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Abstract
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1 Introduction

The informativeness principle, also known as the su¢ cient statistic theorem, states

that a signal has positive value if and only if it a¤ects the local likelihood ratio. This

principle is believed to be the most robust result from the moral hazard literature.

For example, Bolton and Dewatripont�s (2005) textbook states that this literature

has produced very few general results, but the informativeness principle is one of the

few results that is general. Due to its perceived robustness, the principle has had

substantial impact in several �elds, such as compensation, insurance, and regulation.

For example, in Bebchuk and Fried�s (2004) in�uential book arguing that executive

contracts are ine¢ cient, one of their leading arguments is that contracts violate the

informativeness principle by not taking into account peer performance.

The original formulation of the informativeness principle, in Holmstrom (1979)

and Shavell (1979), assumes the validity of the �rst-order approach (�FOA�): that

the agent�s incentive constraint can be replaced by its �rst-order condition. All of

its generalizations assume either the FOA (e.g. Gjesdal (1982), Amershi and Hughes

(1989), Kim (1995)) or that the agent chooses between two actions only (e.g. Hart and

Holmstrom (1987), Bolton and Dewatripont (2005)). As is well-known, the FOA is

generally not valid.1 Assuming only two actions has a similar e¤ect to using the FOA,

as it means that only one incentive constraint binds, but is unrealistic.

The failure of the FOA is not simply a technical curiosity; there are many real-life

situations where a single local incentive constraint does not ensure global incentive com-

patibility. Many agent decisions cannot be ordered, such as the choice of a corporate

strategy, factory location, or whom to hire or promote. This is especially troublesome

in multitask settings, where the agent can deviate in several di¤erent directions. Even

with ordered actions, non-local deviations may bind if actions have increasing returns

to scale. For example, an academic who normally goes to the o¢ ce on a weekday may

contemplate working from home on that day, rather than only contemplating working

one fewer minute in the o¢ ce. The probability of discovering a blockbuster drug is

likely convex in R&D e¤ort (within some range): increasing e¤ort from low to moder-

1Rogerson (1985) derives the most well-known su¢ cient conditions for the validity of the FOA in

the single-signal case. As Jewitt (1988) points out, these assumptions are so strong that they are not

satis�ed by any standard distribution. Moreover, they are no longer su¢ cient if the principal observes

multiple signals, which is needed to analyze the informativeness principle (as the principal observes

output and an additional signal). Sinclair-Desgagné (1994), Conlon (2009), and Kirkegaard (2015)

obtain su¢ cient conditions for the validity of the FOA in the multiple-signal case.
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ate has little e¤ect on the probability, but increasing it from high to very high has a

disproportionate impact.

Due to the signi�cance of the informativeness principle and the restrictive setting

in which it was derived, it is important to understand whether it holds more generally.

As a preliminary step, we show that the informativeness principle may not hold when

the FOA is invalid. A signal that a¤ects the local likelihood ratio will have zero value

if the agent is most likely to deviate to a non-local e¤ort level.

Our main contribution is to introduce a �generalized informativeness principle�that

provides a su¢ cient condition for a signal to have value even without the FOA. This

su¢ cient condition is stronger than in the original informativeness principle. Since we

do not know ex ante which incentive constraint(s) will bind, the generalized informa-

tiveness principle postulates that a su¢ cient condition for a signal to be informative is

that it a¤ects the likelihood ratio between the principal�s preferred e¤ort and all other

e¤ort levels, rather than only adjacent e¤ort levels.

Surprisingly, we show that even this generalized informativeness principle may not

hold �a signal may a¤ect all likelihood ratios yet still have zero value. Such violations

arise if multiple incentive constraints bind, which is not uncommon (i.e., arises for an

open set of parameters) when there are more than two e¤ort levels. The principal can

use the signal to transfer wages from states with low likelihood ratios to states with

high likelihood ratios, thus relaxing one binding constraint. However, this transfer may

tighten another binding constraint by the same magnitude. Such counter-examples are

knife-edge in that they require the shadow prices of the binding constraints to exactly

coincide. Accordingly, we prove that, except for a set of parameters with measure zero,

any signal that a¤ects the likelihood ratio for all other e¤ort levels has positive value.

Thus, the generalized informativeness principle holds generically.

