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Abstract

This paper establishes a general equivalence between discrete choice and
rational inattention models. Matejka and McKay (2015, AER) showed that
when information costs are modelled using the Shannon entropy, the result-
ing choice probabilities in the rational inattention model take the multinomial
logit form. We show that when information costs are modelled using a class
of generalized entropies, then the choice probabilities in any rational inat-
tention model are observationally equivalent to some additive random utility
discrete choice model and vice versa. This equivalence arises from convex-
analytic properties of the random utility model. Thus any additive random
utility model can be given an interpretation in terms of boundedly rational
behavior. We provide examples of this equivalence utilizing the nested logit
model, an empirically relevant random utility model allowing for flexible
substitution possibilities between choices.
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therefore, agents may rationally choose to remain imperfectly informed about the

available options. This idea underlies the theory of rational inattention, which has

become an important paradigm for modeling boundedly rational behavior in many

areas of economics (Sims, 2003, 2010). In this paper, our main contribution is

to establish a general equivalence between additive random utility discrete choice

and rational inattention models. Matějka and McKay (2015) showed that when

information costs are modelled using the Shannon entropy, the resulting choice

probabilities in the rational inattention model take the familiar multinomial logit

form. This is a very appealing result, providing both a microfoundation as well as

alternative interpretation for the multinomial logit model.

However, the multinomial logit choice probabilities implied by the rational

inattention model based on the Shannon entropy have the “independence of irrel-

evant alternatives”, or IIA property, which is that the ratio of the probabilities of

two alternatives does not depend on the utility of a third (irrelevant) alternative.1 In

many empirical contexts, the IIA property implies restrictive and unrealistic sub-

stitution patterns among the choices, as illustrated in the following example.

Example 1 Consider a rationally inattentive consumer facing a choice between

a pineapple (good 1), mango (good 2), and cheesecake (good 3). A priori, the

consumer does not know the value associated with each good but has fixed prior

beliefs about the possible realizations of the valuation vector V. Assume that V

has two possible realizations: v1 = (1, 1, 1) and v2 = (0.9, 1, 1) and assume

that we observe corresponding choice probabilities p
(
v1
)

= (0.27, 0.27, 0.46)

and p
(
v2
)

= (0.20, 0.33, 0.47). These probabilities reflect a situation where a

decrease (from 1 to 0.9) in the value of good 1, the pineapple, causes consumers to

substitute disproportionately towards the mango rather than towards the cheese-

cake. However, such an outcome violates the IIA property, as the ratio of the

choice probabilities for mango vs. cheesecake is not constant, but changes from
0.27
0.46 = 0.59 to 0.33

0.47 = 0.702; hence, it cannot arise from the rational inattention

model with Shannon information cost. �

The root of the problem in the previous example is that the use of the Shannon

entropy as a measure of the cost of processing information embodies an important

and strong assumption of symmetry: the Shannon entropy is symmetric, or invariant

to permutations in its arguments; therefore reordering the choice options does not

affect the information cost. This makes the cost of processing information context

1See, among others, Maddala (1983, 3.2).
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independent (Hobson, 1969). In this paper we introduce a new class of generalized

entropies that allows us to define cost functions that embody information related to

the identity of alternatives. Our generalized entropy allows patterns such as those

in the example above to be accommodated in a rational inattention model, which

contributes to making rational inattention models empirically relevant. In fact, we

show that a rational inattention model can yield the same choice probability system

as any additive random utility model, depending on the choice of information cost;

this includes specifications such as nested logit, multinomial probit, and so on, that

are often employed in empirical work. At the same time, this equivalence permits

the interpretation of any additive random utility discrete choice model as arising

from boundedly rational behavior.

We introduce a class of Generalized Entropy Rational Inattention (GERI) mod-

els. In a GERI model, the Shannon entropy is replaced by an information cost de-

fined as the convex conjugate to the surplus function of an additive random utility

model (“ARUM”). This generalizes the Shannon entropy since the Shannon en-

tropy arises when the ARUM is the multinomial logit model. As we will show,

a GERI model exists corresponding to any ARUM, implying that rationally inat-

tentive behavior can generate choice probabilities which can be context dependent

and violate the IIA property, as illustrated in the above example.

Related literature. Besides the papers already mentioned above, the main

equivalence result in this paper is related to several strands of literature. First, this

paper contributes to the growing literature on rational inattention with more general

cost functions. In a dynamic setting, Hébert and Woodford (2016) also consider

generalizations of the information cost and provide foundations for the rational

inattention model based on a dynamic information accumulation process. Mor-

ris and Yang (2016) use ideas from global games to develop a rational inattention

framework where the cost of processing information satisfies natural properties

such as convexity and continuity. Caplin et al. (2017) provide behavioral axioms

satisfied by both the Shannon entropy as well as other more general cost functions.

Second, the results in this paper are related to the literature on perturbed utility

models. In this context, Anderson et al. (1988) uses the Shannon entropy to de-

rive the multinomial logit model. This observation is generalized by Hofbauer and

Sandholm (2002), who show that the choice probabilities generated by any ARUM

can be derived from a deterministic model based on payoff perturbations that de-

pend nonlinearly on the vector of choice probabilities. Fosgerau and McFadden

(2012) provide a foundation for applications of consumer theory to perturbed util-
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ity problems with nonlinear budget constraints. Fudenberg et al. (2015) provide an

axiomatic characterization of a class of perturbed random utility models. We con-

tribute to that literature by providing an explicit characterization of the perturbation

term corresponding to general ARUM.

Finally, Caplin, Leahy and Matějka (2016) and Joo (2017) consider empirical

applications in the rational inattention paradigm, using the Shannon/multinomial

logit framework. The results in this paper may enable researchers to apply ratio-

nal inattention models far beyond the multinomial logit setting, as they imply that

choice behavior emerging from any ARUM model may be explained by rationally

inattentive behavior.

Notation: Throughout this paper, for vectors a and b, we use the notation a ·b
to denote the vector scalar product

∑
i aibi. ∆ denotes the unit simplex in RN .

Layout. Section 2 introduces the ARUM framework, and uses convex analysis

to generate some insights into the fundamental structure of these models. Using

this structure, we introduce a class of generalized entropies and present a few key

results about them. Section 3 introduces the rational inattention model. We show

how generalized entropy can be used to define the information cost in the rational

inattention model, leading to the class of GERI models. Then we present the key

result from this paper, which establishes the equivalence between choice proba-

bilities emerging from the discrete choice model, and those emerging from GERI

models. Section 4 discusses the specific case of the empirically-relevant nested

logit model, and shows how rationally inattentive behavior can generate choice

probabilities with substitution patterns which violate IIA, as in the above exam-

ple. Three examples illustrate both differences and similarities of GERI models

relative to the Shannon-entropic model. Section 5 concludes. All proofs are in the

Appendix.

