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Abstract

This paper presents an incomplete markets business cycle model in which idiosyn-

cratic risk varies over time in accordance with recent empirical findings. The model’s

income process is calibrated to match the cyclicality of earnings risks documented by

Guvenen et al. (2014). Market incompleteness raises the volatility of aggregate con-

sumption growth by 43 percent relative to a complete markets benchmark. Half of this

increase is due to the time-varying precautionary saving motive that results from changes

in idiosyncratic risks over the cycle. Idiosyncratic risk spiked during the Great Recession

and this contributed 2.0 percentage points to the decline in aggregate consumption.
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1 Introduction

Recent empirical studies using large panel datasets on individual earnings portray recessions

as times when households face substantially larger downside risks to their earnings prospects.

Moreover, these risks appear to have highly persistent effects on household earnings. Davis and

von Wachter (2011) show that earnings losses from job-displacement are large, long-lasting,

and roughly twice as large when the displacement occurs in a recession as opposed to an

expansion. The differential impact of displacement in a recession is evident even twenty years

after the event occurred. Similarly, Guvenen et al. (2014) show that the distribution of five-

year earnings growth rates displays considerable pro-cyclical skewness meaning severe negative

events are more likely in a recession. According to this empirical evidence, recessions are times

when workers face considerably more risk to their long-term earnings prospects.

The purpose of this paper is to explore how the cyclical dynamics of these risks alter the

precautionary savings motive and the dynamics of aggregate consumption over the business

cycle. To do so, I develop a general equilibrium business cycle model with uninsurable idiosyn-

cratic shocks to earnings. One of the aggregate shocks that drives the model is a risk shock

that alters the distribution of risks that households face. This shock results in a time-varying

precautionary savings motive and serves as an additional source of aggregate consumption

fluctuations.

I find that time-varying idiosyncratic risk has a quantitatively substantial effect on the dy-

namics of aggregate consumption. In particular, the standard deviation of quarter-to-quarter

aggregate consumption growth is 43 percent larger than it is in a complete markets version of

the model. 21 percentage points of this difference are due to the cyclicality of idiosyncratic

earnings risk. Most of the remaining difference is due to the greater sensitivity of consumption

to income among low-wealth households.

In calibrating the model, I construct a quarterly time series for risk shocks that best fits the

observed distribution of earnings growth rates reported by Guvenen et al. (2014). According to

my constructed series for risk shocks, the Great Recession brought about a large spike in risk to

household earnings. I use the model to simulate the consumption response to the deterioration

of labor market conditions in the Great Recession including the changes in idiosyncratic risk.

The model predicts a 3.7 percentage point drop in aggregate consumption between the NBER
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peak and the the first quarter of 2009, which is close to the 3.6 percent drop in non-durable

and services consumption in the data. I find that 2.0 percentage points of this drop are due to

the increase in idiosyncratic earnings risks. While the model predicts that idiosyncratic risk

lead to large swings in aggregate consumption during the Great Recession, it also predicts

that the cross sectional dispersion of consumption remained almost completely unchanged.

This prediction is in line with the empirical findings of Perri and Steinberg (2012). In this

way I demonstrate that evidence of a constant cross-sectional distribution does not preclude

the possibility that idiosyncratic risk and distributional shocks played an important role in

aggregate dynamics.

Krusell and Smith (1998) show the business cycle dynamics of a heterogeneous agent

version of the neoclassical growth model are generally close to those of the representative

agent economy, however, when the model matches the distribution of household net worth

aggregate consumption shows an increased correlation with aggregate income. This result is

the reflection of the greater sensitivity of consumption to income among low wealth households.

Market incompleteness can affect aggregate consumption through an alternative channel

besides hand-to-mouth behavior. In particular, if the uninsurable risk that households face

varies over time, there will be a time-varying precautionary savings motive that can generate

additional fluctuations in aggregate consumption that are disconnected from aggregate income.

The existing literature that studies the contribution of uninsurable idiosyncratic income risk

to the business cycle has focussed on fluctuations in the unemployment rate as a source of

time-varying uninsurable risk (Krusell and Smith, 1998; Challe and Ragot, 2013; Ravn and

Sterk, 2013; Challe et al., 2015; Krueger et al., 2015). However, as unemployment is generally a

short-lived shock to earnings it is easily smoothed through self-insurance and only households

with very low levels of savings will alter their consumption behavior in a meaningful way

when the unemployment risk changes. One response is to make unemployment more painful

by limiting the self insurance that households have. Challe and Ragot (2013), Ravn and Sterk

(2013), and Challe et al. (2015) pursue this approach by calibrating their models such that

the majority of households have little or no wealth. This approach could be justifiable on the

grounds that much of household wealth takes the form of illiquid assets that cannot easily be

used for consumption smoothing.

2



The contribution of this paper is to introduce a rich income process that incorporates

cyclical variation in the risks to long-term earnings prospects as documented by Guvenen

et al. (2014). As these earnings shocks are persistent they are more difficult to self-insure and

even households with large amounts of savings will respond to changes in the distribution of

earnings risks. Therefore, this model is able to match the distribution of net worth and still

predict substantial changes in the dynamics of aggregate consumption due to changes in the

precautionary savings motive.

The nature and source of cyclical changes in the earnings process are still somewhat poorly

understood.1 This paper gives a particular interpretation to the facts on the distribution of

earnings changes in expansions and recessions—these changes in income are uninsured and

unforeseen risks—and then goes on to consider the implications for aggregate consumption

dynamics. Other implications of this type of risk have also been studied. For example,

Constantinides and Duffie (1996), Storesletten et al. (2007), Constantinides and Ghosh (2014)

and Schmidt (2015) investigate the asset pricing implications of this type of risk. The welfare

cost of business cycles in the presence of these risks have been analyzed by Storesletten et al.

(2001), Krebs (2003, 2007), and De Santis (2007). However, it does not appear that the

consequences for the business cycle dynamics of aggregate quantities have been studied in the

literature.

This paper is also related to the recent literature that investigates the role of uncertainty

in business cycle fluctuations. In particular, Basu and Bundick (2012), Leduc and Liu (2012),

and Fernández-Villaverde et al. (2013) emphasize the precautionary savings effect that follows

an increase in uncertainty surrounding aggregate conditions such as preferences, technology

or taxes. In contrast to those studies, the focus here is on cyclical variation in microeco-

nomic uncertainty faced by heterogeneous households. Other studies analyze the impact of

cyclical microeconomic uncertainty faced by firms. This work is motivated by evidence of

countercyclical dispersion in firm-level productivity, sales growth rates, and other measures

of business conditions.2 Bloom (2009), Bloom et al. (2012) and Bachmann and Bayer (2013)

1Davis and von Wachter (2011) show that structural models of the labor market have difficulty explaining
the size and cyclicality of present-value earnings losses after job displacement. Huckfeldt (2014) presents a
model that performs better but still struggles to explain the strong cyclicality. Jarosch (2014) shows that job
insecurity at the bottom of the job ladder can explain long-term earnings losses for displaced workers, but he
does not address the cyclicality of these earnings losses.

2See Bloom (2014) for a review of the evidence.
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study the interaction of this microeconomic uncertainty with non-convex adjustment costs for

investment and hiring. Arellano et al. (2010) and Gilchrist et al. (2014) explore the interaction

of firm-level risks and financial frictions. This paper contributes to this literature by studying

the importance of variations in the microeconomic uncertainty surrounding household incomes

for aggregate consumption.

