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ABSTRACT
Identifying the same internet user across devices or over time
is often infeasible. This presents a problem for online experi-
ments, as it precludes person-level randomization. Random-
ization must instead be done using imperfect proxies for peo-
ple, like cookies, email addresses, or device identifiers. Users
may be partially treated and partially untreated as some of
their cookies are assigned to the test group and some to the
control group, complicating statistical inference. We show
that the estimated treatment effect in a cookie-level experi-
ment converges to a weighted average of the marginal effects
of treating more of a user’s cookies. If the marginal effects
of cookie treatment exposure are positive and constant, it
underestimates the true person-level effect by a factor equal
to the number of cookies per person. Using two separate
datasets—cookie assignment data from Atlas and advertis-
ing exposure and purchase data from Facebook—we empir-
ically quantify the differences between cookie and person-
level advertising effectiveness experiments. The effects are
substantial: cookie tests underestimate the true person-level
effects by a factor of about three, and require two to three
times the number of people to achieve the same power as a
test with perfect treatment assignment.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics; G.3 [Mathematics of Computing]:
Probability and Statistics—Experimental design

General Terms
Economics

Keywords
Advertising effectiveness, causal inference, cookies, experi-
ments, online advertising

1. INTRODUCTION

One major limitation of online experiments is that the ex-
perimenter often does not have complete control over who is
exposed to the treatment [7, 8, 9, 28]. In contrast to exper-
iments conducted in person, in which it is straightforward
to assign non-overlapping groups of people to the test and
control groups, the online experimenter often does not have
the ability to identify the same person across devices or over
time. She must instead resort to randomizing using a proxy
which imperfectly identifies users, like a cookie, an email
address, or an account or device identifier.

Cookies are the most common technology used to identify
online users and devices making cookie-based experiments
especially popular among researchers and technology com-
panies [11, 21, 25, 28]. A cookie is a small piece of data sent
from the website and stored on the user’s browser that is sent
back to the website every time the user returns. The same
user may generate multiple cookies by clearing his cookies
and being assigned new ones (cookie churn), using multi-
ple browsers, or visiting the same website on different de-
vices. Additionally, some browsers will delete cookies on
crashing, remove older cookies, and cookies can become cor-
rupted leading to the same user using the same browser be-
ing assigned different cookies. If treatment assignment is
randomized at the cookie level, the same user may some-
times be assigned to the test group and sometimes to the
control group, depending on when he visits the website and
the browser or device he is using. People with cookies in the
test group are only partially treated, and those with cookies
in the control group are only partially untreated. This com-
plication makes it unclear what information the comparison
of test and control cookie outcomes provides.

The same problem arises with experiments using other prox-
ies like email addresses, device identifiers, or user accounts,
as a single user may be assigned to different proxies and
thus different conditions in the experiment. In this paper
we focus on cookies since it is the most widely used identity
technology on the internet, especially for advertisers who
want to distinguish customers, but our analysis and results
apply generally to any proxy that doesn’t have perfect as-
signment to users.

We show that the test-control cookie comparison estimates a
weighted average of the marginal effects on a user of having
an additional cookie exposed to the treatment. In contrast
to the ideal experiment in which users can be perfectly as-
signed to test or control, this weighted average depends on



the probability that a cookie is assigned to the test group.
Changing the test group assignment probability changes the
quantity estimated. Failing to replicate the results of an ex-
periment which used a different assignment probability does
not necessarily indicate that the initial results are invalid.

If the marginal treatment effects are all positive, i.e. treat-
ing more of the user’s cookies always increases the mean
of the outcome variable, then the test-control cookie com-
parison underestimates the person-level treatment effect in
which users are randomized into test and control groups.
This provides a formal justification for the folk wisdom that
cookie-based experiments tend to attenuate the true treat-
ment effects. If in addition to being positive the marginal
treatment effects are constant (or if they are affine and cook-
ies are assigned to the test group with probability 0.5), the
person-level treatment effect is greater than the test-control
cookie comparison by a factor equal to the number of cookies
per user. This result is intuitive: as the number of cookies
increases the average difference in outcomes between test
and control cookies becomes smaller.

