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Abstract

We study the problem of aggregation of private information in common value elections

with two or more alternatives and with general state and signal spaces. We provide general

conditions on the environment ensuring existence of a sequence of equilibria of the voting

game that efficiently aggregates information as the population size grows to infinity. The

conditions explore the geometry of partitions on the distributions over private signals

induced by the common state-dependent utility of the voters. Such conditions are met

generically when the signal space is rich enough relative to the state space, and fail

robustly when the state space is rich relative to the signal space.

1 Introduction

In an election, voter preferences over candidates depend on a myriad of factors like their policy

positions on various important issues, their past voting history, party affiliation, the state of

the economy, geopolitical situation and so forth. Different voters are likely to hold different

information about aspects of the underlying situation that matter for the voting decision.

Moreover, such information is invariably noisy. We ask the classic question of information

aggregation in elections: does the electoral outcome based on individual votes reflect all the

information dispersed in the electorate? We analyze this question under the assumption that

voters have the same underlying preference over the electoral alternatives, and any difference

in induced preference is due to different information. Under this assumption, our question is

equivalent to whether elections are guaranteed to choose the best candidate.

In contrast to the existing literature on the topic that analyzes this issue in very spe-

cific environments, we provide a novel way of analyzing the problem which enables us to

say whether information can or cannot be aggregated in general preference and information

environments.
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The existing literature follows an insight by Condorcet (1786), known today as Condorcet

Jury Theorem (CJT): if in a large two-candidate election, each voter votes for the correct

candidate independently with probability p > 1
2 , then the majority is almost surely correct

by the Law of Large numbers. Subsequent work (e.g., Austen-Smith and Banks (1996), Fed-

dersen and Pesendorfer (1997), Wit (1998), Myerson (1998), Duggan and Martinelli (2005))

generalizes this result in game-theoretic frameworks. These papers aim to demonstrate the

following: if voters’ preferences depend on an uncertain state variable and they receive noisy

information about the realized state, then there exists a sequence of Nash equilibria with

the property that the most preferred candidate wins almost surely in every state. Since the

outcome is as if the state (ergo, the profile of private signals) were common knowledge, elec-

tions are then said to be full information equivalent (FIE). So far, the common practice in

the literature is to assume that there are two states and two signals: each state is assumed

to capture all situations under which a given candidate is optimal, and therefore a signal is

a noisy opinion of which candidate is the better choice.1

Our work takes a different approach. We recognize that voter preferences depend on

many different issues and similarly, different voters have private information about different

aspects that matter for the decision. We therefore allow the state and signal space to be very

general and look for conditions on the environment for which there exists a feasible strategy

profile that achieves FIE in a given environment. We draw upon an insight from McLennan

(1998) to argue that if there is a feasible strategy profile that achieves FIE, then there is also

some equilibrium strategy profile that aggregates information. Hence the set of environments

where FIE is achieved in (some) equilibrium is exactly same as the set of environments where

FIE is achieved by some feasible strategy profile. An implication is that, in common-value

environments, the property of information aggregation has nothing to do with equilibrium

inferences conditioning on pivotality. For up to three alternatives, we obtain a complete

characterization of environments where FIE is feasible. When there are more than three

alternatives in contention, we provide general sufficient conditions.

Our conditions explore the geometry of partitions of the simplex of distributions over

private signals induced by the state-dependent utility function and the information envi-

ronment. In particular, FIE is related to whether or not such partitions consist of convex

polytopes with facets defined by hyperplanes satisfying some properties. Convexity is the

most important piece here: roughly speaking, it provides restrictions on the heterogeneity

of distributions over private signals arising from states where one particular alternative is

socially preferred. This can be viewed as a very general identifiability condition allowing one

to infer information over states from observation of signals. In fact, one sufficient condition

for FIE is exactly a rank condition on the family of conditional distributions over signals

1Feddersen and Pesendorfer (1997) and McMurray (2017) go beyond the binary formulation and assume

an ordered state space which can be interpreted to be representing a single-issue election.
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given states. An immediate corollary is that, in the case of finitely many states and signals,

FIE is generic whenever we have more signals than states – in this case, a generic matrix

of conditional distributions must have full rank. In the general case, however, one cannot

generically guarantee linear independence of distributions, and neither can one generically

guarantee convexity of the induced partition.

A special case of our positive result in discrete environments is that information is always

aggregated whenever there are two alternatives, two states, and at least two signals. Hence,

a take-away from our analysis is that it is misleading to lump into a single state all situations

for which a given alternative is optimal, as has been done by much of the previous literature.

Before going to the formal conditions, we present a few simple examples to illustrate how

information aggregation may fail. The first pair of examples is about single-issue politics and

the second example is about multi-issue elections.

Consider a setting where an incumbent a1 competes against a challenger a2, and suppose

that each voter gets one of two signals: x or x′. First assume that they are competing on

quality, and the signals x and x′ are good and bad news, respectively, about a1’s relative

quality, in the sense that as the quality of candidate a1 improves, each voter is more likely

to have signal x and less likely to have signal x′. In this case, we are in a setting similar to

the canonical CJT, and voting will aggregate information. Next, consider a different setting

where there is uncertainty about a1’s policy position on the left-right dimension, and voters

prefer to vote for a1 only if her policies are sufficiently moderate. Now suppose that an

x-signal arises more frequently for more left-leaning positions and an x′-signal arises more

frequently for more right-leaning positions. Since the private signal only tells the voter about

whether the position is skewed to the left or to the right and not about how extreme the

position is, information aggregation is impossible for any plurality rule.2 Observe that the

induced partition on distributions over signals x and x′ is not convex: distributions “in the

middle”, with enough weight on both x and x′ are associated with moderate policies and

extreme distributions are associated with extreme policies, and this latter set is obviously

not convex.

The next example illustrates the difficulty of aggregating information in multi-issue set-

tings. Suppose there are three possible signal realizations: x, x′ and x′′, and assume that

preferences are defined over the population proportion of each signal, so that we have in-

finitely many states: one state for each vector of proportions. In this case, the only utility

functions that achieve FIE are those which are linear in the proportion of each signal. For the

sake of concreteness, consider a country voting in a referendum on whether to stay or leave a

politico-economic union (e.g., the “Brexit” vote in May 2016). A central tradeoff that drives

voter preferences is that trade induces growth but leads to immigration as well, leading to

2We thank Timothy Feddersen for providing us this example.
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loss of jobs for the local population. However, the tradeoff between growth and immigration

depends on the extent to which immigrants contribute to the economy. Now, assume that

each voter receives a signal about exactly one of these three factors, and the frequency of a

signal in the population depends on the strength of the factor. Voter preferences depend on

the proportion of each type of signal in the population: if the proportion of signals about

growth is high enough then voters prefer to stay, and if there is a very high proportion of

signals about immigration is large then they prefer to exit. Our results say that information

is aggregated if and only if the net utility from the exit option is linear in the proportion of

each signal: in other words, if the tradeoff between immigration and growth is deemed to be

independent of how much the immigrants contribute to the economy. A similar issue arises

in case of minimum wage legislation: the tradeoff of income and employment is affected by

other factors like inflation. In all these cases, the information structure is too complex to

guarantee that the correct outcome will prevail, except for very special situations. In more

specific terms, we see that the partition over distributions over signals induced by states is

bound to not be made of convex sets except for very special cases.

While our set-up is very standard except for the generality, we take a distinct approach

that allows for a convenient geometric representation. We focus on the implications of prefer-

ences over conditional distributions no signals arising in the states. Each state is thus mapped

to a vector on the simplex (the space of all probability distributions) over the signals, and

each such vector is associated with the corresponding ranking over alternatives. Notice that

the expected vote share for any alternative (given any strategy) is a linear function of the

vectors on the simplex, which is a direct implication of each voter having to vote only based

on his own private information. As a result, the set of probability vectors for which an alter-

native obtains a fixed vote share is a hyperplane on the simplex over signals. This allows us

to express all the conditions for FIE using separating hyperplanes on the simplex.

To describe our results, suppose that there are k alternatives {a1, ..., ak}, k ≥ 2, and s

signals {x1, ..., xs}, s ≥ 2. Denote the set of conditional distributions over signals arising in

states where ai is the best choice by A∆
i . We first deal with the case of up to three alternatives

(Section 3). Theorem 1 states that there exists a strategy that achieves FIE if and only if

A∆
1 , A∆

2 and A∆
3 can be separated by what we call a “restricted 3-partition” of the simplex:

a partition defined by at most three distinct hyperplanes.

Theorem 1 demonstrates a fundamental difficulty in aggregating information when the

state space is infinite. Consider the case of two alternatives. FIE requires that the two

alternatives must obtain exactly equal vote shares for all pivotal states, that is, states around

which the ranking flips. Since the vote share functions are linear in the vectors on the simplex,

it must be the case that all pivotal states must lie on a hyperplane. In other words, a small

perturbation in preferences around the pivotal states will lead to a violation of FIE. In the

special case when preferences are defined over the entire simplex, FIE requires that A∆
1 and
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A∆
2 form a convex partition of the simplex.

When the state space is discrete, there might be no pivotal states and consequently we

have more freedom in choosing a strategy that induces the appropriate separation. For

example, suppose there are only two states and two alternatives. Since A∆
1 and A∆

2 are two

singletons, they can always be separated by a hyperplane. This tells us that the two-state

formulation makes information aggregation trivial by imposing the restriction that there is

exactly one distribution of signals for which a given alternative is optimal. Next, consider the

case of three states and at least three signals. It is easy to check that we can separate any

two vectors on the simplex from the third one by a hyperplane, as long as the three vectors

are not collinear.

In section (Section 4), we consider the general case of k > 3 alternatives and show that the

contrast between discrete and continuous environments in the k ≤ 3 case is a sharp illustration

of a more general phenomenon. We still have the same necessary condition for FIE: each

pair A∆
i and A∆

j must be separated by a hyperplane. Notice that this condition implies that

if there is a set of pivotal states in the neighborhood of which the top-ranked alternative

changes from ai to aj , the respective conditionals must lie on a hyperplane. However, the

necessary condition is not always sufficient, and we provide two sets of sufficient conditions

for FIE.

Theorem 2 strengthens the necessary condition by imposing a restriction on the family

of hyperplanes that separate the sets A∆
i . In a nutshell, when such hyperplanes are parallel

to one another, FIE can be achieved. This result was originally developed in the context

of information aggregation in auctions by Mihm and Siga (2017). While such parallel sep-

aration seems a very strong condition, it can be ensured whenever a rank condition is met.

More precisely, Lemma 2 shows that we can obtain separation with parallel hyperplanes if

the set of conditional probability vectors satisfies independence in addition to some regu-

larity conditions. Therefore, a sufficient condition for FIE in general environments is linear

independence (Corollary 2). For discrete environments, linear independence holds generically

whenever there are at least as many signals as states.

When there are more states than signals, linear independence fails and so we cannot hope

for separation with parallel hyperplanes. We are led to a more refined form of separation,

which we refer to as “star-shaped separation: roughly, the hyperplanes are allowed to not

only be not parallel, but also to intersect with one another in some specific ways. More

precisely, Theorem 3 establishes that FIE can be achieved if for every pair of alternatives ai

and aj , a hyperplane on the simplex separates the vectors for which ai is preferred over aj

from those for which aj is preferred over ai.
3

3Strictly speaking, Theorem 3 also requires a richness condition and an extension condition. Richness

is imposed only for convenience of the analysis – the general idea carries through without richness. Exten-

sion allows us to focus on the relatively simple condition described above, without having to impose that if
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When the state space is rich, the utility function can be thought to be defined directly

on the probability distributions over signals. Proposition 1 provides a condition on this util-

ity function which is equivalent to the pairwise separation condition in Theorem 3. The

Proposition says that (i) if the utility from each alternative is a linear function of the con-

ditional probability vectors arising in the possible states, then the environment allows FIE;

and conversely (ii) for any environment that allows FIE, there exists another environment

with the same top-ranked alternative for each probability vector which admits a linear util-

ity representation. While the linear utility representation is not a complete characterization

of environments that allow FIE, it does indeed provide a tight characterization of how the

simplex is partitioned into the sets A∆
j in environments that allow FIE. The linearity re-

sult highlights the problem of aggregating information when preferences are defined simply

over distributions of private signals. When there are more than two possible signals, FIE

occurs only if the “marginal rate of substitution” between proportions of any two signals is

independent of the proportion of every other signal.

Section 5 establishes that feasibility translates into FIE in equilibrium. Formally, when-

ever an environment allows a strategy that achieves FIE, there is a sequence of Nash equi-

libria in the same environment such that as the number of voters grows unboundedly, the

ex-ante probability of the correct alternative being chosen converges to 1 (Theorem 4). This

is basically the same result as in McLennan (1998), except that we can relax McLennan’s

requirement that feasibility be in symmetric strategies since we are only dealing with large

electorates. Our contribution over McLennan’s is the identification of environments where

FIE can and cannot be achieved in the limit.

Finally, in Section 6, we provide two important extensions of our model to show that

our results hold in a wide range of settings that have been studied in the literature. Up to

that point, we obtain all our conditions using simple plurality rule (the alternative obtaining

the highest number of votes is the winner). Theorem 5 says that a change in the voting

rule to any other scoring rule (e.g. approval rule, Borda rule etc), allowing abstention or

allowing for supermajority rules will not alter our characterization in any way. The other

extension is that show that our results can also include the case where voters have general,

diverse preferences in addition to diverse information: all we need to do is to change how we

interpret the primitives in order to accommodate variation in preferences in our analysis of

feasibility of FIE. However, in this case, we cannot apply McLennan’s result to claim that

whenever FIE is feasible, it is also achieved in equilibrium. Therefore, we only have general

conditions for feasibility of FIE when preferences are diverse. Hence, while our negative

results about continuous state spaces go through, our positive results do not.

