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Abstract

Two players compete for a prize and their valuations are private information. Before

the contest, each player acquires a costly, noisy and private signal regarding the opponent’s

valuation. In equilibrium, each player’s effort is non-decreasing in the posterior probability

that the opponent has the same valuation. Accounting for the cost of spying, players are

better off spying when the spying technology is partially but not perfectly informative.

Suppose instead that each player can, at no cost, ex ante commit to disclose a signal about

her valuation to the opponent, but cannot observe realizations of the signal. Then every

equilibrium involves non-disclosure by at least one player, even though some disclosure by

each player would benefit both.

Keywords: Spying, Espionage, All-pay auction, Information acquisition, Rotation order

JEL Classification: C72 D44 D74 D82

∗chenzq926@gmail.com, School of Economics and Management, Harbin Institute of Technology, Shenzhen,
HITSZ campus of University Town, Nanshan District, 518000, Shenzhen



1 Introduction

Winner-take-all contests, like rent-seeking contests for monopoly rights, patent races, lobbying,

political campaigns and competitions for promotion, burden participants with the prospect that

their investments may yield no reward. The efforts, time and resources invested in competing

for the prizes are unrecoverable, and typically, only the participant with the highest investment

reaps the rewards of the contest. Thus, anticipating the rivals’ intentions becomes particularly

valuable; learning that rivals will invest little can save on the investment to win the prize,

and, conversely, learning of an excessive investment outlay by rivals would lead a firm to avoid

investing in a lost cause. This paper studies players’ incentives of acquiring information about

the opponents prior to winner-take-all contests, and shows relevant welfare analysis.

In competing for a procurement contract, for example, suppliers spend enormous time,

resources and efforts to prepare proposals for a buyer to evaluate.1 This process is even costlier

when it also involves bribing the procurement agent (Celentani and Ganuza, 2002; Burguet

and Che, 2004). Since each supplier may value the contract differently, their willingness to

commit resources to win the contract or to bribe the procurement agent may differ. Gathering

intelligence on the opponent’s valuation can prove particularly valuable. This also applies to

R&D contests or patent races, where intelligences regarding the rival’s new research progresses,

scientists’ backgrounds, or prototypes of new products/samples of new drugs, are beneficial to

the firms. To obtain the intelligences in the examples above, players may hire hackers to steal

information from rival’s computer, investigators to search through office trash or detectives to

steal files from office safe, etc.2

The existing literature on contests implies that players will overall not benefit from such

spying in contests. Kovenock et al. (2015) show that the payoffs to players are the same when

valuations of the prize are commonly known and when they are private information. However,

perfect information about the opponent is extremely difficult — if not impossible — to acquire

in reality. Furthermore, common knowledge assumption is not plausible in this situation as

spying activities in real life often induce uncertainty about the rival’s belief. For example,

a firm hacked by its competitor does usually not know what intelligence the competitor has

obtained and hence, remains ignorant about the competitor’s belief.

1Airbus and Boeing spent 10 years in competing for a contract to build U.S. Air Force aerial fueling tankers.
According to the chairman of European Aeronautic Defence and Space Company (now known as Airbus Group),
EADS spent over $200 million in the competition.

2Detectives hired by Larry Ellison, the head of Oracle, bribed the cleaning staff at Microsoft’s office to gather
sensitive information from the office trash. Staffs of Procter&Gamble were found searching the garbage of Unilever
— its competitor in the hair-care market — for “the Organics and Sunsilk brands of shampoo” which contains
commercially sensible information. Large companies like General Motors, Kodak, and BP even set up their own
separate competitive intelligence units to study their competitors (Billand et al., 2016).
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In this paper, we present a model of contests in which players can acquire partial and private

information regarding the opponent’s valuation for the prize before they compete. We consider

a first price all-pay auction with one indivisible prize and two players who have independent

private valuations (IPV).3 For tractability, each player’s valuation is assumed to be either high

or low. Before participating the contest, each player acquires a costly, noisy and private spying

signal about her opponent’s valuation. In acquiring the signal, she chooses a level of accuracy

which is a continuous decision variable whose lower and upper bound corresponds to completely

uninformative and perfectly informative signals, respectively.4 She then observes both her

valuation and signal realization, and exerts effort in the contest, i.e., bids in the auction.

We mainly show three results. First, in a simplified setting where the accuracy of the spying

signal is exogenously fixed and the signal costless, we show that each player’s effort in the

unique symmetric equilibrium is non-decreasing in the probability she perceives that the two

of them are evenly matched. If the signals are relatively noisy (hence the contest is opaque),

such an equilibrium is allocative efficient. In this case, when the player’s valuation is high, her

equilibrium effort is non-decreasing in the posterior likelihood that the opponent’s valuation is

also high (“motivation effect” of spying); instead, when her valuation is low then her effort is

non-increasing in such a likelihood (“demotivation effect” of spying). If, however, the signals

are sufficiently accurate (hence the contest is relatively transparent), then the unique symmetric

equilibrium is allocative inefficient. With very accurate signals, the low valuation type of the

opponent is aware that he must be exposed and thus, needs to signal-jam the player by mixing

his effort. This, in turn, induces the player with either the high or the low valuation to mix in

the same support, hence the inefficiency. We emphasize that the unique symmetric equilibrium

of the contest replicates the unique equilibrium in the all-pay auction with IPV and complete

information when the exogenous accuracy reaches its lower and upper bound, respectively.

Second, a comparative statics analysis shows that players earn higher expected payoff than

what they earn in the IPV setting when their signals are partially but not perfectly informative.

The intuition behind this result is best explained in two parts. Firstly, a player benefits from

anticipating the opponent’s move based on the intelligence that she obtains from spying. In

particular, spying is most profitable when the high and the low valuation players’ strategies are

completely different, i.e., when the contest is opaque and thus, the equilibrium is efficient. When

the contest, however, becomes sufficiently transparent (so we have the inefficient equilibrium)

3All-pay auctions have been applied to study winner-take-all contests with sunk investments include procure-
ment contests (Kaplan, 2012), research and development (Che and Gale, 2003; Dasgupta, 1986), rent-seeking and
lobbying (Baye et al., 1993; Che and Gale, 1998, 2006; Ellingsen, 1991), and competition for promotion (Clark
and Riis, 1998).

4Accuracy is defined by rotation order (Johnson and Myatt, 2006) for tractability.
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and the two strategies are similar, spying is less profitable. In fact, the marginal return to

spying is zero when the opponent believes the contest is perfectly transparent. Secondly, the

player being spied on can also benefit from the espionage. For example, a firm is aware that

the rival may have acquired some of the commercially-sensitive information, such as classified

files, financial records, or recordings of internal meetings. Since the rival would act upon this

intelligence, the firm is able to anticipate the rival’s move (with some noise) as it has a sense of

what conclusion the opponent might reach based on the intelligence. Therefore, both spying on

and being spied on by the opponent benefit the player. We then characterize the equilibrium

choice of accuracy by imposing mild conditions on the spying cost function, and show that

players overall better off spying even accounting for the cost of spying.

The information structure in the model we present lies between incomplete information

(Lu and Parreiras, 2014; Konrad, 2004; Amann and Leininger, 1996) and complete information

setting (Baye et al., 1996; Ellingsen, 1991; Hillman and Riley, 1989). By varying the accuracy

of the spying signal from completely uninformative to perfectly informative, we characterize the

equilibrium in an arbitrarily large set of information structure in our first result. There has

been some progresses in examining behavior in the all-pay auctions with information structures

that are different from IPV and complete information, include common valuation and affiliated

signals (Rentschler and Turocy, 2016; Chi et al., 2015), and interdependent valuations (Siegel,

2013; Krishna and Morgan, 1997). In these settings players can infer information about the

opponent from their own valuations. The current paper is different from this line of research

for the independence between each player’s valuation and information about the opponent.

In the pioneer study of spying activities in contests by Baik and Shogren (1995), the au-

thors propose a model where players can acquire information regarding their relative abilities.

The model also allows partial information acquisition by restricting the distribution of signals

to mean-preserving spreads. However, the contest success function in their model is neither

as in Tullock contests nor as in all-pay auctions, but instead subjective: both players could

believe (in “equilibrium”) that they will win with, e.g., 60% probability.5 In the current paper,

we instead take a standard game theoretic approach by analyzing behavior in the Bayesian

Nash Equilibrium. In addition, Zhang (2015) consider one-sided private information setting

with a perfect spying technology in both all-pay auction and Tullock contest (Tullock, 1967),

whereas the current paper focuses on the all-pay auction with two-sided private information

and imperfect spying technology.6

5See Bolle (1996) for a criticism of the approach and Baik and Shogren (1996) for the authors’ respond.
6In the IO literature, spying/espionage are also considered in entrant deterrence (Barrachina et al., 2014;

Solan and Yariv, 2004), in price and quantity competition in duopoly (Kozlovskaya, 2016; Wang, 2016; Whitney
and Gaisford, 1999), and in multi-market competitions (Billand et al., 2016).
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Spying may be prohibitively costly (or illegal). The previous results imply, however, that

players would benefit if they were to disclose to each other a noisy signal of their valuation.

Would players disclose such information voluntarily? Section 4 considers a twist of the main

model in which each player commits to disclose a signal about her own valuation to the opponent

before the contest. In doing so, she chooses an accuracy for the signal which the opponent will

receive. The accuracy is observable to both players, but the signal realization is only observable

to the opponent. Neither disclosing nor receiving the signal incurs any cost to any player. In

the patent race example, this corresponds to a firm provides, for instances, a prototype of a

new product or samples of a new drug to the rival firm. With such pieces of hard evidence

(which determines accuracy), the rival can conduct experiments on the product/drug to obtain

relevant parameters (which corresponds to signal realizations) which are unavailable to the firm

who discloses the information.7

Based on the second result, we show that if players disclose partially informative signals

because they have set up an agreement or are required by the regulator to do so, then the

total expected effort/expenditure is strictly lower than that in the IPV setting. The result

implies, for example, in procurement contests money spent on bribery and efforts exerted in the

process are lower on average if suppliers disclose partial information regarding their valuation

for the contract. This implication is particularly important because public procurement is a

hotbed for bribery, e.g., among OECD countries (Ehlermann-Cache and Others, 2007), which

creates social inefficiencies. In addition, such a corrupted behavior is hard to detect. When

suppliers disclose to each other, the social costs are reduced without actually detecting the

bribing behavior.8 This result is qualitatively consistent with Kovenock et al. (2015) who

also focus on decentralized information disclosure but restrict attention to full disclosure, and

show that full disclosure lowers total expected expenditure but leads to allocative inefficiency.9

The current paper, however, implies that partial information disclosure reduces total expected

expenditure with potentially less efficiency losses.

Nevertheless, we show, as our last result, that disclosing a partially informative signal is

weakly dominated by disclosing an uninformative signal for each player. Even though partial

disclosure by both players lowers ex ante expected efforts and increases payoffs, a player can

7For another example, consider each firm “discloses” information by choosing its security level of office build-
ings and firewalls. Thus, the accuracy is the security level, and the intelligences that the rival has acquired are
not observable to the firm.

8There is a similar implication to rent-seeking and lobbying contests: bribes to politicians are social costs,
and disclosure improves welfare by reducing expenditures. In the patent race example, information disclosure
between firms reduces duplicated investments in R&D.

9Most of the studies on information disclosure in contest literature take a centralized view and analyze how a
contest organizer should disclose information to players in order to maximize total effort (Lu et al., 2016; Zhang
and Zhou, 2016; Chen, 2016; Serena, 2015; Denter et al., 2014).
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do better by unilaterally adding noise to the signal disclosed to the opponent, as then the

evenly matched opponent is more likely to be demotivated. Therefore, there does not exist any

equilibrium in which both players disclose any partially informative signals.

In summary, we provide an interpretation of why we often observe spying/espionage activities

but seldom information disclosure/sharing in real life winner-take-all contests, even if the latter

results in a better outcome for players. We also show that spying activities overall benefit players

but a better social outcome can be achieved through mandatory, albeit imperfect, disclosure

between players. The findings are particularly important for wasteful contests, e.g., rent-seeking

contests (Congleton et al., 2008), where resources invested by players only serve as a means to

determine the winner but do not contribute to value creation (Tullock, 1967; Posner, 1974). For

instance, the estimated social cost of rent-seeking for the US is 22.6 percent of GNP in 1985

(Laband and Sophocleus, 1988); and it has been long argued (since (Wright, 1983)) that patent

races generate wasteful duplication of effort.

The rest of the paper proceeds as follows. Section 2 presents the main model of spying in

contests. Section 3 characterizes the equilibrium effort when the accuracy is exogenously fixed,

presents the comparative statics analysis, and characterizes the equilibrium choice of accuracy.

Section 4 presents the model of information disclosure, the analysis on disclosure agreement,

and the equilibrium choice of disclosure. Section 5 concludes.
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2 The model

There are two risk neutral players, indexed by i ∈ {1, 2}, who compete in a contest with one

indivisible prize for which they have independent private valuations (IPV). Player i (i = 1, 2)

may value the prize at θh with probability ph ∈ (0, 1) or at θl with probability pl = 1−ph, where

θh > θl > 0. Players know only their own valuations, and the distribution of the opponent’s

valuation. We refer to a representative player i = 1, 2 as “she” and her opponent, player

j = 3− i, as “he”. We also refer to a player with θh (θl) as a “high (low) valuation player”.

Information acquisition (spying): Player i can acquire additional information regarding

the opponent by receiving a private spying signal (hereafter “signal”) about the opponent’s

valuation. The possible signal realization πi is drawn from a compact set [π, π]. Player i acquires

information about θj by choosing from a family of joint distributions over [π, π]× {θh, θl}

{F (πi, θj |αi)}αi∈[α,α]

indexed by αi ∈ [α, α]. We refer to F (πi, θj |αi) the signal, αi the accuracy (to be defined

shortly), and πi the realization of the signal. Since the conditional distribution of πi depends

only on θj which is independent of θi, πi is thus independent of πj .

Let F (·, αi) denote the marginal distribution of πi with corresponding density f(·, αi), given

any αi. Furthermore, denote by Fh(·, αi) (Fl(·, αi) ) the conditional cumulative distribution of

πi given θj = θh (θj = θl). Let fh(·, αi) and fl(·, αi) be the corresponding probability density

functions, and assume both are differentiable on both arguments. We assume that w.l.o.g.

