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Abstract

We introduce a new stability concept for multi-period matching markets. Robust

prescient stability asserts that agents exhibit foresight concerning how a market can
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In a matching market, there are two groups of agents. In classic terminology, these groups

may be men and women, workers and firms, students and schools, or doctors and hospitals.

An agent from one group must match from an agent from the other group to realized economic

value. Agents have preferences over their potential partners and, of course, more preferred

partners are associated with superior outcomes. As preferences may conflict, the emergent

pattern of pairings or matchings is far from trivial at the outset.

In their seminal analysis, Gale and Shapley (1962) argue that stable matchings are likely

to form in a two-sided market. Using their terminology of a matching between men and

women, a matching is stable if (i) each agent’s assignment is individually rational and (ii) no

pair of unmatched agents prefers to be together in lieu of their assigned partner. When either

condition fails, a matching is said to be “blocked” by the agent or the pair. As Roth (2002)

explains, a market’s durability is intimately tied to its ability to consistently coordinate upon

a stable outcome.

A key feature of the canonical examples of matching markets—the marriage market,

the labor market, etc.—is that they involve long-term interactions. Marriages are rarely

ephemeral and jobs may last months, if not years. Men and women care about their rela-

tionship’s long-term durability, workers care about their entire career, and a firm may be

concerned about the evolution of its personnel during a project. Maintaining employee en-

gagement and retaining star talent are perennial challenges. Reluctantly or enthusiastically,

long-term relationships may be revised and agents often re-match with others as time passes.

Once we approach the matching problem with a long-term perspective, several compli-

cations emerge. Chief among these is the absence of an immediate analogue to Gale and

Shapley’s (1962) stability concept. In a multi-period market, agents encounter a sequence

of pairings. If commitment is limited or imperfect, an agent may object to a proposed plan

at any moment in time conditional on the market’s history. The anticipated gains from an

objection, however, depend critically on how the market might evolve in the future, condi-

tional on that objection. Will agents be able to maintain future relationships conditional

on a single-period absence? How do others respond? Are coordinated, long-term deviations

with groups of others credible options or are short-term pairwise deviations the only realistic

option?

Many plausible answers lie behind each of the preceding questions. Thus, “stability” in

a multi-period market comes in a variety of flavors. Damiano and Lam (2005) and Kurino

(2009), for example, emphasize the importance of credible group deviations. Both identify

drawbacks with typical definitions of the market’s core. Kadam and Kotowski (2015a) pro-
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pose a stability concept emphasizing agents’ uncertainty concerning future developments in

the wider market, though they downplay the role of commitment in the formulation of devi-

ating plans. Kennes et al. (2014a), who study the assignment of children to Danish daycares,

have defined stability tailored to their particular multi-period application.

Contributing to this debate, we propose a new stability concept—robust prescient sta-

bility (RPS)—that both generalizes Gale and Shapley’s (1962) classic idea while accommo-

dating two salient features of a multi-period economy. First, in a RPS matching agents have

foresight concerning how the market may develop in the future. Specifically, they foresee that

“stable” or RPS continuation plans will define the market’s future development. Thus, agents’

conjectures concerning the future are limited to credible future outcomes. Crucially, however,

foresight is not perfect. Generally many RPS continuation plans may exist at any moment

in time and an agent evaluates the virtue of a particular blocking action by focusing on the

worst-case RPS continuation plan. Thus, agents assess the future robustly. Together, these

ingredients yield a solution concept balancing the credibility concerns identified by Damiano

and Lam (2005) while accommodating uncertainty concerning future developments.

In the following section we relate our analysis to the prior literature. In Section 2 we

introduce the model with notation similar to that employed by Kadam and Kotowski (2015a)

and Kadam and Kotowski (2015b). In Section 3 we define a RPS matching and we verify

its existence for any configuration of agents’ preferences over life-time partnership plans.

In Section 4 we provide a refinement of robust prescient stability. This refinement reduces

the stable set by eliminating certain incredible counterfactual outcomes. We highlight some

directions for future research before concluding.

1 Related Literature

From a thematic point of view, our study contributes the growing literature on two-sided, dy-

namic or multi-period matching economies (Damiano and Lam, 2005; Kurino, 2009; Pereyra,

2013; Kennes et al., 2014a,b; Kadam and Kotowski, 2015a,b). In such economies, agents are

long-lived and experience a sequence of matchings. Assignments may change from period-

to-period. In relation to this literature, we define a new stability concept distinct from prior

proposals. Our proposal’s broad applicability is its main distinguishing quality. We do not

demand agents’ preferences to be additively separable across time periods as Damiano and

Lam (2005) do. History-independence or time-invariance are also unnecessary (Kurino, 2009,

2014; Bando, 2012). Nor do we restrict the nature of inter-temporal complementarities, as
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imposed by or Kadam and Kotowski (2015a). Our solution concept is also independent of

institutional context. Thus, it does not rely on the features of a particular application, such

as daycare assignment (Kennes et al., 2014a,b) or school choice (Dur, 2012; Pereyra, 2013).