Our work helps extend and better understand the existing body of work on information

hyperplanes intersect, they do so inside the simplex.
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aggregation in several different ways. We have already discussed how our paper is related to

the literature that provide game theoretic proofs of CJT. In addition, our characterization

can be used to identify which results are robust to small perturbations of the preference

environment. Our results say that the models that use discrete formulation (typically binary

state spaces) are robust.4 On the other hand, the proofs that employ continuous state

spaces (e.g., Feddersen-Pesendorfer (1997), McMurray (2017)) are heavily dependent on the

particular structure, in particular the assumption of ordered state space.

There is another strand of literature that identifies sources of aggregation failure in com-

mon values environments. This includes unanimity rules (Feddersen and Pesendorfer (1998)),

alternative voter motivations (Razin (2003), Callander (2008)), cost of information acquisi-

tion (Persico (2003), Martinelli (2005)), cost of voting (Krishna and Morgan (2012)), aggre-

gate uncertainty (Feddersen and Pesendorfer (1997)), and so forth. Our work suggests that

complexity of the information structure may itself be a barrier to information aggregation.

There are a few papers that identify perverse preference (Acharya 2016, Bhattacharya

2013) or information structures Mandler (2013) are reasons for aggregation failure. Mandler

shows that aggregation can break down in a common values model if the same signal indi-

cates opposite states in different situations. Bhattacharya presents a condition called Weak

Preference Monotonicity which says that aggregation can fail if the same change in signal

induces a randomly selected voter to vote for different alternatives for different beliefs over

states. While these papers have an analogous message, our paper provides a stronger result

in that we say that aggregation fails in all equilibria while they only identify particular bad

equilibria in two-state environments. Moreover, the failure in these papers is a failure of voter

co-ordination due to perverse pivotal inference. In our setting, the failure is one of feasibility.

A critique of the existing game theorertic literature is that it involves hyperrationality

of voters. In response, non-equilibrium models of voting behavior have been suggested (e.g.,

Feddersen and Sandroni 2006). We have already mentioned that we avoid that critique by

pointing out that the property of information aggregation does not depend on equilibrium

inference but on technical feasibility. In particular, in environments which do not allow FIE,

aggregation would not be achievable even if voters commit to any strategy profile. Therefore,

failure does not depend on the particular assumption on voter behavior.

One way look at the question of information aggregation in elections is to observe that

while the information that voters have is potentially multidimensional, the action space is

limited by the number of alternatives and the voting rule. Given this asymmetry, do we

still get the correct outcome? Our work identifies the connection between preference and

information for which we can still aggregate information with general state and signal spaces

but a binary action space. In fact, we show that the voting rule is irrelevant for the result.

4But, at the same time, our results cast doubts on the meaning of FIE in such models, because FIE may

well be artificially obtained by the lumping of rich state variables into two representative states.
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A related question is whether communication is necessary to produce the correct out-

comes. In common value environments, there is a clear incentive to share information. The

common value environments where we show that FIE fails are precisely those environments

where deliberation is necessary to improve outcomes. On the other hand, in the settings

where FIE is achieved through voting, deliberation is not necessary to reach informational

efficiency. Coughlan (2000) can be interpreted as saying that deliberation has a role only

when there is preference diversity among voters. We, on the other hand, show that it can

also have a role under common preferences if information and preferences are sufficiently

complex.

There is a literature on informational efficiency on different scoring rules, in particular

when there are three alternatives. While Goertz and Maniquet (2011) and Bouton and

Castanhiera (2012) use diverse values, Ahn and Oliveros (forthcoming) have a common values

model where they show that the approval rule performs weakly better than all other scoring

rules. We, on the other hand, show that all scoring rules become equivalent in the limit. The

implication of this result is that scoring rules matter either in small committees or under

diverse preferences. The result that all non-unanimous threshold rules are equivalent is also

present in Feddersen and Pesendorfer (1997) and Gerardi and Yariv (2007).

There is also a parallel literature on information aggregation in common value auctions.

While Pesendorfer and Swinkels (1997) shows FIE assuming an ordered state space and

informative signals, Mihm and Siga (2017) provide a general positive result in discrete envi-

ronments. Theorem 2 in our paper draws heavily from Mihm and Siga (2017).

2 Model

Consider n players voting over k alternatives in A = {a1, a2, ..., ak}.5 We consider a plurality

voting environment: each player chooses a vote in A, and the alternative with the largest

number of votes wins the election. Ties, if any, are broken randomly. In section 6.1, we

demonstrate that our results also hold for a larger class of voting rules (e.g., supermajority

rules, approval rules, scoring rules etc).

All voters have the same preference. The utility of a voter from an alternative depends

on an unobservable state variable θ ∈ Θ, where Θ is a general measure space. The generality

of this formulation allows for both discrete and continuous state spaces, and help us to draw

conclusions on the two distinct environments. The common utility of each voter is given by

a bounded measurable function u : Θ×A→ R.

Let X be the set of signals. We also allow X to be a general measure space.6 Given a

state θ, each voter privately draws an independent signal x ∈ X according to a conditional

5We will use the words voters and players exchangeably depending on the context.
6We denote the sigma-algebra in X by X . For a measure space Y , we will use ∆(Y ) to denote the set of

all probability measures defined on (the given sigma-algebra of) Y .
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probability distribution P ( · |θ) ∈ ∆(X). We will abuse notation and use the same letter P

to denote the prior probability on Θ.7 Given our independence assumption, we informally

refer to P as the information structure of the game.

We denote by

Ai = {θ ∈ Θ : u(θ, ai) > u(θ, aj) for all j 6= i}

the set of states where alternative ai is strictly preferred to all other alternatives. We assume

that P (Ai) > 0 for all i = 1, 2, ..., k, that is, every alternative can be preferred ex-ante with

positive probability.

A tuple {u,A,Θ, X, P} is defined as an environment. An environment in addition to an

electorate size n defines a game. In a game, a strategy for a voter specifies a probability

of voting for each alternative given each signal. We focus on symmetric strategies where

voters with the same signal use the same strategy. A mixed strategy σ for a voter is a

list of measurable functions σ1, σ2, ..., σk with σi : X → [0, 1] for i = 1, ..., k, satisfying∑k
i=1 σi(x) = 1 for all x ∈ X. In short, σ is a behavioral strategy mapping X to ∆(A), where

σi(x) is understood to be the probability of voting for the alternative ai on obtaining signal x.

When the context is clear we shall refer to σ as a profile of strategies, with the understanding

that every player uses the same σ.

Given σ, the expected vote share of alternative ai at state θ is given by

zσi (θ) =

∫
σi(x)P (dx|θ).

Throughout the paper, we use notation consistent with X and Θ being infinite unless other-

wise specified. However, it is always understood that the integral notation is to be replaced by

the summation notation when we consider X to be a finite set. Observe that zσi : Θ→ [0, 1]

is a measurable function for each i and σ.

By the SLLN, when every voter uses the strategy σ then, for every θ, the realized propor-

tion of votes for alternative ai converges P ( · |θ)-a.e. to zσi (θ) as n→∞. Since our focus is on

large electorates, we call zσi (·) the vote share function for alternative ai. A crucial observation

for our analysis is that the vote share function for each alternative is linear in P ( · |θ).
Next, we define the standard for information aggregation for a given strategy profile.

2.1 Full Information Equivalence

In a large electorate, the signal profile almost surely reveals the state. Thus, if the signal

profile were publicly observed, the most preferred alternative would almost surely be elected.

We say that information is aggregated by a strategy profile if, under private information,

7Of course, one could start from a probability measure P ∈ ∆(Θ×X) and derive conditionals and marginals.

Since we will have no use for such an underlying probability, we work directly with these concepts as primitives.

We remark that, as a transition probability, P (E| · ) is a measurable function for every E ∈ X .
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the most preferred alternative is guaranteed to win with an arbitrarily high probability in an

ex-ante sense. As a formal standard for information aggregation, we adapt the idea of Full

Information Equivalence defined by Feddersen and Pesendorfer (1997).

Given an environment {u,A,Θ, X, P}, we first define W σ
n , the probability of an error

(overall ex-ante likelihood of the most preferred alternative not being elected) induced by

a strategy σ in a given game with n players. If along a sequence of games as n increases

without bound, keeping the environment fixed, the quantity W σ
n converges to zero, we say

that the strategy σ achieves Full Information Equivalence (FIE) and that the environment

allows FIE.

For any strategy profile σ and electorate size n, let zσn denote the realized vector of

proportion of votes for alternatives a1, ..., ak. Observe that θ and σ induce a probability

distribution pσθ over zσn , since the signal profile is drawn according to P ( · |θ) and given the

realized signal profile, the profile of votes is drawn according to σ. Denote the random

vector representing the proportion of votes for each alternative as y = (y1/n, y2/n, ..., yk/n)

where yi ∈ {1, ..., n} is a random variable representing the number of votes for alternative ai,

i = 1, 2, ..., k and
∑k

i=1 yi = n.

Given a strategy profile σ and a profile x1, ..., xn of signals, the probability of a vector of

vote proportions y is given by

pσn(y|x1, ..., xn) =
∑
B(y)

k∏
`=1

∏
m`∈B`

σ`(x
m`),

where B(y) ≡ {(B1, ..., Bk) : (B1, ..., Bk) is a partition of {1, ..., n} with |Bi| = yi, i = 1, ..., k},
and for any set Z, |Z| is the number of elements in Z. Then the probability of y given σ and

θ is

pσn(y|θ) =

∫
pσn(y|x1, ...., xn)⊗nm=1 P (dxm|θ).

Let Lin denote the set of values of the vector y where the ith coordinate of y is not the

unique highest, i.e., alternative ai is not the sole winner. A wrong outcome is obtained if,

in a state where ai is the most preferred alternative, it fails to garner the unique maximum

number of votes. Thus, the ex-ante probability of obtaining a “wrong” outcome is

W σ
n =

k∑
i=1

∫
Ai
pσn(Lin|θ)P (dθ).

We say that informaton is fully aggregated if W σ
n → 0 as n→∞. That is, we say that in an

environment {u,A,Θ, X, P}, the strategy σ achieves Full Information Equivalence (FIE) if

the ex-ante likelihood of error induced by σ converges to 0 as the number of voters increases

unboundedly.

Next, we provide an equivalent definition of FIE which is simpler and more relevant to

our analytical framework. Recall that, for a given σ, we can define the expected vote share
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function zσi (θ) for each alternative ai. Now, let us define the set of states where alternative

ai is elected almost surely by

Aσi = {θ : zσi (θ) > zσj (θ), for all j 6= i}.

We then have:

Lemma 1 A strategy σ achieves FIE if and only if

P (Ai \ Aσi ) = 0.

for i = 1, ..., k.

That is, σ achieves Full Information Equivalence (FIE) if the set of states where the

preferred alternative fails to win almost surely is of prior probability zero. Putting differently,

σ achieves FIE if for P -a.e. θ ∈ Ai, zσi (θ) > zσj (θ) for all i = 1, ..., k and j 6= i.8

Observe that we restricted ourselves to symmetric strategies, that is, to the case that each

voter uses the same common strategy σ. One can extend the definition of FIE and allow for

sequences of strategies that are not necessarily composed of the same common strategy. Not

much is gained by that because of the following: if the sequence (σ1, ..., σn, ...) achieves FIE,

then the common strategy σ defined by

σ(x) ≡ lim
n→∞

1

n

n∑
m=1

σm(x) for P ( · |θ)-a.e. x

also achieves FIE, provided that such limit exists.

There is no guarantee that a strategy ensuring full information equivalence will exist for

every environment. Accordingly, if there exists some strategy that aggregates information in

a given environment, we will say that the environment allows FIE.

We now move to studying environments that allow FIE. As our characterization result

will rely on hyperplanes, it will be convenient to work in the space of integrable functions

with respect to a given probability measure. So we shall assume the existence of a probability

measure λ ∈ ∆(X) such that P ( · |θ) is absolutely continuous with respect to λ for P -a.e.

θ. Hence, the density f( · |θ) of P ( · |θ) with respect to λ belongs to the Banach space L1(λ)

of (equivalence classes of) integrable functions, with the norm ‖f‖ =
∫
|f(x)|λ(dx). Let

L∆
1 (λ) = {f : X → R+ :

∫
f(x)λ(dx) = 1} denote the “simplex” of integrable densities.

In the case that X is the finite set {x1, ..., xs}, we take λ to be the uniform distribution

(1/s, ..., 1/s), and observe that L∆
1 (λ) can indeed be identified with the s−1 simplex ∆(X) =

{(y1, ...., ys) ∈ Rs+ :
∑

` y` = 1} via (y1, ..., ys) ↔ (1
sy1, ...,

1
sys). We shall sometimes abuse

terminology and refer to both ∆(X) and L∆
1 (λ) simply as the simplex.

8By P -a.e. θ ∈ Ai we mean for all θ ∈ Ai except for a set of P -measure zero.
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Our geometric ideas will belong to the simplex. In particular, we shall be interested in

separating the sets A∆
i , i = 1, ..., k, given by

A∆
i = {f( · |θ) ∈ L∆

1 (λ) : θ ∈ Ai},

and we repeat once more that A∆
i is simply {P ( · |θ) ∈ ∆(X) : θ ∈ Ai} when X is finite. We

use the Borel sigma-algebra in L1(λ) and assume that the mapping θ 7→ f( · |θ) is measurable

both ways. As such, the sets A∆
i and {θ : f( · |θ) ∈ E}, for E measurable in L1(λ), are

themselves measurable. For such separation ideas, we will use hyperplanes in L1(λ) and their

corresponding restrictions to L∆
1 (λ). A hyperplane in L1(λ) is given by the set {g ∈ L1(λ) :∫

g(x)h(x)λ(dx) = c}, for some c ∈ R and bounded measurable h : X → R, known as the

normal of the hyperplane. Our objects of interest are the restrictions of hyperplanes to the

simplex,

H(h) = {g ∈ L∆
1 (λ) :

∫
g(x)h(x)λ(dx) = 0},

where we note that we gain one degree of freedom, so it is without loss to take c to be

zero.9 Associated with H(h), we consider the positive half-spaces H+(h) = {g ∈ L∆
1 (λ) :∫

g(x)h(x)λ(dx) ≥ 0} and H̊+(h) = {g ∈ L∆
1 (λ) :

∫
g(x)h(x)λ(dx) > 0}, with the negative

ones, H−(h) and H̊−(h), defined analogously. We remark that, because h ∈ L∞(λ), the

hyperplane with normal h is closed in L1(λ) (and so is its restriction to L∆
1 (λ), H(h)).

