
Dynamic Bidding in Second Price

Auctions

Hugo Hopenhayn∗

UCLA

Maryam Saeedi†

The Ohio State University

December 21, 2015

Abstract

We develop a dynamic model of biddings in second price auctions where agents’

bidding opportunities and values follow a joint Markov process. We prove that equilib-

rium exists and is unique, providing a recursive representation and algorithm to solve

for bids as a function of time and values. The equilibrium bid equals the expected final

value conditional on being the bidder’s final one: either there is no further rebidding

opportunity or the bidder chooses not to increase this bid if given the option. This

results in adverse selection with respect to a bidder’s own future values, and as a re-

sult bids are shaded. This is true in spite of values being independent across bidders.

Under mild conditions, desired bids increase as time increases and the close of the auc-

tion is approached. Our results are consistent with repeated bidding and sniping, two

puzzling observations in eBay auctions. We estimate the model by matching moments

from eBay auctions and consider a series of counterfactuals.
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...if something went over my limit early on, I might re-evaluate my budget and

make a higher bid because I want the product. If it was the last few minutes I

wouldn’t have the time to consider if I can afford it.

...work + college = does not give you the right time you need to baby an auction.

The wife wanted to go to lunch right at the same time as the end of the auction,

so I decided to drop an early bid an hour before the close.

1 Introduction

Various auction mechanisms happen in a dynamic setting while most of the theoretical

models of auctions are static. For example, on eBay, auction listings usually last seven days.

Bidders can bid at anytime during the active time of the auction and also increase their bids

at any time prior to the end. As the first quote suggests, information might arrive during the

auction that can change a bidder’s value.1 As the second and third quotes suggest, bidders

are often inattentive and not have full control of the timing of future bids.2 In this paper, we

develop a general model of a dynamic second price auction that captures these two features.

In our model, agents’ bidding opportunities and values follow a joint Markov process.

At each time of arrival bidders observe a new signal and choose whether to place a bid or

increase a previous one. At the end of the auction, the winner is the highest bidder and

the price equal to the second highest bid. We characterize the equilibrium of this dynamic

auction.

While our theory applies generally to dynamic second price auctions, it is motivated by

bidding behavior in eBay auctions, which are close to second price auctions, where bidders

can place bids at any point in time up until the end of the auction. Several authors have

emphasized what seem to be anomalies in bidding behavior, such as submission of multiple

bids throughout the auction and sniping, i.e. a higher concentration of bids towards the end

1The first two quotes were obtained from a blog http://www.neowin.net/forum/topic/587154-why-
do-people-bid-so-early-on-ebay/. The second one is from http://www.kenrockwell.com/tech/ebay/early-
bidding.htm.

2Sniping programs are an incomplete solution as they do not condition bids on possible changes of
valuation that could arise from new information.
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of the auction, as we document below. This type of behavior cannot be rationalized through

the lens of a static model, where bidders should bid their valuation only once and at the time

of arrival to the auction. Our model provides a way to rationalize this behavior combining

two ingredients: new information can change the optimal bid throughout the auction and

the possible lack of a future opportunity to bid provides a rationale for early bidding.

In most of the paper, we consider the case of independent private values, where signals and

final values are independent across bidders, and where bidding times are exogenous.3 We

model this through a–otherwise unrestricted–joint Markov process of signals and bidding

times that are also sufficient statistics for the final expected value. Our process is very

general, allowing for instance that attentiveness to vary with value and nests the case where

a bidder bids at the end of the auction almost surely. We prove equilibrium is unique,

providing also a recursive representation and algorithm to solve for bids as a function of

time and values.

Bidding behavior has an intuitive analog to that of a standard second price auction.

Consider first the case where bidders have a single opportunity to bid prior to the end of

the auction. In that case, they bid their expected final value as in a standard second price

auction. In contrast, when bidders can return to the auction prior to its end with positive

probability and rebid, the expected value is modified taking into account that the current

bid will apply if the bidder chooses not to exercise that option. The equilibrium bid equals

the expected final value conditional on being the bidder’s final one: either there is no further

rebidding opportunity or the bidder chooses not to increase this bid if given the option.

The possibility of rebidding is a source of adverse selection against future self as the

current bid applies when the bidder chooses not to exercise future options of rebidding and

this is correlated with lower future value.4 As a consequence, bidders shade bids below

their unconditional expected final value. In particular, as the probability of bidding at the

very end of the auction converges to one, any prior bid goes to zero while at the same time

the maximum bid converges to the value at the end of the auction, consistent with sniping

3Section 11.1 analyzes a simplified model with endogenous bidding and Section 11.2 analyzes a simplified
model with correlated values among bidders.

4An analogue result is found in Harris and Holmstrom [1982], where initially worker’s wages are shaded
below marginal products, as the wage is effective in the future only if it is less or equal than the realized
marginal product of the worker.
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behavior.

There is an important difference to the case of adverse selection with correlated values.

While bids are shaded relative to expected values, the expected final bid still equals the

expected final value and is thus unbiased. These two results are consistent since bids, while

shaded, are still unbiased in the set where they apply. As a comparison, an auction that

admits bidders to retract on bids will have no shading, since a bid only applies when no

rebidding takes place or when the final expected value is the same at a new bidding time.

The problem of solving for the optimal bidding function is not a simple one, as current bids

depend on all future bidding opportunities and strategies. We provide a recursive formulation

for bidders optimal strategy. We can prove that the solution to the dynamic programming

exist, is unique and under mild conditions, desired bids increase as the end of the auction

is approached. This provides a rationale why bidders might increase their bids over time

independently of competitive pressures. The intuition for this result is straightforward and

goes back to the incentives for shading: as the end of the auction approaches and the option

of rebidding becomes less likely, the adverse selection problem mentioned above and the

incentives for shading tend to disappear.

To derive further properties, we consider the specialized case where values follow a Brow-

nian motion and bidding opportunities a Poisson process,.We derive a partial differential

equation that is used to solve for the equilibrium bidding function. Matching a series of mo-

ments from eBay data, we estimate parameter values for the Brownian motion and Poisson

process.We then consider as a counterfactual, a similar bidding mechanism to our baseline,

where instead bidders can retract bids at any of their random bidding times. The possibility

of retraction eliminates the source of adverse selection mentioned earlier and thus the incen-

tives for bid shading. As a consequence, at any bidding time the bidder will choose a bid

equal to the expected final value. We prove that the distribution of final bids for a bidder is

a mean preserving spread of those obtained with no retraction. In addition, as a reference

point, we compute the efficient allocation and prices, i.e. that corresponding to a second

price auction taking place at the end of period. The correlation between final values and final

bids increases moderately (from 0.85 to 0.88) when comparing the baseline scenario to the

case of bid-retraction. As a result the expected final value increases, closing 1/3 of a fairly
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moderate gap of 3.2% between the baseline model and the efficient allocation. While the

gap in values is moderate, the gap in prices between baseline and the efficient level is more

than twice as high. This is precisely the consequence of bid shading in our baseline scenario.

As a comparison, the price gap is in the order of only 2% for the bid retraction case. As a

consequence, allowing for bid-retraction would increase revenues of sellers by approximately

10.2% while decreasing the expected utility of buyers by 33%.

Related Literature Several papers have tried to rationalize sniping behavior and incre-

mental bidding. Bajari and Hortacsu [2003] incorporate a model of common value auction

to explain this phenomenon. Having informed and uninformed participants, the informed

bidders do not bid before the last period since that would reveal their private information to

other potential bidders. Hence in the equilibrium, all bidders only place a bid at the very last

period of the auction, leading to sniping by everyone. In another set of papers that focus on

sniping, Ockenfels and Roth [2002] and Ockenfels and Roth [2006] compare auctions mech-

anisms at eBay and Amazon which have hard ending and soft ending, respectively. Hard

ending refers to a fixed ending time for an auction which cannot be extended by the seller or

the marketplace; whereas soft ending refers to a tentative ending time: placing a bid within

the last few minutes of the auction extends the duration of the auction for another ten min-

utes. They argue that along with the hard-ending rule at eBay, there are incremental bidders

on eBay whom increase their maximum bid as they get outbid by other bidders. Therefore,

a strategic bidder facing incremental bidders places bids in the last possible moment not to

give incremental bidders time to react and place higher bids, giving rise to sniping.

Gray and Reiley [2004] and Ely and Hossain [2009] independently run experiments eval-

uating the benefit of sniping. The former does not find a statistically significant value

to sniping although they reconfirm results in Ockenfels and Roth [2002] and Ockenfels and

Roth [2006] regarding the prevalence of sniping; in their dataset 50 percent of bids are placed

within the last minute of an auction. On the other hand, the latter find a significant value to

sniping, about $1 per auction for various DVD listings. Backus et al. [2015] in a more recent

paper consider the effect of sniping on the return rate of new buyers to the marketplace. In

all of these papers, the concentration is mainly on rationalizing sniping, and neither early
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bidding nor bidding multiple time is rationalized alongside sniping.

In this paper, we concentrate mainly on dynamics within the span of an auction. However,

we are borrowing the result from Zeithammer [2006], Said [2011], Hendricks and Sorensen

[2014], Backus and Lewis [2012], and Coey et al. [2015]implicitly. These papers model

the dynamic option value of not winning the current auction and the opportunity cost of

participating in the next available auction. On eBay, many closely substitutable items are

simultaneously available and if bidders do not win a particular auction they can participate

in the next closing one. This results in a reservation price below their values. Changes in

the available alternative items can change the reservation price for bidders over time, and as

they get closer to the end of the auction their valuation of the item at that instant becomes

closer to their valuation at the end of the auction. While our paper misses some of the

interesting features arising from the explicitly modeling the link between these auctions, it

provides a very tractable reduced form.

In a related paper, Ambrus et al. [2013] model gradual bidding on eBay-like auctions.

