs can introduce a free-rider problem that eliminates equilibria where

2In contrast, the impact of vote-contingent payoffs on the effectiveness of pre-vote deliberation is an understudied
topic – to the best of our knowledge, communication and vote-contingent payoffs in committees has only been
addressed within the context of career concerns, and has focused on the optimal level of transparency. We review
this literature below.
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committee members truthfully communicate their private signals and vote informatively. In
particular, if there exists an information set such that agents prefer to individually vote for one
option, but that the committee select the other option, then there are no equilibria with truth-
ful communication and committee-optimal voting. In contrast, under a two-sided unanimity
(consensus) rule there always exists a symmetric equilibrium with truthful communication and
committee-optimal information aggregation.

To clarify the intuition, assume committee members may vote for either an “expressive”
option or a “nonexpressive” option.3 Depending on the unknown state of the world, either
option may be optimal. As in related models, the committee members first receive mildly
informative signals about the state of the world and, prior to voting, publicly share binary
messages that, either truthfully or falsely (cheap talk), indicate their signal. If the committee
chooses the committee-optimal option, then all members benefit equally regardless of their
vote, but members voting for the expressive option additionally obtain the expressive payoff.

Under majority, the expressive payoff invites committee members to free-ride on the major-
ity vote by voting expressively themselves when they are not pivotal. Therefore, agents’ basic
objective in the cheap talk stage is to maximize the chances that the nonexpressive option is
selected by a majority when it is optimal. Potential free-riders do so by sending nonexpres-
sive messages to strengthen their co-players beliefs that voting for the nonexpressive option is
optimal, while personally free-riding and voting for the expressive option. As a result, com-
munication is strategic rather than truthful, information aggregation is compromised, and social
efficiency declines. Under consensus, however, all agents must forgo their vote-contingent pay-
off for the committee to select the nonexpressive option. This eliminates both the possibility
of free-riding and the incentive to misreport the nonexpressive option, resulting in an equilib-
rium where agents communicate truthfully and uniformly vote for the option that maximizes
the committee’s expected payoffs.

From a more general perspective, we show that homogeneous preferences over the com-
mittee outcome is not a sufficient condition for the existence of an equilibrium with truthful
communication and committee-optimal information aggregation. Rather, a sufficient condi-
tion is that all agents receive homogeneous payoffs. Accordingly, the novel insight of our
theoretical analysis is that, given homogeneous preferences over the committee outcome and
vote-contingent payoffs, consensus strictly dominates majority because consensus ensures ho-
mogeneous payoffs, while the heterogeneity of payoffs under majority can result in the non-
existence of an equilibrium with truthful communication and committee-optimal information
aggregation.

While the theory is suggestive, there is some ambiguity regarding the prediction that con-
3We consider the example of a uniform expressive bias that is independent of the committee’s decision or the
realized state of the world because it is the simplest realization of an vote-contingent bias, and thus represents a
minimal deviation from the standard model.
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sensus dominates majority. In general, there are multiple equilibria under both voting rules;
for example, there always exist so-called babbling equilibria where communication is random.
Additionally, behavioral biases due to lying aversion, incorrect Bayesian updating, or level-k
reasoning may also interfere with the theoretical prediction. In such cases, a controlled lab-
oratory experiment can be a useful tool to generate insights about observed behavior in an
analogous choice environment.

In the second part of our paper, we present the results of a laboratory experiment that com-
pares committee behavior under majority and consensus in the presence of expressive payoffs.
In a 2× 2 design, we compare the two decision rules for two different levels of expressive
payoffs. Across all four treatments, the effects are highly consistent with the theory: Under
majority, subjects systematically misreport their messages in a pre-vote round of binary cheap
talk and, indeed, this effect is mitigated under consensus. As predicted, consensus also out-
performs majority in terms of information aggregation — to the best of our knowledge, this
finding constitutes the first experimental evidence of a setting where a unanimity rule is strictly
preferable to majority (previous experiments in settings with pre-vote deliberation, such as
Guarnaschelli et al., 2000, and Goeree and Yariv, 2011, find either no significant difference
between unanimity and majority, or less information aggregation under unanimity). Thus, we
conclude that vote-contingent payoffs substantially enhance the comparative efficiency of two-
sided unanimity voting and may help explain its widespread use.

Finally, we analyze the behavioral mechanism underlying this result. First, we find that
the private signal and co-players’ messages have a similar impact on a subject’s vote under
consensus, but that subjects are relatively less likely to respond to co-players’ messages under
majority. Second, we classify agents into distinct strategy types using a finite mixture modeling
approach and find that under majority rule 20–26 percent of subjects pursue a “free-rider”
strategy that is biased towards falsely reporting the non-expressive option and personally voting
for the expressive option. In contrast, the proportion of subjects classified as free-riders under
consensus is not significantly different from zero (with point estimates at 0). In all, these
findings provide strong evidence supporting the hypothesis that the higher degree of truthful
communication and lower degree of “strategic” behavior under consensus has a positive causal
effect on information aggregation.

Next, we review the related literature. Section 2 introduces the theoretical model, and Sec-
tion 3 presents the theoretical analysis. Section 4 describes our experiment testing the predic-
tions of the model. Section 5 presents the analysis of the experimental results and Section 6
concludes. The formal proofs, the experimental instructions and a number of robustness checks
of the econometric results are provided in the Appendix.
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1.1 Literature

The issue of optimal voting rules in committees was first addressed in Austen-Smith and Banks
(1996), who show that for committees of finite size, information aggregation is only achieved
under the decision rule that features sincere voting as an equilibrium strategy.4 Next, Fed-
dersen and Pesendorfer (1998) went on to show that as the size of the committee approaches
infinity, all q-rules other than unanimity aggregate information. The reason for the failure of
information aggregation under unanimity is that an agent’s individual vote is only pivotal when
all other agents have voted for the non-veto option, implying that it is not optimal for an agent
to veto based on their private information only. This reluctance to “veto” under a unanimity
rule has also been observed experimentally by Guarnaschelli et al. (2000), who find that major-
ity rule outperforms unanimity in the standard setting. More recently, Bouton et al. (2017a,b)
demonstrate that a voting mechanism that allows agents to vote for either option, or to veto,
can outperform both majority and the standard unanimity rule.

The results referenced above, however, pertain only to settings where committees do not
deliberate prior to voting. Coughlan (2000) finds that if voting is preceded by a round of cheap-
talk communication, then both majority and unanimity admit equilibria with perfect informa-
tion aggregation (also see Gerardi and Yariv, 2007 for a comprehensive analysis of communi-
cation and voting). Experimentally, Guarnaschelli et al. (2000) and Goeree and Yariv (2011)
find that allowing subjects to either conduct a “straw poll” or communicate via chat prior to
voting largely eliminates the discrepancy found between majority and unanimity absent com-
munication.

One strand of this literature has focused on the efficacy of communication when agents
have conflicting preferences over the committee outcome (see Li, 2001 and Austen-Smith and
Feddersen, 2006). In this case, agents have an incentive to deviate from truthful communica-
tion in an attempt to bias the committee outcome towards their preferred option. In contrast,
the mechanism we highlight here does not rely on heterogenous preferences — preferences
over the committee outcome are perfectly homogeneous in our setting. Instead, agents have
an incentive to misreport their signal to persuade other agents to vote for the non-expressive
option, while personally free-riding and voting to obtain the expressive payoff. We show that
this mechanism induces some subjects to adopt a free-riding strategy, which may explain why
we find evidence for strategic communication with vote-contingent payoffs, while Goeree and
Yariv (2011) find that the rate of truthful communication is not significantly affected by hetero-
geneous preferences.

Lastly, our paper is related to the literature on reputation payoffs in committees, which
considers the Holmstrom (1999) model of career concerns applied to a committee setting. Here,

4For comprehensive overviews of the literature on information aggregation in voting, see Li and Suen (2009),
Gerling et al. (2005), and Palfrey (2016).
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reputation payoffs depend on the agent’s vote relative to the aggregate voting profile, as agents
seek to maximize the principal’s ex-post belief that the agent is of high ability. This literature
primarily considers the question of the optimal level of transparency (see Fehrler and Hughes,
2017 for a review). Visser and Swank (2007), however, consider the optimal decision rule in
a setting with communication and reputation payoffs (additionally, Levy, 2007 analyzes the
optimal decision rule in a setting without communication). They find that, similar to the setting
analyzed in the literature on conflicting preferences, an agent’s incentive to misreport their
private information stems from heterogeneity in preferences over the committee outcome.5

In contrast, we demonstrate that with vote-contingent payoffs, committee heterogeneity can
be a function of the underlying decision rule: With majority, the committee can always achieve
the optimal decision even when some committee members vote for the expressive option, which
results in heterogeneous payoffs and a free-rider problem. Consensus rule, however, holds all
members equally responsible for the committee decision, which facilitates committee-optimal
behavior by enforcing homogeneous payoffs.

2 Framework

We consider a standard Condorcet setting with pre-vote communication (cheap talk): An odd-
numbered committee of N agents, i ∈ {1,2, ...,N} with N ≥ 3, chooses between two options
{R(ed),B(lue)}. The committee decision, denoted by X ∈ {R,B}, is made via a vote, where
each committee member submits a vote, vi ∈ {R,B}, simultaneously with no abstentions.

Additionally, there is an underlying state of the world ω ∈ {R,B}. Agents do not observe
the state of the world, but each has a type si, drawn from a finite type space S, where their type
corresponds to a private signal regarding the state. Additionally, all committee members have
a common prior over the state of the world, denoted PR = Pr(ω = R), which is uninformative
(PR = 1/2). Take S = SN and s to indicate a specific profile of signals in S. Signals are drawn
independently from S according to the probability distributions pω. Each signal is partially
informative—p(s)R 6= p(s)B—but no signal perfectly reveals the state of the world—p(s)ω > 0
for all s ∈ S and ω ∈ {R,B}. Prior to voting, agents engage in “cheap talk” communication:
each agent simultaneously send a message, mi ∈ S, that is publicly observable. After voting, a
decision rule, dv, maps the agents votes into a committee decision; that is, the decision rule is a
function, dv : {v1, ...vN}→ X ∈ {R,B}.

Consistent with our motivation of studying information aggregation with vote-contingent
payoffs, the committee members’ payoffs are a function of the committee decision, an under-

5Fehrler and Hughes (2017) also provide a theoretical and experimental analysis of communication and reputation
payoffs; in their setting, committee members misreport the precision of their signal when they have a low-precision
signal and communication is observed by the principle.
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lying state of the world ω ∈ {R,B}, and the agent’s vote vi. Formally, agents’ preferences are
represented by a vNM utility function, u : {X ,ω,vi} → R. This formulation is quite general,
allowing for vote-contingent payoffs that depend on the committee decision and the state of the
world. We impose the restriction that u(X = ω,ω,vi) > u(X 6= ω,ω,v′i) for all vi,v′i,ω, which
implies that agents’ payoffs from choosing the option that matches the state is greater than any
vote-contingent payoff—this restriction is not strictly necessary, but implies a payoff structure
analogous to the standard models of information-aggregation.

We consider the decision rules Majority and Consensus. Majority rule is defined as follows:
if more than N/2 agents vote for B, then X = B; and if less than N/2 agents vote for B, then
X =R. The main element of consensus rule that we seek to model is that agents coordinate prior
to voting, and then uniformly vote for the chosen option. Therefore, to approximate a consensus
rule, we adopt the following framework: After the communication stage, agents participate in
a simplified deliberation stage. If deliberation reveals a sufficient level of support for B (R),
then agents coordinate on voting for B (R). This framework closely follows the procedure en-
dogenously adopted by subjects in committee games with free-form communication—Goeree
and Yariv (2011) find that subjects first share their signals and then coordinate on the voting
outcome.