Doval (2015) proposes a stability concept, termed dynamic stability, that can be ap-

plied to one- and two-side multi-period matching markets, including those that we study.1

The stability concepts that we investigate share the backward-inductive reasoning found

in Doval’s (2015) dynamic stability. Agents who “block” a matching in period t anticipate

that future assignments will be “stable” given their deviation.2 However, several important

differences distinguish our study from Doval’s analysis. First, Doval follows Corbae et al.

(2003) and Kurino (2009) by studying contingent matchings, which specify an assignment

conditional on all histories of the economy. In our study, a (multi-period) matching refers

only to the observed sequence of assignments. Second, as matchings are economy-wide con-

tingent plans, Doval’s dynamic stability assumes that agents are in agreement concerning

the future consequences of their behavior. Such agreement is not presumed in our analysis.

Doval (2015) shows that dynamically stable matchings may not exist in her model of a two-

sided, one-to-one matching market and she provides sufficient conditions to ensure existence.

Several aspects of her model differ from our setting. Among notable differences, she assumes

that matchings are irrevocable, i.e. if two agents match in period t they remain matched

thereafter, agents’ preferences over partners are time invariant and feature discounting, and

agents may arrive to the market at different times. Our model differs in these respects.

From a technical point of view, Sasaki and Toda’s (1996) study of a one-to-one matching

market with externalities is related to our analysis. The conceptual parallel is the following.

In Sasaki and Toda (1996), agents impose externalities on third parties when they match

together. In our setting, cross-agent externalities are absent. However, an agent’s matching

in an early period imposes an externality on his future self. It does so in two ways. First, since

preferences may be path- or history-dependent, an initial matching may materially affect the

agent’s future interests or preferences. Second, an early matching may change others’ future

interests or preferences precluding or facilitating future pairings. Both effects interact to

1This stability concept was first introduced in the working paper Doval (2014), which preceded this study.
The “dynamic stability” proposed contemporaneously and independently by Kadam and Kotowski (2015a)
is distinct. We relate our analysis to that of Kadam and Kotowski (2015a) in Section 3.

2Though formulated in an infinite horizon model, the equilibrium concept proposed by Corbae et al.
(2003) shares this feature. In their model, a matching is an equilibrium if it specifies an assignment that
cannot be blocked by any agent or pair after any history, including histories following a deviation from the
prescribed matching rule. Not all solution concepts proposed for multi-period matching models impose this
requirement.
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determine the desirability of a particular matching from an agent’s point of view. While

our main solution concept draws on Sasaki and Toda’s (1996) intuition by stressing worst-

case outcomes, the existence of a RPS matching is not a corollary of their model. Damiano

and Lam (2005) also point to the importance of cross-period externalities by defining a

multi-period matching problem’s “agent form.” We do not employ this formulation in our

analysis.

In Section 4 we propose a refinement of robust prescient stability. Borrowing Sasaki and

Toda’s (1996) terminology, this refinement rests on a modification of agents’ “estimation

functions.” In a static matching market with externalities, Hafalir (2008) has proposed

a different preference-based refinement of agents’ estimation functions. He constructs a

“sophisticated estimation function” through an algorithm that expands the set of conjectured

outcomes. The algorithm that we propose differs from his construction and it is analogous to

the elimination of strictly dominated strategies in a normal-form game. As noted by Hafalir

(2008), there are many other behaviorally-plausible ways in which an estimation function

can be refined. Each of these can be applied to our model yielding somewhat different

conclusions.

2 The Model

Let M and W be finite disjoint sets of agents, whom we will call men and women , respec-

tively. We let i, j, and k represent generic agents. When needed, we use m’s and w’s to

identify an agent’s membership in M and W , respectively. Agents interact over T < ∞ peri-

ods. In every period, each man can be matched to at most one woman or not matched at all.

When an agent is not matched, we adopt the common convention that he is “matched to him-

self.” Thus, the set of potential partners for m ∈ M in period t is W ∪ {m}. Symmetrically,

the set of potential partners for w ∈ W is M ∪ {w}.

Each agent i has a strict and complete preference ≻i over partnership plans.3 He is never

indifferent among alternative plans. A partnership plan is a sequence of assignments, one for

each period. For example, (w1, w2, m1, w2, . . .) ∈ (Wm1
)T is a partnership plan for m1 where

he is matched to w1 is period 1 and to w2 in period 2. He is not matched in period 3 and

matched again to w2 in period 2. And so on. Unless confusion is a risk, we will suppress

commas and brackets, i.e. (w1, w2, m1, w2, . . .) = w1w2m1w2 · · · .