F (·, αi) is uniform on [0, 1] for every given αi ∈ [α, α],10 i.e., π = 0, π = 1 and

phFh(πi, αi) + plFl(πi, αi) = πi, (1)

phfh(πi, αi) + plfl(πi, αi) = 1. (2)

Posterior belief: Observing πi leads player i to update her belief on θj according to Bayes’

rule. Denote player i’s posterior belief that player j has valuation θh upon receiving πi by

µ(πi, αi), thus

µ(πi, αi) =
phfh(πi, αi)

phfh(πi, αi) + plfl(πi, αi)

Note that, according to (2), µ(πi, αi) = phfh(πi, αi) and 1− µ(πi, αi) = plfl(πi, αi).

10Since a random variable’s percentile function as another random variable is uniformly distributed, we can
always transform an alternatively distributed signal to a uniformly distributed signal which contains exactly the
same information.
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Information order: To rank signals by accuracy, we adopt the “rotation order” which was first

introduced by Johnson and Myatt (2006), and was applied to auction settings by Shi (2012).11

Definition 1 (Rotation order). A local change in α leads to a rotation of fh(π, α) if, for some

π+
α and each π ∈ [0, 1],

∂fh(π, α)

∂α
≷ 0⇐⇒ π ≷ π+

α .

If this holds for ∀α ∈ [α, α], then {F (π, θ|α)} is ordered by a sequence of rotations.

When α increases, fh(π, α) rotates counter clockwise around π+
α , which implies fl(π, α)

rotates clockwise according to (2). For example, when player i increases her accuracy of signal

marginally from α to α′, it must be true, by definition, that fh(π, α) ≷ fh(π, α′) for π ≶ π+
α ,

and that fl(π, α) ≶ fl(π, α
′) for π ≶ π+

α . See Figure 1 and 2.

fh(π, α)

ππ+
α

fh(π, α)

fh(π, α′)

Figure 1: Increasing α to α′ means counter
clockwise rotation of fh(π, α)

fl(π, α)

ππ+
α

fl(π, α)

fl(π, α
′)

Figure 2: Increasing α to α′ means clockwise
rotation of fl(π, α)

When player i chooses αi = α, we have fh(πi, α) = fl(πi, α) = 1 for all πi ∈ [0, 1], see Figure

3. This is the case when any realization of the signal does not convey any information about the

opponent. When player i chooses αi = α, we have fh(πi, α) = 0 if πi ≤ pl and fh(πi, α) = 1
ph

if

πi > pl, see Figure 4. This is the case when each realization conveys perfect information about

the opponent.

Spying cost: Each player’s cost of acquiring the signal is captured by a convex increasing

function C(α) with C(α) = 0. Denote by MC(α) = ∂C(α)
∂α the marginal cost, let MC(α) = 0

and MC(α) > 0 for ∀α > α.

Effort and payoff in the contest: Player i decides her effort bi after observing θi and πi.

Thus, the contest stage of the game is a Bayesian game with two-dimensional types, and the

effort of player i is a two-to-one mapping:12 b : {θh, θl} × [0, 1]→ R+.

11See Ganuza and Penalva (2010) for thorough discussions on signal ordering.
12The two-to-one mapping strategy in the contest creates complications in characterizing the equilibrium. In

most of the previous studies involving multi-dimensional type space in auctions, all dimensions are payoff relevant
to the player. Hence, either the equilibrium bidding strategy is monotonically increasing in both dimensions (Tan,
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fh(π, α)

π

1

1

fh(π, α)

Figure 3: Completely uninformative signal α

fh(π, α)

π1pl

1
ph

fh(π, α)

Figure 4: Perfectly informative signal α

Players choose their efforts in the contest simultaneously. The player who exerts higher

effort wins the prize, whereas the losing player’s effort is unrecoverable. Ties are broken with

equal probabilities. Thus, player i with valuation θi exerting effort bi earns a payoff:

u(bi, bj , θi) =


−bi, if bi < bj

θi − bi, if bi > bj

1
2θi − bi, if bi = bj

A contest with the above payoff, u(bi, bj , θi), is also known as a first price all-pay auction.

Timing: Firstly, player i chooses the accuracy αi for the signal to be acquired on the opponent.

Secondly, Nature determines the valuation profile according to the prior distribution and player

i (i = 1, 2) observes θi. Thirdly, according to θj and αi, Nature determines a signal realization πi

observed by player i. Finally, player i chooses her effort bi according to her private information

(θi, πi). The timing of the game is also shown in Figure 5.

chooses αi player i observes θi player i observes πi chooses bi

Player i Nature determines and Nature determines and Player i

Figure 5: Timing of the game (i = 1, 2)

For the rest of the paper, we make the following assumptions:

Assumption 1. Monotonic likelihood ratio property (MLRP): Given any α ∈ [α, α], fh(π,α)
fl(π,α) is

non-decreasing in π ∈ [0, 1].

Assumption 2. The family of signals, {F (πi, θj |αi)}αi∈[α,α], is rotation ordered for ∀αi ∈ [α, α]

around a sequence of rotation points π+
αi

, where i = 1, 2, and j = 3− i.

2016), or the two-dimensional signal can be translated into a summary statistic which is monotonically increasing
in bids (Goeree and Offerman, 2003). In general, it is difficult to characterize the equilibrium due to “monotonicity
is not naturally defined” (Tan, 2016) or to non-existence of equilibrium (Jackson, 2009).
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Assumption 1 implies the posterior belief µ(πi, αi) is non-decreasing in πi fixing αi. As-

sumption 2 guarantees that players’ family of signals are rotation ordered, and the sequence of

rotation points are the same across players.

3 Analysis of spying in contests

3.1 Exogenous accuracy

In this section we study a simplified model where each player exogenously receives a free, noisy

and private spying signal about the opponent’s valuation. The accuracy of each player’s signal

is common knowledge.

To characterize the equilibrium effort in the contest, we start by showing some useful prop-

erties of the symmetric, pure strategy, and allocative efficient equilibrium. An equilibrium of

the contest is allocative efficient if type (θh, s) of each player’s effort is higher than type (θl, t)’s

effort with probability one for any s, t ∈ [0, 1].

Lemma 1. Given any α ∈ [α, α], then in any symmetric, allocative efficient, pure strategy

equilibrium of the contest, the following must be true:

1. Monotonicity: type (θh, π) of player i’s equilibrium effort, denote by bh(π, α), is non-

decreasing in π and type (θl, π) of player i’s equilibrium effort, denote by bl(π, α), is

non-increasing in π;

2. Continuity: both players’ strategies are continuous without any atoms;

3. Initial conditions: bl(1, α) = 0 and bl(0, α) = bh(0, α).

See all the proofs in the Appendix. Lemma 1 implies that the effort in any symmetric, pure

strategy, allocative efficient equilibrium is non-decreasing in the posterior that the opponent

has the same valuation as the player. Lemma 2 below provides the necessary condition for the

existence of such an equilibrium.

Lemma 2 (Efficiency). There exists a symmetric, pure strategy, allocative efficient equilibrium

in the contest only if fh(π,α)
fl(π,α) ≥

θl
θh

for all π ∈ [0, 1].

Definition 2. Denote by α̂ the highest possible accuracy of signals that satisfy fh(π,α)
fl(π,α) ≥

θl
θh

for

all π ∈ [0, 1].
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Lemma 2 implies that in any symmetric, pure strategy, allocative efficient equilibria of the

contest, it must be true that α ∈ [α, α̂].13 The necessary condition given in the lemma imposes

a lower bound on the likelihood ratio which in turn, imposes an upper bound on the accuracy

of the signal.

In light of Lemma 1 and 2, we now characterize the symmetric, pure strategy, and allocative

efficient equilibrium. The expected payoffs of types (θl, π) and (θh, π) of player i when choosing

b, given that player j plays the equilibrium efforts bh(π, α) and bl(π, α), are given by:

Ũl(b|π, α) = θl [1− µ(π, α)]

∫ 1

b−1
l (b,α)

fl(Π, α)dΠ− b (3)

Ũh(b|π, α) = θh

[
[1− µ(π, α)] + µ(π, α)

∫ b−1
h (b,α)

0
fh(Π, α)dΠ

]
− b (4)

where b−1
l (b, α) and b−1

h (b, α) are the inverse of effort functions by player j, and they in fact

represent the information type of the low and the high valuation player j who chooses b, re-

spectively. By the first order conditions w.r.t. b from (3) and (4):

∂bl(π, α)

∂π
= − [1− µ(π, α)] fl(π, α)θl

∂bh(π, α)

∂π
= µ(π, α)fh(π, α)θh

These can be solved based on the initial conditions in Lemma 1, and the solutions are given in

Proposition 1. Furthermore, Proposition 1 also characterizes the allocative inefficient equilib-

rium where the necessary condition given in Lemma 2 is not satisfied.

Proposition 1. Suppose Assumption 1 is satisfied.

• If α ∈ [α, α̂], then there exists a unique symmetric equilibrium in which type (θl, π) and

(θh, π) play the following pure strategies, bl(π, α) and bh(π, α), respectively:

bl(π, α) = θl

∫ 1

π
[1− µ (Π, α)] dFl(Π, α),

bh(π, α) = θh

∫ π

0
µ (Π, α) dFh(Π, α) + θl

∫ 1

0
[1− µ (Π, α)] dFl(Π, α).

• If α ∈ (α̂, α], then there exists a unique symmetric equilibrium in which type (θl, π) and

13By MLRP and rotation order, for all α ∈ [α, α̂] the condition in Lemma 2 is satisfied for all π ∈ [0, 1], and
for all α ∈ (α̂, α] the condition is not satisfied for at least π = 0.
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(θh, π) with π > π∗ play the following pure strategies, bl(π, α) and bh(π, α), respectively:

bl(π, α) = θl

∫ 1

π
[1− µ (Π, α)] dFl(Π, α),

bh(π, α) = θh

∫ π

π∗
µ (Π, α) dFh(Π, α)

+ θl

∫ 1

π∗
[1− µ (Π, α)] dFl(Π, α) +

θhθl
phθl + plθh

π∗;

and type (θl, π) and (θh, π) with π ≤ π∗ mix over [bl(π
∗, α), bh(π∗, α)] according to CDF

σl(b|π, α) and σh(b|π, α), respectively:

σl(b|π, α) = σh(b|π, α)

=
phθl + plθh
θhθlπ∗

(
b− θl

∫ 1

π∗
[1− µ (Π, α)] dFl(Π, α)

)
,

where π∗ is given by

θl

∫ π∗

0
fl(Π, α)dΠ = θh

∫ π∗

0
fh(Π, α)dΠ. (5)

b

π0 1

bh(π, α)

bl(π, α)

Figure 6: Allocative efficient equilibrium

b

π0 1

bh(π, α)

bl(π, α)

σh(b|π, α) = σl(b|π, α)

π∗

Figure 7: Allocative inefficient equilibrium

See Figure 6 for the equilibrium with α ∈ [α, α̂] and Figure 7 for the equilibrium with

α ∈ (α̂, α]. On the one hand, when the signals are not informative enough, i.e., α ∈ [α, α̂], the

equilibrium allocation is efficient, because players can still hide behind their private information.

In such an equilibrium, the belief that the opponent has the high valuation — induced by higher

π — encourages the high valuation player to compete more aggressively to increase the odds

of winning (“motivation effect”), and discourages the low valuation player to compete more

conservatively to save the cost of effort (“demotivation effect”).
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On the other hand, when players’ signals are sufficiently informative, i.e., α ∈ (α̂, α], we have

inefficient allocation in equilibrium. In this case, player i is very likely to receive, for example,

relatively low signal realizations (πi < π∗) when the opponent has the low valuation. Thus, she

can deviate her efforts to the level just above the support of the low valuation opponent’s effort

to win (almost) for sure with minimum effort. The opponent is aware of this fact and thus,

mixes the effort in order to signal-jam player i. Hence, both the high and the low valuation

player i who receives πi ≤ π∗ randomize in the interval where player j mixes.

Corollary 1. In the equilibrium as given by Proposition 1, the following must be true:

(i) Denote by Ml(π, α) and Mh(π, α) the equilibrium expected payoff for types (θl, π) and

(θh, π), respectively. Then, for all α ∈ [α, α], Ml(π, α) and Mh(π, α) are non-increasing in π:

∂Ml(π, α)

∂π
= plθl

∂fl(π, α)

∂π

∫ 1

π
fl(Π, α)dΠ ≤ 0

∂Mh(π, α)

∂π
= −phθh

∂fh(π, α)

∂π

∫ 1

π
fh(Π, α)dΠ ≤ 0

where the equalities are only satisfied when π = 1.

(ii) The pure strategies are weakly convex in π:

∂2bl(π, α)

∂π2
= −2plθlfl(π, α)

∂fl(π, α)

∂π
≥ 0

∂2bh(π, α)

∂π2
= 2phθhfh(π, α)

∂fh(π, α)

∂π
≥ 0

and the mixed strategies are independent of π:

∂σl(b|π, α)

∂π
=
∂σh(b|π, α)

∂π
= 0.

The proofs of all the corollaries in the paper except Corollary 2 are straightforward and

thus, are omitted. Part (i) of Corollary 1 implies that it is never a good news that the opponent

is more likely to have the high valuation. Part (ii) of the corollary suggests that the competition

becomes fiercer when player i is more confident that the two players are evenly matched.

When there is a marginal increase in the accuracy, the equilibrium efforts are more sensitive

to a marginal change of π, see Corollary 2.

Corollary 2 (Sensitivity). The slope of bh(π, α) and bl(π, α) are increasing (decreasing) in α

for π > (<)π+
α , i.e.,

∂2bh(π, α)

∂π∂α
,
∂2bl(π, α)

∂π∂α
≶ 0, for π ≶ π+

α .

Furthermore, ∂π∗

∂α > 0.
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b

π

bh(π, α1)

bl(π, α1)

bh(π, α2)

bl(π, α2)

Figure 8: Rotation and sensitivity: rotation from α1 to α2 decreases the slope of efforts for
π < π+

α and increases the slope for π > π+
α

See Figure 8 for this result and the Appendix for the proof of this corollary. With a

marginally more informative signal, the slopes of bh(π, α) and bl(π, α) are decreased for π < π+
α

and are increased for π > π+
α . Intuitively, when the signal becomes more informative, the

high valuation player would not increase her effort as much as before in response to a marginal

increase of π in the interval [0, π+
α ), but she would increase her effort more than before if π

is in (π+
α , 1]. The reason is that the former interval indicates that the opponent is likely to

have the low valuation, whereas the latter indicates that the opponent is likely to have the high

valuation. Similar intuition applies to bl(π, α).