Formally, in the deliberation stage all agents simultaneously submit an opinion, oi ∈ {R,B}.
We assume that if the number of opinions for B is above a threshold for agreement, then agents
coordinate on voting for option B. That is, the vector of opinions then determines the voting
outcome as follows:

1. If #(oi = B) = N then vi = B for all i, and X = B.
2. If #(oi = B)< N then vi = R for all i, and X = R.

This decision rule implies that deliberation is binding, and that a specific threshold of agree-
ment for option R applies—if a single agent submits an opinion of R, then all agents vote for
R. It is important to note, however, that the actual threshold is unimportant for our analysis.
In equilibrium, all opinions will be unanimous and our results will therefore obtain for any
alternative threshold of agreement. Instead, the feature of the consensus rule that is theoreti-
cally important is the fact that for a given outcome to be chosen, all agents must vote for that
outcome.

We denote this game by Γ = 〈PR,S, pω,N,dv〉. Agents’ strategies are duples (σ,τ), where:

• σ(s|si) is the probability of message s after signal si ∈ S,
• τ(si,mi,m) is the probability of vote R (for Majority; for Consensus, τ(si,mi,m) is the

probability of opinion R) after signal si, own message mi, and the aggregate message
profile m ∈ S.

The timing of the game is as follows:
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1. Nature draws state ω ∈ {R,B} and sends private signals s ∈ S.
2. Committee members observe si and simultaneously send messages mi ∈ S.
3. Committee members observe m and simultaneously submit votes/opinions vi/oi ∈{R,B}.
4. Votes are counted and payoffs accrue.

The equilibrium concept we consider is symmetric Perfect Bayesian Nash. By symmetry, we
mean that agents with the same information sets take the same strategies.

2.1 Example

While the model introduced above is quite general, we first restrict our attention to a simpli-
fied framework that corresponds to the example we use in our laboratory experiment. Each
committee member receives a private signal from a binary signal space, si ∈ {R,B}, with
Pr(ω = x|si = x) equal to α ∈ (1/2,1).

Payoffs consist of a separable common-value component and vote-contingent component.
For the common-value component, each agent receives a payoff of 1 if the committee chooses
the decision that matches the underlying state of the world, and a payoff of zero otherwise. For
the vote-contingent component, each agent has a simple voting bias and receives an payoff of
K < 1 conditional on voting for option R. This voting bias is unconditional on the state of the
world and the decision of the committee—such an vote-contingent payoff is commonly referred
to as an expressive bias. To summarize, terminal payoffs are a function of outcome X ∈ {R,B},
state ω ∈ {R,B}, and the own vote vi ∈ {R,B} and are equal to:

u(X ,ω,vi) =


0, if X 6= ω and vi = B

1, if X = ω and vi = B

K, if X 6= ω and vi = R

1+K, if X = ω and vi = R

We denote the aggregate number of signals of B by S# (S# = ∑i Isi=B where Isi=B takes a
value of 1 if the argument, si = B, is satisfied and 0 otherwise), and the aggregate number of
messages of B by M# (M# = ∑i Imi=B). We denote this simplified game by Γ̂ = 〈K,PR,α,N,dv〉,
and define σ(si), τ(si,mi,M#) as the probability of sending message R and vote R, respectively.
We also note that in this simplified setting, the equilibria highlighted below are also equilibria
in the model with one-sided unanimity and a status quo of R.
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3 Truthful Communication and Information Aggregation

In this section, we present a partial characterization of the equilibria of the simplified model
with binary signals under Majority and Consensus, followed by the general results. Our aim
here is not to be exhaustive—games with communication generally admit a multitude of equilibria—
rather we focus on characterizing the conditions under which the model supports equilibria with
truthful communication and optimal voting outcomes.

Definition 1 (Committee-Optimal Information Aggregation). We define Optimal Information
Aggregation as replicating the decision taken by a single decision-maker who maximizes ag-

gregate expected payoffs of the committee, ∑
N E[πi], and has access to the complete profile of

signals, s.

Note that there is a distinction between optimal information aggregation and perfect in-
formation aggregation: perfect information aggregation implies that the committee selects the
option with the highest number of signals since this option is most likely to coincide with the
state of the world; (committee) optimal information aggregation, however, takes into account
the vote-contingent payoff, K, which implies that option R may be optimal even when ω = B

is more likely. We acknowledge that in cases where a committee takes a decision on behalf of
society, the appropriate social welfare function may be perfect information aggregation since
the committee members’ vote-contingent payoffs may be small relative to the social impact of
choosing the more likely option. Therefore, while we focus on committee-optimal information
aggregation in the theoretical analysis, we will consider both perfect and optimal information
aggregation when interpreting our experimental results.

3.1 Voting Stage

We begin by characterizing the equilibria in the voting stage given truthful messaging. Note
that given mi = si for all i, all agents are at the same information set, which implies that the sym-
metric equilibrium prescribes a uniform strategy for all agents in the voting stage. Accordingly,
we simplify the notation of τ(si,mi,M#) to τ(M#) for this subsection.

First, we state a well-known result in games of information aggregation through voting,
which specifies that all agents voting R is an equilibrium strategy under both majority and con-
sensus for any profile of messages. This equilibrium is commonly referred to as the “babbling
equilibrium” (we refer to equilibria other than the babbling equilibrium as “non-babbling”).

Lemma 1 (Babbling Equilibrium). It is a symmetric equilibrium strategy for all agents to set

τ(M#) = 1 for all M#, under both Majority and Consensus.
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The rationale for Lemma 1 is that when τ(M#) = 1 for all i 6= j then i’s vote/opinion cannot
be pivotal, which implies that vi/oi = R is a best response. Note that, for K > 0 there is no
babbling equilibrium with τ(M#) = 0, since if i’s vote is not pivotal, then i has a best response
of voting for R and receiving the expressive payoff.

Next, we introduce some additional notation. Take piv(x)= (N−1)!
[(N−1)/2!]2 x(N−1)/2(1−x)(N−1)/2

for x ≤ 0.5, which is equal to the probability that i’s vote is pivotal under Majority when all
other agents vote R with probability x. The following values will be helpful in the analysis:

S̄ = min{S#|Pr(ω = B|S#)−Pr(ω = R|S#)≥ K},

Spiv = min{S#|piv(0.5)[Pr(ω = B|S#)−Pr(ω = R|S#)]≥ K}.

Optimal information aggregation prescribes that the committee play strategies such that they
select option R when S# is smaller than S̄, and option B when S# is greater or equal to S̄. Also,
note that if S# is smaller than S̄, then voting B is a dominated strategy, since i maximizes their
expected payoff by voting R even when they are pivotal.

The following lemma characterizes all non-babbling equilibria of the voting stage given
truthful messaging and a majority rule.

Lemma 2 (Voting Stage: Majority). Given truthful messaging (m = s) and K > 0, consider the

voting stage following M# messages for B:

• If M# < Spiv, then the unique symmetric equilibrium strategy is to vote R with probability

τ∗(M#) = 1.

• If M# ≥ Spiv(≥ S̄), then the set of non-babbling symmetric equilibrium strategies is equal

to {τ∗(M#),(1− τ∗(M#))} with τ∗(M#) ∈ (0,0.5).

We focus on the equilibrium τ∗(M#), since (1− τ∗(M#)) is unstable. This non-babbling
symmetric voting strategy is the mixed strategy that equalizes the benefit of choosing B over R

multiplied by the probability of being pivotal, and the forgone expressive payoff. Rearranging
the equilibrium condition gives:

piv(τ∗(M#)) =
K

Pr(ω = B|S#)−Pr(ω = R|S#)
. (1)

This equation also shows that τ∗(M#) is increasing in M#, since Pr(ω = B|S#)−Pr(ω = R|S#)

is increasing in S# and piv(τ∗(M#)) is increasing in τ∗(M#) (since τ∗(M#)≤ 0.5).

More generally, Lemma 2 shows that Majority introduces a coordination/free-rider problem
in the voting stage. Given M# ≥ (N + 1)/2, all agents would prefer that the committee select
option B. Under Majority, however, only a strict subset of the committee members are required
to forgo the expressive payoff and vote for B for the committee to select B. Accordingly,
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each committee member would prefer that a majority vote for B, but to individually belong
to the minority of agents that vote for R. This incentive to free-ride implies that there is no
symmetric strategy where all agents vote for B, and that the only non-babbling symmetric
equilibrium involves a mixed strategy in the voting stage (for M# ≥ Spiv). This mixed strategy
equilibrium introduces an aggregate bias toward option R, since there is a positive probability
that the committee will select R even when M# ≥ Spiv.6

In contrast, the following lemma characterizes the non-babbling equilibrium of the voting
stage under Consensus.

Lemma 3 (Deliberation Stage: Consensus). Given truthful messaging (m = s) and K > 0:

• If M# < S̄, then τ(M#) = 1 is the unique symmetric equilibrium strategy.

• If M# ≥ S̄, then τ(M#) = 0 is the unique non-babbling symmetric equilibrium strategy.

That is, under Consensus, the unique non-babbling equilibrium optimally aggregates infor-
mation.7 The reason for this difference between Consensus and Majority is that under Con-
sensus, the committee can only select option B if all committee members forgo the expressive
payoff of K. Due to this the uniform enforcement of responsibility, the free-rider problem that
occurs under Majority is mitigated, and optimality in the voting stage is restored.

3.2 Truthful Messaging

We now characterize, conditional on the equilibrium strategy in the voting stage, when truthful
messaging is supported in equilibrium. We begin with the babbling equilibrium.

Lemma 4 (Truthful Messaging under Babbling). Given τ(M#) = 1 for all M#, truthful messag-

ing (m = s) is an equilibrium under both Majority and Consensus.

That is, given babbling in the voting stage, agents are indifferent between sending a message
of R and a message of B. Therefore, any messaging strategy is an equilibrium.

Take K̄ to be equal to the following value:

K̄ =

[
Pr
(

ω = B|S# = N+1
2

)
−Pr

(
ω = R|S# = N+1

2

)]
Note that for K = K̄, the corresponding S̄ is equal to (N + 1)/2, implying that S̄ > (N + 1)/2
for K > K̄.

6For some K, there exists a plausible asymmetric equilibrium where agents with mi = R set τi(M#) = 1 for all M#.
In this case, a non-babbling equilibrium exists where agents with mi = B set τi((N + 1)/2) = 0 and τi(M#) =
τ∗∗(M#) with τ∗∗(M#) ∈ (0,0.5) for M# > (N +1)/2. As we show in the Supplementary Appendix, however, this
equilibrium only exists for small values of K.

7There is no mixed-strategy equilibrium since, given a positive probability of being pivotal and M# ≥ S̄, i will
strictly prefer voting B.

11



Also, take K′ = piv(0.5)K̄. The following proposition gives a necessary condition for truth-
ful messaging and the non-babbling voting strategy to be an equilibrium under Majority.

Proposition 1 (Truthful Messaging under Majority). Given that agents play the non-babbling

equilibrium in the voting stage, truthful messaging (m = s) is an equilibrium only if K ≤ K′.

Proposition 1 shows that the coordination/free-rider problem in the voting stage has a knock-
on effect on the messaging stage, and that given K sufficiently high, there is no equilibrium with
truthful messaging and non-babbling voting.