We use a unique dataset to quantify how much imperfect
treatment assignment matters in practice in the context of
measuring advertising effectiveness. Atlas1 by Facebook al-
lows advertisers to serve ads across third-party websites and
mobile apps. Atlas cookies contain a one-way hashed version
of the individual’s Facebook identifier for Facebook users.
Because we observe both the Atlas cookie assigned to the
user at the time of the ad impression as well as the hashed
Facebook identifier for Facebook users, we have ground truth
data on cookie assignment distributions.

We also use data from Facebook’s Conversion Lift2 prod-
uct, which allows advertisers to run advertising effectiveness
experiments. Facebook assigns a randomly selected group
of users to a control group, which is not exposed to an ad-
vertising campaign, and compares their outcomes to the test
group, which is eligible to see the campaign. By comparing
online sales outcomes between test and control users, adver-
tisers can determine how effective the advertisement is in
increasing sales.

These two datasets–Atlas data on cookie assignments, and
Conversion Lift data on ad exposure and sales–together en-
able us to simulate the effect of imperfect treatment assign-
ment in ad effectiveness studies. The effects estimated in ad
experiments with imperfect treatment assignment are rarely
of inherent interest. Rather, the real effects of interest are
typically the effects of fully rolling out the ad campaign vs.
not advertising, as knowing those effects enables advertisers
to determine if their ads are giving a sufficient return on
investment. Equivalently, they are the effects that would be
estimated by an experiment with perfect treatment assign-
ment.

We find that cookie-based tests underestimate these person-
level effects by a factor of around three. In addition, to
achieve the same level of statistical power in a cookie-level
experiment as a person-level experiment, around two to three

1http://atlassolutions.com/
2https://www.facebook.com/business/news/conversion-
lift-measurement

times greater sample sizes are needed. Difficulties in detect-
ing statistically significant effects in online experiments may
be due to imperfect treatment assignment, rather than the
true underlying effect sizes being small.

This paper complements the econometrics literature on in-
strumental variables and imperfect treatment assignment
[1, 2, 4, 13, 14, 16]. The literature focuses on the case where
the experimenter is only partially able to control individuals’
treatment status. A physician may prescribe a drug, for ex-
ample, but is unable to force his patient to take it. Our paper
differs from this setting in that the experimenter can fully
control individuals’ treatment status for any of their cookies,
but the fact that people have multiple cookies means they
may end up being only partially treated or untreated. To
the best of our knowledge, we are the first to formally treat
and empirically analyze the problem of imperfect treatment
assignment due to difficulties in identifying people online,
rather than difficulties in influencing their behavior.

Our paper is also closely related to the growing body of work
on online advertising effectiveness. A large number of prior
studies [10, 15, 17, 23, 25, 27, 30] run advertising field ex-
periments at the cookie level, and our work quantifies the
potential measurement error in these studies from multiple
cookie assignments. Other studies run advertising field ex-
periments at the person level [26, 18, 3, 24], and our results
indicate that treatment effects should not be directly com-
pared between cookie and person-level experiments. Lewis
et al. [24] find that online advertising campaigns often re-
quire relatively large samples to detect a significant effect on
sales, highlighting the need to analyze the loss in statistical
power from cookie assignments.

Because it is so rare to find data on cookie assignments by
person, we hope to provide researchers with some context
for understanding the extent of the bias in their cookie-level
studies, if they believe the users in their study are similar
to the population of U.S. Facebook users.

Finally, this work contributes to the rapidly growing liter-
ature on the challenges of implementing experiments on-
line [6, 20, 22, 24]. There are several examples of how
causal inference can be biased in online experiments in-
cluding, among others, interference between test and con-
trol groups [5], correlated behaviors biasing observational
studies [25], and “carryover” effects [20]. We demonstrate
another major implementation challenge in that treatment
effects are substantially attenuated when comparing cookie-
level outcomes.