As standard, we call the function µt : M ∪ W → M ∪ W an one-period matching (for

3The weak preference %i is defined in the usual manner.
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period t) if (i) ∀m ∈ M , µt(m) ∈ Wm; (ii) ∀w ∈ W , µt(w) ∈ Mw; and, (iii) ∀i ∈ M ∪W ,

µt(i) = j =⇒ µt(j) = i. Thus a matching assigns each agent a partner or leaves him

unmatched. Of course, if i is matched to j, then j is matched to i. Paralleling Sasaki and

Toda’s (1996) notation, let A be the set of all one-period matchings among agents in M and

W . Let A(i, j) = {µt ∈ A | µt(i) = j} be the set of matchings where agent i is matched to

agent j. It follows that A(i, j) = A(j, i). A (multi-period) matching, µ : M∪W → (M∪W )T ,

is a sequence of one-period matchings: µ = (µ1, . . . , µT ). Unless emphasis is needed, we

henceforth refer to a multi-period matching simply as a matching.

3 Robust Prescient Stability

In this section we introduce our first solution concept, which we term robust prescient sta-

bility. Its definition is inductive, starting with the final period and some specialized notation

simplifies its introduction. Given a matching µ, define the partial matchings µ≤t = (µ1, . . . µt)

and µ>t = (µt+1, . . . , µT ). When convenient, we call the partial matching µ>t a continuation

plan. Of course, we can write µ(i) = (µ≤t(i), µ>t(i)). Similarly, if µ(i) = (µ<t(i), j, µ>t(i))

then j is the period-t assignment of i under the matching µ.

We will call a matching robustly presciently stable if it cannot be “blocked” in any period.

Blocking, however, is defined inductively, starting with the final period. After defining the

concept formally, we discuss its key assumptions and interpretations.

Definition 1 (Period-T Blocking).

1. Agent i can block the matching µ in period T if (µ<T (i), i) ≻i µ(i).

2. Agents m ∈ M and w ∈ W can block the matching µ in period T if

(µ<T (m), w) ≻m µ(m) and (µ<T (w), m) ≻w µ(w).

Suppose blocking has been defined for all periods t′ > t. Given a partial matching µ≤t, let

S(µ≤t) ⊂ A
T−t be the set of continuation plans µ̃>t = (µ̃t+1, . . . , µ̃T ) such that the matching

(µ≤t, µ̃>t) cannot be blocked by any agent or by any pair in any period t′ > t.

Definition 2 (Period-t Blocking).

1. Agent i can block the matching µ in period t if for all µ̃t ∈ A(i, i),

(µ<t, i, µ̃
′
>t(i)) ≻i µ(i)
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for all µ̃′
>t ∈ S((µ<t, µ̃t)).

2. Agents m ∈ M and w ∈ W can block the matching µ in period t if for all µ̃t ∈ A(m,w),

(µ<t(m), w, µ̃′
>t(m)) ≻m µ(m) and (µ<t(w), m, µ̃′

>t(w)) ≻w µ(w)

for all µ̃′
>t ∈ S((µ<t, µ̃t)).

Definition 3. A matching is robustly presciently stable (RPS) if it cannot be blocked in any

period t by any agent or by any pair.

It follows immediately from the definition that when T = 1 a matching is robustly

presciently stable if and only if it is stable in the sense of Gale and Shapley (1962). Hence,

an RPS matching exists when the market lasts a single period. Of course, we are concerned

with a multi-period market. Thus, our main result can be formulated as follows.

Theorem 1. If T < ∞, there exists a robustly presciently stable (RPS) matching.

We prove Theorem 1 in the following section. Here we elaborate upon the definition of robust

prescient stability and we link it to other stability concepts.

To provide an interpretation of RPS matchings, it is natural to start with the nomencla-

ture. An RPS matching is prescient as it demands that agents are farsighted. A prescient

individual has foresight or “knowledge of things or events before they exist or happen.”4

In our application, that foresight rests on the ability to know which matchings can occur

without being blocked in future periods. Thus, the agents’ farsightedness is distinct from

that studied by Chwe (1994). RPS matchings demand that agents know others’ interests

sufficiently well to rule out future incredible outcomes with confidence.

Though RPS demands foresight, perfect foresight is not presumed. While an agent knows

what continuation plans can occur in the future, he does not know which plan will occur.

To resolve this ambiguity, RPS imposes a robustness requirement inductively by asking the

agent to hone in on the worst-case possibility in each period. In evaluating the implications

of blocking a matching, an agent conjectures that the market will evolve in such a manner

that the worst-case, not-blockable continuation plan will result.

It is interesting to contrast the form of robustness encountered in an RPS matching with

that seen in a dynamically stable matching, as defined by Kadam and Kotowski (2015a).

4“Prescient | Define Prescient at Dictionary.com.” Dictionary.com Unabridged. Random House, Inc.
Accessed March 29, 2015. <http://dictionary.reference.com/browse/prescient>.
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Dynamic stability also bears the flavor of robustness as agents believe the market will evolve

in the most unfavorable manner. This conjecture downplays the outcome’s credibility or

future stability. Thus, the solution concepts differ.

Example 1. Consider a market with one man and one woman.5 Their preferences are:

≻m : wm,ww,mm ≻w : mm,ww

In this case, wm is m’s most preferred outcome. ww is second best, and so on.