An intuition for this result is as follows: independently of their own vote, each agent would
prefer that the committee select option B when there are more signals for B than R (information
aggregation). However, as detailed in Lemma 2, under truthful communication the expressive
payoff biases the committee’s decision toward R, since agents play mixed strategies in the vot-
ing game given M# ≥ Spiv. This bias is decreasing in M# since the higher the likelihood that the
state is equal to B, the higher the probability that agents vote for B. Therefore, for low levels of
K (K ≤ K′) an agent with signal si = R faces the following tradeoff when considering a devi-
ation from truthful messaging: (1) for S# > (N +1)/2, deviating to σ(R) = 0 will increase the
probability that the committee ‘correctly’ selects option B; (2) for S# = b(N−1)/2c, deviating
to σ(R) = 0 results in a positive probability that the committee incorrectly selects option B

since given S = b(N−1)/2c (M# = b(N−1)/2c) all committee members other than i will vote
B with positive probability. Given this tradeoff, truthful messaging can still be an equilibrium
strategy for K low enough, since the benefit of deviating to σ(R) = 0 and decreasing the bias
of the committee (1) can be offset by the cost of incorrectly aggregating information when i’s
information is pivotal (2).

However, by Lemma 2, if K > K′ it is not an equilibrium strategy for agents to vote for B

with positive probability when M# = b(N−1)/2c. Therefore, the cost of deviating from truthful
messaging (2) disappears, which implies that when all other agents play truthfully, deviating to
σ(R) = 0 is a best response. Additionally, an agent with a signal of R who deviates from truthful
reporting has a best response to vote R in the voting sub-game given that other agents now play
τ∗(S# + 1) < τ∗(S#). This shows that truthful communication cannot be an equilibrium under
Majority when K > K′, since agents have a best response to deviate to falsely reporting B while
personally voting R (the “free-riding” strategy).8

In contrast to Majority, the following proposition shows that truthful messaging remains an
equilibrium for all voting strategies under Consensus.

Proposition 2 (Truthful Messaging under Consensus). Under Consensus, truthful messaging

(m = s) and committee-optimal voting (τ(M#) = 1 for M# < S̄; τ(M#) = 0 for M# ≥ S̄) is an

equilibrium of any game Γ̂.
8By the same logic, with the asymmetric voting strategy where agents with mi = R set τi(M#) = 1 for all M# (see
Footnote 6), truthful messaging is not an equilibrium for K > K̄.
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The existence of an equilibrium with optimal information aggregation under Consensus
follows from Lemma 3: given that agents efficiently aggregate information in the voting stage,
agents have no incentive to deviate from truthful communication.

Independently, both Proposition 1 or Proposition 2 relate to results in the existing literature
and thus concur with the general understanding of information aggregation. As discussed in
the introduction, it is well-known that vote-contingent payoffs can cause information aggrega-
tion to fail. Additionally, Proposition 2 follows from the same reasoning behind Theorem 1 in
Austen-Smith and Feddersen (2006), who analyze communication in a setting with heteroge-
nous preferences over the committee outcome (also see Gerardi and Yariv, 2007).

However, Proposition 1 demonstrates that homogeneous preferences over the committee
outcome, conditional on the aggregate profile of signals, is not a sufficient condition for the
existence of an equilibrium with truthful communication and committee-optimal information
aggregation. Instead, in a more general setting that allows for vote-contingent payoffs, the
sufficient condition requires that agent receive homogeneous payoffs. Accordingly, the novel
insight provided by the combination of Propositions 1 and 2 is that the committee’s decision rule
is relevant for efficiency, even in settings with communication and homogeneous preferences
over the committee outcome, since the homogeneity of payoffs is a function of the decision rule.

Propositions 1 and 2 also allow us to compare the Pareto optimal equilibria under Consensus
and Majority. Jointly, they show that when committee members are exposed to vote-contingent
payoffs that condition on their individual vote, then the Pareto optimal outcome under Con-
sensus always weakly dominates the Pareto optimal outcome under Majority in terms of infor-
mation aggregation, and Consensus strictly dominates Majority for vote-contingent payoffs of
intermediate size.

To be more precise, take K′′ to be defined as follows:

K′′ =
[

Pr
(

ω = B|S# = N
)
−Pr

(
ω = R|S# = N

)]
When K is large enough so that S̄ > N, i.e., for all K > K′′, then the unique equilibrium is for
the committee to always select R under both Majority and Consensus. Fixing all parameters of
the game other than K (N,PR,α), take the following set of games:

{Γ̂}K = {Γ̂|K ∈ (K′,K′′]}.

This definition allows us to define a set of games where Consensus strictly dominates Majority
in terms of information aggregation.

Corollary 1 (Summary). Under Majority, for any game Γ̂ ∈ {Γ̂}K , there are no symmetric

equilibria with truthful communication and informative voting, or any symmetric equilibria
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that optimally aggregate information.

Under Consensus, for any game Γ̂ ∈ {Γ̂}K there exists a symmetric equilibrium with truthful

communication that optimally aggregates information.

Corollary 1 follows from the fact that the committee can only efficiently aggregate infor-
mation when playing symmetric strategies if (1) all agents vote their signal, or (2) agents play
voting strategies that perfectly condition on S#. When K is large, (1) is precluded by Lemma 5
(stated and proved in the Appendix), and (2) is precluded by Proposition 1.9

3.3 Generalized results and discussion

As shown in the following theorem, the findings of Corollary 1 also apply the broader setting
that admits a more general set of vote-contingent payoffs that may condition on realized state
of the world, and/or the committee outcome.

Theorem 1 (Existence under Consensus). For any game Γ and utility function u : {X ,vi,ω}→
R, there exists a symmetric equilibrium under Consensus with truthful communication that

optimally aggregates information.

The intuition behind this generalized result is straightforward. Take SR ⊂ S to be the set of
signals under which i weakly prefers outcome R and SB ⊂ S to be the set of signals under which
i strictly prefers outcome R given vi = X . That is:

SR = {s|E(u(X = R,vi = R,ω)|s)≥ E(u(X = B,vi = B,ω)|s),

SB = {s|E(u(X = B,vi = B,ω)|s)> E(u(X = R,vi = R,ω)|s).

By definition, SR∪SB = S and SR∩SB = /0.

Under a Consensus rule, the outcome set is constrained to the subset of outcomes where
X = vi; effectively, X = x′ implies that vi = x′ for all i. Therefore, given truthful communication,
(mi = si), setting oi = R if m ∈ SR and oi = B if m ∈ SB in the deliberation stage is a best reply
since agents have homogenous payoffs in all possible outcomes. Additionally, given that agents
play the strategies oi = R if m ∈ SR and oi = B if m ∈ SB, truthful communication results in the
outcome that X = R if and only if s ∈ SR. This implies that, conditional on the the realized set
of signals, any deviation from truthful communication will result in either the same outcome,
or that X 6= X ′ for some s′ ∈ SX ′ , which is a strictly worse outcome and thus demonstrates the
result.

9The above analysis has focused on characterizing the existence/non-existence of equilibria with truthful commu-
nication and optimal information aggregation. In the Appendix we provide a broader characterization of equilibria
for the specific case we analyze in our experiment (including asymmetric equilibria that consider the case where
agents condition their vote on their signal and message).
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It is also straightforward to see the possibility of non-existence of equilibria with truthful
communication and optimal information aggregation under Majority in the generalized setting:

Corollary 2 (Non-existence under Majority). If there exists a vector of signals, s′, and a

committee outcome, X ′, such that E(u(X ′,vi,ω)|s′) > E(u(X 6= X ′,vi,ω)|s′) and E(u(X ′,vi 6=
X ′,ω)|s′) > E(u(X ′,vi = X ′,ω)|s′), then there are no symmetric equilibria with truthful com-

munication and committee-optimal voting outcomes under Majority.

That is, given vote-contingent payoffs where a vector s′ exists such that i prefers that the
committee selects outcome X ′, but individually vote for outcome X 6= X ′, then vote-contingent
payoffs introduce a coordination problem due to the fact that majority rule admits the outcome,
{X ′,vi 6= X ′}. In this case, as illustrated in the simplified setting analyzed above (Lemma 2),
there is are no symmetric equilibria with truthful communication and committee-optimal voting
outcomes under Majority.

The findings of Theorem 1 and Corollary 2 are particularly striking in the context of the lit-
erature on decision rules and information aggregation in committees—vote-contingent payoffs
precisely reverse the findings in the existing theoretical literature on information aggregation
in committees that, without vote-contingent payoffs, voting outcomes are weakly optimal un-
der Majority (Feddersen and Pesendorfer, 1998; Austen-Smith and Feddersen, 2006; Bouton
et al., 2017a). To be clear, our results do not imply that Consensus dominates Majority in all
situations—our model considers a decision-situation that is specifically designed to isolate the
role of vote-contingent payoffs. However, it does suggest that uniformly enforcing responsi-
bility for the committee’s decision may mitigate a voting bias that occurs in many real-world
settings where committee members can be held accountable, formally or informally, for their
individual voting decisions.

Additionally, while Theorem 1 and Corollary 2 are suggestive, they do not provide a fully
satisfactory answer as to which decision rule is optimal in a setting with vote-contingent pay-
offs. For example, both decision rules admit multiple equilibria, even under the assumption
of symmetric strategies, leading to ambiguity regarding the theoretical predictions. Moreover,
there are well-documented behavioral factors that may impact the theoretical predictions: a sin-
gle agent voting naively is enough to destroy the efficiency of information aggregation under
unanimity rules, and a preference for truth-telling (lying aversion) may mitigate the negative
predictions for Majority. Additionally, there are more subtle ambiguities: if we allow for asym-
metric strategies, note that if (N − 1)/2 agents play a fixed strategy τ(M#) = 1 for any M#,
then the remaining (N +1)/2 agents face an effective decision rule of unanimity, allowing for
optimal information aggregation.

This indeterminacy of the theoretical predictions leave scope for further exploration. In
such a setting, where the theoretical predictions are suggestive but not definitive, laboratory
experiments can be a useful tool to generate insights on observed behavior in an analogous
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choice environment. In the following section, we explain how our experimental design may
help us to detail the differences in communication and voting under Majority and Consensus,
and to explore the mechanisms behind the observed differences in aggregate behavior under the
two decision rules.

4 Experiment

4.1 Experimental Design

The experiment closely implements our model of voting with expressive payoffs, using a 2×2
design with “High” and “Low” expressive payoffs under Majority and Consensus. The exper-
imental implementation closely follows the related experiments of Guarnaschelli et al. (2000)
and Goeree and Yariv (2011). In particular, we use neutral language, communicate probabili-
ties and signals to subjects using balls drawn from urns, and provide feedback about the actual
state of world and composition of payoffs after each round. A detailed description follows
and a translation of the instructions and a screenshot are provided as supplementary material.
The experiments were conducted at the WZB/TU experimental laboratory in Berlin in May,
June and November of 2016. Subjects were recruited using ORSEE (Greiner, 2015) and the
experiment was programed in Z-Tree (Fischbacher, 2007).