2 Random utility models and generalized entropy

Consider a decision-maker (DM) making a discrete choice among a set of i =

1, . . . , N options. The utility of option i is

ui = vi + εi, (1)

where v = (v1, . . . , vN ) is deterministic and ε = (ε1, . . . , εN ) is a vector of ran-

dom utility shocks. This is the classic ARUM framework pioneered by McFadden
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(1978).

Assumption 1 The random vector ε follows a joint distribution with finite means

that is absolutely continuous, independent of v, and fully supported on RN .

Assumption 1 leaves the distribution of the ε’s unspecified, thus allowing for

choice probability systems far beyond the often used logit model. Importantly, it

accommodates arbitrary correlation in the εi’s across options, which is reasonable

and realistic in applications.

The utility maximizing DM has choice probabilities

qi(v) ≡ P
(
vi + εi = max

j
[vj + εj ]

)
, i = 1, ..., N.

An important concept in this paper is the surplus function of the discrete choice

model (so named by McFadden, 1981), defined as

W (v) = Eε(max
j

[vj + εj ]). (2)

Under Assumption 1, W (v) is convex and differentiable2 and the choice prob-

abilities coincide with the derivatives of W (v):

∂W (v)

∂vi
= qi(v) for i = 1, . . . , N

or, using vector notation, q(v) = ∇W (v). This is the Williams-Daly-Zachary

theorem, famous in the discrete choice literature (McFadden, 1978, 1981).

We define a vector-valued function H(·) = (H1(·), ...,HN (·)) : RN+ 7→ RN+ as

the gradient of the exponentiated surplus, i.e.

H(ev) = ∇v

(
eW (v)

)
. (3)

From the differentiability of W and the Williams-Daly-Zachary theorem it fol-

lows that the choice probabilities emerging from any random utility discrete choice
2The convexity of W (·) follows from the convexity of the max function. Differentiability follows

from the absolute continuity of ε.
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model can be expressed in closed-form in terms of the function H as:3

qi(v) =
Hi (ev)∑N
j=1Hj (ev)

, for i = 1, . . . , N. (4)

For the specific case of multinomial logit, the εi’s are i.i.d. across options iwith

a type 1 extreme value distribution, the surplus function isW (v) = log
(∑N

i=1 e
vi
)

,

implying that Hi(e
v) = evi . Thus, Eq. (4) becomes the familiar multinomial logit

choice formula: qi(v) = evi/
∑

j e
vj .

The function H (·) thus defined has domain RN+ and also range RN+ . As we will

see below, rationally inattentive behavior can lead to zero choice probabilities, so

it is important to extend the domain and range of this function to RN+0, to allow for

zero probabilities. The following proposition allows us to do that and assures that

the extended H has an inverse.

Proposition 2 (Invertibility) The function H (·) has to a continuous extension to

H : RN+0 → RN+0 that is surjective, injective and hence globally invertible.

Having established that function H is a bijection from RN+0 to RN+0, we can

define a function S(·) as the inverse of H(·),

S(·) = H−1(·). (5)

The proof of Proposition 2 leads to the following Corollary.

Corollary 3 Si (q) = 0⇔ qi = 0.

In what follows, we will refer to S as a generator function, and H as an inverse

generator function. The intuition behind the interpretation of S as a generator

comes from the fact that is a close relationship between the function S(·) and the

surplus function W (·) of the corresponding discrete choice model: as the next

proposition establishes, the surplus function W (·) and the generator function S(·)
are related in terms of convex conjugate duality.4

3By direct differentiation of (3), and applying the Williams-Daly-Zachary theorem, we have
qi(v) = Hi(e

W (v))/eW (v) for all i. Imposing
∑
i qi(v) = 1 we have

∑
iHi(e

W (v)) = eW (v).
4For a convex function g(x), its convex conjugate function is defined as g∗(y) =

maxx {x · y − g(x)}, which is also convex. When x and y are scalar and g(x) is differentiable,
then g(x) and g∗(y) are inverse mappings to each other. Vohra (2011) applies these ideas to mecha-
nism design setting. For details see (Rockafellar, 1970, ch. 12).
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Proposition 4 (Convexity properties and generalized entropy functions) Let as-

sumption 1 hold. Then:

(i) The surplus function W (v) is equal to

W (v) = log

(
N∑
i=1

Hi(e
v)

)
. (6)

(ii) The convex conjugate of the surplus function W (v) is

W ∗(q) =

{
q · logS(q) q ∈ ∆

+∞ otherwise,

where S(·) is a generator function defined in (5). We call the negative convex

conjugate −W ∗(·) a generalized entropy.

(iii) The surplus function W (v) is the convex conjugate of W ∗(q), that is

W (v) = max
q∈∆
{q · v −W ∗(q)} (7)

and the maximum on the right-hand side is attained at q(v) = ∇W (v).

Parts (i) and (ii) of this proposition establish a specific structure of the surplus

function W and its convex conjugate W ∗; this is new in the literature on ran-

dom utility models, and may be of independent interest. In particular, this result

contributes to the literature on perturbed random utility models, which has been

focused on characterizing choice probabilities as the solution of a deterministic

optimization problem (Hofbauer and Sandholm (2002); Fosgerau and McFadden

(2012); Fudenberg et al. (2015)).

We will use this structure to define a class of generalized entropies. To see

how this works, consider first the multinomial logit model. In this case, H is the

identity, implying that its inverse, the corresponding generator S(q) = q is also

just the identity. Then by Proposition 4(ii), the negative convex conjugate of the

surplus function is −W ∗(q) = −q · logq = −
∑

i qi log qi, which is just the

Shannon (1948) entropy.

Generalizing from this, −W ∗, the negative convex conjugate of the surplus

W of any ARUM may be viewed as a generalized entropy.5 Proposition 4(ii)
5We show in Appendix B that generalized entropies share some desirable properties with the
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shows how the generalized entropy may be expressed in terms of the function S as

−W ∗ (q) = −q · logS(q). In contrast to the Shannon entropy, the generalized en-

tropy will typically not be invariant to permutations of its components: exchanging

qi and qj , for instance, will change S(q) and thereby W ∗(q). This non-symmetry

of the generalized entropy, it will turn out, is crucial for generating choice proba-

bilities with substitution patterns which violate the IIA property, as in Example 1

above.

Proposition 4(iii) provides an alternative representation of the surplus function

of a random utility model, in addition to Eq. (2). It illustrates a close connection

between −W ∗(q) and the joint distribution of ε, the random utility shocks, which

aids interpretation of the generalized entropy. Specifically, Eq. (2) implies that the

surplus function can be written as

W (v) =

N∑
i=1

qi(v)(vi + E(εi|ui ≥ uj , j 6= i)).