This economy does not have a dynamically stable matching in the sense of Kadam and

Kotowski (2015a). It has a unique RPS matching: µ∗(m) = mm and µ∗(w) = ww. The

matching where both agents are together in both periods is not stable as m will renege on

the plan in period 2. Recognizing this fact, both agents agree to remain unmatched since

they cannot credibly embark on the two-period partnership.

The following example, adapted from Kadam and Kotowski (2015b), shows that there

may exist dynamically stable matchings that are not RPS matchings.

Example 2. There are three men and women. Their preferences are:

≻m1
: w2w2, w2w1, w2w3, w1w1, w3w3, m1m1, . . .

≻m2
: w3w3, w3w2, w3w1, w2w2, w1w1, m2m2, . . .

≻m3
: w1w1, w1w3, w3w3, w1w2, w2w2, m3m3, . . .

≻w1
: m2m2, m1m1, m2m1, m1m2, w1m2, m3m2, w1w1, m3m3, . . .

≻w2
: m3m3, m2m2, m3m2, m2m3, w2m3, m1m3, w2w2, m1m1, . . .

≻w3
: m1m1, m1m3, m3m1, w3m1, m2m1, m3m3, w3w3, m2m2, . . .

Appendix A provides the full preference ranking of the agents in this example. In this

market there are three dynamically stable matchings as outlined in Table 1 (for the details

see Kadam and Kotowski (2015b)). Of the three, only µ1 and µ2 are RPS matchings.

The following example shows that some properties enjoyed by the set of stable matchings

in a one-period economy are not necessarily inherited by the set of RPS matchings.

5Kadam and Kotowski (2015a) employ this same example to show the non-existence of a “dynamically-
stable” matching. Hatfield and Kominers (2012) consider a similar, more elaborate, example of a doctor and
a hospital contracting morning and afternoon shifts.
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Table 1: All dynamically stable matchings in Example 2.

Matching m1 m2 m3 w1 w2 w3

Dynamically
Stable

RPS

µ1 w1w1 w2w2 w3w3 m1m1 m2m2 m3m3 X X

µ2 w3w3 w1w1 w2w2 m2m2 m3m3 m1m1 X X

µ3 w2w3 w3w1 w1w2 m3m2 m1m3 m2m1 X

Example 3. Consider a two-period economy with two men and two women. The agents’

preferences are the following:

≻m1
: w1m1

µ∗

, w1w2, w2w2

µ∗∗

, w2w1, w1w1, m1m1, m1w2, m1w1, w2m1

≻m2
: m2w2, w1w1 , w1w2, w2w1, w1m2, m2w1, w2w2, w2m2, m2m2

≻w1
: m1m1, m1m2, m2m2 , m2m1, m1w1, w1w1, w1m2, w1m1, m2w1

≻w2
: w2m2, m1m1 , m1m2, m2m1, m1w2, w2m1, w2w2, m2w2, m2m2

There are two RPS matchings in this economy. In the above preference list, µ∗ is underlined

while µ∗∗ is boxed. In this example, there does not exist a “W -optimal” RPS matching.

When it exists, such a matching is preferred by all women to all other stable matchings. For

w1, µ
∗∗(w1) ≻w1

µ∗(w1) while w2 holds the opposite opinion. An implication of this outcome

is that the set of RPS matchings need not form a lattice under the usual common-preference

partial order.6

While robustness and prescience are the main features of an RPS matching, several other

observations are worthwhile. First, RPS follows Gale and Shapley (1962) and maintains

a pairwise definition of blocking. Others have proposed group-wise definitions of stability

in multi-period markets.7 Kadam and Kotowski (2015a), whose dynamic stability is also

a pairwise concept, discuss and defend the use of pairwise definitions of blocking in multi-

period economies.

Second, RPS posits that agents have essentially no commitment ability. All blocking

6In a one-period market, the set of stable matchings forms a lattice. For more on this property of stable
matchings, we refer the reader to the survey by Roth and Sotomayor (1990).

7For example, see Damiano and Lam (2005), Kurino (2009), or Doval (2015). In contrast, Corbae et al.
(2003) focus on pairwise blocking as we do.
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actions are one-period affairs. A pair of agents cannot commit to coordinate their assign-

ments for two periods, say, so as to block a proposed matching. Unless such a conjectured

plan yields an improved worst-case outcome, one party party will not trust the other to

follow through on the agreed-to arrangement. Many of the aforementioned alternative sta-

bility concepts assume that groups of agents can formulate and credibly implement elaborate

continuation arrangements only among themselves. RPS does not bestow agents with this

degree of trust.

3.1 Proof of Theorem 1

To prove Theorem 1, we proceed by induction. Lemma 1 proves the base-case. The inductive

step is considered in the main proof to follow below. Throughout, let T ≥ 2.

Lemma 1. Let µ≤T−1 be a (T − 1)-period partial matching. S(µ≤T−1) 6= ∅.