The paper is organized as follows: Section 2 presents the model. Section 3 discusses the

choice of parameters and the construction of the time series for idiosyncratic risk. Section 4

presents the results on the impact of household heterogeneity and time-varying earnings risks

on the dynamics of aggregate consumption. Finally, the paper concludes with Section 5.

2 Model

I analyze a general equilibrium model with heterogeneous households and aggregate uncer-

tainty. At the aggregate level, the model is similar to that of Krusell and Smith (1998).

At the microeconomic level, the model incorporates time-varying idiosyncratic risk with an

income process similar to the one estimated by Guvenen et al. (2014).

2.1 Population, preferences and endowments

The economy is populated by a unit mass of households. Households survive from one period

to the next with probability 1 − ω and each period a mass ω ∈ (0, 1) of households is born

leaving the population size unchanged. At date 0, a household seeks to maximize preferences

given by

E0

∞∑
t=0

βt(1− ω)t
C1−γ
t

1− γ
,

where Ct is the household’s consumption in period t. I allow for different rates of time pref-

erence across households in order to generate additional heterogeneity in wealth holdings.

Households can be either employed (n = 1) or unemployed (n = 0) and transition between

these two states exogenously. Let λ and ζ be the job-finding and -separation rates, respectively.

Let u ∈ [0, 1] be the unemployment rate.

If employed, a household exogenously supplies ey efficiency units of labor, where y is the
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household’s individual efficiency. The cross-sectional dispersion in earnings could be due to

differences in wage or due to differences in hours. For lack of a better term, I will refer to y

as “skill.” This skill evolves according to

y = θ + ξ,

θ′ = θ + η′,

where ξ is a transitory shock distributed N(µξ, σξ). I choose the constant parameters of

the distribution for ξ such that E[eξ] = 1. η is a permanent shock to the individual’s skill.

Assuming that this shock is permanent as opposed to persistent has the advantage that it

allows one state variable to be eliminated from the household’s decision problem as described

in Appendix C.3 This type of income process is known to fit longitudinal earnings data well

as shown by MaCurdy (1982) and Abowd and Card (1989).

The permanent shock, η, is drawn from a time-varying distribution the tails of which vary

over the business cycle in such a way to generate pro-cyclical skewness as documented in

the data by Guvenen et al. (2014). I assume η is drawn from a mixture of three normals.4

Specifically

η′ ∼


N(µ1,t−1, ση,1) with prob. p1

N(µ2,t, ση,2) with prob. p2

N(µ3,t, ση,3) with prob. p3,

where
∑3

j=1 pj = 1. The time-varying parameters µ1,t, µ2,t, and µ3,t will, respectively, control

the center, right tail, and left tail of the distribution. I assume that these distributional

3See also Carroll et al. (2013).
4Guvenen et al. (2014) estimate a parametric income process in which the shocks are drawn from a mixture

of two normals with the distribution changing discretely between expansions and recessions. Here I assume
that the business cycle is driven by continuous shocks rather than discrete regime switches and in this context
I found that a mixture of three normals is better able to generate the cyclical skewness observed in the data
than a mixture of two normals.

5



parameters are driven by a single stochastic process, xt, according to

µ1,t = µ̄t (1)

µ2,t = µ̄t + µ2 − xt (2)

µ3,t = µ̄t + µ3 − xt. (3)

An increase in xt moves the tails of the distribution to the left relative to the center of the

distribution and will generate negative skewness in the distribution. µ̄t is a normalization such

that E[eη] = 1 in all periods. This normalization in turn implies that E[eθ] = 1 given suitable

initial conditions.5 Therefore movements in xt only affect the distribution of income and are

not first moment shocks. The details of this normalization appear in Appendix B.

The model assumes that agents learn in period t what the distribution of shocks will be

between t and t+ 1. This is an important point because it allows the households time to react

to this news about risk.

As the three idiosyncratic labor income shocks—θ, ξ and n—are independent, using a law

of large numbers the aggregate labor input is

L̄ ≡ E
[
eθ+ξn

]
= E

[
eθ
]
E
[
eξ
]

(1− u) = 1− u.

It would be natural to assume that there is a correlation between shocks to skill and shocks

to employment. I have experimented with including such a correlation and found that it has

little impact on the results. Intuitively, if households are well self-insured against unemploy-

ment risks then the existence of this risk is not important to their consumption behavior and

therefore the correlation of this risk with other risks is not important.

It is important that the model includes mortality risk as this allows for a finite cross-

sectional variance of skills despite the fact that innovations to skills are permanent. When a

household dies, it is replaced by a newborn household with no assets and θ = 0. The unem-

ployment rate among newborn households is the same as prevails in the surviving population

5To verify this observe that

E[eθ
′
] = (1− ω)E[eθ+η

′
] + ω = (1− ω)E[eθ]E[eη

′
] + ω = (1− ω)E[eθ] + ω,

which implies that E[eθ] converges to one.
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at that date. A household’s rate of time preference is fixed throughout its life and drawn

initially from a stable two-point distribution.

2.2 Technology, markets, and government

A composite good is produced out of capital and labor according to

Ȳ = ezK̄αL̄1−α (4)

where z is an exogenous total factor productivity (TFP) and aggregate quantities are denoted

with a bar. Capital depreciates at rate δ and evolves according to

C̄ + K̄ ′ = Ȳ + (1− δ)K̄.

The factors of production are rented from the households each period at prices that satisfy

the representative firm’s static profit maximization problem

W = (1− α)ezK̄αL̄−α (5)

R̃ = αezK̄α−1L̄1−α + 1− δ. (6)

Here R̃ is the return on capital and W is the wage paid per efficiency unit. Households save

in the form of annuities and the return to surviving households is R ≡ R̃/(1 − ω). I assume

that savings must be non-negative due to borrowing constraints. Given the income process,

in which the shocks to log-income are unbounded, the zero borrowing limit is the natural

borrowing limit.

The data reported by Guvenen et al. (2014) refer to pre-tax earnings. As taxes and transfers

provide insurance against idiosyncratic risks it is important to incorporate this insurance

into the model. Let the net tax payment of an employed individual with earnings Wey be

Wey − (1 − τ)We(1−by)y. The parameters τ and by control the level and progressivity of

the tax, respectively. For incomes less than (1 − τ)1/by the average tax rate is negative and

the household receives a transfer from the government. Heathcote et al. (2014) discuss the

properties of this type of tax system in detail.
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Unemployed households receive taxable unemployment insurance payments with a post-

tax replacement rate bu. The post-government income of a household with employment status

n ∈ {0, 1} and skill y is therefore

(1− τ)We(1−by)y[n+ bu(1− n)]. (7)

I assume the level of the tax system, τ , is adjusted to balance the budget of the tax and

transfer system period by period, which requires

1− τ =
1− u

Q(1− u+ buu)
(8)

where Q ≡ E
[
ey(1−by)

]
reflects the fact that a progressive income tax raises more revenue when

incomes are more dispersed. As explained in Appendix A, Q evolves according to

Q′ = (1− ω)QQ̃η′ + ωQ̃ξ (9)

where Q̃ξ ≡ E
[
e(1−by)ξ

]
and Q̃η ≡ E

[
e(1−by)η

]
.

