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Abstract

The asset ownership structure in financial markets worldwide has been chang-
ing rapidly over the last few decades. Institutional investors, both active and
passive, own a larger fraction of assets and the distribution of the ownership
is more concentrated. We develop a general equilibrium portfolio-choice model
with endogenous information acquisition and market power. We show that,
in the cross section, an increase in active (passive) institutional ownership in-
creases (decreases) price informativeness, and an increase in concentration of
ownership leads to lower informativeness. In contrast to the cross-sectional
results, the policy experiments of changing ownership structure indicate a non-
monotonic relationship between the levels of ownership and price informative-
ness. Further, we show that increasing the passive share of the market prompts
active investors to adopt learning strategies that exacerbate the reduction in ag-
gregate price informativeness. We conclude that any policy targeting ownership
structure should factor in its effects on welfare through price informativeness.
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1 Introduction

In the last few decades, equity ownership of large asset management companies has

drastically increased, as has the concentration of those holdings. From 1980 to 2015,

the average institutional ownership of U.S. stocks increased from 25% to 60%, and

ownership levels among the top-10 largest asset management companies almost dou-

bled, from 18% to 35%. At the same time, the share of funds investing passively has

jumped as well, rising from about 11% before the financial crisis, to about 25% at

the end of 2016.

These striking changes in market structure attracted keen interest from various

market participants, including asset managers, regulators, media, and individual in-

vestors. Some critics point to potential impact of the changes for financial stability;

others emphasize consequences for market prices, and therefore for efficient allocation

of capital in the economy. This paper takes one important step towards understand-

ing these consequences—by examining the implications of various market structures

for price informativeness.

While some theoretical and empirical work examining the effects of market power

on price informativeness exists, we extend this discussion to a micro-founded general

equilibrium framework along three main dimensions: (i) the overall size of institu-

tional investors; (ii) the relative size of institutional investors; and (iii) the relative

ability of investors to collect information. In particular, we highlight the tradeoff

between size (price impact) and information acquisition in financial markets.

Our model features an economy with many assets and many large investors (herein

referred to as oligopolists), who each have the ability to internalize the effect of their

trades on equilibrium prices. The model also features a continuum of smaller, fringe

investors, each with a smaller capacity to process information. All agents can learn

about the future paths of prices, and then oligopolists engage in a Cournot game in the

asset market. Inputs into the model are the size of the agents, based on assets under
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management, and agents’ learning capacities. The presence of large investors is a

novel component of portfolio choice models with endogenous information acquisition.

The combination of endogenous learning and trading in a multi-asset model is a key

deviation from the theoretical literature on market power, where most papers focus

either on exogenous information or a single asset market.

We identify three key channels that affect price informativeness. The first one

is the degree to which prices track fundamentals, which can be viewed as average

ownership-weighted information. This effect increases with agents’ ability to learn,

and is positively correlated with price informativeness. The second one is the sensi-

tivity of the oligopolists’ quantities to information, or what we call the information

passthrough to quantities. This sensitivity is increasing in the size of the oligopoly

sector, because the larger an oligopolist is, the more she worries about price im-

pact. Relatedly, passthrough increases when the agent is less risk averse, or when

the volatility in the market is lower. Passthrough is also positively correlated with

price informativeness, as increases in passthrough reduce price volatility. Third and

the final one is the effect of concentration, which in our model takes the form of

the Herfindahl-Hirschman Index, weighted by agents’ learning decisions—we call this

the learning HHI or LHHI. This channel arises due to the noise introduced by large

players’ trades, and is independent of any learning by the fringe. It is, therefore, un-

ambiguously negatively related to price informativeness. The overall effect on price

informativeness is thus a result of a tension between the first two channels and the

third one.

In the cross section of assets, we find that (i) higher levels of institutional

(oligopolistic) ownership of an asset correspond to higher degrees of price informa-

tiveness, and (ii) higher levels of institutional concentration in ownership of an asset

correspond to lower levels of price informativeness. The more agents learn about an

asset, the more they participate in that market, and therefore, the higher the degree

of this asset’s price informativeness. On the other hand, if very few agents learn about
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a particular asset, concentration in that market is much higher, and the asset’s price

informativeness is lower.

The above results focus mainly on the effects of learning and volatility on price

informativeness, but for a fixed market structure. From a policy perspective, it may be

important to analyze how changing market structure can affect price informativeness.

The key to understanding the results of a changing structure on price informativeness

is to understand the effects of market power on a single investor. When investors are

atomistic they will specialize in their information collection, choosing only one asset

to learn about. As they increase in size, they continue to specialize for a time, but

they also internalize the effect of their learning on prices. When the magnitude of

that effect gets large enough, agents no longer want to specialize and so when agents

cross a certain threshold in size, they diversify their learning. This is a novel finding,

and one that is central to the results that follow.

We alter market structure (the distribution of sizes) along three dimensions (total

size, concentration, and active/passive mix). We find that price informativeness has

a non-monotonic, hump shape in the size of the oligopoly sector. The intuition is that

as oligopolists increase in size, they not only diversify their learning, but also reduce

their participation in the asset market. In the limit, when the oligopolists are the

market, they will not trade at all, as their trades affect prices perfectly. Second, we

find that increases in the concentration of oligopoly sizes unambiguously reduce price

informativeness. A concentrated distribution of oligopolists means that comparatively

larger parts of the market are controlled by agents who are very concerned with their

price impact, and so they trade more cautiously.

Finally, we find that an increase in the size of a passive investor, at the expense

of an active investor unambiguously reduces price informativeness. This result, while

not surprising, sheds light on the information effect of passive traders’ size on active

traders’ behaviors. There are two aspects to this effect. First, assets in the market get

diverted from active to passive investors, resulting in less informed funds being present
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for trade. Second, as the active investors lose market power, they specialize more in

their learning. Specialization leads to a decrease in aggregate price informativeness,

but because of agents’ preference for learning about high-volatility assets over low-

volatility assets, the decrease is not necessarily uniform across all assets.

To further emphasize the role of the endogenous information acquisition in mar-

kets, we contrast the results of our benchmark model with those of a model in which

the attention allocation is exogenous, as in Kyle (1985). We show that the benchmark

model predicts a very different relation of ownership and concentration with price in-

formativeness. In particular, we show that the policy prescriptions about the optimal

level of institutional ownership coming from a model with exogenous information

choice can be biased upwards or downwards relative to the fully endogenous model,

depending on the exogenous information structure one assumes. We conclude that

modeling endogenous information choices is crucial when making normative state-

ments about the size and structure of the institutional asset management sector.

In the last part of the paper, we contrast our model with the data from the U.S.

market. We find strong empirical support for some of the main theoretical predictions.

In Section 2, we present a set of motivating facts from the U.S. data on institutional

ownership and its concentration. Section 3 presents the theoretical framework, the

equilibrium concept, and derives basic theoretical tradeoffs between the ownership

structure and price informativeness. In Section 4, we derive numerical solutions for

the more general settings and discuss various policy experiments. Section 5 provides

empirical results corroborating some of the model’s predictions. Section 6 concludes.

Any omitted proofs and derivations are in the Appendix.

1.1 Related Literature

Our paper spans several research themes. First, our general equilibrium model is

anchored in the literature on the endogenous information choice, in the spirit of Sims

(1998, 2003). More closely related to our application are the models of costly infor-
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mation of Van Nieuwerburgh and Veldkamp (2009, 2010), Mondria (2010), Kacper-

czyk, Van Nieuwerburgh, and Veldkamp (2016), and Kacperczyk, Nosal, and Stevens

(2017). Ours is the first theoretical study to introduce market power into a model with

endogenous information acquisition. This novel aspect allows us to study strategic

responses of oligopolistic traders in terms of their demand and information choices.

The literature on informed trading with market power dates back to Kyle (1985)

whose setup is one strategic trader, and Holden and Subrahmanyam (1992), which

extends the model of Kyle into an oligopolistic framework. Lambert, Ostrovsky, and

Panov (2016) extend the Kyle’s model to study the relation between the number of

strategic traders and information content of prices.1 In all these studies, information

is an exogenous process, which is a key dimension along which our model works.

Also, they do not examine the role of concentration of ownership among strategic

traders, which is the main focus of our study. Kyle, Ou-Yang, and Wei (2011) allows

for endogenous information acquisition but their mechanism depends on differences

in risk aversion. Also, they focus on the contracting features of delegation and allow

for only one risky asset. In turn, our framework operates through heterogeneity in

information capacity and multi-asset economy.

We also contribute to the literature on information production and asset prices.

Bond, Edmans, and Goldstein (2012) survey the literature on information production

in financial markets, emphasizing the differences between new information produced

in markets (revelatory price efficiency: RPE) and what is already known and merely

reflected in prices (forecasting price efficiency: FPE). Our focus is solely on RPE and

is largely dictated by the modeling framework we use.2 Stein (2009) develops a model

of market efficiency and sophisticated (arbitrage) capital in the presence of capital

constraints. Garleanu and Pedersen (2015) examine the role of search frictions in asset

1Models in which traders condition on others’ decisions also include Foster and Viswanathan
(1996) and Back, Cao, and Willard (2000).

2Theoretical work on asset prices and real efficiency also includes Dow and Gorton (1997),
Subrahmanyam and Titman (1999), Kurlat and Veldkamp (2015), and Edmans, Goldstein, and
Jiang (2015).
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management for price efficiency. On an empirical front, Chen, Goldstein, and Jiang

(2007) and Bakke and Whited (2010) find that the relation between stock prices and

investment is stronger for firms with more informative stock prices, whereas Baker,

Stein, and Wurgler (2003) find that it is stronger for firms that issue equity more

often. None of the above studies investigates the role of market power and endoge-

nous information acquisition. The exception is Bai, Philippon, and Savov (2016) who

show empirically that price informativeness is greater for stocks with greater insti-

tutional ownership. We confirm their findings for the range of the ownership values.