The four treatments are summarized in Table 1. The sum of the expressive payoff K, which
committee members get after voting R, and social payoff Pc, which committee members get
after voting in line with the state of the world, is always equal to to 50 points. In the treatments
with “low” expressive payoffs, we set K = 10 and Pc = 40, and in the treatments with “high”
expressive payoffs, we set K = 15 and Pc = 35. The payoffs were calibrated such that K > K̄

in both the Low and High treatments, and we discuss the theoretical predictions in detail in
the following subsection. In both cases, we conduct sessions with both consensus and majority
voting. The precision of each subject’s signal was constant across treatments and equal to
α = 0.6. Subjects were paid according to the sum of points accumulated across all 50 games,
and one point corresponded to one euro cent in all treatments. The experiment lasted between
75 and 105 minutes and subjects earned between 19 and 22 Euros on average across sessions.

Table 1: Overview of experimental treatments

Label Decision rule Pc K #Subjects #Sessions #Games

Majority-Low Majority 40 10 48 4 50
Majority-High Majority 35 15 45 4 50
Consensus-Low Consensus 40 10 45 4 50
Consensus-High Consensus 35 15 48 4 50
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For each treatment, we ran four sessions with either 9 (two sessions) or 12 (fourteen ses-
sions) participants. In all cases, two sessions were run simultaneously to increase anonymity.
Upon arrival at the laboratory, subjects were seated randomly. An experimental assistant then
handed out printed versions of the instructions and read the instructions out loud. Subsequently,
subjects filled in a computerized control questionnaire verifying their understanding of the in-
structions, and the experiment did not start until all subjects had answered all questions cor-
rectly. The subjects then played 50 voting games in committees of size three (N = 3), with
random rematching after each game (see Figure 3 in Appendix B for a composite screenshot).
After each game, the subjects received feedback on payoffs, aggregate behavior and the aggre-
gate signal profile. Under Majority, the timing of each round was as follows.

Majority Observe private signal {R,B}. Send a public message to their group {R,B}. Observe
message profile. Submit vote {R,B}. Observe state, votes, outcome, and payoffs for this
game.

Under Consensus, the timing of each round was identical to Majority aside from the voting
stage. Subjects were given three chances to reach a unanimous decision, after which all subjects
were assigned a default vote of R. We choose to operationalize consensus rule in this manner
to replicate a two-sided unanimity as closely as possible. Moreover, we choose a conservative
default of R to ensure that the frequency of committee outcomes equal to the non-expressive
option under Consensus is not driven by the default option.

Consensus The only difference to Majority is in the voting stage: Submit vote {R,B}. If vote
is unanimous proceed to Outcome Stage. Otherwise, again submit a vote {R,B}. If vote
is unanimous proceed to Outcome Stage. Otherwise, submit a final vote {R,B}. If vote
is not unanimous, all subjects are assigned the vote vi = R. Proceed to Outcome stage.

Additionally, the format of allowing for multiple straw polls is similar to the procedure used in
many jury deliberations. It is possible, however, that subjects use the multiple rounds of voting
as additional communication. We address this concern in a robustness section in the Appendix.
Upon completion of the experiment, subjects left the laboratory and were paid individually in
a separate room by an experimental assistant.

4.2 Theoretical Predictions and Experimental Research Questions

Corollary 1 shows that for a wide range of expressive payoffs, truthful communication is ruled
out in non-babbling equilibria under Majority voting.10 The expressive payoffs induced in the

10To reiterate, in non-babbling equilibria, committee members do not ignore the information contained in the mes-
sages. There always exist babbling equilibria with truthful communication in Majority, namely equilibria where
subjects always vote R regardless of messages, where unilateral attempts to respond to the messages are payoff
irrelevant, see Lemma 4.
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experiment, 10/40 and 15/35, are comparably small in the sense that they do not dominate
the social payoffs from making the socially optimal decision, but are large enough to suppress
truthful communication in Majority. That is, both Majority treatments satisfy K ∈ {Γ̂}K as
referred to in Corollary 1, which yields the following research question.

Question 1. Are messages more likely to be truthful under Consensus than under Majority, and

does it depend on the private signal being R or B?

We predict yes to both parts. More specifically, Proposition 1 shows that Majority may in-
duce asymmetric misreporting since agents best-respond to truthful reporting by sending truth-
ful messages given a signal of B, and misreport given a signal of R to induce their co-players to
vote for B. Additionally, Lemma 2 predicts that agents who receive a signal of R and misreport
will vote R, given that their co-players vote for B with a higher probability. We refer to this as
the free-rider problem.

As a result of this free-rider problem, Corollary 1 predicts that Consensus will outperform
Majority in terms of information aggregation. Additionally, we predict that information ag-
gregation will disproportionately fail when the aggregate profile of signals indicates that the
committee should select B: If a majority of subjects receive B signals, then the free-rider prob-
lem implies that R will be selected with positive probability. If a majority of subjects receive R

signals, however, then the committee will select R with high probability since subjects playing
a free-rider strategy will vote R regardless of the messages. Therefore, our model suggests the
following research question.

Question 2. Is information aggregated more efficiently under Consensus, and does it depend

on the committee-optimal decision being R or B?

Conditional on a positive finding for Questions 1 and 2, theoretically, the channel for the
increased level of information aggregation under Consensus could be twofold. On the one
hand, committee members may anticipate and account for the more truthful messages under
Consensus. On the other hand, even if subjects hold the belief that their co-players’ messages
are truthful, Lemma 2 shows that Majority induces a coordination problem in the voting stage
that may still prevent optimal information aggregation.

Therefore, we continue our analysis by identifying the mechanisms behind any relative
decrease in information aggregation under Majority. First, we consider the question of whether
subjects account for the average level of truthful reporting in their voting decisions.

Question 3. Do subjects anticipate and respond to more truthful messages under Consensus?

Second, Lemma 2 and Proposition 1 predict that agents will best-respond to truthful re-
porting by free-riding, misreporting B to free ride on the B votes of their co-players, while
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personally voting for R. This prediction provides us with an opportunity to verify the causal
mechanism predicted by our model.

Question 4. Do subjects strategically misreport under Majority to free-ride?

If the findings of the experiment negate this prediction, then subjects may be falsely re-
porting their signals for reasons other than what we predict, and hence our model would be
falsified.

5 Analysis of the experiment

We address the four research questions successively. Table 2 provides a first overview of the
experimental results, delineating the truthfulness of messages and the level of information ag-
gregation by decision rule, expressive payoffs and signal.

Table 2: Average treatment effects in relation to Questions 1 and 2

Expressive payoff Low High
Decision Rule Majority Consensus Majority Consensus

Truthful message if R signal 90% 96%∗∗∗ 79% 94%∗∗∗

Truthful message if B signal 84% 86% 87% 86%

Committee-optimal decision R 80% 79% 88% 86%
Committee-optimal decision B 61% 83%∗∗∗ 60% 83%∗∗∗

Mann-Whitney-Wilcoxon test (Consensus = Majority); ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

5.1 Are messages more truthful under Consensus?

The upper two lines of Table 2, and similarly Figure 1, provide information on the truthfulness
of communication, disaggregated by treatment and signal as required to answer Question 1.
The asymmetric prediction is satisfied for both signal R and signal B: Given a signal of R, in
both the Low and High expressive payoff conditions, messages are significantly more truthful
under Consensus than under Majority. That is, with a signal of R, misreporting increases from
4% to 10% given Low expressive payoffs, and from 6% to 21% given High expressive payoffs.

In contrast, truthful reporting given a signal of B is very stable across all conditions: The
differences between Consensus and Majority are very small (at most two percentage points)
and far from being significant, confirming the second part of Question 1. Across all treatments,
the average rate of truthful reporting, roughly 85 percent, is lower than might be expected given
the results of Guarnaschelli et al. (2000) (their experiment considers homogeneous payoffs,
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Figure 1: Average levels of truthful messaging (mi = si) by signal and treatment.

but is otherwise comparable). Focusing only on Consensus, however, the relative frequency of
truthful messages is comparable with Guarnaschelli et al. (2000).

Result 1. As predicted (Question 1), messages are more truthful in Consensus after R signals

and equally truthful after B signals.

A related point apparent in Figure 1 is worthy of mention. Under Majority, the level of mis-
reporting given a signal of R more than doubles for the High vote-contingent payoff treatment,
from 10% to 21%. This finding is consistent with the quantitative increase in the incentive to
strategically misreport given a signal of R. In contrast, the average level of truthful reporting by
signal is stable across the Low and High treatments under Consensus. This finding corroborates
Result 1 and suggests that, under Majority, the level of truthful communication is sensitive to
the size of the incentive to engage in strategic misreporting. Section B in the Appendix further
shows that the results are highly robust to experience.

5.2 Is information aggregated more efficiently under Consensus?

While truthful communication is a necessary condition for the committee to behave optimally,
the most pertinent comparison between Majority and Consensus is the ability of the committee
to efficiently aggregate the private information of its members. Figure 2 shows the committee
decision as a function of the aggregate profile of signals, and the lower two lines in Table 2
provide the relative frequencies of committee-optimal decisions, disaggregated by whether R

or B is optimal — across all conditions examined here, the committee-optimal decision is B

if and only if all subjects have received B signals. As detailed in Question 2, our prediction
is that there is no difference between Consensus and Majority if the expressive option, R, is
committee-optimal, but that under Consensus the committee will be more likely to select the
non-expressive option, B, when it is optimal.
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Figure 2: Average levels of outcome B as a function of the aggregate profile of signals (not
messages) by treatment.

The experimental results are very sharp. If R is committee-optimal, there is virtually no
difference in the probability that the committee selects R between Consensus and Majority:
80% versus 79% for Low, and 88% versus 86% for High expressive payoffs. If B is committee-
optimal, the difference is large and highly significant: 22 percentage points (61% versus 83%)
for Low expressive payoffs, and 23 percentage points (60% versus 83%) for High expressive
payoffs. In all, the probability that the committee correctly aggregates information given three
signals for B increases by over a third under Consensus.11

Result 2. As predicted (Question 2), the committee is significantly more likely to select the

optimal option under Consensus if the non-expressive option, B, is committee-optimal, and the

difference between the two decision rules is negligible if R is optimal.

5.3 Do subjects anticipate more truthful messages under Consensus?

Having established that Consensus results in more truthful messaging and increased informa-
tion aggregation (Questions 1 and 2) we now turn to the more subtle questions regarding mecha-
nism (Questions 3 and 4). For a first pass at exploring the effect of messages under the different
decision rules, we estimate a discrete choice model that considers each individual’s voting de-
cision as a function of the voting rule, and the information known by the subjects at the time
they take their voting decision. Table 3 summarizes the estimation.

The regression results indicate that subjects respond to both an own signal of B and to co-
player’s messages for B by voting for B with a higher probability. Moreover, under Consensus,

11The difference between the two decision rules is also slightly larger in the 2nd half of the experiment (see Section
B in the supplementary appendix). Additionally, note that subjects are more likely to select B given two signals of
B under Consensus, although this difference is attenuated in the second half of the experiment.
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the impact of a message for B from a co-player has a similar the impact on voting behavior as
an own signal for B. Under Majority, however, subjects are significantly less likely to respond
to co-players’ messages of B, relative to their own signal (see the negative coefficient on the
interaction of “Majority” and “Other’s messages”). This strongly suggests that the higher pro-
portion of misreporting observed under Majority negatively impacts the committee’s ability to
efficiently aggregate the information of its members.