We also show that the generalized informativeness principle contains the weakest

su¢ cient condition for a signal to have value without making assumptions on the utility

function. Thus, the principle also provides a necessary condition for a signal to have

value without restricting the utility function (e.g. the cost of e¤ort).2

2Our necessity result is in the spirit of the monotone comparative statics literature (see, e.g.,

Athey (2002)). Formally, it states that if the set of admissible utility functions is large enough to

include at least certain additively separable utility functions, then no weakening of the generalized

informativeness principle can be obtained.
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2 Preliminaries

This is a preliminary section that de�nes what it means for a signal to have value,

reviews the original Holmstrom (1979) informativeness principle, and shows that it

may be violated if the FOA is invalid. There is a risk-neutral principal (�she�) and a

risk-averse agent (�he�). The agent chooses an unobservable action e 2 E ; which we
refer to as �e¤ort�. E¤ort a¤ects output x 2 X and a signal s 2 S, both of which are
observable and contractible. We refer to a pair (x; s) as a �state.� In Section 3, we

will assume that the action, output, and signal spaces are �nite; for now, to achieve

comparability with Holmstrom (1979), we allow them to be intervals of the real line as

well.

While Holmstrom (1979) assumes additive separability, we follow Grossman and

Hart (1983) and generalize to the following utility function:

Assumption 1. The agent�s Bernoulli utility function over income w and e¤ort e is

U (w; e) = G (e) +K (e)V (w) : (1)

(i) K (e) > 0 for all e; (ii) V : W ! R is continuously di¤erentiable, strictly in-

creasing, and strictly concave, and W = (w;+1) is an open interval of the real line
(possibly with w = �1); and (iii) U(w1; e1) � U(w1; e2) =) U(w2; e1) � U(w2; e2)
for all e1; e2 2 E and all w1; w2 2 W.

The agent has utility function (1) if and only if his preferences over income lotteries

are independent of his e¤ort. Conditions (i) and (ii) state that the agent likes money

and dislikes risk. Condition (iii) requires preferences over known e¤ort levels to be

independent of income. When K (e) = �K for all e, the utility function is additively

separable between e¤ort and income as in Holmstrom (1979). When G (e) = 0 for all

e, it is multiplicatively separable.3 The agent�s reservation utility is U .

Note that we do not require e¤ort to be ordered. Therefore, our model allows for

the standard interpretation of e as e¤ort (which unambiguously reduces utility and

improves the output distribution) and more general cases where the action cannot be

ordered (such as the choice of di¤erent corporate strategies or between multidimensional

3Multiplicative separability is commonly used in macroeconomics (e.g. Cooley and Prescott

(1995)). In �nance, Edmans, Gabaix, and Landier (2009) show that they are necessary and su¢ -

cient to obtain empirically consistent scalings of CEO incentives with �rm size.
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tasks4). As an example of the former, e¤ort e could refer to the number of hours worked.

As an example of the latter, e = 1 could refer to working 8 hours on project A, e = 2

to working 9 hours on project A, and e = 3 to working 8 hours on project B.

As Grossman and Hart (1983) show, the principal�s problem can be split in two

stages. First, she �nds the cheapest contract that induces each e¤ort level. Second,

she determines which e¤ort level to induce. This paper focuses on the �rst stage:

whether the principal can use the signal s to reduce the cost of implementing a given

e¤ort level.5

We�rst de�ne what it means for a signal to have positive value. Let E(x;s) [�je] denote
the conditional expectation with respect to the distribution of states and Ex [�je] denote
the conditional expectation with respect to the (marginal) distribution of outputs.

When the principal uses the signal s, her cost of implementing e¤ort e� is

Cs (e�) � min
w(x;s)

E(x;s) [w (x; s) je�] (2)

subject to the agent�s individual rationality (�IR�) and incentive compatibility (�IC�)

constraints:

E(x;s) [U (w (x; s) ; e�) je�] � �U; (3)

E(x;s) [U (w (x; s) ; e�) je�] � E(x;s) [U (w (x; s) ; e) je] 8e: (4)

If the program has no solution, we take the cost of implementing e� to be +1.
When the principal does not use the signal s, her cost of implementing e� is

Cns (e�) � min
w(x)

Ex [w (x) je�] (5)

subject to

Ex [U (w (x) ; e�) je�] � �U; (6)

Ex [U (w (x) ; e�) je�] � Ex [U (w (x) ; e) je] 8e: (7)

4It is well known that when the action space is �nite (as we will assume throughout the paper),

there is no loss of generality in assuming that it lies on the real line. Therefore, as long as we retain

the assumption of a �nite action space, our model can accommodate multidimensional actions. Since

it is typically impossible to order multidimensional actions, it is important to obtain results that hold

beyond the FOA.
5Holmstrom (1979) avoids this issue by assuming that either the signal is informative for all e¤ort

levels or for no e¤ort level.
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Let w� (x) be a solution of Program (5)-(7). Since w(x; s) = w� (x) satis�es the

constraints of Program (2)-(4) and costs Cns (e�), it follows that Cs (e�) � Cns (e�): a
signal cannot have negative value. The signal has positive value for implementing e�

if Cs(e�) < Cns(e�) � i.e. the cost of doing so is strictly lower when the contract is
contingent on the signal �and zero value if Cs(e�) = Cns(e�).
We now state Holmstrom�s original theorem.