2. MODEL SETUP
Each person i ∈ {1, . . . ,m} generates n cookies. Each of i’s
cookies is independently assigned to be treated with proba-
bility p. Person i’s outcome associated with cookie k if he
were to have e treated cookies in total is a random variable
denoted yi,k,e. Across k the yi,k,e’s are distributed with
mean µi(e), so that µi(e) is i’s expected cookie-level out-
come when e of his cookies have been treated. Define the
random variable Ti,k where Ti,k = 1 if i’s kth cookie has
been selected for treatment, and Ti,k = 0 otherwise. We
assume that yi,k,e and Ti,k are independent: given i’s num-
ber of treated cookies, his treatment and control cookies’



Figure 1: Treatment Assignment
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Random cookie assignment to treatment and
control groups. Each row of cookies belongs to the
same person. Red squares are treated cookies, gray
squares are untreated cookies.

outcomes are the same on average.

Let ei =
∑n

k=1 Ti,k denote the number of treatments that i
receives. For each of i’s cookies, the researcher observes the
outcome variables yi,1,ei , yi,2,ei , . . . , yi,n,ei associated with
the n cookies. For example, in an advertising experiment
run by an online retailer, the outcome variable of interest,
yi,k,ei , might be the amount of spending attributable to user
i’s kth cookie, given that user i has seen ei advertisements
across his n devices, each of which has a different cookie.

The cookie-level treatment effect estimator, Ĉ, is the average
over treatment cookies of their associated outcomes, minus
the corresponding average over control cookies:

Ĉ ≡
∑m

i=1

∑n
k=1 Ti,kyi,k,ei∑m
i=1 ei

−
∑m

i=1

∑n
k=1(1− Ti,k)yi,k,ei∑m
i=1(n− ei)

.

Although the researcher can calculate the sum of outcomes
associated with all test cookies,

∑m
i=1

∑n
k=1 Ti,kyi,k,ei , she

cannot calculate the summands
∑n

k=1 Ti,kyi,k,ei for any i
(and similarly for control outcomes). This is because she
has no way of identifying which cookies or outcomes are as-
sociated with the same person. Figure 1 shows a simple

example where m = 4 and n = 5. In terms of the figure, Ĉ
is the average of the values in red squares minus the aver-
age of the values in gray squares. The researcher observes
whether an outcome is red or gray, but not whether two out-
comes belong to the same row. What does the cookie-level
treatment effect estimator estimate, and how does it relate
to the expected marginal effects E[µi(j + 1) − µi(j)], or to
the effect of fully treating users, E[µi(n)− µi(0)]?

3. MODEL ANALYSIS
We begin by proving that the cookie-level estimator Ĉ con-
verges to a weighted average of the expected marginal effects
E[µi(j + 1)− µi(j)], where the weights are the probabilities
of a binomial distribution.

Proposition 1. Let X be a random variable with dis-
tribution B(n − 1, p), independent of the µi, and assume

the expectations E[µi(e)] are finite for all e. Then Ĉ →p

E[µi(X + 1)− µi(X)].

Proof. We have

m−1 ∑m
i=1

∑n
k=1 Ti,kyi,k,ei

m−1
∑m

i=1 ei
−
m−1 ∑m

i=1

∑n
k=1(1− Ti,k)yi,k,ei

m−1
∑m

i=1(n− ei)

→p
E[

∑n
k=1 Ti,kyi,k,ei ]

E[ei]
−
E[

∑n
k=1(1− Ti,k)yi,k,ei ]

E[n− ei]

=

∑n
j=0 P (ei = j)E[

∑n
k=1 Ti,kyi,k,ei |ei = j]∑n

j=0 P (ei = j)j

−
∑n

j=0 P (ei = j)E[
∑n

k=1(1− Ti,k)yi,k,ei |ei = j]∑n
j=0 P (ei = j)(n− j)

=

∑n
j=0 P (ei = j)jE[µi(j)]∑n

j=0 P (ei = j)j
−

∑n
j=0 P (ei = j)(n− j)E[µi(j)]∑n

j=0 P (ei = j)(n− j) ,

where the first step follows by the weak law of large numbers
and the continuous mapping theorem, the second step iter-
ates expectations over ei, and the third uses independence
of yi,k,e and Ti,k, as well as the fact that ei =

∑n
k=1 Ti,k.