Combining this with (7), we obtain an alternative expression for the generalized

entropy, as a choice probability-weighted sum of expectations of the utility shocks

ε:6

−W ∗(q) =
∑
i

qiE[εi|ui ≥ uj , j 6= i].

In this way, different distributions for the utility shocks ε in the random utility

model will imply different generalized entropies, and vice versa.

We conclude this section by listing some properties of the generator S(·), which

will be important in what follows.

Proposition 5 (Properties of the generator functions) Let assumption 1 hold. Then

the vector valued-function S(·) defined by (5) satisfies the following conditions:

(i) S is continuous and homogenous of degree 1.

(ii) q · logS(q) is convex.

(iii) S is differentiable with :

N∑
i=1

qi
∂ logSi(q)

∂qk
= 1, k ∈ {1, . . . , N},

Shannon entropy.

6See Chiong et al. (2016).
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where q is a probability vector with 0 < qi < 1 for all i.

3 Rational inattention

We now introduce the rational inattention model. The decision maker is again

presented with a group of N options, from which he must choose one. Each option

has an associated payoff v = (v1, ..., vN ), but in contrast to the ARUM, the vector

of payoffs is unobserved by the DM. Instead, the DM considers the payoff vector

V to be random, taking values in a set V ⊂ RN ; for simplicity, we take V to be

finite. The DM possesses some prior knowledge about the available options, given

by a probability measure µ(v) = P(V = v).

The DM’s choice is represented as a random action A that is a canonical unit

vector in RN . The payoff resulting from the action is V·A, namely the value of the

entry in V indicated by the action A. The problem of the rationally inattentive DM

is to choose the conditional distribution P(A|V), balancing the expected payoff

against the cost of information.

Denote an action by i and write pi(v) as shorthand for P (A = i|V = v). De-

note also the vector of choice probabilities conditional on V = v by p(v) =

(p1(v), . . . , pN (v)), and let p(·) = {p(v)}v∈V denote the collection of condi-

tional probabilities. The DM’s strategy is a solution to the following variational

problem:

max
p(·)
{E (V ·A)− information cost} . (8)

Our presentation of the rational inattention paradigm here follows Sims (2003),

in which agents are modelled as choosing directly their conditional choice prob-

abilities {p(v)}v∈V , taking the prior distribution µ(v) as given.7 Matějka and

McKay (2015) consider a more fundamental problem where agents first choose an

information structure (mapping from state of the world to information signals) and

then, based on signals, choose optimal actions. Due to the symmetry of the Shan-

non entropy, they show that there is no loss of generality from identifying signals

with choices, which provides a rationale for the model where agents choose choice

probabilities directly. In our case, the generalized entropy is not typically symmet-

ric, implying that this result no longer holds. As we have discussed, however, the

asymmetry is an important virtue of our approach as it allows us to generate plau-
7It is worth noting that this approach has been applied in many contexts. See for instance, Sims

(2010) and references therein.
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sible choice patterns in contexts where the IIA property of the multinomial logit

model does not hold.

In Section 3.1 we review results from the existing literature connecting the ra-

tional inattention model with the multinomial logit. Then in Section 3.2 we intro-

duce generalized entropy to the problem, leading to a class of Generalized Entropy

Rational Inattention (GERI) models. This connects the rational inattention model

to general ARUM, and Section 3.3 contains the main result of this paper, which

establishes an observational equivalence between discrete choice and rational inat-

tention models.

3.1 Shannon entropy and multinomial logit: the Matějka and McKay
(2015) result

The key element in the program above is the cost of information. Much of the

previous literature has utilized the mutual Shannon information between payoffs

V and the actions A to measure the information costs, and we review those results

here. Denote the Shannon entropy by Ω(q) = −q · logq. Denote also the uncon-

ditional choice probabilities by p0
i = Epi(V) and p0 = (p0

1, . . . , p
0
N ). Then the

mutual Shannon information between V and A is

κ(p (·) , µ) = Ω(E(p(V)))− E(Ω(p(V))) (9)

= −
N∑
i=1

p0
i log p0

i +
∑
v∈V

(
N∑
i=1

pi(v) log pi(v)

)
µ(v). (10)

Accordingly, we can specify the information cost as λκ(p, µ) where λ > 0

is the unit cost of information. As the distribution of payoffs is unspecified, we

may take λ = 1 at no loss of generality. The choice strategy of the rationally

inattentive DM is the distribution of the action A conditional on the payoff V that

maximizes the expected payoff less the cost of information, which is the solution

to the optimization problem

max
p(·)
{E (V ·A)− κ(p (·) , µ)} (11)

subject to

pi(v) ≥ 0 for all i,
N∑
i=1

pi(v) = 1. (12)
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Solving this, the DM finds conditional choice probabilities

pi(v) =
p0
i e
vi∑N

j=1 p
0
je
vj

for i = 1, . . . , N, (13)

that satisfy p0
i = Epi(V).

We may rewrite (13) as

pi(v) =
evi+log p0i∑N
j=1 e

vj+log p0j
=

eṽi∑N
j=1 e

ṽj
,

where ṽi = vi + log p0
i . This may be recognized as a multinomial logit model in

which the payoff vector v is shifted by logp0.

3.2 The Generalized Entropy Rational Inattention (GERI) model

Next we generalize the preceding equivalence result between rational inattention

and multinomial logit. We begin by generalizing the rational inattention frame-

work described above, using generalized entropy in place of the Shannon entropy.

Specifically, we let S be the generator corresponding to some ARUM satisfying

Assumption 1, and define ΩS (p) = −p · logS (p) as the corresponding general-

ized entropy. We define accordingly a general information cost by

κS (p (·) ,µ) = ΩS (Ep(V))− EΩS (p(V)) (14)

= −p0 · logS
(
p0
)

+
∑
v∈V

[p (v) · logS (p (v))]µ (v) .

A Generalized Entropy Rational Inattention (GERI) model describes a DM

who chooses the collection of conditional probabilities p (·) = {p(v)}v∈V to max-

imize his expected payoff less the general information cost

max
p(·)
{E (V ·A)− κS(p (·) , µ)} . (15)

The following proposition characterizes the solution to the GERI model.

Proposition 6 Let p (·) ,p0 be the solution to the GERI model. Then
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(i) The unconditional probabilities satisfy the fixed point equation

p0 = E

 H
(
eV+logS(p0)

)
∑N

j=1Hj

(
eV+logS(p0)

)
 . (16)

(ii) The conditional probabilities are given in terms of the unconditional probabil-

ities by

pi (v) =
Hi

(
ev+logS(p0)

)
∑N

j=1Hj

(
ev+logS(p0)

) . (17)

(iii) The optimized value of (15) is

E log

N∑
j=1

Hj

(
eV+logS(p0)

)
= EW

(
V + logS

(
p0
))
.