The second half of Corollary 2 suggests that the probability that both the high and the low

valuation player randomize, i.e., π∗, increases in the accuracy.14

3.2 Endogenous choice of accuracy

According to the timing of the spying game given in Section 2, each player chooses an accuracy

for the spying signal before they learn their valuations. Therefore, the incentive to spy depends

on the expected payoff in the contest stage.

We define the following expected payoffs, Vi(αi, αj) and Ui(αi, αj), for the contest stage.

Definition 3. Vi(αi, αj): player i’s ex ante equilibrium expected payoff in the contest stage when

player i (j) has acquired a signal with accuracy αi (αj) and (αi, αj) is common knowledge.

Definition 4. Ui(αi, αj): player i’s maximum expected payoff in the contest stage when player

i (j) has acquired a signal with accuracy αi (αj) but player j (wrongly) believes that player i

also has αj.

14 In fact, when α = α, the inefficient equilibrium in Proposition 1 replicates the non-monotonic mixed strategy
equilibrium of all-pay auction with complete information. It is also worthwhile to point out that when α = α,
the efficient equilibrium as given in Proposition 1 replicates the monotonic mixed strategy equilibrium of all-pay
auction with independent private value.
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The expected payoff Vi(αi, αj) is the equilibrium payoff when the profile of accuracies are

(αi, αj). Therefore, when αi = αj = α ∈ [α, α], Vi(α, α) represents player i’s expected payoff

in the symmetric equilibrium shown in Proposition 1.15 However, Ui(αi, αj) is not defined for

equilibrium and may only equal to the equilibrium payoff Vi(αi, αj) when αi = αj = α, i.e.,

Ui(α, α) = Vi(α, α). Denote by AMUi(αi, αj) =
∂Ui(αi,αj)

∂αi
the corresponding marginal expected

payoff.

Lemma 3. AMUi(αi, α) > 0 for αi ≤ α ∈ [α, α̂], and AMUi(αi, α) ≥ 0 for αi ≤ α ∈ (α̂, α).

Finally, AMUi(αi, α) = 0 for any αi ≤ α.

Lemma 3 states that player i can strictly increase her payoff by increasing αi when the

opponent believes the contest is relatively opaque, i.e., both players have α ∈ (α, α̂], and can

weakly increase her payoff when he believes the contest is relatively transparent, i.e., both

players have α ∈ (α̂, α). In the former we have an efficient equilibrium in which the high

and the low valuation players’ efforts differ from each other completely. In this case, spying

is strictly profitable: AMUi > 0. This benefit of spying, however, is not as strong in the

latter: AMUi ≥ 0, because the high and the low valuation players’ distributions of effort are

identical with positive probability. After all, spying is not really helpful if players with different

valuations behave similarly. Hence, the main intuition behind Lemma 3 is that the return

to spying depends crucially on how much the equilibrium effort varies with valuation, which

further depends on the level of transparency of the contest (in the opponent’s belief). In fact,

the marginal return to spying is driven down to zero when the opponent believes that the contest

is perfectly transparent, as indicated by the last part of the lemma.

Lemma 4. Ui(α, α) > Vi(α, α) for α ∈ [α, α̂], and Ui(α, α) ≥ Vi(α, α) for α ∈ (α̂, α]. Finally,

Ui(α, α) = Vi(α, α).

As long as player j believes that player i has the same accuracy as he does, player i is better

off being spied on even if she does not spy on player j. When player j holds that belief, he

responds to his spying signal realization πj according to Proposition 1, which leaves player i an

advantage: Player i is well aware of θi and thus, is aware of the exact distribution of πj . Even

though she has no information regarding θj in addition to the prior, she is able to anticipate j’s

move (with some noise) based on her knowledge of θi. As this advantage is absent when none

of the players spies on each other, Lemma 4 implies that player i benefits from being spied on.

In summary, Lemma 3 implies that player i benefits from spying on the opponent and

Lemma 4 implies that she also benefits from being spied on. We can then derive the ex ante

15In Proposition 4 in Section 4.1, we consider asymmetric accuracy, i.e., αi 6= αj . Thus, Vi(αi, αj) represents
player i’s expected payoff in the asymmetric equilibrium shown in Proposition 4.
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equilibrium expected payoff of player i in the contest stage:

Vi(α, α) = Ui(α, α) +

∫ α

α
AMUi(t, α)dt,

and show, by combining the two lemmas, that this payoff is higher when α ∈ (α, α) than when

players do not spy at all, as is stated in Proposition 2.

Proposition 2. When α1 = α2 = α ∈ (α, α̂], player i’s (i = 1, 2) expected payoff satisfies

Vi(α, α) > Vi(α, α). Alternatively, when α1 = α2 = α ∈ (α̂, α), player i’s (i = 1, 2) expected

payoff satisfies Vi(α, α) ≥ Vi(α, α). Finally, when α1 = α2 = α, player i’s (i = 1, 2) expected

payoff satisfies Vi(α, α) = Vi(α, α).

Note that Vi(α, α) = Vi(α, α), i.e., all-pay auction is payoff equivalent across private value

and complete information, is first shown by Morath and Münster (2008) and then confirmed by

Kovenock et al. (2015).

Corollary 3 (Expected Effort). Players exert strictly less total expected effort when α ∈ (α, α]

than when they do not spy at all:

2

[
ph

∫ 1

0
bh(Π, α)dΠ + pl

∫ 1

0
bl(Π, α)dΠ

]
< (1− p2

h)θl + p2
hθh,

where (1− p2
h)θl + p2

hθh is the revenue in the complete information all-pay auction.

Proposition 2 implies Corollary 3. When α ∈ (α, α̂], i.e., the unique equilibrium is efficient,

the social surplus is a constant: p2
l θl + (1− p2

l )θh. When α ∈ (α̂, α], i.e., the unique equilibrium

is inefficient, the social surplus is even less than p2
l θl + (1− p2

l )θh. Thus, in both cases the fact

that players are better off implies the total expected effort is lower. See below for a numerical

example.

Example 1. Suppose θh = 2, θl = 1, ph = pl = 1
2 . For α ∈ [0,+∞], fh(π, α) and fl(π, α) are

given by:

fh(π, α) =


0 if π < 1

2 −
1
α ;

1 + α(π − 1
2) if π ∈ [1

2 −
1
α ,

1
2 + 1

α ];

2 if π > 1
2 + 1

α .

and

fl(π, α) =


2 if π < 1

2 −
1
α ;

1− α(π − 1
2) if π ∈ [1

2 −
1
α ,

1
2 + 1

α ];

0 if π > 1
2 + 1

α .
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Thus, the signal is rotation ordered around a single point π+
α = 1

2 as α changes in [0,+∞], and a

simple calculation shows α̂ = 2
3 . Based on Proposition 1, when α ∈ [0, 2

3 ] the unique symmetric

equilibrium is efficient, and when α ∈ (2
3 ,+∞] the unique symmetric equilibrium is inefficient.

Payoff

0
α

α̂

0.25

0.275

0.3

0.325

1 2 3 4 5

Effort

0
α

α̂

0.625

0.6

0.575

0.55

0.525

1 2 3 4 5

Figure 9: Expected payoff (left panel) and effort (right panel) of one player
The parts with α ≤ α̂ (α > α̂) correspond to efficient (inefficient) equilibrium.

The expected payoff of player i is plotted in the left panel of Figure 9 and the expected effort

the right panel. The payoff is equal to 0.25 in both IPV (α = 0) and complete information

setting (α = +∞), and is strictly higher for α ∈ (0, α̂] and weakly higher for α ∈ (α̂,+∞]. The

expected effort in IPV setting (α = 0) is 0.625 which is always higher than when α > 0.

Now, we characterize the equilibrium choice of accuracy and show that spying improves

players’ welfare even accounting for the cost of spying. Since we assume that the spying cost

function is symmetric, we focus on symmetric equilibria. Let MUi(α) = AMUi(α, α), and note

that Lemma 3 implies MUi(α) > 0, MUi(α) = 0, and MU(α) ≥ 0 for α ∈ (α, α).

Proposition 3. There always exists a spying cost function C(α) of which the marginal cost

MC(α) crosses with MUi(α) from below only once. Given such C(α):

1. There exists a unique symmetric equilibrium of the spying game (α∗, α∗) where α∗ ∈ (α, α)

satisfies MUi(α
∗) = MC(α∗);

2. Each player is better off than either no spying at all or all players receive a perfectly

informative signal for free, i.e., Vi(α
∗, α∗)− C(α∗) ≥ Vi(α, α) = Vi(α, α),

where i = 1, 2.

Proposition 3 shows that when the spying cost function satisfies some mild conditions, there

exists a symmetric equilibrium in which players acquire a partially informative signal and earn

higher expected payoff net of the spying cost. According to Corollary 3, Proposition 3 also

suggests that spying activities reduce the total expected effort in the contest.
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According to Lemma 3, any increasing MC(·) that satisfies MC(α) = 0 crosses with MUi(·)

from below for at least once. Yet, we cannot conclude that the two only cross once without

making additional assumptions on the information order to guarantee decreasing MUi(·). This

is the reason that Proposition 3 is not established for arbitrary convex spying cost functions. In

fact, the conditions on MC(·) are easily satisfied as long as the cost function is convex enough,

for example, when C(α) = (α− α)η and η is large.

4 Information disclosure in contests

Given the previous results that players are better off when they both acquire a partially in-

formative signal about the opponent, a question naturally arises: Do players have incentives

to disclose their private information to each other? With information disclosure, their payoffs

should be even higher since they do not have to pay to spy.

To study information disclosure, we mildly modify the model in Section 2 by letting each

player chooses the accuracy of the opponent’s signal. In other words, contrary to the spying

situation where player i chooses αi, she now chooses αj , i.e., the accuracy of the signal about

θi, and player j chooses αi, i.e., the accuracy of the signal about θj . Disclosure is free and

players can observe the accuracies of both players’ signals before exerting efforts in the contest.

However, despite that she discloses the signal/chooses the accuracy, player i does not observe

any realizations of the signal she discloses — only her opponent does. Companies in a patent

race may disclose information by allowing the opponent to, e.g., run some experiments or tests

on prototypes of products or samples of drugs. Company A can decide what samples to provide

to company B, yet the results of experiments or tests is not available to company A.16

The timing of the information disclosure game is given by Figure 10. First, player j chooses

the accuracy αi for the signal to be received by his opponent, player i. Second, Nature deter-

mines valuation profile according to the prior distribution and each player observes her own

valuation. Third, Nature determines signal realization πi according to θj and αi and player i

observes it. Finally, player i chooses effort bi based on her private information (θi, πi).

16 Lobbying firms can disclose either essential information (high accuracy), e.g., backgrounds of lobbyists,
or inessential information (low accuracy), e.g., administrative expenses, to each other. Yet, they don’t know
how the opponent will interpret these information. In particular, the information regarding the connection
between a lobbyist and a government official, disclosed by the opponent, might be perceived as either valuable
or insignificant. However, such interpretation of the information is unknown to the opponent.
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chooses αi player i observes θi player i observes πi chooses bi

Player j Nature determines and Nature determines and Player i

Figure 10: Timing of information disclosure in the contest (i = 1, 2 and j = 3− i)

4.1 Exogenous asymmetric accuracy

Since players can observe each other’s accuracy and their choices of accuracy may differ, we

first characterize equilibrium efforts with asymmetric exogenous accuracy.

Denote by bil(π, αi, αj) and bih(π, αi, αj) the efforts of type (θl, π) and (θh, π) of player i

given the profile of accuracy (αi, αj). Similar to the symmetric case, player i’s equilibrium effort

is monotonic condition on her valuation, see Lemma 5.

Lemma 5. Suppose α1 6= α2, then in any allocative efficient, pure strategy equilibrium of the

contest, the following must be true for player i = 1, 2:

1. Monotonicity: type (θh, π) of player i’s effort is non-decreasing in π and type (θl, π) of

player i’s effort is non-increasing in π;

2. Continuity: both players’ strategies are continuous without any atom;

3. Common support: b1l(1, α1, α2) = b2l(1, α2, α1) and b1h(1, α1, α2) = b2h(1, α2, α1);

4. Initial conditions: b1l(1, α1, α2) = b2l(1, α2, α1) = 0 and b1l(0, α1, α2) = b1h(0, α1, α2) =

b2l(0, α2, α1) = b2h(0, α2, α1).

Part 1 of Lemma 5 implies that type (θl, 1) of both players chooses the lowest effort, 0, and

type (θh, 1) of both players choose the highest effort, in the allocative efficient, pure strategy

equilibrium. Part 3 indicates that the upper bound of each valuation of player’s effort must be

the same. Part 4 is useful later in solving the equilibrium effort and in proving the uniqueness

of such an equilibrium.

Lemma 6 below provides the necessary conditions for existence of any symmetric, pure

strategy and allocative efficient equilibria.

Lemma 6 (Efficiency). Suppose α1 6= α2, then there exists a symmetric, pure strategy, allocative

efficient equilibrium in the contest only if fh(π,αi)
fl(π,αi)

≥ θl
θh

for all π ∈ [0, 1] and i = 1, 2.

For simplicity, we restrict attention to such equilibria. This boils down to assuming α1, α2 ∈

[α, α̂], as stated in the Assumption 3.
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Assumption 3.
fh(π, αi)

fl(π, αi)
≥ θl
θh

, for all π ∈ [0, 1] and i = 1, 2.

This contest is asymmetric in the sense that players’ accuracy of signals about the oppo-

nent are different, yet there may still exist symmetric equilibria in which players’ strategies

conditioning on their private information are the same.

We now derive the symmetric equilibrium of the contest given α1 6= α2 and Assumption 3.

Denote by b−1
il (b, αi, αj) and b−1

ih (b, αi, αj) the inverse effort of the low and the high valuation

types of player i whose equilibrium effort is b. According to Lemma 5, the expected payoff for

type (θl, π) and (θh, π) of player j when choosing an effort b can be written as Ũjl(b|π, αj , αi)

and Ũjh(b|π, αj , αi), respectively:

Ũjl(b|π, αj , αi) = θl[1− µ(π, αj)]

∫ 1

b−1
il (b,αi,αj)

fl(Π, αi)dΠ− b

Ũjh(b|π, αj , αi) = θh

[
(1− µ(π, αj)) + µ(π, αj)

∫ b−1
ih (b,αi,αj)

0
fh(Π, αi)dΠ

]
− b

By the first order conditions and the initial conditions provided in part 4 of Lemma 5, the

equilibrium strategy in the contest is characterized in Proposition 4 below.