They model bidders as having the same common value for the item and with random bidding

opportunities. They show the equilibrium bidding strategy is to increase the price with the

minimum increment and the person who showed up last will be the winner. Groeger and

Miller [2015] , in a similar set up, study the optimal bidding strategy of first price auction

when the bidders have random bidding windows.

The paper is organized as follows. Section 2 discusses the evidence on eBay bidding

behavior and reviews related literature. Section 3 provides a simple example that conveys the

main intuition and results in the paper. Section 4 describes the general model and defines an

equilibrium. Section 5proves existence and uniqueness of equilibrium, characterizes bidding

behavior and provides the dynamic programming algorithm. Section 6 gives properties for

the case where values are independent of Poisson arrivals for bidding times and solves the

two special cases described above. Section 8 shows that the bidding function derived before

is still applicable under arbitrary assumptions about the information a bidder observes on

the past bids of other bidders. Section 9 provides the estimates and counterfactuals. Sections

11.1 and 11.2 consider, respectively, the cases of endogenous bidding and correlated signals.
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2 Evidence

The model presented in this paper closely mimics eBay auctions. eBay is an online auction

and shipping website launched in 2005. Sellers can sell their items either through an auction

or by setting a fixed price for their item, an option called “Buy it Now.” The auction

mechanism is similar to a second price or Vickery auction. A seller sets the starting bid of

an auction and bidders can bid repeatedly for the item until the end of the auction. Each

bidder observes all previous bids, except for the current highest bid. A bidder should bid

an amount higher than the current second highest bid, plus some minimum increment.5 If

this value is higher than the current highest bid, the bidder becomes the new highest bidder.

Otherwise, he becomes the second highest bidder. The winner has to pay the second highest

bid, plus the increment or his/her own bid, whichever is smaller. Auctions last for one to

ten days and they have a pre-determined and fixed ending time that cannot be changed once

the auction is active. As a general rule, bidders cannot retract or cancel a bid.

On eBay, bidders’ bid-placement, as noted in the literature, does not follow the prediction

of a static model of auction, for instance a disproportional share of bids are placed in the

last few seconds of an auction. As a recent paper by Backus et al. [2015] shows, about third

of winning bids are placed in the last ten seconds of an auction. Hayne et al. [2003] report

that about 15 percent of bids placed are within the last 60 minutes of an auction and also

about 61 percent of bids placed by bidders who submitted more than one bid. Gonzalez

et al. [2009] similarly report 11 percent of bids placed within the last minute of auction and

77 percent of auctions have a bidder placing more than one bid. Hayne et al. [2003] further

note that on average there are 6.78 bids placed and about 3.98 unique bidders per auction.

Moreover, they show that late bidding has a much higher success rate, about 75 percent,

much more than early bidding, 7.3 percent, or bidding in between, 40.5 percent. Using a

static model of auctions, strategic late bidding or bidding multiple times is not rational.

In order to get a deeper understanding of bidding behavior, we use eBay data on successful

auction sales during the first week of June, 2014. There are an average of 2.93 bidders per

auction and an average of of 2 bids per bidder. We focus on three aspects of bidding behavior

5The increment is a function of the second highest bid, fixed for all auctions, and is set by eBay.
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that are more closely related to our theory: 1) distribution of bidding time; 2) frequency of

bidding 3) the process for the increase in bids of repeat bidders.

Figure 1 gives the distribution of all bidding. While there is some bias towards later

bidding, its not excessively strong: 55% of the bids are placed in the last quintile of time and

about 70% after the midpoint of the auction. When looking at the distribution of winning

bids, the concentration towards the end is considerably larger, as should be expected. As

can be seen in Figure 2, over 75% of winning bids take place in the last quintile and a very

large concentration of these bids occur in the last few hours of the auction.

Figure 1: Distribution of bidding times

Figure 3 gives the cumulative distribution of number of bids each bidder submitted during

any auction where he participated. Let i = 1, ..., I be bidders and j = 1, ..., J denote auctions

and Nij the number of original bids (not including proxy bidding) submitted by bidder i in

auction j. This graph is the cdf of all positive Nij values.6 It can be seen that more than

30% of bidders place more than one bid while 15% over two. The average number of bids

per bidder in our data is slightly less than two.

6For display purposes we truncate this distribution at 10 bids per bidder, while the maximum we observe
in our data is 80.

8



Figure 2: Distribution of time of winning bids

Our theory focuses precisely on the incentives for rebidding and the shading of bids. It

will become useful to identify the parameters in our model to document more fully these

bidding patterns. Figure 4 gives the ratio of second to first bids for those bidders that place

two bids in an auction, as a function of the time difference between these two bids. Each

point is an average across auctions for that particular time interval of one minute. As seen,

the ratios are quite high, and increase with the time difference. The fanning out is a result of

the increase in variance of the ratio of rebids over time. In order to get a more transparent

picture, identical data is aggregated into 100-minute in Figures 5 and 6. Mean bid ratio

double when going to the smallest to longest time interval between bids, while the variance

quadruples.

3 A simple example

This section considers a simple example and derives some key properties of the equilibrium

bidding function that extend to the general case. There are two periods t = {0, 1} . Bidders
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Figure 3: Number of bids per bidder

Figure 4: Average re-bid ratio by time elapsed (minutes)
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Figure 5: Average re-bid ratio by time elapsed (100-min intervals)

Figure 6: Variance of re-bid ratio
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can submit a bid for sure in the first period and with probability p in the second period.

Bidders have no information in the first period and draw values vε [0, 1] independently from

distribution F in the second period, prior to bidding time. Since the auction is second price,

it follows that the second period bid will equal vi for all bidders. Let b−i denote the maximum

final bid among all bidders, excluding i and let G denote its cdf. The first period, expected

value for bidder i is:

Ui = (1− p)
ˆ b0

0

(Ev − b−i) dG (b−i)

+ p

ˆ b0

0

ˆ b0

0

(v − b−i) dF (v) dG (b−i) + p

ˆ
b0

ˆ v

0

(v − b−i) dF (v) dG (b−i)

Taking derivate with respect to b and equating to zero:

i (1− p) (Ev − b0) dG (b0) + p

ˆ b0

0

(v − b0) dG (b0) dF (v) = 0 (1)

It can be easily verified that as this equation is strictly decreasing in b0 so there is a unique

solution that satisfies:

b0 =
(1− p)Ev + p

´ b0
0
vdF (v)

(1− p) + pF (b0)
(2)

This expression has a natural interpretation: the optimal initial bid equals the expected

value conditional on no rebidding. Given a current bid b0, the final bid prevailing at the

end of the auction is then b0 with probability (1− p) and max (b0, v) with probability p.

The initial bid b0 binds in two cases: 1) there is no opportunity to rebid and 2) there is an

opportunity to rebid but v ≤ b0 therefore the bidder decides not to bid. The second term

in the above equation represents an adverse selection effect. It follows that b0 < E (v) as´ b0
0
vdF (v) /F (b0) < E (v). Indeed, as p→ 1 it is easy to see that b0 decreases monotonically

to zero.

The probability distribution F̃ for the final bids of a player is given by:

F̃ (b) =

0 if b < b0

(1− p) + pF (b) if b ≥ b0

(3)
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with mean

E (b) = b0 [p+ (1− p)F (b0)] + p

ˆ 1

b0

vdF (v)

Substituting the first term using (2) it follows that:

E (b) = (1− p)Ev + p

ˆ
vdF (v) = Ev

so the expected final bid is unbiased, equaling the expected final value.

It is also interesting to compare the above results to a case where bidders can retract their

bids. It is easy to se that with retraction there is no incentive to shade, so b0 is equal to Ev;

the final bid equals Ev with probability (1− p) and equals the final value with probability

p. The distribution for final bids is thus:

F̃ (b) =

pF (b) if b < Ev

(1− p) + pF (b) if b ≥ Ev

Compared to (3) it is easy to see that this is a mean preserving spread of bidding with no

retraction. The higher dispersion is the simple result of a higher correlation with final values.

4 The Model

There are i=1,...,N potential bidders in an auction. The auction is sealed bid second price

and takes place in time interval [0, T ] where bids are submitted. As shown below in Section

8 equilibrium bidding functions are also applicable to sequential auctions -such as in eBay-

with publicly available information on past bids.

Each bidder has the option of submitting bids only at random times τ1, τ2, ... Bids can

only be increased at any of these random bidding times and cannot be retracted. The

valuation of the bidder is modeled as a stochastic process vi (t) of signals where without loss

of generality v (T ) corresponds to the final value. Since these signals are only relevant at

bidding times τn we restrict attention to the corresponding signals vn at these dates.7 Assume

7The process for the value vi (t) can be considered a continuous Markov process sampled at random
stopping times τn that are Markov with respect to last stopping time and valuation at that time.

13



{vin, τin} follow a joint Markov process with transition function which is independent across

bidders8, and inscribed in a common probability space (Ω, σ) with typical element ω. Note

that this specification allows for random entry and rebidding, as well as a random number of

bidders. It also allows for the degree of inattention to depend on value and accommodates

the case where a bidder is sure to come at the end of the auction, the latter by letting

Pi (τ
′ ≤ T |v, τ) = 1 for all v, τ. From now on for notational convenience we drop the i index.

We consider here the case of a sealed bid auction, where bidders information sets consist

only of their past bids and valuations. In section 8 we show that the equilibrium bidding

functions obtained here are also equilibrium bids for general information structures and

in particular for that of eBay auctions. Together with the assumption that values and

bidding times are Markov, this implies that we can identify information sets with pairs

(v, τ) corresponding to the time and value in the last bidding window. A bidding function

for bidder i specifies at each possible bidding time τn and given signal vn a desired bid

Bi (τn, vn) . Given that bids can only be increased, bi (t) = max {Bi (τm, vm) |τm ≤ t} is the

bid that prevails at time t and in particular bi (T ) is the final bid. Let b−i (T ) denote the

maximum bid over the remaining bidders at time T and F−i(b) its distribution. Utility for

bidder i is given by:

U (v (T ) , b (T )) =

ˆ b(T )

(v (T )− u) dF−i (u) .