2.3 Aggregate shock processes

I assume the following processes for aggregate shocks. TFP evolves according to

z′ = ρzz + ε′z. (10)

For the labor market, I assume that aggregate shocks occur at the start of a period and

labor market outcomes in period t reflect the shocks realized at date t. I assume that the

unemployment rate and job-finding rate follow AR(1) processes with correlated innovations.

Specifically,

û′ = (1− ρu)û∗ + ρuû+ ε′u (11)

λ̂′ = (1− ρλ)λ̂∗ + ρλλ̂+ ε′λ, (12)
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where û is the inverse-logistic transformation6 of the unemployment rate and λ̂ is similarly

defined. û∗ and λ̂∗ are constant parameters that determine the mean unemployment and job-

finding rates, respectively. The job-separation rate, ζ, is determined implicitly by the law of

motion

u′ = (1− λ′)u+ ζ ′(1− u). (13)

The process for skill risk, x, follows

x′ = ρxx+ εx, (14)

where the innovations, εx, are correlated with εu and ελ.

2.4 The household’s decision problem

The individual state variables of the household’s decision problem are its cash on hand, call

it A, its permanent skill, θ, and its employment status, n. Households also differ in their

rates of time preference although these are not state variables as they are fixed within a

household’s lifetime. The aggregate states are S ≡ {z, λ, u−1, x,Γ}, where Γ is the distribution

of households over the state space from which one can calculate aggregate capital, K̄, Q, and

the unemployment rate, u. The lagged unemployment rate, u−1 is needed in order to calculate

the job-separation probability from equation (13). Appendix C describes how the model can

be normalized to eliminate some of these state variables. The household’s decision variable is

end-of-period savings, K ′.

The household’s decision problem is then

V (A, θ, n, S) = max
K′≥0

{
(A−K ′)1−γ

1− γ
+ β(1− ω)E [V (A′, θ′, n′, S ′)]

}

subject to

A′ = R(S ′)K ′ + (1− τ(S ′))W (S ′)e(1−by)(θ+η′+ξ′)[n′ + bu(1− n′)].
6That is, u and û are related according to u = 1/(1 + e−û).
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The prices in the household’s problem depend on the aggregate state S through (5) and (6).

The law of motion for the aggregate state is given by (10), (11), (12), (14), u′−1 = u, and a

law of motion for the distribution of idiosyncratic states, Γ′ = HΓ(S, u′, λ′).7

2.5 Equilibrium

Let F (A, θ, n, S) be the optimal decision rule for K ′ in the household’s problem. Aggregate

savings are

K ′ =
∑
n

∫
A

∫
θ

F (A, θ, n, S) Γ(dA, dθ, n), (15)

Given a set of exogenous stochastic processes for z, u, λ, and x, a recursive competitive

equilibrium consists of the law of motion for the distribution, HΓ, household value function,

V , and policy rule, F , and pricing functions W and R. In an equilibrium, V and F are optimal

for the household’s problem, R = R̃/(1 − ω) and W satisfy (5)-(6), and HΓ is induced by F

and the idiosyncratic income process.

3 Parameters and computation

I begin by describing the calibration of the income process before turning to the other param-

eters of the model and finally the computational methods.

3.1 The idiosyncratic income process

Calibrating the model requires an empirical counterpart to the variable xt in the model, which

changes the distribution of idiosyncratic risk and I construct this using a simulated method

of moments procedure. The empirical moments describe the year-by-year distribution of one-

year, three-year, and five-year earnings changes reported by Guvenen et al. (2014). While the

Guvenen et al. data is available at an annual frequency, business cycles are typically analyzed

at the quarterly frequency. Therefore I use the Guvenen et al. data to construct a quarterly

7HΓ depends on the labor market shocks in the next period as Γ′ is the distribution of households after
labor market transitions have occurred.
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Symbol Description Value

γ Risk aversion 2
α Capital share 0.36
δ Depreciation rate 0.02
ρz Persistence of TFP 0.96
σz St. dev. of TFP innovation 0.0081
ω Mortality rate 0.005
bu Unemployment insurance replacement rate 0.30
by Tax-and-transfer progressivity 0.151
βlow Discount factor 0.9703
βhigh Discount factor 0.9892

µ2 Mean of right tail of η distribution 0.3071
µ3 Mean of left tail of η distribution -0.2508
σ1,η St. dev. of center of η distribution 0.0143
σ2,η St. dev. of right tail of η distribution 0.1041
σ3,η St. dev. of left tail of η distribution 0.1041
σξ St. dev. of transitory income shock 0.1580
p1 Weight of center of η distribution 0.8948
p2 Weight of right tail of η distribution 0.0526
p3 Weight of left tail of η distribution 0.0526

Table 1: Calibrated parameter values.
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time series for xt. The assumption underlying my approach is that developments in the labor

market drive both xt and observable indicators of labor market conditions that are available

at a quarterly frequency. I use four such indicators: the ratio of short-term unemployed

(fewer than 15 weeks) to the labor force, the same ratio for long-term unemployed (15 or more

weeks), an index of average weekly hours, and the labor force participation rate. Note that the

employment-population ratio can be expressed as a function of these variables. I then posit

that xt is a linear combination of these four series with factor loadings to be determined. For

a given set of factor loadings I can construct a quarterly sequence for xt from the quarterly

labor market indicators. In addition to the factor loadings, I simultaneously search for values

for p2, p3, µ2, µ3, σ1,η, σ2,η, σ3,η, and σξ while imposing the restrictions p3 = p2 and σ2,η = σ3,η.

For each candidate parameter vector, I simulate the income process for a panel of house-

holds including employment and mortality shocks and form an objective function that penalizes

the distance between the model-implied moments and the empirical moments. The moments I

seek to match are the year-by-year values for the median, 10th percentile and 90th percentile

of the one-year, three-year and five-year earnings growth distributions. The Guvenen et al.

data range from 1978 to 2011 and in total there are 279 moments.

To simulate the model, I need estimates of λt and ζt. I estimate these from the relationships

ust = ζt(1− ut−1) (16)

ut − ust = (1− λt)ut−1, (17)

where ut is the unemployment rate and ust is the short-term unemployment rate measured

as those with durations less than 15 weeks. I simulate quarterly data and then aggregate

to annual observations to conform to the Guvenen et al. data. Appendix B contains further

discussion of the implementation of this method.

The resulting parameters appear in Table 1. Figure 1 shows the model’s fit to the earnings

growth distribution at one-year, three-year and five-year horizons. The model does a good job

of matching the moments of the three-year and five-year earnings changes. While the model

fails to generate the volatility of the 10th and 90th percentiles for one-year changes, this is

not too worrisome as the three-year and five-year earnings changes are a better reflection of
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Figure 1: Simulated (dark line) and empirical (light line) moments of the earnings process.
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Figure 2: PDF for distribution of η.

long-term earnings risks that are of particular interest here.

The left panel of Figure 2 shows the PDF of η for x = 0. There is a large mass near zero

and dispersed tails. The right panel of Figure 2 shows the effect of an increase in x to 0.2 on

the distribution of η now in terms of the log density to emphasize the tails of the distribution.

The negative skewness caused by x = 0.2 is evident as the left tail now shifts away from the

central mass and the right tail compresses towards it.

The left panel of Figure 3 shows the time series for xt that is generated by this procedure.