Given that ei ∼ B(n, p), the last expression can be rewritten
as follows:∑n

j=0 P (ei = j)jE[µi(j)]∑n
j=0 P (ei = j)j

−
∑n

j=0 P (ei = j)(n− j)E[µi(j)]∑n
j=0 P (ei = j)(n− j)

=

n∑
j=0

n!

j!(n− j)!p
j(1− p)n−j j

np
E[µi(j)]

−
n∑

j=0

n!

j!(n− j)!p
j(1− p)n−j n− j

n(1− p)E[µi(j)]

=

n∑
j=1

(n− 1)!

(j − 1)!(n− j)!p
j−1(1− p)n−jE[µi(j)]

−
n−1∑
j=0

(n− 1)!

j!(n− j − 1)!
pj(1− p)n−j−1E[µi(j)]

=

n−1∑
j=0

(n− 1)!

j!(n− j − 1)!
pj(1− p)n−j−1E[µi(j + 1)]

−
n−1∑
j=0

(n− 1)!

j!(n− j − 1)!
pj(1− p)n−j−1E[µi(j)]

=

n−1∑
j=0

(n− 1)!

j!(n− j − 1)!
pj(1− p)n−j−1(E[µi(j + 1)]− E[µi(j)])

= E[µi(X + 1)− µi(X)],

where X ∼ B(n− 1, p).

This result shows that the cookie-based measure estimates a
weighted average of all the marginal effects of an extra treat-
ment exposure, where the weights are given by the proba-
bility mass function of a B(n− 1, p) random variable. More
weight is placed on the marginal effects at the likely lev-
els of treatment exposure. This is rather intuitive–if p were
close to one, then most of the test and control cookies would
belong to people who have been treated a large number of
times, and the experiment can not be very informative about
the marginal effects of the first few exposures. The next
corollary is immediate from Proposition 1.

Corollary 1. If there is a constant marginal effect of



receiving a treatment cookie instead of a control cookie (i.e. if
E[µi(j+1)]−E[µi(j)] does not depend on j), the cookie-based
measure converges in probability to this marginal effect.

Different treatment probabilities p result in different weight-
ings of the marginal effects, and therefore estimate different
quantities. Unless E[µi(j)] is affine, there is no reason to
expect results from otherwise identical tests with different
treatment probabilities to coincide, even ignoring sampling
error. We denote E[µi(X+1)−µi(X)], the probability limit

of the cookie-based estimate Ĉ, as C(p), to make dependence
on p explicit. We recall a definition and a result on stochas-
tic orderings of random variables, and prove that if E[µi(j)]
is concave (convex), then C(p) is decreasing (increasing) in
p.

Definition 1. For random variables X and X ′ with cu-
mulative distribution functions FX and FX′ , X is said to
first-order stochastically dominate X ′ if FX(c) ≤ FX′(c) for
all c.

We write X ≥FOSD X ′ if X first-order stochastically domi-
nates X ′. The following classic result from [12] relates first-
order stochastic dominance to means.

Proposition 2. ([12]). X ≥FOSD X ′ if and only if
Eu(X) ≥ Eu(X ′) for all increasing functions u.

This result allows us to derive the next proposition, which
shows how the cookie-level effect varies with the cookie treat-
ment probability.

Proposition 3. If E[µi(j)] is concave (convex) in j, then
C(p) is decreasing (increasing) in p.

Proof. If X ∼ B(n, p) and X ′ ∼ B(n, p′) with p ≥ p′,
then X ≥FOSD X ′ ([19]). Set u(j) = E[µi(j+1)]−E[µi(j)].
If E[µi(j)] is concave is in j, then u(·) is decreasing. Propo-
sition 2 implies that if X ≥FOSD X ′ and u(·) is decreas-
ing, then E[u(X)] ≤ E[u(X ′)]. It follows that E[u(X)] ≤
E[u(X ′)], i.e. that C(p) is decreasing in p. The argument
for convex E[µi(j)] is analogous.

The effect of interest to the experimenter is typically the
expected difference in outcomes when all cookies are treated
and when no cookies are treated: E[µi(n) − µi(0)]. The
reason this effect is important is that it is the causal effect
of fully rolling-out the treatment (i.e. the causal effect of
treating everyone all of the time, relative to never treating
anyone), and the purpose of the experiment is often to decide
whether the treatment should be rolled-out to everyone. It
is also the effect that would be estimated in a user-level
experiment: if people could be perfectly assigned to test and
control, the average outcome would be E[µi(n)] in the test
group and E[µi(0)] in the control group. This cookie-based
effect C(p) underestimates E[µi(n) − µi(0)], if E[µi(j)] is
increasing.