Proof. Fix µ≤T−1. For each agent i, define a one-period preference conditional on µ≤T−1,

denoted by P
µ≤T−1(i)
i , as follows:

jP
µ≤T−1(i)
i k ⇐⇒ (µ≤T−1(i), j) ≻i (µ≤T−1(i), k).

Now consider the one-period economy where each agent’s preference over potential partners

is given by P
µ≤T−1(i)
i . By Gale and Shapley (1962), there exists a stable one-period matching

in this economy. Denote this stable one-period matching by µ∗
T .

Next, consider the T period matching (µ≤T−1, µ
∗
T ). Suppose that agent i can block this

matching in period T in the sense of Definition 1. Thus, (µ≤T−1(i), i) ≻i (µ≤T−1(i), µ
∗
T (i)) =⇒

iP
µ≤T−1(i)
i µ∗

T (i), which is a contradiction since µ∗
T (i) is a stable matching in a one-period

economy.

Similarly, if m ∈ M and w ∈ W can block the matching (µ≤T−1, µ
∗
T ) in period T

then (µ≤T−1(m), w) ≻m (µ≤T−1(m), µ∗
T (m)) =⇒ wP

µ≤T−1(m)
m µ∗

T (m) and (µ≤T−1(w), m) ≻w

(µ≤T−1(w), µ
∗
T (w)) =⇒ mP

µ≤T−1(w)
w µ∗

T (w). Hence, m and w can block the matching µ∗
T in

the one-period economy, which is a contradiction. Therefore, µ∗
T ∈ S(µ≤T−1).

Proof of Theorem 1. To verify that there exists a RPS matching it is sufficient to show

that for all t = 0, . . . , T − 1 and any partial matching µ≤t, S(µ≤t) 6= ∅. Existence is implied

by the t = 0 case.

Lemma 1 has confirmed that S(µ≤T−1) 6= ∅ for all partial matchings µ≤T−1. Thus,

proceeding by induction, suppose S(µ≤t) 6= ∅ for all partial matchings µ≤t. We will verify
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that S(µ≤t−1) 6= ∅.

Fix a (t−1)-period partial matching, µt−1. For each agent i, define a one-period preference

conditional on µt−1, denoted P
µ≤t−1(i)
i , as follows:

jP
µ≤t−1(i)
i k ⇐⇒

minµ̃t∈A(i,j)

(

minµ̃′
>t∈S((µ≤t−1,µ̃t))(µ≤t−1(i), j, µ̃

′
>t(i))

)

≻i minµ̃t∈A(i,k)

(

minµ̃′
>t∈S((µ≤t−1,µ̃t))(µ≤t−1(i), k, µ̃

′
>t(i))

) .

The minimizations in the above expression are taken with respect to the (total) order ≻i

over finite sets. By the induction hypothesis, for each µ̃t, S((µ≤t−1, µ̃t)) 6= ∅. Therefore,

P
µ≤t−1(i)
i is well defined.

Now consider the one-period economy where each agent’s preference over potential part-

ners is given by P
µ≤t−1(i)
i . By Gale and Shapley (1962), there exists a stable one-period

matching in this economy. Denote this stable one-period matching by µ∗
t . Now, choose some

µ∗
>t ∈ S((µ≤t−1, µ̃

∗
t )). We will verify that the matching (µ<t, µ

∗
t , µ

∗
>t) cannot be blocked in

period t. There are two cases.

First, suppose (µ<t, µ
∗
t , µ

∗
>t) can be blocked in period t by agent i. Thus, for all µ̃t ∈

A(i, i),

(µ<t(i), i, µ̃
′
>t(i)) ≻i (µ<t(i), µ

∗
t (i), µ

∗
>t(i))

for all µ̃′
>t ∈ S((µ<t, µ̃t). In particular, this implies,

min
µ̃t∈A(i,i)

(

min
µ̃′
>t∈S((µ≤t−1,µ̃t))

(µ≤t−1(i), i, µ̃
′
>t(i))

)

≻i (µ<t(i), µ
∗
t (i), µ

∗
>t(i))

%i min
µ̃t∈A(i,µ∗

t (i))

(

min
µ̃′
>t∈S((µ≤t−1,µ̃t))

(µ≤t−1(i), µ
∗
t (i), µ̃

′
>t(i))

)

.

Thus, iP
µ≤t−1(i)
i µ∗

t (i). Hence, i can block the matching µ∗
t in the one-period economy defined

above. But this contradicts the stability of the one-period matching µ∗
t (i).

Instead, suppose agents m ∈ M and w ∈ W can block (µ<t, µ
∗
t , µ

∗
>t) in period t. Thus,

for all µ̃t ∈ A(m,w),

(µ<t(m), w, µ̃′
>t(m)) ≻m (µ<t(m), µ∗

t (m), µ∗
>t(m))
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for all µ̃′
>t ∈ S((µ<t, µ̃t). In particular, this implies

min
µ̃t∈A(m,w)

(

min
µ̃′
>t∈S((µ≤t−1,µ̃t))

(µ≤t−1(m), w, µ̃′
>t(m))

)

≻m (µ<t(m), µ∗
t (m), µ∗

>t(m))

%m min
µ̃t∈A(m,µ∗

t (m))

(

min
µ̃′
>t∈S((µ≤t−1,µ̃t))

(µ≤t−1(m), µ∗
t (m), µ̃′

>t(m))
)

.