Part (i) of the proposition shows that the solution of the GERI model involves

a fixed point problem; in what follows, we assume that a solution exists.8

Part (iii) illustrates the close connection between convex analysis and the GERI

problem. To see this, note that the GERI information cost may be written as

κS(p(·), µ) = −W ∗(p0) + EW ∗(p(V)). (18)

Hence, given p0, the conditional choice probabilities p(v) can be generated, for

each v ∈ V , by the problem

max
p(v)∈∆

{
p(v) · (v + logS(p0))−W ∗(p(v))

}
, (19)

the optimized value of which, by Proposition 4(iii), is

W (v + logS(p0)), for each v ∈ V (20)

corresponding to Proposition 6(iii).

3.2.1 Zero choice probabilities and the consideration set

An important feature of the rational inattention model is that some p0
i may be zero,

in which case the corresponding pi (v) are also zero. To see this, consider the

8It is worth noticing that in general the uniqueness of a solution to GERI is not assured .
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solution to the GERI problem given in Eq. (17) and define ṽ = v + logS(p0) for

some v ∈ V . Let p0
i = 0. Then Corollary 3 implies that logSi(p

0) = −∞, or

equivalently, ṽi = −∞ and hence pi(v) = 0.

In this way the rational inattention model allows for the formation of a consid-

eration set, comprising those options that have strictly positive probability of being

chosen (c.f. Caplin, Dean and Leahy, 2016):

Definition 7 The consideration set of a GERI model is the set of options that have

positive unconditional choice probabilities

C =
{
i|p0

i > 0
}
.

The restriction of a vector v to C is denoted v|C .

Because of the possibility of zero choice probability for some options, GERI

models can also generate failures of the “regularity” property, i.e. that adding an

option to a choice set leads to an increase in the choice probability for one of the

original choice options. Section 4.3 provides an example.

While Proposition 6 does not explicitly characterize the consideration set emerg-

ing from a GERI model, the following corollary describes one important feature

that it has, namely that it excludes options that offer the lowest utility in all states

of the world.

Corollary 8 For some option j, and for all v ∈ V , let vj ≤ vi for all i 6= j, and

assume that the inequality is strict with positive probability. Then p0
j = 0 (that is,

option j is not in the consideration set).9

3.3 Equivalence between discrete choice and rational inattention

We now establish the central result of this paper, namely the equivalence between

additive random utility discrete choice models and rational inattention models. In

particular, we show that the choice probabilities generated by a GERI model lead

to the same choice probabilities as a corresponding ARUM and vice versa. From

the expressions for the choice probabilities in a GERI model in (17) and in an

ARUM in (4) it is clear that such a result is available: the expressions for the
9For the special case of the Shannon entropy (when S is the identity), the result can be strength-

ened even further. Corollary 10 in the Appendix shows that in that case, an option that is dominated
by another option in all states of the world will not be in the consideration set.
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choice probabilities are identical except for the location shift of the deterministic

utility components v by the vector logS
(
p0
)

in the GERI model.

Two technical issues arise, that we must deal with. First, we need to fix the

prior (µ,V), which is part of the GERI model but not of the random utility model.

Second, we need to take care of the fact that the GERI model allows some options

to have zero unconditional choice probabilities p0
i , while choice probabilities are

necessarily positive in the standard ARUM. We then have the following proposi-

tion.

Proposition 9 For every ARUM with choice probabilities q (v) and generator S

and given a prior (µ,V), there is a location shift vector c such that the GERI model

with prior (v→ µ (v − c) ,V + c) and generator S has choice probabilities p

that satisfy p (v − c) = q (v) for all v ∈ V .

Conversely, for every GERI model with prior (µ,V), generator S and choice

probabilities p (v) there is an ARUM defined on the consideration set of the GERI

model that yields the same choice probabilities for all v ∈ V .

In what follows, we apply this proposition to study a GERI model in which

the choice probabilities are equivalent to those from a nested logit discrete choice

model, which is a frequently-used model in empirical applications.

4 Example: The nested logit GERI model

From an applied point of view, an important implication of Proposition 9 is that

it allows us to formulate rational inattention models that have complex substitu-

tion patterns, going beyond the multinomial logit case. In this example, we con-

sider a GERI model with an information cost derived from a nested logit model.

The nested logit choice probabilities are consistent with a discrete choice model in

which the utility shocks ε have an certain generalized extreme value joint distribu-

tion. Among applied researchers, the nested logit model is often preferred over the

multinomial logit model because it allows some products to be closer substitutes

than others, thus avoiding the restrictions implied by the IIA property.10

We partition the set of options i ∈ {1, . . . , N} into mutually exclusive nests,

and let gi denote the nest containing option i. Let ζgi ∈ (0, 1] be nest-specific

parameters. For a valuation vector v, the nested logit choice probabilities are given
10cf. Maddala (1983, Chap. 2), and Anderson et al. (1996).
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by

qi(v) =
evi/ζgi∑
j∈gi e

vj/ζgi
· e

ζgi log
(∑

j∈gi
evj/ζgi

)
∑

all nests g e
ζg log

(∑
j∈g e

vj/ζg
) . (21)

The generator S corresponding to a nested logit model is

Si(q) = q
ζgi
i

∑
j∈gi

qj

1−ζgi

. (22)

Applying Proposition 9, the nested logit choice probabilities (21) are the same as

those from a GERI model with valuations

vi − ζgi log p0
i − (1− ζgi) log

∑
j∈gi

p0
j

 , i ∈ {1, . . . , n} . (23)

The generator S for the nested logit model in Eq. (22) has several interesting

features, relative to the Shannon entropy. First, Eq. (22) allows us to write the

generalized entropy ΩS(p) as

ΩS(p) = −
N∑
i=1

ζgipi log pi −
N∑
i=1

(1− ζgi)pi log

∑
j∈gi

pj

 . (24)

The first term in Eq (24) captures the Shannon entropy within nests, whereas the

second term captures the information between nests. According to this, we may

interpret Eq. (24) as an augmented version of Shannon entropy. It is also apparent

from (24) that ΩS(p) is not invariant to reordering of the choice probabilities, due

to the second term.

Second, when the nesting parameters ζgj = 1, then S is the identity (Sj(p) =

pj for all j), corresponding to the Shannon entropy. When ζgj < 1, then Sj(p) ≥
pj ; here, S(p) behaves as a probability weighting function that tends to overweight

options j belonging to larger nests. At the extreme ζgj → 0, all options within

the same nest effectively collapse into one aggregate option and become perfect

substitutes.