Table 3: Probit estimations to explain individual votes/opinions for B

(1) (2) (3)
Vote/Opinion B Low High Joint

Own signal B 0.299
(0.0246)

∗∗∗ 0.282
(0.0174)

∗∗∗ 0.291
(0.0148)

∗∗∗

Number of other’s messages B 0.361
(0.0128)

∗∗∗ 0.298
(0.0112)

∗∗∗ 0.328
(0.00910)

∗∗∗

Majority 0.0884
(0.0262)

∗∗ 0.0624
(0.0252)

∗ 0.0732
(0.0185)

∗∗∗

Majority × own signal −0.0121
(0.0373)

0.00908
(0.0361)

−0.00168
(0.0256)

Majority × other’s messages −0.138
(0.0255)

∗∗∗ −0.109
(0.0218)

∗∗∗ −0.121
(0.0171)

∗∗∗

High −0.0689
(0.0171)

∗∗∗

Constant −0.163
(0.0109)

∗∗∗ −0.171
(0.00893)

∗∗∗ −0.132
(0.0107)

∗∗∗

N 4650 4650 9300
Subject-level clustered standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

This direct comparison between the decision rules is suggestive of the predicted result.
However, we can make the analysis more precise by controlling for differences in expected
payoffs from voting B under the two decision rules. That is, while we see an increased re-
sponsiveness to co-players’ messages under Consensus, the choice environment in the voting
stage is not directly comparable to Majority. Therefore, we supplement the finding of the dis-
crete choice model by investigating the impact of co-player’s messages on the subjects’ implied
beliefs, taking into account the actual differences in expected payoffs.

In line with Question 3, our hypothesis is that subjects’ beliefs are more responsive to co-
players’ messages under Consensus. We test this hypothesis by estimating a simple structural
equation model of the decision making process.12 The equation system directly implements the
strategic game played by the subjects. First, a subject’s belief about the true state ω ∈ {R,B} is

12An arguably simpler approach would be to plainly ask subjects about their beliefs, but in the context of beliefs
underlying strategic decisions, the elicited beliefs have been found to be incompatible with the chosen actions
(Costa-Gomes and Weizsäcker, 2008). Even without such obstacles, robustly incentive-compatible elicitation of
beliefs, prior and after revelation of messages, is not simple either and may distract or appear obtrusive to subjects.
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a function of the own signal s ∈ {R,B} and the opponents’ messages m2,m3 ∈ {R,B},

Pr(ω = R|s,m2,m3) =
1

1+ exp{α1(Is=B−0.5)+α2(Im2=B + Im3=B−1)}
(2)

with belief parameters α1,α2. Here we use the indicators Is=B, Im2=B, Im3=B to indicate whether
the own signal (s) or the opponents’ messages (m2,m3) are equal to B (value 1) or not (value 0).

Second, a subject’s belief about the voting outcome X ∈ {R,B}, conditional on the own vote
v ∈ {R,B} and the number of B messages, is13

Pr(X = R|vi) =
1

1+ exp{β1 · Iv=B +β2|m1+m2+m3}
= 1−Pr(X = B|vi). (3)

Here, β1 captures the weight of the own vote, and β2|· captures the expectation about the op-
ponents’ votes as a function of the message profile. Specifically, β2|· is a vector of four values,
where β2|0 denotes the expectation in the case where there are zero B messages, and β2|1, β2|2,
β2|3 concern the cases of one, two, or three B messages. In conjunction, these two beliefs define
the probability that the voting outcome X is equal to the true state ω,

Pr(X = ω|vi) = Pr(ω = R) ·Pr(X = R |v)+Pr(ω = B) ·Pr(X = B |v).

Finally, using Pc and K to denote the payoff from the voting outcome being correct (X = ω)
and the expressive payoff from voting R, respectively, voting for R has probability

Pr(v = R) =
1

1+ exp{−λ ·Pc · (Pr(X = ω|vi = R)−Pr(X = ω|vi = B))−λ ·K}
,

allowing for logistic errors (with precision parameter λ ≥ 0). Note that this model is fairly
general. Depending on how the belief parameters (α1,α2,β1,β2|·) relate to their empirical
counterparts, the model is compatible with (ir)rational expectations, overshooting in Bayesian
updating, cursed beliefs and level-k beliefs. The empirical counterparts (α̂1, α̂2, β̂1, β̂2|·) can be
estimated simply by logit regressions. The rational signal and message weights α̂1 and α̂2 are
estimated by regressing the true state of the world ω on the signal and messages, using Eq. (2),
and the rational outcome weights β̂1 and β̂2|· are estimated by regressing the probability that
the correct decision is made (X = ω) on the own vote and the message profile, using Eq. (3).

We control for expected payoffs as observed in the experiment, while still allowing for two
forms of behavioral biases, by requiring (1) the belief weights α1,α2 to be jointly proportional
to their rational expectation counterparts, which allows for overshooting (base rate fallacy) or
conservative belief formation as observed in many experiments, and (2) the vote weights β2|· to
be jointly proportional to their empirical counterparts, which allows for over- or underestimat-

13Slightly abusing notation, we use m1 +m2 +m3 as shortcut for Im1=B + Im2=B + Im3=B.
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ing the predictability of the co-players’ votes. In the extreme case, β2|· = 0, subjects believe
their co-players are perfectly unpredictable (level-1, Stahl and Wilson, 1995). If 0 < β2|· < β̂2|·,
subjects underestimate the predictability of others as observed by Weizsäcker (2003), Goeree
and Holt (2004) and Eyster and Rabin (2005), and if β2|· = β̂2|·, subjects hold rational expec-
tations of the mapping from their co-players’ messages to votes. We report on two robustness
checks invoking rational expectations in either dimension below, but the results are very robust
in general.

We find that subjects overshoot in belief formation, given signals and messages, and there-
fore hold rather strong beliefs. To see this effect as clearly as possible, it is best to look at cases
where the co-players’ messages contradict the own signal. That is, we look at beliefs about
the true state ω after a private B signal and two R messages of co-players, and after a private
R signal and two B messages of co-players. Given the above notation, we hypothesize that
beliefs react more strongly to the co-players’ messages under Consensus, since messages are
more truthful in this case; i.e.,

PrMaj(ω = R|s = B,m2 = m3 = R)< PrUna(ω = R|s = B,m2 = m3 = R),

PrMaj(ω = R|s = R,m2 = m3 = B)> PrUna(ω = R|s = R,m2 = m3 = B).

Based on the estimates of the structural equation models, namely α1,α2 in conjunction with Eq.
(2), these beliefs can be computed straightforwardly. Since the beliefs are based on estimates
of α1,α2, we bootstrap their distributions to test our hypotheses (resampling at the subject
level to account for the panel character of the data, stratifying to acknowledge the treatment
structure). Parameters are estimated by maximum likelihood14 and both the standard errors of
the parameters as well as the p-values of the null hypotheses are also bootstrapped.

The results are reported in Table 4. First, looking at the empirically true probabilities, we
can see that in all cases, subjects should tend to follow the opponents’ messages when both
are the same despite contradicting the own signal. For example, in the second halves of the
sessions, after an R signal and two B messages from the opponents, the empirical probabilities
that the state is R are 43.5% and 37% under Majority and Consensus, respectively. This shows
that messages should be given weight—and more so under Consensus treatments than under
Majority, as the empirical probabilities deviate relatively more from 50-50 under Consensus.
The remaining columns of Table 4 show that, in all cases, subjects’ beliefs indeed deviate
more from 50-50, in the direction of the messages, in consensus treatments than in majority
treatments. The differences are significant, obtain robustly in both the first and the second
halves of the sessions, and the robustness checks assuming rational expectations forming either
state or outcome beliefs confirm the result. Based on this, we conclude that subjects anticipate

14To maximize the likelihood, we first use the gradient-free NEWUOA approach (Powell, 2006), which is compara-
bly robust (Rios and Sahinidis, 2013), and secondly a Newton-Raphson algorithm to ensure convergence.
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Table 4: Structural equation analysis of beliefs (ω = Red) as function of signals and messages

Empirical Baseline Rational 1 Rational 2

First halves of sessions
Beliefs after A signal and two B messages from others
PrMaj(ω = R|s = R,m2 = m3 = B) 0.476

(0.033)
0.407
(0.011)

0.478
(0)

0.394
(0.012)

PrUna(ω = R|s = R,m2 = m3 = B) 0.452
(0.031)

0.328−−
(0.018)

0.461−−
(0)

0.361−
(0.011)

Beliefs after B signal and zero B messages from others
PrMaj(ω = R|s = B,m2 = m3 = R) 0.505

(0.03)
0.593
(0.011)

0.522
(0)

0.606
(0.012)

PrUna(ω = R|s = B,m2 = m3 = R) 0.559
(0.029)

0.672++

(0.018)
0.539++

(0)
0.639+
(0.011)

Log-Likelihood −2021.5 −2280.2 −2312.4

Robustness checks
Rational state beliefs
Rational voting beliefs

Second halves of sessions
Beliefs after A signal and two B messages from others
PrMaj(ω = R|s = R,m2 = m3 = B) 0.435

(0.029)
0.397
(0.012)

0.465
(0)

0.378
(0.013)

PrUna(ω = R|s = R,m2 = m3 = B) 0.37
(0.035)

0.321−−
(0.016)

0.422−−
(0)

0.336−−
(0.009)

Beliefs after B signal and zero B messages from others
PrMaj(ω = R|s = B,m2 = m3 = R) 0.527

(0.031)
0.603
(0.012)

0.535
(0)

0.622
(0.013)

PrUna(ω = R|s = B,m2 = m3 = R) 0.551
(0.027)

0.679++

(0.016)
0.578++

(0)
0.664++

(0.009)

Log-Likelihood −1850.2 −2019.6 −2075.5

Robustness checks
Rational state beliefs
Rational voting beliefs

Note: In the baseline model we allow for mistakes in Bayesian updating when forming state beliefs and voting
beliefs. That is, the respective belief parameters (α1,α2) and β2|· are allowed to be arbitrarily scaled vectors of
their rational expectation counterparts (α̂1, α̂2) and β̂2|· as estimated from logistic regressions. The robustness
checks enforce rational expectations by equating the respective belief parameters with their rational expectation
counterparts. The respective likelihoods are significantly worse than that of the baseline model (showing that
subjects do actually not hold rational expectations), but the main result that implicit beliefs differ between majority
and consensus treatments is robust nonetheless. As before, significance of differences between majority and
consensus estimates is indicated by plus and minus signs (++/−− at p < .05 and +/− at p < .1 using bootstrapped
p-values), next to the consensus treatment estimates. All standard errors are bootstrapped.

25



and account for the higher probability of truthful messages under Consensus.

Result 3. Subjects’ beliefs react more strongly to co-players’ messages under Consensus, show-

ing that they respond to the increased truthfulness of messages.

5.4 Do subjects strategically misreport to free-ride?

Lastly, we explore the theoretical prediction that subjects will best-respond to truth-telling by
misreporting and free-riding. For suggestive evidence regarding free-riding, it is instructive to
consider the average voting strategy of subjects the case of three messages for B (M# = 3). In
this case, for the Majority/High expressive payoff treatment where misreporting is the most
common, subjects who misreport their signal vote for B just 16 percent of the time, relative
to 69 percent for subjects who sent a truthful message of B (this is also much lower to the
analogous rate under Consensus/High, which is 54 percent; see Table 5 in the appendix). This
low rate of voting for B is consistent with the free-riding strategy of misreporting B and then
voting for R.

To identify whether Majority causes subjects to play the “free-riding” strategy, however, we
need to link messages and voting at the individual level. Moreover, free-riding is not the only
reason to misreport signals. Subjects may hold different beliefs as to which option maximizes
expected payoffs conditional on a given set of signals. Accordingly, a subject with a bias for B,
for example, may choose to misreport their signal to increase the probability that the committee
chooses B given two signals for B (persuasive misreporting).