However, we show that beyond certain levels (not observed in their data) ownership

may in fact reduce price informativeness. Separately, we also investigate the role

of ownership concentration and provide a micro-founded general equilibrium model

that allows us to study the underlying economic mechanism in more depth. In a

contemporaneous work, Farboodi, Matrey, and Veldkamp (2017) examine differences

in price informativeness between companies included and not included in the S&P

500 index. They show that the indexed companies exhibit larger efficiency, which

they attribute to composition effect of these companies, being older and larger. Their

focus, however, is not on market power and changes in market structure.

Finally, we add to a growing empirical literature that studies the impact of market

structure in asset management on various economic outcomes. Following the disec-

onomies of scale argument of Chen et al. (2004), Pástor, Stambaugh, and Taylor

(2015) show significant diseconomies of scale at the industry level. Using a merger

between BlackRock and BGI as a shock to market power, Massa, Schumacher, and

Yan (2016) study the asset allocation responses of their competitors. They find that

competitors scale down positions which overlap with those held by the merged en-

tity. More broadly, He and Huang (2014) and Azar, Schmalz, and Tecu (2016) study

consequences of common asset ownership by large blockholders for product market

competition and prices. Our work complements these studies by studying, theoreti-

cally and empirically, the effect of ownership structure on price informativeness.
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2 Motivating Facts

In this section, we present the three empirical facts that motivate our study. First,

we show that institutional stock ownership has increased widely over the last thirty-

five years. Second, we show that the ownership structure is skewed towards the largest

owners. Third, we show that, in the recent times, the ownership mix has shifted from

active to passive investors.

The growth in institutional ownership has been previously documented in several

studies, including Gompers and Metrick (2001). The evidence on concentration is

much more sparse. Similarly, evidence on passive investments has been large explored,

theoretically, from the agency perspective (e.g., Basak and Pavlova (2013)). However,

except for the recent paper by Bai, Philippon, and Savov (2016) which emphasizes

the first fact, no other study has exploited the implications of these facts for longer-

horizon price informativeness.3

Our data on institutional stock ownership come from Thomson Reuters and span

the period 1980–2015. Even though the formal requirements to report holdings allow

smaller companies not to report, the representation of institutions in the data is

more than 98% in value-weighted terms. We calculate the stock-level institutional

ownership by taking the ratio of the number of stocks held by financial institutions

at the end of a given year to the number of shares outstanding at the same time.

Next, we aggregate the measures across stocks by taking a simple average across all

stocks in our sample. Using equal weighting, rather than value weighting, gives a

conservative metric of the trends in the data. Subsequently, we calculate a similar

measure, but only taking into account the holdings of the top-10 largest holders for

a given stock. We present the time-series dynamics of the two quantities in Figure 1.

Both series indicate a clear pattern underlying the recent policy discussions: In-

3A parallel microstructure literature (Boehmer and Kelley (2009)) examines empirically the
relation between institutional ownership and price efficiency due to trading intensity. Efficiency
there is measured using variance ratios and pricing errors. The conclusions from this literature are
akin to those reported in our paper.
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Figure 1: Institutional Ownership: Unconditional and Top-10 Holders

stitutional ownership has grown and the increase is mostly fueled by the growing

concentration of ownership. The magnitudes of the growth are economically large:

Over the period of over 35 years, each ownership statistic has more than doubled.

While we focus here on the average trends in the data, even stronger effects can be

observed in the cross section of stocks with different characteristics.

In our model, a more natural way to measure concentration is the Herfindahl-

Hirshman Index (HHI), defined as the sum of squared shares of all institutional owners

of a given stock. However, the problem with using a raw index value is its mechanical

correlation with the number of investors in the data. To the extent that the number

of institutions has been growing steadily over the same period the unadjusted index

would reflect two effects going in opposite direction. To filter out this mechanical

sorting, we take out the predicted component in the HHI accounted by the number

of investors. We plot the filtered series in Figure 2.

The results indicate that the concentration levels have been generally going up

over time. This pattern has been particularly visible since the early 1990s. The

magnitude of the growth is economically large and the large values of concentration,

especially in the last few years, reflect the concerns policy makers have voiced with
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Figure 2: Adjusted Ownership Concentration

regard to this phenomenon.

To illustrate the effects on ownership mix we define active investors as those

engaged in information acquisition process and passive investors as those who strictly

invest in pre-defined index portfolios. The latter group includes both index mutual

funds and ETFs. Because identifying passive funds in the institutional investors data

is not trivial we borrow the evidence from the Investment Company Institute (ICI)

Fact Book. We show the time-series evolution of the percentage of passively managed

equity mutual funds in the U.S. in Figure 3.

RECENT MUTUAL FUND TRENDS 45

FIGURE  2.13

Index Equity Mutual Funds’ Share Continued to Rise
Percentage of equity mutual funds’ total net assets; year-end, 2001–2016

2015 201620142013201220112010200920082007200620052004200320022001

22.0

24.9

20.2
18.417.416.4

14.713.913.6
11.711.411.211.411.110.79.9

FIGURE  2.12

Net New Cash Flow to Index Mutual Funds
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Figure 3: Passive Equity Fund Share

The results indicate a significant increase in passive ownership in the period of
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2001-2016. While passive funds accounted for less than 10% of total equity fund

market in the U.S., this share has increased to almost 25% by 2016. In the paper,

we take this trend as given and merely focus on its consequences for stock price

informativeness.

To conclude, we note that while the motivating facts we present relate to insti-

tutional investors, the model we present next is a general theory of asset allocation

and information acquisition by investors with market power. We believe institutional

investors are natural candidates for this type of investors.

3 Model

This section presents a noisy rational expectations portfolio choice model in which

investors are constrained in their capacity to process information about assets payoffs.

The setup departs from the information choice model of Kacperczyk et al. (2017) by

introducing market power for some investors. Also, we solve for price informativeness

of the aggregate economy and individual assets differentiated by their volatility.

3.1 Setup

The model features a finite continuum of traders, divided into l+1 many segments,

represented by λ. The traders in the first segment, λ0, are atomistic – these traders

act as a competitive fringe, in that they are able to pay attention to innovations

in asset prices, but do not have any market power. They are indexed by h. Measures

{λ1, λ2, ..., λl} of investors act as oligopolists, indexed by j. Each measure collects

information and trades, as the fringe does, but the oligopolists collect and trade as

a unit, and therefore they have market power in information, and market power as

traders.

Every member of the fringe, and every oligopolist observe signals about inno-

vations in asset prices. The vector of signals for the oligopolist for asset j is
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sj = (sj1...sjl). The vector of signals for the fringe for asset j is indexed by h.

Investors of both types maximize mean-variance utility function, with common risk

aversion ρ.

The market has one risk-free asset, with a price normalized to one, and a net

payout of r, and n > 1 risky assets, indexed by i, with prices pi and independent

payoffs zi = z̄ + εi, where εi ∼ N(0, σ2
i ). The risk-free asset has unlimited supply,

and each risky asset has a stochastic supply with mean x̄ and variance {σxi}. We can

think of these as noisy supply shocks.

Agents make portfolio decisions and can choose to obtain information about the

price innovations for some or all of the risky assets. The capacity to process infor-

mation for the oligopolists is denoted {Kj}, while the capacity of each member of

the fringe is constant at Kh. We place no restrictions on the values of Kj and Kh

other than they must be finite. Investors do not learn from prices. Oligopolists and

members of the fringe can use their capacities to receive informative signals about

the payoff of the asset and reduce that variance accordingly. We model signal choice

using entropy reduction as in Sims (2003).

We denote an agent’s posterior variance as σ̂2. For simplicity, we also define

αji ≡ σ2
i

σ̂2
ji
≥ 1. We conjecture and later verify the following price structure:

pi = ai + biεi − ciνi −
n∑
j=1

djiζji (1)

where εi and νi are the innovations in the payoff and noisy supply shocks, respectively.

The first term corresponds to the base price, and the second one to the innovation.

The innovation is not typically revealed completely in prices, because agents cannot

perfectly observe it. The third term corresponds to noise or liquidity shocks, while

the fourth one is defined as follows: First, define δji as the data loss of oligopolist

j: δji ≡ zi − sji, then define ζji ≡ δji − 1
αji
εi to be the portion of the dataloss that

is uncorrelated with the price innovation. Then pi ∼ N
(
ai, σ

2
pi

)
where σpi can be
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expressed as:

σ2
pi = b2

iσ
2
i + c2

iσ
2
xi +

n∑
j=1

d2
ji

(
1− 1

αji

)
σ̂2
ji (2)

See the Appendix 7 for the derivations. Before solving the oligopolists’s problem, we

first turn to the problem faced by the competitive fringe.

3.1.1 Competitive fringe

Portfolio problem The portfolio problem of the fringe is as follows. Given pos-

terior beliefs and equilibrium prices, each competitive investor h solves the following

problem:

Uh = max
{qhi}ni=1

Eh(Wh)−
ρ

2
Vh(Wh) s.t. Wj = r

(
W0h −

n∑
i=1

qhipi

)
+

n∑
i=1

qhizi (3)

where Eh and Vh are the perceived mean and variance of investor h conditional on

her information set, and W0h is initial wealth. Then, optimal portfolio holdings are:

qhi =
µ̂hi − rpi
ρσ̂2

hi

(4)

where µ̂hi and σ̂2
hi are the mean and variance of investor h’s posterior beliefs about

payoff zi.