Theorem. (Informativeness Principle): Assume that the utility function is additively
separable and that the FOA is valid. Suppose states are distributed according to a

continuously di¤erentiable probability density function f (x; sje). The signal has zero
value for implementing e� if and only if there exists a function � for which

fe (x; sje�)
f (x; sje�) = �(x; e

�) (8)

for almost all x; s.

The left-hand side of (8) corresponds to the change in the likelihood ratio f(x;sje�+�e)
f(x;sje�)

for in�nitessimal changes in e¤ort �e � 0. Since only the local IC matters when

the FOA is valid, a signal has positive value for implementing e� if and only if it

a¤ects the local likelihood ratio �i.e. it is informative about whether the agent has

deviated to an adjacent e¤ort level. However, if the FOA is invalid, the agent may

be tempted to deviate to a non-adjacent e¤ort level. Thus, even if a signal a¤ects the

local likelihood ratio, it may have no value. In Example 1, we show that when e¤ort

has �stochastic increasing returns to scale�, non-local incentive constraints bind, and

so the informativeness principle may not hold.

Example 1. The agent has additively separable utility, and we normalize e¤ort to be
measured in cost units: K (e) = �K and G(e) = e.6 The e¤ort space is the unit interval:

E = [0; 1]. Suppose the principal wishes to implement e¤ort e� = 1.
Conditional on e¤ort e, states are distributed according to the probability density

function f(x; sje). Let �f(xje) =
R
f(x; sje)ds denote the marginal distribution of output

and �F (xje) denote the associated cumulative distribution function (�CDF�). Suppose
that f(x; sje = 0) and f(x; sje = 1) are both independent of s.
In Supplementary Appendix B.1, we show the ICs regarding intermediate e¤ort

levels (e 2 (0; 1)) do not bind if either of the following conditions are satis�ed:
6As long as costs are increasing in e¤ort, there is no loss of generality in assuming that costs are

measured in units of e¤ort. In this case, any non-linearity in e¤ort costs is incorporated in the e¤ect

of e¤ort on the probability distribution.
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1. V (w) � 0 and �f(xje) is convex in e for each x; or

2.
�f(xje=1)
�f(xje=0) is non-decreasing (monotone likelihood ratio property, �MLRP�) and
�F (xje) is concave in e for each x.

Then, the only binding constraint involves the global deviation from e = 1 to e = 0,

so the relevant likelihood ratio is f(x;sje=1)
f(x;sje=0) , which is not a function of s. Therefore, a

signal s may a¤ect the local likelihood ratio fe(x;ejê)
f(x;ejê) for almost all ê (including e

� = 1)

and still have zero value.

Example 1 builds on Rogerson (1985), who shows that if the distribution satis�es

the MLRP and the CDF is convex, then only the local ICs bind, justifying the FOA.

MLRP is a standard condition that is satis�ed by many standard distributions. As

Rogerson argues, convexity of the CDF can be interpreted as �stochastic decreasing

returns to scale�: as e¤ort increases, the probability of observing an outcome below

x decreases at a decreasing rate. Our concavity condition is the opposite case, where

the probability of observing an outcome below x decreases at an increasing rate, and

can be interpreted as �stochastic increasing returns to scale.�This example shows that

global concavity of the CDF(in conjunction with MLRP) is su¢ cient to justify the use

of binary e¤ort models.

Although MLRP is a standard assumption in moral hazard models, neither global

convexity (a su¢ cient condition for the FOA) nor global concavity (a su¢ cient con-

dition for the binding IC to be associated with a boundary e¤ort level) are likely to

hold in practice. For example, as noted by Jewitt (1988), if output can be written

x = e+ � for some random variable � with density f , the CDF of x is convex (concave)

if and only if f is an increasing (decreasing) function. Most standard distributions are

neither everywhere increasing nor everywhere decreasing, so both global convexity and

global concavity are unlikely. Thus, we do not know ex ante what ICs will bind, which

motivates the generalized informativeness principle to which we now turn.

3 The Generalized Informativeness Principle

Following Grossman and Hart (1983), we assume that there are �nitely many states

and e¤ort levels: E � f1; : : : ; Eg, X � fx1; :::; xXg, and S � f1; :::; Sg. Finite e¤ort

levels allow us to use Kuhn-Tucker methods to obtain necessary optimality conditions.