Proposition 4. If Assumption 3 is satisfied, then the unique symmetric equilibrium of the

contest is given by:

bil(π, αi, αj) = θl

∫ 1

π
[1− µ (Π, αi)] dFl(Π, αj)

bih(π, αi, αj) = θh

∫ π

0
µ (Π, αi) dFh(Π, αj) + θl

∫ 1

0
[1− µ (Π, αi)] dFl(Π, αj)

where i = 1, 2 and j = 3− i.

Recall that 1 − µ(·, αi) = plfl(·, αi) and µ(·, αi) = phfh(·, αi), it then becomes clear that

αi and αj are interchangeable in the effort functions given in Proposition 4: bil(π, αi, αj) =

bil(π, αj , αi) and bih(π, αi, αj) = bih(π, αj , αi). Therefore, even if the two players have different

accuracies, their equilibrium strategies are symmetric.

Based on Proposition 4, the sensitivity of player i’s effort to π depends on both her own

and the opponent’s accuracies, see Corollary 4. Similar to the symmetric accuracy setting, both

players’ accuracies increase the sensitivity of each player’s effort.

Corollary 4 (Sensitivity). The slope of bih(π, αi, αj) and bil(π, αi, αj) are increasing (decreas-
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ing) in both αi and αj for π > (<)π+
αk

, i.e.,

∂2bih(π, αi, αj)

∂π∂αk
,
∂2bil(π, αi, αj)

∂π∂αk
≶ 0, for π ≶ π+

αk
,

where k = i, j, and i = 1, 2, j = 3− i.

We now turn to the comparative statics on accuracies correspond to Proposition 4.

Proposition 5. For any αi, αj ∈ [α, α̂], the expected payoff of player i in the contest stage

satisfies Vi(αi, αj) > Vi(α, α), where i = 1, 2, j = 3− i.

Corollary 5 (Expected Effort). Players exert strictly less total expected effort when αi 6= αj

and αi, αj ∈ (α, α̂] than when they do not receive any signal:

Σ2
i=1

[
ph

∫ 1

0
bih(Π, αi, αj)dΠ + pl

∫ 1

0
bil(Π, αi, αj)dΠ

]
< (1− p2

h)θl + p2
hθh,

where i = 1, 2, j = 3− i.

As one might have expected, even when accuracies are asymmetric each player’s ex ante

expected payoff in the contest is again higher than when players do not spy on each other. The

intuition and proof are similar to that of the symmetric accuracies case. Also similar to the

symmetric accuracy setting, the total expected effort is lower when αi, αj ∈ (α, α̂] than when

players do not spy at all. Hence, Proposition 5 and Corollary 5 partially check the robustness

of Proposition 2 and Corollary 3, when players are asymmetric in accuracies.

4.2 Disclosure agreement

The players in an information disclosure agreement commit to simultaneously disclose a signal to

the opponent with pre-specified accuracies. We refer to the disclosure agreement where players

commit to disclose signals with accuracy profile (αi, αj) as the “information disclosure agreement

(αi, αj)”. The following result suggests that an agreement to disclose partially informative

signals is beneficial to both players.

Proposition 6. In any information disclosure agreement (αi, αj) where αi, αj ∈ (α, α̂], player

i (i = 1, 2) is strictly better off than no disclosure agreement or full disclosure agreement, i.e.,

Vi(αi, αj) > Vi(α, α) = Vi(α, α) for αi, αj ∈ (α, α̂].
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In any symmetric information disclosure agreement (α, α) where α ∈ (α̂, α), player i (i = 1, 2)

is weakly better off than no disclosure agreement or full disclosure agreement, i.e.,

Vi(α, α) ≥ Vi(α, α) = Vi(α, α) for α ∈ (α̂, α).

Proposition 6 follows directly from Proposition 3 and 5 and thus, the proof of which is

omitted. The results suggest that disclosure agreement strictly improves welfare when the

contest is relatively opaque. This result also suggests that there is some loss of generality to

only compare full disclosure with full concealment.

Corollary 6 below implies that an information disclosure agreement can reduce total effort/

expenditure in the contest.

Corollary 6. Players exert strictly less total expected effort in any information disclosure

agreement (αi, αj) with αi, αj ∈ (α, α̂] or with αi = αj = α ∈ (α̂, α] than when there is no

information disclosure.

4.3 Endogenous information disclosure

Would players obey the disclosure agreement if there is no external enforcement? To solve

the equilibrium disclosure decision, note that player i chooses αj to maximize her equilibrium

expected payoff in the contest, denote by Vi(αi, αj), given αi. In other words, αj is chosen to

best response to αi. The best response function of player i is derived by the first order condition

of her equilibrium expected payoff in the contest, Vi(αi, αj), w.r.t. αj :

∂Vi(αi, αj)

∂αj
=

∫ 1

0

[
θh + θl

pl

θh − θl
− fh(Π, αi)

(
θh + phθl

pl

θh − θl
−Π

)
− Fh(Π, αi)

]
∂fh(Π, αj)

∂αj
dΠ. (6)

It then follows that no player would obey the information disclosure agreement α ∈ (α, α̂]

as it is strictly dominant to choose α when the opponent chooses α > α. See Lemma 7 below.

Lemma 7. If player j chooses αi ∈ (α, α̂], then
∂Vi(αi,αj)

∂αj
< 0, i.e., player i strictly prefers to

choose αj = α.

Player i wants to avoid the motivation effect and take advantage of the demotivation effect

on the opponent. Specifically, type (θh, π) of player i finds it profitable to lower the accuracy

of the signal she discloses, as then the high valuation opponent is relatively more likely to

receive low realizations which demotivates him. Similarly, type (θl, π) of player i also finds it
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profitable to lower the accuracy of the signal she discloses, as then the low valuation opponent

is relatively more likely to receive high realizations which demotivates him as well. Therefore,

player i earns higher expected payoff by decreasing the accuracy of the signal she discloses to

the opponent. Note that this intuition relies on the fact that Assumption 3 is satisfied and

hence, the equilibrium is efficient.

When the opponent discloses an uninformative signal, then player i is indifferent about the

accuracy of the signal she discloses. This is shown in Lemma 8 below.

Lemma 8. When player j chooses αi = α, i.e., discloses an uninformative signal, then the dis-

closure decision of player i is irrelevant to her own expected payoff, i.e., Vi(α, αj) = phpl (θh − θl)

for all αj ∈ [α, α̂].

When αi = α, the distribution of πi which player i receives is uniform. Suppose player i

has the high valuation, then in equilibrium the probability that she wins when she receives πi

is exactly πi, condition on that the opponent has the high valuation as well. Similarly, suppose

player i has the low valuation, then in equilibrium the probability that she wins is 1 − πi,

condition on that the opponent also has the low valuation. Since these probabilities of winning

are always uniformly distributed and are unaffected by αj , player i’s expected payoff is also

unaffected by it. Lemma 7 and 8 jointly imply the following result.

Proposition 7. There does not exist any equilibrium in which each player discloses an infor-

mative signal.

Proposition 7 follows directly from Lemma 7 and 8, thus, the proof is omitted. Even though

information disclosure can improve total welfare, it cannot rely on decentralized voluntary

information disclosure by players, because at least one player would prefer to disclose nothing

informative to her opponent. Nevertheless, there exists a continuum of equilibria in which one

player does not disclose, i.e., chooses α, and the other player discloses a partially informative

signal, i.e., chooses an accuracy strictly above α. The implication is that the regulator may be

able to set up a minimum information disclosure requirement which specifies the accuracy of

the signal that each player should disclose.

5 Conclusion

When players spy on each other, the additional information about the opponent allows them

to coordinate, i.e., only exert higher effort when it is more likely that the opponent is evenly

matched with the player. Such a coordination improves players’ welfare even taking the cost of
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spying into account. This, however, is only true when spying is costly so that players acquire

partially informative signals. An information disclosure agreement in which players commit

to disclose a partially informative signal to each other can achieve an even better outcome,

as the cost on spying is saved. However, players would unilaterally deviate by disclosing an

uninformative signal if there is no external power to enforce the agreement. This is due to the

incentive of players to avoid the motivation effect and to induce the demotivation effect on the

opponent.

This paper yields differential policy implications dependent on the nature of contests. For

contests with wasteful efforts, e.g., rent-seeking and lobbying, it is advisable for regulators to

impose a minimum disclosure requirement which specifies the minimum accuracy of signals

players disclose to each other. For contests with productive efforts, e.g., sports tournaments,

promotion contests and sales competitions, banning spying and disclosure maximizes total effort.

We provide a useful analytical framework of all-pay contests with endogenous information

structure. The model is applied to study endogenous information acquisition (spying) and

endogenous information disclosure (sharing), and is potentially applicable to other endogenous

information settings, including centralized information disclosure, discriminatory information

disclosure, ex post information acquisition, etc.
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6 Appendix: Proofs of lemmas and propositions

We first prove Lemma 9 which is useful in proving the main results.

Lemma 9. Suppose a differentiable function f(x), x ∈ [a, b], satisfies f(x) < 0 for x ∈ [a, c),

and f(x) > 0 for x ∈ (c, b], where c ∈ (a, b). Furthermore, suppose
∫ c
a f(x)dx = −

∫ b
c f(x)dx.

Then, for any continuous and non-decreasing function g(x), the following is true:∫ b

a
g(x)f(x)dx ≥ 0.

where the equality satisfies only when g(x) is a constant.

Proof of Lemma 9. Divide the integral into two sub-integrals on [a, c) and (c, b], and apply the
intermediate value theorem for these sub-integrals, we have:∫ b

a
g(x)f(x)dx =

∫ c

a
g(x)f(x)dx+

∫ b

c
g(x)f(x)dx

= g(ν)

∫ c

a
f(x)dx+ g(ξ)

∫ b

c
f(x)dx

= [g(ξ)− g(ν)]

∫ b

c
f(x)dx

where ν ∈ [a, c) and ξ ∈ (c, b]. If g(x) is not a constant then g(ξ) > g(ν) and thus,
∫ b
a g(x)f(x)dx

is positive. If g(x) is a constant then
∫ b
a g(x)f(x)dx = 0.

Now, we turn to the proofs of the main results.
For the allocative efficient equilibrium, we will refer to the interval [bl(1, α), bl(0, α)], i.e.,

the equilibrium support of low valuation types, as the “low pure support”; and refer to the
interval [bh(0, α), bh(1, α)], i.e., the equilibrium support of high valuation types, as the “high
pure support”.

For the allocative inefficient equilibrium, let’s refer to the support of the high valuation
type’s pure strategy, [bh(π∗, α), bh(1, α)], as the “high pure support” and correspondingly, refer
to [bl(1, α), bl(π

∗, α)] as the “low pure support”. Finally, the support of the mixed strategy for
both type (θl, π) and (θh, π) with π < π∗, i.e., [bl(π

∗, α), bh(π∗, α)], is referred to as the “mixed
support”.

Denote by Ũkl (b|π, αi, α) and Ũkh (b|π, αi, α) where k ∈ {h,m, l} the expected payoff of type
(θl, π) and (θh, π) of player i with π > π∗, respectively, when she chooses b in the high (k = h),
low pure support (k = l), and the mixed support (k = m), given that player j chooses α and
believes that player i has chosen the same, whereas player i, in fact, chooses αi. Similarly,
denote by Ũkml(b|π, αi, α) and Ũkmh(b|π, αi, α) where k ∈ {h,m, l} the expected payoff of type
(θl, π) and (θh, π) of player i where π ≤ π∗, respectively, when she chooses b in the high (k = h),
low pure support (k = l), and the mixed support (k = m).

Proof of Lemma 1
We start by proving part 1 of the lemma. Suppose in a symmetric, pure strategy equilibrium

with efficient allocation, we have bh(π1, α) < bh(π2, α) for π1 > π2. Then it must be true that
type (θh, π1) finds the cost of increasing her effort from bh(π1, α) to bh(π2, α) dominates the
gain from such an increase of effort, formally:

bh(π2, α)− bh(π1, α) ≥ µ(π1, α) Pr{bh(π1, α) ≤ bj < bh(π2, α)}θh.
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where bj is player j’s effort. In other words, the cost must outweigh the gain to prevent type
(θh, π1) from deviating to bh(π2, α). However, type (θh, π2)’s gain must outweigh her cost of
such an increase of effort:

bh(π2, α)− bh(π1, α) ≤ µ(π2, α) Pr{bh(π1, α) ≤ bj < bh(π2, α)}θh.

where bj is player j’s effort. Combining the two conditions, we have µ(π2, α) ≥ µ(π1, α) which
contradicts the fact that π1 > π2, due to Assumption 1. A similar argument can prove that
bl(π1, α) ≤ bl(π2, α) for any π1 > π2.

To prove continuity of the strategies, i.e., part 2 of the lemma, suppose there exists a
discontinuous point on bh(π, α), say π̂ ∈ (0, 1), such that bh(π̂, α) < bh(π̂+ε, α) for an arbitrarily
small ε. Then type (θh, π̂+ε) will find it profitable to deviate to some b̂ ∈ (bh(π̂, α), bh(π̂+ε, α)).
Similarly, suppose there exists a discontinuous point on bl(π, α), π̃ ∈ (0, 1), such that bl(π̃, α) >
bl(π̃ + ε, α) for arbitrarily small ε. Then type (θl, π̃) will find it profitable to deviate to some
b̃ ∈ (bl(π̃ + ε, α), bl(π̃, α)).

To prove that there is no atom on any player’s effort, suppose there exists p and q such
that 1 > q > p > 0 and that bh(x, α) = b where x ∈ [p, q] and b is a constant. Then type
(θh, p − ε) will find it profitable to deviate to choose b + ε, as the gain of such deviation will
be µ(p − ε, α)

∫ q
p fh(Π, α)dΠ and the cost is negligible when ε is arbitrarily small. A similar

argument can show that there is no atom on bl(π, α).
Finally, for part 3, given part 1 is true, type (θh, 0) chooses the lowest effort among all types

with valuation θh, whereas type (θl, 0) chooses the highest among all types with valuation θl. If
bh(0, α) > bl(0, α) then type (θh, 0) will be strictly better off by lowering her effort by a small
amount ε satisfying bh(0, α)− ε ≥ bl(0, α), thus bh(0, α) = bl(0, α). Again, by part 1, the lowest
effort is made by type (θl, 1) among all types, thus any positive effort is strictly dominated by
choosing zero for (θl, 1).

