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Abstract

We develop and estimate a dynamic model of risk-shifting over the business cycle. First, eq-

uity holders with Epstein-Zin preferences increase their taking of idiosyncratic risk substantially

more than the standard model in repeated games, because they perceive the arrival probability

of bad states higher than the actual probability and prefer an early resolution of macroeconomic

uncertainty. Second, sudden switches to bad states and large shocks in the bad states induce the

countercyclical and “synchronized” idiosyncratic risk. Third, combined with high market risk

premium in the bad states, the clustered risk-taking generates the countercyclical idiosyncratic

volatility discount on equity returns.
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1 Introduction

Macroeconomic risk affects a firm’s financing, default and risk-taking policies and its asset prices.

In a structural model that features macroeconomic uncertainty and investors’ preference for an

early resolution of the uncertainty, we examine how macroeconomic risk impacts corporate risk-

taking policy and its asset pricing implications. Our model generates two novel results. First, firms

increase their taking of idiosyncratic risk simultaneously in recessions rather than in expansions,

causing a countercyclical and “synchronized” risk as documented in Herskovic, Kelly, Lustig, and

Van Nieuwerburgh (2015). Second, combined with the countercyclical market risk premium, the

clustering of idiosyncratic risk-taking decreases equity returns much more in recessions than in

booms, resulting in a countercyclical idiosyncratic volatility discount (Ang, Hodrick, Xing, and

Zhang, 2006).1

In a traditional risk-shifting model, Jensen and Meckling (1976) argue that, because equity

holders are not obligated to pay back debt holders from their own pockets at bankruptcy, they

have limited downside risk but can receive unlimited upside profits. Once debt is in place, equity

holders of a distressed firm strategically increase risk in an effort to save the firm. By doing so,

equity holders effectively shift this excessively increased risk to debt holders in this one-time game.

Leland (1998) extends it to repeated games by allowing the once-distressed firm to return to debt

markets and refinance its debt upward if it has managed to survive. He concludes the agency cost

is less severe in repeated games, because equity holders face an implicit cost – too much risk-taking

might cause their firm to go bankrupt earlier than otherwise, therefore causing the loss of future

tax benefits.

In our structural model, the corporate risk-taking decision is made by equity holders with

Epstein and Zin (1989) (EZ) preferences, who prefer an early resolution of uncertainty. We show

that, within this framework, the EZ-type equity holders have stronger incentives to increase their

taking of idiosyncratic risk in the presence of macroeconomic uncertainty risk. The macroeconomic

uncertainty risk we emphasize is the aggregate state-switching risk stemming from large shocks,

1The so-called “idiosyncratic volatility discount” is based on the finding by Ang et al. (2006) that firms with a
high realized idiosyncratic stock volatility receive stock returns lower than those with high volatility by 1.06% per
month in both domestic and international stock markets. Huang (2009) finds a similar result that firms with high
cash flow volatility earn abnormally lower stock returns than their counterparts with low volatility, by 1.35% per
month.
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different from (Brownian) risk stemming from small shocks within one miwenaggregate state. The

intuition is as follows. First, because of a countercyclical market risk premium in bad times,

the risk-adjusted firm value perceived by risk-neutral equity holders in recessions is much lower

than that in expansions. Similar to the argument by Almeida and Philippon (2007) that the

risk-adjusted distress cost is much higher than that without risk adjustment, the risk-adjusted firm

continuation value in our model is much lower than that without risk adjustment. Therefore, small,

negative shocks induce equity holders to take on more idiosyncratic risk earlier in recessions than

in expansions. Second, when a large negative marketwide shock shifts the aggregate economy from

the good state to the bad state, many firms choose to default because the large shock can easily

decrease their cash flow levels to a low bound, inducing them to increase risk simultaneously and

causing the synchronized idiosyncratic risk (Herskovic et al., 2015).2 Lastly, and more important, in

good times, the probability of the economy sliding into a recession, as perceived by the risk-neutral

agent, is greater than the actual probability, even if the recessions are transitory and the economy

is in expansion most of the time. Therefore, those agents who are concerned about the arrival of

bad times, increase their taking of idiosyncratic risk earlier than otherwise, because they prefer an

early resolution of the macroeconomic uncertainty.

Our paper emphasizes the taking of idiosyncratic risk instead of total risk, compared to Leland

(1998), because of the countercyclical market risk and risk premium. The intuition is straightfor-

ward: Equity holders of a distressed firm want to increase idiosyncratic risk in the hope that the

“idiosyncratic investments” might lead the firm to a different direction than the sliding economy,

if the aggregate economy is deteriorating. Consistent with the above reasoning, our model predicts

that, because of the countercyclical market risk premium and investors’ preference for an early

resolution of uncertainty, risk-neutral equity holders have greater incentives to take on more id-

iosyncratic risk, particularly in recessions. This prediction helps explain recent empirical findings of

countercyclical idiosyncratic risk-taking. Bloom (2009) reports the percentage increase in various

dispersion measures of cash flow shocks in recessions relative to expansions to be between 0.23 and

0.67. Herskovic et al. (2015) find that the average volatilities of idiosyncratic cash flow and stock

return residuals are high in recessions, a manifestation of idiosyncratic risk clustering. Recently,

2In contrast, a large positive shock in good times does not hit the firm’s low bound of risk-taking. Therefore, it
is less likely for the risk-taking clustering to be observed in expansions.
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Bartram, Brown, and Stulz (2016) have confirmed that both idiosyncratic cash flow volatility and

return volatility increase with market risk. While Herskovic et al. (2015) show that customer-

supplier net formation creates a common factor in firm-level idiosyncratic risk in a network model,

their model does not explicitly link the idiosyncratic risk-taking behavior with the business cycle,

but we do.

The corporate risk-taking strategy has significant implications for asset prices. We start with

a single-state baseline model and derive a closed-form solution for equity returns to deliver the

intuition. Intuitively, levered equity is a long position on a call option, and its value increases

with idiosyncratic volatility. Therefore, equity holders of a distressed firm, who are aware of this

advantage, increase their idiosyncratic volatility, particularly in recessions. Doing so allows them to

capture upside profits and become less sensitive to declining cash flows and asset values. Therefore,

firms with high idiosyncratic volatility have low systematic risk exposure, and receive lower equity

returns than those with lower idiosyncratic volatility.

By extending the single-state model to a two-state model, we further demonstrate the macroe-

conomic uncertainty amplifies the idiosyncratic volatility discount effect from the single-state econ-

omy. First, the countercyclical clustering of idiosyncratic risk-taking causes the procyclical sensi-

tivity of equity to the systematic cash flows risk. That is, the greater taking of idiosyncratic risk

causes the lower systematic risk exposure in bad aggregate states. Second, because the expected

market risk premium is high in the bad states, the equity risk exposure is negatively correlated

with this expected market premium. The negative covariance between the equity risk exposure and

the expected market risk premium further reduces the expected equity returns for firms with high

idiosyncratic volatility, resulting in a countercyclical idiosyncratic volatility discount.

To take the model to the data, we use simulated method of moments to estimate the fully-

fledged two-state model and show its quantitative implications for asset prices. First, in our model

parameter sensitivity analysis, we find that the timing of risk-shifting is much more sensitive to the

macroeconomic state-switching risk, such as the aggregate state-switching probability and the state-

switching risk premium, relative to the market volatility and the market risk premium. Second,

our calibrations demonstrate that our model is able to generate a sizable idiosyncratic risk discount

on equity returns, particularly in recessions. The countercyclical idiosyncratic volatility discount

is robust to various model specifications, estimation methods and parameter changes. The data
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strongly support for this prediction. When we use the idiosyncratic cash flow volatility to form

portfolios, firms with low volatility earn higher returns than those with high volatility, by 8.227%

per year. This difference is 15.042% in recessions and 7.499% in expansions, respectively. When

we use the idiosyncratic equity return volatility to form portfolios, firms with low return volatility

earn higher equity returns on average than those with high equity return volatility, by 11.051% for

the whole sample, 15.716% in recessions and 9.929% in expansions, respectively.

Our work is related to three strands of the literature. The first strand is the emerging literature

that examines the impacts of macroeconomic risk on corporate financing and investment decisions as

well as credit risk. Hackbarth, Miao, and Morellec (2006) were the first to introduce macroeconomic

dynamics to dynamic capital structure/credit risk models (i.e., Leland (1994); Fischer, Heinkel,

and Zechner (1989); Goldstein, Ju, and Leland (2001)). Bhamra, Kuehn, and Strebulaev (2010a,b)

introduce consumption-based asset pricing to this framework, and study the dynamics of aggregate

leverage and the equity risk premium. Similarly, Chen (2010) seeks to explain two related empirical

puzzles, i.e., observed low financial leverage and high credit spreads. Along these lines, scholars

examine the effects of macroeconomic uncertainty on credit risk. For example, Koijen, Lustig, and

Van Nieuwerburgh (2010) show that bond factors from different business cycle horizons are priced in

the cross-section of stock returns, Kuehn and Schmid (2014) examine the importance of investment

options in modeling credit risk, and Gomes and Schmid (2016) develop a general equilibrium model

and connect the prices of stocks and bonds with endogenous leverage and aggregate volatility.

However, they do not examine the corporate endogenous risk-taking behavior over the business

cycle.3

The second strand concerns the theoretical literature on the well known risk-shifting problem

between equity and debt holders. Since Jensen and Meckling (1976), the risk-shifting behavior of

corporations has been well studied, theoretically. The well known examples are Leland (1998) and

Ericsson (2000). Recent theoretical works introduce various costs of taking excess risk. We follow

Hennessy and Tserlukevich (2008) and model a value-destroying cost, the cost being proportional

to the excess taking of risk.4 Additionally, we introduce and estimate the upfront cost of increasing

3Chen, Collin-Dufresne, and Goldstein (2009), Arnold, Wagner, and Westermann (2013), and Chen, Cui, He, and
Milbradt (2014) examine credit spreads. Ai and Kiku (2013) study the value premium with the presence of the
time-varying macroeconomic risk.

4Panageas (2010) introduces the bailout into the risk-shifting problem. The implicit cost of increasing risk is the
loss of the opportunity to be bailed out, as potential bailouters will be reluctant to save a high-risk firm.
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idiosyncratic risk and the cost of reversing the increased risk. In our structural estimation, we find

that the value-destroying cost is the most important determinant, compared with the two upfront

risk adjustment costs. Second, between the two upfront costs, the cost of reversing the increased

risk plays a more important role than the cost of increasing the risk, implying that the future cost

in repeated games is a crucial part of understanding the firm’s risk-shifting behavior.

Our paper belongs to a third strand of literature that connects agency conflicts with asset

valuations.5 Davydenko and Strebulaev (2007) demonstrate that strategic default decisions by

equity holders have an adverse effect on bond prices. McQuade (2016) examines the implications of

the strategic default option, in addition to the growth option, in the presence of stochastic volatility,

for credit spreads and stock returns. Favara, Schroth, and Valta (2011) and Hackbarth, Haselmann,

and Schoenherr (2015) study the effect of equity holders’ bargaining power at bankruptcy on stock

returns. By studying another agency conflict, we demonstrate that the negative association between

idiosyncratic volatility and the future stock return is driven by strategic risk-shifting behavior,

particularly in recessions.

The remainder of the paper proceeds as follows. We present the baseline model in Section 2 and

the fully-fledged model with macroeconomic uncertainty risk in Section 3. Section 4 discusses the

asset pricing implications of the risk-taking. Section 5 describes the data and simulated method

of moments. Section 6 presents estimation results and Section 7 examines the implications of the

estimated model for corporate risk-shifting and equity returns. Section 8 concludes the paper.

2 Baseline Model

Building on Leland (1998), we develop a baseline risk-shifting model that allows equity holders

to increase their firm’s idiosyncratic risk when the firm’s condition is deteriorating.6 If their firm

5A recent body of literature examines how the changes in operating cash flow risk affect stock returns. Galai
and Masulis (1976) show the negative impact of asset growth volatility on stock returns. Along the same lines,
Johnson (2004) introduces uncertainty of asset growth volatility into Merton (1974). Additionally, Babenko, Boguth,
and Tserlukevich (2016) and Bhamra and Shim (2013) link idiosyncratic cash flow volatility with equity risk via
investment options. Our paper differs both because the risk-taking decision is endogenous in our model and because
we consider the interaction between macroeconomic risk and idiosyncratic risk. Other papers that study the cross-
section of stock returns in a dynamic model include Berk, Green, and Naik (1999), Carlson, Fisher, and Giammarino
(2004), Gomes, Kogan, and Zhang (2003), Zhang (2005) and Gomes and Schmid (2010). However, those papers do
not consider agency conflicts between equity and debt holders.

6We do not study conflicts between managers and stock/debt holders. Albuquerue and Wang (2008) examine
the impacts of corporate governance on stock valuation and show that countries with weaker investor protection
have more incentives to overinvest, lower Tobin’s q, and larger risk premia. Carlson and Lazrak (2010) show that
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survives, it comes back to the debt market to restructure its debt upward in repeated games.

We follow Hennessy and Tserlukevich (2008) and extend Leland (1998) by introducing a value-

destroying cost. Additionally, we introduce two risk adjustment costs.

2.1 Setup

The baseline model is partial equilibrium with a pricing kernel, mt, following

dmt

mt
= −rdt− θdZt, (1)

where r is the constant risk-free rate, θ is the market price of risk, and Zt is a standard Brownian

motion.

The economy consists of a large number of firms. A representative firm that possesses assets

produces instantaneous cash flow Xt, when it is solvent. The cash flow Xt is governed by the

following stochastic differentiation equation:

dXt

Xt
= µ̂vtdt+ σmdŴm

t + σi,Xvt dŴ
i
t , (2)

where µ̂vt is the expected growth rate, σm is the systematic volatility, σi,Xvt is the idiosyncratic

volatility, and Ŵm
t and Ŵ i

t are standard Brownian motions. We assume that the systematic risk

of the production asset is constant, but its idiosyncratic risk σi,Xvt has two levels, high-risk and low-

risk, i.e., vt = {H,L}. The total volatility of the cash flow growth rate is σvt =

√

(σm)2 + (σi,Xvt )2.

We useˆ to denote the physical measure, and define µ̂vt = µvt + ζ, where µvt is the risk-neutral

counterpart of µ̂vt , and ζ is the constant risk premium, i.e., ζ = θσm.

According to Gordon’s growth model, the asset value under the risk-neutral measure Q is as

follows:

At,vt ≡ A(Xt, vt) = E
Q

[∫ ∞

t

Xτe
−rτdτ

]

=
Xt

r − µvt
. (3)

managerial stock compensation induces risk-shifting behavior that helps explain the rates of credit default swaps
(CDS) and leverage choices.
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Because At,vt is linear in Xt, it follows that

dAt,vt
At,vt

= µ̂vtdt+ σmdŴm
t + σi,Xvt dŴ

i
t . (4)

Hence, the assets At,vt and their generated cash flows, Xt, share the same parameters of growth

and volatility.

2.1.1 Time line

To illustrate the time line of this dynamic model, Figure 1 plots four possible paths a firm could take

in one refinancing cycle. At time 0, the firm enters the market and finances its low-risk investments

with a mix of equity and debt. The installed assets produce cash flows, Xt, that are characterized

by a physical growth rate, µ̂L, and a total volatility parameter, σL. The firm uses the generated

cash flows to pay taxes to the government and dividends to equity holders. The effective tax rate

is τ . The dividend received by equity holders is the entire cash flow Xt, net of coupon payments c

to debt holders and tax payments, i.e., dt = (1− τ)(Xt − c).

In observing its dynamic cash flows, the firm makes financing, risk-taking and default decisions.

Path 1 shows that, when its cash flow level reaches an upper threshold Xu, the firm decides to issue

more debt to take advantage of tax benefits. Following Goldstein et al. (2001), we assume that the

firm calls back its outstanding debt at par and issues a greater amount of debt to take advantage

of tax benefits. In contrast, if the cash flow level, Xt, declines to a low threshold Xr along Path

2, equity holders thus choose to take on investments that produce cash flows with a low expected

growth rate µ̂H and high volatility σH , hoping that a cash flow windfall due to the increased σH

might save the firm. The low µ̂H is caused by the value-destroying cost, which will be introduced

in the next subsection.

After taking more risk, there are two possibilities. The first possibility is shown in Path 3. The

increased idiosyncratic risk may quickly release the firm from financial distress, and eventually leads

to a subsequent debt restructuring at the same restructure threshold Xu. In order to enjoy the

same cost of debt, i.e., coupon payment, the firm has incentives to adjust its level of idiosyncratic

risk back to its previous level immediately before the refinancing at Xu, as if it had never increased

the risk earlier. The second possibility is that the new risky projects may cause a more severe cash
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flow shortfall, as shown in Path 4. When cash flows cannot cover the coupon payments, the firm

may issue new equity to cover the shortfall. If the firm continues to deteriorate, equity holders

will no longer be willing to inject more capital, and will decide to go bankrupt at Xd, which is

probably earlier than the firm would have gone bankrupt if it had not increased the idiosyncratic

risk. Bankruptcy leads to immediate liquidation, in which equity holders receive nothing.

2.1.2 Costly Risk Adjustment

In this baseline model, equity holders choose the optimal timing Xr to increases their taking of

idiosyncratic risk. This excess taking of risk, ǫ, is reversible with a cost when the firm returns to

the debt markets to refinance. The change in the idiosyncratic risk, σi,XL , to σi,XH is ǫ ≥ 0.7

The idiosyncratic risk-taking is costly. Compared to the static model of Leland (1994), the

benefits of tax shelter are greater because this dynamic model allows the firm to repeatedly refinance

debt upward at Xu and enjoy greater tax benefits as long as it manages to survive after the risk-

shifting. However, if equity holders increase the level of idiosyncratic volatility too early, they

might lose their opportunity to wait for the firm to bounce back, because the excessive risk-taking

exacerbates the looming default. The undesirable earlier default causes the equity holders to lose

the greater tax benefits. This is an implicit cost in repeated games.

There are three explicit costs as well. The first is the value-destroying cost. We follow Hennessy

and Tserlukevich (2008) and assume that the investment with excess taking of idiosyncratic volatil-

ity is value-destroying. That is, this investment is an inferior project that decreases the expected

growth rate by ηǫ2, where η ≥ 0 is a cost proportional to excess taking of idiosyncratic risk, ǫ. This

value-destroying cost causes a reduction in the growth rate as follows:

µ̂H = µ̂L − ηǫ2. (5)

Because this reduction in the growth rate decreases the cash flow by ηǫ2Xt, it is a flow cost. For

example, it is more costly for sinking firms to attract talented workers for their “idiosyncratic”

7An asset is more idiosyncratic if it cannot easily be redeployed by other firms for common operations, if the firm
has to resell it. For example, R&D investment is generally regarded as less redeployable than other assets (Titman,
1984). Practically, a firm can invest more in R&D projects to increase its idiosyncratic risk-taking. R&D expenses
for more idiosyncratic (or unique) projects are generally greater than those for less idiosyncratic projects, because
they demand more research inputs.
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projects. If those firms were to eventually go bankrupt, their workers would have difficulty finding

new jobs, given that their specific skills might not be applicable to other jobs (Titman, 1984). To

attract and keep the talented workers, the distressed firms have to pay a high wage, which increases

their operating cost and decreases the cash flow Xt.