An optimal bidding function Bi for bidder i is the one that maximizes expected utility at

the time the bidder enters the auction, i.e.,

max
B(.)

E (U (v (T ) , b (T )) |τ1, v1) (4)

where τ1 is the time at which the bidder enters the auction and v1 the initial value.

Definition. An equilibrium for the auction is a vector of bidding functions Bi and final

distributions F−i for each player i, such that for every bidder i the bidding function Bi is

the best responses to F−i and bidding functions are consistent with the final distribution of

8As shown in Section 11.2, results extend to the case of common values
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bids.

5 Equilibrium Bidding

In this section, we characterize the equilibrium bidding functions and provide a dynamic

programming problem that can be used to solve them. We show that the optimal bid

B (vn, τn) = E [v (T ) |vn, τn, b (T ) = B (vn, τn)] , namely the expected final value for bidder i

conditional on the current state and the event that no higher bids are placed by the same

bidder at a later instance so that the final bid b (T ) equals the current bid. Intuitively, this

mimics the notion that in a second price auction it is weakly dominant strategy to bid the

valuation, or when it is random, the expected valuation.

Proposition 1. The optimal bid B (vn, τn) = E [v (T ) |vn, τn, b (T ) = B (vn, τn)] .

Proof. See Appendix.

We provide an intuitive argument here, while the formal proof is in the Appendix. Take a

candidate optimal bidding function Bi for bidder i and consider bid b in state vn, τn. Let H (b)

denote all paths ω = {τm,vm}m>n starting from the current history where B (τm, vm) ≤ b

including τn+1 > T (i.e. no rebidding opportunity.) The expected value of bidding b equals:

V (vn, τn, b) =

ˆ
H(b)

ˆ b

(v (T )− u) dF−i (u) dP (ω)+

ˆ
H(b)c

ˆ b(ω,T )

(v (T )− u) dF−i (u) dP (ω)

We claim that the optimal bid is b = B (vn, τn) = EH(b)v (T ). First, note that the boundary

of the set H (b) consists of all those paths starting from (vn, τn) for which the final bid

b (T ) is equal to b. So when considering the derivative of the above we can ignore the

effect of the change in the supports of the two integrals. The first order condition is then

∂V/∂b =
´
H(b)

(v (T )− b) dF−i (b) dP (ω) = 0 which is equivalent to the statement that

b = EH(b)v (T ) .

While Proposition 1 characterizes bidding at a given history, it also shows that current

bidding behavior depends on the whole strategy for future bidding, making the problem of

calculating equilibrium bids potentially very complicated. However, there is a natural recur-
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sive structure to this problem which we exploit to define a dynamic programming problem

that will help derive the optimal bidding function and establish uniqueness.

Define recursively the following function9:

W (b, v, τ) =

ˆ T

τ
min

(
W
(
b, v′, τ ′

)
, 0
)
dP
(
v′, τ ′|v, τ

)
+ P

(
τ ′ > T |v, τ

) (
E
[
vT |v, τ, τ ′ > T

]
− b
)
(5)

where τ ′ denotes the following bidding time.

Assumption 1. Assume P (τ ′ > T |v, τ) > δ > 0 for all (v, τ). In addition, assume all

conditional probabilities and expectations are continuous in the state.

By Assumption 1 and using standard dynamic programming arguments, it follows that

there is a unique function satisfying functional equation (5), that it is strictly decreasing in b

and continuous. Moreover, it is greater or equal to zero when b = 0 and negative for large b.

It follows, by the intermediate value theorem, that there is a unique value B (v, τ) such that

W (B (v, τ) , v, τ) = 0. Given a new bidding time τ ′, value v (τ ′) and outstanding bid, this

function also defines the rebidding region {(b, v (τ ′) , τ ′) |W (b, v (τ ′) , τ ′) > 0} We will next

show that this bidding function maximizes the agents expected utility.

Proposition 2. Given Assumption 1, the function B (v, τ) defined implicitly by W (B (v, τ) , v, τ) =

0 satisfies E [v (T ) |v, τ, b (T ) = B (v, τ)] and is the unique optimal bidding function.

Proof. See Appendix.

6 Properties

This section derives general properties on equilibrium bidding behavior and considers some

special cases.

6.1 Bid Shading

Our leading example suggests that bidders will shade bids as a consequence of adverse

selection given by the option of future rebidding. In this section we prove this is true for an

9When conditioning with respect to τ and v (τ) = v we will write for short P [.|v, τ ] .
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arbitrary process. We first establish the following result:

Lemma 1. W (b, v, τ) ≤ E [vT |v, τ ]− b with strict inequality if P (τ ′ ≤ T |v, τ) > 0.

Proof. See Appendix.

Since W (b, v, τ) is decreasing in b, it follows that:

Proposition 3. B (v, τ) ≤ E [vT |v, τ ] with strict inequality if and only if rebidding occurs

with positive probability.

6.2 Unbiased expected final bids

Bids are shaded as the result of conditioning on the adverse selected set of no-rebidding.

However, in the complement of this set the current bid is replaced by a higher one. What is

the overall effect on the final expected bid? The answer is given in the following Proposition.

Proposition 4. Suppose v follows a Martingale. Consider a bidding time τ with value v and

bid b = B (v, τ) . Then the expected final bid equals v, i.e. E (B (T ) |v, τ, b = B (v, τ)) = v.

Proof. Let H0 consist of all histories ω starting from (v, τ, b) where B (T ) = b. By Proposition

2 E (V (T ) |H0) = b. Now consider all histories ω on the complement Hc
0 where rebidding

occurs with probability one. Let τ be the stopping time corresponding to the first time where

rebidding occurs. Assume, by way of induction, that E [B (T ) |v (τ) , τ, b = B (v (τ) , τ)] =

v (τ) . By the optional stopping theorem it follows that E (B (T ) |Hc
0) = E (v (τ) |Hc

0) =

E (v (T ) |Hc
0) .

This Proposition implies, in particular, that when a bidder places the initial bid, the

expected final bid is unbiased and equals the expected final value. This result is consistent

with bid shading since bids, while shaded, are still unbiased in the set where they apply.

We now specialize the model here to a case where the process for rebidding times τn is

Poisson with intensity ρ (t) that is independent of the signals and value v (T ). The main

result in this section is that the bidding function B (v, τ) is increasing in t.

Proposition 5. Assume E [vT |v, τ ] is weakly increasing in τ . Then ∂W (b, v, τ) /∂τ ≥ 0

and bid B (v, τ) increases with t.
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Proof. See Appendix.

The above result implies that bids increase over time even in the absence of competitive

pressure.

6.3 Independent increments

In this section we consider two cases where bidding behavior is simplified: 1) increments

independent of the current value v and 2) increments proportional to v. In particular, these

apply to the cases where v follows an arithmetic (geometric) Brownian motion (respectively).

In both cases we assume that bidding arrival times are given by a homogeneous Poisson

process.

Proposition 6. Assume P (v′ = v + ε|v, τ) is independent of v for all ε and all τ and arrival

rates for bidding are independent of v. Then W (b+ δ, v + δ, τ) = W (b, v, τ) .

Proof. Follows by standard induction argument on the Bellman equation. So assume the

function W has this property. Then evaluate:

W (b+ δ, v + δ, τ) =

ˆ T

t

min (W (b+ δ, v′ + δ, τ ′) , 0) dP (v′ + δ, τ ′|v + δ, τ)

+P (τ ′ > T |v, τ) (E [vT |v + δ, τ, τ ′ > T ]− (b+ δ))

=

ˆ T

t

min (W (b, v′, τ ′) , 0) dP (v′, τ ′|v, τ)

+P (τ ′ > T |v, τ) (E [vT |v, τ, τ ′ > T ] + δ − (b+ δ))

= W (b, v, τ)

The following Corollary simplifies bidding behavior to a simple one dimensional shading

function s (t) = v −B (v, τ) that is independent of v.

Corollary 1. B (v + δ, τ) = B (v, τ) + δ.

Consider now the case where P (γv′, τ ′|γv, τ) = P (v′, τ ′|v, τ). As the next Proposition

shows, this implies that W (γb, γv, τ) = γW (b, v, τ) .
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Proposition 7. Assume P (γv′, τ ′|γv, τ) = P (v′, τ ′|v, τ). Then W (γb, γv, τ) = γW (b, v, τ)

and consequently B (γv, τ) = γB (v, τ) .

Proof. Follows by standard induction argument on the Bellman equation. So assume the

function W has this property. Then evaluate:

W (γb, γv, τ) =

ˆ T

t

min (W (γb, γv′, τ ′) , 0) dP (γv′, τ ′|γv, τ) + P (τ ′ > T |v, τ) (E [vT |γv, τ, τ ′ > T ]− γb)

=

ˆ T

t

min (γW (b, v′, τ ′) , 0) dP (v, τ ′|v, τ) + P (τ ′ > T |v, τ) γ (E [vT |v, τ, τ ′ > T ]− b)

= γW (b, v, τ) .

The second property follows immediately from the definition of the bidding function.

7 Brownian motion and Poisson arrivals

In this section, we introduce a special case which we later take into data for estimation and

to run counterfactual studies. Suppose that v (t) follows a Brownian motion with drift µ and

volatility σ; and the process for rebidding is Poisson with arrival ρ, as in the previous case.