Given this ‘second-stage’ problem, the fringe agents have a ‘first-stage’ information

choice problem. Each member of the fringe can choose to receive signals shi on

each asset payoff εi. The vector of signals is subject to an information capacity

constraint, based off Shannon (1948)’s mutual information measure: I(z; sh) ≤ Kh.

Since Kh is finite, this expression constrains the ability of fringe members to reduce

the uncertainty of signals.
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Information problem Each member of the fringe faces the following information

problem:

max
{σ̂2

hi}
n

i=1

U0h ≡
1

2ρ

n∑
i=1

E0h (µ̂hi − rpi)2

σ̂2
hi

(5)

subject to the relative entropy constraint

n∏
i=1

σ2
i

σ̂2
hi

≤ e2Kh . (6)

The information problem can also be written as:

U0h =
n∑
i=1

Gi
σ2
i

σ̂2
hi

, (7)

We obtain a corner solution: each investor h learns about one asset lh ∈ arg max{Gi}.

The gain to the competitive investors from learning about asset i is:

Gi ≡
(z − rai)2

σ2
i

+ (1− rbi)2 + r2c2
i

σ2
xi

σ2
i

+ r2

(
n∑
j=1

d2
ji

(
1− 1

αji

)
σ̂2
ji

)
− σ̂2

hi

σ2
i

(1− 2rbi)

Derivation in Appendix 7. The gain from learning about a particular asset is the

same across all competitive investors. However, this gain is a function of the learning

that the monopolist does in that asset (namely, it is a function of the oligopolist’s

posterior variance, σ̂2
ji). The gains to learning about an asset’s payoff are that the

fringe traders can take advantage of deviations in the price from their perception of

the asset’s value. The first term of Gi corresponds to the gains of trade from the

fundamental; the second one to the gains of trade from deviations in the innovation;

the third one to the gains of trade from noise traders; and the fourth one to alterations

in price due to data-loss by the oligopolists.
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3.1.2 Oligopolist

Portfolio problem Oligopolists have a similar trading problem to the fringe and

the quantity demanded by each oligopolist is:

qji =
µ̂ji − rpi (qji)
ρσ̂2

ji + r
dpi(qji)

dqji

, (8)

The derivative in the denominator reflects the fact that oligopolists have market

power. Each oligopolist internalizes the fact that their asset purchase decisions affect

the equilibrium price. Using market clearing, we can solve for this derivative to get:

dpi(qji)

dqji
=

λjρσ
2
i

λ0r(1 + Φhi)
> 0, (9)

where

Φhi ≡ mhi

(
e2Kh − 1

)
, (10)

and mhi is the mass of competitive investors learning about asset i. Hence, how

sensitive the price is to an oligopolist’s demand depends (inversely) on what fraction

of the competitive fringe is learning about that asset, and how much.

The oligopolist’s demand becomes:

qji =
µ̂ji − rpi

ρ
(
σ̂2
ji + λ̂jiσ2

i

) (11)

where λ̂ji =
λj

λ0(1+Φhi)
- essentially a ratio of the effective shares of the oligopolists

to the fringe. Given the expression for quantity, demanded we can then calculate

indirect utility:

Uj =
1

2ρ

n∑
i=1

(µ̂ji − rpi)2

 σ̂2
ji + 2λ̂jiσ

2
i(

σ̂2
ji + λ̂jiσ2

i

)2

 , (12)

Derivation in Appendix 7. As with the fringe, oligopolists’ expected utilities depend
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positively on the deviations of their personal estimates from the equilibrium price

(larger deviations mean larger quantities demanded). The smaller the oligopolists’

posterior variance the larger their utility. The larger the oligopolist’s market power

(or conversely the smaller the fringe, or the less informed the fringe), the larger is the

oligopolist’s price impact, and therefore the smaller her utility.

Information problem The oligopolist’s information problem is to solve

max
{σ̂2

ji}ni=1

U0j s.t.
n∏
i=1

σ2
i

σ̂2
ji

≤ e2Kj , (13)

We can also write the constraint as

n∏
i=1

αji ≤ e2Kj ⇔
n∑
i=1

lnαji ≤ 2Kj, (14)

with

lnαji ≥ 0. (15)

The Lagrangean is [dropping 1/2ρ]

L =
n∑
i=1

[ui (αji)− µlnαji + ηilnαji] + nγ2Kj, (16)

The optimality conditions are

u′i (αji)−
µ

αji
+

ηi
αji

= 0, ∀i = 1, ..., n. (17)

The capacity constraint is always binding, so
∑n

i=1 lnαji = 2Kj and µ > 0. Let L

denote the set of assets that are learned about by the oligopolist. We have that

αjl > 1 and ηl = 0 and µ = αjlu
′
l (αjl) ∀l ∈ L (18)
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and ∑
l=L

lnαjl = 2Kj. (19)

For assets i /∈ L,

αjl = 1 and ηl = µ− u′i (1) ≥ 0 ⇔ αjiu
′
i (αji) ≥ u′i (1) ∀l ∈ L. (20)

These conditions yield the oligopolist’s allocation of attention across assets, {αji}, as a

function of the equilibrium price coefficients, ai, bi, ci, di, and the share of competitive

investors learning about each asset, mhi. Given the choice of the oligopolist of the set

{αji}, variance of the posterior belief of the monopolist is σ2
i /αji and the mean is just

the signal sji. The signal is distributed, conditional on the realizations zi = z̄+ εi, as

E(sji|zi) = z̄ +

(
1−

σ̂2
ji

σ2
i

)
εi = z̄ +

(
1− 1

αji

)
εi,

V ar(sji|zi) = σ2
i

(
1−

σ̂2
ji

σ2
i

)
σ̂2
ji

σ2
i

=

(
1− 1

αji

)
1

αji
σ2
i .

3.2 Equilibrium

We can now solve for the coefficients of the equation (1) posited earlier. Doing so

yields expressions for ai, bi, ci, dki, and dji (derivation in Appendix 7):

ai =
z̄

r
− x̄

r

Niρσ
2
i

λ0(1 + Φhi)
(21)

bi = Ni

(
n∑
j=1

Mji(αji − 1)

rαji
+

Φhi

r(1 + Φhi)

)
(22)

ci =
Niρσ

2
i

rλ0(1 + Φhi)
(23)

dji =
NiMji

r
(24)
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where Mji ≡ λ̂jiσ
2
i

(σ̂2
ji+λ̂jiσ

2
i )

and Ni ≡ 1
1+
∑n
j=1 Mji

. The fundamental component of

the price, ai, unsurprisingly depends positively on z̄. An increase in supply will

also decrease ai, as will increased risk aversion and fundamental volatility. As

the fringe’s size or attentional capacity increase, their demand increases, and thus

prices increase. As the oligopolists’ size increases, or as their attention to asset i

increases, demand goes up, Mji increases, andNi decreases, again driving up the price.

bi depends almost exclusively on the information choices of the fringe and

oligopolists. If the fringe cannot pay attention, then Φ drops to zero, as does the

second term of the expression. If the oligopolists cannot pay attention, each αji

goes to zero. bi is increasing in Φhi and αji, because increased attention increases

investors’ predictive power of the innovation, and therefore their information will be

better reflected in prices.

The same reasons that demand fluctuates in ai apply to ci, as ci corresponds to

the random component, while ai corresponds to the mean component. We are able

to show the existence of an equilibrium.

Proposition 1. An equilibrium in learning exists.

3.3 Comparative statics

We first solve a special case of the model, to generate much of the intuition for the

mechanisms at play. Specifically, let us assume that there is only one institutional

investor, a monopolist, for whom Kj > 0, and that the fringe cannot learn.

Then the first order conditions for the monopolist are:

µ =
αi

(1 + 2λ̂αi)2
Xi

n∏
i=1

αi = e2Kj
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where Xi = 1
2ρ

((
ρ
λ0

)2

(x̄2 + σ2
ix)σ

2
i + 1 + 2λ̂

)
. For any two assets i and k that the

monopolist learns about:

αk

(1 + 2λ̂αk)2
Xk =

αi

(1 + 2λ̂αi)2
Xi (25)

Lemma 1. The monopolist wants to learn about high-volatility assets first.

The returns to learning are increasing in the volatility of the asset. One way to

interpret this finding is that there is more to learn about, when payoffs are volatile.

This leads naturally to our first main proposition:

Proposition 2. For sufficiently low levels of market power, the monopolist will learn

only about the most volatile asset.

If the monopolists were infinitesimally small, they would behave like a member of

the fringe and specialize. What Proposition 2 shows is that specialization lasts until

a critical level of size is reached. At that level, the marginal benefit of information

is low enough that the monopolists will learn about multiple assets. The threshold

level of specialization is characterized by the value T , such that:

e2Kj

(1 + 2 T
λ0
e2Kj)2

((
ρ

λ0

)2

(x̄2 + σ2
x)σ

2
1 + 1 + 2

T

λ0

)
− 1

(1 + 2 T
λ0

)2

((
ρ

λ0

)2

(x̄2 + σ2
x)σ

2
2 + 1 + 2

T

λ0

)
= 0

(26)

where σ1 is the most volatile asset, and σ2 is the next most volatile asset. The first

addend represents the marginal benefit of information once the monopolist has learnt

only about the most volatile asset, while the second represents the marginal benefit of

not learning at all about the second asset. When the two addends are equal, it means

that the monopolist is satisfied learning exclusively about only one asset, but that

even a slight increase in the monopolists size would lead to diversification. Because

σ1 > σ2, the expression is decreasing in T . Therefore, we can see that the monopolist

will specialize for longer as σ1 increases, because the marginal benefit of learning
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about the most volatile asset is higher. As ρ, x̄, and σ2
x increase, the marginal

benefit of learning about any asset increases, so the monopolist will specialize for

longer. Further the threshold decreases in Kj, because price impact is larger the

more informed the monopolist is. The plots below show the relationships between

the model’s parameters and the threshold level past which the monopolist diversifies.