Overall, it is easy to think of at least five classes of individual strategies, summarized in
Table 5a. In addition to the three strategic types outlined above, “strategic Red/Blue” as per-
suasive misreporting and “free-riding” as strategic misreporting, we also allow for subjects
who are honest in the messaging stage and believe that other agents message honestly (“hon-
est/naive”), and subjects with noisy behavior as a residual family to collect the players that
do not fit into either of the other four classes (“noisy”). Such apparently noisy behavior may
result from either misunderstanding the game or, more likely, from playing inconsistently over
the course of the session. The inclusion of the noisy type thus serves as a robustness check of
both the statistical classification and of the adequacy of the experimental set-up more generally.
Our objective will be to evaluate our prediction that subjects more frequently use honest/naive
strategies in consensus treatments and free-riding strategies in majority treatments.

The voting strategies we assign to the honest/naive type follow from the theoretical pre-
dictions of Lemma 2. Specifically, the honest type will vote for R given two or more mes-
sages/signals for R. With two messages/signals for B, the honest type will vote for B with an
intermediate probability, and with three messages/signals for B they will vote for B with a high
probability. The messaging and voting strategies of the strategic types are then assigned rel-
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ative to the honest type: The strategic Red type is more likely to message and vote R, while
the strategic Blue type is more likely to message and vote B. The free-rider type, on the other
hand, is more likely to message B and vote R.15 The detailed definitions are provided in Table
5a. We allow for {πLie,πLow,πMedium,πHigh} to be free parameters in the estimation to avoid an
inadequate specification.

A statistically efficient approach to determine the latent weights of the strategy classes is
finite mixture modeling (MacLachlan and Peel, 2000). Such mixture models have been com-
monly used in behavioral analyses since Stahl and Wilson (1994, 1995), and have more recently
been used, for example, to study individual heterogeneity in dictator games (Cappelen et al.,
2007) and individual behavior in repeated games (Dal Bó and Fréchette, 2011; Fudenberg et al.,
2012; Breitmoser, 2015). Finite mixture modeling is a general approach allowing for proba-
bilistic assignment of subjects to strategy classes, which resolves a number of concerns with
deterministic assignments,16 but is otherwise comparable to cluster analyses.17

We assume that ex-ante, a subject plays strategy k ∈ K with probability ρk, and that each
subject sticks with the chosen strategy throughout the analyzed interactions. The statistical
model is fully described by the ex-ante strategy weights ρ = (ρ1,ρ2, . . .) and the strategy pa-
rameters π = (πLie,πLow,πMed,πHigh) discussed above. Formally, given a subject pool S# and
our set of observations O = {os}s∈S, let P(os|π,k) denote the probability of the choices os made
by subject s ∈ S assuming s plays strategy of type k with parameters π. Then, the likelihood
function

LL(ρ,π |O) = ∑
s∈S

log ∑
k∈K

ρk ·P(os|π,k)

is maximized over (ρ,π) to estimate the ex-ante strategy weights ρ we are interested in. The
strategy parameters π are not of direct interest for our research hypothesis, but allow us to test
whether the estimates align with our ex-ante predictions, which also serves as a robustness
check. Given the observed choices O, we can determine the posterior class assigment of each
subject s ∈ S simply by applying Bayes Rule.

This approach does not require us to commit to distance functions and expresses the de-
gree of (un)certainty as a function of behavior by implying probabilistic posterior beliefs. As
usual, we maximize the likelihood by the expectation-maximization (EM) algorithm (see e.g.

15While the relative comparisons follow from the theory, the exact division into the strategy classes was calibrated
using the aggregate voting strategies reported in Table 6 in the Appendix.

16Deterministic approaches that assign each subject to a strategy class based on some distance measure are sensitive
to the distant measure chosen, are ambivalent near the boundaries of each class, and do not reflect the degree of
(un)certainty about a subject’s classification. Furthermore, deterministic classification requires the distances to be
reliably measured. In our case, however, they would be based on only few observations per information set.

17In most behavioral cluster analyses, each data point (subject) is represented by vectors with few elements. In such
cases, we can plot the individual estimates and “mark” the cluster areas. This approach is inadequate here, as
each subject is characterized by choices in many different information sets (namely, fourteen) with comparably
few observations in each case. Loosely speaking, the finite mixture analysis determines a common denominator
across information sets with regards to strategies.
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Table 5: Do subjects play more honest strategies in consensus voting? Results of the mixture analysis

(a) Definition of the classes of strategies

Messages Voting
µ(A) µ(B) π(A,A,0) π(B,A,0) π(A,A,1) π(A,B,1) π(B,B,1) π(B,A,1) π(A,A,2) π(A,B,2) π(B,B,2) π(B,A,2) π(A,B,3) π(B,B,3)

Noise .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
Honest 1 0 1 1 1 1 1 1 πMed 1 πMed πLow πMed πLow
StratRed 1 πLie 1 1 1 1 1 1 1 1 1 πMed 1 πMed
StratBlue 1−πLie 0 1 1 1 1 1 πMed πMed 1 πMed πLow πMed πLow
Freeride 1−πLie 0 1 1 1 1 1 πHigh πHigh 1 πHigh πMed πHigh πMed

Note: µ(s) is the probability of sending message A given the signal s ∈ {A,B}. π(s,m,M) is the probability of voting A as a function of one’s signal s, message m, and the number M# of B messages overall (i.e. in
aggregate over all players). The parameters (πLie,πLow,πMed,πHigh) allow adaptation to subjects’ behavior, with the theoretical ex-ante hypothesis πLow < πMed < πHigh.

(b) Strategy weights and parameters across treatments (bootstrapped standard errors in parentheses)

Strategy weights in population Strategy parameters
Noise Honest StratRed StratBlue FreeRide ε πLie πHigh πMed πLow ICL-BIC

All games per session
Majority 35 15 0.12

(0.05)
0.44
(0.11)

0.19
(0.07)

0
(0.01)

0.26
(0.09)

0.04
(0)

0.42
(0.11)

0.73
(0.06)

0.35
(0.04)

0.08
(0.03)

6368.79

Majority 40 10 0.07
(0.04)

0.45
(0.12)

0.25
(0.08)

0.03
(0.03)

0.2
(0.07)

Unanimity 35 15 0.07
(0.04)

0.78
(0.06)

++ 0.11
(0.05)

0.04
(0.03)

0
(0)

−−

Unanimity 40 10 0.04
(0.03)

0.75
(0.07)

++ 0.18
(0.06)

0.02
(0.03)

0
(0.02)

−−

Majority 0.09
(0.03)

0.44
(0.1)

0.22
(0.06)

0.01
(0.02)

0.23
(0.06)

0.04
(0)

0.41
(0.11)

0.72
(0.05)

0.35
(0.04)

0.08
(0.03)

6345.24

Unanimity 0.06
(0.03)

0.77
(0.05)

++ 0.15
(0.04)

0.03
(0.02)

0
(0.01)

−−

Robustness check 1: 1st halves per session
Majority 0.13

(0.04)
0.59
(0.11)

0.12
(0.06)

0.05
(0.04)

0.12
(0.08)

0.04
(0)

0.61
(0.13)

0.79
(0.13)

0.36
(0.04)

0.14
(0.05)

3304.43

Unanimity 0.1
(0.03)

0.78
(0.04)

++ 0.12
(0.03)

0
(0.01)

0
(0)

−−

Robustness check 2: 2nd halves per session
Majority 0.1

(0.03)
0.48
(0.15)

0.19
(0.06)

0.01
(0.02)

0.22
(0.11)

0.03
(0.01)

0.41
(0.2)

0.86
(0.06)

0.38
(0.09)

0.06
(0.05)

3009.04

Unanimity 0.07
(0.03)

0.71
(0.08)

++ 0.17
(0.06)

0.04
(0.02)

0
(0.02)

−−

Note: This table provides the statistical support for our observation that subjects use more honest/naive strategies in consensus treatments and more freeriding strategies in majority treatments. The table reports
the weights of the five predicted strategies in the population, the estimated strategy parameters (πLie,πLow,πMed,πHigh), the bootstrapped standard errors, and the goodness-of-fit measures ICL-BIC. The upper panel
provides the estimates for the entire sessions, the lower panel provides robustness checks focusing on either first halves and second halves of the sessions. In the upper panel, we report estimates distinguishing either
all treatments or only majority and consensus treatments. Plus and minus signs indicate significant differences (++ at p < .05 and + at p < .1 using bootstrapped p-values) of the strategy weights in the consensus
treatments compared to weights in the respective majority treatments. The ICL-BICs show that the latter more parsimonious approach is statistically more adequate, but the main results are robust in either case. They
also hold robustly if we focus on either the first or the second halves of the sessions, as shown in the lower panel.
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Arcidiacono and Jones, 2003), and in the maximization step we again first use the gradient-free
NEWUOA approach and secondly a Newton-Raphson algorithm to ensure convergence. Model
adequacy is measured using ICL-BIC (Biernacki et al., 2000), which penalizes both superfluous
model components and excessive parametrization. ICL-BIC has been shown to enable reliable
estimation of the number of components (in our case, strategy classes) in the population (Fon-
seca and Cardoso, 2007). Finally, standard errors are bootstrapped by replacement at the subject
level to account for the panel character of the data, using stratified resampling acknowledging
the treatment structure.

Table 5b presents the estimated strategy weights and strategy parameters, alongside the
bootstrapped standard errors and statistical tests of our hypothesis. The main results are that
44 and 45% of the subjects use honest/naive strategies in the Majority treatments, compared to
78 and 75% in the Consensus treatments, and that 26 and 20% of the subjects free-ride in the
Majority treatments but no subjects free-ride in the Consensus treatments.

The respective differences between Majority and Consensus treatments are all highly signif-
icant and as hypothesized. The result is robust to pooling the Majority treatments and Consen-
sus treatments, respectively, and robust to focusing on either the first halves or second halves of
each session, as shown in the lower panel of Table 5b. Further, the strategic parameters satisfy
πLow < πMed < πHigh, showing that the subjects use the strategies as predicted, and the share of
unclassified (“noisy”) players is around or below 10%, showing that subjects use their respec-
tive strategies consistently throughout the session. Finally, in our robustness checks reported in
Table 8 (see Appendix B), we find that none of the strategy classes are superfluous, although
some weights are small, in the sense that eliminating either class increases the ICL-BIC mea-
sure of model adequacy. With these robustness checks in mind, we conclude as follows.

Result 4. Subjects use honest/naive strategies more frequently in Consensus and strategically

misreport to free-ride in Majority.

5.5 Discussion

Our experimental results show that expressive payoffs lead to strategic communication and in-
efficient information aggregation when committees take decisions via Majority rule. Addition-
ally, relative to Consensus, we demonstrate that subjects are less responsive to other subjects’
messages under Majority, both in terms of the voting decision and their implicit ex-post beliefs
regarding the state of the world. We find evidence that this decrease in the effectiveness of
communication is due to the fact that, under Majority, a subset of subjects adopt a “free-riding”
strategy, falsely reporting the non-expressive option to encourage other subject to vote for this
option, while personally voting for the expressive option.

It is important to note, however, that both a coordination and a free-rider problem exist un-
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der Majority even with truthful communication—the coordination problem may contribute to
the decrease in information aggregation relative to Consensus. This raises the question of how
our results might change in an environment with a richer communication set. For example, Go-
eree and Yariv (2011) show that given access to free-form communication, the most prevalent
(endogenous) procedure by which subjects take decisions is to (1) share their private signals,
(2) coordinate on a committee outcome, and (3) unanimously vote for the outcome decided
on in (2). In contrast, we constrain subjects to a binary message, effectively ruling out the
coordination stage (2).