Thus, wP
µ≤t−1(m)
m µ∗

t (m). Similarly, we conclude that mP
µ≤t−1(w)
w µ∗

t (w). Thus, m and w can

block µ∗
t in the one-period economy, which is a contradiction.

4 Prudent Prescient Stability

Situations may arise where it may be unreasonable for an agent to anticipate that others will

form a particular matching when evaluating the consequences of his or her blocking behavior.

For example, a strong intuition suggests that an agent should not believe others will enter into

a matching that unambiguously leads to a not individually rational outcome. Even if such

behavior serves as a forceful “punishment” for a “deviation” from a particular matching, it

lacks credibility—at least in a very basic sense. Thus, when contemplating a blocking action,

an agent may be sufficiently comfortable to disregard such contingent contemporaneous

assignments. A result of this more refined model of others’ plausible behavior is that blocking

ought to become easier, thereby reducing the stable set’s size.

In this section we refine robust prescient stability accounting for this more sophisticated

model of agent blocking behavior. We operationalize the preceding intuition with Algorithm

1, which defines an iterative process closely resembling the iterated elimination of strictly

dominated actions common to game theory. In each period, this process is applied to winnow-

down the set A(·, ·) that features in the definition of blocking introduced above. The resulting

modified definition of blocking, which we term prudent blocking, allows an agent to disregard

incredible outcomes when contemplating a blocking action. As noted above, there are many

other behaviorally-plausible ways in which A(·, ·) may be reduced in size yielding slightly

different definitions of blocking.

Mirroring the discussion above, prudent blocking is defined recursively, starting with the

final period. In period T it coincides with the usual definition of blocking as there is but one

period remaining.

12



Definition 4 (Prudent Period-T Blocking).

1. Agent i can credibly block the matching µ in period T if (µ<T (i), i) ≻i µ(i).

2. Agents m ∈ M and w ∈ W can credibly block the matching µ in period T if

(µ<T (m), w) ≻m µ(m) and (µ<T (w), m) ≻w µ(w).

Proceeding inductively, suppose that prudent blocking has been defined for all periods

t′ > t. Given the partial matching µ≤t, let S
∗(µ≤t) be the set of continuation plans µ̃>t =

(µ̃t+1, . . . , µ̃T ) such that the matching (µ≤t, µ̃>t) cannot be prudently blocked by any agent

or pair in any period t′ > t.

To define prudent blocking for an arbitrary period t requires some additional notation.

As before, let A be the set of all one-period assignments. For any Ã ⊂ A, let Ã(i, j) ⊂ Ã be

the subset of assignments where i is assigned to j. That is, Ã(i, j) = {µt ∈ Ã : µt(i) = j}.

Algorithm 1 (Iterated Elimination of Individually Incredible Contemporaneous Assign-

ments). Fix t and a partial matching µ<t. For each pair {i, j} define A
∗
µ<t

(i, j) inductively

as follows.8

1. Let A
0
µ<t

:= A be the set of one-period matchings.

2. Given τ ≥ 1 and µt ∈ A
τ−1
µ<t

, µt ∈ A
τ
µ<t

if and only if µt does not mandate an individually

incredible assignment at step τ . An assignment of i to j is individually incredible at

step τ if for all µ̂t ∈ A
τ−1
µ<t

(i, i) and for all µ̃t ∈ A
τ−1
µ<t

(i, j),

(µ<t(i), µ̂t(i), µ̂>t(i)) ≻i (µ<t(i), µ̃t(i), µ̃>t(i))

for all µ̂>t ∈ S
∗((µ<t, µ̂t)) and all µ̃>t ∈ S

∗((µ<t, µ̃t)).

Let A
∗
µ<t

:= ∩τ≥0A
τ
µ<t

.

If µt ∈ A
∗
µ<t

then we say that µt survives the iterated elimination of individually incredible

contemporaneous assignments.

The definition of prudent blocking (intentionally) bears close resemblance to the definition

of blocking, introduced above. The difference is that A(·, ·) and S(·) are replaced by A
∗
µ<t

(·, ·)

and S
∗(·), respectively.

Definition 5 (Prudent Period-t Blocking).

8The case where i = j is admissible.
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1. Agent i can prudently block the matching µ in period t if A∗
µ<t

(i, i) 6= ∅ and for all

µ̃t ∈ A
∗
µ<t

(i, i),

(µ<t, i, µ̃
′
>t(i)) ≻i µ(i)

for all µ̃′
>t ∈ S

∗((µ<t, µ̃t)).