With a continuum of e¤ort levels, there is no general method for solving moral hazard
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problems without the FOA.7 The probability of observing state (x; s) conditional on

e¤ort e is denoted pex;s, which we assume to be strictly positive to ensure existence of

an optimal contract (�full support�). Let h � V �1 denote the inverse of the utility of
money. Since V is increasing and strictly concave, h is increasing and strictly convex.

De�ning ux;s � V (wx;s), the principal�s program can be written in terms of �utils�:

min
fux;sg

X
x;s

pe
�

x;sh (ux;s) (9)

subject to

G (e�) +K (e�)
X
x;s

pe
�

x;sux;s � �U; (10)

X
x;s

�
K (e�) pe

�

x;s �K (e) pex;s
�
ux;s � G (e)�G (e�) 8 e 2 E ; (11)

where (10) and (11) are the IR and IC.

When the FOA is invalid, it seems that the informativeness principle simply needs

to be extended to consider non-local deviations. Since we do not know what e¤ort

level the agent will deviate to, being informative about every possible deviation would

appear to be a su¢ cient condition for a signal to have positive value. We thus de�ne

the generalized informativeness principle as follows:

De�nition 1. Let e� be an e¤ort to be implemented and consider a distribution p over
states (x; s) such that, for all e 6= e�, there exist se; s0e; xe with

pexe;se
pe
�
xe;se

6=
pe
xe;s

0
e

pe
�
xe;s

0
e

. The

generalized informativeness principle holds for (p; e�) if the signal s has positive value

in implementing e�.

We now verify whether the generalized informativeness principle actually holds. We

�rst show that, surprisingly, it may fail �even a signal that is informative about every

possible deviation (i.e. a¤ects the likelihood ratio between e� and every other e¤ort

level) may have zero value.

We �rst note that a signal can only have value when there are agency costs. Let

�we denote the wage that gives the agent his reservation utility if he exerts e¤ort e:

�we = h

� �U �G (e)
K (e)

�
:

7Since Holmstrom (1979) assumes the FOA, he is able to consider a continuum of e¤orts while

retaining tractability, because the FOA means that only the local incentive constraint is relevant. In

contrast, our model does not assume the FOA and so considers a �nite action space.
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The principal can implement e¤ort e� with no agency costs if, when she o¤ers the

constant wage �we� that satis�es the IR with equality, all ICs are satis�ed:

U( �we� ; e
�) � U( �we� ; e) 8 e: (12)

We say that the �rst best is feasible for e� if condition (12) holds. Then the principal

uses a constant wage and so signals automatically have zero value. When utility is

either additively or multiplicatively separable, the �rst best is only feasible for the

least costly e¤ort. With non-separable utility, however, it may be feasible for several

di¤erent e¤ort levels (Grossman and Hart (1983)). (The �rst best is never achieved in

Holmstrom (1979) because he assumes additively separable utility and an interior e.)

There are three cases to consider. If no IC binds,8 the �rst best is feasible and

so the generalized informativeness principle automatically fails. Lemma 1, proven in

Supplementary Appendix B.1, states that it holds whenever exactly one IC binds (as

is the case in Holmstrom�s (1979) original theorem):

Lemma 1. Fix an e¤ort e� for which the �rst best is not feasible and a distribution p.
If one IC binds, the generalized informativeness principle holds for (p; e�).

The third case to consider is when multiple ICs bind. When there are at least three

states, it is not unusual for multiple ICs to bind. Formally, we show in Supplementary

Appendix B.2 that multiple ICs bind for a non-empty and open set of parameter values.

Since any non-trivial model with informative signals requires at least three states (at

least two outputs and at least two signals conditional on at least one output), it is

important to study the case of multiple binding ICs.

We start with an example showing that, if multiple ICs bind, the generalized in-

formativeness principle may not hold. Our example follows Holmstrom (1979) and the

subsequent literature in assuming additive separability:

Example 2. There are three e¤ort levels, two outputs, and two signals: E = f1; 2; 3g ;
X = f0; 1g; and S = f0; 1g. Let K (1) = K (2) = K (3) = 1, G (1) = G (2) = 0;

G (3) = �1; and U = 0. Thus, e = 1 and e = 2 both cost zero and e = 3 costs one.
Conditional on e = 3, states are uniformly distributed: p3x;s =

1
4
8 x; s: For e 2

f1; 2g, the conditional probabilities are:

p11;0 = p
2
1;1 =

1

4
; p11;1 = p

2
1;0 =

1

8
; p10;0 = p

1
0;1 = p

2
0;0 = p

2
0;1 =

5

16
:

8We say that a constraint is binding if removing it allows the principal to obtain a higher payo¤.
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Note that the likelihood ratios between any two e¤ort levels are not constant:

p31;1
p21;1

= 1 6= 2 =
p31;0
p21;0

;
p31;1
p11;1

= 2 6= 1 =
p31;0
p11;0

;
p21;1
p11;1

= 2 6= 1

2
=
p21;0
p11;0

:

Let e = 3 be the e¤ort to be implemented. The principal�s program is

min
fux;sg

h(u1;0) + h(u1;1) + h(u0;0) + h(u0;1)

subject to the IR and the two ICs, which can be rewritten as:

u1;0 + u1;1 + u0;0 + u0;1 � 4 (13)

2u1;1 � (u0;0 + u0;1) � 16 (14)

2u1;0 � (u0;0 + u0;1) � 16: (15)

Even though the likelihood ratios between any two e¤ort levels are not constant, the

signal has zero value: ux;0 = ux;1 for x 2 f0; 1g. To see this, notice that when u0;0 6=
u0;1, replacing both of them by

u0;0+u0;1
2

keeps all constraints unchanged and reduces the

principal�s cost (because h is convex). Similarly, if u1;0 6= u1;1, replacing both of them
by their average u1;0+u1;1

2
preserves IC and IR while reducing the principal�s cost.

The intuition for the failure of the generalized informativeness principle is as follows.

For e = 2, the likelihood ratio at state (1; 0) is twice as large as at (1; 1). To relax the

second IC (15), we should increase u1;0 and decrease u1;1. For e = 1, the likelihood

ratio at state (1; 1) is twice as large as at (1; 0). To relax the �rst IC (14), we should

increase u1;1 and decrease u1;0. Since both the likelihood ratios
p31;0
p21;0

and
p31;1
p11;1

and the

costs of e¤ort levels 1 and 3 coincide, the shadow prices of both ICs are the same.

Thus, the bene�t from relaxing one IC is exactly the same as the cost from tightening

the other one. As a result, it is optimal for the agent�s utility not to depend on the

signal.

This result requires the shadow prices of the binding ICs to exactly coincide. If we

perturb either the probabilities or the utility function slightly, the bene�t from relaxing

each constraint will di¤er. We can then improve the contract by increasing utility in

the state with the highest likelihood ratio under the e¤ort associated with the IC with

the highest shadow cost. This intuition suggests that counterexamples such as the one

in Example 2 are non-generic. We now prove that this is indeed the case.

To establish results that can be applied to settings with additive and multiplicative

separability, we hold either K or G �xed in our economy parametrization. Therefore,
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we refer to an economy as either a vector of parameters fK(e); pes;xgs;x;e (which holds
G(e) �xed), or a vector of parameters fG(e); pes;xgs;x;e (which holds K(e) �xed). Our
results still hold if we parametrize an economy by K, G, and p. However, in this case,

economies with additive or multiplicative separability are non-generic.

Theorem 1, proven in Appendix A, is the main result of our paper. It states that

the generalized informativeness principle generically holds: signals that are informative

about deviations to all e¤ort levels have positive value for implementing e�.

Theorem 1. (Generalized Informativeness Principle) Fix an e¤ort e� for which the
�rst best is not feasible. For all economies except for a set of Lebesgue measure zero,

the generalized informativeness principle holds.

Having shown that the generalized informativeness principle gives a su¢ cient con-

dition for a signal to add value generically, Proposition 1 now shows that, unless one

imposes additional restrictions on the utility function, it contains the weakest condi-

tion possible. Thus, the generalized informativeness principle is a necessary condition

for a signal to add value without restricting the utility function. Formally, whenever

the likelihood ratios between two (possibly non-adjacent) e¤ort levels is non-constant,

there exists a utility function for which the signal has positive value:

Proposition 1. Let pex;s
pe�x;s

6=
pe
x;s0

pe
�
x;s0

for some x; s; s0, and e 6= e�. Then, there exist G

and K such that s has positive value in implementing e�.

The proof of Proposition 1 is constructive and uses additively separable utility func-

tions. Therefore, the result holds for any class of preferences that includes additively

separable utility functions, as long as we do not restrict the cost of e¤ort.

Finally, Holmstrom�s (1979) informativeness principle is an �if and only if�result.

The less surprising part shows that uninformative signals have zero value (�necessity�).

The more interesting part shows that every informative signal has positive value (�suf-

�ciency�). Our main contribution is to generalize the su¢ ciency part. We end by

generalizing the necessity part �that uninformative signals have zero value �to set-

tings in which the FOA is not valid and utility is not additively separable. The proof,

in Supplementary Appendix B.1, holds for both discrete and continuous outputs and

e¤ort levels.