Using this model, we consider three examples, emphasizing both differences

and similarities of the GERI model vis-a-vis the Shannon entropy rational inatten-

tion model.
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4.1 Example 1: mango-pineapple-cheesecake continued

We return to the earlier pineapple-mango-cheesecake example from Section 1. For

these three products, we consider a model with two nests, in which the tropical

fruits pineapple (good 1) and mange (good 2) are placed in a separate nest g1 apart

from cheesecake (good 3), which is by itself in a second nest g2. For the nesting

parameters, we choose ζg1 = 0.2 and ζg2 = 0.8.

Recall that there are two possible outcomes for the valuations: v1 = (1, 1, 1)

or v2 = (0.9, 1, 1). Outcome v1 and v2 are equally likely a priori. Starting with

a GERI model, we note that the valuations for pineapple are never higher than for

mango and cheese cake and strictly lower with positive probability, and hence by

Corollary 8, the DM will never choose pineapple (p0
1 = 0). Since the valuations

for mango and cheesecake are identical across the two states of the world, so are

the GERI choice probabilities; they are (0.0, 0.66, 0.34) in both states.11 The cor-

responding location shift vector is c1 = logS(p0) = (−∞,−0.41,−1.09). This

can be rationalized by the same nested logit discrete choice model with v1 + c1 =

v2 + c1 = (−∞, 0.59,−0.09).

Conversely, we can start with the nested logit model, with valuations v1 =

(1, 1, 1) and v2 = (0.9, 1, 1). The choice probabilities are (0.27, 0.27, 0.46) un-

der v1 and (0.20, 0.32, 0.48) under v2. Under equal priors on v1 and v2, the

unconditional choice probabilities are p0 = (0.23, 0.30, 0.47), leading to a loca-

tion shift vector c2 = logS(p0) = (−0.80,−0.75,−0.75). This can be gen-

erated from a GERI model with valuations v1 − c2 = (1.80, 1.75, 1.75) and

v2 − c2 = (1.70, 1.75, 1.75).

We contrast these results with the RI model using the Shannon entropy. Start-

ing with the GERI model with equiprobable valuations v1 = (1, 1, 1) and v2 =

(0.9, 1, 1), the GERI choice probabilities are (0, 0.5, 0.5), corresponding to a lo-

cation shift vector c3 = (log 0 = −∞, log(0.5), log(0.5)). This can be ratio-

nalized by a multinomial logit model with valuations v1 + c3 = v2 + c3 =

(−∞, 0.31, 0.31).

Conversely, starting with a random utility model with equiprobable valuations

v1 = (1, 1, 1) and v2 = (0.9, 1, 1), the choice probabilities are (0.33, 0.33, 0.33)

under v1 but (0.31, 0.34, 0.34) under v2: note that the symmetry properties of the

Shannon entropy imply that the decrease in attractiveness of the pineapple under

ṽ2 leads to equal substitution towards mango and cheesecake. These two sets of
11Computing these choice probabilities requires solving the fixed point equation (16).
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choice probabilities can be rationalized in a Shannon entropy RI model with valu-

ation vector equal to, respectively, (2.13, 2.08, 2.08) and (2.03, 2.08, 2.08).

4.2 Example 2: comparing decision-making efficiency

In our second example, we expand the number of goods and do further comparison

of the choice probabilities from a GERI model with a nested logit information cost,

vs. the RI model with the Shannon entropy. There are five options, in which the

valuations v = (v1, v2, . . . , v5)′ are drawn i.i.d. uniformly from the unit interval.

We assume that options (1,2,3) are in one nest, and options (4,5) are in a second

nest. With this specification, all five options are a priori identical, and have equal

probability of being the option with the highest valuation. Hence, any asymmetry

in the choice probabilities reflects the underlying asymmetry in the information

cost.

In Table 1, we report the average choice probability for each option according

to two specifications of the nested logit cost function. In the upper panel, we set

ζ1 = ζ2 = 1, corresponding to the multinomial logit model. In the lower panel, we

set ζ1 = ζ2 = 0.5.

Choice probs: Option 1 Option 2 Option 3 Option 4 Option 5
Multinomial logit: ζ1 = 1, ζ2 = 1

Avg: 0.200 0.200 0.200 0.200 0.200
Median: 0.194 0.194 0.194 0.194 0.194
Std: 0.060 0.060 0.060 0.060 0.060
Overall efficiency: Pr(Choosing the best option) = 0.283

Nested logit: ζ1 = 0.5, ζ2 = 0.5
Avg: 0.221 0.221 0.221 0.169 0.169
Median: 0.200 0.200 0.200 0.157 0.157
Std: 0.116 0.116 0.116 0.081 0.081
Overall efficiency: Pr(Choosing the best option) = 0.355

Table 1: Choice Probabilities in GERI model: Nested Logit vs. Multinomial Logit

As expected, we see that the average choice probabilities are identically equal

to 0.2 across all five options in the multinomial logit case. As we remarked before,

this reflects the feature of the Shannon-based information cost (Si(p) = pi) in

which information costs are separable across all five options.12 In the nested logit
12In the nested logit case, we obtained the unconditional distribution by iterating over the fixed
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case, in contrast, we see that choice probabilities are higher for the options 1,2 and

3, which constitute the larger nest, and smaller for options 4,5 which constitute the

smaller nest. The choice probabilities are identical within nests.

Moreover, the performance of the two models is surprisingly different. Under

the multinomial logit specification, the overall efficiency – defined as the average

probability of choosing the option with the highest valuation – is 28%. The overall

efficiency for the nested logit is substantially higher, being over 35%. Then it

makes a substantial difference for a DM to be processing information using the

nested logit information cost rather than the Shannon information cost function.

4.3 Example 3: Consideration sets and failure of regularity

Finally, we consider a fully solved out example illustrating the possibility of zero

unconditional choice probabilities and failure of regularity, which can occur in the

rational inattention framework but not in the ARUM, and represents an important

point of difference between the two models. Matějka and McKay (2015, pp. 293ff)

have demonstrated that failures of regularity can occur in the RI model under Shan-

non entropy. We show that such failures also occur in a GERI model, in particular

for the nested logit information cost.

Consider a setting with four choice options. Table 2 lists the valuation vectors

for these four options in the three equiprobable states of the world. We consider

both the Shannon and GERI-nested logit models. For the nested logit specification,

we assume that nest 1 consists of options (1,2) with nesting parameter ζ1 = 0.7,

and nest 2 consists of options (3,4) with parameter ζ2 = 0.8.