One can see that there are sharp spikes in this measure of idiosyncratic risk during recessions

with an especially large spike in the Great Recession. The correlation of this series with short-

term unemployment is 0.8. As short-term unemployment is high when workers are flowing into

unemployment during recessions one interpretation is that labor market events that lead to

flows into unemployment are also associated with negatively skewed innovations in permanent

skill. This interpretation is consistent with the findings of Davis and von Wachter (2011)

who present evidence that job layoffs are associated with large and long-lasting reductions in

earnings and that long-term earnings losses are roughly twice as large for layoffs that occur in

recessions.

My finding that idiosyncratic risk is closely related to short-term unemployment is sup-

ported by the work of Schmidt (2015). Schmidt (2015) also creates a quarterly-time series of

idiosyncratic risk based on the Guvenen et al. (2014) data. He uses annual observations of
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Figure 3: Empirical measure of xt and Kelley’s skewness of five-year earnings changes for
model (dark line) and data (light line).

the skewness of earnings growth rates and then interpolates this skewness index to a quarterly

time series for the skewness of idiosyncratic shocks using 109 macroeconomic time series. He

finds that the resulting skewness index is closely related to initial claims for unemployment

insurance, which is similar to my finding that idiosyncratic risk is highly-correlated with the

number of short-term unemployed. Schmidt (2015) also finds that idiosyncratic risk reached

unprecedented levels in the Great Recession.

The right panel of Figure 3 shows a measure of skewness in the five-year earnings changes

for the model and the data. Kelley’s skewness is Guvenen et al.’s preferred measure of skewness

because it is less sensitive to extreme observations. It is calculated from the 10th, 50th and

90th percentiles of the distribution as ((P90−P50)− (P50−P10))/(P90−P10). The model

slightly understates the volatility in this measure of risk.

To parameterize the aggregate shock processes, I estimate AR(1) processes for the three

series ût, λ̂t, and xt. Given these estimates, I calculate the covariance matrix of the residuals

and perform a Cholesky decomposition of the covariance matrix yielding the following system

[
û′ + 2.7926, λ̂′ − 0.7679, x′

]T
= D

[
û+ 2.7926, λ̂− 0.7679, x

]T
+ ε′,

where D is a diagonal matrix with diagonal elements [0.9650, 0.9457, 0.7887] and the decom-
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posed covariance matrix of ε is
0.0033 0 0

−0.0626 0.0563 0

0.0321 0.0259 0.0576

 .

3.2 Other parameters

The coefficient of relative risk aversion is set to 2, the depreciation rate is set to 2 percent per

quarter. I set the persistence of the productivity process to 0.96 in line with typical estimates

for the US. The labor share is set to 64 percent and the mortality risk is set to 0.5 percent per

quarter for an expected working lifetime of 50 years.

I set the unemployment insurance replacement rate, bu, to 0.3, which is in line with replace-

ment rates for the United States reported by Martin (1996). The skill insurance parameter by

is set to 0.151, which is the progressivity of the tax-and-transfer system estimated by Heath-

cote et al. (2014) to fit the relationship between pre- and post-government income in PSID

data.8

I assume that there are two values of β in the population with 80 percent of the population

having the lower value and 20 percent having the higher value. I choose these values, and the

volatility of the productivity process to match the following moments in an internal calibration:

a capital-output ratio of 3.32, the wealth share of the top 20 percent by wealth equal to 83.4

percent of total wealth (see Diaz-Gimenez et al., 2011), and the standard deviation of log

output growth equal to 0.0084. The resulting parameter values appear in Table 1.

The model generated distribution of wealth appears in Table 2. The baseline model does

an excellent job of matching the data all along the Lorenz curve including the holdings of

the very rich. That the model can generate extremely wealthy households is partially due to

preference heterogeneity as shown by the comparison with the second row of the table in which

8Those authors discuss the fact that the tax-and-transfer system became more progressive during the Great
Recession. Whether or not this time-varying insurance is important depends on how constrained households
are. If households are unconstrained, the precautionary savings motive is driven by changes in the households
entire future earnings path. As the shocks to earnings that arise during the recession have long lasting effects,
what is particularly relevant is the degree of insurance over the household’s remaining lifetime as opposed
to the progressivity of the system at a point in time. However, if a substantial portion of households are
constrained, the degree of insurance at a point in time could be important in that transfers have a strong effect
on current consumption. I assume a constant tax-and-transfer system for simplicity.
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Share of wealth by quintile and held by richest Gini

1st 2nd 3rd 4th 5th 10% 5% 1%

Baseline 0.01 0.02 0.04 0.09 0.84 0.70 0.55 0.28 0.78
Common-β 0.03 0.08 0.12 0.19 0.57 0.42 0.30 0.14 0.52
Data 0.00 0.01 0.05 0.11 0.83 0.71 0.60 0.34 0.82

Table 2: Distribution of wealth. Data refer to net worth from the 2007 Survey of Consumer
Finances as reported by Diaz-Gimenez et al. (2011).

all households have the same rate of time preference. Even without preference heterogeneity,

however, some households accumulate large wealth positions by virtue of good luck in their

income draws coupled with a strong precautionary motive. In this regard the model has some

similarity to that of Castaneda et al. (2003) where large wealth positions result from large

income shocks. The model implies a distribution of earnings that is somewhat more dispersed

than found in the data. The Gini index for earnings is 0.69 as compared to 0.64 in the Survey

of Consumer Finances.

3.3 Computation

The model presents two computational challenges. First, the aggregate state of the model

includes the endogenous distribution of households over individual states. I use the Krusell-

Smith algorithm and replace this distribution with the first moment for capital holdings, K̄, the

unemployment rate, u, and the measure of income inequality, Q. The aggregate state is then

St = {z, u, K̄, λ, u−1, x,Q}, which is seven continuous variables. The second computational

challenge is the curse of dimensionality as the model includes seven aggregate states, three

individual states and four aggregate shocks. To compute solutions to the household’s problem

efficiently, I make use of the algorithm introduced by Judd et al. (2012) to construct a grid on

the part of the aggregate state space that the system actually visits. This approach reduces the

computational cost of having many state variables while still allowing for accurate solutions

by avoiding computing the solution for combinations of states that are very unlikely to arise

in practice. For individual cash on hand, I use an endogenous grid point method and place

100 grid points on K ′. Appendix D provides further discussion of the methods and presents

several accuracy checks.
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4 Results

I now assess the extent to which household heterogeneity and uninsurable idiosyncratic risk

alters the dynamics of aggregate consumption. To do so, I compare four economies: (i) the

baseline model described above; (ii) a version of the model with a distribution of idiosyncratic

risk that is stable over time (i.e. xt = 0 for all t); (iii) a version with a stable distribution

of risk and a single rate of time preference so there is less wealth heterogeneity; and (iv) a

complete markets version of the model. In the complete markets model, households have a

common discount rate and all shocks are insurable including mortality risk, which leads to the

standard Euler equation for aggregate consumption

C̄−γ = βEt
[
C̄ ′−γR̃′

]
as shown in Appendix E. For both the model without time preference heterogeneity and the

complete markets model I recalibrate the discount rate to match the capital-output ratio from

the baseline model.