2. Agents m ∈ M and w ∈ W can prudently block the matching µ in period t if

A
∗
µ<t

(m,w) 6= ∅ and for all µ̃t ∈ A
∗
µ<t

(m,w),

(µ<t(m), w, µ̃′
>t(m)) ≻m µ(m) and (µ<t(w), m, µ̃′

>t(w)) ≻w µ(w)

for all µ̃′
>t ∈ S

∗((µ<t, µ̃t)).

Definition 6. A matching is prudently presciently stable (PPS) if it cannot be prudently

blocked in any period t by any agent or by any pair.

Theorem 2. If T < ∞, there exists a PPS matching.

Theorem 3. If µ∗ is a PPS matching, then it is a RPS matching.

Theorem 3 identifies a natural logical relationship among PPS and RPS matchings. The

theorem’s conclusion is not an immediate consequence of the definition of prudent blocking

for two reasons. First, inductive reasoning is required to accommodate the recursive appear-

ances of S(·) and S
∗(·) throughout the definitions of regular and prudent blocking. Second,

the definition of prudent blocking constrains the conjectured contemporaneous assignments

of others and it reduces the set of available blocking actions available to agent i. (Recall

that agent i cannot block with j if A∗
µ<t

(i, j) = ∅.) These two features of the definition carry

divergent implications for the ease with which a matching can be blocked.

Before proving theorems 2 and 3 below, we present an example illustrates the difference

between RPS and PPS matchings. It additionally confirms that an RPS matchings need not

be a PPS matchings.

Example 4. Consider a two-period economy with two men and two women. The agents’

preferences are the following:

≻m1
: w1w1

µ∗,µ∗∗

, m1m1, . . . ≻w1
: m1m1

µ∗,µ∗∗

, w1w1, m2m2, . . .

≻m2
: w2w2

µ∗∗

, m2w2
µ∗

, m2m2, w1w1, . . . ≻w2
: w2m2

µ∗

, m2m2

µ∗∗

, w2w2, . . .

14



Two matchings are highlighted in the above preference lists. Call the boxed matching µ∗

and the underlined matching µ∗∗. Both are RPS matchings and there do not exist any other

RPS matchings in this economy. Only µ∗∗ is a PPS matching. The (RPS) stability of µ∗

depends on the proposition that w2 is partnered with m2 in period 2 despite preferring to

remain unmatched in period 1. This arrangement is rationalized in w2’s mind by the belief

that if she does not match with m2 in period 1, m2 will match with w1 in both periods.

(Conditional on m1 matching with w1 in period 1, maintaining that assignment for the next

period is a stable continuation.) Thus, the best w2 can do is to remain unmatched in both

periods. This outcome is worse than the µ∗(w2) = m2m2 plan.

The tenuous aspect of the preceding situation is that m2 views a two-period matching

with w1 as a less desirable outcome than remaining unmatched. Likewise, w1 would prefer

to remain unmatched rather than match with m2 for two periods. Neither fact lends support

to w2’s rationalization described above. Consequently, µ∗ is not a PPS matching.

Remark 1. Though we have assumed that the set of agents is fixed, one can model agent

arrivals and departures within our setting as follows. Conditional on any history, an agent

who is not “present” in period t ranks plans where he is unmatched in period t as superior to

all plans that posit otherwise. For example, in a three period economy where agent i arrives

in period 3, his (top) preferences may read as follows

iij ≻i iik ≻i · · · ≻i iil ≻i iii ≻i · · · .

In such applications, PPS would be a preferable solution concept to RPS as it precludes

incredible counterfactual assignments involving agents who are not present in the economy.

4.1 Proofs of Theorems 2 and 3

To prove Theorem 2, we first show that A∗
µ<t

6= ∅.

Lemma 2. Fix t and a partial matching µ<t. Suppose S
∗((µ<t, µt)) 6= ∅ for all one-period

matchings µt. Define A
∗
µ<t

as in Algorithm 1. Then A
∗
µ<t

6= ∅. Moreover, A∗
µ<t

(i, i) 6= ∅ for

all i.

Proof. Consider the one-period matching µt such that µt(i) = i for all i. If µt /∈ A
∗
µ<t

, it must

have involved an assignment that was individually incredible at some step τ of Algorithm 1.

Without loss of generality, suppose agent i’s assignment is deemed incredible. Hence, for all

15



µ̂t ∈ A
τ−1
µ<t

(i, i) and for all µ̃t ∈ A
τ−1
µ<t

(i, µt(i)),

(µ<t(i), µ̂t(i), µ̂>t(i)) ≻i (µ<t(i), µ̃t(i), µ̃>t(i))

for all µ̂>t ∈ S
∗((µ<t, µ̂t)) and all µ̃>t ∈ S

∗((µ<t, µ̃t)). But, µt(i) = i and thus Aτ−1
µ<t

(i, µt(i)) =

A
τ−1
µ<t

(i, i). The strict preference in the criterion above implies the contradiction. As µt ∈ A
∗
µ<t

and µt(i) = i, then µt ∈ A
∗
µ<t

(i, i) as well.