The functional equation (5) is now:

W (b, v, τ) = ρ

ˆ T

t

exp (−ρ (τ ′ − t))
ˆ

min
(

0,W
(
b, v + µ (τ ′ − t) +

√
τ ′ − tσε, τ ′

))
dΦ (ε) dτ ′ (6)

+ exp (−ρ (T − t)) (v + µ (T − t)− b)

Note that for this case, E [v (T ) |v, τ ] = v+ µ (T − t) so if the drift µ ≤ 0 then E [v (T ) |v, τ ]

is increasing with t, so by Proposition 5, B (v, τ) is increasing in t.

Our specification satisfies the condition in 6; therefore, the proposition applies. Specifi-

cally, W (b, v, τ) = W (0, v − b, t). In consequence , we can write the value function Wµ (x, t)

where x = v − b,

Wµ (x, t) = ρ

ˆ T

t

exp (−ρ (τ ′ − t))
ˆ

min
(

0,Wµ

(
x+ µ (τ ′ − t) +

√
τ ′ − tσε, τ ′

))
dΦ (ε) dτ ′ (7)

+ exp (−ρ (T − t)) (x+ µ (T − t))

Scaling is another property worth mentioning which is used in estimation section as well. If

we scale σ and µ of the Brownian motion by a factor λ, the corresponding W function also
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scaled proportionally and so are the equilibrium bids.

Lemma 2. W (λx, t;λµ, λσ) = λW (x, t, µ, σ) and further B (λv, τ ;λµ, λσ) = λB (v, τ ;µ, σ) .

Proof. The proof is by induction, assume the right hand side of (7) satisfies this property. It

verifies immediately that W (λx, t;λµ, λσ) = λW (x, t, µ, σ) . This also implies that the shad-

ing function x (t;λµ, λσ) = λx (t;µ, σ) or equivalently B (λv, τ ;λµ, λσ) = λB (v, τ ;µ, σ) .

The effect of drift on the value function can also be easily determined as shown by the

following Lemma.

Lemma 3. Let Wµ denote the value function with drift µ and W the value function with

drift zero. Then Wµ (x, t) = W (x+ µ (T − t) , t) .

Proof. This is proved inductively using:

W (x+ µ (T − t) , t) = ρ

ˆ T

t

exp (−ρ (τ ′ − t))
ˆ

min
(

0,W
(
x+ µ (T − τ ′) + µ (τ ′ − t) +

√
τ ′ − tσε, τ ′

))
dΦ (ε) dτ ′

+ exp (−ρ (T − t)) (x+ µ (T − t))

= ρ

ˆ T

t

exp (−ρ (τ ′ − t))
ˆ

min
(

0,Wµ

(
x+ µ (τ ′ − t) +

√
τ ′ − tσε, τ ′

))
dΦ (ε) dτ ′

+ exp (−ρ (T − t)) (x+ µ (T − t))

= Wµ (x, t)

It also follows that the bid shading function is of the form x (t) + µ (T − t) where x (t) is

the shading function when µ = 0. In what follows we assume µ = 0.

7.1 Partial Differential Equation

In the estimation section, we need to solve the functional equation ?? to find the bidding

function. We do that by numerically solving its corresponding PDE. To find the PDE for

the Bellman equation (the Hamilton-Jacobi equation), first subtract W (x, t)

0 = ρ

ˆ t+∆

t

exp (−ρ (τ ′ − t))
ˆ [

min
(

0,W
(
x+
√
τ ′ − tσε, τ ′

))
−W (x, t)

]
dΦ (ε) dτ ′ (8)

+ exp (−ρ∆)

[ˆ
W
(
x+
√

∆σε, t+ ∆
)
−W (x, t)

]
dΦ (ε)
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Taking derivative with respect to ∆ and evaluating at ∆ = 0

0 = ρ [min (0,W (x, t))−W (x, , t)] +
1

2
σ2 ∂

2

∂x2
W (x, t) +

∂

∂t
W (x, t)

ρmax (W (x, t) , 0) =
1

2
σ2 ∂

2

∂x2
W (x, t) +

∂

∂t
W (x, t)

8 Bidding with Partially Observed Competing Bids

The above assumed that the auction is sealed bid, so there is no information on competing

bids. However, if bidders can observe other bidders’ previous bids, they may use that in-

formation strategically. In this section, we show that the previous derived equilibrium will

remain valid given any information structure. However, we cannot rule out that there might

be other equilibria. Throughout this section, we maintain our assumption of independent

values across bidders. We first provide details of the information structure and define an

equilibrium. We next show that the equilibrium derived before remains an equilibrium of

the extended game.

At any point in time each agent’s information set includes a common public history h (t)

in addition to the private history hi (t) of all past realizations {τin, vin} and bids for τin ≤ t.

A strategy si for player i specifies at every bidding time τin and corresponding information

set (h (τin) , hi (τin)) a bid bin with the restriction that bin ≥ bi,n−1 for all n ≥ 2. Let vi (ω, T )

denote bidder i’s value for the object at the end of the auction, bi (T, s, ω) denote the final

bid of player i and b−i (T, s, ω) the highest bid among the remaining bidders, where s is the

vector of strategies s = (s1, ..., sN). For simplicity of notation, we drop ω from the bidding

function. Finally let u (vi, bi, b−i) = χ{bi≥b−i} (v − b−i) denote the final payoff for player i. We

can define the final expected payoff for player i under strategy s, after history h (τin) , hi (τin),

by:

Eτ ′in (u (vi (T ) , bi (T, s) , b−i (T, s)) |h (τin) , hi (τin)) (9)

where beliefs are derived from information and other player’s strategies. An equilibrium

is a vector of strategies s such that for all players and at all information sets strategy si

maximizes (9) given s−i.
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We now show that the equilibrium derived previously remains an equilibrium in this game

by showing that if all bidders use strategies that are functions of their private history only,

then it is a best response to do so.

Proposition 8. Let Bi (vn, τn) denote the equilibrium bidding functions derived in section 5.

Then the strategies si(vn, τn;hin, hn) = maxm≤nBi (vm, τm) are an equilibrium of the game.

Proof. Suppose for all remaining players s−i is defined as above. We now show the following

strategy is a best response for player i. It is sufficient to check that the bidder will not deviate

from the bidding strategy at any arbitrary information set, (vn, τn;h). Let player i follow

this prescribed strategy in all future information sets. Without loss of generality assume the

optimal bid chosen at the information set considered is greater than the outstanding bid of

the player. Let F−i (u|h) denote the distribution of highest bid of b−i (h−i is enough) . The

optimal bid at (vn, τn) solves:

V (vn, τn, h) = max
b

ˆ
H(b)

ˆ b

(v (T )− u) dF−i (u|h) dP (ω)+

ˆ
H(b)c

ˆ b(ω,T )

(v (T )− u) dF−i (u|h) dP (ω)

where as before, H (b) denotes the sets of histories where given future bidding behavior, bid

b is he final bid. So the public history h is relevant only when considering its impact on

the expected distribution for the highest bid of the remaining players in that set. Given the

optimality of future bidding and the definition of H (b), the effect on the integration set can

be ignored, so it immediately follows that the optimal bid is independent of the distribution

F−i and consequently independent of h.

8.1 Censoring and Observed Behavior

Let Bi (v, τ) denote the maximum bid that bidder i is willing to place at time t. When taking

the model to the data one must take into account that when a bidder observes an outstanding

bid that is greater than B (v, τ) , he will choose not to bid. Hence, the process for observed

bids is censored and this censoring depends on the available information. In eBay auctions,

bidders can see the outstanding second highest value thus defining the threshold below which
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bids are censored. The model has implications for the observed timing of bids. If at time t

a bidder has a high probability of returning to the auction right before its end, its desired

bid B (v, τ) will be very low and thus it is likely to be censored by an existing higher second

bid. As a consequence, it is unlikely to see any bids from this bidder until the end of the

auction, consistent with the observed sniping behavior.

There is likely to be asymmetry in the frequency of bidding times for different bidders.

The observation of sniping–defined as bids that are overtaken in the last few minutes of the

auction–is usually interpreted as indication that many bidders follow this kind of strategy.

As the following example shows, this might not be true. Suppose there are n bidders. One

of these bidders can bid with probability one at the end of the auction, while the other n−1

bidders only bid at the beginning of the auction. To make things extreme, suppose the final

value is uniform between [0, 1] and all the n − 1 initial bidders have no information and

thus approximately the same expectation equal to 1/2 and so the initial winning bid is also

around 1/2. It follows that the probability that the remaining “sniping” bidder wins the

auction is 1/2. So in this auction, 1/2 of the times the auction will be sniped while the share

of snipers is only 1/n. Note also that given the information structure sniping is still efficient

as in absence of correlated information the expected value of the sniped bidder is 1/2 and

thus lower than the value for the sniper. This is in line with the distribution of observed

bids versus the distribution of winning bids. Winning bids tend to be more skewed toward

the end when compared to all bids placed.

9 Estimation

In this section, we provide estimates and some counterfactual exercises for the Brownian

motion setting described in section 7. In our basic setting, bidders are symmetric and have

independent draws for their arrival times, values and bidding times. Arrival times are given

by a Poisson process with parameter η. This implies that both the total number of bidders

and their arrival times are random. We normalize the total time of the auction T = 1, so

that both, the expected number of bidders participating in an auction and the variance are

equal to η. It is interesting to note that conditional on the number of bidders participating
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in an auction, arrival times are uniform. Bidding times are given by a Poisson process with

arrival rate ρ.

The process for values is modeled in the following way. For an agent arriving at time

tε [0, 1] , the initial value is drawn from a Normal distribution with mean µ and standard

deviation σ0+σt. After this arrival it follows a Brownian motion with zero drift and volatility

σ. This process implies that the unconditional distribution of values for a bidder bidding at

time τ is also Normal with mean zero and standard deviation σ0 + στ independently of

the time of arrival to the auction. Our assumption captures the idea that the amount of

information an agent has in an auction only depends on calendar time and not on the time

of entry. In particular this would be true if all relevant information to determine valuation

is publicly available to all bidders.