Proposition 3. Higher levels of market power for the monopolist increases the price

informativeness of low-volatility assets, and reduces the price informativeness of high-

volatility assets.

α therefore only moves monotonically with volatility, and faces distributional

changes in response to movements in all other parameters. The expression for price

informativeness is:

Cov(pi, zi)

σpi
=

λ1(αji − 1)σi√[
λ2

1(αji − 1)2 + (1 + λ̂jiαji)2ρ2σ2
i σ

2
xi + λ2

1

] (27)

=
(αji − 1)σ2

i√[
(αji − 1)2σ2

i +
σ2
xiα

2
ji

W 2 + σ2
i

] (28)
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Where W =
∂λ1qji(µ̂ji)

∂µ̂ji
=

λ1αji

ρσ2
i (1+λ̂jiαji)

. Thus, price informativeness only depends

on λ through W . W represents the sensitivity of asset quantity decisions to the signal

received about the shock - and only affects price informativeness through the terms

related to the noise traders ci.

3.3.1 A Marginal Cost of Information

Under the assumption that the monopolist has a capacity for information, that

capacity must be used completely. However, if we instead assume that the monopolist

has a marginal cost of information, we can examine how much attention she chooses

to pay overall as a function of the model’s parameters. The first order condition of

such a problem (again assuming no learning by the fringe) would be:

µ =
αi

2ρ(1 + 2λ̂αi)2

((
ρ

λ0

)2

(x̄2 + σ2
ix)σ

2
i + 1 + 2λ̂

)

where µ is the marginal cost to the monopolist of increasing the total amount of

attention paid. The FOC will only hold, of course, if there is an interior solution.

Since there is no upper bound on how much attention can be paid, the condition for

an interior solution for asset i is that:

µ <
1

2ρ(1 + 2λ̂)2

((
ρ

λ0

)2

(x̄2 + σ2
ix)σ

2
i + 1 + 2λ̂

)

Conditional on there being an internal solution, the total amount of attention paid

to asset i is increasing in ρ, x̄, σ2
ix, σ

2
i , and decreasing in λ.

3.4 Price Informativeness

Now, let us turn to the general form of the model (still assuming a fringe that

cannot learn). Price informativeness in the model is given by the covariance of the

price with the fundamental shock, normalized by the standard deviation of the price.
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Alternatively, this can be seen as the correlation of the price with the fundamental,

multiplied by the asset’s variance. This definition is taken from Bai, Philippon, and

Savov (2016).

PI =
biσi√

b2
i + c2

iσ
2
xi/σ

2
i +

∑
j d

2
ji
αji−1

α2
ji

,

where ai, bi, ci and dji are the coefficients of the equilibrium price function. In the

expression for PI, bi parameterizes the covariance of the price with the shock zi; the

second term in the denominator captures noise in the price coming from the noise

trader demand shock, and the third term in the denominator captures the noise in

the price coming from the noise in the oligopolists’ private signals. Clearly, the lower

are the noise terms relative to the signal term bi, the higher is price informativeness.

Plugging in terms, we get:

We can use the equilibrium expressions for the price coefficients to express PI as

PI =
σi
∑

j ωji
αji−1

αji√(∑
j ωji

αji−1

αji

)2

+ 1
(
∑
jWji)2

σ2
xi

σ2
i

+
∑

j ω
2
ji
αji−1

α2
ji

, (29)

where ωji is the average share held by oligopolist j of asset i, given by

ωji ≡
Qji∑
kQki

,

and Qji is the average quantity held of asset i by oligopolist j, and Wji is the re-

sponsiveness of the quantity traded of asset i by oligopolist j to the private signal of

oligopolist j, i.e.

Wji =
∂λjqji
∂µ̂ji

=
λjαji

ρσ2
i (1 + λ̂jiαji)

.

We term this the passthrough of information to quantities. Intuitively, PI is increas-

ing in the term
∑

j ωji
αji−1

αji
, which is the ownership share-weighted average of the
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reduction in uncertainty4 about asset is payoffs due to learning by oligopolist j. PI is

also increasing in the information passthrough to quantities. The more information

affects trading, the more it shows up in prices.

Finally, PI is decreasing in the term
∑

j ω
2
ji
αji−1

α2
ji

, which is given by the weighted

sum of the noise in private signals, with weights given by the square ownership shares

of each oligopolist. We term this the Learning HHI or LHHI. To see that this ex-

pression is related to ownership concentration, notice that in a symmetric case of

αji = αi, it simplifies to αi−1
α2
i
HHIi, where HHIi is the Herfindahl index for asset i.

Therefore, if the noise in oligopolists’ signals is equally volatile, high concentration

hurts PI through this channel.

The expression in (30) highlights the importance of modeling the choice of infor-

mation for price informativeness. For an exogenously fixed learning structure (i.e.

fixed {αji}j=1,..,l,i=1,...,n, putting high weight on the highest α oligopolist always in-

creases the numerator of PI and hence is beneficial. However, working through the

third term in the denominator, high ownership concentration could be detrimental

(e.g. for equal αs), or beneficial (e.g. for very unequal distribution of α). Hence, the

information structure one assumes in an exogenous information model will dictate

the conclusion on the benefits of ownership concentration.

3.5 Passive and active large investors

In this section, we consider the role of passive and active institutional investors

and their interaction in determining price informativeness of asset i. In order to

make the analysis tractable and allow for clear exposition, we focus on a case where

investors 1 through k are active, and investors k + 1 through l are passive. In this

4Note that (αji − 1)/αji = (σ2
i − σ̂2

ji)/σ
2
i
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case, price informativeness is:

PI =
σi
∑

j≤k ωji
αji−1

αji√(∑
j≤k ωji

αji−1

αji

)2

+ 1
(
∑
j≤kWji)2+

∑
j>kW

2
ji

σ2
xi

σ2
i

+
∑

j≤k ω
2
ji
αji−1

α2
ji

, (30)

The presence of passive investors does not contribute to price informativeness via

increased correlation of prices with the fundamental, nor does it detract from price

informativeness due to increased noise in signal acquisition. However, the term asso-

ciated with noise trading decreases. Obviously, for the passive investors there is no

‘information passthrough’—the W term is expressing how sensitive the agent would

be should her information set change. The change in the noise term reflects the fact

that a large player will trade less than a fringe set of the same size. The lower levels

of trade reduce the contribution of noise traders to the volatility of the price.

Price informativeness is therefore lower than it would be should the passive traders

be instead active. On the other hand, it is higher than it would be if all passive

traders were fringe traders instead. The first part of that claim is unsurprising, but

the impact of increasing the size of passive players at the expense of active sector

must have an effect on the learning decisions of the active players. We find that the

effects exacerbate the reduction in price informativeness, which we summarize in the

following proposition.

Proposition 4. If the passive sector increases at the expense of the active sector,

active investors specialize in their learning, further reducing Price Informativeness.

4 Numerical Analysis

In this section, we provide a set of quantitative results from the solution to the

equilibrium of the model.5 We select parameter values for the return distribution

5This involves solving a fixed point of the best responses of the oligopolists to each other’s
learning and trading policies.
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z̄ and {σi}ni=1, the liquidity distribution x̄ and {σxi}ni=1, the risk-free return r, risk

aversion ρ, learning capacities Kh and {Kj}lj=1, and fringe and oligopolist sizes λ0

and {λj}lj=1. The simulation generates equilibrium levels of price informativeness,

oligopoly holdings, and oligopoly concentration for each asset.

In our simulations, we choose the parameters with two goals in mind: they have

to be in an empirically relevant region of the parameter space and the solution needs

to involve some degree of learning. Specifically, we consider parameters such that the

benchmark model exhibits: (i) learning about all assets, (ii) aggregate institutional

holding share of between 60 and 70% (which corresponds to the information in Figure

1), (iii) market excess real return of around 7% (which corresponds to the average

over 1980-2015). For the results reported below, we set the number of assets to n = 10

and the number of oligopolists to l = 6. We report parameter values in Table 1.

Table 1: Parameter values

Parameter Symbol Value

Mean payoff, supply z̄i, x̄i 10, 5 for all i

Number of assets n, l 10, 6

Risk-free rate r 2.5%

Vol. of noise shocks σxi 0.41 for all i

Vol. of asset payoffs σi ∈ [1, 1.5], linear distribution

Risk aversion ρ 1.3

Information capacities Kh, {Kj} 0, 4.5, constant

Investor masses λ0, λl/λ1 0.45, 4 λjs linearly distributed

4.1 Cross-sectional patterns

We begin by analyzing the cross section of equilibrium output variables across

assets for the benchmark parameter values in Table 1. Figure 4 presents the relation

between equilibrium price informativeness per asset (on the y-axis) and equilibrium

oligopoly holdings per asset (on the x axis). The intuition for this result is based

on our analysis in Section ??—agents want to learn about high-volatility assets first,
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because those are the most rewarding. Therefore, price informativeness is increasing

in underlying volatility, and so are total oligopoly holdings.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

0.5	 0.55	 0.6	 0.65	 0.7	 0.75	 0.8	

Figure 4: Price informativeness and institutional ownership

Figure 5 presents the relation between equilibrium price informativeness and equi-

librium oligopoly concentration. The larger an oligopolist’s presence in a particular

asset’s market, the more likely she is to internalize the price effect of her trade. As

such, she would like to be less informed than she would be if she had a small presence.