The other two risk adjustment costs are upfront costs. They occur to the firm whenever it

increases or decreases its level of idiosyncratic risk. We assume a proportional cost of increasing

the risk at the threshold Xr, i.e, ξ
+ǫ2A(Xr)(1−τ), where ξ+ is the proportional cost of searching for

and purchasing new risky investments, and A(.) denotes the firm value at Xr. If the post-shifting

firm survives and is able to refinance its debt upward, it faces a proportional risk adjustment

cost ξ−ǫ2A(Xu)(1− τ), where ξ− is the proportional cost of undoing the previous investment and

adjusting the risk down. This adjustment cost can be thought of as the cost related to selling the

installed high-risk investment, or setting up a risk management office to diversify away the excess

risk. Otherwise, the firm will have to pay a higher coupon because of the increased excess taking of

idiosyncratic risk. Although we do not explicitly model the reputation cost due to the risk-shifting

behavior, the reputation cost can be considered part of this risk adjustment cost.

Although all three different costs deter the firm from undertaking excess risk, the value-

destroying cost is different from the upfront adjustment costs, because the flow cost η reduces

the firm’s continuation value and induces an early bankruptcy and the two other upfront cost does

not. While the upfront cost of increasing the risk, ξ+, explicitly reduce a firm’s risk-taking incen-

tives, the future cost of reversing the increased risk, ξ−, implicitly deters a precautionary firm from

taking on excess risk if it anticipates to return to the debt markets in the future.

2.2 Optimal Policies

Since the dynamic model is solved by backward induction, we first show how to determine optimal

default policy Xd. Then, we present the optimal risk-taking policy Xr. Lastly, we present the

optimal refinancing policy Xu that maximizes the firm value.

Default Policy

If the risk-taking action does not save the firm, equity holders choose the optimal bankruptcy
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threshold Xd to maximize their own equity value E(Xt, vt) as follows:
8

lim
Xt↓Xd

E′(Xt, H) = 0, (6)

where E′(Xt, vt) denotes the first-order partial derivative of the equity value function E(Xt, vt)

with respect to Xt. Equation (6) is the smooth-pasting condition that allows equity holders to

choose the optimal bankruptcy threshold by considering a tradeoff between the costs of keeping the

firm alive and future tax shelter benefits (Leland, 1994).

Risk-Taking Policy

When the firm’s condition is deteriorating, equity holders choose the optimal timing Xr to increase

the level of idiosyncratic risk from σi,XL to σi,XH by ǫ. We use the following smooth-pasting condition

to determine the optimal risk-shifting threshold Xr:

lim
Xt↓Xr

E(Xt, L)
′ = lim

Xt↑Xr

E(Xt, H)′ − ξ+ǫ2A′(Xt)(1− τ), (7)

where E(Xt, vt)
′ denotes the first-order partial derivative of the equity value function E(Xt, vt)

with respect to Xt, and A
′(Xt) is the partial derivative of the asset function A(Xt).

Refinancing Policies

At time 0, immediately after the debt is in place, the firm chooses the optimal timing of debt

refinancing, Xu, ex ante to maximize the present value of the firm. The firm value is the sum of

the equity value and the par value of debt, net of a proportional flotation cost φ, as follows:

argmax
Xu

E(X0, L) + (1− φ)D(X0, L), (8)

subject to equations (6) and (7).

Overall, as shown in Figure 1, the upper bound Xu and the lower bound Xd characterize the

length of each refinancing cycle. The optimal Xr between Xu and Xd determines the relative

weight of σi,XL and σi,XH within each refinancing cycle. The higher the threshold Xr, the greater the

expected level of σi,X . Moreover, according to the dynamic paths of the underlying cash flow, we

8Davydenko (2008) documents that the majority of negative-net-worth firms do not default for at least a year,
and that equity holders of distressed firms renegotiate with debt holders and violate bond covenants.
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assume that the order of the optimal thresholds within each refinancing cycle is

Xd < Xr < X0 < Xu. (9)

This order can be easily satisfied given a reasonable set of parameter values in the literature.

2.3 Scaling Property of Optimal Policies

Because of the log-normal distribution of cash flow Xt and the proportional cost of debt, Goldstein

et al. (2001) and Leland (1998) show that the dynamic model has a scaling property and can be

reduced to a static problem for each refinancing cycle.

The scaling property states that, within each refinancing cycle, the optimal default, refinancing

and risk-shifting thresholds, and the values of debt and equity, are all homogeneous of degree one

in the cash flow Xt. The intuition is as follows. Given the same parameters of a firm’s cash flow

process, at two adjacent refinancing points, the firm faces identical problems in the above three

optimal thresholds, except that the cash flow levels are different. In other words, if the cash flow

level has doubled, it is optimal to double the default, risk-shifting and refinancing boundaries.

However, the reversible increment in idiosyncratic volatility, ǫ, has to be the same across different

refinancing cycles to ensure that the scaling property holds across any two consecutive refinancing

cycles.

Our extended model keeps this scaling property because the two upfront adjustment costs and

the value-destroying cost are proportional to assets. This property is particularly useful when we

simulate the model to estimate the costs of risk-taking, because we do not have to solve for the

optimal policies whenever the firms refinance their debt and increase their equity size repeatedly.

This is the reason why we assume proportional adjustment costs. We take further advantage of

this property when we expand our model to the two-state model.

3 Fully-Fledged Model with Macroeconomic Uncertainty Risk

We extend our baseline, single-state model by endogenizing a firm’s financing, default and risk-

taking decisions over the business cycle. We follow Bhamra et al. (2010b) and Chen (2010), and
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introduce the Epstein-Zin (EZ) preferences (Epstein and Zin, 1989) and time-varying macroeco-

nomic risk into the single-state model. In this extended framework, a representative firm operates

in two economic states, st, and is able to alter its idiosyncratic risk level, vt, in response to both

firm-level small shocks and state-level large shocks. In a nutshell, we have two exogenous aggregate

states of the economy and two endogenous firm levels of idiosyncratic volatility.

3.1 Setup

Considering an economy with business-cycle fluctuations, and without loss of generality, we assume

the economy has two aggregate states, i.e., st = {G,B} for good (G) and bad (B) states, respec-

tively. In addition to the standard Brownian risk in the baseline model, the pricing kernel includes

the macroeconomic uncertainty risk as follows:

dmt

mt
= −rstdt− θstdŴ

m
t +

∑

(κst − 1)dM̂ st
t . (10)

where rst is the risk-free rate, θst is the market price of risk of small shocks in the state st, Ŵ
m
t

is a standard Brownian motion, M̂ st
t is a compensated Poisson process with an intensity of λ̂st

that determines the aggregate switching between the good and bad states, and κst is the aggregate

state-switching risk premium that determines the market price of large shocks in the aggregate

economy, i.e., κB = 1/κG.

As noted by Bhamra et al. (2010b) and Chen (2010), the switching risk premium, κst , depends

on investors’ preference for the resolution of the aggregate economic uncertainty, and κG > 1

given preferences for an early resolution of uncertainty (Epstein and Zin, 1989).9 The risk-neutral

measure adjusts for such a preference by raising the probability that the economy will enter into a

bad state. For example, the risk-neutral switching intensity from the good state to the bad state

λG = λ̂GκG > λ̂G when κG > 1. This preference parameter κst plays a crucial role in our model of

9Bhamra et al. (2010b) assume that the representative agent has the continuous-time analog of EZ preferences of
stochastic differential utility type (Duffie and Epstein, 1992). The utility index Ut over a consumption process Cs

solves

Ut = E
P

[

∫

∞

t

ρ

1− δ

C1−δ
s − ((1− ι)Us)

1−δ

1−ι

((1− ι)Us)
1−δ

1−ι − 1
ds|Ft

]

,

in which ρ is the rate of time preference, ι the coefficient of relative risk aversion, and ψ = 1

δ
the elasticity of

inter-temporal substitution for deterministic consumption paths. Incorporating the separability of time and state
preferences and assuming ψ > 1, the representative agent has a preference for early resolution of uncertainty.
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risk-shifting.

When the firm is solvent, it produces instantaneous cash flows Xt governed by the following

stochastic process:

dXt

Xt
= µ̂st,vtdt+ σmstdŴ

m
t + σi,Xst,vtdŴ

i
t , (11)

where µ̂st,vt is the expected growth rate in the state of st and the volatility regime of vt, σ
m
st

is the systematic volatility, σi,Xst,vt is the idiosyncratic volatility of cash flows, and Ŵm
t and Ŵ i

t

are standard Brownian motions. The total volatility of cash flows σst,vt =
√

(σmst )
2 + (σi,Xst,vt)

2.

Moreover, µ̂st,vt = µst,vt + ζst , where µst,vt is the risk-neutral counterpart of µ̂st,vt and ζst = σmst θst

is the risk premium in the state st. Same as in the baseline model, the value-destroying cost η

causes a reduction in the growth rate µ̂st,vt , which differs within each aggregate state, st, as follows:

µ̂st,H = µ̂st,L − ηǫ2st . (12)

For simplicity, we assume η is constant across the two economic states.

Simply put, σmst and θst are constant within each state but vary across the two states. µ̂st,vt

and σi,Xst,vt vary across the two states st ∈ (B,G) and two volatility levels vt ∈ (H,L).

3.2 Time Line

The time line is largely similar to that for the baseline model. We mainly highlight the differences

in notation here. At time 0, the firm finances its investments with a mix of equity and debt in the

initial state s0. The initial debt and its associated coupon payment c(s0) affect the firm’s decisions

on when to increase its debt holding, when to increases its operational riskiness, and when to go

bankrupt in the future state st. Following Chen (2010), we allow a countercyclical liquidation cost

αst , i.e. αB > αG, because fire sales in bad times are more costly.

When cash flow increases to a high threshold Xu(st; s0) in the aggregate state st, the firm first

calls back its outstanding debt and then issues more debt with a new coupon payment c(st). When

cash flow Xt declines to a low threshold Xr(st; s0) in either state st, equity holders who anticipate

a continuing deterioration choose to take on more high-idiosyncratic-risk investments that produce

cash flows with a low growth rate µ̂st,H but a high volatility level σst,H . Immediately before the
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firm refinances its debt at the same threshold Xu(st; s0), equity holders adjust their idiosyncratic

risk from σi,Xst,H back to the original low level of σi,Xst,L. In contrast, if the firm’s performance is

still deteriorating, its equity holders are no longer willing to inject more capital, and decide to go

bankrupt at Xb(st; s0).

3.3 Optimal Policies

In this fully-fledged model, equity holders with EZ preferences chooses optimal timing of financing,

risk-taking and default to maximize its equity holders’ value in the presence of macroeconomic

uncertainty. Because the firm operates in the fluctuating aggregate economy, it makes decisions in

the initial state s0 by anticipating the economy switching into another state st. Suppose the firm

enters the economy in good times, s0 = G. It has to account for situations in which the economy

may slide into bad times, i.e., recessions. It is worth noting again that the risk-neutral probability

of the economy switching from good times to bad, as perceived by risk-neutral equity holders, is

higher than the actual switching probability.

Default Policy

After they has already increased their firm’s idiosyncratic risk to a high level, vt = H, in either

aggregate state st, equity holders choose their optimal bankruptcy thresholds Xd(st; s0) by making

a tradeoff between the costs of keeping the firm alive and the future tax benefits (Leland, 1994).

We have the following smooth-pasting conditions to determine the optimal Xd(st; s0):

lim
Xt↓Xd(B;s0)

E
′

(Xt, B,H; s0) = 0, (13)

lim
Xt↓Xd(G;s0)

E
′

(Xt, G,H; s0) = 0, (14)

where E(Xt, st, vt; s0) is the equity value function of the firm with a level of idiosyncratic risk, vt, in

the aggregate state st, conditional on the initial state s0, and E
′(Xt, st, vt; s0) denotes its first-order

partial derivative with respect to Xt.

Risk-shifting Policy

We use the following smooth-pasting conditions to determine the optimal risk-shifting threshold
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Xr(st; s0):

lim
Xt↓Xr(B;s0)

E
′

(Xt, B,H; s0) = lim
Xt↓Xr(B;s0)

E
′

(Xt, B, L; s0)− ξ+ǫ2BA
′

(Xt, B,H)(1− τ), (15)

lim
Xt↓Xr(G;s0)

E
′

(Xt, G,H; s0) = lim
Xt↓Xr(G;s0)

E
′

(Xt, G, L; s0)− ξ+ǫ2GA
′

(Xt, G,H)(1− τ). (16)

where A
′

(Xt, st, vt) is the partial derivative of the asset value function A(Xt, st, vt).

Refinancing Policy

At time 0, the firm is born in an initial aggregate economic state, s0, and has a low level of

idiosyncratic volatility (i.e., vt = L). After the debt is in place, equity holders choose the optimal

timing of debt refinancing Xu(s0) so as to maximize the present value of the firm, where the vector

Xu(s0) = {Xu(B; s0), Xu(G; s0)}, as follows:

max
Xu(s0)

E(X0, s0, L; s0) + (1− φst)D(X0, s0, L; s0), (17)

subject to equations (13) to (16),

where D(X0, st, L; s0) denotes the debt value function of a firm with the level of idiosyncratic

volatility vt in the aggregate state st, conditional on the initial state s0.

In total, we have six optimal thresholds to be determined, given an initial state s0. We impose

the following order of the optimal thresholds:

Xd(G; s0) < Xd(B; s0) < Xr(G; s0) < Xr(B; s0) < X0 < Xu(G; s0) < Xu(B; s0). (18)

It is intuitive that the firm file for bankruptcy earlier in the bad state than in the good state, i.e.,

Xd(G; s0) < Xd(B; s0). Similarly, the firm might take corrective action earlier in the bad state,

i.e., Xr(G; s0) < Xr(B; s0). We also impose that the firm refinances debt earlier in the good state

than in the bad state, i.e., Xu(G; s0) < Xu(B; s0). This order can easily be satisfied under a set of

reasonable parameter values drawn from the literature.
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3.4 Scaling Property across Two States

The scaling property described in Section 2.3 only holds within the same state. Chen (2010) and

Bhamra et al. (2010b) extend this scaling property to different states. Across two initial states, s0,

due to the homogeneity, the optimal thresholds in both states, st, are proportional to the coupons

issued in the initial states as follows:

Xd(st;G)

Xd(st;B)
=
Xr(st;G)

Xr(st;B)
=
Xu(st;G)

Xu(st;B)
=
c(G)

c(B)
. (19)

We assume that the firm starts in the good state, i.e., s0 = G, and solve for a set of policies.

With the cross-state scaling property, we can obtain the policies for firms that start in the bad state

s0 = B. Combining the within-the-state scaling property and the across-the-state scaling property,

we can determine all the optimal policies over the business cycle.

4 Asset Pricing Implications

The risk-shifting behavior affects equity risk and expected returns. To demonstrate the implications

of risk-shifting for asset prices, we first simplify the baseline model and use a closed-form solution to

demonstrate how the strategically increased idiosyncratic volatility reduces the exposure of equity

to systematic cash flow risk. Then, in the fully-fledged model with macroeconomic risk, we show

how the interaction between the reduction in the risk exposure and the countercyclical market risk

premium further reduces the expected equity returns.

4.1 Simplified Baseline Model

In this simplified version, the firm has no option to reverse its risk-taking or refinance its debt. It

has an option to increase idiosyncratic risk and an option to go bankrupt. Because the firm does

not return to the debt market, the option to increase risk is a one-time game in this simplified case.

This simplified version has a semi-closed-form solution for the equity and equity return, which

allows us to flesh out how equity holders strategically take full advantage of the American put

option to go bankrupt, which in turn reduces the sensitivity of equity to cash flow.
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The following proposition states the expected excess return in this simplified model.10

Proposition 1 Before bankruptcy, Xt > Xd, the expected excess return of equity for a firm with a

level vt of idiosyncratic volatility is as follows:

ret,vt = Et[r
E
t,vt ]− rdt = γt,vtζdt. (20)

After the firm increases its taking of idiosyncratic risk to vt = H at the optimal threshold Xr, the

sensitivity of its stock value to the underlying assets or cash flows, γt,H , is

γt,H =
∂Et,H/Et,H
∂Xt/Xt

=
∂Et,H/Et,H
∂At,H/At,H

, (21)

= 1 +
c/r(1− τ)

Et,H
︸ ︷︷ ︸

Leverage

− (1− ω1,H)
(c/r −Ad,H)

Et,H

(
Xt

Xd

)ω1,H

(1− τ)

︸ ︷︷ ︸

American Put Option of Delaying Bankruptcy (+)

(22)

where equity value Et,H is given by

Et,H =








(

At,H − c

r

)

︸ ︷︷ ︸

Equity-in-Place

+
( c

r
−Ad,H

)(Xt

Xd

)ω1,H

︸ ︷︷ ︸

Option of Delaying Bankruptcy







(1− τ), (23)

the optimal default threshold Xd is

Xd =
c

r

(r − µH)ω1,H

(ω1,H − 1)
, (24)

and the optimal risk-shifting threshold Xr is

Xr =




(c/r −Ad,H)(ω1,H − ω1,L)

X
ω1,H

d

(
1

r−µL
− 1−ηǫ2

r−µH

)

(1− ω1,L)





1

1−ω1,H

. (25)

Proof : See the Appendix C.2.

Equation (20) shows that the expected excess equity return, ret,vt , is the product of the systematic

risk premium, ζ, and the sensitivity of stocks to underlying assets, γt,vt . The time-varying element

10We derived the closed-form solution for the firm prior to the risk-shifting as well, which is available upon request.
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for the expected excess stock return is then γt,vt in equation (21). We denote by γt,vt the “equity-

cash flow sensitivity”or the “equity-asset sensitivity”because, strictly speaking, it measures the

percentage changes in the equity value in response to one percentage change in cash flows or asset

values.

After the firm increases its idiosyncratic volatility, the sensitivity is γt,H , which consists of three

components, as shown in equation (22). The first is the baseline sensitivity, which is normalized

to one. The second is related to financial leverage, as c/r can be regarded as risk-free equivalent

debt. Not surprisingly, the equity-cash flow sensitivity is positively associated with the financial

leverage. Because the coupon c is fixed after debt is in place, the increased excess risk ǫ increases

Et,H , thereby reducing the financial leverage and the equity-cash flow sensitivity.

The last component, the option of delaying bankruptcy, decreases the equity-cash flow sensitiv-

ity. This option, which is essentially an American put option, protects equity holders from downside

risk. Given limited liability, equity holders choose to go bankrupt only when the asset value Ad,H

falls below the risk-free equivalent debt c/r.11 Hence, c/r −Ad,H > 0.