We consider three sub categories of eBay marketplace: tablets and iPads, tickets, arts.

We chose these categories because they are more consistent with private value assumption in

our setup. In this simple estimation method we identify four parameters. The parameters to

estimate for each case are (η, µ, σ0, σ, ρ) . To identify these parameters we use the simulation

method of moments and a dynamic grid search on the parameter space. We choose moments

that we believe are informative of the above parameters.

We consider the following four moments for the estimation:

• Average number of bidders-defined as those that placed either a highest or second

highest bid at some point during the auction. We refer to these as recorded bids.

• Average number of bids per bidder.

• Variance of bids recorded within the first 50% of duration of auction normalized by

final price.

• For bidders who bid both in the first 50% of the time and also in the last 10% of the

time the increment between the two bids normalized by the final price.

It is important to note that while we have a total of five parameters, (η, µ, σ0, σ, ρ) , three

of them (µ, σ0, σ) can be identified, with our moments, only up to a scalar. (There is no

problem identifying the other two.) This is a consequence of Lemma 2 and the normalization
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Figure 7: Identification, Effect of Varying Parameters on Moments
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used to calculate our two last two moments. Intuitively, scaling µ, σ0 and σ by a factor λ

is equivalent to an equal change in scale of bidders’ values. This in turn implies that for

any realization of values and bidding times in an auction, all bids will be scaled by λ and

in particular so will the final price. Given that in computing the last two moments bids are

normalized by this final price, the corresponding ratios are unaffected by the scale change.

Hence our moments allow us to identify only the ratios σ0/µ and σ/µ. This is not a problem

as these ratios are also sufficient for our counterfactual exercises.

Figure 7 illustrate the identification strategy. In each of these sub-figures we vary one of

the parameters while keeping the rest constant at their estimated values. Then we calculate

the value for the four targeted moments at each point and report the percentage deviation

from the corresponding target values. Most of the parameters affect all the moments to some

extent, but one of them the largest Increasing η increases the number of bidders; increasing

ρ increases the number of bids per bidder; and increasing σ increases the increment between

two bids submitted by a bidder. The only exception is σ0; however, as this is the only

moment that affects the variance of early bids, we can use this moment to identify σ0.

The estimation is based on simulated method of moments. We start with a coarse grid

for parameters and make the grid finer in each round. The steps within each round is as

follows:

1. Solve the PDE for the shading function as described in section 7 for a fixed set of

parameters (σ, ρ) .

2. Simulate all bids taking into account censoring, i.e., only consider a bid if it was either

first or second highest bid at the time it was placed.

3. Construct moments from n = 500 simulations.

4. Define a loss function as squared of percentage deviations from above moments.

The estimated parameters are the the ones that minimize the above loss function. Table 1

gives the moments for three different categories of items on eBay: Tablets, Tickets, and Arts.

These products have arguably more of a private value rather than common value. Given

that gradual bidding cannot be generated by our model, we remove all such bids by only
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Table 1: Moments

#of bidders # bids per bidder Var of early bids Average Increment

Tablets 6.28 1.38 0.077 36%
Tickets 2.97 1.53 0.088 27%
Arts 2.03 1.27 0.114 43%

Table 2: Estimated Parameters

η σ0
µ

ρ σ0
µ

Tablets 16 0.46 1.4 0.31
Tickets 3.9 0.61 1.6 0.29
Arts 2.6 0.5 0.7 0.57

considering the last bid a bidder placed within two minutes of one another. This reduces

the average number of bids per bidder.

Table 2 shows the estimated parameters,
(
η, σ0

µ
, ρ, σ

µ

)
.

10 Counterfactuals

In this section, we first consider bid retraction as it may apply to all or a subset of bidders.

This exercise has a series of motivations. First, in the absence of restrictions on bid retraction,

bidders have no incentives to shade bids and this allows us to quantify the effect of shading.

Second, the question might be of interest as a matter of auction design. Third, in practice

some bidders are able to work around the restrictions on bid retraction by the use of a

sniping program that submits bids automatically in the last few seconds of the auction.

Bidders using these programs are able to change their bids at any point in time and thus

can retract their intended bids if desired so. We compare the results with both our baseline

and an alternative benchmark given by an ex-post efficient allocation, as would be given by

a second price auction that takes place at the end of time

10.1 Bid Retraction

For the bid retraction case, we assume that bidders can choose to retract/lower bids during

any one of their bidding times but not outside these bidding times. This is a natural restric-
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tion, since when bidders are allowed to retract at the end, bidding would become meaningless.

The possibility of retraction eliminates the source of adverse selection mentioned earlier and

thus the incentives for bid shading. Given that values follow a Martingale, at every bidding

time τ a bidder will choose a bid equal to the current value vτ .

The impact of bid retraction on the distribution of final bids for a given bidder can be

further characterized.

Proposition 9. The final bids under bid retraction are a mean preserving spread of those

without retraction.

Proof. Consider an information set (vn, τn) where bid bn is placed. From Proposition 4 it

follows that Eb (T |vn, τn) = vn and the same holds true under bid retraction. Let H0 (b)

denote the set of histories starting at this node where bid b is the final bid. On H0 (b)c the

expected final bid must be the same with and without retraction. This is because the first

time there is rebidding in that set, final bids are unbiased and equal to the corresponding

value, for both cases. It must then follow that the expected final bid in H0 (b) under bid

retraction is the same that under no retraction, which by definition is b, implying that bid

retraction gives a mean preserving spread of final bids in this set. Applying this argument

forward on H0 (b)c proves that final bids under bid retraction are a mean preserving spread

of those without retraction.

The mean preserving spread under bid retraction has two implications. First, it represents

the fact that bids are more closely connected to values. Secondly, it is likely to lead to an

increase the second order statistic and therefore price, particularly in the presence of many

bidders. The first effect can be seen in Figure 8 that compares the correlation between values

and bids for the baseline and no-retraction case. In the left hand we consider simulated final

values and final bids in both scenarios. There is substantial dispersion in both cases, as

bids are placed some random time before the end of the auction giving rise to some residual

uncertainty as of final value. The correlation between bids and value is 0.85 for the baseline

case and 0.88 for the no-retraction case. The right hand side figure plots the correlation

between bids and the expected value at the time of the last bid/retraction opportunity.

Here by definition bids equal to the value with no-retraction, so the figure illustrates more
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Figure 8: Correlation between bids and values

Table 3: Value and Revenues Compared To Baseline, Tablets

Bid-retraction Efficient

Expected value +1.3% +3.2%
Expected price +10.2% +12.2%
Expected payoff -33.0% -31.4%

clearly the added dispersion in the baseline scenario, which is consistent with the lower

correlation indicated above.

Table 3 gives the average performance of these bidding scenarios compared to the baseline

case. The expected value in the efficient final allocation is 3.2% higher than that in the

baseline. Bid retraction reduces this gap by almost half, which is consistent with the higher

correlation between bids and values. In turn, average prices are 10.2% higher under bid

retraction, a consequence of the mean preserving increase in spread discussed above. The

increase in prices exceeds the increase in value, so bid-retraction decreases the expected

payoffs for bidders by approximately 33% while increasing the sellers’ revenue by 10.2%.

10.2 Incentives For Bid Retraction

Our results above show that bidders collectively lose if all have the ability of retracting

bids. The question we ask here is if a single bidder might gain when given the possibility of

retracting bids as could be done with a sniping program. To be consistent, in our analysis

we maintain the assumption of inattention: that bidders can make changes to the desired
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Table 4: One Sniper, Percentage Deviations from Baseline Case

∆Expected Payoff ∆Expected Payoff ∆Prob of Winning
for Snipers for non-Snipers for Snipers

Tablets 12.4% -2.4% 55.0%
Tickets 4.8% -2.7% 24.6%
Arts 32.6% -2.4% 62.8%

Table 5: Two Types Bidders, Percentage Deviations from Baseline Case

∆ Expected Payoff ∆Expected Payoff ∆Prob of Winning
For Snipers For non-snipers for Snipers

Tablets -13.2% -29.2% 22.8%
Tickets -6.8% -13.3% 11.0%
Arts 1.1% -30.8% 55.5%

bids only at their randomly given bidding times.

Table 4 shows that if a bidder can singly retract his bid, e.g., by using a sniping program,

his expected payoff increases substantially. This increase comes from an increase in the

probability of winning compared to the baseline case. However, the increase in expected

payoff is less than the increase in this probability because bidders payoff conditional on

winning goes down as they win more marginal cases. The remaining bidders are worse off

as their probability of winning decreases and their payoffs conditional on winning are also

slightly lower.

10.3 Two Bidder Types

Previous sections shows an incentives for bidders to use sniping programs. In this section,

we identify the model by assuming a fraction of bidders use these programs while others

follow the strategy in the baseline case. To identify the new parameter, share of bidders

using sniping program, we add a new moment: share of winning bidders placed in the last

10% of auction. The identification strategy follows the same steps as the baseline model;

only by adding the two different type of bidders. We assume that both groups are exactly

the same and the only difference for them is that one group uses the sniping programs and

therefore does not shade their bid and only their last bid is recorded.

As shown in Table 5, when a bigger fraction of bidders use sniping programs their proba-
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bility of winning compared to the baseline does not increase as much as when only one bidder

uses sniping. The final result is a lower payoff for snipers compared to the baseline (except

for Arts), as bidders’ payoff conditional on winning is lower when they do not shade their

bid. This change in payoffs resembles a prisoners’ dilemma game. If no one is using a snip-

ing program, each bidder has incentives to unilaterally deviate and use a sniping program,

thus increasing the winning probability substantially. However, as more bidders use such

programs, then their probability of winning increases by less. At the same time, according

to Table 5, snipers’ payoff is still higher than that of non-snipers. If the remaining bidders

were to use also a sniping program, the result is the one obtained in our first counterfactual

where all bidders are able to retract bids, and where bidders are worse off compared to the

baseline. In this extreme case, sniping does not increase the probability of winning compared

to the baseline but makes, however prices in equilibrium are higher.