3 Feasibility of FIE: Up to Three Alternatives

We start with the case of up to three alternatives, i.e., k ≤ 3. We shall be able to provide

a sharp characterization of FIE. Such result does not apply for the case with k > 3, so we

study it separately in the next section. In addition to the characterization, k ≤ 3 seems to

be the most relevant case. For instance, the binary case (k = 2) is, aside from empirical

relevance, the case studied by almost the entire literature on CJT, so results for the binary

case are useful in comparison with the rest of the literature.

To demonstrate the condition that determines whether an environment allows FIE or not,

we start with two examples in the binary k = 2 case. In both these examples we show how

FIE may fail when we depart from the two-state framework: the problem arising from the

fact that the same alternative can be optimal under multiple conditional distributions over

signals. Example 1 shows how the addition of a third state may make FIE infeasible, and

Example 2 extends this idea to continuous states.

Given a strategy σ = (σ1, σ2), we write the difference in expected vote share between a1

9Simply use h̃(x) = h(x)− c in the place of h.
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and a2 as

zσ12(θ) ≡ zσ1 (θ)− zσ2 (θ)

=

∫
X

[σ1(x)− σ2(x)]P (dx|θ) ≡
∫
X
σ12(x)P (dx|θ) (1)

where σ12(x) = σ1(x)− σ2(x) for all x ∈ X.

In order for FIE to obtain, the function zσ12(θ) should be positive in states belonging to

A1 (where a1 is preferred) and negative in states belonging to A2 (where a2 is preferred).

Example 1 Suppose A = {a1, a2}, Θ = {L, M,R}, and P (θ) = 1
3 for all θ ∈ Θ. Assume a1

is preferred in L and R while a2 is preferred in M . Also, X = {x, y}, and for some p > 1
2 ,

P (x|L) = p, P (x|M) =
1

2
, and P (x|R) = 1− p.

This is illustrated in Figure 1 below.

1− p 1
2

p0 1

A∆
1 A∆

2

Figure 1

This environment does not allow FIE. In fact, in order for a1 to win almost surely in both

L and R, the strategy σ must satisfy

zσ12(L) = pσ12(x) + (1− p)σ12(y) > 0

zσ12(R) = (1− p)σ12(x) + pσ12(y) > 0

Taken together, we must have σ12(x) + σ12(y) > 0, violating the condition for a2 winning in

state M for large n, given by

zσ12(M) =
1

2
σ12(x) +

1

2
σ12(y) < 0.

The problem with information aggregation in this example is the following: In order for

a1 to win in state L (when x is the more frequent signal), voters should vote for a1 with large

enough probability if the signal is x. Similarly, in order for a1 to win in state R (when y is

the more frequent signal), voters should vote for a1 with sufficiently high probability if the

signal is y. As a consequence, a1 obtains a high share of votes irrespective of the signal, and

wins in state M where it is not the preferred alternative.

Example 2 Let A = {a1, a2}, Θ = [0, 1] with a uniform prior probability, X = {x, y}, and

Pr(x|θ) = θ. Consider two different preference environments. In the first environment, all

13



voters prefer a1 if θ > t and a2 for θ < t, for some t ∈ (0, 1) In the second case, for some

0 < t1 < t2 < 1, a1 is preferred whenever θ ∈ (t1, t2) and a2 is preferred when θ < t1 or θ > t2

These are illustrated in Figure 2 below as cases (A) and (B) respectively. Case (A) allows

FIE but case (B) does not. In fact, for any strategy σ = (σ1, σ2), the vote share difference

function is given by

zσ12(θ) = θσ12(x) + (1− θ)σ12(y)

Notice that this function is continuous and linear in θ.

0 t

A∆
1 A∆

2

1

(A)

0 t1 t2 1

A∆
2

A∆
1

(B)

Figure 2

For σ to satisfy FIE in case (A), we must have zσ12(θ) > 0 for θ > t and zσ1 (θ) < 0 for

θ < t. Hence, any σ that satisfies (i) zσ12(t) = 0 and (ii) zσ12(·) is strictly increasing leads to

FIE. It is easy to check that we can always find some σ with these properties.

For FIE in case (B), we must have zσ12(θ) > 0 for θ ∈ (t1, t2) and zσ12(θ) < 0 for θ ∈
[0, t1)∪ (t2, 1]. However, since zσ12(·) is linear in θ for every strategy σ, there is no symmetric

strategy profile that achieves FIE.

Example 2 says that the substantive interpretation of the signal matters for the property

of information aggregation. Suppose voter preferences depend on candidate quality and

higher proportion of x (y) signals indicate higher (lower) relative quality of candidate a1,

which is an interpretation of the first environment. This environment allows FIE. However,

if voter preferences depend on whether the candidate is moderate or extreme while signals

are about whether a candidate leans to the left or to the right, signals cannot be classified

as each favoring one candidate. This interpretation applies to the second environment, and

aggregation fails in this case.

The main idea underlying the characterization theorem is contained in Example 2. In this

example, FIE depends on the convexity of the set of states for which a given alternative is

preferred: in the first environment both the sets A∆
1 and A∆

2 are convex, while in the second

environment the set A∆
2 is non-convex. As we shall see below, convexity of the sets A∆

i is

the key feature of an environment that allows FIE.

A convex 3-partition of ∆(X) is given by a collection π = {E1, E2, E3} of mutually disjoint

and convex subsets of ∆(X) such that E1 ∪E2 ∪E3 = ∆(X). Given π, we define the ij-meet

Hij(π) = Ei∩Ej , where E denotes the closure of E in the simplex (recall once more that the
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simplex is either the finite-dimensional simplex ∆(X) with its canonical Euclidean norm and

metric, or the closed subspace L∆
1 (λ) of the Banach space L1(λ), also with its usual norm

and associated metric). In addition, we define the ij-facet Fij(π) to be equal to Mij(π) if

there exists g ∈ Mij(π) and ε > 0 such that Bε(g) ⊂ Ei ∪ Ej , and to be equal to the empty

set otherwise.10 Finally, we define the ij-facet hyperplane as Hij(π) = H(h) where H(h) is a

hyperplane that contains the ij-facet Fij(π), whenever such facet is not empty (if Fij(π) = ∅,
we set Hij(π) = ∅ as well).

Definition 1 A convex 3-partition π = {E1, E2, E3} is called a restricted 3-partition if

for all i, j,m ∈ {1, 2, 3}, Hij(π) 6= Him(π).

(A)

x3

x2

x1

E1

E2

E3

(B)

x3

x2

x1

E1

E2
E3

(C)

x3

x2

x1

E1

E2
E3

Figure 3

Figure 3 illustrates the concept of a restricted 3-partition for the case thatX = {x1, x2, x3}.
The cases (A) and (B) represent valid partitions, while (C) is not a valid partition: the facet

hyperplanes H12 and H13 are equal.

For a given E ⊂ ∆(X), let E̊ denote its relative interior in ∆(X). Here’s our characteri-

zation result.

Theorem 1 Let k = 3. An environment (u,A,Θ, X, P ) allows FIE if and only if there exists

a restricted 3-partition π = {E1, E2, E3} such that

P ({θ ∈ Θ : f( · |θ) ∈ A∆
i \ E̊i}) = 0

for i = 1, 2, 3.

In simple words, FIE is possible if and only if the images of the three sets A1 and A2 and

A3 in the simplex are included in a convex partition defined by three distinct hyperplanes,

10Be(g) is the open ball with radius ε > 0 around g.
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with probability one. The case k = 2 is much simpler: the required partition into two convex

sets is obtained by a single hyperplane, so the characterization boils down to the following

corollary.

Corollary 1 Let k = 2. An environment (u,A,Θ, X, P ) allows FIE if and only if there

exists a hyperplane H(h) such that

P ({θ ∈ Θ : f( · |θ) ∈ A∆
1 \ H̊+(h)}) = 0 = P ({θ ∈ Θ : f( · |θ) ∈ A∆

2 \ H̊−(h)}).

Recalling that the vote share function is linear in P ( · |θ), the intuition for Theorem 1 and

Corollary 1 follows on the lines of Example 2. For instance, consider k = 3 and a restricted

3-partition as in Figure 3(A). The line separating E1 and E2 is a hyperplane with normal h12

and the one separating E2 and E3 is a hyperplane with normal h23. A strategy (σ1, σ2, σ3)

with σ1 − σ2 proportional to h12 and σ2 − σ3 proportional to h23 is easily shown to achieve

FIE. If the partition is as in Figure 3(B), then one of the normals of the three hyperplanes

will be a convex combination of the other two. That is, h13 = αh12 + (1 − α)h23 for some

α ∈ (0, 1). One can then verify that a strategy (σ1, σ2, σ3) with σ1− σ2 proportional to αh12

and σ2 − σ3 proportional to (1− α)h23 achieves FIE. Conversely, if a profile σ achieves FIE,

then by linearity of the vote share function, the differences σ1−σ2, σ1−σ3, and σ2−σ3 must

induce a convex partition of ∆(X). And it cannot be as in Figure 3(C) because otherwise

two of the alternatives would always get the same share, which would violate FIE, so it has

to be a restricted 3-partition.

For k = 2, the ideas are exactly analogous. In particular, FIE is achievable if and only

if the images of A1 and A2 in the simplex are included in a division of the simplex into two

parts by a hyperplane, with probability one. In any such environment, the set of signals X

can be divided into two classes X1 and X2, in the sense that those signals in X1 (resp. X2)

have their corresponding vertices in the upper (resp. lower) half-space of a hyperplane on

the simplex where a1 (resp. a2) is preferred. Signals in X1 favor a1 and those in X2 favor a2

in the following sense: for any signal in X1, the strategy that achieves FIE attaches higher

probability to a1 than to a2 (σ12(x) > 0 if x ∈ X1) and for any signal in X2, the strategy

attaches higher probability to a2. Figure 4(A) illustrates an environment with discrete states

that allows FIE. The blue dots are distributions where, say, a1 is preferred, while the red

dots are distributions where a2 is preferred. The line dividing the blue and red distributions

puts two vertices on the red side (i.e., the vertices for signals x1 and x3). With a strategy

profile that generates the line, the higher the probability of signals x1 and x3, the more

votes a2 receives. However, we can alternatively draw a line that puts only the x1 vertex

on the red side, and thus, x3 favors a1. Therefore, in case of discrete state spaces, signals

endogenously favor alternatives. In the case of a continuous state space giving rise to a dense

set of conditional probability distributions on the simplex, the classification of signals may

be unique. Figure 4(B) shows an example where all distributions over signals may arise. In
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this case there is a unique separation of signals congruent with FIE. Figure 4(C) illustrates

a case where the blue and red distributions cannot be separated by a hyperplane, and hence

a case where FIE fails.

b
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b
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b

b
b b

x1x3

x2
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bc
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bcbc bc bc bc
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bcbc

bc
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x1x3

x2

(b)

x1

x2
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Figure 4: Illustrating Corollary 1.

Corollary 1 identifies an important connection between unidimensional and multidimen-

sional models so far as the property of FIE is concerned. Any multidimensional environment

satisfying FIE is characterized by a direction in the simplex such that the projections of the

conditional distributions along that direction induce a structure like the first environment in

Example 2: there is a threshold that separates the projection of A∆
1 from that of A∆

2 . This

direction is that of the normal to the hyperplane identified in Corollary 1. Notice that this

condition is much weaker than the standard condition of ranking of signals by MLRP.

Example 3 simply extends Example 2 from a unidimensional to a multidimensional sim-

plex over signals.

Example 3 Let X = {x1, x2, x3} and u12(θ) = u(θ, a1)− u(θ, a2). Suppose that signal x1 is

optimistic about a1 and pessimistic about a2, and vice-versa for the signal x2. It is reasonable

then that u12(θ) > 0 for θ such that P ( · |θ) = δx1 and that u12(θ) < 0 for θ such that

P ( · |θ) = δx2, where δx is the point mass at x. It is also reasonable that along a path of

indifference (the image of {θ : u12(θ) = 0} in ∆(X)) the probabilities of x1 and x2 should go

in opposite directions. An implication of Corollary 1 is that the image of a path of indifference

in ∆(X) is a straight line. In other words, the only utility functions that allow FIE must

have linear images in the proportion of each signal.

To fix ideas contained in the above example, consider an electorate voting to accept or

reject a proposal and that each voter gets noisy information about one of several aspects of the

proposal. For concreteness, suppose that the vote is about whether to remain in a common

politico-economic union or not (e.g., the “Brexit” vote in May 2016). A crucial tradeoff in

this vote was between the possible loss of growth versus protection of local employment.

Suppose that x1 is a signal that says that that staying will be good for growth and x2 is
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a signal that says there will be loss of local jobs due to migration. The stronger the likely

growth effect is, the more x1 signals are received, and the larger the likely job loss is, the

more x2 signals are received. Now, think of x3 being a signal on a third factor, say, the extent

to which migrants make a net contribution to the local economy. Clearly, voter preferences

depend on the proportion of each of the three signals in the population. Corollary 1 says that

in order for FIE to obtain, µ3 (the proportion of signals about net contribution of migrants)

should not affect the rate at which µ1 (the proportion of signals about growth) is traded off

against µ2 (the proportion of signals about job loss). This seems to be a strong restriction

on preferences.

The next example is an application of Corollary 1 to a very standard case of spatial

model of political competition between two alternatives. In fact, this is a multidimensional

generalization of Example 2.