As a result, concentration in a particular asset is associated with lower levels of price

informativeness.

In Figure 6, we present the above cross-sectional relations for the part of price

informativeness due to only the correlation of prices and shocks. That is the part

of the information measure that is endogenous to the information choices of agents,

and does not come from pure cross-sectional dispersion of the exogenous shocks (see,

equation (27)). As the figure indicates, the positive relation with institutional hold-

ings and the negative relation with concentration hold for the correlation part of price

informativeness, consistently with the empirical patterns documented before.
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Figure 5: Price informativeness and concentration

4.2 Policy experiments

The different signs of the relation suggest an interesting interaction between high

ownership and high concentration for the overall effect on price informativeness. We

now move on to analyze the effect of policy on the aggregate price informativeness.

While in Figures 4 and 5, each point corresponded to one asset, in the following

exercise, each point corresponds to one iteration of a full financial market (with

several assets). The experiments are useful as a way to isolate the relative effects of

institutional concentration and holdings on price informativeness.

The size of the oligopoly In our first experiment, we look at how average price

informativeness across assets changes in response to different levels of λ0. Holding

the relative distribution of λj fixed, we look at simulations of the model for varying

λ0 from 0.05 to 0.95. The type of policy being tested here could be thought of as

a limit on entry, or a limit on a per-agent size in a given market, which would then

affect the composition of ownership in the market, keeping the total mass of investors

constant.

Figure 7 shows the relation between the size of the institutional sector (param-
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Figure 6: Price informativeness: correlation only

eterized by 1 − λ0) and endogenous variables of interest. The price informativeness

in Panel (a) shows a hump-shaped relation, on average and also for each asset (as

indicated by interquantile 10-90 range) with the parameterized size, and hence also

with the actual realized ownership which is monotonically increasing (Panel (b)). The

model results point to an interior solution to optimal institutional sector size. This

result can be explained by a tradeoff between more efficient (i.e. diversified) learning

due to larger size of the institutional sector, and an inefficiency due to the endoge-

nous restriction of size of trades (quantities) due to the price impact considerations

of the large investors. When initially the size of the institutional sector is small,

the oligopolists’ price impact considerations are not very important in their quantity

decisions, which means that increasing their size will mean more diversified learning

without adverse impact of how quantities react to individual signals (and hence show

up in price). As the size of the institutional sector increases further, learning about

each asset becomes more diversified: additional oligopolists start learning (Panel (d))

and trading any given asset, which results in a large drop in concentration (Panel (c)),

and increased ownership (Panel (b)). The increased diversification in learning means

more efficient price informativeness while still relatively small size means that the

negative quantity effects have not kicked in. Above a certain size of the institutional
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sector, the information choice is fully diversified and does not change by much fur-

ther, but the size considerations are very significant and result in decreasing the size

of trades as the size of the sector goes up – too much of the information is revealed in

prices as quantity reacts to private signals. These effects give rise to a hump-shaped

relation in the model between price informativeness and both institutional ownership

and the concentration measure of that ownership. We present these results in Figure

8.
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Figure 7: Response of model to changing size of institutional sector (1− λ0).

The concentration of the oligopoly Now, we consider the effects of a policy that

affects the concentration of the actively trading oligopolists. Holding λ0 constant, we

vary the size distribution of {λj} in order to measure an impact on the concentration
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Figure 8: Price informativeness in the model when changing 1− λ0.

measure. Specifically, we vary λl/λ1 from 1.05 to 10, with intermediate λjs growing

linearly from λ1 to λl. In doing so, the sum of all λjs is kept equal to 1−λ0 to isolate

the effect of concentration on endogenous variables. Figure 9 presents the results for

price informativeness and concentration.6 The results with respect to concentration

are roughly monotonic: Holding ownership relatively constant, a decrease in concen-

tration increases the price informativeness in the aggregate. This is in line with the

intuition from the previous exercise. If ownership is relatively stable, then there is no

change in average market power across these markets. However, changing the size dis-

tribution of the oligopolists towards a more unequal one increases the concentration

of ownership and hence increases market power of some of the oligopolists, distorting

their quantity choices more. That leads to a negative relation between concentration

and price informativeness, while keeping the ownership stable.

Passive investors We further explore the predictions of the model by considering

the role played by passive investors—those who have market power, but no capacity

for informational investment. The growing importance of such investors (e.g., Black-

Rock, Vanguard) has been an important element of the asset management landscape

in the last few decades. To this end, we consider two versions of the model. In one,

6Institutional ownership in this case varies only by 1.4% of the mean—by design—and hence we
do not show its graph explicitly.
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Figure 9: Average price informativeness and concentration relative to dispersion λl/λ1

the smallest half of the institutional investors has zero information capacity (small

passive); in the other, the largest half of the institutional investors has zero capacity

(big passive). In Figure 10, we repeat the first experiment, and plot average price

informativeness across different institutional ownership levels (via λ0 variation). Not

surprisingly, informativeness is always higher in the small passive case. In the model,

size is an impediment to learning efficiently, as it makes more information get revealed

via actual trades. Hence, having small informed agents implies their allocation of

learning capacity is more efficient, which is reflected in aggregate informativeness.

4.3 The role of endogenous learning choice

In this section, we present a comparison of the model with endogenous learning

choice (our benchmark) to a model in which the information structure is given and set

the same as in the benchmark model. The model with a fixed information structure

is similar in spirit to that presented in Kyle (1985), in that the effect of market power

in the absence of endogenous reoptimization of information choices depends entirely

on how the quantities adjust.

Figure 11 presents the interaction of institutional ownership and price informa-

tiveness, where the different points are generated by varying λ0. The black dots

represent the benchmark case in which we allow both quantities and information
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Figure 10: Aggregate price informativeness and institutional ownership: The case of
big or small passive investors

choices to adjust in response to changing λ0. The red crosses correspond to a case

with a fixed learning structure. For the fixed learning cases, the information choice is

either fixed at the benchmark value (i.e., λ0 = 0.45, Panel (a)), or at values such that

information structures are optimal at λ0 = 0.999 (small oligopolists, Panel (b)) and

λ0 = 0.05 (large oligopolists, Panel (c)). In all the fixed-information cases, the level

of price informativeness is below that of the benchmark model for which capacity

choice adjusts optimally. The gains in price informativeness from optimal learning

can be quite large. For example, for the benchmark specification of fixed alphas, price

informativeness is reduced by up to 40%. More important, fixing the learning choices

leads to very different conclusions about the optimal size of the institutional sector.

Depending on what values of learning one exactly fixes, the optimal size lies either

below or above the actual optimum derived when all the choices are endogenous. This

finding underscores the importance of modeling the information choice margin when

making normative statements about the size of the institutional sector.

Next, we evaluate the ‘concentration of oligopoly’ exercise of Section 4.2, in which

we hold λ0 fixed but vary λl/λ1. Figure 12 presents the relation between concentration

of ownership and price informativeness for the benchmark model with endogenous
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Figure 11: Aggregate price informativeness and institutional ownership with varying
λ0

information choice (black dots), as well as three cases of fixing the information choice

at the benchmark values (i.e., for λl/λ1 = 4, Panel (a)), as well as at values that are

optimal at two extremes of the size distribution of the oligopolists, λl/λ1 = 9 (Panel

(b)) and λl/λ1 = 2 (Panel (c)). For all the three cases, the exogenous and endogenous

information models give remarkably different predictions in terms of the relation of

concentration and price informativeness. In particular, for the benchmark model,

lower concentration always increases price informativeness. In contrast, models with

fixed information structure exhibit a hump-shaped relation between concentration

and price informativeness. Similar to the previous exercise, the two models give very

different recommendations regarding the level of concentration that maximizes price
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informativeness. The exogenous information models optimally imply an intermediate

level of concentration, while at the same time the fully endogenous model prescribes

a concentration level that is at the lower bound of the potential values.
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Figure 12: Aggregate price informativeness and concentration of institutional owner-
ship with varying λl/λ1

Overall, we conclude that the predictions resulting from a model with endogenous

learning choices are not a simple extension of the model where information choices

are fixed. The differences are not only quantitatively important but also qualitatively

relevant from the perspective of policy making.
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5 Empirical Results

In this section, we provide an empirical verification of the main predictions coming

from our model. In particular, we focus on the relations between ownership levels and

its concentration, and price informativeness. Our goal is a more modest qualitative

assessment of comparative statics rather than an attempt to match the quantities

from the model. The specifics of our empirical methodology follow closely those in

Bai, Philippon, and Savov (2016).

We begin by constructing an empirical measure of price informativeness. The

measure captures the covariance between the price and fundamental information and

is formally defined as:

PIt,h = bt,h ∗ σt(log(M/A)), (31)

where M denotes the market value of equity, A denotes the book value of assets,

h is the investment horizon, and bt,h is a coefficient obtained from the following

regression:

Ei,t+h
Ai,t

= at,h + bt,hlog(
Mi,t

Ai,t
) + ct,hlog(

Ei,t
Ai,t

) + dt,hSICi,t + εi,t,h, (32)

E is the value of earnings (EBIT) and SIC is an indicator variable for each one-

digit SIC code. In our empirical tests, we set the horizon period h to be equal to one

year.

To estimate the measure, we consider all companies in Compustat with valid

financial information. Our data are recorded at an annual frequency and cover the

period of 1980-2015. Following the observation in Bai et al. (2016) who argue that

large firms have the most stable characteristics we also considered a subset of only

large firms and also a set that excludes financial companies. The results remain

qualitatively similar in all those cases and are available upon request. The PI measure
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is defined for each time period using a given cross-section of firms. In our tests, we

sort companies into portfolio based on various characteristics of interest and thus the

respective PI measures correspond to a particular portfolio.