The equity value after risk-shifting shown in equation (23) has two components, equity-in-place

and the option of delaying bankruptcy. The optimal default threshold in equation (24) increases

with the coupon payment c. Similarly, the optimal risk-shifting threshold in equation (25) shows

that the risk-shifting threshold increases with the risk-free equivalent debt c/r, which is consistent

with our intuition that greater financial leverage induces firms to increase their risk-taking earlier.

The greater the cash flow volatility, the more opportunities equity holders have to receive a

cash flow windfall. Therefore, equity holders of a firm with high idiosyncratic cash flow volatility

have more incentives to delay bankruptcy. The delayed bankruptcy implies a smaller asset value

Ad,H , i.e., ∂Ad,H/∂σ
i,X
H < 0. Everything else being equal, the payoff of the put option, c/r −

Ad,H , increases with σ
i,X
H . Therefore, the increase in the value of the American put option due to

strategically increased volatility, ǫ, decreases the equity-cash flow sensitivity.

In a contemporaneous work, McQuade (2016) shows that the endogenous default option is

important for distressed firms to hedge against the uncertainty. Thus, this option lowers the equity

holders’ risk exposure and equity returns. The endogenously increased volatility in our model can

11Empirically, Davydenko (2008) documents that the majority of negative-net-worth firms do not default for at
least a year, and that the mean (median) of the market value of assets at default is only 66% (61.6%) of the face
value of debt. This finding shows the importance of the option to delay bankruptcy.
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further amplify the negative effect from the endogenous default option on equity risk and returns,

because it increases the value of this option. We share Tim McQuade’s view of the importance of

the strategic default option in lowering equity risk and returns, and additionally, emphasize the

option to endogenously increase the idiosyncratic cash flow volatility.

To increase the idiosyncratic risk, the firm has to make capital investments to alter its risk pro-

file. In the investment/production based asset pricing framework, Liu, Whited, and Zhang (2009)

show that firms with more investments receive low stock returns. This negative investment effect

on future stock returns is similar to the negative effect of idiosyncratic volatility on future stock

returns. We complement the investment literature by focusing on the “idiosyncratic” investments

and provide an explicit theoretical link between the idiosyncratic volatility and stock returns via

the closed-form solution in equations (20) to (22).

In short, the strategically increased idiosyncratic cash flow growth volatility, σi,XH , lowers the

equity-cash flow sensitivity, γt,H , and therefore the expected excess stock returns, ret,vt , for firms

with a high level of idiosyncratic volatility.

4.2 Fully-Fledged Model with Macroeconomic Risk

We proceed to show the expected excess stock return in the fully-fledged model that features the

macroeconomic uncertainty risk. In this two-state economy, a firm endogenously chooses the timing

of increasing its taking of idiosyncratic risk in response to the exogenous switches of the economy

between aggregate good and bad states.

The following proposition shows that the expected excess stock return differs across the two

states st ∈ (G,B) and the two levels of idiosyncratic volatility, vt ∈ (H,L).

Proposition 2 After entering the market at the initial state s0, the firm then operates in the two

aggregate states st. The conditional expected excess return of equity with a level vt of idiosyncratic

volatility is

rest,vt = Et[r
E
st,vt ]− rdt = ζstγst,vtdt+ ψst,vt(1− κst)λ̂stdt (26)

where γst,vt =
Xt∂Est,vt,s0

Est,vt,s0
∂Xt

, which measures the sensitivity of equity to the cash flow Xt, ψst,vt =

(
E

s
+
t

,vt,s0

Est,vt,s0
− 1), which measures the percentage change in equity value in response to the changes in

the aggregate economy from the state st to the other state s+, and Est,vt,s0 ≡ E(Xt, st, vt; s0).
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Proof : See the Appendix C.3.

Equation (26) has two components, the risk premium due to small market shocks within one

aggregate state and the risk premium due to large switches across the two aggregate states, st.

In the first component, different from the constant price of risk in equation (20) in the baseline

model, the price of risk ζst = θstσ
m
st is countercyclical, because it is well known that the market

price of risk θB > θG and the market volatility σmB > σmG (see e.g., Bhamra et al. (2010b) and

Chen et al. (2009)). Therefore, everything else being equal, given the same cross-sectional spread

in the idiosyncratic volatility, the countercyclical market premium causes a larger spread in equity

returns in recessions than in expansions.

Moreover, the equity-cash flow sensitivity, γst,vt , in the first component is procyclical at the

portfolio level or at the aggregate level.12 That is, γst,vt is low in the bad aggregate state, st = B.

Because a large, negative market shock could push the level of cash flows substantially to the low

threshold Xr, and cause many firms to increase the level of idiosyncratic volatility to vt = H, this

increased level of idiosyncratic volatility lowers the sensitivity according to equation (22). That is,

everything else being equal, γB,vt < γG,vt , because σ
i,X
B,vt

> σi,XG,vt at the portfolio level. Therefore,

the sensitivity γst,vt and the market risk premium ζst covary negatively. For example, for a portfolio

of firms with high idiosyncratic volatility, vt = H, this negative covariance further reduces the the

unconditional expectation of the first component of equation (26) as follows:13

E[γst,Hζstdt] = γst,Hζstdt+ cov(γst,H , ζst)dt, (27)

where γst,H is the expected sensitivity, ζst is the expected risk premium, and cov(γst,H , ζst)is the

covariance between γst,H and ζst across the two states. Therefore, cov(γst,H , ζst) < 0, causing a

further reduction in the unconditional expected equity return for the portfolio of high volatility

firms.

The second component, ψst,vt(1−κst)λ̂stdt, captures macroeconomic uncertainty risk. The price

12We emphasize the portfolio level or the aggregate level because not necessarily every single firm increases its
risk-taking in recessions.

13This is in the same spirit as Jagannathan and Wang (1996). They argue that the covariance between the market
beta and the expected market risk premium plays an important role in the conditional CAPM.
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of the uncertainty risk, λ̂st(1−κst), is countercyclical, because the EZ-type equity holders prefer an

early resolution of macroeconomic state-switching uncertainty. According to Bhamra et al. (2010b)

among others, the preference for an early resolution implies κG > 1. That is, when the economy is

in the good state, st = G, investors like this good state and are willing to charge (pay) a negative

(positive) risk premium for staying in the good state. In contrast, when the economy is in the bad

state, investors do not like this bad state, and demand a positive risk premium for staying this

state. In other words, the state-switching premium is negative in good times (1 − κG ≤ 0), but

positive in bad times.

Our model has two risk factors, one related to small Brownian shocks and another related to

large state-switching shocks. The endogenously changed level of idiosyncratic volatility does not

enter the two factors.14 Instead, it changes the equity holders’ exposure to the two risk factors.

In the model of Herskovic et al. (2015), common idiosyncratic volatility (CIV) is a systematic risk

factor because of the not fully diversifiable labor income. The CIV changes over time and the shocks

in CIV carry a negative market price of risk. Therefore, stocks with a high loading on this CIV risk

receive lower equity returns. Simply put, our model is different from theirs because idiosyncratic

volatility in our model affects the equity return via the exposure of equity holders to risk factors.

In summary, we first derive the closed-form solution to demonstrate that the high idiosyncratic

volatility causes a low equity-cash flow sensitivity and equity returns in the simplified one-state

baseline model. Then, by extending the one-state model to the two state one with countercyclical

market risk premium, we show that the negative covariance between the equity-cash flow sensitivity

and the expected risk premium results in a further reduction in the bad states for the firms with a

high level of idiosyncratic volatility.

5 Data and Estimation Method

We perform structural estimation for the fully-fledged model. We describe the model inputs and

estimation method, and the intuition behind the structural estimation.

14Note that the value-destroying cost, ηǫ2st , does not enter the pricing kernel as well, although it decreases the
equity value for the firms with a high level of idiosyncratic volatility.
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5.1 Data

We obtain accounting information from quarterly Compustat industrial data. For availability

reasons, our sample period is from January 1975 to December 2014. We restrict the sample to firm-

quarter observations with non-missing values for operating income and total assets, with positive

total assets. We include common stocks listed on the NYSE, AMEX, and NASDAQ with CRSP

share code 10 or 11. We exclude firms from the financial and utility sectors.

Debt is the sum of current liabilities (Compustat item DLCQ) and long-term debt (item

DLTTQ). If the debt is missing, we set it to zero. Quasi-market leverage (QML) is the ratio

of the book value of debt to the sum of debt and equity (PRCCQ*CSHOQ). We use the growth

of assets (item ATQ) to proxy for cash flow growth, because in our model the asset growth and

cash flow growth share the same parameters, as in equation (4). We follow the standard empirical

procedure and use 20 quarter cash flow residuals to calculate the rolling standard deviation, which

we use to proxy for the idiosyncratic cash flow volatility σi,Xt . The cash flow residuals are obtained

from a regression of cash flow growth rates of the past 20 quarters on the simple average of cash

flow growth rates among all the firms.

Following Strebulaev and Whited (2012), we remove the heterogeneity of financial leverage and

idiosyncratic cash flow volatility by demeaning the time-series mean of the variables, and adding

the sample mean of each variable, because our model is for a representative firm and we do not

allow heterogeneity of parameter values in the model simulation.

5.2 Estimation Method

Following Bloom (2009), we use simulated method of moments (SMM) to estimate the model.

We aim to estimate the value-destroying parameter η, the risk adjustments ξ+ and ξ−, and the

increments of ǫst . The vector of the parameters to be estimated, b, is as follows:

b = [η ξ+ ξ− ǫst ]. (28)

To keep the estimation parsimonious, we assume the increases in idiosyncratic cash flow volatility

are the same in the bad and good states, i.e., ǫB = ǫG. We relax this restriction in our robustness

tests.
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LetM denote theK×1 vector of data moments. Given a parameter vector b, for each simulation

s = 1, · · · , S, we simulate a time series of length T and compute a vector of moments from the

simulated data, M̃s(b), that serves as an analog to the data moments, M . The method of moments

estimator for the parameters is defined as

b̂ = min
b

J =
(

M − 1

S

S∑

s=1

M̃s(b)
)′

W
(

M − 1

S

S∑

s=1

M̃s(b)
)

(29)

where W is a positive semidefinite weighting matrix. We discuss in detail about the covariance

matrix of data and estimates, model simulation and model-generated variables in Appendix D.

5.3 Identification Moments

Identification in structural estimation means choosing moments whose predicted values move with

the model’s parameter values and choosing enough moments that there are unique parameter values

that ensure the model fits the data as closely as possible. Therefore, the key to identification is to

choose moments M that are informative about the parameters. Because all the parameters to be

estimated are related to the process of idiosyncratic cash flow volatility, our strategy is to match

the empirical distribution of the cash flow volatility process.

For the three cost parameters, because η and ξ+ determine the timing of increasing excess

risk, and ξ− determines the timing of decreasing risk, they largely determine the upper and lower

bounds of idiosyncratic volatility across all the firms, each quarter. They can be pinned down by

the variance of σi,Xt , the interquartile time series of σi,Xt , and the first-order autocorrelation of this

interquartile. Given the initial low level of idiosyncratic cash flow volatility, the increment ǫst can

be determined by the time series mean of σi,Xt from the data.

More importantly, to ensure the idiosyncratic volatility changes are driven by the risk-shifting

mechanism, we match the averaged quasi-market financial leverage QMLt−1 and the sensitivity of

σi,Xt to QMLt−1. The sensitivity is estimated by regressing the sample mean of σi,Xt on an intercept

and the sample mean of QMLt−1.

It is worth noting that we do not use the cross-sectional equity returns or the idiosyncratic

equity return volatility as matching moments, in order to mitigate the concern that the parameters

of the idiosyncratic volatility process are directly implied by equity returns. In addition to the
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above targeted moments, we also examine whether our model can match other data characteristics,

including the average cash flow rates, interest coverage, equity market Sharpe ratio, equity market

return volatility, firm-level volatility of equity returns, and default probability.

Taken together, the identification moments vector, M , includes six moments for four unknown

parameters, such as the averaged idiosyncratic cash flow volatility σi,Xt , the variance of σi,Xt , the

average of the interquartile time series of σi,Xt , the first-order autocorrelation of this interquartile

time series, quasi-market leverage QMLt−1, and the sensitivity of σi,Xt to QMLt−1.

6 Model Estimation Results

We start with the preliminary analysis for the baseline model, and then present the results of struc-

tural estimation for the fully-fledged model. With the estimated model, we examine the sensitivity

of optimal policies and model-generated moments to estimated parameters and macroeconomic

variables.

6.1 Analysis for the Baseline Model

We perform comparative statics and sensitivity analysis for the costs of risk-taking and for market

risk variables. To compare the relative importance across all the variables, we investigate the

sensitivity of the optimal policies to the three costs and two macroeconomic risk variables.

We set the parameter values for the widely used parameters, and list them in Panel A of Table 1.

For the adjustment costs, we set the value-destroying cost η to 0.03, the cost of increasing risk ξ+

to 0.05, and the cost of decreasing risk ξ− to 0.05. The increment in idiosyncratic volatility, ǫ, is set

to 0.15, so that σi,Xst,H = 0.25 (σi,Xst,L + ǫst). Given those predetermined values, we solve the baseline

model and find that the risk-shifting threshold Xr is 0.149, which is far below the coupon c of 0.4

and slightly above the default threshold Xd of 0.025. The very low threshold Xr indicates that the

firm has little incentive to shift risk before the bankruptcy.

Panel B displays the results from comparative statics analysis. First, consistent with our intu-

ition, all the three costs have a negative impact on the risk-shifting threshold. Second, out of all

the three costs, the value-destroying flow cost η plays the most important role in deterring firms

from taking on excess idiosyncratic risk, as evidenced by the largest decrease in Xr from 0.149 to
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0.105. This is consistent with our early discussion that the flow cost η reduces the firm’s continu-

ation value and the opportunity to survive, which in turn reduces the likelihood to return to the

markets to refinance debt upward for greater tax benefits in repeated games. Third, the increases

in the market risk and the market price of risk induce a substantial increase in Xr, motivating us

to incorporate the state-varying macroeconomic risk in the full model.

Compared with the comparative statics analysis, the sensitivity analysis allows us to compare

the relative importance across different variables, because the sensitivity is measured by the per-

centage changes in the policies due to a one-percentage change in the variable. We present the

results in Panel C. While the results show the same directional impacts as those from the com-

parative statics, two observations across the parameters are worth noting. First, the market risk

variables have much greater impacts in absolute value on the the risk-shifting threshold than the

three risk-taking costs in determining the risk-shifting threshold Xr. For example, the sensitivity

to the market volatility σm is 6.555, which is the highest in Panel C, followed by the sensitivity to

the market risk premium 4.753. Second, among the three costs, the greatest impact comes from

the value-destroying cost η, with a negative sensitivity of –0.355.

In short, the market risk variables are far more important than the three cost variables when

firms make risk-taking decisions. Among the three explicit costs, the value-destroying cost is the

most significant determinant.

6.2 Structural Estimation for the Full Model

Having seen the relative importance of the parameters in the baseline model, we proceed to estimate

our model via the simulated method of moments. The predetermined parameter values are listed

in Panel A Table 2 and their justifications can be found in Appendix Subsection D.4.

As shown in Panel B, all the estimates are statistically significant, except for the cost of increas-

ing idiosyncratic risk, ξ+. The estimate of the value-destroying cost η is 0.031, with a t-statistic of

31.198, which is economically and statistically significant. The estimated cost of decreasing risk,

ξ−, is 0.015 (t-stat = 8.825), greater than the cost of increasing risk. The difference between the

estimated ξ− and ξ+ captures the capital loss incurred in reversing investments with high idiosyn-

cratic risk. As for the model fitness, the p-value of χ2 is 0.932, indicating the model cannot be

rejected. Panel C presents the optimal policies for initial state s0 = G, given the predetermined
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and estimated parameters. The optimal policies for the initial state s0 = B can be obtained via the

cross-state scaling property in equation (19). Compared with the optimal policies for the bench-

mark values shown in Table 1, the optimal risk-shifting threshold Xr(G; s0 = G) is 0.577, much

greater than the 0.149 for the benchmark parameter value in Panel B of Table 1.

Table 3 reports the targeted and untargeted moments. The model-generated moments are

averaged across 100 simulated economies. The targeted moments in Panel A are mainly used to

identify the time series and cross-sectional dynamics of idiosyncratic risk. A first glimpse shows

that all the targeted moments are well matched, with the largest deviation for the first-order

autocorrelation of the interquartile of σi,Xt . The average level and interquartile of the idiosyncratic

cash flow volatility, σi,Xt , are 0.127 and 0.055, respectively. The average quasi-market leverage,

QMLt, from the model is 0.238, and the sensitivity of σi,Xt to QMLt−1 is 0.203. The differences

between the model-generated moments and the data moments are very small, and the t-statistics

in the last column suggest that, for all the moments except for the QMLt, the differences are not

statistically different from zero.

In Panel B, we report the other moments that we do not choose to match in our estimation.

From the model-generated samples, the average asset growth rate is 0.074, the interest coverage is

2.481, and the standard deviation of the market return is 0.150. All of them are close to the data.

The average equity Sharpe ratio from our model is 0.309, close to the 0.329 generated in Gomes

and Schmid (2016), and 25% of the 100 simulated economies has a Sharpe ratio above 0.458. Both

the firm-level volatility of quarterly equity returns and default probability are relatively lower than

those in the data. The firm-level volatility is 0.315, slightly lower than the 0.339 reported by Kuehn

and Schmid (2014).

Overall, our model delivers a reasonable job in matching both targeted and untargeted moments.

6.3 Importance of the Value-Destroying Cost and the Risk Adjustment Costs

In this section, we examine the sensitivity of the optimal policies and the targeted moments to

the estimated parameters. Because the optimal risk-taking policy determines the targeted mo-

ments of the idiosyncratic volatility process, the sensitivity analysis allows us to evaluate whether

our targeted moments are sensitive to the estimated parameters. High sensitivities indicate the

identification moments are well selected and the model is well identified.
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The value-destroying cost and the two adjustment costs affect the optimal timing of risk-taking

and -reversing. Three observations are worth noting from Panel A of Table 4. First, the value-

destroying cost η significantly deters the distressed firms from increasing idiosyncratic risk, as

evidenced by the negative sensitivity, –0.634 for Xr(B;G) and –0.637 for Xr(G;G), which is con-

sistent with the finding in Table 1 for the baseline model. Second, the two adjustment costs have

different impacts on the timing of risk-shifting. While the cost ξ+ of increasing risk has a trivial

effect on the risk-taking policies Xr(st;G) and other policies, the future cost ξ− of reversing the

increased risk has a relatively stronger negative impact. These two observations are also in line with

the findings in Table 1. Third, the increase in idiosyncratic volatility ǫst (ǫB = ǫG) decreases the

risk-shifting threshold, because the cost of excess risk-taking is proportional to ǫst . The increase in

idiosyncratic risk also causes a delay in default and refinancing, because the endogenously increased

idiosyncratic risk further boosts the values of the options to default and to refinance debt upward.