Example 4 We continue the metaphor of a policy proposal (alternative a1) being voted on

against a status quo (alternative a2). There is a policy space Y = [0, 1]2, in which both

alternatives are located. Voters’ utility for policy y is given by u(|y − y∗|), u′ < 0, where

| · | denotes the Euclidean norm. Thus, y∗ ∈ Y is the voters’ ideal policy and voters prefer

policies closer to y∗ than those further from it. The status quo is known to be located at

yQ 6= y∗ on the policy space. On the other hand, there is uncertainty about the location of

the proposed policy: we denote the location of the proposed alternative on the policy space by

θ = (θ1, θ2) ∈ [0, 1]2. In this setting, the voters prefer a1 (resp. a2) in a given state θ if

|θ− y∗| is less (greater) than |yQ− y∗|. Hence the boundary between A1 and A2 in Θ is given

by

I = {θ : |θ − y∗| = |yQ − y∗|} (2)

which is the circumference of a circle (or part thereof). This is illustrated in Figure 5(A).

y∗ yQ

A1

A2

(A)

A∆
1

A∆
2

(B)

Figure 5

This is entirely a property of the utility function. Suppose the prior probability of the

alternative is uniform on the policy space, the signal x = (x1, x2) is two dimensional, and
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xi ∈ {0, 1}, with P (xi = 1|θ) = θi. Thus, x1 provides information on θ1 and x2 on θ2

independently of each other. Alternatively, the ith component of the state, θi, can simply be

thought of as the proportion of 1-signals in dimension i. Observe that we have four possible

combinations of signals, so ∆(X) is the 3-dimensional simplex, as in Figure 5(B). There is

no strategy profile for which FIE can be obtained in this setting. This follows by noting that

there exists no hyperplane that can separate A∆
1 from A∆

2 and then applying Corollary 1.

Figure 5(B) illustrates this last point. The range of the mapping from Θ to the simplex is the

two-dimensional manifold in gray. The boundary I is mapped to the thick curve dividing the

said manifold into A∆
1 and A∆

2 . As the image on I in ∆(X) is an one-dimensional manifold,

it could still be the case that it is contained in a two dimensional hyperplane in ∆(X). But

simple manipulations show that this is not the case.11

Both Examples 3 and 4 feature continuous state spaces but finite number of signals.

We shall refer to such environments as having “rich state spaces”. With rich state spaces,

voters have very limited private information but their preferences have a rich variation across

different circumstances (states), leading to aggregation failure despite common preferences.

FIE holds only for special classes of preference when the state space is rich.

The following two examples presents the polar opposite case: the state space is discrete,

and there are at least as many signals as states. In this case, we shall see that irrespective

of the particular utility function, FIE obtains except for special circumstances, even when

there are more than two alternatives in question. We shall develop the result more generally

in the next section (Corollary 3). The examples in this section simply illustrate the idea. As

the examples make it clear, the crucial difference between continuous-state and discrete-state

environments is that in the former, FIE requires a strategy that produces equal vote shares

for the two alternatives at all “pivotal states” but there is no such strict requirement in the

latter.

In the two examples below, there are r states {θ1, θ2, ..., θr} occurring with positive prob-

ability and s signals {x1, ..., xs}. Assume that the ranking over the two alternatives is strict

at each state, and that each state is mapped to a distinct probability distribution P ( · |θt)
denoted as Pt.

Example 5 FIE obtains whenever r = 2 and P1 6= P2.

Example 6 FIE obtains if r = s = 3 and the conditionals {P1, P2, P3} are linearly indepen-

dent.

We skip the proofs as these are special cases of Corollary 3 introduced later. However,

for these cases, the statements can simply be verified by inspecting the figures. Figure 6(A)

11For instance, in the case that A1 = {θ ∈ [0, 1]2 : θ2 > θ21}, the image of I contains the points (0, 0, 0),

(1, 0, 0), (1/8, 3/8, 1/8), and (1/27, 8/27, 1/27), and there’s no hyperplane in R3 containing all these points.
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illustrates the case of r = 2 and s = 3: it is always possible to pass a hyperplane separating

P1 and P2 irrespective of their location on the simplex. Notice that this example is of

independent interest given that there is a large literature that looks specifically at the case

of two states and two signals.

b

bc

(a)

b

bc

bc

(b)

b

bc

bc

(c)

Figure 6: Discrete state space.

Similarly, Figure 6(B) illustrates the case of r = s = 3 when the conditional distributions

satisfy linear independence. It is easy to see from the figure that one can always separate any

two vectors from the third by a suitable hyperplane. Figure 6(C) demonstrates the necessity

of linear independence. In this case, if a1 is preferred in θ1 and θ3 while a2 is preferred in θ2.

It is easy to see from the figure that one cannot find a hyperplane that separates {P1, P3}
from P2. Notice that in Example 1 also, we have aggregation failure due to the fact that the

conditional distribution for which a2 is preferred is a linear combination of the conditionals

for which a1 is preferred.

4 Feasibility of FIE: Multiple Alternatives

The characterization for k ≤ 3 does not work for k > 3. That is, as Example 7 shows, already

with four alternatives a nice convex partition of ∆(X) made up of the sets A∆
i , i = 1, ..., 4 is

not enough to ensure that FIE is achievable.

Example 7 Suppose there are three signals and four alternatives. The simplex over the

signals is represented by the right angled triangle ABC, as shown in Figure 7. There is a

smaller right angled triangle DEF inside ABC, with side EF parallel to BC. The line EF

intersects AC at G. The most favored alternatives for different vectors in the simplex are

as follows: a1 for the trapezium ADEB, a2 for the trapezium ADFG, a3 for the trapezium

GEBC, and a4 for the triangle DEF. While each A∆
i is convex, FIE is not achievable in this

environment. To see why, suppose strategy σ achieves FIE. Now, it must be the case that

along all points P ( · |θ) on AD (and the entire line along AD on the simplex) zσ1 (θ) = zσ2 (θ).

Similarly, for all points on the line along BE, zσ3 (θ) = zσ1 (θ). By linearity of vote shares in

P ( · |θ) if BE and AD intersect at H then at P ( · |θ) = H, zσ1 (θ) = zσ2 (θ) = zσ3 (θ) Similarly,
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Figure 7: Convex Partition

at F which is the intersection of DF and EF , we must have zσ4 (θ) = zσ2 (θ) = zσ3 (θ). Again by

linearity, zσ23(·) = 0 must trace a line on the simplex, but we already know two points on this

line: H and F . Therefore, zσ23(·) = 0 must be represented by the line along FH. However,

for FIE we need zσ23(·) = 0 to coincide with the line through GF , which is impossible.

Of course, by linearity of the vote share function, if FIE is to be obtained, then the sets

{A∆
i }i=1,...,k must be contained in a convex partition of the simplex. Example 7 shows that

convexity is not sufficient for FIE. There are two related issues at stake. First, consider that

we have a convex partition of the simplex so that for each pair of alternatives (i, j) the sets

A∆
i and A∆

j can be separated by a hyperplane H(hij). If a strategy σ achieves FIE, then

σij = σi − σj must be proportional to hij , for each pair (i, j). But we have kC2 hyperplanes

H(hij) and only k functions σ1, ..., σk. That is, k unknowns to satisfy kC2 restrictions, and

this is not necessarily possible unless we impose extra conditions. Second, the normals hij

need not be linearly independent. This is not an issue with k = 3, because in fact we can

explore linear dependence among three normals. But for k > 3, linear dependence might

preclude FIE, as in Example 7.

We shall provide two alternative sets of sufficient conditions for FIE when k > 3. Infor-

mally speaking, our conditions will be generalizations for the situations described in Figure

3(A) and Figure 3(B). For the former, we will require that the simplex be partitioned in a

very nice convex way, so nice that the required hyperplanes are to be parallel. For the latter,

we will allow for a more general convex partition, but one that avoids situations like the one

in Example 7. In particular, we will require that for each pair of alternatives ai and aj , the

set of conditionals for which ai is preferred to aj are separated by a hyperplane from those
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for which aj is preferred to ai.
12

The reason for this two-step approach is that our first condition, albeit restrictive at

first sight, is guaranteed whenever the conditional distributions are linearly independent in

the simplex. And, with more signals than states, linear independence holds generically. Of

course, linear independence cannot be expected with more states than signals, a result that

has a counterpart in the general case. This brings us to our second, more general, condition.

Comparing the two sets of results, we derive the broad lesson that the property of FIE

depends on a comparison of the richness of agents’ private information with the richness of

the underlying preference. This lesson is already reflected in the examples presented in the

section with two alternatives: FIE is non-generic when the state space is rich (Examples 3

and 4) and generic when there are at least as many signals as states (examples 5 and 6). In

this sense, one may say that there is a positive result for discrete state spaces and a negative

result for continuous state spaces.

4.1 Separation by Parallel Hyperplanes

Our first take on the k > 3 case is to consider extremely well-behaved convex partitions of the

simplex. This is captured by Property PS, which requires that the sets A∆
i , i = 1, ..., k, be

separated by a set of parallel hyperplanes, similarly to the case depicted in Figure 3(A). While

this condition seems demanding, under some regularity conditions it is satisfied whenever the

conditionals are linearly independent as we shall shortly see.

Definition 2 We say that property PS holds if there exists a bounded measurable function

h : X → R and real numbers 0 < c0 < c1 < c2 < · · · < ck such that for all i = 1, ..., k, and

P -a.e. θ ∈ Ai, 1
ci
<
∫
h(x)f(x|θ)λ(dx) < 1

ci−1
.

Following on the footsteps of Theorem 3 in Siga and Mihm (2017), we have the following

Theorem 2 If property PS holds, then there exists a strategy that achieves FIE.

The intuition for the proof is the following. Property PS ensures that for each pair of

alternatives (i, j), the sets A∆
i and A∆

j are separated by (a translate of) a hyperplane Hij

with a common normal h. We show that we can define a strategy function σ such that

σij(x) = h(x) − 1
ci

for all x, and all i 6= j. This strategy function achieves the required

separation and delivers FIE.

While the property may look very demanding, it is satisfied when the set of conditionals

satisfy a notion of vector independence. We first present the regularity conditions required

for this result to go through.

12Observe that this is not true in Example 7, as the separation of alternatives a2 and a3 has to have a kink

at F : it has to go through G, F , and H.
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Definition 3 We say than an environment (u,A,Θ, X, P ) is regular if: (i) Θ and X are

compact metric spaces endowed with their Borel sigma-algebras; (ii) the density f( · |θ) of

P ( · |θ) with respect to λ is continuous on X ×Θ.

Let us denote by F the set of information structures defined over a regular environment.

Observe that when the state and signal spaces are finite, these assumptions are trivially

satisfied, so a discrete environment is regular. Formally, letting M(Θ) denote the set of all

[−1, 1]-valued signed measures defined on the Borel sets of Θ, we use the following notion of

independence. This notion is a strengthening of the notion of independence in McAfee and

Reny (1992); their notion is akin to convex independence, whereas the following notion is

akin to linear independence.

Definition 4 We say that P ∈ F satisfies independence when the following condition holds

true: if ∫
P ( · |θ)ν(dθ) = P ( · |θ)

for some signed measure ν ∈ M(Θ) then it must be that ν = δθ, where δθ is the point-mass

concentrated at θ.

When the state space is discrete, i.e., Θ = {θ1, θ2, ..., θr} and the conditional P ( · |θt) in

the generic state θt is denoted by Pt, independence boils down to linear independence: There

does not exist r scalars {ν1, ν2, ..., νr} with at least one not equal to zero such that

r∑
t=1

νtPt = 0.

The following Lemma says that as long as the environment is regular, all we have to verify

for property PS is whether the conditionals satisfy the above notion of independence.13

Lemma 2 In a regular environment, if P ∈ F satisfies independence then property PS holds.

We thus have the following corollary establishing that linear independence is sufficient for a

regular environment to allow FIE. Notice that independence is a property of the information

structure: as long as the conditionals satisfies independence, FIE obtains irrespective of

preferences.

Corollary 2 Assume a regular environment. If the information structure P ∈ F satisfies

independence, then the environment allows FIE.

13 Here we show that the condition for sufficiency cannot be relaxed further to convex independence from

(linear) independence. Suppose r = s = 4 and k = 2. The linearly dependent conditionals P1 = (0, 1
3
, 1
3
, 1
3
),

P2 = ( 1
2
, 0, 0, 1

2
), P3 = ( 1

3
, 1
3
, 1
3
, 0), and P4 = (0, 0, 0, 1) satisfy convex independence; assume that A1 = {θ1, θ2}

and A2 = {θ3, θ4}. It is clear that the sets {P1, P2} and {P3, P4} cannot be separated by a hyperplane. In

fact, the vector ( 1
5
, 1
5
, 1
5
, 2
5
) is equal to 3

5
P1 + 2

5
P2 and also to 3

5
P3 + 2

5
P4, so it lies in the convex hull of each

of these two sets; thus we cannot separate these two convex sets.
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Corollary 2 allows a simple corollary for the case when both the state and signal space

are finite.

Corollary 3 Suppose there are r states {θ1, ..., θr}, k alternatives and s signals with s ≥ r ≥
k. The environment allows FIE if the conditional vectors are linearly independent.

The above Corollary generalizes Examples 5 and 6. Of course, when s ≥ r linear inde-

pendence is a generic property. The general lesson with finite state and signal spaces and

with more signals than states is that FIE obtains except for very special cases. We postpone

a formal discussion of genericity of FIE till section 4.1.1.

Corollary 3 is important given the large body of work looking specifically at the case with

two states (r = 2). It is easy to see that when there are two states, linear independence

is trivially satisfied as long as P1 6= P2, i.e., each state produces a different conditional

distribution over signals.