Proof of Lemma 2
Note that allocative efficiency implies that bh(π, α) ≥ bl(π, α) for all π ∈ [0, 1] fixing α, and

that the probability of tie between a high valuation and a low valuation player is zero. Then to
rule out the incentive for type (θh, πi) to deviate to bl(πi, α), the following must be true:

bh(πi, α)− bl(πi, α)

≤ [µ(πi, α)Pr{bj < bh(πi, α)|(θh, θh)}+ [1− µ(πi, α)]Pr{bj ≥ bl(πi, α)|(θh, θl)}] θh

= µ(πi, α)

∫ πi

0
fh(Π, α)θhdΠ + (1− µ(πi, α))

∫ πi

0
fh(Π, α)θhdΠ

=

∫ πi

0
fh(Π, α)θhdΠ (7)

In other words, the cost saved from choosing the lower effort (LHS of (7)) must be less than the
gain forgone (RHS of (7)). This ensures that type (θh, πi) does not want to deviate to bl(π, α).
However, type (θl, πi) should find her cost saved by choosing the lower effort outweighs her gain
forgone:

bh(πi, α)− bl(πi, α)

≥ [µ(πi, α)Pr{bj < bh(πi, α)|(θl, θh)}+ (1− µ(πi, α))Pr{bj ≥ bl(πi, α)|(θl, θl)}θl

= µ(πi, α)

∫ πi

0
fl(Π, α)θldΠ + (1− µ(πi, α))

∫ πi

0
fl(Π, α)θldΠ

=

∫ πi

0
fl(Π, α)θldΠ
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Combining the two conditions:∫ πi

0
fh(Π, α)θhdΠ ≥

∫ πi

0
fl(Π, α)θldΠ

we then have fh(π,α)
fl(π,α) ≥

θl
θh

for all πi ∈ [0, 1].

Proof of Proposition 1
The proposition is proved by checking whether: (1) the equilibrium efforts given in the

proposition are indeed optimal among all efforts in their own equilibrium support, e.g., bh(π1, α)
instead of bh(π2, α) is optimal for type (θh, π1) where π1 6= π2; and (2) type (θh, ·) ((θl, ·)) does
not find it profitable to deviate to any effort in each other’s support, e.g., (θh, ·) does not find
it profitable to deviate to the low support.

For the allocative efficient equilibrium, we start by showing (1) is true. Given that player
j chooses his strategy according to the proposition, suppose type (θl, π) of player i chooses an
alternative effort level bl(s, α), then her expected payoff is

Ũ ll (bl(s, α)|π, α, α) = θl

∫ 1

s
[µ(Π, α)− µ(π, α)]dFl(Π, α)

Thus,

Ũ ll (bl(π, α)|π, α, α)− Ũ ll (bl(s, α)|π, α, α) = θl

∫ s

π
[µ(Π, α)− µ(π, α)]dFl(Π, α) ≥ 0

regardless of whether π ≥ s or π < s.
Suppose type (θh, π) of player i chooses an alternative effort level bh(t, α), then her expected

payoff is

Ũhh (bh(t, α)|π, α, α) = θh

[
(1− µ(π, α)) + µ(π, α)

∫ t

0
fh(Π, α)dΠ

]
−θh

∫ t

0
µ (Π, α) dFh(Π, α)− θl

∫ 1

0
[1− µ (Π, α)] dFl(Π, α)

Again, compare this payoff to the equilibrium payoff:

Ũhh (bh(π, α)|π, α, α)− Ũhh (bh(t, α)|π, α, α) = θh

∫ π

t
[µ(π, α)− µ (Π, α)] dFh(Π, α) ≥ 0

regardless of π ≥ t or π < t. Thus, the strategy given in the proposition is indeed optimal for
players if they choose efforts in the equilibrium support.

Now we turn to (2) by checking whether type (θh, π) of player i finds it profitable to deviate
to any effort in the low pure support. This requires a comparison of type (θh, π) of player
i’s expected payoff in the allocative efficient equilibrium, Ũhh (bh(π, α)|π, α, α), to the maximum
expected payoff from deviation. When deviating to β ∈ [bl(1, α), bl(0, α)], i.e., the low pure
support, the expected payoff of type (θh, π) of player i, given that player j plays the allocative
efficient equilibrium bl(π, α), is:

Ũ lh(β|π, α, α) = θh [1− µ(π, α)]

∫ 1

b−1
l (β,α)

fh(Π, α)dΠ− β. (8)

Among all β ∈ [bl(1, α), bl(0, α)], player i would prefer to choose the optimal effort: β∗ =
arg maxβ Ũ

l
h(β|π, α, α). The optimal deviation effort, β∗, can be found by the first order

condition with respect to β. Let type (θl, t) be the one who chooses β∗ in equilibrium, i.e.,
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bl(t, α) = β∗. We can find t by the FOC of Ũ lh(β|π, α, α) w.r.t β, and rearrange:

1− µ(π, α) =
θl
θh

fl(t, α)

fh(t, α)
(1− µ(t, α)) (9)

To show that bl(t, α) is indeed the optimal deviation, let’s compare the expected payoff of
(θ, π) from bidding bl(t, α) to bidding bl(s, α) where s 6= t:{

θh[1− µ(π, α)]

∫ 1

t
fh(Π, α)dΠ− bl(t, α)

}
−
{
θh[1− µ(π, α)]

∫ 1

s
fh(Π, α)dΠ− bl(s, α)

}
=

∫ s

t

[
fh(Π, α)

fh(t, α)
[1− µ(t, α)]− fl(Π, α)

fl(t, α)
[1− µ(Π, α)]

]
dΠ

≥
∫ s

t
[µ(Π, α)− µ(t, α)] dΠ ≥ 0

Note that both the LHS and the RHS of (9) are decreasing functions of their arguments, π

and t, respectively. Since θl
θh

fl(t,α)
fh(t,α) ≤ 1, thus π ≥ t. Then there must exist ŝ ∈ [0, 1] such that

1− µ(ŝ, α) ≡ θl
θh

fl(0, α)

fh(0, α)
[1− µ(0, α)] (10)

For π < ŝ, the LHS of the equation (9) is always strictly larger than the RHS, for all
t ∈ [0, 1]. This implies the first order derivative is positive and thus type (θh, π) does not
want to deviate to the low pure support, whenever π < ŝ. On the other hand, if π ≥ ŝ,
there is always a unique interior solution of t ∈ [0, 1] satisfying equation (9) given π. In
this case, we need to directly compare the equilibrium payoff to with the maximum deviation
expected payoff which can be calculated by plugging β∗ into (8). The first order derivative of
the difference between the equilibrium expected payoff and the maximum deviation payoff, i.e.,
Ũhh (bh(π, α)|π, α, α)− Ũ lh(β∗|π, α, α), w.r.t π, is, in fact, non-negative:

∂
(
Ũhh (bh(π, α)|π, α, α)− Ũ lh(β∗|π, α, α)

)
∂π

= θhµ
′(π, α)

(∫ π

0
fh(Π, α)dΠ−

∫ t

0
fh(Π, α)dΠ

)
≥ 0

This suggests this difference is non-decreasing in π. By (10) it can be proved that Ũhh (bh(ŝ, α)|ŝ, α, α)−
Ũ lh(bl(0, α)|π, α, α) = θhµ

′(ŝ, α)
∫ ŝ

0 fh(Π, α)dΠ > 0. Thus, Ũhh (bh(π, α)|π, α, α)−Ũ lh(β∗|π, α, α) >
0 for all π ∈ [ŝ, 1], and type (θh, π) does not find it profitable to deviate from equilibrium strat-
egy. Using exactly the same method, we can prove that type (θl, π) does not find it profitable
to deviate to any bid in the high pure support. Thus, the proof is omitted. The uniqueness of
the equilibrium is due to the initial conditions given in the Lemma 1.

For the inefficient equilibrium, the proof involves checking whether the type who plays pure
strategy finds it profitable to deviate to the mixed strategy support and vice versa. Given
MLRP, there must exists a π̂ ∈ (0, 1) such that fh(π̂, α)/fl(π̂, α) = θl/θh, fixing α ∈ [α̂, α].
In other words, for all π < π̂ we have fh(π, α)/fl(π, α) 6 θl/θh and for all π > π̂ we have
fh(π, α)/fl(π, α) > θl/θh.

Before going into the proof, note that by the definition of π∗ given in the proposition, we
have

θh

∫ π∗

0
fh(Π, α)dΠ− θl

∫ π∗

0
fl(Π, α)dΠ = 0 (11)
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By the assumption that the marginal distribution of π is uniform, we also have:

ph

∫ π∗

0
fh(Π, α)dΠ + pl

∫ π∗

0
fl(Π, α)dΠ = π∗ (12)

Consider
∫ π∗

0 fh(Π, α)dΠ and
∫ π∗

0 fl(Π, α)dΠ as unknown variables, then (11) and (12) form a
linear system of equations which can be used to calculate:∫ π∗

0
fh(Π, α)dΠ =

θlπ
∗

phθl + plθh
(13)∫ π∗

0
fl(Π, α)dΠ =

θhπ
∗

phθl + plθh
(14)

Now, to prove the allocative inefficient equilibrium, we first show that any types with π 6 π∗

is indifferent to any effort in the mixed support, i.e. b ∈ [bl(π
∗, α), bh(π∗, α)]. For the type (θh, π)

of player i with π 6 π∗, the expected payoff is given by:

Ũmmh(b|π, α, α) = θh(1− µ(π, α))

(∫ 1

π∗
fh(Π, α)dΠ +

∫ π∗

0
σl(b|Π, α)fh(Π, α)dΠ

)

+θhµ(π, α)

∫ π∗

0
σh(b|Π, α)fh(Π, α)dΠ− b

= θh(1− µ(π, α))

∫ 1

π∗
fh(Π, α)dΠ− θl

∫ 1

π∗
(1− µ(Π, α)) fl(Π, α)dΠ

+

phθl + plθh
θlπ∗

∫ π∗

0
fh(Π, α)dΠ− 1︸ ︷︷ ︸

=0

 b

By (13) it can be checked that Ũmmh(b|π, α, α)) is invariant of the effort b.
For type (θl, π) of player i with π 6 π∗, the expected payoff is given by:

Ũmml(b|π, α, α) = θl [1− µ(π, α)]

∫ 1

π∗
fl(Π, α)dΠ− θl

∫ 1

π∗
[1− µ (Π, α)] fl(Π, α)dΠ

+

phθl + plθh
θhπ∗

∫ π∗

0
fl(Π, α)dΠ− 1︸ ︷︷ ︸

=0

 b

By (14) it can be checked that Ũmml(b|π, α, α) is invariant of b. Therefore, all the types who
play mixed strategy in equilibrium are indeed indifferent in their equilibrium support. Next,
we check whether these types find it profitable to choose an effort outside of their equilibrium
support.

If type (θh, π) with π 6 π∗ deviates to choose an effort in the high pure support β ∈
(bh(π∗, α), bh(1, α)], then the expected payoff from such a deviation is:

Ũhmh(β|π, α, α) = θh

[
1− µ(π, α) + µ(π, α)

(∫ π∗

0
fh(Π, α)dΠ +

∫ b−1
h (β,α)

π∗
fh(Π, α)dΠ

)]
− β
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Take the first order derivative w.r.t. β we have:

θhµ(π, α)fh(t, α)

b′h(t, α)
− 1 =

µ(π, α)

µ(t, α)
− 1 < 0

where bh(t, α) = β, and t > π∗. The above expression is strictly negative because π < π∗ < t.
This suggests type (θh, π) with π 6 π∗ will find it unprofitable to deviate to any effort in the
interval (bh(π∗, α), bh(1, α)].

If type (θh, π) with π 6 π∗ deviate to any effort β ∈ [0, bl(s
∗, α)), then the expected payoff

from such deviation is:

Ũ lmh(β|π, α, α) = θh(1− µ(π, α))

∫ 1

b−1
l (β,α)

fh(Π, α)dΠ− β

The first order derivative w.r.t β shows

θh(1− µ(π, α))fh(s, α)

b′l(s, α)
− 1 =

θh [1− µ(π, α)] fh(s, α)

θl [1− µ(s, α)] fl(s, α)
− 1 > 0

where bl(s, α) = β, i.e. suppose type (θl, s) chooses β in equilibrium. The above is strictly

positive because s > π∗ > π which implies θhfh(s,α)
θlfl(s,α) > 1 and 1 − µ(π, α) > 1 − µ(s, α). This

suggests type (θh, π) with π 6 π∗ finds it unprofitable to deviate to any effort in the interval
[0, bl(π

∗, α)).
Similarly, type (θl, π) of player i with π 6 π∗ does not find it profitable to deviate to either

the high or the low pure support. The approach of proof is the same and thus, omitted.
Next, we need to check whether the types who play pure strategy in equilibrium, i.e. type

(θh, π) and type (θl, π) with π > π∗, want to deviate to [bl(π
∗, α), bh(π∗, α)], i.e. the mixed

support. It can be easily checked that if type (θh, π) with π > π∗ deviates to choose β ∈
(bl(π

∗, α), bh(π∗, α)], then their expected payoff is invariant of β. Specifically,

Ũmh (β|π, α, α) = θh(1− µ(π, α))

∫ 1

π∗
fh(Π, α)dΠ− θl

∫ 1

π∗
(1− µ(Π, α)) fl(Π, α)dΠ

Thus, the difference between the equilibrium expected payoff V m(θh, π, α) and the maximum
expected payoff from deviating to the mixed support can be calculated:

V m(θh, π, α)− Ũmh (β|π, α, α) = θh

∫ π

π∗
(µ(π, α)− µ(Π, α)) fh(Π, α)dΠ

> 0

Similarly, we know that if types (θl, π) with π > π∗ deviates to choose β ∈ (bl(π
∗, α), bh(π∗, α)],

then the expected payoff is invariant of bid β. Specifically,

Ũml (b|π, α, α) = θl

∫ π

π∗
(µ (Π, α)− µ(π, α))fl(Π, α)dΠ︸ ︷︷ ︸

<0

+θl

∫ 1

π
(µ (Π, α)− µ(π, α))fl(Π, α)dΠ

The equilibrium expected payoff is given by:

V m(θl, π, α) = θl

∫ 1

π
(µ (Π, α)− µ(π, α))fl(Π, α)dΠ

which is larger than Ũml (b|π, α, α). Thus, all types who play pure strategy in equilibrium do
not want to deviate to the support of mixed strategy. The fact that type (θh, π) and (θl, π) of
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player i with π > π∗ does not want to deviate to either the low or the high pure support follows
directly from the proof of the allocative efficient equilibrium. For uniqueness, note that π∗ is
unique due to MLRP, thus the lower bound of bh(π, α), i.e. bh(π∗, α), is unique. The lower
bound of bl(π, α) must be unique, i.e. zero. Finally, there does not exist any equilibrium in
which σh(b|π, α) or σl(b|π, α) has jumps or atoms in efforts, due to the same argument as the
proof of the pure strategies being continuous in Lemma 1.