The optimal timings of risk-taking and -reversing consequently determine the distribution and

moments of the idiosyncratic cash flow volatility in the simulated samples. Panel B shows that, in

general, the targeted moments are more sensitive to the value-destroying costs η and the increment

ǫst , but less sensitive to the two adjustment costs. The sensitivity of σi,Xt to QMLt−1 is informative

about all the estimated parameters, except for the cost of increasing idiosyncratic risk.

Simply put, the sensitivity analyses demonstrate that our model performs well in the parametriza-

tion and estimation of the risk-shifting mechanism. The flow value-destroying cost dominates the

other two upfront adjustment costs when a firm makes risk-shifting decisions. Among the two

adjustment costs, the future upfront cost of reversing risk plays a relatively more important role to

the precautionary firms than the current upfront cost of increasing risk in repeated games.

6.4 Importance of Macroeconomic Risk

We have shown that a greater market risk and price of market risk induce a higher optimal risk-

taking threshold in Table 1. We proceed to examine how the aggregate state-switching risk affects

the firms’ risk-taking decisions.

The sensitivity analysis allows us to compare the relative effects of macroeconomic parameters

on the optimal policies. In Panel A of Table 5, three observations are worth noting. First, compared

with those in Panel C of Table 1, the risk-shifting and default policies are much less sensitive to both
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the price of risk θst and market volatility σmst , because the aggregate state-switching risk dominates

their effects. Second, among all the state-switching parameters, κG has the most significant impact

for all the policies in both states, st. This is consistent with our early discussion that equity holders,

who prefer an early resolution of the state-switching risk, have more incentives to exercise their

option of risk-taking when the increased κG induces a high risk-adjusted probability λG = κGλ̂G.

Third, the probability of leaving the current bad state, λ̂B, and the probability of leaving the

current good state, λ̂G, have opposite effects on the timing of risk-shifting and default. An increase

in λ̂B causes a delay in both risk-shifting and default. Because firms could benefit from the economy

switching into a good state, they have incentives to wait for such a switch, instead of increasing

the risk or defaulting too early. In contrast, an increase in λ̂G pushes the firm to take more risk

or go bankrupt early, because the increased likelihood of a switch into the bad state makes the

aforementioned waiting less meaningful.

The effect of the state-switching risk on the optimal policy consequently shows up in the model-

generated moments. The last three columns of Panel B show the absolute value of each of the

sensitivities to be above one. Because κG increases the risk-shifting threshold, it increases the

mean and variance of σi,Xt , the mean and the first-order autocorrelation of the interquartile of σi,Xt ,

and the sensitivity of σi,Xt to leverage. Similarly, λ̂B and λ̂G have strong opposing effects on the

mean and variance of σi,Xt , the mean of the interquartile of σi,Xt , and the sensitivity of σi,Xt to

financial leverage.

More important, when comparing the sensitivities with those in Table 4, we find that all the

optimal policies and resulting model moments are more sensitive to the macroeconomic state-

switching risk variables than they are to the three cost variables. This confirms the importance of

the macroeconomic uncertainty risk in shaping a firm’s risk-taking decisions in our study.

7 Model Implications

In this section, we use the estimated model to demonstrate the risk-shifting behavior over the

business cycle, and its implications for the cross-sectional equity returns.
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7.1 Visual Inspection: Idiosyncratic Risk-Taking and Default Events over the

Business Cycle

To gain preliminary insights, we visually inspect a firm’s risk-taking and default behavior over the

business cycle for a typical economy. The economy consists of 1,000 firms.

We first plot one sample path of the simple average of financial leverage over time in Panel

A of Figure 2. Gray areas in the figure correspond to periods when the economy is in the bad

states. Consistent with Korajczyk and Levy (2003) and Bhamra et al. (2010a), we find that

financial leverage is strongly countercyclical. That is, financial leverage is high in the bad states

but low in the good states. The countercyclical financial leverage drives the countercyclical taking

of idiosyncratic risk. As shown in Panel B, both risk-shifting and default events increase during

the bad states, and the probability of risk-taking is substantially higher than that of default events.

For example, the risk-shifting probability increases dramatically to about 25% immediately after

year 40 when the economy is sliding into a bad state. The reason for this spike in the risk-shifting

probability is intuitive: The risk-shifting threshold increases for all firms and force many troubled

firms into taking immediate corrective action to save themselves. Moreover, the longer the economy

stays in the bad states, the more firms become distressed and eventually take on additional risk.

After taking on the excess idiosyncratic risk, these firms keep their high risk profiles until they

manage to return to the markets and refinance their debt upward.

The high likelihood of risk-taking in the bad states consequently results in a high level of

idiosyncratic cash flow risk. As shown in Figure 3, both the average idiosyncratic cash flow risk

in Panel A and the interquartile of the idiosyncratic risk in Panel B increase dramatically during

recessions, particularly after year 40. The large spread in the idiosyncratic volatility in the bad

states, proxied by the interquartile, is likely to cause a large cross-sectional spread in equity returns,

which we will show in Section 7.3. However, the increases in the idiosyncratic risk in the bad states

appear to lag behind the actual occurrence of risk-shifting events in Panel B of Figure 2. This

lag is likely due to measurement errors in calculating the rolling idiosyncratic volatility, when we

follow the standard empirical procedure and use cash flow residual shocks of the past 20 quarters

to calculate the idiosyncratic volatility.15

15For example, for the firms that have increased the level of idiosyncratic volatility for one year, the volatility
calculated from this procedure is underestimated because the large weight is given for the past 4 years for the 5-
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It is worth noting that, even if we assume the same initial level σi,Xst,L and the same increment

ǫst for both aggregate states in our estimation, our model is able to generate the countercyclical

levels and interquartiles of idiosyncratic volatility over the business cycle. The risk-taking behavior

depends on the realized cash flow shocks relative to the risk-shifting threshold across different firms.

When a large negative marketwide shock brings the firm-level cash flows to a low level in bad times, a

big fraction of firms choose to increase their taking of idiosyncratic volatility simultaneously, thereby

generating countercyclical idiosyncratic volatility in the simulated economy, which is consistent with

the finding of the synchronized high idiosyncratic risk in recessions by Herskovic et al. (2015).16

In short, we provide preliminary visual evidence that financial leverage drives the idiosyncratic

risk-taking, particularly in the bad states. We also find that the clustering of the taking of id-

iosyncratic risk can be attributed to large and sudden shocks that cause the aggregate economy to

switch from the good state to the bad state.

7.2 Idiosyncratic Risk-Taking and Default Events

Having visually identified the clustering of risk-shifting and default events in recessions for one

simulated sample, we now seek statistical evidence by running standard probit regressions on 100

simulated economies. After dropping the first 100 years of observations, each economy contains

40 years of records on annual risk-taking and default events for 1,000 firms. For each simulated

economy, a pooled probit regression is run for each of the following three horizons: one, two and five

years. We regress the probability of risk-taking on an intercept, interest coverage Xt/c, a current

state indicator 1st=B, and their interaction.17

Table 6 reports the results. Panel A shows that, when T = 1, the interest coverage is negatively

associated with the the future likelihood of risk-taking, with a coefficient of –0.423 (t-stat = –9.539),

consistent with our intuition that the firms that have difficulties covering their coupon payments

are more likely to shift risk. The second column shows that, when firms are in a bad state, 1st=B,

they have low cash flows (and low interest coverage) and are likely to increase their risk as well. The

year rolling window. In contrast, for the firms that have just reversed its increased risk for one year, the volatility
calculated from this rolling procedure is overestimated relative to the true volatility level. The measure error occurs
both in the real data and in the model-generated data.

16We obtain a stronger countercyclical pattern when we allow the different ǫst in the bad and good states.
17Instead of using the financial leverage we have already employed in the simulated method of moments, we use

the interest coverage to complement those results because the interest coverage Xt/c is calculated in a way roughly
similar to the risk-shifting threshold scaled by the coupon, Xr/c.
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third column shows that their interaction terms are not statistically and economically significant.

When the horizon T increases to two years, their individual impacts become smaller in the forth

and fifth columns. In the sixth column where we include the interaction term, the coefficient of the

aggregate state indicator 1st=B drops to –0.067 and becomes statistically insignificant. Therefore,

the transitory bad state has no long-lasting predicting power. However, equity holders in a good

state with EZ preferences perceive the risk-neutral arrival probability of the bad state greater than

the actual probability and shift the risk earlier than necessary.

Panel B exhibits the results predicting default events. For the prediction horizon of T = 1,

the coefficient of interest coverage in the first column is –16.062 (t = –4.919) and the pseudo-R2

is 0.675. Both are much stronger than their counterparts in Panel A in predicting the risk-shifting

behavior, indicating that the interest coverage has a strong predicting power for the defaults. Even

when the horizon increases to T = 5, interest coverage still weakly determines a firm’s default

decision. In contrast, the current state of the economy has much weaker predicting power.

In short, we find that the interest coverage has strong and persist predicting power for both

risk-taking and default events. The transitory bad state has no long-lasting predicting power.

7.3 Implications for the Cross-Section of Expected Equity Returns

In this section, we use the estimated full model to examine the quantitative implications of the

risk-shifting behavior for equity returns. Additionally, we use the standard portfolio approach to

investigate this idiosyncratic volatility discount over the business cycle.18 We include firms in the

recession subsample if the last quarter before the portfolio construction was in an NBER recession.

It is worth noting again that the portfolio returns are not targeted moments in our structural

estimation and that the changes in idiosyncratic volatility are entirely driven by the risk shifting

mechanism in the simulated data.

7.3.1 Sorts on Idiosyncratic Cash Flow Volatility

Table 7 shows the portfolio performance using the real data and model-generated data. We re-

port the average value-weighted excess returns and the CAPM alphas of decile portfolios. At

the beginning of each quarter, we sort firms into deciles based on the idiosyncratic volatility of

18Our results from Fama-MacBeth regressions are very similar and available upon request.
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cash flow residuals, σi,Xt−1, of the last quarter. Then, we form decile portfolios, compute value-

weighted portfolio returns over the next quarter, and rebalance the portfolios each quarter. LMH

is the hedge portfolio that is long on the low-idiosyncratic-volatility portfolio and short on the

high-idiosyncratic-volatility portfolio.

Our empirical results in Panel A largely resemble the findings of Huang (2009).19 Firms with

lower cash flow volatility receive higher equity returns than those with higher cash flow volatility,

on average, by 8.227% (t-statistic = 2.042). The LMH portfolio earns 15.042% in recessions, more

than double the average of 7.499% in expansions, implying the idiosyncratic volatility discount

is countercyclical. This observation is also consistent with the empirical finding by Avramov,

Chordia, Jostova, and Philipov (2013) that the idiosyncratic volatility discount is more pronounced

in distressed firms. While their finding relates to firm-level distress, ours relates to aggregate bad

states.

Following the empirical procedure, we use the model-generated idiosyncratic cash flow volatility

to form the portfolios based on the volatility of the last quarter. Two observations in Panel B are as

follows: First, as shown in the first row, the average excess return of the decile portfolios decreases

from 5.389% to –3.661%. The LMH portfolio earns 9.050% per year, and its CAPM alpha is 8.047%

(t-statistic = 3.695). This suggests the CAPM fails in our model. This is not surprising, because

our simulated economy has two state variables (as in equation (10)) instead of one single market

variable. Second, when splitting the sample into the subsamples of recessions and expansions, we

find the LMH portfolio earns 14.623% in recessions, more than double the 6.814% in expansions.

All the values are close to those from the empirical data, even though our SMM estimation does

not include cross-sectional equity returns as targeted moments. This supports our prediction of the

countercyclical idiosyncratic volatility discount in Proposition 2.

19We follow Huang (2009) and calculate the idiosyncratic cash flow volatility. The cash flow is operating incomes
scaled by sales (the sum of Compustat item IBQ and XintQ divided by the sales of the last quarter). The cash flow
residuals are obtained by regressing the firm-level cash flow growth on the simple average of cash flow growth across
all the firms.

33



7.3.2 Sorts on Idiosyncratic Equity Return Volatility

Next, we investigate whether the high equity return volatility causes low future equity returns.20

Sightly different from σi,Xt−1, the idiosyncratic equity return volatility σi,Et−1 is calculated using the

stocks returns of the past 24 months from CRSP. We form the decile portfolio at the beginning

of each month, compute value-weighted excess returns over the next month, and rebalance the

portfolios each month.

Table 8 reports the results of portfolio performance. As shown in Panel A, the idiosyncratic

volatility discount is significant as well when we form the portfolios on the idiosyncratic return

volatility of the past month. Firms with high equity return volatility earns a lower equity return

than those with low return volatility, on average, by 7.809% per year for the whole sample, 11.317%

in recessions, and 6.622% in expansions. Panel B shows that the model-generated equity returns

exhibit the same patterns as those in the data, and with similar magnitudes. The average excess

return declines from 5.579% to –1.416% with the idiosyncratic return volatility. The LMH portfolio

earns 6.996% with a t-statistic of 2.299. More importantly, the idiosyncratic volatility discount is

countercyclical. That is, the discount in recessions is 9.804% (t-statistic = 1.448), greater than

5.723% (t-statistic = 1.925) in expansions.

In summary, consistent with the qualitative prediction in Proposition 2, our calibration using

the estimated model demonstrates quantitatively that the negative association between idiosyn-

cratic volatility and the equity returns is much stronger in recessions than expansions, for both

idiosyncratic cash flow volatility and equity return volatility. Hence, the clustering of the strategic

risk-taking recessions could help us understand the countercyclical idiosyncratic volatility discount.

8 Concluding Remarks

While corporate financing and investment decisions have been well studied in the presence of

macroeconomic uncertainty risk, there has been no study on the interaction between macroeco-

20Empirical evidence regarding on the relation between idiosyncratic return volatility and stock returns is mixed.
While Fu (2009) presents evidence that the conditional expected EGARCH idiosyncratic volatility is positively related
to stock return, Ang et al. (2006) find a negative relation between the realized idiosyncratic volatility and the stock
return of the next month. However, a recent paper by Guo, Kassa, and Ferguson (2014) raised a concern about the
potential look-ahead bias in Fu’s work. Specifically, they state “A spurious positive relation between exponential
generalized autoregressive conditional heteroskedasticity (EGARCH) estimates of expected month t idiosyncratic
volatility and month t stock returns arises when the month t return is included in estimation of model parameters.”
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nomic risk and corporate risk-taking policies, to our best knowledge. We are the first to introduce

macroeconomic uncertainty into the standard risk-shifting model (Leland, 1998) and endogenize a

firm’s financing, default and risk-taking decisions over the business cycle.

We estimate the model via the SMM and obtain three novel results. First, equity holders with

EZ preferences in our model increase their taking of idiosyncratic risk substantially more than in

Leland (1998) in repeated games, because they perceive the probability of the arrival of bad times

as higher than the actual probability and prefer an early resolution of macroeconomic uncertainty.

Second, because of large, negative shocks in bad states and sudden switches from good to bad states,

our model generates the clustering of idiosyncratic risk-taking, which provides a novel explanation

for recent empirical findings of countercyclical and “synchronized” idiosyncratic volatility (Bloom,

2009, 2016; Herskovic, Kelly, Lustig, and Nieuwerburgh, 2015). Lastly, combined with the counter-

cyclical market risk premium, the clustered idiosyncratic risk-taking generates the countercyclical

idiosyncratic volatility discount on equity returns. Our calibration using the estimated model shows

that our model is able to generate quantitative implications for the idiosyncratic volatility discount

over the business cycle.

While our paper assumes that managers act on behalf of equity holders and ignores another

layer of the agency conflict between the managers and equity holders, it will be fruitful to extend

our work in this direction in our future research agenda.
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Figure 1: Dynamic Paths
This figure plots four possible paths that a firm could take within one refinancing cycle, which can be repeated
infinitely. In observing its dynamic asset value, the firm makes financing, risk-taking and default decisions.
Path 1 shows that, when its cash flows reach an upper threshold Xu, the firm decides to issue more debt to
take advantage of tax benefits. In contrast, if the cash flows Xt decline to a low threshold Xr along Path
2, equity holders thus choose to make high-risk investments with high idiosyncratic risk σi,X

H that produce
cash flows with a low expected growth rate µ̂H and high total volatility σH , hoping that a cash flow windfall
due to the increased σH might save the firm. After taking more risk, there are two possibilities. The first
possibility is shown in Path 3. The increased idiosyncratic risk may quickly release the firm from financial
distress. This eventually leads to a subsequent debt restructuring at the same restructure threshold Xu.
In order to enjoy the same cost of debt, i.e., coupon payment, the firm has incentives to adjust its level
of idiosyncratic risk back to its previous level immediately before the refinancing at Xu, as if it had never
increased it earlier. The second possibility is that the new risky projects may cause a more severe cash flow
shortfall, as shown in Path 4. If the firm continues to deteriorate, equity holders will no longer be willing to
inject more capital, and decide to go bankrupt at Xd. Bankruptcy leads to immediate liquidation.
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Figure 2: Financial Leverage, and Probability of Default and Risk-Shifting

This figure plots the time series of the cross-sectional average of firm-level leverage in Panel A, and
the time series of default probability (solid line) and risk-shifting probability (dotted line) in Panel
B, for a typical economy. The economy consists of 1,000 firms. Firm-level financial leverage is the
ratio of debt to the market value of assets for an individual firm. Both risk-shifting and default
probabilities are cumulative over one year. Gray areas show times when the economy is in the bad
state, i.e., st = B.
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Figure 3: Idiosyncratic Volatility of Cash Flows

This figure plots the equal-weighted average (Panel A) and the interquartile (Panel B) of the
idiosyncratic volatility of cash flow growth across 1,000 firms against years, for a typical economy.
Gray areas show times when the economy is in the bad state, i.e., st = B.

42



Table 1: Comparative Statics Analysis for the Baseline Model
This table presents the comparative statics analysis for the parameter values for the baseline model. In Panel
A, we list the benchmark values of the parameters according to the literature, except for the value-destroying
cost and the two risk adjustment costs. In Panel B, we perform comparative statics analysis by varying the
values of the market price of risk θ, the systematic volatility σm, the value-destroying cost η, the cost of
increasing risk ξ+, and the cost of decreasing risk ξ−. In Panel C, we report the sensitivity analysis for the
same set of parameters.