With discrete environments with more states than signals (r > s), linear independence

fails and Corollary 2 cannot offer any guidance regarding whether FIE holds or not. However,

there is a sense in which more states and/or fewer signals is an impediment for FIE. The

point is demonstrated by the following heuristic argument due to Siga and Mihm (2017)

Consider r > s and k = 2. Then, the condition for FIE is given by Theorem 1. Now,

suppose we increase the number of states r keeping the number of signals s fixed. For

each additional state, we choose a random vector on the simplex as the relevant conditional

distribution and assign a random alternative as the most preferred one. As states are added

to the simplex in this manner, the (ex-ante) likelihood of the condition in Theorem 1 being

violated increases. In fact, one can make the likelihood of FIE obtaining arbitrarily small

by sufficiently increasing the number of sates (see Mihm and Siga (2017), Theorem 3, for a

formal statement).

The logical limit of the procedure above is to consider situations with infinitely many

states and finitely many signals. For instance, by having a “rich state space” with the entire

s−1 simplex as the range of the mapping θ 7→ P ( · |θ). In such a situation, linear independence

cannot be expected, so in Section 4.2 below we develop a weaker set of sufficient conditions

for FIE which apply to rich state spaces. But let us first delve into the idea of genericity for

general spaces Θ and X.

4.1.1 Genericity of FIE

In general environments, state and signals spaces are bound to not be finite. So generic

independence (and the resulting generic FIE property) when there are more signals than

states cannot be taken as an indication of prevalence of FIE. We now argue that failure of

FIE might well be robust.
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We demonstrate the failure of genericity of FIE with two examples. Both examples involve

two alternatives in order to draw from the characterization in Corollary 1. The first example

shows that even in a discrete environment involving more states than signals, FIE can fail

for an open set of environments.

Example 8 Let X = {x1, x2, x3} and Θ = {θ1, θ2, θ3, θ4}. Let there be two alternatives, with

A1 = {θ4} and A2 = {θ1, θ2, θ3}. Consider an information structure P : Θ → ∆(X) such

that Pi = ei for i = 1, 2, 3, and P4 = (1/3, 1/3, 1/3), where ei is the coordinate vector (i.e.

e1 = (1, 0, 0), etc.) and Pi is short for P ( · |θi). Hence, under P , A∆
1 is the mid-point of

the simplex, and A∆
2 is the union of the three vertices, as illustrated in Figure 8(A). There’s

no way to separate these two sets with a single hyperplane, so FIE fails for the information

structure P . Now consider information structures close-by, which here means that P̂i is close

to Pi for each i as vectors in R3 (restricted to the simplex, of course). It is clear that we can

find an open set of such P̂ ’s such that the corresponding images of A1 and A2 in the simplex

will be close to the center and the vertices, respectively. This is illustrated in Figure 8(B),

with the open balls depicted. Again, for close enough P̂ ’s, it will not be possible to separate

the corresponding sets with a single hyperplane. So FIE fails for each such P̂ .

(A)

x3

x2

x1

(B)

x3

x2

x1

Figure 8

It is straightforward to verify that similar ideas can be applied to Example 2(B), with

infinitely many states and two signals. In fact, the ideas in Example 8 already show that FIE

can fail robustly for general Θ and X: it suffices to have λ have four atoms at the dots in

8(A). The next example presents an alternative argument for infinite Θ and X.

Example 9 Let Θ be compact metric, X = [0, 1], and λ be the Lebesgue measure on [0, 1]. Let

P : Θ→ L∆
1 (λ) be an information structures such that A∆

1 = {f ∈ L∆
1 (λ) : ||f −1|| < 1

4} and

A∆
2 = L∆

1 (λ)\A∆
2 . Clearly there’s no way to separate A∆

1 and A∆
2 with a hyperplane: for any

bounded h : [0, 1]→ R, we would need
∫
h(x)dx > 0 because 1 ∈ A∆

1 ; hence we would have an

interval I ⊂ [0, 1] with h(x) > 0 for all x ∈ I; now take one such interval I such that, for some
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θ ∈ A2, f(x|θ) = 1
λ(I)1{x ∈ I}, so that we would have

∫
h(x)f(x|θ)dx > 0, contradicting

separation. Consider the space of all information structures P : Θ → L∆
1 (λ) such that the

range of P is L∆
1 (λ) and endow it with the metric ρ(P, P̂ ) = supθ∈Θ ||f( · |θ)− f̂( · |θ)||, where

f̂ is the density of P̂ . For small ε > 0, pick an ε-ball Bε(P ) around P , and observe that an

analogous argument establishes that, for each P̂ ∈ Bε(P ), there is no hyperplane separating

the corresponding sets Â∆
1 and Â∆

2 .

The restriction to surjective information structures (that is, to P with range equal to

L∆
1 (λ)) in Example 9 is important. Without it, we would not necessarily be able to find an

open set of P̂ ’s for which FIE would fail. It can be interpreted as restricting to environments

with rich state spaces, something we will assume in Section 4.2 below (in fact, this is exactly

what property R will require).

The conclusion from Examples 8 and 9 is that FIE can fail robustly. It is important to

stress the kind of independence that is required for property PS. As indicated in footnote 13

above, we need the full force of linear independence to ensure that property PS is satisfied.

Applying the analysis of Hellwig and Gizatulina (2017) to our setting shows that the set

of information structures satisfying convex independence is generic (under some regularity

conditions). Example 9 shows that the same is not true for linear independence.

4.2 Separation by Star-Shaped Partitions

We move now to our more general approach to handle the k > 3 case. When E̊i is equal to

A∆
i in the convex partition in Figure 3(B), we see that, for each pair (i, j) of alternatives,

the region in the simplex where i is preferred to j is separated by a hyperplane. Moreover,

such separating hyperplanes intersect at one single point, forming what one can call a “star-

shaped” partition. Of course this is weaker than requiring separation by parallel hyperplanes,

and in particular it allows for linearly dependent conditionals.

It turns out that the crucial feature of “star-shapedness” is the common intersection of

the associated hyperplanes associated with a triple of alternatives. Such point might not be

located in the simplex, though. So we first extend preferences to allow for densities to live

outside of the simplex.

Definition 5 We say that property E is satisfied if: (i) there is a measure space Θ̃ ⊇ Θ

and a signed measure λ̃ on the space M(X) of [−1, 1]-valued signed measures on X such that

λ̃(Θ̃) = 1 and λ̃|∆(X) = λ; (ii) the information structure is described by P̃ ( · |θ) for all θ ∈ Θ̃,

which is absolutely continuous with respect to λ̃, and coincides with P ( · |θ) for θ ∈ Θ and the

prior P̃ on Θ̃ coincides with P conditional on Θ, i.e., P̃ ( · |Θ) = P (·); (iii) there is a utility

function ũ : Θ̃×A→ R such that ũ|Θ×A = u.

In the extended environment, we consider the extended simplex LΣ
1 (λ̃) = {f : X → R :∫

f(x)λ̃(dx) = 1}, which reduces to the set Σ of vectors that add up to one in the case of
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finite X, and the corresponding restriction of hyperplanes: for a given bounded measurable

h, H(h) = {g ∈ LΣ
1 (λ̃) :

∫
g(x)h(x)λ̃(x) = 0}.

Definition 6 We say that property H is satisfied if for all pair of alternatives ai, aj ∈ A,

there exists a bounded measurable hij : X → R such that

P̃ (θ ∈ Θ̃ : f̃( · |θ) ∈ AΣ
ij \ H̊+(hij}) = 0 = P̃ (θ ∈ Θ̃ : f̃( · |θ) ∈ AΣ

ji \ H̊−(hij}),

where Aij = {θ ∈ Θ̃ : ũ(θ, ai) > ũ(θ, aj)}, AΣ
ij is its image on LΣ

1 (λ̃), and f̃( · |θ) is the

density of P̃ ( · |θ) with respect to λ̃.

While the necessary condition for FIE (convexity of A∆
j ) imposes conditions only on

the most preferred alternative in each state, property H imposes conditions on the entire

ranking over alternatives. For any σ, the set of states which produce equal vote shares for

a given pair of alternatives is characterized by a hyperplane, irrespective of the vote shares

received by the other alternatives for these states. Property H imposes a similar structure

on the preferences, requiring that the states where the voter is indifferent between any two

alternatives lie on a hyperplane, irrespective of whether these alternatives are top-ranked or

not in these indifferent states.

Finally, we shall restrict to the case of rich Θ so as to obtain a sharp set of sufficient

conditions.

Definition 7 An environment satisfies property R if for each g ∈ L∆
1 (λ) there is θ ∈ Θ

such that f( · |θ) = g(·).

The next Lemma shows that properties E, H and R impose a particular linear dependence

on the set of hyperplanes {hij} through transitivity.

Lemma 3 Suppose properties E, H, and R hold. Then, for any three alternatives ai, aj , al ∈
A, there exist positive constants αij , αjl, and αil such that

αijhij + αjlhjl = αilhil. (3)

What Lemma 3 establishes is that, for any three alternatives, the hyperplanes from prop-

erty H must either have a common intersection (which might lie outside of the simplex) or

be parallel to each other. Hence property H is a substantial weakening of property PS.

Figure 9 makes the argument graphically by contradiction. Consider three alternatives

{a1, a2, a3} and suppose the dashed lines are the hyperplanes (H(h12), H(h13), and H(h23))

from property H. Suppose that the result in the Lemma 3 is violated, and the three hy-

perplanes have three separate pairwise intersections. Note that the colored areas represent

the region where an alternative is best. But then for any θ such that the corresponding
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a1

a2

a3

Figure 9: FIE failure with loops.

conditional lies on the inner uncolored triangle features an intransitive preference cycle:

u(θ, a1) > u(θ, a2) > u(θ, a3) > u(θ, a1).

Now, we are ready to state and prove the main result of this section.

Theorem 3 If Properties E, H, and R hold, then there exists a strategy that achieves FIE.

We have argued earlier that the challenge is to choose k strategy vectors to satisfy kC2

linear equations (“match” kC2 hyperplanes). The proof consists in showing that Lemma 3

imposes sufficient dependence among these kC2 equations so that we can guarantee a solution.

4.2.1 Linear utility representation

Our analyzes so far have kept the general structure of a state space Θ, a signal space X

and, given an information structure, the implied distribution on the simplex for each state

θ ∈ Θ. An alternative approach is to view states as the distributions themselves, and define

the common utility as a real-valued function defined on the simplex and alternatives. It

is apparent that, under this alternative route, FIE is related to the linearity of the utility

function in states. We now make this intuition precise.

The set of states is identified as a subset M of L∆
1 (λ) and the utility function is defined

directly over M , that is, u : M × A → R is a bounded measurable function, denoted by

u(f, a) with f ∈M to highlight that states are themselves distributions. We shall denote by

A(u) the partition {A∆
i }i=1,...,k of the state space M induced by the utility function u.

Our result is the following. If the utility from each alternative is linear in states in M ,

then the environment allows FIE. Conversely, for every environment that allows FIE, there
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exists a utility function linear in states which induces the same top-ranked alternative for

each state.

Proposition 1 If the utility functions is given by u(f, a) =
∫
f(x)ua(x)λ(dx), where ua is

bounded and measurable for all a ∈ A and f ∈ M then the environment allows FIE. Con-

versely, if a given utility function u : M ×A→ R belongs to an environment that allows FIE,

then there exists another environment with the utility function û(f, a) =
∫
f(x)ûa(x)λ(dx),

where ûa ∈ L∞(λ), such that A(u) = A(û).

This characterization is also portrayed in Example 3 and the discussion following it. An

interpretation when M = L∆
1 (λ) (so that property R is satisfied) is that the marginal change

in utility from an alternative with respect to the proportion of any signal is independent of

the proportion of the other signals. Alternatively, along the locus of indifference of any two

alternatives, the rate at which the change in the proportion of one signal compensates for the

change in proportion of another signal must be constant. In this sense, the tradeoff between

any two signals should be unaffected by a third signal.

Proposition 1 holds true for utility functions defined over any subset of the simplex: in

particular, it applies to discrete sets M (arising from discrete state spaces) too. However, it

has more intuitive value when the signal proportions can be varied continuously. In particular,

when property R is satisfied, then it can be verified that linearity of the utility function is

equivalent to property E and H being jointly satisfied by the environment. We shall consider

rich state spaces for the rest of the discussion on linear utility representation.

We already know that property E, H and R together are sufficient for FIE, which is also

reflected in the sufficiency of linearity in Proposition 1. While such properties are not strictly

necessary for FIE, the converse in the proposition tells us that for any environment satisfying

FIE, there must be another environment with the same top-ranked alternative in each state,

satisfying properties E and H (and hence FIE). It is also worth noting that when k = 2, FIE

is indeed characterized by linear utility functions.

For environments that admit linear utility representations, we can obtain a classification

of signals in terms of which among a given pair of alternatives is favored. Suppose that

for any two alternatives ai and aj , the respective (linear) utility functions are u(f, ai) =∫
f(x)uai(x)λ(dx) and u(f, aj) =

∫
f(x)uaj (x)λ(dx), respectively. Along the hyperplane

H(hij) on the simplex describing indifference between ai and aj , we must have∫
f(x)[uai(x)− uaj (x)]λ(dx) = 0.

We can then partition X into {Xi, Xj , Xij} by setting Xi = {x ∈ X : uai(x) > uaj (x)},
Xj = {x ∈ X : uaj (x) > uai(x)}, and Xij = {x ∈ X : uai(x) = uaj (x)}. Signals in Xi favor

ai and those in Xj favor aj in the sense that a higher proportion of any signal in Xi at the

expense of any signal in Xj raises the utility difference between ai and aj . Moreover, it can

29



be checked that for any strategy σ that achieves FIE, it must be the case that σij(x) > 0 if

x ∈ Xi and σij(x) < 0 if x ∈ Xj .