4.1 Unconditional second moments

Table 3 displays standard deviations and correlations of output and consumption both in

log-levels and in growth rates.9 The standard deviation of consumption growth is 43 percent

larger in the baseline model than in the complete markets version of the model. This dif-

ference reflects all aspects of household heterogeneity. To isolate the effects of time-varying

idiosyncratic risk, one can compare the first and second rows, which show time-varying risk

raises the volatility of consumption growth and reduces the correlation of consumption and

income growth. The increase in consumption volatility is 21 percent of the complete markets

volatility. Moreover, time-varying idiosyncratic risk greatly reduces the correlation of output

growth and consumption growth. Both the increase in consumption volatility and the de-

crease in the correlation of output and consumption growth reflect the fact that time-varying

risk is an additional source of consumption volatility that is imperfectly related to changes in

9Simulated consumption growth is especially sensitive to sampling variation. For a fixed set of aggregate
shocks, I continue increasing the number of households in the simulation until the standard deviation of con-
sumption growth stabilizes. For the baseline model this required simulating a panel of 7.2 million households.
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aggregate income.

While consumption growth is more volatile when idiosyncratic risk is time-varying, the

volatility of the level of consumption is hardly affected. Output is somewhat more stable in the

baseline model than in the complete markets model although this finding is not specific to the

model with time-varying risk. To understand the effects on the volatilities of consumption and

output in levels, consider the following: if market incompleteness pushes consumption down

in a recession this creates more investment and raises output in the next period. In the next

period the effects of market incompleteness are ambiguous as precautionary savings motives

and borrowing constraints may be working to reduce consumption while the increase in income

is supporting consumption. While the effects on consumption are ambiguous, output falls by

less than the complete markets case as a result of the increase in the capital stock. In this

simple model these outcomes are direct implications of the aggregate resource constraint. One

way of addressing this co-movement problem is to introduce nominal rigidities and constraints

on monetary policy as in Basu and Bundick (2012) although I do not pursue that here.

The difference between the aggregate consumption dynamics generated by the baseline

and complete markets models is less pronounced if one compares levels as opposed to growth

rates. For example, the standard deviation of the level of consumption is only two percent

smaller than in the complete markets model. The level of consumption reflects low-frequency

developments and is dominated by movements in the capital stock and TFP. As the extent of

idiosyncratic risk appears to spike in recessions and quickly recede to more normal levels—as

shown in Figure 3—its effects on the level of consumption are short lived. These high-frequency

movements in aggregate consumption therefore are much more visible in the standard deviation

of consumption growth than they are in the volatility of the level of consumption.

Rows (ii) to (iv) of Table 3 are closely related to the three models presented in Krusell

and Smith (1998). Row (ii) is akin to their stochastic-β economy. Like Krusell and Smith,

I too find that consumption and income are more strongly correlated when the model has

a realistic degree of wealth inequality (comparing rows (ii) and (iii)). This follows from the

hand-to-mouth behavior of low-wealth households. However, the change in correlation is quite

small here being only a difference of 0.956 versus 0.947. Meanwhile, Krusell and Smith find

a much larger difference of 0.825 versus 0.701 between their stochastic-β model and their
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σ∆Ȳ σ∆C̄ σȲ σC̄ ρ∆Ȳ ,∆C̄ ρȲ ,C̄

Relative

(i) Baseline 0.834 0.420 1.427 3.987 3.112 0.797 0.948
(ii) Constant risk 0.834 0.359 1.221 3.983 3.117 0.982 0.956
(iii) Common-β, constant risk 0.833 0.307 1.045 4.165 3.099 0.984 0.947
(iv) Complete markets 0.837 0.294 1.000 4.384 3.162 0.987 0.948

(v) Data 0.845 0.520 1.770 4.353 2.982 0.540 0.919

Table 3: Standard deviations (σ) and correlations (ρ) of aggregate output (Ȳ ) and consumption
(C̄) growth rates (denoted with ∆) and log-levels. Standard deviations are scaled by 100.
Empirical moments for log-levels refer to real GDP and consumption of non-durables and
services linearly detrended.

baseline model. An important difference in my analysis is that the aggregate shocks are much

more persistent here and therefore consumption responds more strongly to income even in

the complete markets economy. If consumption already responds strongly to income, adding

constrained agents and hand-to-mouth behavior will not make such a large difference to the

overall dynamics of aggregate consumption. Comparing rows (iii) and (iv) shows that in the

absence of preference heterogeneity and time-varying risk, the dynamics of the incomplete

markets model are similar to the complete markets model. Therefore the conclusions from the

baseline economy in Krusell and Smith (1998) carry over to this model when income risks are

not time-varying and wealth inequality is modest.

The last row of Table 3 shows the empirical moments for comparison. The two principal

effects of time-varying idiosyncratic risk are to make aggregate consumption growth more

volatile and less correlated with aggregate income growth. In both of these dimensions, the

baseline model is closer to the data than any of the three benchmarks.

4.2 The Great Recession

In order to illustrate the implications of time-varying risk, I now assess its contribution to the

path of aggregate consumption during the Great Recession. I assume that the economy is in

its risky steady state10 in 2007:I. Beginning from this starting point, I simulate the economy

10Coeurdacier et al. (2013) define the risky steady state as the point to which the economy will converge if
the realization of aggregate shocks is zero for all periods. This concept differs from the deterministic steady
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Figure 4: Dynamics of aggregate consumption implied by labor market shocks in the Great
Recession. Data refer to per capita consumption of non-durables and services deflated with
the GDP deflator and detrended with the HP filter with smoothing parameter 1600.
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using the shocks taken from the data for the unemployment rate, u, the skewness of the income

shock process, x, and the job-finding rate, λ. The construction of the series for x and λ is

described in Section 3. Given the assumption about the initial condition in 2007:I, I then

use equations (11), (12), and (14) to solve for sequences of εu,t, ελ,t, and εx,t. I feed these

shocks into the model and report the path for aggregate consumption. I also perform the

same experiment with the three benchmark models considered in Table 3.

The top panel of Figure 4 plots the path for consumption starting in 2007:II and normalized

to one in 2007:IV, which was the peak of the expansion as defined by the NBER. In addition

to the four versions of the model, the figure also plots the data on aggregate consumption of

services and non-durable goods detrended with the HP filter.

In the data, consumption falls by 3.6 percent by 2009:I while the baseline model predicts

a 3.7 percent decline. Had idiosyncratic risks remained stable the decline at this date would

have only been 1.7 percent so time-varying risk reduced aggregate consumption by 2.0 percent

in this quarter. The deterioration in the distribution of risks had similar albeit smaller effects

during the latter part of 2008. From 2009:II onwards, the worst part of the recession had

passed in terms of idiosyncratic risk and time-varying risk played a smaller role.

There is also a notable difference between the predictions of the constant risk model and the

model that has both constant risk and a single rate of time preference. These differences reflect

the stronger relationship between consumption and current income in the model with time-

preference heterogeneity. In particular, with preference heterogeneity, the path for aggregate

consumption more strongly reflects the path for the unemployment rate, which rises steadily

throughout the recession and remains elevated in 2010 and 2011. Overall, the changes in the

distribution of idiosyncratic risks appears to have contributed substantially to the decline in

aggregate consumption at the start of the Great Recession when risk was elevated.

Perri and Steinberg (2012) document that there was little change in the cross-sectional

distribution of disposable income and consumption during the Great Recession. One might

ask whether the increase in income risk in my analysis creates a counterfactual increase in the

dispersion of consumption in the cross section. Figure 5 shows that the model is consistent

with the Perri-Steinberg observations by plotting the ratios of 90th and 50th percentiles and

state in that the agents believe that aggregate shocks can occur and this contributes to their precautionary
savings motive.
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of the 50th and 20th percentiles of consumption and of disposable income. The model predicts

that these ratios are nearly constant as in the data.