Proposition 2. Let (x; s) be either continuously or discretely distributed, and let
f(x; sje) denote either the probability density function or the probability mass func-
tion. Suppose f(x;sje)

f(x;sje�) = �e�(x; e) for all e and almost all (x; s) under e
�. Then, the

signal has zero value in implementing e�.
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4 Conclusion

This paper generalizes the original Holmstrom (1979) informativeness principle to set-

tings in which the �rst-order approach is invalid. In such settings, the informativeness

principle may fail: even if a signal a¤ects the local likelihood ratio, it may have no value

for the contract if it is global deviations that are relevant. It seems natural to think

that a stronger condition will be su¢ cient for a signal to have value even when the

�rst-order approach is invalid: that it a¤ects all likelihood ratios, not just ones involv-

ing adjacent e¤ort levels. However, we show that even this generalized informativeness

principle will not hold if multiple incentive constraints bind with the same shadow

price. While the case in which multiple constraints bind is not knife-edge, the case

in which they have the same shadow price is, and so the generalized informativeness

principle holds generically. In sum, the paper provides a condition, stronger than in

the original informativeness principle, that is generically su¢ cient for a signal to have

value even without the �rst-order approach. Moreover, this condition is necessary for

a signal to have value in the absence of restrictions on the utility function.
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A Proofs

A.1 Proof of Theorem 1

The proof will use the following corollary of Sard�s Theorem:

Corollary 1. Let X � Rn and � � Rp be open, F : X � � ! Rm be continuously

di¤erentiable, and let n < m: Suppose that for all (x; �) such that F (x; �) = 0; DF (x; �)

has rank m. Then, for all � except for a set of Lebesgue measure zero, F (x; �) = 0 has

no solution.

For simplicity, suppose that only two ICs bind; it is straightforward but notationally

cumbersome to generalize the analysis for more than two binding ICs. Without loss of

generality (renumbering e¤ort levels if necessary), let e� = 3 denote the implemented

e¤ort, and let e = 1 and e = 2 denote the two e¤ort levels with binding ICs. By

assumption, the �rst best is not feasible for e� = 3: The principal�s program is

min
ux;s

xXX
x=x1

SX
s=1

pe
�

x;sh (ux;s) (16)

subject to G (e�) +K (e�)

xXX
x=x1

SX
s=1

pe
�

x;sux;s � �U; (17)

G (e�) +K (e�)

xXX
x=x1

SX
s=1

pe
�

x;sux;s � G (e) +K (e)
xXX
x=x1

SX
s=1

pex;sux;s 8 e:

(18)

Following the parametrization of an economy, we keep eitherG � (G(3); G(2); G(1))
or K � (K(3); K(2); K(1)) constant (where bold letters denote vectors). Accordingly,
we introduce the vector �, where either � = K (if G is being held constant) or � = G

(if K is being held constant). Here, we consider the case in which the IR (17) binds.

The case where it does not bind is analogous and presented in Supplementary Appendix

B.1.

The (necessary) �rst-order condition with respect to ux;s is

�pe�x;sh0 (ux;s)� �1K(1)p1x;s � �2K(2)p2x;s + �K (e�) pe
�

x;s = 0 8 x; s, (19)

where �1 and �2 are the Lagrange multipliers on the ICs for deviations to e = 1 and

e = 2, respectively, and � is the Lagrange multiplier on the IR.
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For the agent�s payments to be independent of the signal, the system of equations

(17), (18), and (19) must have as a solution ux;s = ux 8 x; s. Combining these equations,
they can be written as F (u; �1; �2; �; �;p) = 0; where

F

0@ u|{z}
X

; �1; �2; �| {z }
3

; �|{z}
3

; p|{z}
3XS

1A �

266666666666666666664

p31;1h
0 (u1) + �1K(1)p

1
1;1 + �2K(2)p

2
1;1 � �K(3)p31;1

...

p31;Sh
0 (u1) + �1K(1)p

1
1;S + �2K(2)p

2
1;S � �K(3)p31;S

...

p3X;1h
0 (uX) + �1K(1)p

1
X;1 + �2K(2)p

2
X;1 � �K(3)p3X;1

...

p3X;Sh
0 (uX) + �1K(1)p

1
X;S + �2K(2)p

2
X;S � �K(3)p3X;SPX

x=1 uxK(3)
P

s p
3
x;s +G(3)� �UPX

x=1 uxK(2)
P

s p
2
x;s +G(2)� �UPX

x=1 uxK(1)
P

s p
1
x;s +G(1)� �U

377777777777777777775

:

The rest of the proof veri�es that the derivative of F has full row rank so we can apply

Corollary 1. We write this derivative as

DF =

"
AXS�X CXS�3 D� H3

XS�XS H2
XS�XS H1

XS�XS

B3�X 03�3 E� J33�XS J23�XS J13�XS

#
:

Matrices AXS�X and B3�X are, respectively, the derivative of the �rst XS equations

and the last three equations (IR and ICs) with respect to u:

AXS�X =

266664
h00(u1)P

3
1 0 ::: 0

0 h00(u2)P
3
2 ::: 0

...
...