Generally, communication has been shown to be an effective tool for coordination (see Led-
yard, 1995 for an overview), and one might expect that a richer message space may improve
the committee’s ability to select the committee-optimal option. However, in contrast to the set-
ting analyzed in Goeree and Yariv (2011), a unanimous vote for the non-expressive option is
not an equilibrium with expressive payoffs, since subjects can deviate to the expressive option
while leaving the committee decision unchanged. Therefore, the impact of a richer commu-
nication space on information aggregation is ambiguous in our setting: On one hand, a richer
communication space may aid in coordinating on choosing the non-expressive option when the
profile of messages indicates that this option is optimal. On the other hand, greater coordina-
tion increases the incentive to behave strategically: if the probability that other subjects vote
for B given three messages of B increases, then the incentive to deviate from truthful commu-
nication to the free-riding strategy increases (moreover, our experiment shows that the severity
of free-riding increases with incentives). That is, with increased coordination, a subject with
signal R who deviates from an honest strategy to free-ride (message B and vote R) faces a
higher probability that the committee chooses B given only two signals for B.18 These con-
flicting mechanisms highlight richer communication in a setting with expressive payoffs as a
promising area for further research.

6 Conclusion

In this paper, we generalize the standard model of information aggregation through voting to
account for the possibility that committee members receive vote-contingent payoffs. Using
a theoretical model, we show that when the committee aggregates votes via a majority rule,
truthful communication and informative voting is not an equilibrium despite the fact that com-
mittee members have homogeneous preferences over the committee outcome. In contrast, an
equilibrium with truthful communication and committee-optimal voting strategies is an equi-

18Note that a similar concern emerges when considering an increase in the committee’s size: A larger committee
gives access to more signals, potentially increasing the accuracy of the committee’s decision. However, given
voting B is a public good, consistent with the evidence on free-riding and population size (see Isaac and Walker,
1988), a larger committee may induce more subjects to adopt a free-riding strategy.
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librium under a two-sided unanimity (consensus) rule as long as committee members have
homogeneous preferences over the committee outcome conditional upon the aggregate profile
of signals. This finding contrasts with previous results in the literature, which have suggested
that unanimity is a uniquely bad decision rule for aggregating information, and suggests a novel
rationale for the use of a consensus rule: in settings with vote-contingent payoffs, efficiency can
only be assured under a decision rule that uniformly enforces responsibility for the committee
decision across all committee members.

We test the predictions of the model using laboratory experiments. Our experimental re-
sults broadly support for the theoretical predictions. We find that, relative to a consensus rule,
subjects are more likely to falsely report their signal and committee decisions are less likely
to aggregate private information under majority rule. Moreover, we identify that this decrease
in information aggregation can be attributed to subjects adopting a “free-rider” strategy under
majority, which leads to less effective communication and sub-optimal committee decisions.
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A Proofs for Section 3

Proof of Lemma 1: Given that τ j(, , ,) = 1 for j 6= i, the committee outcome is independent of vi,
which implies that E(pi|vi = R,M#,mi,si) = E(pi|vi = B,M#,mi,si)+K. Therefore, τi(, , ,) = 1
is a best response. �

Proof of Lemma 2: First, note that piv(x) is equal to zero for x = 0,1, and is maximized at
x = 0.5. Moreover, piv(x) is strictly increasing over the domain [0,0.5) and strictly decreasing
over (0.5,1]. Therefore, if M# = S# < Spiv, then the following expression holds for all x∈ [0,1]:

piv(x)[Pr(ω = B|S#)−Pr(ω = R|S#)]≤ piv(0.5)[Pr(ω = B|S#)−Pr(ω = R|S#)]< K.

This implies that E(pi|vi = R,M#,mi,si)> E(pi|vi = B,M#,mi,si) for any τ(M#) and that there
is no equilibrium in which τ(, , ,)< 1. Second, if M# > Spiv, then there exists a unique τ∗(M#)∈
[0,0.5] such that the equilibrium condition, piv(τ∗(M#))[Pr(ω = B|S#)−Pr(ω = R|S#)] = K,
holds. By the symmetry of piv(x) about 0.5, piv(1− τ∗(M#))[Pr(ω = B|S#)−Pr(ω = R|S#)] =
K, and 1− τ∗(M#) is the unique equilibrium in [0.5,1]. �

Proof of Lemma 3: For M# < S̄, oi = B is a strictly dominated strategy since Pr(ω = B|S#)−
Pr(ω = R|S#) < K. For M# > S̄, however, oi = B is a best response to any τ < 1 since Pr(ω =
B|S#)−Pr(ω = R|S#)> K. �

Proof of Lemma 4: Given τ(M#) = 1, the committee outcome is independent of mi, which
implies that any messaging strategy is an equilibrium. �

Proof of Proposition 1: We prove the result by contradiction. Assume an equilibrium exists
with truthful messaging in the deliberation stage, and that all agents play strategy τ∗(M#) in the
voting stage. Note that the formulation of the proposition implies that given K, τ∗(M#)> 0 for
M# = N (that is, Spiv < N, otherwise the only equilibrium is the babbling equilibrium).

The proof stems from the following two observations: (1) since K > K′ implies that Spiv >
(N+1)/2, when M# = (N+1)/2, the unique equilibrium in the voting subgame is for all agents
to vote for R; (2) as shown by equation 1, τ∗(M#) is increasing in M#.

Now, consider the expected payoff of an agent, i′, who has a signal of R, but who deviates to
mi′ = B. Also, assume that i′ plays strategy τ∗(M−1) – that is, conditional on S#, i′ continues
to play the same strategy as under truthful communication. This implies that i′’s expected
expressive payoff is unchanged conditional on S#, and i′’s expected payoffs change only due to
the change in the probability that X = B given S#. First, note that by (1), τ∗(M#) = 0 for M# ≤
(N +1)/2, Pr(X = B|S# < N/2,mi′ = B) = 0. Second, by (2), Pr(X = B|S# > N/2,mi′ = B)≥
Pr(X =B|S# >N/2,mi′ =R), and Pr(X =B|S# >N/2,mi′ =B)> Pr(X =B|S# >N/2,mi′ =R)
for S# > Spiv−1.

Therefore, since i′’s expected utility is strictly higher given an increase in Pr(X = B|S# >
N/2), setting mi′ = B is a best response. (Note, however, that the strategy (σ(R) = σ(B) =
0,τ∗(M#−1)) is not a best reply – given that other agents play the mixed strategy τ∗(S#−1), i′

has a best reply of voting R for all M# (σ(R) = σ(B) = 0,τ(M#) = 1)). �

Proof of Proposition 2: Lemma 3 shows that given truthful messaging, it is an equilibrium
for agents to unanimously submit an opinion for B in the deliberation stage if and only if
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selecting and voting for option B is optimal given the expressive cost. Next, we show that
truthful messaging is an equilibrium given this voting strategy.

Consider the expected payoff of an agent, i′, who has a signal of R, but who deviates to
mi′ = B. Given M# < S̄, all agents i 6= i′ will vote vi = R and i′ has a best reply to also vote for
R, which implies that the outcome is unchanged relative to truthful reporting. Given M# ≥ S̄,
all agents i 6= i′ will vote vi = B, which implies that i′’s opinion is pivotal. This implies that for
M# > S̄, i′ has a best reply of voting for B. Lastly, for M# = S̄, i′ has a best reply to vote for R,
since S# = M#−1 < S̄.

Taken together, this shows that the committee outcome, X , and i′’s behavior in the delibera-
tion stage, conditional on S#, is unchanged by i′’s deviation in the messaging stage. Therefore,
i′’s expected payoffs are not changed by the deviation to mi′ = B. Similarly, i′ with si′ = B
is made strictly worse off by deviating from truthful messaging, since the committee outcome
will select R when S# = dS̄e. This shows that truthful messaging and optimal information ag-
gregation in the deliberation stage is an equilibrium under Consensus for all parameter values.
�

Sincere Voting Before comparing information aggregation under Majority and Consensus,
we first consider whether there are equilibria under Majority that optimally aggregates informa-
tion without truthful messaging. Note that under Consensus, truthful messaging is a necessary
condition for optimal information aggregation since, to achieve efficiency, each agent needs to
condition their vote on the aggregate signal profile. Under Majority, however, optimal infor-
mation aggregation can be achieve without communication as long as each agent votes their
signal (vi = si). Therefore, we consider conditions under which vi = si is an equilibrium voting
strategy.

First, we define K
′′

as follows:

K
′′
= Pr(S# = 2|si = B)[Pr(ω = B|S# = 2)−Pr(ω = R|S# = 2)].

The following lemma characterizes when perfectly informative voting is an equilibrium under
Majority, given uninformative messaging.

Lemma 5 (Informative Voting: Majority). Babbling at the message stage, e.g. σ(si) = 1 for
all i, and informative voting, vi = si, at the voting stage is an equilibrium strategy if and only if
K ≤ K

′′
.

Proof: Assume i receives a blue signal, si = B. Since messaging is uninformative and since,
given a strategy of vi = si, i’s vote is pivotal only when S = 2, i’s expected relative payoff of
voting B is equal to:

Pr(S# = 2|si = B)[Pr(ω = B|S# = 2)−Pr(ω = R|S# = 2)]−K,

which is positive iff K < K
′′
. �

Similar to Proposition 1, Lemma 5 shows that perfectly informative voting is only an equi-
librium when K is small. Also, note that there are no equilibria with partially informative
messaging and perfectly informative voting for K > K

′′
: if messaging is partially informative,
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then there exists some M# such that Pr(S# = 2|si = B,M)≤ Pr(S# = 2|si = B), in which case it
is not an equilibrium for i to vote B for all M#.

Proof of Theorem 1: First, note that Consensus limits the outcome set to points such that
vi = X . Therefore, given utility functions of the form u : {X ,vi,ω} → R, agents have homoge-
nous payoffs at all terminal nodes—this implies that there exists an equilibrium with truthful
communication and coordination on the optimal outcome.

For clarity, however, we prove the result by contradiction. Assume there exists a deviation
from the symmetric strategy mi = si, and oi = R if m ∈ SR and oi = B if m ∈ SB that results in
a strictly positive increase in i’s expected payoffs.

Given that Consensus limits the outcome set to points such that vi = X , any deviation that
changes i’s expected payoffs requires that the expected committee outcome changes as a func-
tion of the underlying vector of signals for at least one profile of signals, s′ ∈ S. This implies
that any profitable deviation results in either (1) X =B with positive probability for some s∈ SR,
(2) X = R with positive probability for some s ∈ SB, or both. However, by definition, either (1)
or (2) imply a strict decease in i’s expected payoffs, which is a contradiction. �

Proof of Corollary 2: The result follows as a corollary to Lemma 2. Given truthful messaging,
all agents are at the same information set at the voting stage. However, it is not an equilibrium
for all agents to set τ(X ′,m = s′) = 1, since one agent deviating to τ(X ′,m = s′) = 0 does not
change the committee outcome and E(u(X ′,vi 6= X ′,ω)|s′)> E(u(X ′,vi = X ′,ω)|s′). �

B Additional Material and Robustness Analyses

Additional graphs and tables Figure 3 provides a composite screen-shot that displays all
queries and all pieces of information that were available to subjects at some point during the
experiment. Table 6 describes the relative frequency and number of votes for B across all
information sets in all four treatments.