Proposition 4. If E[µi(j)] is increasing, then for all p,
C(p) ≤ E[µi(n)− µi(0)].

Proof.

C(p) =

n−1∑
j=0

(n− 1)!

j!(n− j − 1)!
pj(1− p)n−j−1(E[µi(j + 1)]− E[µi(j)])

≤
n−1∑
j=0

(E[µi(j + 1)]− E[µi(j)])

= E[µi(n)− µi(0)].

By how much does the cookie-based estimator underesti-
mate the true effect of interest? It follows from Corollary
1 that if E[µi(j)] is affine in j, then nC(p) is equal to the
full rollout effect, E[µi(n)−µi(0)], so that the cookie-based
estimator is too small by a factor of n. If E[µi(j)] is not
affine in j, the underestimation may be more or less se-
vere, depending on the shape of the function E[µi(j)] as
well as the cookie treatment probability p. We show that if
the outcome response is quadratic and p = 0.5, then nC(p)
equals E[µi(n) − µi(0)], just as in the affine case. More
generally, whether nC(p) overestimates or underestimates
E[µi(n) − µi(0)] depends not on whether outcomes them-
selves are concave or convex in the number of treatments
received, but whether the marginal effect of an extra treat-
ment on outcomes is concave or convex in the number of
treatments received. Some further preliminaries on stochas-
tic dominance are required.

Definition 2. For random variables X and X ′ with cu-
mulative distribution functions FX and FX′ , X is said to
second-order stochastically dominate X ′ if

∫ c

−∞[FX′(c) −
FX(c)]dt ≥ 0 for all c.

We write X ≥SOSD X ′ if X second-order stochastically
dominates X ′. The next result, from [29], relates second-
order stochastic dominance to means of concave transfor-
mations.

Proposition 5. ([29]). For random variables X and X ′

with the same mean, X ≥SOSD X ′ if and only if Eu(X) ≥
Eu(X ′) for all bounded concave functions u.

This proposition allows us to derive some results about the
relative sizes of the cookie-based estimator and the true user-
level effect.

Proposition 6. If p = 0.5 and the marginal effects, E[µi(j+
1)]−E[µi(j)] are: i) concave in j, then nC(p) ≥ E[µi(n)−
µi(0)]; ii) convex in j, then nC(p) ≤ E[µi(n)− µi(0)].

Proof. i) Let X ∼ B(n − 1, 0.5), let X ′ be uniformly
distributed on {0, . . . , n − 1}, and define u(j) = E[µi(j +
1)] − E[µi(j)]. The random variables X and X ′ have the



same mean. X ′ can be obtained from X by a sequence of
mean-preserving spreads, so X ≥SOSD X ′ (see [29]). By
assumption, the function u is concave. We have

nC(p) = n(E[µi(X + 1)− µi(X)])

= nE[u(X)]

≥ nE[u(X ′)]

= n

n−1∑
j=0

1

n
(E[µi(j + 1)]− E[µi(j)])

= E[µi(n)− µi(0)].

The first equality holds by the definition of C(p) and the sec-
ond by the definition of u(X). The inequality follows from
Proposition 5. The third equality follows by the definition
of X ′. Part ii) is analogous.

To see the logic behind this proposition, note that 1
n
E[µi(n)−

µi(0)] is the unweighted average of all the marginal effects,
whereas C(p) is a weighted average of all the marginal ef-
fects, with relatively less weight on the extremes (that is,
less weight on E[µi(j+1)−µi(j)] for j close to 0 or n). The
effect of shifting weight from the extreme to the intermedi-
ate marginal effects depends on the concavity or convexity
of the sequence of marginal effects.3

An implication of this result is that when the outcome re-
sponse is roughly quadratic, so that the marginal effects are
roughly linear, the cookie treatment probability p should,
if possible, be set to 0.5. This allows the true effect of
fully rolling out the treatment to be captured by scaling
the cookie-level treatment effect estimator by the number of
cookies per person, while lower or higher p’s could lead to
potentially misleading estimates of the effect.