Proof of Corollary 2
The proof of the first part of the corollary is obvious, thus is omitted. Here we show the

calculation of ∂π∗

∂α . Rewrite equation (5) in Proposition 1 to∫ π∗

0
[fl(Π, α)θl − fh(Π, α)θh] dΠ = 0

and take first order derivative w.r.t α, we have

∂π∗

∂α
=

∫ π∗

0

[
∂fh(Π,α)

∂α θh − ∂fl(Π,α)
∂α θl

]
dΠ

fl(π∗, α)θl − fh(π∗, α)θh

Since
∫ π∗

0
∂fh(Π,α)

∂α dΠ < 0 and
∫ π∗

0
∂fl(Π,α)

∂α dΠ > 0, and since we have fl(π
∗, α)θl−fh(π∗, α)θh < 0,

it must be true that ∂π∗

∂α > 0.

Proof of Lemma 3
First, we focus on the case when α ≤ α̂, i.e., when the unique equilibrium is allocative

efficient. If type (θh, π) of player i chooses an effort in the high pure support, then her expected
payoff is:

Ũhh (b|π, αi, α) = θh

[
1− µ(π, αi) + µ(π, αi)

∫ b−1
h (b,α)

0
fh(Π, α)dΠ

]
− b. (15)

where b−1
h (b, α) is the inverse of the equilibrium pure strategy that player j plays. By the first

order condition w.r.t b we know that type (θh, π) of player i must find it optimal to choose
bh(s, α) where s satisfies

fh(π, αi) = fh(s, α), (16)

which also implies fl(π, αi) = fl(s, α). To show that bh(s, α) is indeed the optimal effort, let’s
compare the expected payoff from bidding bh(s, α) to an effort bh(η, α) where η 6= s:

Ũhh (bh(s, α)|π, αi, α)− Ũhh (bh(η, α)|π, αi, α) = ph

∫ s

η
[fh(π, αi)− fh(Π, α)] fh(Π, α)dΠ

= ph

∫ s

η
[fh(s, α)− fh(Π, α)] fh(Π, α)dΠ ≥ 0

Note that π = s if and only if αi = α, and that

∂fh(π, αi)

∂π
=

∂fh(s, α)

∂s

∂s

∂π
> 0

which suggests ∂s
∂π > 0. When αi ≤ α, by definition of rotation order, there always exists an s

satisfying (16) for all π ∈ [0, 1]. Therefore, the maximum expected payoff for type (θh, π) when
she chooses the optimal effort in the high pure support is indeed Ũhh (bh(s, α)|π, αi, α).

Suppose instead that type (θh, π) of player i chooses an effort in the low pure support, then
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her expected payoff is:

Ũ lh(b|π, αi, α) = θh [1− µ(π, αi)]

∫ 1

b−1
l (b,α)

fh(Π, α)dΠ− b (17)

where b−1
l (b, α) is the inverse of the equilibrium pure strategy that player j will play. The first

order condition w.r.t b requires:

fl(π, αi) =
fl(ŝ, α)

fh(ŝ, α)

θl
θh
fl(ŝ, α)

meaning that player i would find it optimal to exert an effort bl(ŝ, α). Note that fl(s, α) =
fl(π, αi) < fl(ŝ, α), thus, s > ŝ. To show that bl(ŝ, α) is indeed the optimal, let’s compare the
expected payoff from bidding bl(ŝ, α) to bidding bl(η, α) where η 6= ŝ:

Ũ lh(bl(ŝ, α)|π, αi, α)− Ũ lh(bl(η, α)|π, αi, α)

= plθl

∫ η

ŝ

[
fl(ŝ, α)

fh(ŝ, α)
fl(ŝ, α)− fl(Π, α)

fh(Π, α)
fl(Π, α)

]
≥ 0

The maximum expected payoff for type (θh, π) when choosing an effort level in the low pure
support is thus,

Ũ lh(bl(ŝ, α)|π, αi, α) = θh [1− µ(π, αi)]

∫ 1

ŝ
fh(Π, α)dΠ− θl

∫ 1

ŝ
[1− µ (Π, α)] fl(Π, α)dΠ

The difference between the two maximum expected payoffs is

Ũhh (bh(s, α)|π, αi, α)− Ũ lh(bl(ŝ, α)|π, αi, α)

= θh

∫ s

0

µ(s, α)− µ (Π, α)︸ ︷︷ ︸
>0

 fh(Π, α)dΠ

+θh

∫ ŝ

0

[
[1− µ(π, αi)]− [1− µ (Π, α)]

fl(Π, α)

fh(Π, α)

θl
θh

]
fh(Π, α)dΠ

> θh

∫ s

0
[µ(π, αi)− µ (Π, α)] fh(Π, α)dΠ + θh

∫ ŝ

0
[µ (Π, α)− µ(π, αi)] fh(Π, α)dΠ

> θh

∫ ŝ

0
[µ(π, αi)− µ (Π, α)] fh(Π, α)dΠ + θh

∫ ŝ

0
[µ (Π, α)− µ(π, αi)] fh(Π, α)dΠ

= 0

Therefore, type (θh, π) of player i’s maximum expected payoff when choosing αi is Ũhh (bh(s, α)|π, αi, α),
and thus, the marginal expected payoff from increasing αi is given by

∂

∂αi
Ũhh (bh(s, α)|π, αi, α) = −phθh

∂fh(π, αi)

∂αi

∫ 1

s
fh(Π, α)dΠ (18)

Now we turn to the types with the low valuation. If type (θl, π) of player i chooses an effort
in the low pure support, then her expected payoff is:

Ũ ll (b|π, αi, α) = θl [1− µ(π, αi)]

∫ 1

b−1
l (b,,α)

fl(Π, α)dΠ− b (19)

where b−1
l (b, , α) is the inverse of the equilibrium pure strategy that player j will play. By the

first order condition w.r.t b we know that type (θl, π) of player i should optimally choose bl(t, α)
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where t satisfies
fl(π, αi) = fl(t, α), (20)

which also implies fh(π, αi) = fh(t, α). Note that

∂fl(π, αi)

∂π
=

∂fl(t, α)

∂t

∂t

∂π
< 0

which implies ∂t
∂π > 0. Note also that (16) and (20) suggests t = s. To show that bl(t, α) is

indeed optimal, let’s compare the corresponding expected payoff to the payoff from bidding
bl(η, α) where η 6= t:

Ũ ll (bl(t, α)|π, αi, α)− Ũ ll (bl(η, α)|π, αi, α) = ph

∫ η

t
[fh(η, α)− fh(Π, α)] fh(Π, α)dΠ ≥ 0

When αi ≤ α, by definition of rotation order, there always exists t satisfying (20) for all
π ∈ [0, 1]. Therefore, the maximum expected payoff for type (θl, π) in the low pure support is
given by:

Ũ ll (bl(t, α)|π, αi, α) = θl

∫ 1

t
[µ (Π, α)− µ(π, αi)] fl(Π, α)dΠ

Suppose instead that type (θl, π) of player i chooses an effort in the high pure support, then
by exactly the same approach as above, we can show that the maximum expected payoff of
doing so is:

Ũhl (bh(t̂, α)|π, αi, α) = phθl

∫ t̂

0

[
fh(π, αi)− fh(Π, α)

fh(Π, α)

fl(Π, α)

θh
θl

]
fl(Π, α)dΠ

+phθl

∫ 1

0
[fh (Π, α)− fh(π, αi)] fl(Π, α)dΠ

where t̂ = ŝ. Again, we need to compare the two maximum expected payoffs to determine
whether type (θl, π) of player i should choose an effort in the low pure support or the high pure
support. It turns out that the former earns type (θl, π) a higher expected payoff:

Ũhl (bh(t̂, α)|π, αi, α)

= phθl

∫ t̂

0

[
fh(π, αi)− fh(Π, α)

fh(Π, α)

fl(Π, α)

θh
θl

]
fl(Π, α)dΠ

+phθl

∫ t

0
[fh (Π, α)− fh(π, αi)] fl(Π, α)dΠ + phθl

∫ 1

t
[fh (Π, α)− fh(π, αi)] fl(Π, α)dΠ

< phθl

∫ t

0

[
1− fh(Π, α)

fl(Π, α)

θh
θl

]
fh (Π, α) fl(Π, α)dΠ + phθl

∫ 1

t
[fh (Π, α)− fh(π, αi)] fl(Π, α)dΠ

< phθl

∫ 1

t
(fh (Π, α)− fh(π, αi)) fl(Π, α)dΠ

= Ũ ll (bl(t, α)|π, αi, α)

Therefore, type (θl, π) of player i’s maximum expected payoff is Ũ ll (bl(t, α)|π, αi, α), and
thus, the marginal expected payoff from increasing αi is given by

∂

∂αi
Ũ ll (bl(t, α)|π, αi, α) = −phθl

∂fh(π, αi)

∂αi

∫ 1

t
fl(Π, α)dΠ (21)
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Now, it can be shown that the ex ante marginal expected payoff from increasing αi is positive:

AMUi(αi, α) =

∫ 1

0

[
pl

∂

∂αi
Ũ ll (bl(t, α)|π, αi, α) + ph

∂

∂αi
Ũhh (bh(s, α)|π, αi, α)

]
dπ (22)

= ph

∫ 1

0

−plθl ∫ 1

s
fl(Π, α)dΠ− phθh

∫ 1

s
fh(Π, α)dΠ︸ ︷︷ ︸

A

 ∂fh(π, αi)

∂αi
dπ

> 0

The second equality is due to (18), (21), and s = t. Recall that s is increasing in π, thus, the
term A is increasing in π. Hence, according to Lemma 9, AMUi(αi, α) is positive.

We have proved that AMUi(αi, α) > 0 given that αi ≤ α ≤ α̂. Now, we prove that
AMUi(αi, α) ≥ 0 also holds when α ≥ α̂ and αi ≤ α. Note that now the opponent, player j
believes he is in a symmetric equilibrium in which both the high and the low valuation types of
player play mixed strategy when their information type is lower than π∗.

When type (θl, π) of player i chooses an effort in the low pure support, if there is an interior
solution, then the maximum expected payoff in this support is:

Ũ ll (bl(s, α)|π, αi, α) = θl

∫ 1

s
(µ(Π, α)− µ (π, αi)) fl(Π, α)dΠ ≥ 0 (23)

where s satisfies fl(π, αi) = fl(s, α) and s ∈ [π∗, 1].
When type (θl, π) of player i chooses an effort in the mixed support, the expected payoff is

Ũml (b|π, αi, α) = θl

∫ 1

π∗
(µ(Π, α)− µ (π, αi)) fl(Π, α)dΠ (24)

which is invariant of effort b. Note that for any s ∈ [π∗, 1], we have Ũml (b|π, αi, α)> Ũ ll (bl(s, α)|π, αi, α).
If the solution of s to fl(π, αi) = fl(s, α) is less than π∗, then it also indicates that choosing an
effort in the low pure support earns less payoff than choosing in the mixed support. Therefore,
the optimal effort of type (θl, π) of player i is never in the low pure support.

When type (θl, π) of player i chooses an effort in the high pure support, the expected payoff
is:

Ũhl (b|π, αi, α) = θl

(
1− µ(π, αi) + µ(π, αi)

∫ b−1
h (b,α)

0
fl(Π, α)dΠ

)
− b

where b−1
h (b, α) is the inverse of the pure strategy of player j in the high pure support. The

first order condition w.r.t. b gives

fh(π, αi) =
fh(ŝ, α)

fl(ŝ, α)

θh
θl
fh(ŝ, α) (25)

where ŝ ≡ b−1
h (b, α). To show that bh(ŝ, α) is indeed optimal, we again compare the correspond-

ing expected payoff to the payoff from an effort bh(η, α) where η 6= ŝ:

Ũhl (bh(ŝ, α)|π, αi, α)− Ũhl (bh(η, α)|π, αi, α) = phθl

∫ ŝ

η

[
fh(π, αi)−

θh
θl

fh(Π, α)

fl(Π, α)
fh(Π, α)

]
dΠ ≥ 0

Thus, when there exists ŝ ∈ [π∗, 1] satisfying the above first order condition, then there is
an optimal effort in the high pure support, bh(ŝ, α), which player i should choose. In this case,
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plug the optimal effort into the expected payoff to obtain the maximum expected payoff:

Ũhl (bh(ŝ, α)|π, αi, α)

= θl

∫ 1

π∗
(µ(Π, α)− µ(π, αi)) fl(Π, α)dΠ + phθl

∫ ŝ

π∗

fh(π, αi)−
θhfh(Π, α)

θlfl(Π, α)
fh(Π, α)︸ ︷︷ ︸

>0

 fl(Π, α)dΠ

It is can be shown that Ũhl (bh(ŝ, α)|π, αi, α) > Ũml (b|π, αi, α) as long as there exists ŝ ∈ [π∗, 1]
satisfying (25). When the ŝ satisfying the first order condition is not in [π∗, 1], then the optimal
effort is not in the high pure support, and must be in the mixed support, which means it is
optimal to randomize in the mixed support.

In summary, since ŝ is increasing with π, for lower realizations of π — lower than the value
which induces ŝ < π∗ — the optimal effort is to randomize in the mixed support, whereas for
higher realizations of π — higher than the value which induces ŝ > π∗ — the optimal effort is
in the high pure support.