5 Equilibrium analysis

Summing up, by focusing on the geometry of the conditional distributions over signals, we

have established in general conditions under which FIE can and cannot be obtained. But such

results deal only with the feasibility of information aggregation, in the sense of existence of

some strategy profile that achieves FIE. However it is not clear whether, even in environments

which allow FIE, voters have incentives to use such strategies. In order to check whether

voters find it in their interest to do so, we consider voting as a game. More precisely, a game

is defined as an environment {u,A,Θ, X, P} along with a number of players n. We fix an

environment and consider a sequence of games by letting the number of voters grow. Following

the logic in McLennan (1998), we show that under common preferences, any environment

that allows FIE also has a sequence of Nash equilibrium profiles that achieves FIE.

Let us define the game Gn derived from the environment {u,A,Θ, X, P} along with a

number of players n more formally. Each player’s strategy set is Σ = {σ : σ = (σ1, ..., σk), σj :

X → [0, 1],
∑

j σj(x) = 1}, the set of all behavioral strategies. Endow Σ with the narrow

topology so that it is a compact space. We abuse notation and use the letter a to denote a

profile of voter choices: a = (a1, ...., an) where ai ∈ A = {a1, ..., ak} for each i = 1, ..., n. Let

u(θ, a) be the utility at a pair (θ, a), that is, u(θ, a) = u(θ, aj), where aj is the winner under

the profile a.14 Notice that all voters have the same utility function. Let σ(n) = (σ1, ..., σn)

denote a profile of behavioral strategies. At a state θ and profile (x1, ..., xn) of signals, the

(common) utility of a voter is
∑

a

∏n
i=1 σ

i(ai|xi)u(θ, a), where σi(ai|xi) = σij(xi) when ai = aj

(that is, when the choice of voter i at profile a is the alternative aj .) Hence the common

ex-ante utility at the strategy profile σ(n) is

u(σ(n)) =

∫
Θ

∫
X(n)

∑
a

n∏
i=1

σi(ai|xi)u(θ, a)⊗ni=1 P (dxi|θ)P (dθ)

where X(n) is the set of all profiles of signals (x1, ..., xn). Observe that, for each θ, the term∫
X(n)

∑
a

∏n
i=1 σ

i(ai|xi)u(θ, a)⊗ni=1 P (dxi|θ) is continuous in profiles of strategies σ(n) by the

definition of the narrow topology on Σ and by virtue of the conditional independence of

signals (that is, for each θ the “prior” P ( · |θ) is the product of marginals, so information is

[[diffuse]], and the expected utility is continuous in the product of the behavioral strategies

– see Balder (1988)). Hence, by Lebesgue Dominated Convergence, u(σ(n)) is continuous in

σ(n). This ends the description of Gn.

14If there are ties, then view u(θ, a) as the expected utility of an unbiased tie-breaking rule. See the proof

of Theorem 4 for a more explicit account of ties.
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Suppose that the profile σ(n),∗ is a maximizer of u(σ(n)). The existence of such a maximizer

follows from compactness of Σ and continuity of u in σ(n). Following McLennan (1998), σ(n),∗

is a Bayesian Nash equilibrium of the game Gn. It is straightforward to restrict to profiles of

symmetric strategies and ensure existence of a symmetric BNE. The next theorem tells us

that the sequence σ(n),∗ achieves FIE as long as the environment {u,A, θ,X, P} allows FIE.

Theorem 4 If the environment (u,A, θ,X, P ) allows FIE, there exists a sequence σn of Nash

equilibria of the game Gn that achieves FIE., i.e., W σn
n → 0.

The above theorem establishes McLennan’s result in our setting: in environments where

FIE is feasible, FIE can be achieved by a sequence of Nash equilibria. This result demonstrates

that the failure of information aggregation in common value environments is a failure of

technical feasibility rather than that of incentive compatibility.

6 Extensions

6.1 Scoring rules

We have developed our conditions for FIE based on simple plurality rule where each voter

casts his or her vote for one and only one alternative. However, there are other voting rules

to be considered especially when there are more than two alternatives, e.g., approval voting,

Borda count, etc. We show that considering these other voting rules does not expand the set

of environments where we can aggregate information. In particular, the set of environments

for which FIE can be achieved is the same under plurality rule with or without abstention and

approval rule. Additionally, whenever FIE is achieved under Borda rule, it is also achieved

under plurality rule. Finally, when there are two alternatives, supermajority rules induce

FIE if and only if the simple majority rule induces FIE.

Formally, our result is an equivalence result between the plurality rule and a class of

voting rules that are called scoring rules. These are rules where a voter can assign “scores”

to each alternative, and the alternative with the highest score wins. This class includes

approval voting as a special case. Other voting rules like the plurality rule (with or without

abstention) and Borda rule can be obtained as scoring rules with restrictions on the ballot.

We follow Myerson (2002) for defining a scoring rule. Let X be a finite set of signals and

V be a positive integer. A V-scoring rule is a voting procedure where a voter can assign any

integer score between 0 and V to each alternative. Formally, when there are k alternatives,

a voter picks a ballot which is a vector v ∈ V = {0, ..., V }k, and each element of the ballot,

vj , is interpreted as the score he gives to alternative j. Ballots are aggregated by adding

the scores for every alternative, and the winner of the election is the alternative with most

points.
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Under this framework, we can define several standard voting environments by imposing

restrictions on the ballot. For example, in plurality voting, the voter is allowed to assign

a single point to only one of the alternatives. In approval voting, the voter’s ballot assigns

one point to as many alternatives as she is willing to choose. Under the Borda Rule, a voter

provides a ranking of the alternatives, and the alternative with the highest aggregate rank

wins. One can reinterpret the ranks assigned by a voter as points awarded in the descending

order, with the highest ranked alternative obtaining k− 1 and the lowest ranked one getting

0.

Definition 8 (Approval voting) An approval voting rule is the scoring rule with V = 1.

Definition 9 (Plurality voting) V = 1 and a ballot v ∈ V requires
∑

i vi = 1.

Definition 10 (Plurality voting with Abstention) V = 1 and a ballot v ∈ V requires∑
i vi ≤ 1.

Definition 11 (Borda Count) V = k − 1 and a ballot v ∈ V requires that no two alterna-

tives are assigned the same number of points.

At this point, it is important to distinguish between “pure” scoring rules and scoring

rules with balloting restrictions. While approval rule belongs to the former class, plurality

rule, plurality with abstention and Borda rule belong to the latter group. Notice that, for

any given V , if an environment allows FIE under a V -scoring rule with balloting restrictions,

it also allows FIE under the pure V -scoring rule since the strategy achieving FIE under the

former rule is also available under the latter.

The next result tells us that scoring rules (with or without restrictions) cannot do more

than the plurality rule in terms of delivering FIE: For “pure” scoring rules like the approval

rule, FIE is achieved if and only if FIE is achieved under plurality rule, FIE under scoring

rules with restrictions (e.g. Borda Rule) implies FIE under plurality rule. The theorem also

simultaneously establishes the equivalence of all V -scoring rules as far as the property of FIE

is concerned.

Theorem 5 Fix V ∈ N+. There exists a strategy that achieves FIE in a V -scoring rule with-

out restrictions if and only if there is a strategy profile that achieves FIE in plurality voting.

If there exists a strategy that achieves FIE in a V -scoring rule with balloting restrictions,

then there is a strategy profile that achieves FIE in plurality voting.

The above result comes with two caveats. First, this holds only for large elections: for

finite elections, there may well be a difference. In fact, Ahn and Oliveros (2016) shows that

for any finite-sized election, the plurality rule performs the best among all scoring rules.

Second, our result should not be taken to mean that scoring rules are irrelevant for large
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elections. The main import of Theorem 5 is that these rules matter only in a world where

voters have non-common preferences.

Theorem 5 considers scoring rules that are symmetric across alternatives. This does not

cover asymmetric rules like supermajority where one alternative must obtain a larger share

of votes than the other alternative in order to be declared the winner. We define as a q-rule

a voting rule where, among two alternatives a1 and a2, the former has to obtain at least

q ∈ (0, 1) share of votes in order to win the election. The following proposition establishes

that all q-rules are equivalent in terms of the set of environments that allow FIE.

Proposition 2 Fix q ∈ (0, 1) and suppose k = 2. There exists a strategy that allows FIE in

a q-rule if and only if there is a strategy profile that achieves FIE in plurality voting (i.e.,

q = 0.5).

6.2 Monotone Likelihood Ratio Property

In our framework, we obtain conditions on FIE with general signal and state spaces. One

way to compare our result to existing work is to specialize our environment to ordered signal

and state spaces. A standard informativeness assumption on signals in this setting is the

Monotone Likelihood Ratio Property (MLRP), which ensures that a signal is a “sufficient

statistic” of the state (Milgrom, 1981) in the sense that higher signals indicate higher states.

Feddersen and Pesendorfer (1997) assume strict MLRP condition on signals and show (albeit

in a model of diverse preferences) that information is aggregated in all equilibria. Our suffi-

cient condition for FIE adapted to this environment entertains MLRP as a special case. Let

us restrict to the two alternative case, as the extension to multiple alternatives is immediate.

We start by making the following formal assumptions. Suppose Θ = [0, 1] and X =

{(x1, ..., xk) : (x1, ..., xk) ∈ [0, 1]k, with x1 < x2 < · · · < xk}. The prior P over [0, 1] is

non-atomic and has full support. The preferences are as follows: for some θ∗ ∈ (0, 1), a1 is

preferred for θ > θ∗ and a2 is preferred for θ < θ∗. In this setting, MLRP is defined as the

following condition on P (·|·).

Definition 12 (Monotone Likelihood Ratio Property) The signals are said to satisfy

strict MLRP if, for any two signals x < x′, the likelihood ratio P (x|θ)
P (x′|θ) is a decreasing function

of θ.

Let F (x|θ) =
∑

xj≤x P (xj |θ) denote the cumulative distribution function of P ( · |θ). Strict

MLRP implies that for every x, the cumulative distribution F (x|·) is a decreasing function.

Now consider the following property: For each θ′ > θ∗ and each θ′′ < θ∗, we have for all

x ∈ X
F (x|θ′) < F (x|θ∗) < F (x|θ′′) (4)
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As long as the property (4) is satisfied, there exists a strategy that achieves FIE. To see that,

let x∗ be the smallest x ∈ X such that F (x|θ∗) ≤ 1
2 . Now, set σ(x) = 0 for x ≤ x∗ and

σ(x) = 1 for x > x∗. It is easy to verify that the strategy profile σ achieves FIE.

Note that the property (4) is weaker than strict MLRP. While strict MLRP implies that

F (x| ·) is decreasing over the entire interval [0, 1], property (4) does not require F (x| ·) to be

decreasing within (θ∗, 1) or within (0, θ∗).15

6.3 Diverse Preferences

So far we have assumed that all voters have the same preferences described by the common

utility function u(θ, a). In this section we extend our basic insight to a case where the voters

in the electorate may have different preferences. In this setting, our results on feasibility go

through (almost exactly as before, with a different interpretation of the primitives). However,

feasibility of FIE cannot guarantee information aggregation in equilibrium since McLennan’s

insight fails with diverse preferences.

We maintain the assumption that all voters are ex ante identical, and draw both their

information and preferences from some distribution conditional on the state. To do so, we

retain the elements of the set-up and assume in addition that the private signal x is also

payoff relevant. Thus, the private draw of an individual serves two functions: it is a view

about the outcomes and it provides information about how others view the outcomes. We

may think of xi = (si, ti), where si is the common value component and ti is the private

value component of the preference. Notice that this is a general setting that can encompass

many different environments. In particular, it admits the environments studied in Feddersen

and Pesendorfer (1997) with continuous state space and Bhattacharya (2013) with just two

states.

Consider, therefore, that voters’ preferences are captured by u : Θ×X × A→ R. Given

u and P , we can infer the underlying “common” preference of a large electorate, as follows.

First and for simplicity, let us assume that for every pair of alternatives (i, j), almost every

θ and P ( · |θ)-a.e. x, u(θ, x, ai) 6= u(θ, x, aj). By the SLLN, the number

Qij(θ) =

∫
1{u(θ, x, ai) > u(θ, x, aj)}P (dx|θ)

represents the proportion of the electorate that prefers ai to aj in state θ. Hence, when

Qij(θ) >
1
2 , alternative ai would get more than 50% of the votes if the state was known. We

advance that in such a state the electorate prefers ai to aj . So we set, for each pair (i, j),

Aij = {θ ∈ Θ : Qij(θ) >
1

2
},

15An analogous result is obtained by Mihm and Siga (2017), who show that, in order for information to be

aggregated in common-value auctions, information must be monotone with respect to a “betweenness order”,

which is strictly weaker than the ordering induced by MLRP.
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and

Ai =
⋂
j 6=i

Aij .

Armed with these sets, we can extend the definition of FIE to the requirement that there

exists a symmetric profile σ such that P (Ai\Aσi ) = 0 for every i = 1, ..., k, as before. Likewise,

using the images of the sets Ai and Aij in the simplex (or in the extended simplex), we can

immediately recast the definitions of restricted 3-partition and of properties PS and H, and

conclude that Theorem 1, Corollary 1, Theorem 2, and Theorem 3 remain valid in this more

general setting.

Notice that since Feddersen and Pesendorfer (1997) result already tells us that information

is aggregated in equilibrium, the existence of FIE strategies is trivial in their setting. More

interestingly, while Bhattacharya (2013) concentrates on showing that, for any consequential

rule, there exists an equilibrium that fails to aggregate information, it can be checked that

in Bhattacharya’s two-state setting, there always exists some feasible strategy that achieves

FIE. It would therefore be very interesting to examine the conditions under which, in a gen-

eral setting with diverse preferences, there exists some equilibrium sequence that aggregates

information.

Observe that the proof of Theorem 4 explicitly utilizes the common value setting, and

therefore does not automatically generalize to an environment with diverse preferences. In

particular, we do not know the conditions under which the existence of a feasible strategy pro-

file guaranteeing FIE also implies that FIE is achieved in equilibrium when there is preference

diversity in the electorate. We believe that this is an important open question.