While the invariance of the consumption distribution can be partly attributed to insurance,

either self insurance or social insurance, this cannot be the whole explanation as the increase in

risk leads to a substantial drop in the average level of consumption. There are two ingredients

that are needed to understand how a change in risk can lead to a drop in aggregate consumption

without affecting the cross-sectional distribution of consumption. First, the cross sectional

distributions of income and consumption reflect the accumulation of past shocks and these

distributions are only marginally affected by one quarter’s innovations. As the aggregate

shock to risk is short-lived the changes in the distribution of risks do not accumulate to

substantial differences in the cross sectional distribution of levels. Second, the increase in risk

leads all households reduce their consumption more or less in unison as all households face

more risk and self insurance is not very effective in smoothing the persistent income shocks so

high-wealth households respond similarly to low-wealth households. As a result, the increase

in idiosyncratic risk leads to a substantial drop in aggregate consumption with little effect on

the cross sectional distribution of consumption.

5 Conclusion

The deterioration of labor market conditions in the Great Recession has renewed interest in the

effects of idiosyncratic risk on the business cycle. Changes in idiosyncratic risk will only have

strong effects on consumption if households are not self-insured against these risks. This paper

focusses on changes in the distribution of shocks to the persistent component of earnings. As

these shocks are highly-persistent they are difficult to self-insure and even wealthy households

are sensitive to changes in these risks. The results show that time-varying idiosyncratic risks

substantially raises the volatility of aggregate consumption growth and can explain the sharp

decline in aggregate consumption during the Great Recession.

This paper has focussed on the dynamics of aggregate consumption. At the aggregate

level, the model is a version of the flexible-price real business cycle model with exogenous

labor supply and as a result an increase in household savings necessarily leads to an increase
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Figure 5: Cross-sectional distribution of levels of consumption and disposable income. Ratios
of 90th and 50th percentiles and 50th and 20th percentiles.
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in investment and an increase in output in future periods. Moreover, there is no endogenous

feedback between the level of consumption and the extent of risk. Ravn and Sterk (2013) and

Challe et al. (2015) explore an amplification mechanism that runs from unemployment risk

to precautionary savings to reductions in aggregate demand and back to unemployment risk.

This same chain of events could be triggered even more powerfully by the type of time-varying

risk studied here. More generally, future work might incorporate cyclicality in the distribution

of persistent earnings shocks as an important source of fluctuations in aggregate consumption

in richer models of the business cycle.
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Appendix

A Dynamics of Q

To calculate the dynamics of the tax adjustment, Q, in equation (8) define

Q̃θ = E
[
eθ(1−b

y)
]

Q̃η = E
[
eη(1−by)

]
Q̃ξ = E

[
eξ(1−b

y)
]
,

where expectations are taken across agents. By the independence of the shocks one can write

Q = Q̃θQ̃ξ.

Q̃θ evolves according to

Q̃θ′ = (1− ω)E
[
e(θ+η′)(1−by)

]
+ ω

Q̃θ′ = (1− ω)Q̃θQ̃η′ + ω.

And as Q̃ξ is constant one can then write

Q̃θ′Q̃ξ = (1− ω)Q̃θQ̃η′Q̃ξ + ωQ̃ξ

Q′ = (1− ω)QQ̃η′ + ωQ̃ξ.

B Calibrating the idiosyncratic income process

This appendix provides additional information on the simulated method of moments procedure

used to select the parameters of the idiosyncratic income process, which is a variant of the

procedure used by Guvenen et al. (2014).
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Step 1. Calculate λt and ζt implied by the data. To do so, use the data on short-term

unemployment described in Section 3 and solve for λt and ζt from equations (16) and (17).

Step 2. Construct the four labor market indicators. I use four such indicators: the ratio

of short-term unemployed (fewer than 15 weeks) to the labor force, the same ratio for long-

term unemployed (15 or more weeks), an index of average weekly hours, and the labor force

participation rate.11 Note that the employment-population ratio can be expressed as a function

of these variables. I transform these four series to have mean zero and unit standard deviation

and then express the resulting series in terms of their principal components. Orthogonalizing

the series into principal components should not affect the results in theory, but it is helpful for

the numerical analysis. These quarterly data cover 1977:I to 2011:IV. Store these in a matrix

X.

Step 3. Guess a vector of parameters

Θ ≡ [φ1, · · · , φ4, σξ, µ2, µ3, ση,1, ση,2, ση,3, p2],

and φj is a loading on the jth labor market indicator. Also guess a sequence {mt}2011
t=1978. mt

is the quarterly growth rate of average income in year t, which shifts the entire distribution

from which η is drawn. While I simulate quarterly data, I assume the mean growth rate is

constant in each year as the observed data are at an annual frequency.

Step 4. Calculate µ1,t, µ2,t and µ3,t from Equations (1) - (3) with x = Xφ. The normalization

µ̄ is chosen to satisfy E[eη] = 1 and this requires

µ̄ = − log
(
p1 exp(σ2

η,1/2) + p2 exp(µ2 − x+ σ2
η,2/2) + p3 exp(µ3 − x+ σ2

η,3/2)
)
. (A1)

Step 5. Simulate employment, skill, and mortality shocks for a panel of households. The

employment transition probabilities are the values for λt and ζt computed in step 1. I simulate

10,000 individuals from 1977 through 2011. The results are not sensitive to the way the

11These data series constructed from the series with the following codes in the Federal Reserve Bank of St.
Louis FRED database: CLF16OV, UNEMPLOY, UEMP15OV, PRS85006023, and CIVPART.
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distribution of θ is initialized because the objects of interest are related to earnings changes as

opposed to levels. I initialize to a 7.5 percent unemployment rate, which is the value reported

by the BLS for January 1977.

Step 6. Compute the moments: aggregate the quarterly earnings observations to annual

observations, take 1-year, 3-year, and 5-year changes in log earnings. I use the following

moments for each year and for each of the 1-year, 3-year and 5-year changes: the median, and

the 10th and 90th percentiles. I express the 10th and 90th percentiles relative to the median

(i.e. 50 − 10 and 90 − 50). Doing so implies that any differences between the simulated and

empirical medians do not change the targets for the widths of the upper and lower tails.

Step 7. Compute the objective function: I take the difference between the simulated moment

and the empirical moment from Table A13 in Guvenen et al. (2014). The differences are

expressed as squared percentage differences except for the difference in medians, which is

expressed relative to the 90th percentile as in Guvenen et al. (2014).

Step 8. Adjust the guess in step 3 and repeat to minimize the objective function from step

7.

As an additional check on the calibrated income process, I compute the standard deviations

of the income changes and compared those to the results in Guvenen et al. (2014). Figure

6 shows that the simulated standard deviations are only slightly cyclical while those in the

data are more or less acyclical. The simulated standard deviations are somewhat below the

observed values.

C Equilibrium conditions

Due to the progressive tax system, a household with skill θi has income proportional to e(1−by)θi .

Given the formulation of the unemployment insurance scheme, this proportionality holds even

for unemployed households. This scaling along with homothetic preferences and permanent

shocks to θ can be exploited to eliminate one state variable. Specifically, use lower case letters
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Figure 6: Simulated and empirical standard deviations of the income process.

to denote household variables relative to e(1−by)θi :

ci =
Ci

e(1−by)θi
, ai =

Ai
e(1−by)θi

, k′i =
K ′i

e(1−by)θi
.