Specifically, each year, we sort companies into deciles according to their ownership

levels. For each decile portfolio, we calculate the equal-weighted PI measure. Next,

we aggregate information for each individual portfolio using the time-series dimension.

We present the results in column (2) of Table 2.

Table 2: Decile Sorts and Price Informativeness

Decile Ownership Concentration Residualized
Concentration

1 -0.0214 0.0127 0.0075
2 -0.0147 0.0105 0.0039
3 -0.0083 0.0065 0.0020
4 -0.0061 0.0018 0.0006
5 -0.0020 -0.0011 -0.0012
6 0.0010 -0.0076 -0.0023
7 0.0068 -0.0089 -0.0050
8 0.0073 -0.0117 -0.0063
9 0.0093 -0.0161 -0.0085
10 0.0115 -0.0185 -0.0126

We observe that price informativeness is monotonically increasing with owner-

ship levels. Companies with lowest ownership have the least informative prices and

companies with highest ownership have the most informative prices. This result is

consistent with predictions of our model and also confirms the empirical results in

Bai et al. (2016).

Next, we perform a similar sort, this time based on measure of concentration.

Our measure of concentration is the Herfindahl-Hirshman Index (HHI), defined in

Section 2. We present the results from the sort in column (3). Consistent with

our predictions, we observe that price informativeness is decreasing in the level of
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concentration. Companies with the highest levels of ownership concentration have

the least informative prices. The opposite is true for companies which have the most

dispersed ownership.

Since the HHI mechanically depends on the number of institutional investors, the

issue arises whether the results we identify are a function of pure concentration or

result from the relation between number of institutions and price informativeness.

Given that ownership is positively related to PI, this would suggest the pure con-

centration effect should be in fact even larger than the one we identify. To evaluate

this claim, we obtain residuals from the regression of the index on the number of

participants and use it as a sorting variable in our exercise. We present the results in

column (4).

The PI measure we use in our analysis nests two economic effects: the effect on

the correlation structure between prices and fundamentals and the effect of volatility

of volatility of prices. While the correlation is directly related to information story,

volatility in the data could change for reasons other than information. To assess

whether our analysis is not driven by any non-information component, we consider the

correlation between prices and fundamentals as an alternative information measure.

We perform similar three sorts and before and present our results in Table 3.

In column (2), we present the results for ownership-based sorts. Again, we find

a very strong monotonic relation between the levels of ownership and correlation be-

tween prices and fundamentals. The magnitude of the differences between the top and

the bottom decile is economically very large and equals approximately 0.2. Similarly,

in column (3), we report the results for the sorts based on levels of ownership con-

centration and document a similar negative relation between concentration and the

correlation measure. The most concentrated portfolio has a correlation value which

is lower by approximately 0.23 than the correlation of the least concentrated portfo-

lio. Finally, in column (4), we report the results for the sorts based on residualized

concentration measure and find very similar results. Overall, our results suggest that
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Table 3: Decile Sorts and Correlation between Price and Fundamentals

Decile Ownership Concentration Residualized
Concentration

1 -0.0769 0.1626 0.0679
2 -0.0533 0.1147 0.0386
3 -0.0312 0.0629 0.0253
4 -0.0257 0.0246 0.0068
5 -0.0026 0.0004 -0.0004
6 0.0146 -0.0327 -0.0108
7 0.0525 -0.0360 -0.0203
8 0.0682 -0.0445 -0.0232
9 0.1004 -0.0585 -0.0314
10 0.1270 -0.0692 -0.0433

the variation in PI that we document in the paper is unlikely to be driven only by

non-information forces. Moreover, our results strongly confirm the theoretical pre-

dictions coming from our model. Since we do not attempt the model and the data

on quantities, we cannot determine whether the information effect is the sole driver

of the variation in price informativeness.

6 Concluding Remarks

The last few decades have observed important changes in institutional equity

ownership structure, with significant consequences for financial stability and social

welfare. These trends have triggered an active response from financial regulators

and finance industry. While several participants in the debate have raised important

reasons for or against regulatory changes, the ultimate verdict is difficult to reach

in the absence of a well-specified economic model. This paper aims to take one

step in this direction by offering a general equilibrium model in which asymmetric

information, market power, and heterogeneity of assets play an important role. We

think this setting is a good way to characterize the world of equity ownership. Our
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goal is to rank various equilibria by comparing their average price informativeness.

We show that for the level of ownership equal to the currently observed levels

in the U.S. (roughly 60%), to average price efficiency is positively related to the

levels of institutional ownership and negatively related to its concentration. This

cross-sectional result is strongly supported by the data. Further, we show that the

average price informativeness across assets is maximized for the values of ownership

and concentration that are strictly within the range of admissible outcomes. This

result suggests an interesting role for policy makers to enforce optimal structure of

equity ownership.

Our model can be flexibly applied to settings with rich cross-section of assets,

differences in information asymmetry across agents, and differences in market power.

Hence, it can generate interesting policy implications at the aggregate and cross-

sectional dimensions. It can also be a good tool to evaluate asset pricing implications

in the presence of market power and information asymmetry. We leave these questions

for future research. At the same time, while our research can inform the debate for

the role of institutional owners for price informativeness and learning in the economy,

it naturally abstracts from other important dimensions relevant for policy makers,

such as investment costs or flows of funds in and out of the sector.
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7 Appendix: Proofs

7.1 Model

7.1.1 Derivation of Proposition 4

Proof. In order to apply Kakutani’s Fixed Point Theorem, we need to define a few terms.
Agents select αi First, define Ai ({α−j}) to be the best response correspondence for
oligopolist j. Next define α = {α1, α2, ..., αL}, and let ℵ define the set of all possible
α. Then the best response correspondence can be defined as A : ℵ ⇒ ℵ such that for all
α ∈ ℵ, we have that A(α) = [Aj(α−j)]j∈L. This best response function takes into account
the associated demand schedule for every oligopolist, as well as the learning and demand
decisions for the fringe. Now we need to check whether there is a fixed point to A.

• ℵ is compact and convex. Each αj must satisfy the capacity constraint. Therefore
each αj is convex, closed, and bounded, and therefore compact. Therefore ℵ is as
well.

• A is non-empty. This is trivially true if an interior solution exists. If an interior
solution does not exist, then the solutions are corners, so A is always non-empty.

• A is convex-valued. A is convex iff Ai are all convex. The oligopolist’s objective
function is weakly more concave than the fringe’s due to size. We show here that the
second derivative is negative.
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[
(λjαji+λ0)2((Ni+1)λ2

0+2λ2
jα

2
ji+λ0λjαji(2Ni+3)−(λjαji+λ0)2)+2Niλ0(λ0+2λjαji)(λjαji+λ0)2

−(λjαji + λ0)4 + (λ0 + λjαji)
3(λ0 + 2λjαji)− 2Niλjαjiλ0λ0(λ0 + 2λjαji)

−
(

(2Ni + 4)((Ni + 1)λ2
0 + 2λ2

jα
2
ji + λ0λjαji(2Ni + 3))− 5(λjαji + λ0)2

)
λjλ0αji

−(4((Ni + 1)λ2
0 + 2λ2

jα
2
ji + λ0λjαji(2Ni + 3))− 6(λjαji + λ0)2)λ2

jα
2
ji

]

∂2U

∂α2
ji

∝ −

((
(2ANi+4A−5)λjλ0+(4A−6)λ2

jαji

)
(λ2
jα

2
ji+λ

2
0+2λ0λjαji)+2Niλjαjiλ

2
0(λ0+2λjαji)

)
Yi

−Xi

[
3Niλ

4
0 +

(
(3 + 2Ni − 2N2

i )λ2
0 + (9− 2Ni)λ

2
jα

2
ji + (5Ni + 15)λ0λjαji

)
λjλ0αji

]

2ANi+4A−5 = (2Ni+4)((Ni+1)λ2
0 +2λ2

jα
2
ji+λ0λjαji(2Ni+3))−5(λ2

0 +λ2
jα

2
ji+2λ0λjαji)

= λ2
0(2N2

i + 6Ni − 1) + λ2
jα

2
ji(4Ni + 3) + λ0λjαji(4N

2
i + 14Ni + 2)

4A− 6 = 4((Ni + 1)λ2
0 + 2λ2

jα
2
ji + λ0λjαji(2Ni + 3))− 6(λ2

0 + λ2
jα

2
ji + 2λ0λjαji)

= λ2
0(4Ni − 2) + 2λ2

jα
2
ji + λ0λjαji(8Ni)

Therefore” ∂2U
∂α2

ji
< 0.