4. DATA AND EXPERIMENTAL SIMULA-
TIONS

Proposition 4 shows that treatment-control differences are
smaller on average in cookie-level experiments than people-
level experiments. This raises two concerns. First, if cookie-
based test estimates are incorrectly interpreted as reliable
estimates of the true effect of rolling out a treatment, some
treatments that are in fact worthwhile may not be imple-
mented. Even when the attenuation bias in cookie-based es-
timates is understood, the uncertainty over the sizes of the
true effects will hinder decision-making. Second, statistical
power will likely suffer. A non-zero treatment effect may be
less likely to be detected in a cookie-level experiment than
a people-level experiment. The extent to which these issues
are problems in practice depends on the distribution of the
number of cookies per person. In the special case where each
person is assigned a single cookie, for example, cookie and
people-based tests are identical.

3Another classic result on stochastic dominance closely re-
lated to Proposition 5 is that X ≥SOSD X ′ if and only if
E[u(X)] ≥ E[u(X ′)] for all nondecreasing and bounded con-
cave functions u (see [12]). In a manner analogous to Propo-
sition 6, this implies that if p > 0.5 and the marginal effects
are nondecreasing and concave, then nC(p) ≥ E[µi(n) −
µi(0)]. Similarly if p > 0.5 and the marginal effects are
nonincreasing and convex, then nC(p) ≤ E[µi(n)− µi(0)].

Obtaining data on the empirical distribution of cookies per
person is generally difficult. It requires being able to match
people to their cookies, and if this were straightforward
there would be no need for cookie-based tests in the first
place. Facebook’s Atlas offering allows advertisers to serve
ads on third-party websites and mobile applications. Atlas
can group together the cookies associated with a Facebook
user using a hashed Facebook id, if the user is signed into
their Facebook account. We thus observe both cookie as-
signments at the user-level for a group of users exposed to
Atlas advertising campaigns. This gives us the ability to
match cookies to people, across desktop and mobile devices,
or different browsers, or over time, and calculate the distri-
bution of cookies per person.

The number of cookies per person observed in Atlas data
over a one-month period (July 2015) is depicted in Figure 2.
Slightly over half of people are observed to have more than
one cookie during this period and over 10% are associated
with over 10 cookies. In our simulations and throughout
what follows, we deal with outliers by winzorising the data
at 11 cookies, so that people who have over 11 cookies are
treated as having exactly 11 cookies.4

Figure 2: Cookies Per Person, Histogram
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Even more directly related to treatment dilution effects is
Figure 3, which shows the fraction of cookies belonging to
people with at least a given number of cookies. The chief
reason for treatment dilution is that cookies belonging to
people with many cookies are relatively unhelpful in detect-
ing an effect of the treatment, as those people have likely
been exposed quite evenly to both treatment and control,
and their treatment and control cookies are unlikely to be
very different. In the limit, these peoples’ cookies do noth-
ing but add noise to the treatment and control comparison,
and make it harder to detect a treatment effect. Figure 3
shows that these low-value cookies are frequent: about half
of cookies come from people who have eight or more cookies.
The single-cookie people, despite making up close to half of
the population, only contribute about 15% of the cookies.

4This is conservative in the sense that it will tend to under-
state the true treatment dilution and loss of power associ-
ated with cookie-based testing.



Figure 3: Fraction of Cookies Belonging To People
With At Least n Cookies
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Advertising effectiveness studies are a natural context for
studying the difference between cookie and people-level ex-
periments. They are particularly common uses of cookie-
based testing [26, 27, 25], and also prone to lacking statis-
tical power [24]. We use data from Facebook’s Conversion
Lift product which allows advertisers to run ad effective-
ness experiments by designating a random subset of users
to be in the hold-out or control group, and who will not see
the ads. By comparing outcome data between the test and
control group, advertisers can estimate the effectiveness of
the advertisement in driving conversions. Advertisers will
specify objectives for their campaign which typically are ei-
ther continuous outcomes (e.g., total online sales) or binary
outcomes (e.g., sign-ups, application installs).