...

0 0 ::: h00(uX)P
3
X

377775
B3�X =

264 K(3)P31 � 1S K(3)P32 � 1S ::: K(3)P3X � 1S
K(2)P21 � 1S K(2)P22 � 1S ::: K(2)P2S � 1S
K(1)P11 � 1S K(1)P12 � 1S ::: K(1)P1S � 1S

375 ;
where Pex =

�
pex;1; :::; p

e
x;S

�0
and 1S � (1; 1; :::; 1) is the vector of ones with length S.

The derivative of the �rst XS and last three equations with respect to the multipliers
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�1, �2, and � are, respectively,

CXS�3 =

26666666666664

K(1)p11;1 K(2)p21;1 �K(3)p31;1
...

K(1)p11;S K(2)p21;S �K(3)p31;S
...

K(1)p1X;1 K(2)p2X;1 �K(3)p3X;1
...

K(1)p1X;S K(2)p2X;S �K(3)p3X;S

37777777777775
(20)

and the null matrix 03�3. The derivative of the �rst XS and last three equations with

respect to fG(3); G(2); G(1)g are, respectively, 0XS�3 and the identity matrix I3. Thus,
if K is constant, � = G, and we have D� = DG = 0XS�3, and E� = EG = I3.

The derivatives with respect to fK(3); K(2); K(1)g are, respectively:

DK =

26666666666664

��p31;1 �2p
2
1;1 �1p

1
1;1

...

��p31;S �2p
2
1;S �1p

1
1;S

...

��p3X;1 �2p
2
X;1 �1p

1
X;1

...

��p3X;S �2p
2
X;S �1p

1
X;S

37777777777775
EK =

264
PX

x=1 ux
P

s p
3
x;s 0 0

0
PX

x=1 ux
P

s p
2
x;s 0

0 0
PX

x=1 ux
P

s p
1
x;s

375
Thus, if G is constant, � = K, and we have D� = DK, and E� = EK.

The derivatives with respect to
�
p3x;s
�
are:

H3
XS�XS =

266664
[h0 (u1)�K(3)�] IS 0S�S ::: 0S�S

0S�S [h0 (u2)�K(3)�] IS ::: 0S�S
...

...
. . .

...

0S�S 0S�S ::: [h0 (uX)�K(3)�] IS

377775
and

J33�XS =

264 u1K(3)1S ::: uXK(3)1S

0S ::: 0S

0S ::: 0S

375 :
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The derivatives with respect to (p2x;s) and (p
1
x;s) are, respectively:

H2
XS�XS =

266664
�2K(2)IS 0S�S ::: 0S�S

0S�S �2K(2)IS ::: 0S�S
...

...
. . .

...

0S�S 0S�S ::: �2K(2)IS

377775 = �2K(2)IXS

J23�XS =

264 0S ::: 0S

u1K(2)1S ::: uXK(2)1S

0S ::: 0S

375
and

H1
XS�XS = �1K(1)IXS

J13�XS =

264 0S ::: 0S

0S ::: 0S

u1K(1)1S ::: uXK(1)1S

375 :
Note thatDFP =

"
H3
XS�XS H2

XS�XS H1
XS�XS

J33�XS J23�XS J13�XS

#
hasXS+3 rows and 3XS columns.

SinceXS+3 < 3XS; it su¢ ces to show thatDFP has full row rank: for any y 2 RXS+3;

y|{z}
1�(XS+3)

� DFP| {z }
(XS+3)�3XS

= 0|{z}
1�3XS

=) y = 0|{z}
1�(XS+3)

:

Let DFPi =

"
H i
XS�XS

J i3�XS

#
. First, expanding y �DFP2 = 0 gives:

�2K(2)y1 + u1K(2)yXS+2 = ::: = �2K(2)yS + u1K(2)yXS+2 = 0

�2K(2)yS+1 + u2K(2)yXS+2 = ::: = �2K(2)y2S + u2K(2)yXS+2 = 0
...

�2K(2)yS(X�1)+1 + uXK(2)yXS+2 = ::: = �2K(2)yXS + uXK(2)yXS+2 = 0:

Dividing through by K(2) > 0 and rearranging gives:

�2y1 = ::: = �2yS = �u1yXS+2 (21)

�2yS+1 = ::: = �2y2S = �u2yXS+2
...