• A has a closed graph. The first order conditions of the oligopolist are continuous, so
this is trivial. (see above).
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7.1.2 Derivation of Equation 2

σ2
pi = b2iσ

2
i + c2

iσ
2
xi +

n∑
j=1

(
σ̂2
ji +

σ̂4
ji

σ4
i

σ2
i −

2

αji
Cov(εi, δji)− 2bidjiCov (εi, ζji)− 2cidjiCov (νi, δji)

)

+
n∑
j=1

∑
k 6=j

2djidkiCov(ζji, ζki)

= b2iσ
2
i + c2

iσ
2
xi +

n∑
j=1

(
d2
ji

(
σ̂2
ji +

σ̂4
ji

σ2
i

−
2σ̂2

ji

σ2
i

σ̂2
ji

)
− 2bidji

(
σ̂2
ji −

σ2
i

αji

))

+
n∑
j=1

∑
j 6=k

2djidkiCov

(
δji −

1

αji
εi, δki −

1

αki
εi

)

= b2iσ
2
i + c2

iσ
2
xi +

n∑
j=1

d2
ji

(
1− 1

αji

)
σ̂2
ji +

n∑
j=1

∑
k 6=j

2djidki

(
1

αjiαki
σ2
i − σ̂2

ki − σ̂2
ji + σ2

i −
1

αki
σ̂2
ki −

1

αji
σ̂2
ji

)

= b2iσ
2
i + c2

iσ
2
xi +

n∑
j=1

d2
ji

(
1− 1

αji

)
σ̂2
ji +

n∑
j=1

∑
k 6=j

2djidki

(
1 + αjiαki
αjiαki

σ2
i −

1 + αki
αki

σ̂2
ki −

1 + αji
αji

σ̂2
ji

)

7.1.3 Derivation of Equation 8

The objective is U0h = 1
2ρ

∑n
i=1

E0h(µ̂hi−rpi)2

σ̂2
hi

= 1
2ρ

∑n
i=1

R̂2
i+V̂hi
σ̂2
hi

, where

R̂i ≡ E0h (µ̂hi − rpi) = z − rpi = z − rai, V̂hi ≡ V0h (µ̂hi − rpi) = V ar (µ̂hi) + r2σ2
pi −

2rCov (µ̂hi, pi) .

V ar (µ̂hi) = σ2
i − σ̂2

hi. σ2
pi = b2iσ

2
i + c2

iσ
2
xi +

∑n
j=1 d

2
ji

(
1− 1

αji

)
σ̂2
ji +∑n

j=1

∑
k 6=j 2djidki

(
1+αjiαki
αjiαki

σ2
i −

1+αki
αki

σ̂2
ki −

1+αji
αji

σ̂2
ji

)
.
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Posterior beliefs and prices are conditionally independent given payoffs.

Cov (µ̂hi, pi) =
1

σ2
i

Cov (µ̂hi, zi)Cov (zi, pi)

=
1

σ2
i

(
σ2
i − σ̂2

hi

)Cov(εi, biεi)−
n∑
j=1

Cov(εi, djiζji)


=

1

σ2
i

(
σ2
i − σ̂2

hi

)biσ2
i −

n∑
j=1

djiCov

(
εi, δji −

1

αji
εi

)
=

1

σ2
i

(
σ2
i − σ̂2

hi

)bi +

n∑
j=1

dji
αji

σ2
i −

n∑
j=1

djiσ̂
2
ji


=

(
σ2
i − σ̂2

hi

)
bi

Hence

V̂hi = σ2
i − σ̂2

hi + r2

(
b2iσ

2
i + c2

iσ
2
xi +

n∑
j=1

d2
ji

(
1− 1

αji

)
σ̂2
ji +

n∑
j=1

∑
k 6=j

2djidki

(
1 + αjiαki
αjiαki

σ2
i −

1 + αki
αki

σ̂2
ki −

1 + αji
αji

σ̂2
ji

))
− 2r

(
σ2
i − σ̂2

hi

)
bi

Expected utility becomes Hence U0h = 1
2ρ

∑n
i=1Gi

σ2
i

σ̂2
hi
− 1

2ρ

∑n
i=1(1− 2rbi), where

Gi ≡ GKNS+r2

(
n∑
j=1

d2
ji

(
1− 1

αji

)
σ̂2
ji+

n∑
j=1

∑
k 6=j

2djidki

(
1 + αjiαki
αjiαki

σ2
i −

1 + αki
αki

σ̂2
ki −

1 + αji
αji

σ̂2
ji

))
.

Note: GKNSi ≡ R̂2
i

σ2
i

+ (1− rbi)2 + r2c2
i
σ2
xi

σ2
i

.
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7.1.4 Derivation of Equation 12

Market clearing for each asset i is

xi =

n∑
j=1

λjqji +

∫
Hi

qhidh

=

n∑
j=1

λjqji +

∫
Hi

µ̂hi − rpi
ρσ̂2

hi

dh

=
n∑
j=1

λjqji +
λ0

ρσ2
i

[
e2Kh

∫
Hi

µ̂hidh−mhie
2Khrpi + (1−mhi)(z − rpi)

]
where Hi is the mass of competitive investors learning about asset i, of measure mhi.

Using E[shi|zi] =

{
z +

(
1− e−2Kh

)
εi if i = lh

z if i 6= lh,∫
Hi
µ̂hidh = mhi

[
z +

(
1− e−2Kh

)
εi
]
.

Then market clearing becomes

xi =
∑n

j=1 λjqji+
λ0

ρσ2
i

[(
1−mhi + e2Khmhi

)
z +

(
e2Kh − 1

)
εimhi −

(
1−mhi + e2Khmhi

)
rpi
]

Defining Φhi ≡ mhi(e
2Kh − 1),

xi =
∑n

j=1 λjqji + + λ0

ρσ2
i
[z̄(1 + Φhi) + Φhiεi − rpi(1 + Φi)]

which becomes
ρσ2
i

λ0
xi =

ρσ2
i

λ0

∑n
j=1 λjqji + z̄(1 + Φhi) + Φhiεi − rpi(1 + Φi)

and then
rpi =

ρσ2
i

λ0(1+Φhi)

∑n
j=1 λjqji + z̄ + Φhi

1+Φhi
εi −

ρσ2
i

λ0(1+Φhi)
xi

Hence,
dpi(qji)
dqji

=
λjρσ

2
i

λ0r(1+Φhi)
> 0

Let λ̂ji ≡ λj
λ0(1+Φhi)

.

Then qji =
µ̂ji−rpi

ρ(σ̂2
ji+λ̂jiσ

2
i )

, and similarly for k.

Plugging in the expression for qji:

rpi =
∑n

j=1 λ̂jiρσ
2
i

µ̂ji−rpi
ρ(σ̂2

ji+λ̂jiσ
2
i )

+ z̄ + Φhi
1+Φhi

εi −
ρσ2
i

λ0(1+Φhi)
xi

which becomes

rpi

(
1 +

∑n
j=1

λ̂jiρσ
2
i

ρ(σ̂2
ji+λ̂jiσ

2
i )

)
=
∑n

j=1
λ̂jiρσ

2
i

ρ(σ̂2
ji+λ̂jiσ

2
i )
µ̂ji + z̄ + Φhi

1+Φhi
εi −

ρσ2
i

λ0(1+Φhi)
xi

dividing through gives
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rpi =

∑n
j=1

λ̂jiρσ
2
i

ρ(σ̂2
ji

+λ̂jiσ
2
i )
µ̂ji+z̄+

Φhi
1+Φhi

εi−
ρσ2
i

λ0(1+Φhi)
xi(

1+
∑n
j=1

λ̂jiρσ
2
i

ρ(σ̂2
ji

+λ̂jiσ
2
i )

)

The indirect utility function Uj =
∑n

i=1 qji (µ̂ji − rpi)− ρ
2

∑n
i=1 q

2
jiσ̂

2
ji becomes

Uj =
∑n

i=1

[
q2
jiρ
(
σ̂2
ji + λ̂jiσ

2
i

)
− ρ

2q
2
jiσ̂

2
ji

]
Uj =

∑n
i=1

[
ρq2
ji

(
σ̂2
ji + λ̂jiσ

2
i − 1

2 σ̂
2
ji

)]
Uj =

∑n
i=1

{
(µ̂ji−rpi)2

ρ(σ̂2
ji+λ̂jiσ

2
i )

2

(
1
2 σ̂

2
ji + λ̂jiσ

2
i

)}

Uj = 1
2ρ

∑n
i=1

{
(µ̂ji − rpi)2

[
σ̂2
ji+2λ̂iσ

2
i

(σ̂2
ji+λ̂iσ

2
i )

2

]}
.

More detailed expression for U : We can rewrite E0j(µ̂ji − rpi)2 as R̂2
i + V̂ji, where R̂i and

V̂ji denote the ex-ante mean and variance of expected excess returns, which means:

R̂i ≡ E0j (µ̂ji − rpi) =

ρσ2
i

λ0(1+Φhi)(
1+
∑n
j=1

λ̂jiρσ
2
i

ρ(σ̂2
ji

+λ̂jiσ
2
i )

) x̄ Define Mji ≡
λ̂jiσ

2
i

(σ̂2
ji+λ̂jiσ

2
i )

Ni ≡ 1
1+
∑n
j=1Mji

V̂ji ≡ V0j (µ̂ji − rpi)
= V0j

(
µ̂ji −Ni

∑n
k=1Mkiµ̂ki −Niz̄ −Ni

Φhi
1+Φhi

εi +Ni
ρσ2
i

λ0(1+Φhi)
xi

)
= V0j

(
Ni (µ̂ji +

∑n
k=1Mki(µ̂ji − µ̂ki))−Ni

Φhi
1+Φhi

εi +Ni
ρσ2
i

λ0(1+Φhi)
xi

)
= N2

i V0j

(
µ̂ji +

∑n
k 6=jMkiµ̂ji − Φhi

1+Φhi
εi +

ρσ2
i

λ0(1+Φhi)
xi

)
= N2

i

(
1 +

∑n
k 6=jMki

)2
(σ2
i − σ̂2

ji) +
(
NiΦhi
1+Φhi

)2
σ2
i +

(
Niρσ

2
i

λ0(1+Φhi)

)2
σ2
xi −

2

(
N2
i Φhi(1+

∑n
k 6=jMki)

1+Φhi

)
(σ2
i − σ̂2

ji)