For each Conversion Lift campaign we observe assignment
to test or control for each user id, determining eligibility
to see the campaign, and online outcomes generated on the
advertiser side. These outcomes occur on the advertisers’
website (e.g., purchasing a product from their online store)
and the advertiser installs a conversion pixel that fires when
the user takes the appropriate action, sending the outcome
data back to Facebook to be matched back to the user’s
treatment status. Using the aggregate distributions from
each dataset—user ids and cookie assignments from Atlas,
and outcomes for test and control users from Conversion Lift
studies—we can simulate the effect of running an advertising
effectiveness experiment at both the cookie and person level.

We select two campaigns from the Conversion Lift program
for our simulations. The first is aimed at generating user
sign-ups for a online product, and the objective of the sec-
ond is to increase online sales. This allows us to assess
how cookie-based tests perform, for both Bernoulli and con-
tinuous outcome distributions (sign-ups and spending). In
both campaigns the test and control groups are significantly
different, albeit to quite different extents (with t-statistics
of 5.47 in the sign-up campaign and 2.20 in the user cam-
paign), making them good candidates for studying how sta-
tistically detectable effects are attenuated in cookie-based

experiments.

For the cookie-level test simulation, we simulate the out-
comes of m people, each of which has a total number of cook-
ies n drawn independently across people from the empirical
distribution depicted in Figure 2. Each cookie is indepen-
dently assigned to the treatment group with probability 0.5.5

The person-level outcomes of interest are independent across
people, and denoted by the random variable Yj,n, where j is
the number of treatment cookies a person is exposed to, and
n is his total number of cookies.6 This person-level outcome
is assigned uniformly at random to one of that person’s n
cookies.7

The random variables Yj,n are determined by the actual ad-
vertising effectiveness data. In both the user sign-up and
spending simulations, the random variable Yj,n is defined
as a mixture distribution: with probability j/n we draw
from the empirical distribution of the corresponding test
outcomes, and otherwise we draw from the empirical dis-
tribution of control outcomes. Thus the more “treated” a
user is, the more likely he is to have an outcome drawn from
the test distribution.

The person-level simulation is identical, except each person
will either have all of his cookies treated or all of his cookies
untreated, with each outcome being equally likely. Treated
people will draw outcomes from the treatment distribution
with certainty, and otherwise will draw outcomes from the
control distribution with certainty.

This simulation procedure allows us to describe quantita-
tively the treatment dilution from cookie-based tests. Given
the empirical distribution of cookies per person, the effect
estimated in a cookie-based test is 30.4% of the people-based
test effect for both the user sign-up advertising campaign,
and the spending advertising campaign. This ratio depends
only on the distribution of the number of cookies per person
and not on the outcome distributions, as the ratio of the
marginal effect of treating an extra cookie to the effect of
treating all cookies is the same for both outcome distribu-
tions in this simulation.8 Treatments that appear to give a
positive return on investment on the basis of a cookie-based
test can in fact be substantially more beneficial than the
cookie test suggests.

To calculate statistical power, we repeatedly conduct the
simulations described above and for each simulation calcu-
late the t-statistic associated with the null hypothesis of no
difference in means between test and control outcomes, us-

5In practice most advertisers use an unbalanced treatment
assignment of 0.95, giving less power in both cookie and
people-level tests.
6In terms of the model of Section 2, for person i, Yi,j,n is the
sum of the per-cookie outcomes: Yi,j,n =

∑n
k=1 Ti,kyi,k,j .