�2yS(X�1)+1 = ::: = �2yXS = �uXyXS+2:
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Similarly, expanding y �DFP1 = 0 yields

�1K(1)y1 = ::: = �1K(1)yS = �u1K(1)yXS+3 (22)

�1K(1)yS+1 = ::: = �1K(1)y2S = �u2K(1)yXS+3
...

�1K(1)yS(X�1)+1 = ::: = �1K(1)yXS = �uXK(1)yXS+3:

with K(1) > 0. Recall that �1 � 0 and �2 � 0 with at least one of them strict. Thus,

y1 = ::: = yS = �y
1

yS+1 = ::: = y2S = �y
2

...

yS(X�1)+1 = ::: = yXS = �y
X :

From equation (21), we have:

�2�y
1 = �u1yXS+2

...

�2�y
X = �uXyXS+2:

(23)

Second, recall that DF(�1;�2;�) =

"
CXS�3

03�3

#
; where CXS�3 is described in (20).

Thus, y �DF(�1;�2;�) = 0 givesX
x;s

�yxK(1)p1x;s = 0;
X
x;s

�yxK(2)p2x;s = 0;
X
x;s

�yxK(3)p3x;s = 0 8x: (24)

Multiplying both sides of the �rst equation in (24) by �2 � 0:

�2
X
x;s

�yxK(1)p1x;s = K(1)
X
x;s

(�2�y
x) p1x;s = 0: (25)

However, from equation (23), we have

K(1)
X
x;s

(�2�y
x) p1x;s = �yXS+2K(1)

X
x;s

uxp
1
x;s = �yXS+2( �U �G(1)); (26)

where the last equality follows from the IC for e = 1. Let G(1) 6= �U (the set of

parameters for which �U = G(1) have zero Lebesgue measure). Then, (25) and (26)

imply yXS+2 = 0. Applying this logic to the second equation in (24) gives yXS+3 = 0:

19



Third, recall from equations (21) and (22) that, 8 x,

�2�y
x = �uxyXS+2 and �1�yx = �uxyXS+3:

Moreover, �1 � 0 and �2 � 0 with at least one of them strict. Since yXS+2 = yXS+3 = 0,
we have �1�y

x = �2�y
x = 0. Since either �1 6= 0 or �2 6= 0, this implies �yx = 0 8 x.

Fourth, expanding y �DFP3 = 0 gives:

y1 [h
0 (u1)�K(3)�] + yXS+1u1K(3) = 0;

...

yS [h
0 (u1)�K(3)�] + yXS+1u1K(3) = 0;

yS+1 [h
0 (u2)�K(3)�] + yXS+1u2K(3) = 0;

...

y2S [h
0 (u2)�K(3)�] + yXS+1u2K(3) = 0;

...

yS(X�1)+1 [h
0 (uX)�K(3)�] + yXS+1uXK(3) = 0;

...

yXS [h
0 (uX)�K(3)�] + yXS+1uXK(3) = 0:

Since y1 = � � � = yXS = 0 and K(3) > 0, this implies that either u1 = � � � = uX (= 0) or
yXS+1 = 0. The former is impossible: such a contract either violates at least one IC, or

satis�es all ICs. In the latter case, the constant wage (determined by the binding IR)

would induce e�, which contradicts the assumption that the �rst best is not feasible.

Thus, yXS+1 = 0, and so y �DFP = 0) y = 0. Hence, DFP has full row rank.

A.2 Proof of Proposition 1

The proof is by construction. Since the goal is to show that there is a utility function

for which the signal has value, it is su¢ cient to do so assuming an additive cost of

e¤ort. Take K(ê) = 1 and de�ne c(ê) � �G(ê) 8 ê. Consider the relaxed program that
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only takes into account the IC between e¤ort levels e� and e:

min
ux;s

X
x;s

pe
�

x;sh(ux;s) s.t. (27)X
x;s

pe
�

x;sux;s � c(e�) + �U; (28)X
x;s

�
pe

�

x;s � pex;s
�
ux;s � c(e�)� c(e): (29)

Let u�x;s denote a solution to this program, which depends on the function c. Since this

is formally identical to the principal�s program in a standard two-e¤ort model, u�x;s is

a function of s if and only if c(e�) > c(e).

Fix c(e�) and c(e) < c(e�), and let �u � supx;sfu�x;sg and u � infx;sfu�x;sg. Letting
c(ê) � c(e�)� �u + u 8 ê =2 fe�; eg ensures that the omitted ICs do not bind, implying
that the solution of the relaxed program u�x;s also solves the principal�s program.

21