The household’s Euler equation and budget constraint are

C−γi,t ≥ βi(1− ω)Et
[
Rt+1C

−γ
i,t+1

]
Ci,t +Ki,t = RKi,t−1 + (1− τ)Wte

(1−by)yi,t [ni,t + bu(1− ni,t)].

and in terms of normalized variables these are

c−γi,t ≥ βi(1− ω)Et
[
e−γ(1−by)ηi,t+1Rt+1c

−γ
i,t+1

]
(A2)

ci,t + ki,t = Rki,t−1e
−(1−by)ηi,t + (1− τ)Wte

(1−by)ξi,t [ni,t + bu(1− ni,t)]. (A3)

The remaining equations needed to solve the model are: (1), (2), (3), (5), (6), (8), (9),

(10), (11), (12), (13), (14), and (A1). These are 13 equations in the 14 variables µ1,t, µ2,t, µ3,t,

µ̄t, z, u, λ, x, ζ, Q, τ , W , R, and K̄. Closing the model requires determining the aggregate
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capital stock K̄. Following Krusell and Smith (1998) this is done in two ways. In solving the

household’s decision problem, I make use of a forecasting rule

K̄ ′ = h(z, λ̂, û, û−1, x, K̄, Q). (A4)

I assume that h(·) is a complete second-order polynomial. In simulating the model, K̄ is

determined according to the household decision rules and the dynamics of the distribution of

wealth in line with equation (15). To express (15) in normalized terms, note that equations

(A2) and (A3) are independent of the household’s permanent income, e(1−by)θ, and so the

decision for K ′ will be proportional to this permanent income. In particular the household’s

savings policy rule can be expressed as

F (A, θ, n, S) = e(1−by)θf(a, n, S).

In normalized terms we then have

K̄ ′ =
∑
n

∫
A

∫
θ

e(1−by)θf
(
Ae−(1−by)θ, n, S

)
Γ(A, dθ, n). (A5)

The household’s value function can also be expressed in normalized terms. Define v as the

value function in normalized terms

v(a, n, S) ≡ V (A, θ, n, S)e−(1−γ)(1−by)θ.

The Bellman equation is then

e(1−γ)(1−by)θv(a, n, S) = e(1−γ)(1−by)θ max
k′≥0

{
(a− k′)1−γ

1− γ
+ β(1− ω)E

[
e(1−γ)(1−by)θ′v(a′, n′, S ′)

]}

so v(a, n, S) satisfies

v(a, n, S) = max
k′≥0

{
(a− k′)1−γ

1− γ
+ β(1− ω)E

[
e(1−γ)(1−by)η′v(a′, n′, S ′)

]}
. (A6)
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D Numerical methods

D.1 Method for Section 4

Overview I solve the model using the Krusell-Smith algorithm, which involves solving the

household’s problem for a given law of motion for the capital stock and updating this law

of motion through simulation and least squares curve fitting. For a given law of motion, I

solve the household’s problem using a projection method on a grid that is constructed from

simulated data generated by a guess of the model solution in the manner described by Judd

et al. (2012). This requires alternating between solving the decision problem given a grid and

simulating the solution and updating the grid. The steps of the algorithm are as follows:

1. Guess household decision rules and a forecasting rule for the aggregate capital stock.

2. Simulate the economy and record aggregate states.

3. Use simulated data to construct a grid for the aggregate state space.

4. Solve the household’s decision problem on the grid.

5. Simulate the economy and record aggregate states.

6. Use simulated data to construct a grid for the aggregate state space.

7. If the grid has converged then continue, otherwise return to step 4.

8. Update the forecasting rule with least-squares regression.

9. If the forecasting rule has converged stop, otherwise return to step 4.

Initial guesses A good initial guess is important to the success of this algorithm because

a poor guess will lead to a situation in step 5 where the economy is being simulated far from

the grid on which the problem was solved. In most cases I have found it sufficient to use the

linearized solution for the representative agent model as a starting point. The representative

agent’s policy rule can be simulated to provide the data for the initial grid and this policy

can also serve as a decent guess for the forecasting rule. The success of this guess is premised

on the difference between the representative agent and incomplete markets economies being
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limited. This is not the case for the baseline economy and this guess is not sufficient for this

case. Instead, I found it necessary to gradually build up an initial guess based on versions of

the model that are more similar to the representative agent model. I gradually lowered the

rate of time-preference of the less patient group to generate this guess.

Constructing the grid See Judd et al. (2012). I target a grid with 45 points. As I explain

below, I approximate functions of aggregate states with complete second-order polynomials.12

As the dimension of S is seven there are 36 terms in these polynomials that will be determined

by the value of the function on this grid.

Solving the household’s problem I solve the household’s problem using the endogenous

grid point method (Carroll, 2006). A household’s decision rule can be written in terms of cash

on hand relative to permanent income

F (A, θ, n, β, S) = e(1−by)θf (a, n, β, S) ,

where a = Ae−(1−by)θ. Even though it is not a state, I have included β among the household’s

states in order to be explicit about the different types of households whose decision rules must

be solved for. For given values of n ∈ {0, 1}, β, and aggregate state S, I approximate the

household’s savings function with a piece-wise linear function of 100 knots with more knots

placed at low levels of savings and k′[1] = 0. I fix a grid on end-of-period savings k′ such that

k′[j] = e(1−by)θf̂
(
a[j](n, β, S), n, β, S

)
,

where [j] indexes grid points and a[j](n, β, S) is the value of normalized cash on hand (relative

to e(1−by)θ) for which a household with states (n, β, S) saves k′[j]. n and β both take two

discrete values and there are 100 values of j so the algorithm must find 400 functions that

map S to particular values of a[j](n, β, S). I approximate each of these functions as a complete

second-order polynomial in S. As there are more grid points than terms in the polynomials

12The use of second-order polynomials should not be confused with a second-order perturbation approxima-
tion method. The projection method used here minimizes the residual in the model equations across a grid
over the state space as opposed to a perturbation method which uses information from the derivatives of the
model equations at a single point in the state space.
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approximating these functions, I update the coefficients of the polynomials by least-squares

projection.

To compute expectations with respect to aggregate shocks, I use the monomial rule with

2N nodes described by Judd et al. (2012). To compute expectations over idiosyncratic shocks I

use Gaussian quadrature. Of particular interest is the η shock because this has a time-varying

distribution. I use Gaussian quadrature with five points in each tail and three points for the

central mixture component. As it is only the means of the distributions that are moving with

x and not the variance of the mixture components, I construct fixed quadrature grids for each

component and shift their locations according to x. For the transitory shock, ξ, I use Gaussian

quadrature with three points.

Simulation and updating the law of motion In solving for the law of motion for the

aggregate capital stock, I simulate a panel of 100,000 households for 5,500 quarters and discard

the first 500 quarters. When drawing the idiosyncratic shocks I reduce the sampling error by,

at each period, requiring the cross-sectional average of idiosyncratic productivities to equal the

theoretical value of 1 within both the employed and unemployed groups. Using the simulated

aggregate capital stock, I update the law of motion with a least squares regression using the

same functional form as for the household decision rules (a complete second-order polynomial

in the aggregate state). For computing the moments in Table 3, I simulate a panel of 7.2

million households as described in Footnote 9.