U0j =
1

2ρ

∑
i

N2
i (σ̂2

ji + 2λ̂iσ
2
i )(

σ̂2
ji + λ̂σ2

i

)2

[(
ρσ2

i

λ0(1 + Φhi)

)2

(x̄2 + σ2
ix) +

(
Φhi

1 + Φhi

)2

σ2
i

+

(1 + Φhi)
(

1 +
∑n

k 6=jMki

)
− 2Φhi

1 + Φhi

 (σ2
i − σ̂2

i )

1 +

n∑
k 6=j

Mki

]

=
1

2ρ

∑
i

N2
i (1 + 2λ̂αji)

(1 + λ̂αji)2

[(
Φhi

1 + Φhi

)2

αji +

(
ρσ2

i

λ0(1 + Φhi)

)2

(x̄2 + σ2
ix)
αji
σ2
i

+

(1 + Φhi)
(

1 +
∑n

k 6=jMki

)
− 2Φhi

1 + Φhi

1 +
n∑
k 6=j

Mki

 (αji − 1)

]
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7.1.5 Derivation of Equations 21

The market clearing condition is

rpi =

∑n
j=1

λ̂jiρσ
2
i

ρ(σ̂2
ji+λ̂jiσ

2
i )
µ̂ji + z̄ + Φhi

1+Φhi
εi −

ρσ2
i

λ0(1+Φhi)
xi(

1 +
∑n

j=1
λ̂jiρσ2

i

ρ(σ̂2
ji+λ̂jiσ

2
i )

) (33)

From here we identify the price coefficients as a function of the monopolist learning and the
competitive fringe learning. Now, conditionally on zi, we have

µ̂ji = sji

and sji is normally distributed with mean z̄+(1− 1
αji

)εi and variance (1− 1
αji

) 1
αji
σ2
i . What

we want is to express the posterior mean in terms of delta as in zi = si + δi. Given that,

δji = zi − sji = − 1

αji
εi + noise

rpi = Ni

n∑
j=1

Mji

(
z̄ +

(
1− 1

αji

)
εi − ζji

)
+Ni

[
z̄ +

Φhi

1 + Φhi
εi −

ρσ2
i

λ0(1 + Φhi)
xi

]
(34)

rpi = z̄ − x̄ Niρσ
2
i

λ0(1 + Φhi)
+ εiNi

 n∑
j=1

Mji(αji − 1)

αji
+

Φhi

1 + Φhi


− Niρσ

2
i

λ0(1 + Φhi)
νi −Ni

n∑
j=1

Mjiζji

If only the monopolist can learn, then Φhi = 0. First we can write: Mji =
λ̂jiαji

1+λ̂jiαji
, Ni =

1+λ̂jiαji

1+2λ̂jiαji
. Then we need to solve the monopolist’s information problem:

0 =
∂

∂αji

1

2ρ

∑
i

1

1 + 2λ̂αji

[(
ρσ2

i

λ0

)2

(x̄2 + σ2
ix)
αji
σ2
i

+ (αji − 1)

]

0 =
1

1 + 2λ̂jiαji

[(
ρσ2

i

λ0

)2

(x̄2 + σ2
ix)

1

σ2
i

+ 1

]
−

2λ̂ji

(1 + 2λ̂jiαji)2

[(
ρσ2

i

λ0

)2

(x̄2 + σ2
ix)
αji
σ2
i

+ (αji − 1)

]
+ 2ρ

ηi − µ
αji
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2ρµ(1 + 2λ̂jiαji)

αji
=

[(
ρσ2

i

λ0

)2

(x̄2 + σ2
ix)

1

σ2
i

+ 1

]
− 2λ̂ji

1 + 2λ̂jiαji

[(
ρσ2

i

λ0

)2

(x̄2 + σ2
ix)
αji
σ2
i

+ (αji − 1)

]

=

[(
ρσ2

i

λ0

)2

(x̄2 + σ2
ix)

1

σ2
i

+ 1

](
1− 2λ̂jiαji

1 + 2λ̂jiαji

)
+

2λ̂ji

1 + 2λ̂jiαji

2ρµ(1 + 2λ̂jiαji)
2

αji
=

[(
ρ

λ0

)2

(x̄2 + σ2
ix)σ2

i + 1

]
+ 2λ̂ji

µ =
αji

(1 + 2λ̂jiαji)2
Xi

Xi =
1

2ρ

([(
ρ

λ0

)2

(x̄2 + σ2
ix)σ2

i + 1

]
+ 2λ̂ji

)
(1 + 2λ̂jiαji)

2

(1 + 2λ̂jkαjk)2
=

αjiXi

αjkXk

n∏
k=1

(1 + 2λ̂jiαji)
2

(1 + 2λ̂jkαjk)2
=

n∏
k=1

αjiXi

αjkXk

(1 + 2λ̂jiαji)
2n∏n

k=1(1 + 2λ̂jkαjk)2
=

(αjiXi)
n

e2Kh
∏n
k=1Xk

Mji =
λ1αji

λ0 + λ1αji

Ni =
λ0 + λ1αji
λ0 + 2λ1αji

ai =
z̄

r
− x̄

r

(λ0 + λ1αji)ρσ
2
i

λ0(λ0 + 2λ1αji)

bi =
λ1(αji − 1)

r(λ0 + 2λ1αji)

ci =
(λ0 + λ1αji)ρσ

2
i

rλ0(λ0 + 2λ1αji)

dji =
λ1αji

r(λ0 + 2λ1αji)

σ2
pi = b2iσ

2
i + c2

iσ
2
xi + d2

ji

(
1− 1

αji

)
σ̂2
ji

=
1

r2(λ0 + 2λ1αji)2

[
λ2

1(αji − 1)2σ2
i + (λ0 + λ1αji)

2ρ2σ4
i σ

2
xiλ
−2
0 + λ2

1σ
2
i

]
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Cov(pi, zi)

σpi
=

Cov(ai + biεi − ciνi − diζji, zi)
σpi

=
λ1(αji − 1)σ2

i√[
λ2

1(αji − 1)2σ2
i + (λ0 + λ1αji)2ρ2σ4

i σ
2
xiλ
−2
0 + λ2

1σ
2
i

]
=

λ1(αji − 1)σi√[
λ2

1(αji − 1)2 + (1 + λ̂jiαji)2ρ2σ2
i σ

2
xi + λ2

1

]
Proof of Proposition 3

Proof. Define f(λ, αj) =
αj

(1+2λ̂αj)2
Xj . Then fλ = −2αj(2αj λ̂+2α(Xj−2λ̂)−1)

(2λ̂αj+1)3
which is decreas-

ing in αj . Since α′j(σj) > 0. Therefore assuming wlog that σj > σi, we get that αj > αi,

and therefore fλ(i) > fλ(j). Similarly fα = − 1−2αj λ̂

(1+2αλ̂)3
X is decreasing in αj . Therefore in

order to satisfy the first order conditions αj(λ) < 0 and αi(λ) > 0.

Proof of Proposition ??

Proof.

PI ′i(λ1) =
∂PIi
∂λ1

=
(α− 1)σ3

i ρ
2σ2
xi(λ̂+ 1)[

λ2
1(αji − 1)2 + (1 + λ̂jiαji)2ρ2σ2

i σ
2
xi + λ2

1

]1.5

> 0

If both the monopolist and the fringe can learn, we need to solve the monopolist’s informa-

tion problem when Φhi > 0. First we can write: Mji =
λ̂jiαji

1+λ̂jiαji
, Ni =

1+λ̂jiαji

1+2λ̂jiαji

0 =
∂

∂αji

1

2ρ

∑
i

1

1 + 2λ̂αji

[(
Φhi

1 + Φhi

)2

αji +

(
ρσ2

i

λ0(1 + Φhi)

)2

(x̄2 + σ2
ix)
αji
σ2
i

+

(1 + Φhi)
(

1 +
∑n

k 6=jMki

)
− 2Φhi

1 + Φhi

1 +

n∑
k 6=j

Mki

 (αji − 1)

]
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2ρµ

αji
=

−2λ̂ji

(1 + 2λ̂jiαji)2

[(
Φhi

1 + Φhi

)2

αji +

(
ρσ2

i

λ0(1 + Φhi)

)2

(x̄Φ2
hi + σ2

ix)
αji
σ2
i

+

(
1− Φhi

1 + Φhi

)
(αji − 1)

]

+
1

1 + 2λ̂jiαji

[(
Φhi

1 + Φhi

)2

+

(
ρσ2

i

λ0(1 + Φhi)

)2

(x̄2 + σ2
ix)

1

σ2
i

+

(
1− Φhi

1 + Φhi

)]
2ρµ

αji
=

1

(1 + 2λ̂jiαji)2

[(
Φhi

1 + Φhi

)2

+

(
ρσ2

i

λ0(1 + Φhi)

)2

(x̄2 + σ2
ix)

1

σ2
i

+

(
1− Φhi

1 + Φhi

)
(1 + 2λ̂ji)

]

Yi =
1

2ρ

[
1 + 2λ̂ji +

(
ρσ2

i

λ0

)2

(x̄2 + σ2
ix)

1

σ2
i

]

µ =
αjiYi +

λ̂jiΦ
2
hi

ρ

(1 + 2λ̂jiαji)2(1 + Φhi)2

λ1 > 0

Mji =
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Proof of Proposition ??

Proof.
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︸ ︷︷ ︸

positively linear in αji
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If λj decreases for any reason, αji must increase to compensate (holding µ constant), which
means that the marginal benefit of information increases as size decreases - that is, agents
will specialize more in learning as their size decreases. Therefore, if the passive sector
increases at the expense of the active sector, which ever active oligopolists are decreased in
size will specialize more in their learning - thus reducing aggregate price informativeness.
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