7 Conclusion

The existing literature on information aggregation in large elections has largely focused on

specific preference and information environments. We instead consider general environments

with arbitrary preference and information structures and focus on properties of the environ-

ment allowing or precluding information aggregation. The main thrust of our analysis is the

focus on the geometry of the sets of probability distributions over private signals correspond-

ing to the partition of the state space induced by the common state-dependent utility function

of the voters. In a large electorate, the frequency distribution over signals is approximately

the same as the probability distribution. Thus, our question is whether the election achieves

the outcome that would obtain if the entire profile of private signals were publicly known. If

an environment permits a strategy profile that can induce the full information outcome with

a high probability in almost all states, we say that the environment allows Full Information

Equivalence (FIE). Moreover, we are interested in whether such a strategy profile is incentive

compatible, i.e., it constitutes a Nash equilibrium in the underlying game.
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Most of our analysis assumes the existence of a common utility function, so there is

no issue of preference aggregation, only of information aggregation. We provide a complete

characterization of feasibility of FIE for the case of up to three alternatives. Roughly speaking,

the partition of the state space induced by the preferences is to be represented in the simplex

of distributions over signals as a “nice” partition into convex polytopes with facets defined

by hyperplanes. For the case of more than three alternatives, we do not have such a sharp

characterization. Instead, we provide two sets of sufficient conditions. The first requires

that the said hyperplanes be parallel and the second allows for more general, “star-shaped”,

configurations of hyperplanes. Interestingly, the first condition holds generically when we

have more signals than states. However, with general state and signal spaces FIE can fail

robustly.

We provide an affirmative answer to the implementability issue: as long as an environment

allows FIE, there is a sequence of equilibria associated with ever increasing electorates that

achieves FIE. There may be other equilibrium sequences that do not aggregate information—

but ours is only a possibility result. A corollary is that FIE is always achieved in equilibrium in

the much studied two-state environment. Another corollary is that failure of FIE has nothing

to do with equilibrium assessments over the states based on the criterion of one’s vote being

pivotal in deciding the election: whenever information can be aggregated, information will be

aggregated in (some) equilibrium. We also show that in the common preference environment,

the voting rule does not matter for information aggregation: as long as FIE is achieved by

the majority rule, FIE is achieved under a much larger class of voting rules. On the other

hand, although our feasibility results extend to the case of diverse preferences, such extension

is not available for our equilibrium result.

Finally, one should note that we have not allowed communication between voters in our

model. If communication were to be allowed in the case of common preferences, then every-

one would have incentives to share their private information. Therefore, information would

trivially be aggregated. In this context, our positive results are significant. In particular, if

the number of signals is larger than the number of states, then information aggregation does

not require communication, in general. On the other hand, in the case of diverse preferences,

it is unclear whether truthful sharing of information is incentive compatible. It would be in-

teresting to study the role of pre-voting deliberation in aggregating information when voters

do not have common preferences.
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8 Appendix

8.1 Proof of Lemma 1

To verify that the two definitions are equivalent, say that P (Ai \ Aσi ) = 0 for all i. Then

W σ
n =

∑
i

∫
Aσi ∩Ai

pσn(Lin|θ)P (dθ). For each i and θ ∈ Aσj ∩Ai, we have zσi (θ) > zσj (θ) for every

j 6= i, and we know that the realized proportion zni (θ) converges a.s. to zσi (θ). This implies

pσn(Lin|θ) → 0 for every θ. As this is true for every i, by Lebesgue Dominated Convergence

it follows that W σ
n → 0 as n→∞. Conversely, if P (Ai \ Aσi ) > 0 for some i, then there is a

set of positive P -measure E ⊂ Ai and an alternative j such that zσj (θ) > zσi (θ) for all θ ∈ E.

Let P (E) = α > 0. Then lim infn p
σ
n(Lin|θ) ≥ α because zσn(θ) converges P (·|θ)-a.s. to zσ(θ).

By Fatou’s Lemma, W σ
n cannot converge to 0, so FIE fails.
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8.2 Proof of Theorem 1

For the only if part. Let σ be a strategy that achieves FIE. Define E1 = H+(σ1 − σ2) ∩
H+(σ1 − σ3), E2 = H̊−(σ1 − σ2) ∩ H+(σ2 − σ3), and E3 = H̊−(σ1 − σ3) ∩ H̊−(σ2 − σ3).

We first establish that π = {E1, E2, E3} is a convex partition, and then establish that it is a

restricted 3-partition. First, suppose that E1 ∪ E2 ∪ E3 6= ∆(X), so there is g ∈ ∆(X) and

not in either of the E’s. There are two feasible cases:

• [g ∈ H̊−(σ1−σ2)∩ H̊−(σ2−σ3)∩H+(σ1−σ3)]. But if g ∈ H̊−(σ1−σ2)∩ H̊−(σ2−σ3)

then g ∈ H̊−(σ1 − σ3), contradicting that g ∈ H+(σ1 − σ3).

• [g ∈ H̊−(σ1−σ3)∩H+(σ2−σ3)∩H+(σ1−σ2)]. But if g ∈ ∩H+(σ2−σ3)∩H+(σ1−σ2)

then g ∈ H+(σ1 − σ3), contradicting that g ∈ H̊−(σ1 − σ3).

So we conclude that E1 ∪ E2 ∪ E3 = ∆(X). Next, as each Ei is in the complement of one

another, they are mutually disjoint. And surely each Ei is convex, so π is a convex partition.

Finally, we show that π must be a restricted 3-partition. By construction, for all Ei, Ej

that share a facet, Hij(π) = H(σi − σj). To show a contradiction and without loss of

generality, suppose H12(π) = H(σ1 − σ2) = H(σ1 − σ3) = H13(π). Now, H12(π) = H13(π)

implies H12(π) = H23(π). This means that Hij(π) splits ∆(X) in the same two regions

regardless of i, j. Outside of such hyperplane, there will be no ties by construction. But

this then means that one of the three alternatives never wins, contradicting FIE. Indeed,

we can establish one of the many (similar) cases. For all g ∈ H̊+
12(π), a1 beats a2. Either

H̊+
12(π) = H̊+

13(π), or H̊+
12(π) = H̊−13(π). Consider the former. Then, in state θ with f(·|θ) = g,

a1 beats a3. Also, either H̊+
12(π) = H̊+

23(π) or H̊+
12(π) = H̊−23(π). Again, consider the former.

Then a2 beats a3 at θ. For all ĝ belonging to the other half-space and θ with f(·|θ) = ĝ, it

has to be true that a2 beats a1, a3 beats a1, and a3 beats a2. But then a2 does not win for

almost every state, as we wanted to establish.

Move now to the if part. Consider a restricted 3-partition π = {E1, E2, E3} such that

P ({θ ∈ Θ : f( · |θ) ∈ A∆
i \ E̊i}) = 0 for i = 1, 2, 3. The are two distinct cases to consider.

Case 1: Not all Ei’s share a facet. In this case, let i, j be such that Fij(π) = ∅. Say

it is i = 1 and j = 3, so E1 and E2 do share a facet. Let h12 be the normal of the

hyperplane separating these two sets. Without loss, let H̊+(h12) = E̊1. Similarly, let h23

denote the normal of the hyperplane separating E2 and E3 such that H̊−(h23) = E̊3. We now

construct a strategy σ that achieves FIE. Choose measurable functions σ̂i : X → R+ such

that h12(x) = σ̂1(x)− σ̂2(x) and h23(x) = σ̂2(x)− σ̂3(x). Choose ε > 0 sufficiently small such

that
∑

i(σ̂i(x)ε ≤ 1 for every x. Let 3R(x) = 1−
∑

i σ̂i(x)ε, and set σi(x) = σ̂i(x)ε+R(x), so

that
∑

i σi(x) = 1 for every x ∈ X. FIE now follows from simple computations. For instance,

for almost all θ ∈ A1, zσ1 (θ) > zσ2 (θ) and also zσ2 (θ) > zσ3 (θ), because f(·|θ) lies on H̊+(h23).
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Hence, a1 wins for almost all θ ∈ A1. Similar computations establish that a2 wins for almost

all θ ∈ A2 and a3 wins for almost all θ ∈ A3, so FIE is verified.

Case 2: All Ei’s share a facet, so there is no pair i, j such that Fij(π) = ∅. Let hij be

the normal of a hyperplane separating Ei and Ej such that E̊i ⊂ H̊+(hij). Because π is

a restricted 3-partition, it must be true that for all i, j,m, H(hij) 6= H(him). It must also

be true that for all i, j,m, H(hij) ∩H(hjm) ⊂ H(him). Indeed, suppose the inclusion does

not hold, so we have g ∈ H(h12) ∩ H(h23) and g /∈ H(h13). We can then find ε > 0 such

that Bε(g) ∩ H(h13) = ∅. Then, either Bε(g) ⊂ E1 ∪ E2 or Bε(g) ⊂ E2 ∪ E3. Suppose it

is the latter. Because g ∈ H(h12) ∩ H(h23), the ball Bε(g) has four regions formed by the

intersection of half-spaces. In particular, either Ê2 = {ĝ ∈ Bε(g) :
∫
h12(x)ĝ(x)λ(dx) < 0 <∫

h23(x)ĝ(x)λ(dx)} is strictly convex and Ê3 = Bε(g) \ E is not convex, or the other way

around. Since Êi not convex implies Ei is not convex, we have a contradiction. As the choice

of labels is arbitrary, we conclude that, for all i, j,m, H(hij)∩H(hjm) ⊂ H(him), and hence

that the intersection of any two hyperplanes is the same. A hyperplane is a subspace of co-

dimension 1 and the intersection of two hyperplanes is a subspace of co-dimension 2. Hence,

the two-dimensional subspaces generated by the normals (h12, h13), (h12, h23), and (h13, h23)

are the same. Hence, re-labeling if necessary, we can find scalars a and b such that h13 =

ah12 + bh23. Switching signs if necessary, it is without loss to have a and b strictly positive.

Now set α = a/(a+b) and h̃13 = h13/(a+b) to establish that h̃13(x) = αh12(x)+(1−α)h23(x)

for every x ∈ X. Observe that h̃13 generates the same hyperplane as h13. Now pick bounded

measurable σ̂i : X → R+ such that αh12(x) = σ̂1(x)−σ̂2(x) and (1−α)h23(x) = σ̂2(x)−σ̂3(x)

for every x. As in Case 1 above, normalize σ̂ to construct a strategy σ, and similar simple

computations establish that σ achieves FIE.

8.3 Proof of Theorem 2

Let {σ̂k}Kk=1 be such that, for every x, we have

σ̂1(x)− σ̂2(x) = h(x)− c−1
1

σ̂2(x)− σ̂3(x) = h(x)− c−1
2

... = ...

σ̂k−1(x)− σ̂k(x) = h(x)− c−1
k−1

Clearly, the σ̂’s are bounded, so we can choose δ sufficiently large so that σ̂j(x)+δ ≥ 0 for all

j and all x. By the same reason, we can choose ε > 0 sufficiently small such that
∑

j(σ̂j(x) +

δ)ε ≤ 1 for every x. Let R(x) = 1−
∑

j(σ̂j(x) + δ)ε, and set σj(x) = (σ̂j(x) + δ)ε+R(x)/k,

so that
∑

j σj(x) = 1 for every x.
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Then, σ = (σ1, ..., σk) is a well-defined strategy. To show that σ achieves FIE, using

property PS, consider θ ∈ Aj such that c−1
j <

∫
h(x)f(x|θ)λ(dx) < c−1

j−1. We want to show

that
∫

(σj(x)− σl(x))P (dx|θ) > 0 for all l 6= j.16 First note that∫
(σ̂j(x)− σ̂l(x))P (dx|θ) > 0⇒

∫
(σ̂j(x) + δ − σ̂l(x)− δ)εP (dx|θ) > 0

⇒
∫

[(σ̂j(x) + δ)ε+R(x)− [(σ̂l(x) + δ) +R(x)]]P (dx|θ) > 0⇒
∫

(σj(x)−σl(x))P (dx|θ) > 0.

Analogously∫
(σ̂j(x)− σ̂l(x))P (dx|θ) < 0⇒

∫
(σj(x)− σl(x))P (dx|θ) < 0.

Consider l > j. As
∫
h(x)P (dx|θ) > c−1

j , so
∫

(h(x)− c−1
j )P (dx|θ) > 0. As cl > cj for all

l > j, we have
∫

(h(x)− c−1
l )P (dx|θ) > 0 for all l > j. Then

∫
(σ̂j(x)− σ̂l(x))P (dx|θ) =

l∑
i=j

∫
(h(x)− c−1

i )P (dx|θ) > 0

and hence ∫
(σj(x)− σl(x))P (dx|θ) > 0.

Consider l < j. As
∫
h(x)P (dx|θ) < c−1

j−1. So
∫

(h(x)− c−1
j−1)P (dx|θ) < 0. As cl < cj for

all l < j, we have
∫

(h(x)− c−1
l−1)P (dx|θ) < 0 for all l < j. Again, this means that

∫
(σ̂l(x)− σ̂j(x))P (dx|θ) =

j−1∑
i=l

∫
(h(x)− c−1

i )P (dx|θ) < 0

and hence ∫
(σl(x)− σj(x))P (dx|θ) < 0.

As we can apply the argument above for P -a.e. θ ∈ Aj , FIE is verified.

8.4 Proof of Lemma 2

Consider a sequence of finite subsets Θm of Θ such that (i) Θm ⊂ Θm+1, (ii) Θm → Θ in

Hausdorff sense, and (iii) the densities f(·|θ) are independent, for all θ ∈ Θm. We can do this

because P satisfies independence. In fact, if for any finite set {θ1, ..., θL} the densities f(·|θ`),
` = 1, ..., L were not independent, we would have

∑
` f(x|θ`)α` = 0 for every x with some of

the weights α` being non-zero. Without loss, let α1 6= 0. Then
∑L

`=1 f(x|θ`)α̂` = f(x|θ1),

16Observe that here and in the rest of the argument we will not make use of the densities f(·|·), so strictly

speaking the result is true even when there’s no underlying probability measure λ.
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with α̂1 = α1 + 1 and α̂` = α`, for ` = 2, ..., L. But then, setting ν to be
∑

` δ`α̂`, where δ`

is the point mass at θ`, we would have
∫
f(x|θ`)ν(dθ) = f(x|θ1) for every x, which implies

that
∫
P (·|θ)ν(dθ) = P (·|θ1), which in turn implies that α̂1 = 1, or α1 = 0, and α` = 0 for

` = 2, ..., L by independence of P .