Now we take the first order derivative of Ũhl (bh(ŝ, α)|π, αi, α) and Ũml (b|π, αi, α) w.r.t αi:
For ŝ < π∗ (i.e., when the optimal effort is in the mixed support):

∂

∂αi
Ũml (b|π, αi, α) = phθl

∂fh(π, αi)

∂αi

∫ 1

π∗
fl(Π, α)dΠ

For ŝ > π∗ (i.e., when the optimal effort is in the high pure support):

∂

∂αi
Ũhl (bh(ŝ, α)|π, αi, α) = phθl

∂fh(π, αi)

∂αi

∫ 1

π∗
fl(Π, α)dΠ + phθl

∂fh(π, αi)

∂αi

∫ ŝ

π∗
fl(Π, α)dΠ

Combining the two, the marginal expected payoff for type (θl, π) is given by:

phθl
∂fh(π, αi)

∂αi

∫ 1

π∗
fl(Π, α)dΠ + max

{
0, phθl

∂fh(π, αi)

∂αi

∫ ŝ

π∗
fl(Π, α)dΠ

}

Next, we turn to type (θh, π) of player i’s optimal effort given she chooses αi. When she
chooses an effort in the high pure support, the maximum expected payoff of doing so is:

Ũhh (bh(t, α)|π, αi, α)

= θh

∫ t

π∗
[µ(π, αi)− µ(Π, α)]︸ ︷︷ ︸

>0

fh(Π, α)dΠ + plθh

∫ 1

π∗

(
fl(π, αi)−

fl(Π, α)θl
fh(Π, α)θh

fl(Π, α)

)
fh(Π, α)dΠ

where t ≡ f−1
h (fh(π, αi), α). By the same method as before, it can be shown that bh(t, α) is

indeed the optimal among all other efforts in the same support.
When type (θh, π) of player i chooses an effort in the low pure support, the maximum

expected payoff of doing so is:

Ũ lh(bl(t̂, α)|π, αi, α) = plθh

∫ 1

t̂

(
fl(π, αi)−

fl(Π, α)θl
fh(Π, α)θh

fl(Π, α)

)
fh(Π, α)dΠ

which is less than Ũhh (bh(t, α)|π, αi, α), as it must be true that t̂ ∈ [π∗, 1] whenever there exists
such an interior solution.
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When type (θh, π) of player i chooses an effort in the mixed support, the expected payoff is:

Ũmh (b|π, αi, α) = plθh

∫ 1

π∗

(
fl(π, αi)−

fl(Π, α)θl
fh(Π, α)θh

fl(Π, α)

)
fh(Π, α)dΠ

which is, again, invariant of b. It is easy to see that Ũmh (b|π, αi, α) ≥ Ũ lh(bl(t̂, α)|π, αi, α).
In summary, given that t is increasing in π, for lower values of π such that t < π∗ the optimal

effort lies in the mixed support, and for higher values of π such that t > π∗ the optimal effort
lies on the high pure support.

Now we take the first order derivative of Ũmh (b|π, αi, α) and Ũhh (bh(t, α)|π, αi, α) w.r.t αi:
For t < π∗ (i.e., when the optimal effort is in the mixed support):

∂

∂αi
Ũmh (b|π, αi, α) = −phθh

∂fh(π, αi)

∂αi

∫ 1

π∗
fh(Π, α)dΠ

For t > π∗ (i.e., when the optimal effort is in the high pure support):

∂

∂αi
Ũhh (bh(t, α)|π, αi, α) = −phθh

∂fh(π, αi)

∂αi

∫ 1

t
fh(Π, α)dΠ

Combining the two, the marginal expected payoff for type (θh, π) is given by:

−phθh
∂fh(π, αi)

∂αi

∫ 1

max{t,π∗}
fh(Π, α)dΠ

We are now able to calculate the ex ante marginal expected payoff of player i w.r.t αi:

AMUi(αi, α)

= ph

∫ 1

0

∂fh(π, αi)

∂αi

{
plθl max

{
0,

∫ ŝ

π∗
fl(Π, α)dΠ

}
− phθh

∫ 1

max{t,π∗}
fh(Π, α)dΠ

}
︸ ︷︷ ︸

F

dπ

> 0

Since both t and ŝ are increasing in π, thus the term F above is weakly increasing in π. According
to the Lemma 9, we have AMUi(αi, α) ≥ 0 for α > α̂.

We now turn to the last part of the lemma. Recall from Section 2, when the signals players
receive are perfectly informative, we have fh(πi, α) = 0 if πi ≤ pl and fh(πi, α) = 1

ph
if πi > pl;

and correspondingly, that fl(πi, α) = 1
pl

if πi ≤ pl and fl(πi, α) = 0 if πi > pl. Note that in this

case π∗ = plθh+phθl
θh

> π+
α ≡ pl.

When type (θl, π) of player i chooses an effort in the low pure support, the expected payoff
given that player j playing the symmetric equilibrium with α is:

Ũ ll (b|π, αi, α) = θl [1− µ(π, αi)]

∫ 1

b−1
l (b,α)

fl(Π, α)dΠ− b = 0

In fact, the low pure support in this case is condensed to a point at zero. When type (θl, π)
of player i chooses an effort in the mixed support, the expected payoff is

Ũml (b|π, αi, α) = θl

∫ 1

π∗
(µ(π, αi)− µ (Π, α)) fl(Π, α)dΠ = 0

When type (θl, π) of player i chooses an effort bh(κ, α) (where κ > π∗) in the high pure
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support, the expected payoff is:

Ũhl (b|π, αi, α) = θl

[
1− µ(π, αi) + µ(π, αi)

∫ κ

0
fl(Π, α)dΠ

]
− bh(κ, α)

= θl − bh(κ, α)

=
θh
ph

(pl − κ)

≤ 0

The second equality is due to player j’s signal realization πi must be below pl given that player
i has θl, as the signal is perfectly informative. The inequality is because of κ ≥ π∗ > pl. Thus,
type (θl, π) of player i does not want to choose any effort in the high pure support. In summary,
her maximum expected payoff is zero.

Now we turn to type (θh, π) of player i. When she has αi, and suppose she chooses an effort
in the high pure support, the expected payoff is:

Ũhh (b|π, αi, α) = θh

(
(1− µ(π, αi)) + µ(π, αi)

∫ b−1
h (b,α)

0
fh(Π, α)dΠ

)
− b

and by taking the first order derivative w.r.t. b we have fh(π,αi)
fh(t,α) − 1 < 0 where t ∈ (π∗, 1).

Thus, player i does not want to choose any effort in the high pure support and again, she finds
it optimal to choose an effort in the mixed support, which earns her zero expected payoff.

Since the low valuation type of player j choose zero with positive probability, type (θh, π)
of player i would never choose zero with positive probability. In summary, her optimal effort
must always lie in the mixed support.

When type (θh, π) of player i chooses an effort in the mixed support, the expected payoff is:

Ũmh (b|π, αi, α) = plθhfl(π, αi)

∫ 1

π∗
fh(Π, α)dΠ

The first order derivative of Ũmh (b|π, αi, α) w.r.t αi is:

∂

∂αi
Ũmh (b|π, αi, α) = −phθh

∂fh(π, αi)

∂αi

∫ 1

π∗
fh(Π, α)dΠ

We are now able to calculate the marginal expected payoff of player i w.r.t αi:

AMUi(αi, α) = ph

∫ 1

0

∂

∂αi
Ũmh (b|π, αi, α)dπ

= −p2
hθh

∫ 1

0

∂fh(π, αi)

∂αi
dπ

∫ 1

π∗
fh(Π, α)dΠ

= 0

Proof of Lemma 4
Similar to the previous lemma, we prove this lemma in two separated cases: when α ≤ α̂

and when α > α̂.
When α ≤ α̂, let αi = α, then the maximum expected payoff of player i when she has θh
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and θl are given by

Ũ ll (bl(t, α)|π, α, α) = phθl

∫ 1

t
[fh(Π, α)− fh(π, α)] dFl(Π, α) > 0

Ũhh (bh(s, α)|π, α, α) = ph

∫ s

0
[1− fh(Π, α)] [fh(Π, α)θh − fl(Π, α)θl] dΠ︸ ︷︷ ︸

>0

+plθl

∫ 1

s
[1− fl(Π, α)] fl(Π, α)dΠ︸ ︷︷ ︸

>0

+pl (θh − θl)

where t = s is given by fh(s, α) = fh(π, α) = 1 and fl(t, α) = fl(π, α) = 1. and thus

Ui(α, α) = phŨ
h
h (bh(s, α)|π, α, α) + plŨ

l
l (bl(t, α)|π, α, α) > phpl(θh − θl) = Vi(α, α).

When α > α̂, again let αi = α. We first show that the expected payoff of player i with θl is
positive, and then show that the expected payoff when she has θh is larger than pl(θh − θl).

Suppose, on the one hand, if ŝ < π∗, then the expected payoff of player i with θl is
Ũml (b|π, α, α). In the proof of Lemma 3, we have shown that Ũml (b|π, αi, α) ≥ Ũ ll (bl(s, α)|π, αi, α) ≥
0 for αi ≤ α, hence Ũml (b|π, α, α) ≥ 0. On the other hand, suppose ŝ ≥ π∗, type (θl, π) of player

i has an expected payoff of Ũhl (bh(ŝ, α)|π, α, α), which has been shown to be positive in the
proof of Lemma 3.

Let us turn to type (θh, π) of player i. Recall from (5) that
∫ π∗

0 (fh(Π, α)θh − fl(Π, α)θl) dΠ =

0. Since we have
∫ 1

0 (fh(Π, α)θh − fl(Π, α)θl) dΠ = θh − θl, hence∫ 1

π∗

(
1− fl(Π, α)

fh(Π, α)

θl
θh

)
fh(Π, α)θhdΠ = θh − θl.

When t > π∗, her expected payoff is given by

Ũhh (bh(t, α)|π, α, α)

= phθh

∫ t

π∗
(1− fh(Π, α)) fh(Π, α)dΠ + plθh

∫ 1

π∗

(
1− fl(Π, α)θl

fh(Π, α)θh
fl(Π, α)

)
fh(Π, α)dΠ

>

∫ t

π∗
plfl(Π, α)

(
fh(Π, α)θh
fl(Π, α)θl

− 1

)
fl(Π, α)θldΠ + pl(θh − θl)

≥ pl(θh − θl)

The equality satisfies when α = α.
Now, we consider the case when t ≤ π∗. Since fl(Π, α) < fl(t, α) = fl(π, α) = 1 for all

Π > t, we have

Ũmh (b|π, α, α) = plθh

∫ 1

π∗

(
1− fl(Π, α)θl

fh(Π, α)θh
fl(Π, α)

)
fh(Π, α)dΠ

> plθh

∫ 1

π∗

(
1− fl(Π, α)θl

fh(Π, α)θh

)
fh(Π, α)dΠ

= pl(θh − θl).

for α < α. Therefore, we have proved the second part of the lemma.
Finally, Ui(α, α) = Vi(α, α) follows directly from AMUi(αi, α) = 0 from Lemma 3, because

Vi(α, α) = Vi(α, α) = Ui(α, α) +
∫ α
α AMUi(t, α)dt.
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Proof of Proposition 2
The equilibrium expected payoff of player i can be written as

Vi(α, α) = Ui(α, α) +

∫ α

α
AMUi(t, α)dt.

According to Lemma 3 and 4, when α ∈ (α, α̂], Ui(α, α) > Vi(α, α) and AMUi(αi, α) > 0, thus,
Vi(α, α) > Vi(α, α). Alternatively, when α ∈ (α̂, α], Ui(α, α) ≥ Vi(α, α) and AMUi(αi, α) ≥
0, thus, Vi(α, α) ≥ Vi(α, α). Finally, Vi(α, α) = Vi(α, α) because Ui(α, α) = Vi(α, α) and
AMRi(αi, α) = 0.

Proof of Proposition 3
Given Lemma 3, it must be true that MUi(α) > 0, MUi(α) ≥ 0 for α ∈ (α, α), and

MUi(α) = 0. Hence, any increasing convex cost functions with MC(α) = 0 crosses with
MUi(α) from below for at least once. As long as the cost function is convex enough, the two
only cross once. In that case, there must exist a α∗ such that MUi(α

∗) = MC(α∗).
The condition MUi(α

∗) = MC(α∗) suggests the following:

Vi(α
∗, α∗)− C(α∗) ≥ Ui(α, α∗)− C(α) ≥ V (α, α) = Vi(α, α)

Therefore, player i’s expected payoff in the entire game is higher than when both players
choosing α, i.e., not spying on each other. Furthermore, by V (α, α) = V (α, α), player i’s
expected payoff in the game is also higher than when both players receive a perfect signal about
the opponent for free.

Proof of Lemma 5
We start by proving part 1. Suppose in a pure strategy equilibrium with efficient allocation,

we have bih(π1, αi, αj) < bih(π2, αi, αj) for some π1 > π2. Then type (θh, π1) of player i must
find the cost of increasing her effort from bih(π1, αi, αj) to bih(π2, αi, αj) dominates the gain
from such an increase, formally:

bih(π2, αi, αj)− bih(π1, αi, αj) ≥ µ(π1, αi) Pr{bih(π1, αi, αj) ≤ bjh < bih(π2, αi, αj)}θh.

where bjh is player j’s effort. However, type (θh, π2) would require her gain outweighs her cost
of such increase of effort:

bih(π2, αi, αj)− bih(π1, αi, αj) ≤ µ(π2, αi) Pr{bih(π1, αi, αj) ≤ bjh < bih(π2, αi, αj)}θh.

Combining the two condition, we have µ(π2, αi) ≥ µ(π1, αi) which contradicts to π1 > π2, due to
Assumption 1. Similar arguments can prove that bil(π1, αi, αj) ≤ bil(π2, αi, αj) for any π1 > π2.

To prove continuity of the equilibrium effort in part 2, suppose there exists a discontin-
uous point on player i’s effort bih(π, αi, αj), π̂ ∈ (0, 1), such that bih(π̂, αi, αj) < bih(π̂ +
ε, αi, αj) for an arbitrarily small ε. Then type (θh, b

−1
jh (bih(π̂ + ε, αi, αj), αi, αj)) of player j will

find it profitable to deviate to some b̂ ∈ (bih(π̂, αi, αj), bih(π̂ + ε, αi, αj)), where b−1
jh (·, αj , αi)

is the inverse of player j’s effort. Similarly, suppose there exists a discontinuous point on
bil(π, αi, αj), π̃ ∈ (0, 1), such that bil(π̃, αi, αj) > bil(π̃ + ε, αi, αj) for arbitrarily small ε.
Then type (θl, b

−1
jl (bil(π̃, αi, αj), αj , αi)) of player j will find it profitable to deviate to some

b̃ ∈ (bil(π̃ + ε, αi, αj), bil(π̃, αi, αj)), where b−1
jl (·, αj , αi) is the inverse of player j’s effort.