11 Extensions

This section considers two extensions to our model. The first one is endogenous rebidding,

where there is a cost to rebid and bidders exercise this option optimally. The environment is

considerably more difficult as the value of rebidding is highly dependent of the distribution

of other players’ bids, in contrast to the simple bidding derived above. The second extension

is to allow for correlation between the signals received by bidders. While we still assume

that conditional on these signals values are independent across bidders, the adverse selection

problem becomes more severe: winning the auction when placing an early bid is correlated

with negative signals observed by later bidders. As we show below, this results in a larger

incentive to shade bids.

11.1 Endogenous Rebidding

We consider here a very simple model. There are N = 2 bidders and 2 periods. Let vi denote

the value for bidder i in the first period drawn from distribution G (v) and v′i the value in

the second period, drawn from conditional distribution F (v′|v) . Both bidders can bid freely

the first period but must pay a cost c > 0 to rebid in the second period. We assume bids
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are sealed.

Strategies for the bidders can be defined as follows: a bidding function Bi (v) for the first

period and a rebidding set Ri (v) for the second period. Let Ni (v)denote the complement of

Ri (v) . Given the strategy for the other player, player i′s expected utility is given by:

U (v) =

ˆ
Ni(v)

Qi (B1 (v)) (v′ − Pi (Bi (v))) dF (v′|v)

+

ˆ
Ri(v)

−c+Qi (v
′) (v′ − Pi (v′)) dF (v′|v)

where Qi is the probability of winning function and Pi the expected payment conditional on

winning. A symmetric equilibrium (Q,R)is a Nash equilibrium in these strategies.

Example 1. Both bidders draw independently their initial value vε [0, 1] from distribution

G and with probability 1 − ρ get zero value next period and with probability ρ the value

remains equal to v. Conjecture a threshold v∗ so that:

B1 (v) = ρv if v < v∗and zero otherwise

R (v) = {} for v < v∗and R (v) = {v} otherwise

Consider the player with v = v∗. Bidding first or second period doesn’t change his

probability of winning since for ρv∗ ≤ b ≤ v∗, Q (b) = G (v∗) + (1− ρ) (1−G (v∗)) . The

expected payment is also the same in both cases equal to:

ρ
´ v∗
0
vdG (v)

G (v∗) + (1− ρ) (1−G (v∗))
.

The difference is that if he chooses not to rebid, he pays this expected value for sure while

if he chooses to rebid he pays it with probability ρ. The difference in expected payment is

then:

(1− ρ)
ρ
´ v∗
0
vdG (v)

G (v∗) + (1− ρ) (1−G (v∗))

to which we need to add that he pays an expected cost ρc. So v∗ must be such that:

c =
(1− ρ)

´ v∗
0
vdG (v)

ρG (v∗) + (1− ρ)
. (10)
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The derivative of the right hand side with respect to v∗ equals in sign to

v∗ [ρG (v∗) + (1− ρ)]− ρ
ˆ v∗

0

vdG (v) > 0.

The last step is to show that for all v > v∗it is optimal to rebid and conversely for those not

in this set. The difference between rebidding and not is

ρ
´ v
0

(v − x) dF−i (x)−
´ ρv
0

(ρv − x) dF−i (x)

=
´ v
0

(ρv − ρx) dF−i (x)−
´ ρv
0

(ρv − x) dF−i

Using the envelope condition and taking derivatives with respect to v (keeping bids fixed)

ρF−i (v)− ρF−i (ρv) > 0.

This establishes that the gains from rebidding are increasing in v so the thresholdv∗defined

by (10) is an equilibrium and it is unique.

One might expect that similar results will hold with more bidders. Moreover, it is natural

to conjecture that the threshold for rebidding increases with the number of bidders, as

expected payoffs decrease. Following this conjecture, with endogenous bidding one might

expect that the number of bids per player decreases too.

11.2 Correlated Information

In many cases, it is likely that information or signals observed are correlated across bidders.

For example, the arrival of a competing auction with a similar product is an event that

creates an opportunity cost and is likely to affect in a correlated way the value of all bidders

that keep track of that information. Our results extend easily to the case of pure common

values, where all agents have the same values but different bidding windows. For more

general cases we do not have a general result so we restrict to a simplified scenario.
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11.2.1 Pure common values

The setting is identical to that described in our general model, but where all bidders values

vi are identical, bidders observe the same signals but have independent bidding windows. As

before, it follows that the optimal bid at state (v, τ) satisfies bi = E (v (T ) |v, τ, b (T ) = bi)

where now b (T ) = maxij bi (vj, tj) is the maximum over all bids, including those of other

bidders. The recursive representation given before still holds,

W (b, v, τ) =

ˆ T

τ

min (W (b, v′, τ ′) , 0) dP (v′, τ ′|v, τ)+P (τ ′ > T |v, τ) (E [vT |v, τ, τ ′ > T ]− b)

where the interpretation of arrivals now is for the arrival to any bidder. As an example, if

opportunities for bidding are Poisson with arrival ρ then the total arrival rate that would

be used in this dynamic programming equation is Nρ, where N is the number of bidder.

The effect on bidding behavior is similar to an increase in ρ that intuitively should result

in greater shading of bids. This follows naturally the interpretation of increased adverse

selection as now the current bid will win not only when that bidder decides not to bid any

higher but when any other bidder chooses not to do so.

11.2.2 Imperfectly correlated information

Consider the following simplified scenario. Suppose time is discrete and there are two periods

{1, 2} where 2 corresponds to the end of the auction. Each bidder receives an independent

initial value vi, drawn from distribution F (v), that we interpret as the unconditional ex-

pected final value in absence of further information. They simultaneously bid in the first

period. With probability ρ, they have a chance to bid in the second period. Second period

valuations are drawn from distribution G (v′|v, θ) where θ is a common observable shock that

is independent of the initial values. Here v (resp. v′) denotes the initial (resp. final) value

for bidder one and v2 (v′2) the corresponding values for bidder two.

An agent that bids in the second period will choose b2 (v′) = v′. Let B1 (v) denote the

bid in the first period. This bid should equal the expected value conditional on the union

of the following events: (1) none of the two agents get to rebid and B1 (v) > B1 (v2); (2)

agent one gets to rebid but v′ ≤ B1 (v)and v2 ≤ v; (3) other agent rebids but v′2 < B1 (v)
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and B1 (v2) < B1 (v), and (4) both get to rebid but v′, v′2 < B1 (v) and B1 (v2) < B1 (v). In

a symmetric equilibrium with monotone bidding functions, the condition B1 (v) ≥ B1 (v2)

can be substituted by v ≥ v2.

Consider a symmetric equilibrium Given a bid b for the first player, we claim the following:

Proposition 10. B1 (v) is an equilibrium if and only if E (v′|v,B1 (v)) = B1 (v), where

E (v′|v, b) =
F (v) (1− ρ)

2
v1 (b, v) + F (v) ρ (1− ρ) v2 (b, v) + ρ (1− ρ) v3 (b, v) + F (v) ρ2v4 (b, v)

π(v, b)
(11)

where:

π(v, b) = F (v) (1− ρ)2 + F (v) ρ (1− ρ)G (b|v) + ρ (1− ρ)P (v2 ≤ v, v′2 ≤ b)

+F (v) ρ2
ˆ
χv′≤b,v′2≤bdP (v′, v′2|v, v2 ≤ v)

v1 (b, v) = E [v′|v]

v2 (b, v) = E [v′|v′ ≤ b, v]

v3 (b, v) =

ˆ
v′dG (v′|v, θ) dP (θ|v′2 ≤ b&B1 (v2) < b)

v4 (b, v) =

ˆ
χv′≤b,v′2≤bv

′dP

and H (v′2, v2) is the joint distribution that is assumed to be independent of v.

Proof. Note that the denominator is also π(v, b) the probability of winning with a bid equal

to b. Suppose the bidding function satisfies this condition for all v. By symmetry and mono-

tonicity of the bidding function, B1 (v2) ≤ B1 (v) if and only if v2 ≤ v. Hence conditioning

on v2 ≤ v is equivalent to conditioning on B1 (v2) ≤ b for b = B1 (v). It is now easy to verify

the expression given in equation (11) for b = B1 (v) is precisely the conditional expectation

described above.
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Figure 9: Bidding functions: effect of correlation

Suppose v′i = θvi where θ is the common component. Rewriting equation (11),

E (v′|v, b) =
F (v) (1− ρ)

2
v
´
θdG (θ) + F (v) ρ (1− ρ) v

´ b/v
θdG (θ) + ρ (1− ρ) v

´
χ{v2≤v,θ≤b/v2}θdG (θ) dF (v2)

F (v) (1− ρ)
2

+ F (v) ρ (1− ρ)G (b/v) + ρ (1− ρ)
´
χ{v2≤v,θ≤b/v2}dG (θ) dF (v2)

(12)

Suppose in addition that v and θ are both uniform [0, 1] . Closed form expressions can be

found when θ is uniform [0, 1] and v2 is also uniform.