Panel A. Parameters
Value

Nominal Interest rate, r 0.040
Market price of risk, θ 0.200
Systematic volatility, σm 0.100
Debt issue cost, φ 0.010
Liquidation cost, α 0.150
Effective tax rate, τ 0.200
Coupon, c 0.400
Physical growth rate, µ̂L 0.055

Low cash flow idio volatility, σi,X
L 0.100

Increment in idio volatility, ǫ 0.150
Value destroying cost, η 0.030
Cost of increasing risk, ξ+ 0.050
Cost of decreasing risk, ξ− 0.050

Panel B. Comparative Statics
Benchmark values η =0.05 ξ− =0.1 ξ+ =0.1 θ =0.25 σm =0.15

Xr 0.149 0.105 0.146 0.143 0.507 0.798
Xd 0.025 0.025 0.025 0.025 0.048 0.065
Xu 1.403 1.402 1.403 1.403 1.431 1.369

Panel C. Sensitivity of Optimal Policies to Parameters
η ξ− ξ+ θ σm

Xr −0.355 −0.001 −0.075 4.753 6.555
Xd 0.117 −0.000 0.023 3.725 3.009
Xu −0.000 −0.000 −0.000 −0.070 −0.065
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Table 2: Parameter Estimation for the Full Model This table presents the estimation results
from the simulated method of moments. We list the predetermined parameters from the existing literature
in Panel A. We report the estimates of the value-destroying parameter η, the risk adjustment costs ξ+ and
ξ−, and the increments in ǫst , with their t-statistics in parentheses in Panel B. The p-value of the χ2 statistic
is also reported. Panel C presents the optimal policies given the predetermined and estimated parameter
values.

Panel A. Parameters from the Literature
st = B st = G

Probability of leaving current state st, λ̂st 0.500 0.100
Aggregate state-switching risk premium, κst 0.500 2.000
Nominal interest rate, rst 0.040 0.040
Market price of risk, θst 0.220 0.170
Systematic volatility, σm

st
0.120 0.100

Debt issue cost, φst 0.010 0.010
Liquidation cost, αst 0.150 0.100
Effective tax rate, τst 0.200 0.200
Coupon, cst 0.380 0.400
Physical growth rate, µ̂st,L −0.010 0.080

Low cash flow idio volatility, σi,X
st,L

0.100 0.100

Panel B. Parameter Estimated from SMM
Estimates t-statistic

Value destroying cost, η 0.031 31.198
Cost of increasing risk, ξ+ 0.015 0.023
Cost of decreasing risk, ξ− 0.022 8.825
Increment in idio volatility, ǫB = ǫG 0.155 21.496
χ2 0.138
p− value 0.933

Panel C. Optimal Policies
Xr(B;G) Xr(G;G) Xd(B;G) Xd(G;G) Xu(B;G) Xu(G;G)

Estimates 0.644 0.577 0.073 0.061 3.496 1.363

44



Table 3: Moments of Generated Samples from the Full Model

This table reports the targeted moments, used in the simulated method of moments, in Panel A, and untargeted moments in Panel B,
from 100 model-generated samples. Each sample contains the quarterly observations for 1,000 firms over 40 years (the first 100 years
of observations have been discarded). The statistics are averaged across all the samples. In Panel A, the targeted moments include
averaged idiosyncratic cash flow volatility σi,Xt , averaged quasi-financial leverage, the average of the interquartile time series of σi,Xt , the

variance of σi,Xt , the first-order autocorrelation (AC(1)) of the interquartile time series of σi,Xt , and the sensitivity of σi,Xt to quasi-market

leverage (QMLt−1). We estimate the sensitivity of σi,Xt by regressing the sample mean of σi,Xt on an intercept and the sample mean
of quasi-market leverage. In Panel B, we report the untargeted moments, including average firm-level cash flow growth rate, interest
coverage, Sharpe ratio, unconditional (uncond.) standard deviation (std) of market returns, firm-level unconditional standard deviation
of equity returns, and default probability. ‘Data’ shows the moments from the data, ‘Model’ the average of the moments across all
samples generated from the full model, and ‘M–D’ the difference between those two columns. We also report the 5th, 25th, 50th, 75th,
and 95th percentiles of the moments from the 100 samples.

Panel A. Targeted Moments
D(ata) M(odel) 5th 25th 50th 75th 95th M–D t-stat(M–D)

Ave idiosyncratic volatility σi,X
t 0.127 0.127 0.107 0.115 0.125 0.135 0.161 −0.001 −0.056

Ave. quasi-market leverage (QMLt) 0.238 0.246 0.179 0.209 0.240 0.276 0.355 0.008 2.527

Interquartile of σi,X
t 0.055 0.054 0.025 0.029 0.052 0.060 0.126 −0.001 −0.093

Variance of σi,X
t 0.016 0.017 0.011 0.013 0.016 0.019 0.026 0.000 0.003

AC(1) of Interquartile of σi,X
t 0.941 0.964 0.780 0.958 0.971 0.987 0.996 0.024 0.652

Sensitivity of σi,X
t on QMLt−1 0.203 0.203 0.074 0.151 0.201 0.283 0.328 0.000 0.003

Panel B. Untargeted Moments
D(ata)/Literature M(odel) 5th 25th 50th 75th 95th M–D

Ave. firm-level cash flow growth 0.077 0.074 0.042 0.058 0.072 0.089 0.108 −0.004
Interest coverage 2.410 2.481 2.115 2.387 2.534 2.617 2.681 0.071
Equity market Sharpe ratio 0.329 0.309 −0.043 0.184 0.301 0.458 0.569 −0.020
Uncond. std of equity market returns 0.172 0.150 0.115 0.134 0.151 0.162 0.181 −0.022
Firm-level uncond. std of equity returns 0.339 0.315 0.258 0.274 0.309 0.333 0.418 −0.024
Default probability (%) 0.553 0.465 0.020 0.150 0.213 0.700 1.405 −0.088
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Table 4: Sensitivities of Optimal Policies and Model Moments to Estimated Parameters
This table presents the sensitivities of the optimal policies (in Panel A) and targeted model moments (in Panel
B) to the estimated parameters. The sensitivity is measured as the percentage change in the optimal policies
or model moments in response to a one-percentage change in the estimated parameters. The estimated
parameters are the value-destroying parameter η, the risk adjustment costs ξ+ and ξ−, and the increments
in ǫst . In Panel A, the optimal policies include the refinancing threshold, Xu(st; s0 = G), the default
threshold, Xd(st; s0 = G), and the risk-shifting threshold, Xr(st; s0 = G), for both states, st = G,B.

In Panel B, the moments include averaged idiosyncratic cash flow volatility σi,X
t , averaged quasi-market

leverage (QMLt−1), the time series average of the interquartile of σi,X
t , the variance of σi,X

t , the first-order

autocorrelation (AC(1)) of the interquartile time series of σi,X
t , and the sensitivity of σi,X

t to QMLt−1.

Panel A. Sensitivity of Optimal Policies to Estimated Parameters
η ξ+ ξ− ǫB = ǫG

Xr(B;G) −0.634 −0.004 −0.026 −0.276
Xr(G;G) −0.637 −0.000 −0.025 −0.277
Xd(B;G) 0.013 −0.000 0.000 −0.424
Xd(G;G) 0.013 −0.000 0.000 −0.438
Xu(B;G) −0.233 0.036 0.075 0.756
Xu(G;G) 0.077 0.001 −0.000 0.082

Panel B. Sensitivity of Targeted Moments to Estimated Parameters
η ξ+ ξ− ǫB = ǫG

Ave σi,X
t −0.565 −0.000 −0.061 −0.169

Ave. quasi-market leverage −0.567 0.001 −0.094 −0.401

Interquartile of σi,X
t −1.975 0.000 −0.080 −1.542

Variance of σi,X
t −1.186 −0.000 −0.107 −0.428

AC(1) of interquartile of σi,X
t 0.043 −0.000 0.017 0.606

Sensitivity of σi,X
t on QMLt−1 −1.129 −0.003 0.384 2.318
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Table 5: Sensitivities of Optimal Policies and Model Moments to Macroeconomic Vari-
ables
This table presents the sensitivities of the optimal policies (in Panel A) and targeted model moments (in
Panel B) to macroeconomic parameters. The sensitivity is measured as the percentage change in the op-
timal policies or model moments in response to a one-percentage change in the macroeconomic variables.
The macroeconomic risk parameters include the market volatility, σm

st
, the market price of risk, θst , the

macroeconomic risk-switching premium κG, the actual probability of leaving the current state B, λ̂B , and
the actual probability of leaving the current state G, λ̂G. In Panel A, the optimal policies include the re-
financing threshold, Xu(st; s0 = G), the default threshold, Xd(st; s0 = G), and the risk-shifting threshold,
Xr(st; s0 = G), for both states, st = G,B. In Panel B, the moments include averaged idiosyncratic cash flow

volatility σi,X
t , averaged quasi-market leverage QMLt−1, the time series average of the interquartile of σi,X

t ,

the variance of σi,X
t , the first-order autocorrelation (AC(1)) of the interquartile time series of σi,X

t , and the

sensitivity of σi,X
t to QMLt−1.

Panel A. Sensitivity of Optimal Policies to Macro Parameters

σm
B θB σm

G θG κG = 1/κB λ̂B λ̂G
Xr(B;G) 0.715 0.770 1.033 1.132 4.168 −1.816 2.354
Xr(G;G) 0.715 0.771 1.072 1.175 4.263 −1.827 2.438
Xd(B;G) 0.414 0.522 0.593 0.641 2.579 −1.183 1.397
Xd(G;G) 0.453 0.488 0.578 0.681 2.552 −1.086 1.466
Xu(B;G) −0.362 0.041 −0.089 −0.114 0.143 −0.390 −0.183
Xu(G;G) −0.014 −0.026 −0.023 −0.068 −0.233 0.086 −0.147

Panel B. Sensitivity of Targeted Moments to Macro Parameters

σm
B θB σm

G θG κG = 1/κB λ̂B λ̂G
Ave σi,X

t 0.831 0.905 1.502 1.173 2.947 −1.166 1.394
Ave. QMLt 1.128 1.335 2.162 1.593 4.560 −1.537 2.096

Interquartile of σi,X
t 2.184 2.838 5.441 4.084 12.720 −6.230 3.985

Variance of σi,X
t 1.736 1.891 3.088 2.423 6.046 −2.469 2.856

AC(1) of Interquartile of σi,X
t 0.892 1.173 1.569 1.331 3.233 1.096 2.598

Sensitivity of σi,X
t on QMLt−1 4.878 1.529 6.413 7.199 15.952 −3.576 8.408
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Table 6: Regressions of Idiosyncratic Risk-Taking and Default Events
This table reports the results of probit regressions used to predict the idiosyncratic risk-taking and the default over different horizons. We simulate
100 artificial panels of data at a quarterly frequency for a period of 140 years for 1,000 firms, and discard the first 100 years of observations. We use
records on annual defaults for 1,000 firms. For each data set, a pooled probit regression is run for each of the following three horizons: one, two, and
five years. The dependent variable equals 1 if the firm defaults within the specified horizon. Independent variables are interest coverage (Xt/c) and
the indicator variable 1st=B if the current state of the economy st = B. The t-statistics are given in parentheses. Log-like is the log-likelihood ratio,
and pseudo-R2 is the McFadden pseudo-R2. The coefficients and t-statistics are averaged across all the panels.

Panel A. Prediction Regression of Risk-Shifting
T = 1 T = 2 T = 5

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Intercept −1.577 −2.810 −1.847 −1.900 −2.647 −1.984 −2.683 −2.392 −2.656
(t) (−18.098) (−56.598) (−14.256) (−13.621) (−44.597) (−11.135) (−9.167) (−32.656) (−7.877)
Xt/c −0.423 −0.435 −0.274 −0.281 0.064 0.097
(t) (−9.539) (−6.795) (−3.853) (−3.316) (0.767) (0.675)
1st=B 0.596 0.511 0.214 −0.067 −0.586 −0.632
(t) (9.640) (2.905) (3.917) (0.705) (−1.056) (−0.312)
Xt/c1st=B 0.046 0.115 0.012
(t) (0.674) (0.561) (0.014)
Log-like 106.506 196.841 292.401 20.631 51.171 72.836 4.878 22.342 29.907
pseudo-R2 0.071 0.088 0.156 0.035 0.049 0.082 0.013 0.037 0.054

Panel B. Prediction Regression of Default
Intercept 2.999 −3.235 3.083 0.830 −3.003 1.100 −0.948 −3.043 −0.831
(t) (3.354) (−36.687) (2.108) (0.668) (−30.682) (0.850) (−2.415) (−18.848) (−1.868)
Xt/c −16.062 −16.930 −7.803 −8.736 −2.675 −2.867
(t) (−4.919) (−3.882) (−3.439) (−3.064) (−2.131) (−1.937)
1st=B −0.113 −2.471 −0.403 −3.292 −0.496 −1.978
(t) (1.218) (0.085) (0.151) (−0.052) (0.012) (0.044)
Xt/c1st=B 6.460 5.036 0.126
(t) (0.218) (0.169) (0.009)
Log-like 227.727 4.637 78.473 94.986 −155.910 99.774 25.462 −34.928 29.235
pseudo-R2 0.675 0.012 −1.883 0.559 −1.469 0.579 0.392 −0.556 0.429
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Table 7: Sort on Idiosyncratic Cash Flow Growth Volatility over the Business Cycle
This table reports the averages of the value-weighted excess returns of decile portfolios from 100 model-generated samples. We simulate 100 artificial
panels of data at a quarterly frequency for a period of 140 years for 1,000 firms and discard the first 100 years of observations. At the beginning
of a quarter, firms are sorted into deciles based on the idiosyncratic volatility of cash flow growth over the last 20 quarters. Idiosyncratic volatility
of cash flow growth is the standard deviation of residuals, which are obtained from a regression of cash flow growth rates of the past 20 quarters
on the simple average of cash flow growth rates all the firms. The average equity returns are computed over the next quarter and the portfolios
are rebalanced each quarter. We report annualized value-weighted returns for the whole sample as well as subsamples of recessions (Recess) and
expansions (Expans). Firms are included in the recession subsample if the last quarter before the portfolio construction belonged to a recession. The
excess returns re, and CAPM alphas, αCAPM , are annualized and reported in percentages. The t-statistics in parentheses are calculated based on
the heteroskedasticity-consistent standard errors of Newey and West (1987).

Panel A. Data
L(ow) 2 3 4 5 6 7 8 9 H(igh) LMH

Whole Sample re (%) 8.564 8.982 8.960 7.619 8.207 6.468 5.714 5.171 4.350 0.338 8.227
(t) (4.065) (3.891) (3.519) (2.786) (2.912) (2.358) (1.703) (1.436) (1.055) (0.065) (2.042)
αCAPM (%) 2.306 2.031 1.548 −0.129 0.394 −1.657 −2.959 −4.285 −5.801 −11.303 13.609
(t) (2.840) (2.121) (1.959) (−0.146) (0.384) (−1.517) (−2.056) (−2.778) (−2.379) (−3.580) (3.882)

Recess Sample re (%) 14.459 13.248 13.211 12.571 13.941 8.136 6.914 8.406 6.341 −0.583 15.042
(t) (1.551) (1.227) (1.133) (0.963) (1.115) (0.666) (0.457) (0.547) (0.437) (−0.031) (1.244)
αCAPM (%) 6.121 3.358 2.889 1.092 2.827 −3.581 −5.250 −5.065 −6.768 −16.830 22.951
(t) (2.295) (1.531) (1.155) (0.424) (1.228) (−0.800) (−0.879) (−1.298) (−1.062) (−2.295) (2.541)

Expans Sample re (%) 7.798 8.283 8.507 7.042 7.181 6.302 5.513 5.140 3.963 0.299 7.499
(t) (3.670) (3.559) (3.289) (2.665) (2.522) (2.294) (1.665) (1.398) (0.886) (0.054) (1.687)
αCAPM (%) 1.746 1.749 1.469 −0.235 −0.184 −1.406 −2.790 −3.852 −5.895 −10.700 12.446
(t) (2.013) (1.568) (1.634) (−0.242) (−0.158) (−1.322) (−1.988) (−2.233) (−2.185) (−3.011) (3.163)

Panel B. Model
L(ow) 2 3 4 5 6 7 8 9 H(igh) LMH

Whole Sample re (%) 5.389 5.138 5.030 5.021 4.975 4.640 4.295 3.076 0.626 −3.662 9.050
(t) (2.561) (2.451) (2.383) (2.383) (2.347) (2.208) (2.071) (1.602) (0.618) (−1.051) (3.724)
αCAPM (%) 0.860 0.581 0.454 0.456 0.422 0.103 −0.215 −1.284 −3.369 −7.187 8.047
(t) (1.326) (0.895) (0.718) (0.788) (0.741) (0.471) (0.304) (−0.542) (−1.786) (−3.646) (3.695)

Recess Sample re (%) 11.214 11.151 10.558 10.108 10.283 9.075 8.654 6.104 2.578 −3.408 14.623
(t) (1.847) (1.713) (1.572) (1.594) (1.520) (1.351) (1.341) (0.665) (0.082) (−0.792) (2.252)
αCAPM (%) 2.069 2.037 0.993 0.782 0.867 −0.346 −0.798 −2.953 −5.539 −8.882 10.951
(t) (1.490) (1.418) (0.518) (0.647) (1.081) (0.407) (0.039) (−1.254) (−1.435) (−2.396) (2.344)

Expans Sample re (%) 3.933 3.746 3.695 3.787 3.753 3.547 3.136 2.191 0.275 −2.881 6.814
(t) (1.906) (1.828) (1.797) (1.802) (1.820) (1.726) (1.543) (1.172) (0.426) (−0.751) (3.549)
αCAPM (%) 0.656 0.424 0.349 0.469 0.427 0.180 −0.266 −1.218 −3.260 −6.615 7.270
(t) (1.144) (0.706) (0.550) (0.784) (0.809) (0.457) (0.171) (−0.469) (−1.628) (−3.736) (3.956)
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Table 8: Sort on Idiosyncratic Equity Return Volatility over the Business Cycle
This table reports the averages of the value-weighted excess returns of decile portfolios from 100 model-generated samples. We simulate 100 artificial
panels of data at a monthly frequency for a period of 140 years for 1,000 firms and discard the first 100 years of observations. At the beginning of
a month, firms are sorted into deciles based on the idiosyncratic volatility of equity returns of the last 24 months. Idiosyncratic volatility of equity
returns is the standard deviation of residuals, which are obtained from a regression of market equity returns. The average equity returns are computed
over the next month and the portfolios are rebalanced each month. We report annualized value-weighted returns for the whole sample as well as
subsamples of recessions (Recess) and expansions (Expans). Firms are included in the recession subsample if the last quarter before the portfolio
construction belonged to a recession. The excess returns re, and CAPM alphas, αCAPM , are annualized and reported in percentages. The t-statistics
in parentheses are calculated based on the heteroskedasticity-consistent standard errors of Newey and West (1987).