Learning In this subsection we show that the qualitative results presented in above are robust
to excluding the first 25 rounds of the experiment (learning). Figures 4 and 5 replicate the
Figures refered to when discussing Questions 1 and 2 for the restricted data set comprising
only the second halves of all sessions. The patterns are virtually indistinguishable. Table 7
replicates the probit regression refered to in the discussion of Question 3, including a dummy
“Late” distinguishing whether subjects are in the first or second halves of their sessions. With
only two exceptions, “Late” again is insignificant. The remaining statistical results relied upon
in the discussion of Questions 3 and 4 in the main text distinguish first and second halves of
sessions explicitly, thus establishing robustness to learning explicitly.

Multiple voting rounds under Consensus As we discuss in the main text, there is an asym-
metry in our operationalization of Majority and Consensus. In particular, to replicate a con-
sensus decision rule, we allowed for up to three rounds of voting in the Consensus treatment.
While we do not have data on subjects’ decisions if the status quo had been implemented fol-
lowing a non-unanimous first round of voting, we can consider this counterfactual by looking
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at the first-round votes. Figure 6 shows the committee outcome that would occur given the first-
round votes and a counterfactual first-round Consensus rule (left graph), and a counterfactual
first-round Majority rule (right graph).

Focusing on the case of S = 3, we see that information aggregation remains higher under
Consensus under both counterfactual assumptions. Moreover, previous research has shown
that under one-sided unanimity, subjects are less likely to exercise their veto and vote for the
status quo (again, see Guarnaschelli et al., 2000 and Goeree and Yariv, 2011). If one-sided
unanimity were to influence subject’s behavior is a similar fashion in our experiment, then this
would imply that the counterfactual first-round Consensus rule results are a lower bound for
information aggregation (for the case of S = 3). Together, these results suggest that the finding
of higher information aggregation under Consensus is not due to the multiple rounds of voting.

Figure 7 also includes the results for both counterfactual treatments for the second half of
the experiment. Interestingly, the difference between the two counterfactual treatments remains
high, suggesting that subject do not converge to a first-round consensus.

Finite mixture model: robustness checks Table 8 shows that eliminating components (strat-
egy classes) from the analysis leads to worse values of the information criterion ICL-BIC, sug-
gesting that no component should be eliminated.
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Table 6: Proportion and number of votes for B

Treatment High Low
———————— ————————

M si/mi Majority Unanimity Majority Unanimity
0 red/red 0.02 (198) 0.00 (399) 0.02 (304) 0.00 (404)
0 blue/red 0.08 (24) 0.00 (63) 0.23 (53) 0.00 (43)

1 red/red 0.05 (464) 0.01 (487) 0.07 (523) 0.02 (511)
1 red/blue 0.09 (46) 0.00 (17) 0.14 (36) 0.12 (17)
1 blue/blue 0.08 (218) 0.02 (258) 0.08 (276) 0.01 (276)
1 blue/red 0.22 (64) 0.06 (63) 0.18 (101) 0.03 (75)

2 red/red 0.25 (228) 0.35 (240) 0.36 (237) 0.62 (192)
2 red/blue 0.06 (110) 0.19 (42) 0.32 (57) 0.47 (19)
2 blue/blue 0.40 (456) 0.41 (516) 0.56 (507) 0.63 (435)
2 blue/red 0.31 (55) 0.62 (39) 0.49 (45) 0.66 (35)

3 red/blue 0.16 (85) 0.54 (13) 0.45 (20) 0.83 (12)
3 blue/blue 0.69 (302) 0.93 (263) 0.69 (241) 0.96 (231)

Proportion of votes for B as a function of the aggregate message profile (M) and
the individual signal/message (number of observations are reported in parenthe-
ses). We use first-round votes for the unanimity treatments.
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Figure 3: Composite screenshot (translated; the original version is provided in the supplemen-
tary material)

Note: This screenshot simultaneously displays all queries and all pieces of information that were available at some
point during the experiment. All items are in the positions they had been displayed, and they were displayed in
the following order.

1. Show urns and drawn ball (displayed for the entire game)
Shows the two jars (“Blue Urn” and “Red Urn”) and the ball drawn (“Your ball”). These items remain on the screen for the entire
game.

2. After five seconds, query for message (no time limit)
Now the box “Your Message” appears with the two balls underneath to choose from. Subjects submit the message by clicking “OK”,
there is no time limit. Once the message is submitted, the box disappears.

3. When all messages are submitted, they are displayed (displayed for the remainder of the game)
Now the box “Messages” on the left appears, displaying the messages of all three subjects. These items remain on the screen for the
rest of the game.

4. After five seconds, query for vote (no time limit)
Now the box “Your Vote” appears with the two options to choose from. Subjects submit their vote by clicking “OK”, there is no time
limit. Once the vote is submitted, the box disappears.

5. When all votes are submitted, they are displayed (displayed for the remainder of the game)
Now the box “Votes” on the left appears, displaying the votes of all three subjects. These items remain on the screen for the rest of the
game (in Majority or in Consensus if decision unanimous or the third vote was taken) or disappear (in Consensus otherwise, where
the voting stage is restarted).

6. After five seconds, the decision taken by the committee (“Majority Decision”), the urn originally chosen by Nature (“Actual Urn”)
and the payoff information is displayed (“Points”). The majority decision and numbers displayed here are entirely artifical. The
information remains on the screen for 10 seconds, after which a new game starts.
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Figure 4: Truthful reporting for rounds 26−50.
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Figure 5: Information aggregation for rounds 26−50.
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Figure 6: Average levels of outcome Blue, assuming a counterfactual first-round Consensus
rule (left graph) and a counterfactual first-round Majority rule (right graph), as a function of the
aggregate profile of signals.
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Table 7: Probit estimations to explore subject learning

(1) (2) (3)
Vote Blue Low High Joint
Own signal B 1.477∗∗∗ 1.627∗∗∗ 1.544∗∗∗

(0.168) (0.158) (0.111)

Number of other’s messages B 1.692∗∗∗ 1.622∗∗∗ 1.656∗∗∗

(0.136) (0.129) (0.0928)

Majority 1.372∗∗∗ 1.357∗∗∗ 1.329∗∗∗

(0.284) (0.330) (0.209)

Majority*own signal -0.510∗∗ -0.513∗ -0.493∗∗∗

(0.198) (0.216) (0.140)

Majority*other’s messages -0.902∗∗∗ -0.905∗∗∗ -0.890∗∗∗

(0.162) (0.161) (0.112)

Late -0.250 -0.611∗∗ -0.341∗

(0.252) (0.228) (0.166)

Late*own signal 0.180 0.0851 0.105
(0.132) (0.141) (0.0939)

Late*other’s messages 0.215 0.168 0.128
(0.173) (0.144) (0.110)

Late*majority -0.110 0.0482 -0.0738
(0.249) (0.266) (0.175)

Late*majority*other’s messages -0.147 -0.00879 -0.0322
(0.191) (0.179) (0.127)

High -0.322∗∗∗

(0.0833)

Constant -3.264∗∗∗ -3.447∗∗∗ -3.186∗∗∗

(0.240) (0.258) (0.168)
N 4650 4650 9300
Subject-level clustered standard errors in parentheses, “late” indicates round > 25.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 7: Average levels of outcome Blue, assuming a counterfactual first-round Consensus
rule (left graph) and a counterfactual first-round Majority rule (right graph), for rounds 26−50.
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Table 8: Robustness check on estimated strategy weights, testing whether all strategy classes
have significant weight. The test based on ICL-BIC (less is better), and we find that no strategy
class may be eliminated without increasing ICL-BIC. Format is equal to Table 5b

Strategy weights in population Strategy parameters
Noise Honest StratRed StratBlue FreeRide ε πLie πHigh πMed πLow ICL-BIC

All games per session
Majority 35 15 0.12 0.44 0.19 0 0.26 0.04 0.42 0.73 0.35 0.08 6368.79
Majority 40 10 0.07 0.45 0.25 0.03 0.2
Unanimity 35 15 0.07 0.78 0.11 0.04 0
Unanimity 40 10 0.04 0.75 0.18 0.02 0

Majority 35 15 0.12 0.2 0.18 0.51 0.05 0.14 0.62 0.23 0.04 6746.9
Majority 40 10 0.11 0.25 0.22 0.42
Unanimity 35 15 0.1 0.13 0.7 0.06
Unanimity 40 10 0.06 0.21 0.53 0.19

Majority 35 15 0.16 0.21 0.05 0.58 0.05 0.13 0.75 0.25 0.05 6770.39
Majority 40 10 0.18 0.25 0.05 0.53
Unanimity 35 15 0.13 0.8 0 0.07
Unanimity 40 10 0.09 0.52 0.11 0.27

Majority 35 15 0.12 0.44 0.19 0.26 0.04 0.42 0.72 0.35 0.08 6368.55
Majority 40 10 0.07 0.48 0.25 0.21
Unanimity 35 15 0.11 0.78 0.11 0
Unanimity 40 10 0.04 0.78 0.18 0

Majority 35 15 0.13 0.57 0.13 0.16 0.04 0.54 0.5 0.44 0.17 6468.46
Majority 40 10 0.07 0.62 0.11 0.2
Unanimity 35 15 0.07 0.81 0.08 0.04
Unanimity 40 10 0.04 0.79 0.15 0.02

Majority 35 15 0.13 0.22 0.64 0.05 0.13 0.35 0.19 0.25 6948.35
Majority 40 10 0.11 0.32 0.57
Unanimity 35 15 0.1 0.13 0.76
Unanimity 40 10 0.06 0.27 0.67

Majority 35 15 0.16 0.25 0.59 0.05 0.13 0.74 0.25 0.05 6766.47
Majority 40 10 0.18 0.3 0.53
Unanimity 35 15 0.13 0.8 0.07
Unanimity 40 10 0.09 0.64 0.27

Majority 35 15 0.23 0.66 0.11 0.05 0.67 0.68 0.43 0.15 6677.39
Majority 40 10 0.16 0.75 0.09
Unanimity 35 15 0.11 0.82 0.07
Unanimity 40 10 0.04 0.82 0.14

Majority 0.09 0.44 0.22 0.01 0.23 0.04 0.41 0.72 0.35 0.08 6345.24
Unanimity 0.06 0.77 0.15 0.03 0

Majority 0.11 0.23 0.19 0.47 0.05 0.14 0.62 0.22 0.03 6728.42
Unanimity 0.08 0.17 0.61 0.14

Majority 0.17 0.23 0.05 0.55 0.05 0.13 0.75 0.25 0.05 6758.34
Unanimity 0.11 0.66 0.06 0.17

Majority 0.09 0.46 0.22 0.23 0.04 0.42 0.72 0.35 0.08 6349.6
Unanimity 0.08 0.78 0.15 0

Majority 0.1 0.6 0.12 0.18 0.04 0.54 0.5 0.44 0.17 6448.95
Unanimity 0.06 0.8 0.12 0.03

Majority 0.12 0.27 0.61 0.05 0.13 0.35 0.19 0.25 6934.63
Unanimity 0.08 0.2 0.72

Majority 0.17 0.27 0.56 0.05 0.13 0.75 0.25 0.05 6754.68
Unanimity 0.11 0.72 0.17

Majority 0.19 0.71 0.1 0.05 0.67 0.67 0.43 0.15 6663.68
Unanimity 0.08 0.82 0.1
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