E (v′|v, b) =
v2 (1− ρ)

2
/2 + ρ (1− ρ) b2/2 + ρ (1− ρ) v

´ v
min

(
1
2 ,

b2

2v22

)
dv2 + ρ2vb2

2

v (1− ρ)
2

+ ρ (1− ρ) b+ ρ (1− ρ)
´ v

min (1, b/v2) dv2 + ρ2b
(13)

=
v2 (1− ρ)

2
/2 + ρ (1− ρ) b2/2 + ρ (1− ρ) v

(
b− b2

2v

)
+ ρ2vb2

2

v (1− ρ)
2

+ ρ (1− ρ) b+ ρ (1− ρ) (b+ b ln (v/b)) + ρ2b
(14)

=
v2 (1− ρ) /2 + ρvb+ ρ2vb2

2(1−ρ)

v (1− ρ) + ρ (2b+ b ln (v/b)) + ρ2b
(1−ρ)

(15)

We solve for the fixed point above numerically and compare the bidding function with

the one obtained for the uncorrelated case, where θ is independently drawn for the two

players from a uniform distribution. Figure 9 plots bidding functions in both scenarios for

an initial value v = 1. The x axis shows different probabilities of rebidding ρand the y axis

the corresponding bids. Consistent with our findings, as ρ→ 1 bids go to zero in both cases

and at the other extreme, when ρ = 0 bids equal the unconditional mean of θ = 1/2. More
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importantly, when information is correlated bidders shade their bids even more.
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12 Proofs

Proof of Proposition 1

Consider the optimal policy starting at (v, τ) . Let V (v, τ, b) denote the expected utility

bidding b at this state and following the optimal bidding policy for the future. A convenient

expression can be obtained as follows:

V (v, τ, b) =

ˆ
H(b)

ˆ b

(v (T )− x) dG−i (x) dP (ω)

+

ˆ
H(b)c

ˆ b(ω,T )

(v (T )− x) dG−i (x) dP (ω)

where b (ω, T ) is the final bid for path ω when following the optimal bidding function

and H (b) denotes the set of paths starting from this node such that b is the final bid,

i.e. H (b) = {ωεΩ (v, τ) : b (ω, T ) = b (ω, τ) = b} . Abusing notation we will let H (b)c =

{ωεΩ (v, τ) : b (ω, T ) > b (ω, τ) = b} and in the following we b = B (v, τ) is the optimal bid

at this state. We want to show that this optimal bid

b = EH(b)

ˆ b

v (ω, T ) dP (ω) .

To prove this, we establish as usual the two corresponding inequalities. First we show that

b ≥ EH(b)

´ b
v (ω, T ) dP (ω). Take V (b+ ε, v, τ) , the optimal value if the current bid is

b + ε followed by future optimal bids. A particular feasible policy after bidding currently

b + ε is to keep this bid in the original set H (b) , and set b′ = max (B (v′, τ ′) , b+ ε) in

the complement. Letting b (ω, T ) denote the final bid after path ω induced by the optimal

bidding policy (starting at b), this alternative policy from b + ε will give final bid equal

to max (b (ω, T ) , b+ ε) and an expected utility as given from the right hand side of the

equation below. Since this policy is feasible but not necessarily optimal starting from b+ ε,
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the following inequality holds:

V (b+ ε, v, τ) ≥
ˆ
H(b)

ˆ b+ε

(v (T )− x) dG−i (x) dP (ω)

+

ˆ
b(ω,T )>b+ε

ˆ b(ω,T )

(v (T )− x) dG−i (x) dP (ω)

+

ˆ
b<b(ω,T )<b+ε

ˆ b+ε

(v (T )− x) dG−i (x) dP (ω) . (16)

Lemma 4. Let g+−i (b) denote the right derivative of cdf G−i at b, which is defined almost

everywhere. Then:

lim
ε↓0

V (b+ ε, v, τ)− V (b, v, τ)

ε
≥ lim

ε↓0

´
H(b)

´ b+ε
b

(v (ω, T )− x) dG−i (x) dP (ω)

ε

= g+−i (b)

ˆ
H(b)

(v (ω, T )− b) dP (ω) .

It also follows that b ≥ EH(b)v (ω, T ) .

Proof. Using (16) it follows that

lim
ε↓0

V (b+ ε, v, τ)− V (b, v, τ)

ε
≥ lim

ε↓0

´
H(b)

´ b+ε
b

(v (ω, T )− x) dG−i (x) dP (ω)

ε

+ lim
ε↓0

´
b<b(ω,T )<b+ε

´ b+ε
b(ω,T )

(v (ω, T )− x) dG−i (x) dP (ω)

ε

The inner integral in the second term is bounded below by

[ ¯− (b+ ε) + min (v (ω, T ) , 0)
]

(G−i (b+ ε)−G−i (b))

and thus

lim
ε↓0

´
b<b(ω,T )<b+ε

´ b+ε
b(ω,T )

(v (ω, T )− x) dG−i (x) dP (ω)

ε

≥ lim
ε↓0

[G (b+ ε)−G (b)]

ε

ˆ
χ (ω : b < b (ω, T ) < b+ ε)

[ ¯− (b+ ε) + min (v (ω, T ) , 0)
]
dP (ω) .
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As ε ↓ 0 the function under the integral converges pointwise (and monotonically) to zero so

by the monotone convergence theorem the limit is zero, completing the first inequality in

the proof. The second equality follows from the definition of g+−i (b) as the right limit of the

cdf. Finally that b ≥ EH(b)v (ω, T ) follows from the fact that V (b+ ε, v, τ)− V (b, v, τ) ≤ 0

since b is the optimal choice at (v, τ) and thus g+−i (b)
´
H(b)

(v (ω, T )− b) dP (ω) ≤ 0.

We next show that the reverse inequality
´
H(b)

(v (ω, T )− b) dP (ω) ≥ 0 also holds which

together with the above imply that b = EH(b)v (ω, T ) . To prove this, consider bidding b− ε.

Starting at b− ε the following is a feasible policy: 1) maintain the bid at b− ε in the original

set H (b) and also follow the original bidding function in its complement. Since this is feasible

but not necessarily optimal, it follows that:

V (b, v, τ − ε) ≥
ˆ
H(b)

ˆ b−ε
(v (ω, T )− x) dG−i (x) dP (ω) +

ˆ
H(b)c

ˆ B(ω,T )

(v (ω, T )− x) dG−i (x) dP (ω) .

But since V (b, v, τ − ε) ≤ V (b, v, τ) it follows that

ˆ
H(b)

ˆ b−ε
(v (ω, T )− x) dG−i (x) dP (ω) ≤

ˆ
H(b)

ˆ b

(v (ω, T )− x) dG−i (x) dP (ω)

This in turn implies that

ˆ
H(b)

ˆ b

b−ε
(v (ω, T )− x) dG−i (x) dP (ω) ≥ 0

or changing order of integration

ˆ b

b−ε

ˆ
H(b)

(v (ω, T )− x) dP (ω) dG−i (x) ≥ 0

for all ε. Suppose now towards a contradiction that
´
H(b)

(v (ω, T )− b) dP (ω) < 0. By con-

tinuity it follows that for some small ε the above inequality will be violated.
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Proof or Proposition 2

Any bidding strategy B (v, τ) defines a joint stochastic process for final bids and values. As

before, we will denote b (T ) and v (T ) the corresponding final bids and values, respectively.

Let B (v, τ) be a bidding strategy with the property that

E [v (T ) |v, τ and b (T ) = B (v, τ)] = B (v, τ) (17)

for all states (v, τ), i.e., the bid B (v, τ) equals the expected final value in the set where

this is the final bid. As seen in Proposition 1, this is a necessary condition for the optimal

bidding strategy.

We will prove that there is a unique bidding function satisfying property (17) and that

it solves W (B (v, τ) , v, τ) = 0, where W (b, v, τ) is the unique solution to the Bellman

equation:

W (b, v, τ) =

ˆ T

τ
min

(
W
(
b, v′, τ ′

)
, 0
)
dP
(
v′, τ ′|v, τ

)
+ P

(
τ ′ > T |v, τ

) (
E
[
vT |v, τ, τ ′ > T

]
− b
)

(18)

The first step is to establish necessity, i.e., any bidding function B (v, τ) with property (17)

corresponds to a functionW (b, v, τ) satisfying this functional equation andW (B (v, τ) , v, τ) =

0. The second step is to show that the Bellman equation is a contraction mapping. There-

fore, the function W (b, v, τ) is unique and strictly decreasing in b, and consequently there is

a unique bidding function B (v, τ) for which W (B (v, τ) , v, τ) = 0.

Step 1. Necessity

Take a candidate bidding function B (v, τ) that satisfies property (17). For any state (v, τ)

and bid b consider the process for future bids obtained by setting b (τ) = b and applying

the given bidding function in the future. Using the above notation, this bidding behavior

defines a joint stochastic process for final bids and values that we denote by b (T ) and v (T )

respectively. We will be interested in histories, starting from τ, where b (T ) = b, namely
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those where all interim bidding opportunities (vn, τn) have the property that b ≥ B (vn, τn).

Let Q (b, v, τ) denote the resulting probability that b (T ) = b. Now define

W (b, v, τ) = {E [v (T ) |v, τ, b (T ) = b]− b}Q (b, v, τ) , (19)

where again the expectation is taken under the bidding process described above. We now

show that W (b, v, τ) is a solution to functional equation (18). Substituting in the right hand

side of (18)

W (b, v, τ) =

ˆ
min ({E [v (T ) |v′, τ ′, b (T ) = b]− b}Q (b, v′, τ ′) , 0) dP (v′, τ ′|v, τ)

+ P (τ ′ > T |v, τ) (E [v (T ) |v, τ, τ ′ > T ]− b)

As indicated bid b will only remain valid in the next arrival state v′, τ ′ when B (v′, τ ′) ≤ b,

and by Lemma 5 this will occur if and only if E [v (T ) |v′, τ ′, b (T ) = b] ≤ b. It follows that

Q (b, v, τ) =

ˆ T

τ

χE[v(T )|v′,τ ′,b(T )=b]−b≤0Q (b, v′, τ ′) dP (v′, τ ′|v, τ) + P (τ ′ > T |v, τ)

and using the law of iterated expectations it follows that:

W (b, v, τ) = {E [v (T ) |v, τ, b (T ) = b]− b}Q (b, v, τ) .

To complete the first step, we need to show that W (B (v, τ) , v, τ) = 0; this follows

immediately from the definition of W and the property of the bidding function given by

equation (17).