Panel A. Data
L(ow) 2 3 4 5 6 7 8 9 H(igh) LMH

Whole Sample re (%) 6.186 6.995 7.305 8.129 6.912 7.572 7.322 4.764 2.833 −1.623 7.809
(t) (3.262) (3.128) (2.769) (2.780) (2.161) (2.168) (1.879) (1.100) (0.626) (−0.320) (1.867)
αCAPM (%) 1.385 1.045 0.531 0.777 −0.755 −0.793 −1.294 −4.558 −6.510 −11.481 12.866
(t) (2.167) (1.689) (0.632) (0.743) (−0.536) (−0.492) (−0.632) (−1.945) (−2.560) (−3.721) (3.663)

Recess Sample re (%) 6.036 10.912 11.300 8.370 6.670 10.232 9.226 5.623 2.311 −5.281 11.317
(t) (0.730) (1.075) (1.003) (0.676) (0.493) (0.708) (0.608) (0.347) (0.140) (−0.317) (1.079)
αCAPM (%) 1.260 4.803 4.615 1.238 −0.360 2.271 1.421 −3.186 −6.119 −14.129 15.389
(t) (0.691) (2.724) (1.910) (0.426) (−0.081) (0.441) (0.281) (−0.587) (−0.940) (−2.250) (2.068)

Expans Sample re (%) 6.206 6.351 6.689 7.882 7.074 7.324 7.323 4.868 3.175 −0.416 6.622
(t) (3.420) (3.028) (2.633) (2.797) (2.268) (2.114) (1.854) (1.086) (0.684) (−0.076) (1.397)
αCAPM (%) 1.416 0.468 −0.128 0.439 −0.864 −1.230 −1.609 −4.715 −6.499 −10.607 12.024
(t) (1.974) (0.699) (−0.144) (0.390) (−0.569) (−0.722) (−0.696) (−1.799) (−2.352) (−2.983) (2.968)

Panel B. Model
L(ow) 2 3 4 5 6 7 8 9 H(igh) LMH

Whole Sample re (%) 5.579 5.433 5.187 5.197 4.937 5.095 4.969 4.205 2.577 −1.416 6.996
(t) (2.611) (2.596) (2.483) (2.494) (2.280) (2.454) (2.406) (2.016) (1.380) (−0.043) (2.299)
αCAPM (%) 1.222 1.060 0.818 0.776 0.536 0.735 0.625 −0.150 −1.593 −5.424 6.647
(t) (1.574) (1.561) (1.300) (1.206) (0.731) (1.136) (1.370) (0.325) (−0.467) (−2.060) (2.317)

Recess Sample re (%) 10.677 10.518 9.782 10.687 8.888 9.738 8.968 7.851 5.317 0.872 9.804
(t) (1.789) (1.747) (1.556) (1.630) (1.231) (1.632) (1.445) (1.219) (0.761) (0.262) (1.448)
αCAPM (%) 2.333 2.140 1.469 1.925 0.427 1.938 0.879 −0.591 −3.380 −7.088 9.421
(t) (1.395) (1.106) (1.021) (1.596) (0.113) (1.377) (0.937) (−0.060) (−0.302) (−2.494) (1.856)

Expans Sample re (%) 4.329 4.251 4.099 4.010 4.000 4.010 4.037 3.372 2.101 −1.394 5.723
(t) (2.072) (2.056) (1.998) (1.886) (1.900) (1.926) (1.921) (1.600) (1.121) (−0.087) (1.925)
αCAPM (%) 0.971 0.901 0.710 0.591 0.586 0.611 0.658 −0.129 −1.450 −5.408 6.379
(t) (1.465) (1.413) (1.261) (1.022) (0.864) (1.036) (1.504) (0.489) (−0.343) (−1.888) (2.191)
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Online Appendix (Not for Publication)

A Baseline Model

For the baseline model, we present the value functions for equity and debt and then the boundary

conditions to solve for the value functions.

A.1 Asset Valuations

Under the risk-neutral measure, the Bellman equation describes the valuation of any claim J(Xt, vt)

on operating cash flows Xt in state, s, as follows:

J(Xt, vt) = CFtdt+ e−rdtEQ(J(Xt + dXt, vt)), (A1)

where CFt denotes the cash flows accruing to claim holders. Standard dynamic programming

suggests that J(Xt, vt) ≡ Jt,vt must satisfy the ordinary differential equation

µvtXJ
′
t,vt +

σ2vt
2
X2J ′′

t,vt − rJt,vt + CFt = 0, (A2)

where J(Xt, vt), J
′
t,vt and J

′′
t,vt denote the first and second-order derivatives of Jt,vt with respect to

Xt, respectively.

Because the cash flows generated by the assets is CFt = Xt, the value of assets-in-place, At,vt ,

under the risk-neutral measure Q, is

At,vt ≡ A(Xt, vt) =
Xt

r − µvt
. (A3)

The cash flow accruing to equity holders is CFt = (Xt− c)(1− τ). Hence, the value function of

equity is

E(Xt, vt) = (1− τ)

(
Xt

r − µvt
− c

r

)

+ evt,1X
ωvt,1

t + evt,2X
ωvt,2

t (A4)

= (1− τ)
(

At,vt −
c

r

)

+ evt,1X
ωvt,1

t + evt,2X
ωvt,2

t , (A5)

where ωvt,1 < 0 and ωvt,2 > 1 are the two roots of the characteristic equation

1

2
σ2vtωvt(ωvt − 1) + µvtωvt − r = 0. (A6)

The cash flow accruing to debt holders is CFt = c. Hence, the value function of debt at the

level of vt is

D(Xt, vt) =
c

r
+ dvt,1X

ωvt,1

t + dvt,2X
ωvt,2

t . (A7)

A–1



A.2 Boundary Conditions

Equity Boundary Conditions To solve for eL,1, eL,2, eH,1 and eH,2, we will use the following

boundary conditions as follows:

lim
Xt↑Xd

E(Xt, H) = 0; (A8)

lim
Xt↑Xu

E(Xt, L) = lim
Xt↓Xu

Xt

X0
(E(X0, L) + P (1− φ))− P ; (A9)

lim
Xt↑Xu

E(Xt, H) = lim
Xt↓Xu

Xt

X0
(E(X0, L) + P (1− φ))− P − ξ−ǫ2A(Xt)(1− τ); (A10)

lim
Xt↑Xr

E(Xt, L) = lim
Xt↓Xr

E(Xt, H)− ξ+ǫ2A(Xt)(1− τ). (A11)

Equation (A8) states that equity holders receive nothing at bankruptcy, if increasing idiosyncratic

volatility to the high level, i.e., vt = H, does not save the firm. Equation (A9) states that the equity

value E(Xu, L) increases by a scaling factor Xu

X0
at the refinancing threshold Xu, after retiring the

existing debt-in-place at par P and issuing more debt Xu

X0
P (1 − φ). Equation (A10) is similar to

Equation (A9), but with an addition adjustment cost ξ−ǫ2A(Xt)(1−τ) to reverse the risk level. The

value-matching condition of (A11) states that, by paying the cost ξ+ǫ2A(Xt)(1−τ), equity holders

increase the idiosyncratic volatility and therefore the equity value from E(Xr, L) to E(Xr, H).

Debt Boundary Conditions To solve for four coefficients, dL,1, dL,2, dH,1 and dH,2, we use the

following boundary conditions, (A12) to (A15).

lim
Xt↑Xd

D(Xt, H) = lim
Xt↓Xd

(1− α)A(Xt, H)(1− τ); (A12)

lim
Xt↑Xu

D(Xt, L) = P ; (A13)

lim
Xt↑Xu

D(Xt, H) = P ; (A14)

lim
Xt↑Xr

D(Xt, L) = lim
Xt↓Xr

D(Xt, H). (A15)

Equation (A12) shows that debt holders take over the assets and receive the residual value of assets

V (Xd, H)(1− τ) after the liquidation cost α. Equation (A13) states that debt holders receive the

par value of debt P when equity holders retire the existing debt if they never increase risk before.

Equation (A14) states that debt holders receive the par value of debt P after equity holders reverse

their taking of idiosyncratic risk. The value-matching condition of (A15) is to ensure no arbitrage

opportunity at Xr.

B Full Model with Macroeconomic Risk

For the fully fledged model, we present the value functions for equity and debt, and then the

boundary conditions to solve for the value functions.
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B.1 Asset Valuations

We first provide the general valuation framework, and then present the value function for equity

and debt.

B.1.1 General Valuations

Extending the one-state case in equation (A2), we have that any claim Jst,vt ≡ J(t, st, vt) that pay

CFst,vt contingent on cash flows Xt satisfies

(rB + λB)JB,vt = CFB,vt + µB,vtXtJ
′

B,vt +
1

2
σ2B,vtXtJ

′′

B,vt + λBJG,vt , (B1)

(rG + λG)JG,vt = CFG,vt + µG,vtXtJ
′

G,vt +
1

2
σ2G,vtXtJ

′′

G,vt + λGJB,vt . (B2)

In the matrix form,

[(

rB + λB −λB
−λG rG + λG

)

−
(

µB,vt 0

0 µG,vt

)

Xt
∂
∂Xt

− 1
2

(

σ2B,vt 0

0 σ2G,vt

)

X2
t
∂2

∂X2
t

](

JB,vt

JG,vt

)

=

[

CFB,vt

CFG,vt

]

(B3)

For each initial state, s0, there are a total of five cash flow regions for both equity and debt.

The cash flow regions are divided as follows:

R1 = XG,d ≤ Xt < XB,d; (B4)

R2 = XB,d ≤ Xt < XB,r; (B5)

R3 = XB,r ≤ Xt < XG,r; (B6)

R4 = XG,r ≤ Xt < XG,u; (B7)

R5 = XG,u ≤ Xt < XB,u. (B8)

For regions of R1 and R2, firms have high cash flow risk, vt = H in both states st = G,B, as they

have already increased their risk in both states. For region of R3, the firms have a low level of

idiosyncratic risk in the good state, but has shifted to a high level of risk in the bad state. For

regions of R4 and R5, firms have a low level of idiosyncratic risk, vt = L in both states. We will

successively characterize the values of equity and debt for each region.

B.1.2 Equity Value Functions

R1 = XG,d ≤ Xt < XB,d

After switching to the high-risk regime, vt = H, the firm has already gone bankrupt in the bad

state, but not yet in the good state. Because equity holders receive nothing at bankruptcy,

E(Xt, B,H; s0) = 0, in the bad state. They still receive the residuals after interest and taxes

before bankruptcy in the good state. In addition, a sudden switch of the economy from the good

state to the bad state will cause the firm to go bankrupt immediately.

A–3



The value function of E(Xt, G,H; s0) satisfies the following ODE:

(rG+λG)E(Xt, G,H; s0) = (1−τ)(Xt−c(s0))+µG,HXtE
′

(Xt, G,H; s0)+
1

2
σ2G,HX

2
t E

′′

(Xt, G,H; s0)

(B9)

Assume that the function form of the equity value is

E(Xt, G,H; s0) = (A(Xt, G,H)− CG(s0))(1− τ) +
2∑

i=1

aEG,H,i(s0)X
ψH,i

t , (B10)

where ψH,i is the roots of

1

2
σ2G,HψH(ψH − 1) + µG,HψH − rG − λG = 0. (B11)

We can easily verify that the particular parts of the above function form are, respectively,

A(Xt, G,H) =
Xt

rG + λG − µG,H
, (B12)

and

CG(s0) =
c(s0)

rG + λG
. (B13)

It is evident that the unleveled asset value A(Xt, G,H) is decreasing with the probability of leaving

the good state for the bad state, λG, in line with our intuition. While A(Xt, G,H) is independent

of initial state s0, CG(s0) is dependent on the initial state where the firm enters market and issue

debt.

R2 = XB,d ≤ Xt < XB,r

In this region, the firm has taken on high risk investments, i.e., vt = H, but have no gone bankrupt

in both states. Equity holders receive (1 − τ)(Xt − c(s0)) in both states so that E(Xt, B,H; s0)

and E(Xt, G,H; s0) satisfy the following system of ODEs:

(rB + λB)E(Xt, B,H; s0) = (1− τ)(Xt − c(s0)) + µB,HXtE
′

(Xt, B,H; s0)

+
1

2
σ2B,HX

2
t E

′′

(Xt, B,H; s0) + λBE(Xt, G,H; s0) (B14)

(rG + λG)E(Xt, G,H; s0) = (1− τ)(Xt − c(s0)) + µG,HXtE
′

(Xt, G,H; s0)

+
1

2
σ2G,HX

2
t E

′′

(Xt, G,H; s0) + λGE(Xt, B,H; s0). (B15)

Assume the functional form of the solution in state st is

E(Xt, st, H; s0) = (A(Xt, st, H)− Cst(s0))(1− τ) +
4∑

i=1

eEst,H,iX
ωH,i

t . (B16)

Plugging (B16) into the ODEs (B14) and (B15), we obtain the solutions to the particular parts
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as follows: [

A(Xt, B,H)

A(Xt, G,H)

]

=

[

rB − µB,H + λB −λB
−λG rG − µG,H + λG

]−1 [

Xt

Xt

]

(B17)

and [

CB(s0)

CG(s0)

]

=

[

rB + λB −λB
−λG rG + λG

]−1 [

c(s0)

c(s0)

]

(B18)

For the homogenous part of the solution, we verify that, for each pair of eEB,H,i(s0)X
ωH,i

t and

eEG,H,i(s0)X
ωH,i

t , we have

[(

rB,H + λB −λB
−λG rG,H + λG

)

−
(

µB,H 0

0 µG,H

)

ωH,i − 1
2

(

σ2B,H 0

0 σ2G,H

)

ωH,i(ωH,i − 1)

](

eEB,H,i(s0)

eEG,H,i(s0)

)

=

[

0

0

]

(B19)

Moreover, eEB,H,i(s0) = gH,ie
E
G,H,i(s0), where

gH,i =
1

λG
(
1

2
σ2G,HωH,i(ωH,i − 1) + µG,HωH,i − rG − λG), (B20)

and ωH,i is one of two positive roots and two negative roots of the following function

(
1

2
σ2B,HωH(ωH−1)+µB,HωH−rB−λB)(

1

2
σ2G,HωH(ωH−1)+µG,HωH−rG−λG) = λBλG. (B21)

R3 = XG,r ≤ Xt < XB,r

The firm has shifted to a high level of idiosyncratic risk in the bad state, but has not done so

in the good state and has a low level of cash flow risk. A sudden switch from the bad state to

the good state could lead the firm to increase its risk immediately and increase E(Xt, G, L; s0) to

E(Xt, B,H; s0).

The following ODE describes the value of equity in this region:

(rG + λG)E(Xt, G, L; s0) = (1− τ)(Xt − c(s0)) + µG,LXtE
′

(Xt, G, L; s0)

+
1

2
σ2G,LX

2
t E

′′

(Xt, G, L; s0) + λGE(Xt, B,H; s0). (B22)

Assume the functional form of the solution is as follows:

E(Xt, G, L; s0) = (A(Xt, G, L)− CG(s0))(1− τ) +
2∑

i=1

eEG,L,i(s0)X
ωM,i

t , (B23)

where ωM,i is the positive and negative roots of the following function

1

2
σ2G,LωM (ωM − 1) + µG,LωM − rG − λG. (B24)

As before, plugging (B23) into ODEs (B22), we can easily verify that the particular parts of
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the above function form are, respectively,

A(Xt, G, L) =
Xt

rG + λG − µG,L
(B25)

and

CG(s0) =
c(s0)

rG + λG
. (B26)

R4 = XB,r ≤ Xt < XG,u

The firm has not risk-shifted and has a low risk profile in both states in this region. Hence, equity

value functions E(Xt, G, L; s0) and E(Xt, B, L; s0) satisfy the following system of ODEs

(rG + λG)E(Xt, G, L; s0) = (1− τ)(Xt − c(s0)) + µG,LXtE
′

(Xt, G, L; s0)

+
1

2
σ2G,LX

2
t E

′′

(Xt, G, L; s0) + λGE(Xt, B, L; s0), (B27)

(rG + λB)E(Xt, B, L; s0) = (1− τ)(Xt − c(s0)) + µB,LXtE
′

(Xt, B, L; s0)

+
1

2
σ2B,LX

2
t E

′′

(Xt, B, L; s0) + λBE(Xt, G, L; s0). (B28)

Assume the functional form of the value function is

E(Xt, st, L; s0) = (A(Xt, st, L)− Cst(s0))(1− τ) +
4∑

i=1

eEst,L,i(s0)X
ωL,i

t . (B29)

Plugging (B23) and (B29) into ODEs (B27) and (B28), we obtain its particular solutions

A(Xt, st, L) and Cst(s0) in the matrix form are as follows:

[

A(Xt, B, L)

A(Xt, G, L)

]

=

[

rB − µB,L + λB −λB
−λG rG − µG,L + λG

]−1 [

Xt

Xt

]

, (B30)

and [

CB(s0)

CG(s0)

]

=

[

rB + λB −λB
−λG rG + λG

]−1 [

c(s0)

c(s0)

]

. (B31)

We can verify for each item eEB,L,i(s0)X
ωL,i

t and eEG,L,i(s0)X
ωL,i

t of the homogenous solution is

[(

rB,L + λB −λB
−λG rG,L + λG

)

−
(

µB,L 0

0 µG,L

)

ωL,i − 1
2

(

σ2B,L 0

0 σ2G,L

)

ωL,i(ωL,i − 1)

](

eEB,L,i(s0)

eEG,L,i(s0)

)

=

[

0

0.

]

(B32)

Additionally, eEB,L,i(s0) = gL,ie
E
G,L,i(s0), where

gL,i =
1

λG
(
1

2
σ2G,LωL,i(ωL,i − 1) + µG,LωL,i − rG − λG), (B33)
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and ωL is two positive roots and two negative roots of the following function

(
1

2
σ2B,LωL(ωL − 1) + µB,LωL − rB − λB)(

1

2
σ2G,LωL(ωL − 1) + µG,LωL − rG − λG) = λBλG. (B34)

R5 = XG,u ≤ Xt < XB,u

In this region, the firm in the good state has already refinanced their debt upward, but not

yet in the bad state. By retiring the existing debt at par D(X0, s0, L; s0) and issuing new debt

D(XG,u, G, L;G) at a fraction cost φ, equity holders increase their own wealth to E(Xt, G, L; s0) =

(1− φ)D(Xt, G, L;G)+E(Xt, G, L;G)−D(X0, s0, L; s0). By scaling property, we have the follow-

ing equity value at the refinancing threshold XG,u:

E(XG,u, G, L; s0) =
XG,u

X0
((1− φ)D(X0, G, L;G) + E(X0, G, L;G))−D(X0, s0, L; s0).

In contrast, equity holders in the bad state have not refinanced their debt yet. However, an

exogenous switch from the bad state to the good state induces equity holders to refinance their

debt immediately. Hence, the equity value function in the bad state, E(Xt, B, L; s0), satisfies the

following ODE

(rB + λB)E(Xt, B, L; s0) = (1− τ)(Xt − c(s0)) + µB,LXtE
′

B,L +
1

2
σ2B,LXtE

′′

B,L

+ λB

(
Xt

X0
((1− φ)D(X0, G, L;G) + E(X0, G, L;G))−D(X0, s0, L; s0)

)

.