Accuracy of the law of motion for capital To assess the accuracy of the law of motion

for the capital stock, Figure 7 shows a plot of the capital stock generated from simulating the

model and the approximate capital stock generated by repeatedly applying the approximate

law of motion for capital.13 This is one sample path of shocks for 1000 quarters and the

discrepancy between the two lines is the forecast error that the agents are making at different

horizons. One can see that the discrepancy is small even at forecast horizons of 1000 quarters.

The maximum absolute log difference between the two series is 0.0048 and the mean absolute

log difference is 0.0022. Another commonly-reported accuracy check is the R2 of the one-step

13As den Haan (2010) suggests, the sequence of shocks used to simulate the model for the accuracy check
differ from those used to calculate the approximate law of motion.
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Figure 7: Simulated aggregate capital stock with implied values from logK ′ = h(S).

ahead forecast, which is 0.999993.

Accuracy of the policy rules There are several sources of error in the approximate solu-

tion. First, there is the error introduced by the discrepancy between the forecasting rule and

the actual dynamics of the aggregate capital stock. Second, there are errors associated with

the projection method that arise between grid points when the function being approximated

is not of the same form as the approximating function.

To assess the accuracy of the solution, I calculate unit-free Euler equation errors.14 For

a given state of the economy, S, the distribution of wealth, the capital stock, and exogenous

variables are predetermined.

Pre-determined and exogenous: K, z, u, u−1, λ, x,Q,Γ.

Γ is generated by simulating a panel of households. I then use the computed solution to

14See Judd (1992) for an explanation of this accuracy check and the interpretation of the errors in terms of
bounded rationality.
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determine the household decision rules

Approx. solutions: a[j](n, β, S) ∀j, n, β.

Using these policy rules, one can compute the savings of each household and then aggregate

to find K ′ by integrating against Γ. For a given set of aggregate shocks one can then compute

S ′ from (9), (10), (11), (12), and (14). Given S ′ compute a[j](n, β, S
′). The Euler equation

error is then
β(1− ω)E

[
e−γ(1−by)η′R(S ′)c(a′, n′, β, S ′)−γ

]−1/γ

c(a, n, β, S)
− 1

where a′ = R(S ′)k′e−(1−by)η′ + (1− τ(S ′))W (S ′)e(1−by)ξ′ [n′ + bu(1− n′)] and the consumption

functions satisfy c+k′ = a. Here E represents an expectation over aggregate and idiosyncratic

shocks. For aggregate shocks, I use Gaussian quadrature with seven points in each dimension.

For idiosyncratic shocks I use the same Gaussian quadrature methods as used to solve the

model. For households who are borrowing constrained the Euler equation should not hold.

For these households consumption is determined from the borrowing constraint and there is

no Euler equation error.

Using these steps, I can compute the Euler equation error for a household with a particular

set of states (aggregate and idiosyncratic). To choose a set of aggregate states at which to

evaluate the errors, I simulate the economy for 1000 starting from the risky steady state and

repeat this 100 times for different sets of random shocks. This produces 100 points that can

be considered as draws from the model’s ergodic distribution over the aggregate state space.

For idiosyncratic states, I construct a fine grid on normalized cash on hand. Specifically, I use

1000 equally spaced points from 1/1000 to 1000.

Figure 8 summarizes the errors across points in the state space. Each of the panels cor-

responds to a set of discrete states for a household with the top row showing less patient

households and the bottom row more patient and the left column unemployed and the right

column employed. Each panel plots the mean and maximum absolute errors across the 100

aggregate states that were tested.
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Figure 8: Euler equation errors. Left column: unemployed; right column: employed; top row:
less patient; bottom row: more patient. Maximum and mean across 100 aggregate states.
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Solving for the policy rule under complete markets For the complete markets model

I use the algorithm described in Judd (1992) that iterates on the Euler equation. I again use

a complete second-order polynomial for the savings policy rule.

E Complete markets model

This appendix derives the representative agent Euler equation from the environment presented

in Section 2 augmented with a complete set of contingent securities. I assume that trade takes

place at an initial period prior to date 0 before any uncertainty has been resolved. I also

assume that all households have the same rate of time-preference. Like Shell (1971), I assume

that all current and future generations meet and trade in this initial period. Let Ii,t take the

value 1 if household i is alive in period t and zero if it is not. I will treat birth and death

as random events against which the household can insure. Specifically, let st be a history of

stochastic events up to date t the probability of which is πt(s
t). These stochastic events dictate

the evolution of all idiosyncratic as well as aggregate developments. Let pt(s
t) be the date-0

price of a unit of the final good at date t and history st. The household’s utility function is

∞∑
t=0

∑
st

βtπt(s
t)
C1−γ
i,t

1− γ
Ii,t(s

t).

Notice that a household only values consumption when it is living. In order to prevent them

from choosing negative values of consumption when not living I impose Ci,t(s
t) ≥ 0 for all i,

t, and st. The household’s present-value budget constraint is

∞∑
t=0

∑
st

pt(s
t)
[
Ci,t(s

t) +Ki,t+1(st)−Wt(s
t)`i,t(s

t)− R̃t(s
t)Ki,t(s

t−1)
]
,

where `i,t is the household’s endowment of efficiency units of labor. I assume that all households

are identical when trade occurs and each is endowed with an equal share of the initial capital

stock.
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The household’s Lagrangian is

L =
∞∑
t=0

∑
st

βtπt(s
t)
Ci,t(s

t)1−γ

1− γ
Ii,t(s

t)

− Ξi

∞∑
t=0

∑
st

pt(s
t)
[
Ci,t(s

t) +Ki,t+1(st)−Wt(s
t)`i,t(s

t)− R̃t(s
t)Ki,t(s

t−1)
]

+
∞∑
t=0

∑
st

βtπt(s
t)ψi,t(s

t)Ci,t(s
t),

where Ξi and ψi,t(s
t) are Lagrange multipliers. The first order condition with respect to

consumption is

βtπt(s
t)
[
Ci,t(s

t)−γIi,t(s
t) + ψi,t(s

t)
]

= pt(s
t)Ξi.

The complementary slackness condition is ψi,t(s
t)Ci,t(s

t) = 0. By symmetry, the Lagrange

multiplier Ξi is common across households. It follows that Ci,t(s
t)−γIi,t(s

t) + ψi,t(s
t) must be

common across households at a particular date and history. Suppose the household is living,

then consumption is positive and common across living households and ψi,t(s
t) = 0. If the

household is not living then ψi,t(s
t) takes the value of the marginal utility of consumption for

living households and consumption is zero. This establishes that all living households consume

the same amount regardless of their labor income history or age. Define C̄t(s
t) as the common

level of consumption for living households and note C̄t(s
t)−γ = Ci,t(s

t)−γIi,t(s
t) + ψi,t(s

t).

The first order condition with respect to Ki,t+1(st) is

Ξipt(s
t) =

∑
st+1|st

Ξipt+1(st+1)R̃t+1(st+1).
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Substituting for Ξipt(s
t) from above yields

Ci,t(s
t)−γIi,t(s

t) + ψi,t(s
t)

= β
∑
st+1|st

πt(s
t+1)

πt(st)

[
Ci,t+1(st+1)−γIi,t+1(st+1) + ψi,t+1(st+1)

]
R̃t+1(st+1)

C̄t(s
t)−γ = β

∑
st+1|st

eqt+1(st+1)πt(s
t+1)

πt(st)
C̄t+1(st+1)−γR̃t+1(st+1)

C̄−γ = βEt
[
C̄ ′−γR̃′

]
.
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