State: v1 v2 v3

Option 1 2 3 3
Option 2 1 2 2
Option 3 3 1 3
Option 4 2 4 2

Table 2: Valuation vectors in Example 2

For each model, we compute the unconditional probabilities, solving the fixed-

point equation (16) first for the choice set {1, 2, 3}, and then for the expanded

choice set {1, 2, 3, 4}.

point relation p0 = Ep(V), starting from the multinomial logit distribution.
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Model: Shannon Shannon GERI- GERI-
nested logit nested logit

Choice set: {1, 2, 3} {1, 2, 3, 4} {1, 2, 3} {1, 2, 3, 4}
p0

1 0.71 0.00 0.71 0.00
p0

2 0.00 0.00 0.00 0.00
p0

3 0.29 0.51 0.29 0.57
p0

4 — 0.49 — 0.43
Optimized surplus:
EW (V + logS(p0)) 2.705 2.865 4.222 6.032

Table 3: Unconditional probabilities for Example 3

Table 3 shows the unconditional choice probabilities. The Shannon and GERI-

nested logit specifications yield similar results. With the smaller set of options,

only options 1,2 are chosen with positive probabilities. When option 4 is added,

however, option 1 drops out of the consideration set, and only options 3,4 are cho-

sen with positive probability. This is a failure of the regularity property, as the

addition of option 4 increases the choice probability for choice 1.

The underlying mechanism is that the addition of option 4 allows the DM to

form an effective “hedge” in conjunction with option 3. Option 3 yields a low

payoff in state v2, but then option 4 yields a high payoff; option 3 yields high

payoffs in the other states.

Finally, note that with the expanded choice set, option 2 is chosen with zero

probability, even though it is not inferior in all states. This shows that the charac-

terization of consideration sets in Corollary 8 is not exhaustive.

5 Summary

The central result in this paper is the observational equivalence between an additive

random utility discrete choice model and a corresponding Generalized Entropy

Rational Inattention (GERI) model. Thus the choice probabilities of any additive

random utility discrete choice model can be viewed as emerging from rationally

inattentive behavior, and vice-versa; we can go back and forth between the two

paradigms.13 Then, in order to apply an ARUM, it is no longer necessary to assume

that decision makers are completely aware of the valuations of all the available
13In a similar vein, Webb (2016) demonstrates an equivalence between random utility models and

bounded-accumulation or drift-diffusion models of choice and reaction times used in the neuroeco-
nomics and psychology literature.
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options. This is important, as it is clearly unrealistic to expect decision makers to

be aware of all options in a large set of options.

The underlying idea is that, by exploiting convex analytic properties of the dis-

crete choice model, we establish a “duality” between the discrete choice and GERI

models in the sense of convex conjugacy. Precisely, the surplus function of a dis-

crete choice model has a convex conjugate that is a generalized entropy. Succinctly,

then, GERI models are rational inattention problems in which the information cost

is built from the convex conjugate of some ARUM.

A few remarks are in order. First, the equivalence result in this paper is at the

individual level, hence it also holds for ARUM with random parameters, including

the mixed logit or random coefficient logit models which have been popular in

applied work.14 Any mixed discrete choice model such as these is observationally

equivalent to a mixed GERI model.

In addition, there is also a connection between the results here and papers in the

decision theory literature. For instance, Gul et al. (2014) show an equivalence be-

tween random utility and an “attribute rule” model of stochastic choice. The main

point in our paper is to establish a duality between rational inattention models and

random utility discrete choice models, which results in an observational equiva-

lence of their choice probabilities. A similar duality might arise between random

utility discrete choice models and other models from decision theory.

Finally, there are rational inattention models outside the GERI framework; that

is, rational inattention models with information costs outside the class of gener-

alized entropies introduced in this paper.15 Obviously, choice probabilities from

these non-GERI models would not be equivalent to those which can be generated

from additive random utility discrete-choice models; it will be interesting to exam-

ine the empirical distinctions that non-GERI choice probabilities would have.

14See, for instance, Berry et al. (1995), McFadden and Train (2000), Fox et al. (2012).
15As an example, the function g(p) = −

∑N
i=1 log(pi) is not a generalized entropy function; thus

a rational inattention model using this as an information cost function would lie outside the GERI
framework.
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A Proofs and additional results

Notation. Vectors are denoted with boldface as q = (q1, ..., qN ). A univariate

function applied to a vector is understood as coordinate-wise application of the

function, e.g., eq = (eq1 , ..., eqN ). Consequently, if a is a real number then a +

q = (a+ q1, ..., a+ qJ). The gradient with respect to a vector v is ∇v; e.g., for
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v = (v1, ..., vN ), ∇vW (v) =
(
∂W (v)
∂v1

, ..., ∂W (v)
∂vN

)
. The Jacobian is denoted J

with, for example,

JlogS (q) =


∂ logS1(q)

∂q1
... ∂ logS1(q)

∂qN

... ... ...
∂ logSN (q)

∂q1
... ∂ logSN (q)

∂qN

 .

A dot indicates an inner product or products of vectors and matrixes. For a vector

q, we use the shorthand 1 · q =
∑

i qi. The unit simplex in RN is ∆.

Proof of Proposition 2. Note first that we may write

H (ev) = eW (v)q (v) .

The probabilities in q are never zero since the random utility shocks have full

support. Define for convenience X =
{
v ∈ RN |v1 = 0

}
. The results in Norets

and Takahashi (2013) apply to the mapping q: Hence q is a bijection between X

and the interior of the unit simplex ∆.

To obtain injectivity of H on RN+ , suppose that H (ev) = H
(
ev
′
)

and aim

to show that v = v′. Since Hi (ev) = eW (v)qi (v) and
N∑
i=1

qi = 1, we may

sum
N∑
i=1

Hi (ev) =
N∑
i=1

Hi

(
ev
′
)

to find that W (v) = W (v′) and hence that

q (v) = q (v′). Then by the Norets and Takahashi (2013) result, v = v′+(c, ..., c)

which leads to W (v) = W (v′) + c = W (v) + c, and hence c = 0.

Consider next surjectivity and let x ∈ RN+ be an arbitrary point. We aim to

solve the equation H (y) = x. By Norets and Takahashi, there exists v ∈ X such

that q (v) = x/
N∑
i=1

xi. Let c = −W (v) + ln
N∑
i=1

xi. Then

H
(
ev+c

)
= eW (v+c)q (v) = q (v)

N∑
i=1

xi = x,

which establishes that H is a surjection from RN+ to RN+ .

The next point is to extend H to RN+0. For y on the boundary of RN+0, let

z = {i ∈ {1, ..., N} |yi > 0} index the non-zero components of y. If z = ∅,
then we let H (y) = (0, ..., 0). For z 6= ∅, consider the discrete choice model

(1) with choice restricted to z. Let p̃i, i ∈ z (y) be the choice probabilities from

this restricted model and let p̃i = 0 for i /∈ z. Similarly let W̃ be the expected
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maximum utility for the restricted model. Define then H (y) = eW̃ (p̃1, ..., p̃N ).

The argument that H is a bijection from RN+ to RN+ may be repeated for each

combination of zeros reflected in the set z. Hence the extended function is a bijec-

tion from RN+0 to RN+0.