(B35)

Its solution is

E(Xt, B, L; s0) = A(Xt, B, L)− CB(s0) +
2∑

i=1

aEB,L,i(s0)X
ψL,i

t (B36)

where ψL,i is the negative and positive roots of

1

2
σ2B,LψL(ψL − 1) + µB,LψL − rB − λB = 0. (B37)

We can verify the particular parts of the value function are as follows:

A(Xt, B, L) =
Xt(1− τ) + λB

Xt

X0
((1− φ)D(X0, G, L;G) + E(X0, G, L;G))

rB + λB − µB,,L
, (B38)

and

CB(s0) =
c(s0)(1− τ) + λBD(X0, s0, L; s0)

rB + λB
. (B39)

In total, we have 14 unknown coefficients for equity value function for an initial state s0.
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B.1.3 Debt Value Functions

R1 = XG,d ≤ Xt < XB,d

In this region, the firm has gone bankrupt in the bad state. Debt holders take over the assets and re-

ceive the residual value after the liquidation cost, i.e., D(Xt, B,H; s0) = (1−αB)A(XB,d, B,H)(1−
τ). In the good state, debt holders still receive the fixed coupon c(s0) before bankruptcy. Hence,

its value function D(Xt, G,H; s0) satisfies the following ODE:

(rG + λG)D(Xt, G,H; s0) = c(s0) + µG,HXtD
′

(Xt, G,H; s0)

+
1

2
σ2G,HX

2
tD

′′

(Xt, G,H; s0) + λG(1− αB)A(XB,d, B,H)(1− τ) (B40)

The solution of the debt value function is

D(Xt, G,H; s0) = CG(s0) +
2∑

i=1

aDG,H,i(s0)X
ψH,i

t + adλG(1− αB)A(XB,d, B,H)(1− τ), (B41)

where CG(s0) is defined in equation (B13), ψH,i in (B11),

ad =
1

rG + λG − µG,H
, (B42)

and

A(Xt, B,H) =
Xt

rB + λB − µB,H
. (B43)

R2 = XB,d ≤ Xt < XG,r

In this region, the firm has a high risk profile and its debt holders receive a stream of fixed coupon

c(s0) in both states. D(Xt, B,H; s0) and D(Xt, G,H; s0) satisfy the following system of ODEs:

(rB + λB)D(Xt, B,H; s0) = c(s0) + µB,HXtD
′

(Xt, B,H; s0)

+
1

2
σ2B,HX

2
tD

′′

(Xt, B,H; s0) + λBD(Xt, G,H; s0) (B44)

(rG + λG)D(Xt, G,H; s0) = c(s0) + µG,HXtD
′

(Xt, G,H; s0)

+
1

2
σ2G,HX

2
tD

′′

(Xt, G,H; s0) + λGD(Xt, B,H; s0), (B45)

The debt value function in state st is

D(Xt, st, H; s0) = Cst(s0) +

4∑

i=1

eDst,H,iX
ωH,i

t (B46)

where Cst(s0) is shown in (B18) and ωH,i in (B21). Similar to the equity value function in the same

region, eDB,H,i(s0) = gH,ie
D
G,H,i(s0), where gH,i is in equation (B20).

R3 = XG,r ≤ Xt < XB,r

Debt holders have the fixed coupon, c(s0), dependent on the initial state s0 where debt was issued.
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A sudden switch from the bad state to the good state could lead the firm to increase its risk imme-

diately and change D(Xt, G, L; s0) to D(Xt, B,H; s0). The value function of debt D(Xt, G, L; s0)

satisfies the following ODE:

(rG + λG)D(Xt, G, L; s0) = c(s0) + µG,LXtD
′

(Xt, G, L; s0)

+
1

2
σ2G,LX

2
tD

′′

(Xt, G, L; s0) + λBD(Xt, B,H; s0) (B47)

The value functions of debt is as follows:

D(Xt, G, L; s0) = CG(s0) +
2∑

i=1

eDG,L,i(s0)X
ωM,i

t , (B48)

where Cst(s0) is shown in (B26) and ωM,i in (B24).

R4 = XB,r ≤ Xt < XG,u

The firm has not risk-shifted in both states and possesses a low level of idiosyncratic risk. Debt

value functions D(Xt, G, L; s0) and D(Xt, B, L; s0) satisfy the following system of ODEs:

(rG + λG)D(Xt, G, L; s0) = c(s0) + µG,LXtD
′

(Xt, G, L; s0)

+
1

2
σ2G,LX

2
tD

′′

(Xt, G, L; s0) + λGD(Xt, B, L; s0), (B49)

(rG + λB)D(Xt, B, L; s0) = c(s0) + µB,LXtD
′

(Xt, B, L; s0)

+
1

2
σ2B,LX

2
tD

′′

(Xt, B, L; s0) + λBD(Xt, G, L; s0). (B50)

And the solution function in both states is

D(Xt, st, L; s0) = Cst(s0) +
4∑

i=1

eDst,L,i(s0)X
ωL,i

t . (B51)

where Cst(s0) is shown in (B31) and ωL,i in (B34). Similar to the equity value function in the same

region, eDB,L,i(s0) = gL,ie
D
G,L,i(s0), where gL,i is in equation (B33).

R5 = XG,u ≤ Xt < XB,u

Because the firm refinances earlier in the good state than in the bad state, debt holders have already

redeemed the par value, D(Xt, G, L; s0) = D(X0, s0, L; s0), in the good state. Because debt holders

have not received the payment at par in the bad state, the debt value function, D(Xt, B, L; s0),

satisfies the following ODE:

(rB+λB)D(Xt, B, L; s0) = c(s0)+µB,LXtD
′

(Xt, B, L; s0)+
1

2
σ2B,LX

2
tD

′′

(Xt, B, L; s0)+λBD(X0, s0, L; s0)

(B52)

Its solution is

D(Xt, B, L; s0) = CB(s0) +
2∑

i=1

aDB,L,i(s0)X
ψL,i

t (B53)
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where ψL,i is in (B37) and

CB(s0) =
c(s0) + λBD(X0, s0, L; s0)

rB + λB
. (B54)

In total, we have 14 unknown coefficients for debt value function for an initial state s0.

B.2 Boundary Conditions

B.2.1 Equity Boundary Conditions

When the firm has a high level of idiosyncratic volatility vt = H, we have the following conditions

for the two aggregate states, st:

lim
Xt↓Xd(B;s0)

E(Xt, B,H; s0) = 0, (B55)

lim
Xt↓Xd(G;s0)

E(Xt, G,H; s0) = 0, (B56)

lim
Xt↑Xd(B;s0)

E(Xt, G,H; s0) = lim
Xt↓Xd(B;s0)

E(Xt, G,H; s0), (B57)

lim
Xt↑Xd(B;s0)

E
′

(Xt, G,H; s0) = lim
Xt↓Xd(B;s0)

E
′

(Xt, G,H; s0). (B58)

Equations (B55) and (B56) state that equity holders receive nothing at bankruptcy at both ag-

gregate state, st = B,G. Equations (B57) and (B58) are to ensure that the equity value function

E(Xt, G,H; s0) be continuous and smooth at Xd(B; s0).

Before the firm goes bankrupt or restructures its debt, it switches between the high- and low

levels of idiosyncratic volatility. We impose the following conditions for equity value functions :

lim
Xt↓Xr(B;s0)

E(Xt, B, L; s0) = lim
Xt↑Xr(B;s0)

E(Xt, B,H; s0)− ξ+ǫ2BA(Xt, B,H)(1− τ), (B59)

lim
Xt↓Xr(G;s0)

E(Xt, G, L; s0) = lim
Xt↑Xr(G;s0)

E(Xt, G,H; s0)− ξ+ǫ2GA(Xt, G,H)(1− τ), (B60)

lim
Xt↓Xr(B;s0)

E(Xt, G, L; s0) = lim
Xt↑Xr(B;s0)

E(Xt, G, L; s0), (B61)

lim
Xt↓Xr(B;s0)

E
′

(Xt, G, L; s0) = lim
Xt↑Xr(B;s0)

E
′

(Xt, G, L; s0). (B62)

Equations (B59) and (B60) are value matching conditions, which ensure no arbitrage at the risk-

shifting threshold Xr(st; s0) for the same state, st. While equations (B61) and (B62) are to ensure

that E(Xt, G, L; s0) is continuous and smooth at Xr(B; s0).

When the firm is currently in a low level of idiosyncratic volatility, i.e., vt = L in both aggregate
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states, it restructures its debt upward. We impose the boundary conditions as follows:

lim
Xt↑Xu(B;s0)

E(Xt, B, L; s0) = lim
Xt↓Xu(B;s0)

Xt

X0
[(1− φ)D(X0, B, L;B) + E(X0, B, L;B)]−D(X0, B, L; s0),

(B63)

lim
Xt↑Xu(G;s0)

E(Xt, G, L; s0) = lim
Xt↓Xu(G;s0)

Xt

X0
[(1− φ)D(X0, G, L;G) + E(X0, G, L;G)]−D(X0, G, L; s0),

(B64)

lim
Xt↑Xu(B;s0)

E(Xt, B,H; s0) = lim
Xt↓Xu(B;s0)

Xt

X0
[(1− φ)D(X0, B, L;B) + E(X0, B, L;B)]

−D(X0, B, L; s0)− ξ−ǫ2BA(Xt, B, L)(1− τ), (B65)

lim
Xt↑Xu(G;s0)

E(Xt, G,H; s0) = lim
Xt↓Xu(G;s0)

Xt

X0
[(1− φ)D(X0, G, L;G) + E(X0, G, L;G)]

−D(X0, G, L; s0)− ξ−ǫ2GA(Xt, G, L)(1− τ), (B66)

lim
Xt↑Xu(G;s0)

E(Xt, B, L; s0) = lim
Xt↓Xu(G;s0)

E(Xt, B, L; s0), (B67)

lim
Xt↑Xu(G;s0)

E
′

(Xt, B, L; s0) = lim
Xt↓Xu(G;s0)

E
′

(Xt, B, L; s0). (B68)

Equations (B63) and (B64) are value matching conditions for firms that never increase idiosyncratic

risk. They states that, at the restructuring threshold, Xu(st; s0), equity holders retire debt at par

D(X0, s0, L; s0), which was issued at the initial state s0, and issue more debt D(Xt, st, L; s0) at the

current aggregate state st = B,G if the firm has a low level of volatility, i.e., vt = L. The scaling

property applies only within the same aggregate state, st. That is, if the firm starts at the initial

state s0 = B but refinance at st = G, we scale up the firm value to Xt/X0[(1−φ)D(X0, G, L;G)+

E(X0, G, L;G)] as if it starts at s0 = G.

Slightly different from equations (B63) and (B64), equations (B65) and (B66) apply to the firms

that increased the idiosyncratic volatility before. They have to pay a cost ξ−ǫ2GA(Xt, st, L)(1−τ) of
adjust the volatility back to the low level immediately before they need to refinance at the state st.

Equations (B67) and (B68) are to ensure that equity value function E(Xt, B, L; s0) is continuous

and smooth at Xu(G; s0).
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B.2.2 Debt Boundary Conditions

When the firm has a high level of idiosyncratic volatility, vt = H, we have the following conditions

for debt value functions:

lim
Xt↓Xb(B;s0)

D(Xt, B,H; s0) = (1− α)A(Xb, B,H), (B69)

lim
Xt↓Xb(G;s0)

D(Xt, G,H; s0) = (1− α)A(Xb, G,H), (B70)

lim
Xt↑Xd(B;s0)

D(Xt, G,H; s0) = lim
Xt↓Xd(B;s0)

D(Xt, G,H; s0), (B71)

lim
Xt↑Xd(B;s0)

D
′

(Xt, G,H; s0) = lim
Xt↓Xd(B;s0)

D
′

(Xt, G,H; s0). (B72)

Equations (B69) to (B70) states that debt holders receive the asset value after liquidation cost α

in both states st = B,G. Equations (B71) and (B72) are to ensure that the debt value function

D(Xt, G,H; s0) be continuous and smooth at Xd(B; s0).

We impose the following conditions for debt value functions before the firm goes bankrupt or

restructures its debt:

lim
Xt↑Xr(B;s0)

D(Xt, B,H; s0) = lim
Xt↓Xr(B;s0)

D(Xt, B, L; s0), (B73)

lim
Xt↑Xr(G;s0)

D(Xt, G,H; s0) = lim
Xt↓Xr(G;s0)

D(Xt, G, L; s0), (B74)

lim
Xt↑Xr(B;s0)

D(Xt, G, L; s0) = lim
Xt↓Xr(B;s0)

D(Xt, G, L; s0), (B75)

lim
Xt↑Xr(B;s0)

D
′

(Xt, G, L; s0) = lim
Xt↓Xr(B;s0)

D
′

(Xt, G, L; s0). (B76)

The interpretations for equations (B73) to (B76) for debt value functions are similar to those for

equations (B59) to (B62) for equity value functions, except that debt holders do not have to pay

the adjust costs.

When the firm is is in the low level of idiosyncratic volatility, vt = L, and it restructures its

debt upward, we have the following conditions:

lim
Xt↑Xu(B;s0)

D(Xt, B, L; s0) = P (X0; s0), (B77)

lim
Xt↑Xu(G;s0)

D(Xt, G, L; s0) = P (X0; s0), (B78)

lim
Xt↑Xu(B;s0)

D(Xt, B,H; s0) = P (X0; s0), (B79)

lim
Xt↑Xu(G;s0)

D(Xt, G,H; s0) = P (X0; s0), (B80)

lim
Xt↑Xu(G;s0)

D(Xt, B, L; s0) = lim
Xt↓Xu(G;s0)

D(Xt, B, L; s0), (B81)

lim
Xt↑Xu(G;s0)

D
′

(Xt, B, L; s0) = lim
Xt↓Xu(G;s0)

D
′

(Xt, B, L; s0). (B82)
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Equations (B77) and (B78) are value matching conditions which indicate that debt holder receive

par value at the debt refinancing threshold Xu(st; s0) at both states, respectively, for a firm that

equity holders did not increase the idiosyncratic volatility. Regardless of which the current aggregate

state st is, debt holders receive the par value P (X0; s0) determined at the initial state s0 where

debt is issued. Slightly different from Equations (B77) and (B78), Equations (B79) and (B80) state

that equity holders increased the idiosyncratic volatility before, but have not adjusted the volatility

back to the low (L) level until they need to refinance. Equations (B81) and (B82) are to ensure

that debt value function D(Xt, B, L; s0) is continuous and smooth at Xu(G; s0).

C Equity Returns

In this section, we provide the proofs for equity returns in propositions 1 and 2.

C.1 Proof of Proposition 1

Proposition 1 is for the simplified baseline model, in which the firm does not have the option to

reverse its risk-taking and the option to refinance its debt upward. Instead, the firm has only an

option to increase idiosyncratic risk and an option to go into bankruptcy.

C.2 Proof of Proposition 1

To prove the Proposition 1, we start with the general formula for the equity return and then use

the boundary conditions. Ito’s lemma implies that the equity value E(Xt, vt) ≡ Et,vt satisfies

dEt,vt
Et,vt

=
1

Et,vt

(
∂Et,vt
∂t

+ µ̂vtXt
∂Et,vt
∂Xt

+
σ2vt
2
X2
t

∂2Et,vt
∂X2

t

)

dt+ (σmdŴm
t + σi,Xvt dŴ

i
t )

Xt

Et,vt

∂Et,vt
∂Xt

.

(C1)

The standard asset pricing argument gives

E

[
dEt,vt +Dtdt

Et,vt

]

− rdt = −E

(
dEt,vt
Et,vt

,
dmt

mt

)

=
Xt

Et,vt

∂Et,vt
∂Xt

σmθdt. (C2)

Denoting (dEt,vt + Dtdt)/Et,vt by rEt,vt and (Xt∂Et,vt)/(Et,vt∂Xt) by γt,vt , we have the excess

equity return

ret,vt(Xt) = Et[r
E
t,vt ]− rdt = γt,vtσ

mθdt = γt,vtζdt. (C3)

The sensitivity of the equity to the underlying cash flows γt,vt can be obtained by differentiating
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(A5), and is as follows:

γt,vt =
Xt∂Et,vt
Et,vt∂Xt

=
At,vt∂Et,vt
Et,vt∂At,vt

=
1

Et,vt
(Xt(1− τ) + evt,1ωvt,1X

ωvt,1

t + evt,2ωvt,2X
ωvt,2

t )

=
1

Et,vt

(

Et,vt +
c(1− τ)

r
− evt,1X

ωvt,1

t + evt,1ωvt,1X
ωvt,1

t − evt,2X
ωvt,2

t + evt,2ωvt,2X
ωvt,2

t

)

=1 +
c(1− τ)

rEt,vt
+

(ωvt,1 − 1)

Et,vt
evt,1X

ωvt,1

t +
(ωvt,2 − 1)

Et,vt
evt,2X

ωvt,2

t

(C4)

With the general formula for the expected excess return, we are ready to obtain the equity value

function in equation (23) and the elasticity equation (22) by determining the coefficient evt,1 and

evt,2 according to the boundary conditions.

After the risk-shifting, the firm does not have the upward refinancing opportunity in this sim-

plified case. Therefore, the no-bubble condition implies eH,2 = 0, and the value-matching condition

of equation (A8) gives eH,1 = −(Ad,H − c/r)(1− τ)/X
ωH,1

d . Simply substituting eH,1 and eH,2 into

equations (C4), we obtain the elasticity in equation (22). Plugging eH,1 and eH,2 into (A5), we

obtain the equity value function (23).

Given the equity value function in equation (23), we use the condition of equation (6) and easily

obtain the optimal default threshold Xd as in equation (24). However, to obtain the optimal risk-

shifting threshold Xr, we need to know the equity value function of the firm prior to the risk-shifting

before we can apply the smooth pasting condition of equation (7).

Similarly, the firm does not have the upward refinancing opportunity in this simplified case

before it risk-shifts. Hence, eL,2 = 0 because of the no-bubble condition, and eL,1 can be obtained

by the value-matching condition of equation (A11) as follows:

(

Ar,L − c

r

)

(1− τ) + eL,1X
ωL,1
r =

(

Ar,H − c

r

)

(1− τ) +
( c

r
−Ad,H

)(Xr

Xd

)ωH,1

(1− τ)

− ηǫ2Ar,H(1− τ).

(C5)

Hence,

eL,1 =
(1− τ)

X
ωL,1
r

[

(Ar,H(1− ηǫ2)−Ar,L) +
( c

r
−Ad,H

)(Xr

Xd

)ωH,1
]

. (C6)

Substituting eL,1 and eL,2 into equation (A5), we obtain the equity value before the risk-shifting

EL,t =

[(

A(Xt, L)−
c

r

)

+ (Ar,H(1− ηǫ2)−Ar,L)

(
Xt

Xr

)ωL,1

+ (
c

r
−Ad,H)

(
Xr

Xd

)ωH,1
(
Xt

Xr

)ωL,1
]

(1−τ).
(C7)

Using smooth-pasting condition in equation (7) for equations (23) and (C7), we obtain the
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optimal risk-shifting threshold Xr in equation (25) after some algebraic manipulation.