Step 2. Sufficiency and Uniqueness We first show that there is a unique function

W (b, v, τ) satisfying (18) by establishing it is a contraction mapping. Check Blackwell

sufficient conditions: Monotonicity is trivially satisfied. To check discounting, consider the
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function W (b, v, τ) + a for a ≥ 0 on the right hand side of Bellman equation (18).

ˆ T

τ
min

(
W
(
b, v′, τ ′

)
+ a, 0

)
dP
(
v′, τ ′|v, τ

)
+ P

(
τ ′ > T |v, τ

) (
E
[
vT |v, τ, τ ′ > T

]
− b
)

≤
ˆ T

τ
min

(
W
(
b, v′, τ ′

)
, 0
)
dP
(
v′, τ ′|v, τ

)
+ a

(
1− P

(
τ ′ > T |v, τ

))
(20)

+ P
(
τ ′ > T |v, τ

) (
E
[
vT |v, τ, τ ′ > T

]
− b
)

= W (b, v, τ) + a
(
1− P

(
τ ′ > T |v, τ

))
By Assumption 1 P (τ ′ > T |v, τ) > (1− δ) for some 0 < δ < 1, proving the second Blackwell

sufficient condition.

To complete the proof, we need to show that there is a unique bidding function B (v, τ)

satisfying W (B (v, τ) , v, τ) = 0 for all (v, τ) . We show this recursively by establishing that

W is strictly decreasing in the first argument, for any (v, τ) . The proof is the by induction.

So assume that the W function in the right hand side of Bellman equation (18) is weakly

decreasing. Letting b′ > b,

TW
(
b′, v, τ

)
=

ˆ T

τ
min

(
W
(
b′, v′, τ ′

)
, 0
)
dP
(
v′, τ ′|v, τ

)
+ P

(
τ ′ > T |v, τ

) (
E
[
vT |v, τ, τ ′ > T

]
− b′

)
≤
ˆ T

τ
min

(
W
(
b, v′, τ ′

)
, 0
)
dP
(
v′, τ ′|v, τ

)
+ P

(
τ ′ > T |v, τ

) (
E
[
vT |v, τ, τ ′ > T

]
− b′

)
which is strictly less than TW (b, v, τ) since by Assumption 1 P (τ ′ > T |v, τ) > 0 thus proving

sufficiency and uniqueness.

Supporting Lemmas

Lemma 5. Consider a bidding function B (v, τ) such that for all τ > τ0 E [v (T ) |v, τ and b (T ) = B (v, τ)] =

B (v, τ). Starting with an arbitrary bid b at state (τ0, v0) define bτ ′ = max (b, B (τ ′, v (τ ′)))

for all τ ′ > τ0. Then E [v (T ) |τ0, v0 and b (T ) = b]− b is decreasing in b.

Proof. Take an initial bid b at some point (τ0, v0) and ε > 0. For any path ω following

(τ0, v0) , i.e. ωεΩ (τ0, v0) and τ > τ0 define B0 (b, ω, τ) to the bid obtained when starting
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with bid b at (τ0, v0) and following the above bidding rule. Let H (b) denote the set of paths

where B0 (b, ω, T ) = b and H (b+ ε) the set where B0 (b+ ε, ω, T ) = b + ε when applying

same bidding strategy with initial bid b + ε. It follows immediately that B0 (b+ ε, ω, T ) =

max {B0 (b, ω, T ) , b+ ε} . Then

ˆ
H(b+ε)

(v (ω, T )− (b+ ε)) dP (ω) =

ˆ
H(b)

(v (ω, T )− (b+ ε)) dP (ω)

+

ˆ
{b<B0(b,ω,T )≤b+ε}

(v (ω, T )− (b+ ε)) dP (ω)

≤
ˆ
H(b)

(v (ω, T )− (b+ ε)) dP (ω)

+

ˆ
b<B0(b,ω,T )≤b+ε

(v (ω, T )− (B0 (b, ω, T ))) dP (ω)

=

ˆ
H(b)

(v (ω, T )− (b+ ε)) dP (ω)

where the last equality follows from Lemma 6. It follows that

´
H(b+ε)

(v (ω, T )− (b+ ε)) dP (ω)−
´
H(b)

(v (ω, T )− b) dP (ω)

≤
´
H(b)

(v (ω, T )− (b+ ε)) dP (ω)−
´
H(b)

(v (ω, T )− b) dP (ω) < 0 .

Now

EH(b+ε)v (ω, T )− (b+ ε) =

´
H(b+ε)

(v (ω, T )− (b+ ε)) dP (ω)

P (H (b+ ε))

≤

´
H(b)

(v (ω, T )− (b)) dP (ω)

P (H (b+ ε))

≤

´
H(b)

(v (ω, T )− (b)) dP (ω)

P (H (b))

= EH(b)v (ω, T )− b

Lemma 6.
´
B(ω,T )εB

(v (ω, T )− (B (ω, T ))) dP (ω) = 0 for any (Borel set) B

The proof of the Lemma follows from the definition of conditional expectation. We use
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the following theorem in Ash (add reference):

Theorem. Let Y be an extended random variable on (Ω, F, P ) ,and X : (Ω,F)→ (Ω′, F ′) a

random object. If E (Y ) exists, there is a function g : (Ω′,F ′)→
(
R̄,B

)
such that for each

AεF ′, ˆ
{XεA}

Y dP =

ˆ
A

g (x) dPx (x) (21)

where Px (A) = P (ω|X (ω) εA) . The function g (x) is interpreted as E (Y |X = x) .

Proof of Lemma Define a series of random variables which are a function of ω :

b (ω) : final bid for that ω

τ ′ (ω) : time at which that final bid was placed

v (ω) : final value for that ω

Let X (ω) = (τ (ω) , b (ω)) . The random variable that we will consider is Y (ω) = v (ω)−

b (ω) . Let A = {τ0 < τ ≤ T} × B, where B is a Borel set (of bids) in R. What we want to

show is that: ˆ
XεA

Y (ω) dP (ω) = 0.

We know that for all τ > τ0 and b, E (Y |τ, b) = 0 where the pair (τ, b) are interpreted as the

last bid and the time it was placed. Substituting x = (τ, b) and using (21),

ˆ
{τ(ω)>τ0,b(ω)εB}

(v (ω)− b (ω)) dP (ω) =

ˆ
{τ>τ0,bεB}

E (Y |τ, b) dPx (τ, b) = 0
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Proof or Lemma 1

First note that by the law of iterated expectation, E (E ([vT |v′, τ ′]− b|v′, τ ′) |v, τ) = E [vT |v, τ ]−

b and that

E (E ([vT |v′, τ ′]− b|v′, τ ′) |v, τ) =

ˆ
τ

E ([vT |v′, τ ′]− b|v′, τ ′) dP (v′, τ ′|v, τ)

=

ˆ T

τ

E ([vT |v′, τ ′]− b|v′, τ ′) dP (v′, τ ′|v, τ)

+

ˆ
T

E ([vT |v′, τ ′]− b|v′, τ ′) dP (v′, τ ′|v, τ)

=

ˆ T

τ

E ([vT |v′, τ ′]− b|v′, τ ′) dP (v′, τ ′|v, τ)

+P (τ ′ > T |v, τ)E ([vT |v′, τ ′]− b|v, τ, τ ′ > T ) .

We now prove the Lemma by induction. So suppose that W (b, v′, τ ′) ≤ E (v (T ) |v′, τ ′)− b.

Then

W (b, v, τ) =

ˆ T

τ

min (W (b, v′, τ ′) , 0) dP (v′, τ ′|v, τ) + P (τ ′ > T |v, τ) (E [vT |v, τ, τ ′ > T ]− b)

≤
ˆ T

τ

W (b, v′, τ ′) dP (v′, τ ′|v, τ) + P (τ ′ > T |v, τ) (E [vT |v, τ, τ ′ > T ]− b)

≤
ˆ T

τ

E ([vT |v′, τ ′]− b|v′, τ ′) dP (v′, τ ′|v, τ) + P (τ ′ > T |v, τ) (E [vT |v, τ, τ ′ > T ]− b) .

= E [vT |v, τ ]− b

where the first inequality is strict if P (τ ′ ≤ T |v, τ) > 0, thus completing the proof.

Proof of Proposition 5

Let S (τ, τ ′) = exp
(
−
´ τ ′
τ
ρ (s) ds

)
be the probability of no arrival of bidding time in the

interval [τ, τ ′] . For the specific process considered here, the value function (5) specializes to:

W (b, v, τ) =

ˆ T

τ

ρ (τ ′)S (τ, τ ′)

[ˆ
min (W (b, v′, τ ′) , 0) dP (v′|v)

]
dτ ′

+S (τ, T ) [E (vT |v, τ)− b]

48



We prove inductively that W (b, v, τ) is weakly increasing in τ.

∂W (b, v, τ) /∂τ = −ρ (τ)

ˆ
min (W (b, v′, τ) , 0) dP (v′|v) (22)

+

ˆ T

τ

ρ (τ ′) ρ (τ)

[ˆ
min (W (b, v′, τ ′) , 0) dP (v′|v)

]
dτ ′

+ρ (τ) [E (vT |v, τ)− b] + S (τ, T )
∂

∂τ
E (vT |v, τ) (23)

> −ρ (τ)

ˆ
min (W (b, v′, τ) , 0) dP (v′|v)

+ρ (τ) [E (vT |v, τ)− b] + S (τ, T )
∂

∂τ
E (vT |v, τ) (24)

≥ S (τ, T )
∂

∂τ
E (vT |v, τ) ≥ 0

where the last inequality follows from Lemma 1. This completes the inductive proof. The

second claim of the Proposition follows from the first one, the fact that W (B (v, τ) , v, τ) = 0

and that W is decreasing in b.
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