7The assumption that a single cookie is assigned the entire
person-level outcome is a reasonable approximation in our
data. In the sign-up experiment, it necessarily holds, as
users cannot create duplicate accounts. In the spending ex-
periment, the total number of transactions is just 4% higher
than the total number of buyers, implying that relatively few
buyers are transacting multiple times on different cookies.
8We use m = 1 billion people to estimate mean spending for
the treated and untreated cookies and people.



ing the standard form of the t-test for groups with unequal
variances. We reject at a 5% one-sided level. We draw
outcomes for all people 10,000 times, producing 10,000 t-
statistics. The test’s power is calculated as the fraction of
simulations for which the t-statistic lies in the rejection re-
gion (i.e. above 1.64).9

Figure 4: Power And Number of Cookies Per Person
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Before using the Atlas cookie data, it is useful to quantify
exactly how much test precision is affected by the number
of cookies per person. Figure 4 shows how statistical power
decreases as a function of the number of cookies per person,
with 250,000 people in the sign-up experiment and 2.5m
people in the spending experiment. With one cookie per
person, the people and cookie tests are equivalent. Power
in the cookie tests declines sharply as the number of cookies
per person increases, while it remains constant in the people
tests. With two cookies, cookie-based test power drops by
41% in the sign-up experiment and 59% in the spending
experiment. With five or more cookies per person, cookie-
based tests are so underpowered as to be of rather limited
value.

Next, we incorporate the data on the actual distribution of

9The t-statistics are slightly different in the people and
cookie cases, as the relevant number of observations to be
used in constructing the statistics should be either the num-
ber of people or number of cookies, as appropriate.

cookies per user. Figure 5 shows how the power of cookie-
and people-based test compare for different sample sizes, and
for the two outcome distributions. Both tests are consistent,
in that the null hypothesis will be rejected with probability
approaching one as sample sizes increase. However for a
fixed sample size, cookie-based tests are considerably less
powerful than people-based tests. With 2.5 million people
in the spending experiment, for example, the null hypothesis
will be correctly rejected in 65% of people-level experiments,
but only 36% of cookie-level experiments. With 125,000
people in the sign-up experiment, the corresponding figures
are 82% and 49%.

Figure 5: Power And Sample Size
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Figure 6 gives a different perspective on statistical power. It
shows the factor by which the number of people in a cookie-
level test must exceed the number of people in a people-level
test, to achieve the same power. Equivalently, the figure
describes how much larger sample sizes must be to make
up for the precision lost in cookie testing. These relative
sample sizes are shown as a function of sample size in the
people-level test. Overall, cookie tests need to have 2 to 3
times as many people as people tests to achieve the same



precision.10

Figure 6: Relative Sample Sizes Required, Cookies
vs. People
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One implication of Figure 6 is that the data on the 51% of
people with more than one cookie, and the 85% of cookies
they contribute, are of negative value in these simulations.
The experimenter would be better off having no data at all
on these people. In a 200,000 person cookie-level test, about
100,000 people have a single cookie. If it were possible to
restrict attention just to this group’s data, this would be a
people-level test with 100,000 people. From the results of
Figure 6, this is equal in power to a cookie-level test with
over 200,000 people, and so more powerful than the initial
sample size of 200,000.

10We compute cookie-level power as a function of sample
size, as required for this calculation, by linearly interpolat-
ing through the points in Figure 5. For sample sizes beyond
about 400,000 people in the sign-up simulation, the numeri-
cal imprecision of this interpolation becomes more substan-
tial as statistical power asymptotes to 1.

5. CONCLUSION
Our theory and simulations calibrated with actual adver-
tising effectiveness and cookie data suggest that imperfect
treatment assignment can substantially reduce the differ-
ences in average outcomes between test and control groups,
and may present a serious obstacle to learning about the true
underlying treatment effects in online experiments. This
highlights the importance for researchers using cookies and
other proxies for randomized experiments to think carefully
about the bias this might be introducing for person-level
causal inference.

Although the level of randomization is often out of the exper-
imenter’s control, in the context of advertising effectiveness
studies, some platforms report effectiveness at the user level
instead of the cookie level and advertisers should keep this
in mind when comparing results between platforms. Given
similar effect sizes between platforms, more budget must be
allocated to cookie-level ad systems to find statistically sig-
nificant sales lifts.

Some extensions may provide further insight into how se-
rious this problem is–for example, relaxing the assumption
of independence of treatment and spending per cookie, or
allowing more than one person to be associated with a sin-
gle cookie. Follow up work could also look at the selection
bias induced by observing some users more often in a cookie
study because they use more devices or have more cook-
ies for other reasons. Some of our results are dependent
on constant or linear marginal treatment effects and further
research could empirically verify these assumptions for dif-
ferent types of experiments.
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