To prove that there is no atom on any player’s effort, suppose there exists p and q such
that 1 > q > p > 0 and that bih(x) = b where x ∈ [p, q] and b is a constant. Then by
continuity there must be a type (θh, b

−1
jh (b − ε, αj , αi), αj , αi) of player j who chooses b − ε,

and he will find it profitable to deviate to choose b + ε, as the gain of such deviation will be
µ(b−1

jh (b − ε), αj)
∫ q
p fh(Π, αi)dΠ > 0 and the cost is negligible when ε is arbitrarily small. A
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similar argument can show that there is no atom on bil(π, αi, αj).
For part 3, given that part 1 is true, type (θh, 1) of player i chooses the highest effort among

all types, whereas type (θl, 1) chooses the lowest effort among all types, in an allocative efficient
equilibrium. Thus, it must be true that bil(1, αi, αj) = bjl(1, αj , αi) = 0 as these are the lower
bound of equilibrium support. They must be the same and cannot be positive. It must also be
true that bih(1, αi, αj) = bjh(1, αj , αi) as these are the highest effort exerted by players, and in
any equilibrium the equality is satisfied.

Finally, by part 1, type (θh, 0) of player i chooses the lowest effort among all types with val-
uation θh, whereas type (θl, 0) chooses the highest among all types with valuation θl. Suppose
bih(0, αi, αj) > bil(0, αi, αj), then it implies that there is a gap in the equilibrium support of
player i’s effort. This cannot be part of any equilibrium as then player j would not choose any
effort in [bil(0, αi, αj), bih(0, αi, αj)], which contradicts the optimality of bih(0, αi, αj), as then
player i would want to deviate to a b ∈ (bil(0, αi, αj), bih(0, αi, αj)). Suppose bih(0, αi, αj) <
bil(0, αi, αj), then in any equilibrium with efficient allocation, it must be true that bjl(0, αj , αi) ≤
bih(0, αi, αj) < bil(0, αi, αj) ≤ bjh(0, αj , αi). But then this implies there is a gap in the equi-
librium support of player j’s effort, which we have shown above to be impossible in any equi-
librium with efficient allocation. Therefore, in any equilibrium with efficient allocation, it must
be true that bil(0, αi, αj) = bih(0, αi, αj) for i = 1, 2. Without loss of generality, suppose
bil(0, αi, αj) = bih(0, αi, αj) > bjl(0, αj , αi) = bjh(0, αj , αi), then this contradicts efficient al-
location as bil(0, αi, αj) > bjh(0, αj , αi). Thus, in any pure strategy equilibrium with efficient
allocation, it must be true that bil(0, αi, αj) = bih(0, αi, αj) = bjl(0, αj , αi) = bjh(0, αj , αi).

Proof of Proposition 4
There are two steps to take to prove the proposition. First, we show that the equilibrium

strategies of each valuation type given in the proposition are indeed the optimal strategy in
their equilibrium support. Second, we show that each type do not want to deviate to any effort
level outside of their equilibrium support. Note that in this proof we only have low pure support
and high pure support, since we focus on allocative efficient equilibrium.

Given that player j chooses his strategy according to the proposition, suppose type (θl, π)
of player i chooses an alternative effort level bil(ζ, αi, αj), then her expected payoff is

Ũ lil(bil(ζ, αi, αj)|π, αi, αj) = θl

∫ 1

ζ
[µ(Π, αi)− µ(π, αi)]dFl(Π, αj)

Thus,

Ũ lil(bil(π, αi, αj)|π, αi, αj)− Ũ lil(bil(ζ, αi, αj)|π, αi, αj) = θl

∫ ζ

π
[µ(Π, αi)− µ(π, αi)]dFl(Π, αj) ≥ 0

regardless of whether π ≥ ζ or π < ζ.
Suppose type (θh, π) of player i chooses an alternative effort level bih(ξ, αi, αj), then her

expected payoff is

Ũhih(bih(ξ, αi, αj)|π, αi, αj) = θh

[
(1− µ(π, αi)) + µ(π, αi)

∫ ξ

0
fh(Π, αj)dΠ

]
−θh

∫ t

0
µ (Π, αi) dFh(Π, αj)− θl

∫ 1

0
[1− µ (Π, αi)] dFl(Π, αj)

Again, compare this payoff to the equilibrium payoff:

Ũhih(bih(π, αi, αj)|π, αi, αj)− Ũhih(bih(ξ, αi, αj)|π, αi, αj)

= θh

∫ π

ξ
[µ(π, αi)− µ (Π, αi)] dFh(Π, αj) ≥ 0
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regardless of π ≥ ξ or π < ξ. Thus, the strategy given in the proposition is indeed optimal for
players if they choose efforts in the equilibrium support.

Now we turn to the case when each valuation type deviates by choosing an effort in the
other valuation type’s support, e.g., the high valuation type chooses an effort in the support of
the low valuation type’s support. When type (θh, π) of player i deviates to an effort β in the
low pure support of player j, that is β ∈ [0, bjl(0, αj , αi)], then the expected payoff given the
opponent playing equilibrium strategy bjl(π, αj , αi) is:

Ũ lih(β|π, αi, αj) = θh[1− µ(π, αi)]

∫ 1

b−1
jl (β,αj ,αi)

fh(Π, αj)dΠ− β.

Among all the possible deviating efforts player i would prefer to deviate to the effort that
maximizes the deviation expected payoff, i.e., β∗ = arg maxβ Ũ

l
ih(β|π, αi, αj). β∗ can be found

by the first order condition with respect to β:

fl(π, αi) =
θl
θh

fl(t̂, αj)

fh(t̂, αj)
fl(t̂, αi) (26)

where t̂ is given by bjl(t̂, αj , αi) = β∗, i.e., type (θl, t̂) of player j bids β∗ in equilibrium. It
is easy to check that both sides of (26) are decreasing functions of their arguments, π and t̂,
respectively. Furthermore, Assumption 3 implies fl(π, αi) ≤ fl(t̂, αi) and thus, π ≥ t̂. Then,
there must exist some π̂ satisfying

fl(π̂, αi) ≡
θl
θh

fl(0, αj)

fh(0, αj)
fl(0, αi)

If the equality in Assumption 3 is satisfied at π = 0, then π̂ = 0. For π < π̂, we always have the
LHS of the equation (26) strictly larger than the RHS, for all t̂ ∈ [0, 1]. This implies the first
order derivative is positive and thus type (θh, π) of player i doesn’t want to deviate.

For π ≥ π̂, there always exists a unique solution of equation (26) given π. In this case, we
need to directly compare the equilibrium payoff with the payoff of choosing β∗. The difference
between the equilibrium expected payoff and the optimal deviation payoff:

Ũhih(bih(π, αi, αj)|π, αi, αj)− Ũ lih(bil(t̂, αi, αj)|π, αi, αj) (27)

= phθh

∫ π

0
[fh(π, αi)− fh(Π, αi)] fh(Π, αj)dΠ + plθh

∫ t̂

0

(
fl(π, αi)−

fl(Π, αi)θl
fh(Π, αj)θh

fl(Π, αj)

)
dΠ

is increasing with π, as its first order derivative w.r.t π is positive (since π ≥ t̂):

∂

∂π

(
Ũhih(bih(π, αi, αj)|π, αi, αj)− Ũ lih(bil(t̂, αi, αj)|π, αi, αj)

)
= ph

∂fh(π, αi)

∂π
θh

(∫ π

0
fh(Π, αj)dΠ−

∫ t̂

0
fh(Π, αj)dΠ

)
≥ 0

Note that the equality is due to equation (26). Since we also know that

Ũhih(bih(π̂, αi, αj)|π̂, αi, αj)− Ũ lih(bil(0, αi, αj)|π̂, αi, αj)

= phθh

∫ π̂

0
[fh(π̂, αi)− fh(Π, αi)] fh(Π, αj)dΠ > 0

the difference (27) is thus, positive. Therefore, type (θh, π) of player i does not find it profitable
to deviate to any effort in the low pure support.

40



When a type (θl, π) of player i deviates to an effort level β in the high pure support, that
is β ∈ [bjl(0, αj , αi), bjh(1, αj , αi)], the expected payoff given the opponent playing equilibrium
strategy bjh(π, αj , αi) is:

Ũhil(β|π, αi, αj) = θl

[
µ(π, αi)

∫ b−1
jh (β,αj ,αi)

0
fl(Π, αj)dΠ + (1− µ(π, αi))

]
− β.

Again, we find the optimal deviation effort β∗ = arg maxβ Ũ
h
il(β|π, αi, αj) by the first order

condition with respect to β:

fh(π, αi) =
θh
θl

fh(ŝ, αj)

fl(ŝ, αj)
fh(ŝ, αi) (28)

Thus, β∗ = bjh(ŝ, αj , αi). It is easy to check that both sides of (28) are increasing functions of
their arguments, π and ŝ, respectively. Furthermore, Assumption 3 implies fh(π, αi) ≥ fh(ŝ, αi)

and thus, π ≥ ŝ. Then, there must be some ̂̂π satisfies

fh(̂̂π, αi) =
θh
θl

fh(0, αj)

fl(0, αj)
fh(0, αi)

If the equality in condition (3) is satisfied at π = 0, then we must have ̂̂π = 0. For π < ̂̂π, we
always have the LHS of the equation (28) strictly less than the RHS, for all ŝ ∈ [0, 1]. This
implies the first order derivative is negative and thus type (θl, π) doesn’t want to deviate.

For π ≥ ̂̂π, there always exists a unique ŝ satisfying equation (28) given π. In this case, we
need to compare the equilibrium payoff with the payoff of choosing β∗. The difference between
the two

Ũ lil(bil(π, αi, αj)|π, αi, αj)− Ũhil(bih(ŝ, αi, αj)|π, αi, αj)

= plθl

∫ π

0
[fl(Π, αi)− fl(π, αi)] fl(Π, αj)dΠ

+ ph

∫ ŝ

0

[
fh(Π, αj)θh
fl(Π, αj)θl

fh(Π, αi)− fh(π, αi)

]
fl(Π, αj)θldΠ

is positive because its first order derivative w.r.t π is positive:

∂

∂π

(
Ũ lil(bil(π, αi, αj)|π, αi, αj)− Ũhil(bih(ŝ, αi, αj)|π, αi, αj)

)
= phθlf

′
h(π, αi)

(∫ π

0
fl(Π, αj)dΠ−

∫ ŝ

0
fl(Π, αj)dΠ

)
≥ 0

and

Ũ lil(bil(
̂̂π, αi, αj)|̂̂π, αi, αj)− Ũhil(bih(0, αi, αj)|̂̂π, αi, αj)

= plθl

∫ ̂̂π
0

[
fl(̂̂π, αi)− fl(π, αi)] fl(Π, αj)dΠ > 0.

Thus, there is no profitable deviation for any type of player i.

Proof of Proposition 5
We start by a new definition in analogous to Ui(αi, αj) in the main text.

Definition 5. Let Ui(η, αi, αj) be player i’s maximum expected payoff in the contest stage
by choosing η when player j chooses αj and (wrongly) believes that player i has chosen αi.
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Furthermore, let AMUi(η, αi, αj) =
∂Ui(η,αi,αj)

∂η be the corresponding marginal expected payoff.

The above definition is different from Definition 4 in player j’s belief. In the current asym-
metric setting, player j believes that the profile of accuracies is (αi, αj) but in fact, it is (η, αj).
Thus, j plays according to the asymmetric equilibrium as given in Proposition 4.

First we show the following lemmas:

Lemma 10. AMUi(η, αi, αj) > 0 for all η ≤ αi and η, αi, αj ∈ [α, α̂].

Lemma 11. Ui(α, αi, αj) > Vi(α, α) for αi, αj ∈ (α, α̂].

The proofs of the above lemmas follow directly from the proofs of Lemma 3 and 4, respec-
tively and thus, are omitted. The equilibrium expected payoff of player i can thus be rewritten
to:

Vi(αi, αj) = Ui(α, αi, αj) +

∫ αi

α
AMUi(t, αi, αi)dt > Vi(α, α)

where αi, αj ∈ (α, α̂]. This completes the proof.

Proof of Lemma 7
The terms inside the bracket of (6), L(Π), is monotonically decreasing with Π as

∂L(Π)

∂Π
= −∂fh(Π, αj)

∂Π

(
θh + phθl

pl

θh − θl
−Π

)
< 0

Thus, applying Lemma 9 we can prove that
∂Vi(αi,αj)

∂αj
< 0.

Proof of Lemma 8
Denote by Mih(π, αi, αj) and Mil(π, αi, αj) player i’s equilibrium expected payoff when she

is type (θh, π) and (θl, π), respectively.

Mih(π, αi, αj) = phθh

∫ π

0
[fh(π, αi)− fh(Π, αi)] dFh(Π, αj)

−plθl
∫ 1

0
fl(Π, αi)dFl(Π, αj) + plθhfl(π, αi) (29)

Mil(π, αi, αj) = plθl

∫ 1

π
[fl(π, αi)− fl(Π, αi)] fl(Π, αj)dΠ (30)

Then, the ex ante interim expected payoff for θh and θl can be found by integrating (29) and
(30) over π, respectively:

Mih(αi, αj) = phθh

∫ 1

0

∫ π

0
[fh(π, αi)− fh(Π, αi)] fh(Π, αj)dΠdπ

+pl

∫ 1

0

∫ 1

0
[fl(π, αi)θh − fl(Π, αi)θl] fl(Π, αj)dΠdπ

Mil(αi, αj) = plθl

∫ 1

0

∫ 1

π
fl(π, αj)fl(Π, αi)dΠdπ − plθl

∫ 1

0

∫ 1

π
fl(Π, αj)fl(Π, αi)dΠdπ

And thus, the ex ante expected payoff for player i can be calculated by

Vi(αi, αj) = phMih(αi, αj) + plMil(αi, αj)

Let αi = α, i.e., when the opponent shares no information to player i, then player i’s ex ante
expected payoff is a constant: Vi(αi, αj) = phpl (θh − θl).
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