C.3 Proof of Proposition 2

To prove Proposition 2, we apply Ito’s Lemma to equation (11) and obtain

dEst,vt
Est,vt

=
∂Est,vt
∂XtEst,vt

dXt +
1

2

∂2Est,vt
∂X2

t

(dXt)
2

Est,vt
+
Es+t ,vt

− Est,vt

Est,vt
(λ̂stdt+ dMst,t) (C8)

=
Xt∂Est,vt
Est,vt∂Xt

(

µ̂stdt+ σmstdŴ
m
t + σi,Xst,vtdŴ

i
t

)

+
1

2

X2
t ∂

2Est,vt
Est,vt∂X

2
t

σ2st,vtdt+
Es+t ,vt

− Est,vt

Est,vt
(dMst,t + λ̂stdt)

(C9)

=
1

Est,vt

(

Xt∂Est,vt
∂Xt

µ̂st +
X2
t σ

2
st,vt

2

∂2Est,vt
∂X2

t

+
Es+t ,vt

− Est,vt

Est,vt
λ̂st

)

dt+
Es+t ,vt

− Est,vt

Est,vt
dMst,t

+
Xt

Est,vt

∂Est,vt
∂Xt

(

σmstdŴ
m
t + σi,Xst,vtdŴ

i
t

)

(C10)

For two aggregate states, st ∈ (G,B), and two levels of idiosyncratic risk, vt ∈ (H,L), the

excess equity return is given by

rest,vt(Xt) = Et[r
E
st,vt ]− rdt (C11)

= −E

[
dmst,t

mst,t
,
dEst,vt
Est,vt

]

=

[

(
Xt∂Est,vt
Est,vt∂Xt

)(σmst θst)− (
Es+t ,vt
Est,vt

− 1)(κst − 1)λ̂st

]

dt. (C12)

Let
Xt∂Est,vt,s0

Est,vt,s0
∂Xt

= γst,vt and (
E

s
+
t

,vt,s0

Est,vt,s0
− 1) = ψst,vt , we have

rest,vt = γst,vtζstdt+ ψst,vt(1− κst)λ̂stdt. (C13)

D Simulated Method of Moments

We discuss the covariance matrix of data and estimates, model simulation and the definitions of

model-generated variables.

D.1 Covariance Matrix

The b̂ is asymptotically normally distributed as follows:

√
T (b̂− b) → N [0, (1 +

1

S
)(H ′WH)−1(H ′WΣ0WH)(H ′WH)−1] (C1)
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where S denotes the number of simulations of length T , and

H = E

[∂M̃s(b)

∂b

]

. (C2)

Σ0 is the variance matrix calculated from the data but not from simulated data.

The weighting matrixW determines the weight of each element of the vectorM in the objective

function J . If W = Σ0
−1, the estimator is optimal or efficient in the sense that the variance is as

small as possible. Duffie and Singleton (1993) show that, under the appropriate conditions,

√
T (b̂− b) → N [0, (1 + 1/S)(H ′Σ−1

0 H)−1]. (C3)

While the inverse of the variance matrix, Σ0
−1, provides efficient estimates, the identity weight

matrix gives a better economic weight for each moment(Cochrane, 1991, 1996). We use the identity

weight matrix in our main analysis and conduct a robustness test using the inverse of Σ0. As pointed

out by Strebulaev and Whited (2012), the identity weight matrix gives the same weight to each of

the selected moments. For example, the variance is usually small relative to the mean. Hence, its

change has a relatively small effect on the objective function, J . To ensure our estimation is less

dependent on the weighting matrix, we scale up the time-varying idiosyncratic volatility of cash

flows, σi,Xt , by 10 to ensure that each moment carries enough weight in the objective function.

We follow Taylor (2010) and Wang (2017) and construct the covariance matrix Σ0 of data

moments using the seemingly unrelated regressions approach. Specifically, we express moments as

the coefficients from a system of regression equations, each of which takes the form

Yi = Ziβi + ei, (C4)

in which Z, Y , and e are vectors and the subscript i indicates the equation. Yi is Ti × 1 and βi is

Ni × 1. The covariance, Σ0, between moments estimators βi and βj is

Σ0 = (Z ′
iZi)

−1Z ′
iΣi,jZj(Z

′
jZj)

−1 (C5)

where Σi,j = cov(ei, ej). We also adjust the covariance matrix using Newey and West (1987) with

4 lags.

D.2 Model Simulation

To generate the model-implied moments, we simulate the model and generate 100 artificial panels

of data at the quarterly frequency for a period of 140 years. The first 100 years of observations are

discarded to reduce the dependence on initial values. In each panel there are 1,000 identical firms

ex ante with the same initial parameters. At time 0, firms with an initial low level of idiosyncratic

risk vt = L enter the market in the initial state s0 = G. In observing the dynamics of their cash

flows Xt, they take action whenever Xt crosses the refinancing threshold Xu, or falls below the
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risk-shifting threshold Xr. Following Strebulaev (2007), we assume that, when a firm terminates at

the bankruptcy threshold Xd, debt holders take over the firm and a new firm emerges immediately.

Cash flow parameters, including growth rate and volatility, are reset to the initial level after the

takeover by debt holders.

Whenever a refinancing threshold is reached, all the optimal policies are scaled up. First, given

the predetermined and estimated parameters, we solve for the three pairs of optimal policies on

risk-shifting, Xr(st; s0), default, Xd(st; s0), and debt-refinancing, Xu(st; s0) for the initial state

s0 = G. Then, we apply the scaling property across two initial states in equation (19) to obtain

three pairs of policies for s0 = B. With these optimal policies, we calculate the equity Et and debt

values Dt along the path of cash flow Xt according to the value functions in different five regions

in the online Appendix B.

D.3 Definitions of Variables

Using the simulated time series of each firm, we calculate the variables of interest in the same

fashion as we do in standard empirical tests.

Interest Coverage In the same way as we calculate the interest coverage for the data, we calculate

its theoretical counterpart as Xt/c(s0).

Financial Leverage Following Strebulaev (2007), we calculate the quasi-market leverage (QML)

in the same fashion as we construct financial leverage from the data. Assuming the market value

of debt is not observable, as in the Compustat data, we use the debt value at the issue date.

Equity Returns We calculate the equity value Et along the path Xt. The semi-closed solution of

Et for different regions of Xt can be found in Section B.1. Accordingly, the return on equity for an

individual firm i is

rEt =
Et + (Xt − c)(1− τ)∆t−ACFt

Et−∆t
− 1 (C6)

where ACFt denotes additional cash flows to equity holders when they pay the adjustment cost to

adjust the level of idiosyncratic risk or pay the flotation cost to issue new debt.

Idiosyncratic Volatility To mimic the empirical procedure, we use the rolling standard deviation

of five years (20 quarters) of asset growth shocks to proxy for the idiosyncratic cash flow volatility

σi,Xt and equity return volatility σi,Et . To calculate σi,Xt , we first regress the percentage returns

of individual firms dXt/Xt on the market cash flow percentage return XM
t , which is the simple

average of Xt across all firms. Then, we calculate the standard deviation of the cash flow growth

residuals to proxy for the idiosyncratic volatility. Similarly, to calculate idiosyncratic equity return

volatility σi,Et , we first use the individual equity returns from equation (C6) to construct the equity

market returns, and then regress the individual equity returns of each firm on the time series of

the equity market return. Finally, we use the standard deviation of the 20 residuals to calculate

the idiosyncratic equity return volatility for each firm.
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D.4 Predetermined Parameters

We set the parameters that are widely used in the literature to predetermined values. The parameter

values are listed in Panel A of Table 2, and are largely based on the literature (Bhamra et al. (2010b),

Bhamra et al. (2010a), Chen et al. (2009) and Chen et al. (2014)). Starting with the macroeconomic

variables, we set the risk- free rate rG = rB = 4% in both aggregate states to abstract away from any

term structure effects. Following Chen et al. (2014), the transition intensities of the Markov chain

are chosen to match the average duration of National Bureau of Economic Research (NBER)-dated

expansions and recessions, i.e., λ̂G = 0.5 and λ̂B =0.1, which gives average durations of 10 years

for expansions and 2 years for recessions over the business cycle. We set the state-switching risk

premium κG = 1/κB = 2, which implies the risk-neutral probability of switching from the good

state to the bad is two times as high as the actual probability. The rest of the macroeconomic

parameter values are set as standard. We set the state-dependent systematic volatility σm, and

liquidation cost αst to be countercyclical. The effective tax rate τ is set to 0.2 and debt issuance

cost φst to 0.01 in both states.

For the firm-level parameters, we obtain the parameter values of the expected growth rate and

volatility of cash flows from the data for their initial values when the firms start with a low level of

idiosyncratic volatility. That is, the growth rate µ̂st,L = 0.08 and –0.01 for the good and bad state,

respectively. We set σi,Xst,L to 0.1. The starting level of cash flow X0 = 1. We also set the coupon

rate to 0.4 and 0.38 for the good state and the bad state, which is consistent with the empirical

finding of interest coverage of 2.5.

E Robustness Tests

The negative association between the idiosyncratic volatility and future equity returns generated

from the model might depend on the model specification and predetermined parameter values.

We conduct robustness tests to ensure our results hold under different specifications, a different

weighting matrix, and different predetermined parameter values. For the parameters, we mainly

examine the aggregate state-switching risk premium κst and the switching rate λ̂st , because our

results on the sensitivity of optimal policies in Tables 4 and 5 show they are the two variables with

the greatest influence over the risk-shifting policies.

E.1 Parameter Estimation

To ensure our model does not rely on a particular model specification, we first perform a different

specification by allowing the firm to increase idiosyncratic volatility by ǫst , which differs between

the good and bad states. We denote their simple average m = (ǫB + ǫG)/2, and their spread

s = (ǫB − ǫG)/2. If the spread s = 0, then the specification boils down to our original specification.

As shown in Panel A of Table A1, the estimates of the three costs are close to those in Panel B of

Table 2. The simple average m = (ǫB + ǫG)/2 is 0.162, slightly above the estimates of ǫB and ǫG

in the original specification. The spread, s = (ǫB − ǫG)/2, is 0.049 with a t-statistic of 1.739, which
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is not statistically significant. Because the original specification used to produce the main results

is a special case of this specification, i.e., s = 0, we also perform the D-test to compare the two

nested specifications. The D-test of the two nested models gives a p-value of 0.352, suggesting the

difference between the two models is small. Therefore, we choose the specification ǫB = ǫG as our

main specification, to keep the model parsimonious.

We also estimate the model using the inverse of the variance matrix of data moment as the

weighting matrix. The estimates of all the cost parameters are largely similar to those in our

original specification, with the largest deviation in the increment in volatility. That is, the estimate

of ǫst becomes 0.139, slightly lower than the 0.155 seen in Table 2 for which an identity weighting

matrix is used.

Lastly, we experiment with different macroeconomic state-switching risk premiums κG and the

state-switching probability λ̂G. In Panel C, where we increase κG from 2 to 2.1, the estimate of

the value-destroying cost η increases from 0.031 to 0.041. The model cannot be rejected because

the p-value is 0.594. In Panel D, where we increase the actual probability λ̂G from 0.1 to 0.11, the

increment ǫst further decreases to 0.135 and the p-value drops substantially to 0.025.

E.2 Idiosyncratic Volatility Discount on Equity Returns

The changes in the model specifications and parameters impact cross-sectional equity returns. Using

the estimated parameters from Table A1, we simulate the model and report the model-generated

excess equity returns ret for the whole sample in Table A2.21

In Panel A, where we allows different increases in the idiosyncratic risk in the different aggregate

states (i.e., s = (ǫB − ǫG)/2 = 0.049), the LMH portfolio sorted on the idiosyncratic cash flow

volatility σi,Xt earns 15.007% per year, much greater than the 9.050% seen in Panel B of Table 7,

while the LMH portfolio sorted on the idiosyncratic equity return volatility σi,Et earns 9.284% per

year, slighter greater than the 9.161% seen in Panel B of Table 8. These two increases are not

surprising because the spread allows a greater cross sectional variation in idiosyncratic volatility.

Moreover, the changes in the equity returns of LMH portfolio in Panel B, where we use a different

weighting matrix, are very close to those in Panel A.

In Panel C, where we increase κG to 2.1, the average excess return increases to 17.475% and

10.140%, respectively, for the LMH portfolio sorted on the idiosyncratic cash flow volatility and

the equity return volatility. This is consistent with our previous result on the sensitivity of the

risk-shifting threshold to κG in Panel A of Table 5. When the risk-adjusted probability of entering a

bad state from the good state (i.e., λG = κGλ̂G ) increases, they increases the risk-shifting threshold

Xr. The greater the increase in the idiosyncratic risk, the lower the stock returns for high volatility

firms, and the greater the LMH portfolio return.

Lastly, Panel D shows that the returns of the LMH portfolio sorted on σi,Xt and σi,Et are even

greater than those in Panel C. The reasoning is as follows. Everything else being equal, the high

21The results for the recession and expansion subsamples are similar to those in Tables 7 and 8. They are available
upon request.
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actual switching probability means a high risk-neutral switching probability, which in turn induces

a high risk-taking incentive as well. Consequently, the increased idiosyncratic volatility lowers the

equity holders’ exposure to cash flow risk and results in a low equity return.

In short, we demonstrate that our quantitative results regarding the risk-shifting mechanism

for equity returns are robust to different specifications, weighting matrix, and parameter values.
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Table A1: Robustness Tests for Model Estimation

This table presents the parameter values estimated from the simulated method of moments under a different specification, different
weighting matrix, and different pre-determined parameter values. The t-statistics of the estimated parameters are reported in parentheses,
and the p-value of the χ2 statistic is also reported.

Panel E. τ =0.175
η ξ+ ξ− ǫB = ǫG p-value

Estimates 0.029 0.016 0.023 0.155 0.943
(t) (40.913) (4.302) (2.009) (103.358)

Panel F. αB =0.1
η ξ+ ξ− ǫB = ǫG p-value

Estimates 0.031 0.016 0.023 0.145 0.874
(t) (44.493) (0.032) (0.750) (6.733)

Panel G. rst =0.045
η ξ+ ξ− ǫB = ǫG p-value

Estimates 0.048 0.017 0.017 0.143 0.602
(t) (7.893) (0.019) (0.543) (2.317)

Panel H. φB =0.015
η ξ+ ξ− ǫB = ǫG p-value

Estimates 0.031 0.016 0.022 0.146 0.909
(t) (62.954) (0.005) (2.351) (215.256)

Panel I. σm
G =0.12

η ξ+ ξ− ǫB = ǫG p-value
Estimates 0.044 0.012 0.019 0.180 0.371
(t) (46.451) (0.889) (0.752) (7.152)

Panel J. θG =0.2
η ξ+ ξ− ǫB = ǫG p-value

Estimates 0.040 0.016 0.023 0.125 0.056
(t) (59.542) (0.499) (2.411) (5.861)
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Table A2: Robustness Tests for Cross-Sectional Equity Returns

This table presents value-weighted excess equity returns, given the parameter values estimated from the simulated method of moments
in Table A1 under a different specification, different weighting matrix, and different pre-determined parameter values. The portfolios are
sorted on the idiosyncratic volatility of cash flow growth σi,Xt−1 and equity returns, σi,Et−1, respectively. The procedures to form portfolio
and calculate equity returns are the same as in that in Tables 7 and 8. The t-statistics are reported in parentheses.

Panel E. τ =0.175

ret sorted on σi,X
t 5.667 5.360 5.274 5.075 5.146 4.822 4.430 3.123 −1.333 −9.820 15.488

(t) (2.690) (2.537) (2.524) (2.422) (2.433) (2.313) (2.179) (1.689) (0.313) (−2.205) (3.957)

ret sorted on σi,E
t 6.715 6.559 6.633 6.787 6.478 6.546 6.292 5.523 2.776 −2.643 9.358

(t) (2.546) (2.482) (2.522) (2.570) (2.457) (2.482) (2.376) (2.100) (1.165) (−0.439) (2.855)

Panel F. αB =0.1

ret sorted on σi,X
t 5.616 5.160 5.214 5.143 5.021 4.867 4.262 2.142 −2.161 −10.555 16.171

(t) (2.690) (2.466) (2.489) (2.440) (2.378) (2.361) (2.079) (1.321) (−0.027) (−2.826) (4.406)

ret sorted on σi,E
t 6.714 6.691 6.760 6.701 6.652 6.559 6.040 5.186 2.634 −2.405 9.119

(t) (2.552) (2.524) (2.551) (2.552) (2.517) (2.488) (2.265) (2.001) (1.110) (−0.485) (2.879)

Panel G. rst =0.045

ret sorted on σi,X
t 5.535 5.123 5.049 5.010 4.963 5.015 4.196 2.242 −1.944 −11.470 17.006

(t) (2.608) (2.429) (2.404) (2.353) (2.321) (2.385) (1.960) (1.283) (0.068) (−2.793) (4.416)

ret sorted on σi,E
t 6.797 6.584 6.771 6.598 6.639 6.500 6.279 4.740 2.504 −2.932 9.729

(t) (2.516) (2.456) (2.519) (2.458) (2.520) (2.396) (2.341) (1.769) (1.043) (−0.566) (2.868)

Panel H. φB =0.015

ret sorted on σi,X
t 5.640 5.249 5.238 5.061 5.161 4.973 4.457 2.606 −1.785 −10.678 16.318

(t) (2.674) (2.506) (2.489) (2.421) (2.435) (2.370) (2.181) (1.505) (0.095) (−2.652) (4.295)

ret sorted on σi,E
t 6.840 6.684 6.723 6.795 6.477 6.646 6.165 5.115 3.127 −2.554 9.394

(t) (2.591) (2.522) (2.535) (2.563) (2.445) (2.535) (2.349) (1.970) (1.235) (−0.493) (3.021)

Panel I. σm
G =0.12

ret sorted on σi,X
t 6.033 5.866 5.708 5.561 5.736 5.649 4.993 3.581 −0.365 −9.884 15.917

(t) (2.556) (2.459) (2.424) (2.370) (2.400) (2.396) (2.144) (1.660) (0.526) (−2.166) (4.061)

ret sorted on σi,E
t 7.155 7.247 7.264 7.363 7.568 6.983 7.009 6.675 4.068 −0.790 7.945

(t) (2.529) (2.538) (2.572) (2.569) (2.638) (2.475) (2.444) (2.347) (1.462) (0.041) (2.406)

Panel J. θG =0.2

ret sorted on σi,X
t 5.641 5.237 5.395 4.973 5.049 4.459 3.120 0.021 −3.338 −12.632 18.273

(t) (2.729) (2.502) (2.574) (2.418) (2.340) (2.142) (1.682) (0.701) (−0.570) (−3.248) (4.796)

ret sorted on σi,E
t 7.259 7.379 7.386 7.184 7.167 7.140 6.150 4.958 2.683 −4.288 11.546

(t) (2.777) (2.843) (2.852) (2.778) (2.772) (2.754) (2.333) (1.855) (1.036) (−0.934) (3.188)
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