Fix a list 0 < c0 < c1 < c2 < · · · < ck−1 < ck. We want to show that property PS

holds. Let ĉi = c−1
i + ε, for ε > 0 smaller than the difference between any two ci and cj . By

independence, for each m there is hm ∈ L∞(λ) (in fact, we can choose hm to have range in

[−1, 1]) such that ∫
hm(x)f(x|θ)λ(dx) = ĉi, for all θ ∈ Ami ,

where Ami = Θm ∩ Ai.
By Alaoglu’s theorem (Aliprantis and Border (2006), Theorem 6.21), the so constructed

sequence hm has a weak∗-convergent subsequence, so let h be its limit. As Ami ⊂ Am
′

i for

m′ > m, for each θ ∈ Ami we have∫
h(x)f(x|θ)λ(dx) = ĉi.

As Ami converges to Ai, for each such θ ∈ Ai we must also have
∫
h(x)f(x|θ)λ(dx) = ĉi.

Indeed, there must exist a sequence θm with θm ∈ Ami such that θm → θ. As f(x|θm) →
f(x|θ) for each x ∈ X, by Lebesgue Dominated Convergence we have∫

h(x)f(x|θm)λ(dx)→
∫
h(x)f(x|θ)λ(dx).

Property PS is therefore verified.

8.5 Proof of Lemma 3

Let I = H(hij) ∩H(hjm). Suppose first that I is non-empty. If f( · |θ) ∈ I then ũ(θ, ai) =

ũ(θ, aj) = ũ(θ, am), hence f( · |θ) ∈ H(him). As in the proof of Theorem 1, there are scalars

αij and αjm such that him = αijhij + αjmhjm. Suppose instead I is empty. This is true

whenever H(hij) and H(hjm) are parallel. It is clear that there are always constants satisfying

equation (3). Therefore, we establish that whether I is empty or not, there will always exist

constants satisfying equation (3).

Next we show by contradiction that the constants need to be positive.

Case 1. Suppose αij < 0, and αjm < 0. There are two possible scenarios: either there

exists θ such that∫
hij(x)f(x|θ)λ(dx) > 0 and

∫
hjm(x)f(x|θ)λ(dx) > 0,
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or there exists θ such that∫
hij(x)f(x|θ)λ(dx) < 0 and

∫
him(x)f(x|θ)λ(dx) < 0.

Otherwise, one of the alternatives is never the best choice. We will focus on the former and

note that the analogous argument holds inverting the inequalities. Thus, û(θ, ai) > û(θ, aj)

and û(θ, aj) > û(θ, am). By transitivity, û(θ, ai) > û(θ, am). On the other hand,∫
(αijhij(x) + αjmhjm(x))f(x|θ)λ(dx) < 0 and thus

∫
him(x)f(x|θ)λ(dx) < 0,

so that û(θ, ai) < û(θ, am), which is a contradiction.

Case 2. Suppose αij > 0, and αjm < 0. Consider θ such that∫
him(x)f(x|θ)λ(dx) = 0 and

∫
hij(x)f(x|θ)λ(dx) 6= 0.

The former implies that ∫
(αijhij(x) + αjmhjm(x))f(x|θ)λ(dx) = 0,

and hence ∫
αijhij(x)f(x|θ)λ(dx) = −

∫
αjmhjm(x)f(x|θ)λ(dx).

There are two possibilities: (i)
∫
hij(x)f(x|θ)λ(dx) > 0, which implies

∫
hjm(x)f(x|θ)λ(dx) >

0 and hence û(θ, ai) > û(θ, aj) > û(θ, am); (ii)
∫
hij(x)f(x|θ)λ(dx) < 0, which implies∫

hjm(x)f(x|θ)λ(dx) < 0 and hence û(θ, ai) < û(θ, aj) < û(θ, am). In either case we have a

contradiction because
∫
him(x)f(x|θ)λ(dx) = 0 implies that û(θ, ai) = û(θ, am).

Case 3. Suppose αij < 0, and αjm > 0. This is symmetric to the case 2, so it cannot

happen.

Finally, set αim = 1 and the proof is complete.

8.6 Proof of Theorem 3

Consider the system,

αijhij + αjlhjl = αilhil for all i, j, l (5)

Lemma 3 guarantees that the equations is well defined. The number of equations in the

system (5) is given by kC3. Notice that hij are parameters of the equation given by the

preferences. We will show that the system in (5) has a non trivial solution for the variables

α’s. Furthermore, if the solution is non trivial, all α’s are strictly positive. To show this last

assertion, suppose instead that there exists some αij = 0, then hjl = chil, for some constant

c. [[However, Hjl = Hil 6= Hij .]] This is not possible because the first equality implies that
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there exist some θ such that û(θ, ai) = û(θ, aj) = û(θ, al) but the second inequality implies

that û(θ, ai) 6= û(θ, aj) for all θ.

The number of variables α’s is kC2. For k < 6, kC2 > kC3 and therefore the system has a

non trivial solution. However, for k ≥ 6, there are more equations than unknowns. We need

to show that there are sufficiently many linearly dependent equations so that the system has

a solution.

Consider the subsystem of equations in which we fix an alternative, that without loss of

generality we will call alternative 1, and we combine with all the other possible combinations

of the remaining two alternatives. This is the set of equations containing all equations in which

alternative 1 is present. The number of equations in this subsystem is given by (n−1)C2 < nC2

and contains all α’s, and therefore it has a non trivial solution. It only remains to show that

any equation in the system given by (5) can be generated using this subsystem. For simplicity

of exposition, and without loss of generality, consider an equation with alternatives (2, 3, 4):

α23h23 + α34h34 = α24h24 (6)

This equation will not be contained in our subsystem because alternative 1 is not present.

Consider the following three equations from our subsystem:

α12h12 + α23h23 = α13h13 (7)

α12h12 + α24h24 = α14h14 (8)

α13h13 + α34h24 = α14h14 (9)

We do the following operation: equations (7) minus equation (8) plus equation (9) and we

note that this is equal to equation (6). Since the choice of alternatives is without loss of

generality we convince ourselves that our subsystem generates the full system.

Let Υ = {h1j}j>1. For all h1j ∈ Υ let τ1, and τj be such that τ1− τj = α1jh1j . There are

n variables τ ’s and n− 1 equations so this system has a solution.

As in the proofs of Theorems 1 and 2, we can now normalize τ to yield a symmetric mixed

strategy profile.

To show that this strategy aggregates information we need to show that if alternative ai

is the best, then the strategy selects alternative ai over aj , for any aj ∈ A.

Consider the simplest case where alternative 1 is the best alternative. By construction,

for all j 6= 1,

u(θ, a1) > u(θ, aj) ⇐⇒
∫
h1j(x)f(x|θ)λ(dx) > 0

⇐⇒
∫

(τ1(x)− τj(x))f(x|θ)λ(dx) > 0

⇐⇒
∫

(σ1(x)− σj(x))f(x|θ)λ(dx) > 0.

44



Thus, a1 obtains more votes than any alternative aj . The same relationship holds with weak

inequality and equality.

Consider now the case where alternative ai 6= a1 is the best alternative. Then

u(θ, ai) > u(θ, aj) ⇐⇒
∫
hij(x)f(x|θ)λ(dx) > 0

⇐⇒
∫

(α1jh1j(x)− α1ih1i)f(x|θ)λ(dx) > 0

⇐⇒
∫

(τ1(x)− τj(x)− τ1(x) + τi(x))f(x|θ)λ(dx)

=

∫
(τi(x)− τj(x))f(x|θ)λ(dx) > 0

⇐⇒
∫

(σi(x)− σj(x))f(x|θ)λ(dx) > 0.

Thus, ai obtains more votes than any alternative aj .Therefore, the strategy always chooses

the right alternative in the limit and this concludes the proof.

8.7 Proof of Proposition 1

Without loss, we can take ua ∈ L∆
1 (λ) for each a ∈ A, by taking positive affine transformations

if needed. Let σ be given by σi(x) = uai(x), so that u(f, ai) > u(f, aj) if and only if

zσi (f) > zσj (f), so σ achieves FIE. For the converse, simply set ûai = σi for every ai.

8.8 Proof of Theorem 4

Recall that, for a given symmetric profile of strategies σ, pσn(y|θ) denotes the probability

of a vector of proportions y, given θ. The definition readily extends to asymmetric profiles

σ(n). The probability that an alternative aj wins the election given σ(n) and θ, denoted by

qσ
(n)

n (aj |θ), is then

qσ
(n)

n (aj |θ) =
∑
y∈E0

n

pσ
(n)

n (y|θ) +
k−1∑
m=1

∑
y∈Emn

1

m+ 1
pσ

(n)

n (y|θ)

where E0
n is the set of proportions y where yj > yi for all i 6= j and Emn is the set of

proportions y where yj = yi > y` for all ` 6= i, j and for exactly m indices i. In words, E0
n is

the set where aj gets strictly more votes than all other alternatives and Emn is the set where

aj is tied at the top with exactly m other alternatives, in which case aj wins with probability
1

m+1 . Observe that, with such definition in hands, we can write u(σ(n)) as

u(σ(n)) =

∫
Θ

k∑
j=1

u(θ, aj)q
σ(n)

n (aj |θ)P (dθ).
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For each size n of electorate, consider a symmetric profile of strategies σ (recall our

notation that σ without a superscript denotes both a single strategy and a profile where each

voter uses the same strategy). For each θ, the proportion of votes for aj converges to zσj (θ)

with P ( · |θ)-probability one as n → ∞. Hence, qσn(aj |θ) converges for each θ, so Lebesgue

Dominated Convergence implies that u(σ∞) = limn→∞ u(σn) is well defined.

Observe that if the symmetric profile σ̂∞ achieves FIE, then u(σ̂∞) is the maximum

attainable value: for P -almost every θ ∈ Aj , the alternative aj wins. So, given that u(σn) is

linear in u(θ, aj), the claim is verified.

For each finite electorate {1, ..., n}, choose σ(n) as a maximizer of u(σ(n)). We know such

profile is an equilibrium of the corresponding game Gn. We also know that u(σ̂∞) is the

maximum feasible value of the ex-ante utility. Hence

u(σ̂∞) ≥ u(σ∞) = lim
n
u(σn) ≥ lim

n
u(σ̂n) = u(σ̂∞),

establishing the result. In fact, if W σn
n were not to converge to zero, then we would have to

have, say, P (Aj\Aσ
∞
j ) > 0 for some j. That is, a set of positive measure in Aj where an

alternative ai 6= aj wins under σ∞, whereas we know that no such set exists for σ̂∞. But

then u(σ̂∞) > u(σ∞), contradicting what we just established.

8.9 Proof of Proposition 2

Suppose, an environment allows FIE for some q ∈ (0, 1) and let σ(·) be the strategy that

achieves FIE, with the interpretation that σ(x) is the probability of voting for a1 given signal

x ∈ X. Now consider any other q′ ∈ (0, 1). Replacing σ(·) by σ′(·) = q′ + ε(σ(·)− q), we can

ensure that the strategy σ′ achieves FIE given voting rule q′. We make ε small enough to

ensure σ′(·) is a valid strategy function.

8.10 Proof of Theorem 5

Fix V ∈ N+. Let σVj : V × X → [0, 1], with
∑

v σ
V
j (v, x) = 1 for al x ∈ X and all j, be a

symmetric mixed strategy in a V-scoring rule, where σVj (v, x) is the probability that a player

with signal x assigns v ∈ V points to alternative aj .

First, notice that the strategy set under plurality rule is a subset of that under any V -

scoring rule without restriction, hence whenever FIE is achieved under plurality rule, it is

also achieved under a V -scoring rule without restriction.

Next, we show that whenever FIE is achieved under a V -scoring rule with or without

restrictions, it is also achieved under the plurality rule. Let σsum
j (x) =

∑
v∈V vjσ

V (v, x)
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be the expected number of points assigned to alternative j by a voter with signal x, and

σsum(x) = (σsum
1 (x), ..., σsum

k (x)).

Choose ε > 0 sufficiently small such that
∑k

j=1 εσ
sum
j (x) ≤ 1, for all x ∈ X. Define

R(x) = 1−
∑k

j=1 εσ
sum
j (x), and let σPV

j (x) = εσsum
j (x) + R(x)

k . We want to show that σPV
j (x)

is a well defined plurality voting rule and that it chooses the same alternative as σV for all θ

almost surely for n sufficiently large. By construction, σPV
j (x) ∈ [0, 1], and for all x,

∑
j

σPV
j (x) =

k∑
j=1

(
εσsum
j (x) +

1−
∑k

l=1 εσ
sum
l (x)

k

)
=
∑
j

εσsum
j (x) + 1− 1

∑
j

εσsum
j (x) = 1.

Next we show that plurality voting chooses the same alternative as the V-scoring rule.

First, note that in state θ the expected number of points received by alternative j is given by∫
σsum
j (x)P (dx|θ).

Then, as the population grows large, the difference in votes between alternative i and j, given

θ under V-scoring rule is given by∫
σsum
i (x)P (dx|θ)−

∫
σsum
j (x)P (dx|θ)

Since σPV
j (x) is an affine transformation of σsum

i (x) the above difference is positive if and

only if the following difference is positive:∫
σPV
i (x)P (dx|θ)−

∫
σPV
j (x)P (dx|θ).

This latter expression is the expected difference in votes between alternative i and j. For n

large, if i wins in a V-scoring rule, i wins in plurality voting.
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