It remains to show that H is continuous. We will do this by establishing that

the values of H on the boundary of RN+0 are limits of values from sequences in the

interior. A limit point of a continuous function is unique, hence for each boundary

point we need just consider one sequence converging to that point.

Consider first a sequence {yn}∞n=1 with limn→∞ yn = (0, ...0). As the limit

is unique if it exists, consider yn = y/n for some y ∈RN+ . Note that W (lnyn) =

W (lny) − lnn → −∞. Then since qi (yn) are bounded between 0 and 1,

H (yn)→ (0, .., 0) as required.

Consider then y ∈RN+ , let z ⊂ {1, ..., N} be non-empty and define yni = yi

for i ∈ z and yni = yi/n for i /∈ z. Let F be the cumulative distribution function

of the vector of random utility shocks and let Fi be its partial derivatives. Then

choice probabilities may be written as

qi (v) =

∫ ∞
−∞

Fi (u+ vi − v1, ..., u+ vi − vN ) du. (25)

As above, let q̃ be the choice probabilities when choice is restricted to z. At no

loss of generality, let z =
{

1, ..., Ñ
}

, where 0 < Ñ < N . For i ∈ z, use the

dominated convergence theorem together with (25) to see that

lim
n→∞

qi (lnyn) =

∫ ∞
−∞

lim
n→∞

Fi (u+ ln yni − ln yn1 , ..., u+ ln yni − ln ynN ) du

=

∫ ∞
−∞

Fi
(
u+ ln yi − ln y1, ..., u+ ln yi − ln yÑ ,∞...,∞

)
du

= q̃i.

These probabilities sum to 1. Hence limn→∞ qi (lnyn) = 0 for i /∈ z.
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By dominated convergence,

lim
n→∞

W (yn) = lim
n→∞

(∫ ∞
0

(1− F (u− lnyn)) du−
∫ 0

−∞
F (u− lnyn) du

)
=

∫ ∞
0

(
1− lim

n→∞
F (u− lnyn)

)
du−

∫ 0

−∞
lim
n→∞

F (u− lnyn) du

=

∫ ∞
0

(
1− F

(
u− ln y1, ..., u− ln yÑ ,∞, ...,∞

))
du

−
∫ 0

−∞
F
(
u− ln y1, ..., u− ln yÑ ,∞, ...,∞

)
du

= W̃

Combining these results, find that H (limn→∞ yn) = limn→∞H (yn) as re-

quired. This completes the proof.

Proof of proposition 4. We first evaluate W ∗ (q). If 1 · q 6= 1, then

q · (v + γ)−W (v + γ) = q · v −W (v) + (1 · q− 1) γ,

which can be made arbitrarily large by changing γ and hence W ∗ (q) = ∞. Next

consider q with some qj < 0. W (v) decreases towards a lower bound as vj →
−∞. Then q ·v−W (v) increases towards +∞ and hence W ∗ is +∞ outside the

unit simplex ∆.

For q ∈ ∆, we solve the maximization problem

W ∗(q) = sup
v
{q · v −W (v)}. (26)

Note that for any constant k we have W (v + k · 1) = k + W (v), so that we

normalize 1 ·v = 0. Maximize then the Lagrangian q ·v−W (v)−λ (1 · v) with

first-order conditions 0 = qj − ∂W (v)
∂vj

− λ, which lead to λ = 0. Then

q = ∇vW (v)⇔

qeW (v) = ∇v

(
eW (v)

)
= H (ev)⇔

S (q) eW (v) = ev ⇔

logS (q) +W (v) = v⇒

q · logS (q) +W (v) = q · v.

Inserting this into (26) leads to the desired result.
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W is convex and closed and hence W is the convex conjugate of W ∗ (Rock-

afellar, 1970, Thm. 12.2). This, along with Fenchel’s equality (Rockafellar, 1970,

Thm. 23.5), proves part (iii). Finally, for part (i), let q be a solution to problem (7).

Then, by the homogeneity of H we have q = 1
αH(ev), where α =

∑N
j=1Hj(e

v).

Then, by the definition of S it follows that S(q) = ev

α . Replacing the latter expres-

sion in Eq. (7) we get

W (v) = qv − q log (ev/α) ,

= qv − q (log ev + logα) ,

= log

 N∑
j=1

Hj(e
v)

 .

Proof of Proposition 5. Continuity of S follows from continuity of the partial

derivatives of W , which is immediate from the definition. Homogeneity of S is

equivalent to homogeneity of H. Using the homogeneity property of W

S−1(λev) = ∇v(eW (v+log λ)) = λ∇v(eW (v)) = λS−1(ev),

which shows that H and hence S are homogenous of degree 1.

The requirement that
∑N

i=1 qi
∂ logSi(q)

∂qk
= 1 in the relative interior of the unit

simplex ∆ may be expressed in matrix notation as

(q1, . . . , qN ) · JlogS(q) = (1, . . . , 1),

where

JlogS(q) =

{
∂ logSi (q)

∂qj

}N
i,j=1

is the Jacobian of logS(q).

Defining t̂ ≡ logS(q), we have q = H
(
et̂
)

and hence W
(
et̂
)

= log(1 ·

H(et̂)) = log 1 = 0 by Proposition 4. Noting that (log(S))−1(̂t) = H(et̂) the

requirement in part (ii) is equivalent to

(q1, . . . , qN ) = (q1, . . . , qN ) · JlogS(q) · J(logS)−1 (̂t) = (1, . . . , 1) · JH(et̂)(̂t).
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Now, use the Williams-Daly-Zachary theorem to find that

(1, . . . , 1) · JH(et̂)(̂t) = ∇t̂

(
eW(t̂)

)
= eW (ṽ) (q1, . . . qN ) = (q1, . . . qN ) .

as required.

Part (ii) follows from Proposition 4(ii).

Proof of proposition 6. The Lagrangian for the DM’s problem is

Λ = E (V ·A)−κS(p, µ)+E

γ (V)

1−
∑
j

pj (V)

+E

∑
j

ξj (V) pj (V)

 ,

where γ (V) and ξj (V) are Lagrange multipliers corresponding to condition (12).

Before we derive the first-order conditions for pj (v) it is useful to note that we

may regard the terms logS
(
p0
)

and logS (p (v)) in the information cost κS(p, µ)

as constant, since their derivatives cancel out by Proposition 5(iii). Define ṽj =

vj + ξj (v) + logSj
(
p0
)

and ṽ = (ṽ1, ..., ṽN ). Then the first-order condition for

pj (v) is easily found to be

logSj (p (v)) = ṽj − γ (v) . (27)

This fixes p (v) as a function of p0 since then

p (v) = H
(
eṽ
)

exp (−γ (v)) . (28)

If some pj (v) = 0, then we must have ṽj = −∞, which implies that Sj
(
p0
)

=

0 and the value of ξj (v) is irrelevant. If pj (v) > 0, then ξj (v) = 0. We may then

simplify by setting ξj (v) = 0 for all j,v at no loss of generality, which means that

ṽj = vj + logSj
(
p0
)
.

Using that probabilities sum to 1 leads to

exp (γ (v)) =
∑
j

Hj

(
eṽ
)

and hence (i) follows. Item (ii) then follows immediately.

Now substitute (17) back into the objective, using pj (v) ξj (v) = 0 , to find
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that it reduces to

Λ = Eγ (V) = E log
∑
j

Hj

(
eV+logS(p0)

)
(29)

We may then use (29) to determine p0. Now apply Eq. (6) to establish part (iii)

of the proposition.

Proof of corollary 8. Let ◦ denote the Hadamard product, i.e. (a1, ..., aN ) ◦
(b1, ..., bN ) = (a1b1, ..., aNbN ). Assume, towards a contradiction, that p0

j > 0.

It follows from cyclic monotonicity (Rockafellar, 1970, Thm. 23.5) that pj (v)

increases as the utility of other options i, i /∈ j decrease. Then

p0
j = E

 Hj

(
eV ◦ S

(
p0
))∑

k

Hk (eV ◦ S (p0))

 (30)

< E

 Hj

(
eVjS

(
p0
))∑

k

Hk

(
eVjS (p0)

)
 (31)

= E

 eVjHj

(
S
(
p0
))

eVj
∑
k

Hk (S (p0))

 = E

 p0
j∑

k

p0
k

 = p0
j . (32)

This is a contradiction as desired.

Proof of Proposition 9. Let q0 = Eq (v), c = − logS (q0) and consider

the GERI model with prior
(
v→ µ

(
v+ logS

(
q0
))
,V − logS

(
q0
))

and inverse

generator H. The GERI conditional choice probabilities satisfy

pi(v − logS (q0)) =
Hi(e

v−logS(q0)+logS(p0))∑N
j=1Hj(ev−logS(q0)+logS(p0))

with p0(v − logS (q0)) = Ep(v − logS (q0)). Then p(v − logS (q0)) = q(v)

solves the GERI maximization problem.

To prove the converse, consider a GERI model with prior (µ,V), inverse gen-

erator H and choice probabilities p(v) and let C be its consideration set. For i /∈ C
we have pi(v) = 0 and logSi(p

0) = −∞ by Corollary 3. Let c = logS(p0).
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Then for i ∈ C we have

pi(v) =
Hi(e

v+logS(p0))∑N
j=1Hj(ev+logS(p0))

= P

(
vi + ci + εi = max

j
{vj + cj + εj}

)
= P

(
vi + ci + εi = max

j∈C
{vj + cj + εj}

)
,

which is an ARUM on C with random utility shocks (v + ε)|C .

In the case of the Shannon entropy, Corollary 8 can be strengthened consid-

erably. In that case, any alternative that is dominated by another alternative in all

states of the world will never be chosen, as shown in the following corollary:

Corollary 10 Let S be the identity. Suppose that option j is dominated by option i

in the sense that ∀v ∈ V : vj ≤ vi with strict inequality for some v. Then p0
j = 0.

Proof. Suppose to get a contradiction that p0
j > 0. From (13), obtain that for all

options k with p0
k > 0 we have

1 =
p0
k

p0
k

=
1

p0
k

Epk(V) = E

 exp (Vk)∑
k′

exp (Vk′) p
0
k′

 .

Then

1 = E

 exp (Vj)∑
k′

exp (Vk′) p
0
k′

 < E

 exp (Vi)∑
k′

exp (Vk′) p
0
k′

 = 1,

which is a contradiction.

B Additional properties of generalized entropy

We have shown that the generalized rational inattention model is always equivalent

to an ARUM and conversely that the generalized rational inattention model may

provide a boundedly rational foundation for any ARUM. We have discussed that

the symmetry of generalized entropy is not desirable but it is still natural to ask

whether an information cost based on generalized entropy has other properties that

one would desire for an information cost. In this section we show that κS(p (·) , µ)
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does indeed possess two reasonable and desirable properties of cost functions that

have been discussed in the existing literature (cf. de Oliveira et al. (2017), Hébert

and Woodford (2016)), thus providing normative support for the GERI framework.

First, when A and V are independent, then the action A carries no information

about the payoff V. In that case the information cost should be zero, i.e.

Independence. If A and V are independent, then κS(p(·), µ) = 0.

Second, the mutual Shannon information κ(p (·) , µ) is a convex function of

p. We show that the information cost κS(p (·) , µ) has a slightly weaker property,

namely that it is convex on sets where Ep(V) is constant.

Convexity. For a given µ, the information cost κS(p (·) , µ) is convex on any set

of choice probabilities vectors satisfying {p : V 7→ ∆| Ep(V) = p̂}.

The mutual Shannon information κ(p (·) , µ) satisfies these two properties. The

next proposition establishes that the information cost defined in (14) using gener-

alized entropy also satisfies these properties.

Proposition 11 The information cost defined in Eq. (14) satisfies the indepen-

dence and convexity conditions.

Proof of Proposition 11. Independence: By independence, we have, for all i,

pi(v) = ki, a constant. Then p0
i = ki and κS(p(·), µ) = 0.

Convexity: Consider two sets of choice probabilities p1 (v) ,p2 (v) ,v ∈ V ,

that have the same implied unconditional probabilities Ep1(V) = Ep2(V). For

ρ ∈ [0, 1], define pρ as the convex combination ρp1 (v) + (1− ρ)p2 (v). Then

we would like to show that

ρκS (p1(·), µ) + (1− ρ)κS (p2(·), µ) ≥ κ (pρ(·), µ) .

But

ρκS (p1(·), µ) + (1− ρ)κS (p2(·)µ)− κ (pρ(·), µ)

=− ρΩS (p1)− (1− ρ) ΩS (p2) + ΩS (ρp1 + (1− ρ)p1) ,

which is positive by concavity of ΩS (p) (Proposition 5(ii)).

30


	1 Introduction
	2 Random utility models and generalized entropy
	3 Rational inattention
	3.1 Shannon entropy and multinomial logit: the Matejka and McKay (2015) result
	3.2 The Generalized Entropy Rational Inattention (GERI) model
	3.2.1 Zero choice probabilities and the consideration set

	3.3 Equivalence between discrete choice and rational inattention 

	4 Example: The nested logit GERI model
	4.1 Example 1: mango-pineapple-cheesecake continued
	4.2 Example 2: decision-making efficiency comparison
	4.3 Example 3: Consideration sets and failure of regularity

	5 Summary
	References
	A Proofs and additional results
	B Additional properties of generalized entropy