Proof of Theorem 2. To prove Theorem 2 it is sufficient to verify that S
∗(µ≤t) is not

empty for all partial matchings µ≤t, where 0 ≤ t ≤ T − 1. Given an arbitrary µ≤T−1, the

same argument as presented in Lemma 1 confirms that S
∗(µ≤T−1) 6= ∅. (The definitions of

prudent blocking and regular blocking coincide for period T .)

Proceeding by induction, suppose S
∗(µ≤t′) 6= ∅ for all t′ ≥ t. We will show that

S
∗(µ≤t−1) 6= ∅. Fix µ≤t−1 = µ<t. In a manner similar to the proof of Theorem 1, define a

one-period preference for each agent i, denoted P
∗µ<t(i)
i , as follows:

• If A∗
µ<t

(i, j) 6= ∅ and A
∗
µ<t

(i, k) 6= ∅,

jP
∗µ<t(i)
i k ⇐⇒

minµ̃t∈A∗
µ<t

(i,j)

(

minµ̃′
>t∈S

∗((µ<t,µ̃t))(µ<t(i), j, µ̃
′
>t(i))

)

≻i minµ̃t∈A∗
µ<t

(i,k)

(

minµ̃′
>t∈S

∗((µ<t,µ̃t))(µ<t(i), k, µ̃
′
>t(i))

) .

In the preceding expression, S∗((µ<t, µ̃t)) 6= ∅ by the induction hypothesis.

• If A∗
µ<t

(i, j) = ∅, then set iP
∗µ<t(i)
i j. (The ordering of assignments ranked below i by

P
∗µ<t(i)
i can be arbitrary.)

From Lemma 2, A∗
µ<t

(i, i) 6= ∅. Hence P
∗µ<t(i)
i is well-defined.

Now considered a one-period matching market where each agent’s preference is P
∗µ<t(i)
i .

From Gale and Shapley (1962), we know that this market has at least one stable matching.

Let µ∗
t be a stable matching in this one-period economy. As above, the induction hypothesis

implies that S
∗((µ<t, µ

∗
t )) 6= ∅. Fix µ∗

>t ∈ S
∗((µ<t, µ

∗
t )) and define µ∗

≥t = (µ∗
t , µ

∗
>t). We will

confirm that µ∗
≥t ∈ S

∗(µ<t).

As µ∗
>t ∈ S

∗((µ<t, µ
∗
t )), µ∗ := (µ<t, µ

∗
t , µ

∗
>t) cannot be blocked in any period t′ > t.

Therefore, to confirm that µ∗
≥t ∈ S

∗(µ<t) it is sufficient to verify that µ∗ cannot be blocked

in period t. To do so, we first confirm the following claim.

Claim 1. For each agent i, µ∗
t ∈ A

∗
µ<t

(i, µ∗
t (i)).
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Proof of Claim 1. As µ∗
t is a one-period matching that is stable in a one-period economy

when each agent’s preference is P
∗µ<t(i)
i , necessarily it must be the case that µ∗

t (i)R
∗µ<t(i)
i i.9

Hence, by definition of P
∗µ<t(i)
i , A∗

µ<t
(i, µ∗

t (i)) 6= ∅ for each i.

Suppose µ∗
t /∈ A

∗
µ<t

(i, µ∗
t (i)) for some i. Thus, there exists some step τ in Algorithm 1 such

that µ∗
t ∈ A

τ−1
µ<t

(i, µ∗
t (i)) but µ∗

t /∈ A
τ
µ<t

(i, µ∗
t (i)). Hence, there exists some j for whom the

assignment of j to µ∗
t (j) is individually incredible at step τ . But this implies that all assign-

ments where j is assigned to µ∗
t (j) cannot belong to A

∗
µ<t

and, therefore, A∗
µ<t

(j, µ∗
t (j)) = ∅.

By definition of P
∗µ<t(j)
j , it follows that jP

∗µ<t(j)
j µ∗

t (j). However, we have arrived at a con-

tradiction. As µ∗
t is a stable one-period matching in the sense of Gale and Shapley (1962) it

cannot assign j to a partner who is less preferred than remaining unmatched. ⋄

The remainder of the proof of Theorem 2 proceeds analogously to the proof of Theorem

1. Again, there are two cases. First, suppose µ∗ = (µ<t, µ
∗
t , µ

∗
>t) can be prudently blocked

in period t by agent i. Thus, for all µ̃t ∈ A
∗
µ<t

(i, i),

(µ<t(i), i, µ̃
′
>t(i)) ≻i (µ<t(i), µ

∗
t (i), µ

∗
>t(i))

for all µ̃′
>t ∈ S

∗((µ<t, µ̃t). In particular, this implies,

min
µ̃t∈A∗

µ<t
(i,i)

(

min
µ̃′
>t∈S

∗((µ<t ,µ̃t))
(µ<t(i), i, µ̃

′
>t(i))

)

≻i (µ<t(i), µ
∗
t (i), µ

∗
>t(i))

%i min
µ̃t∈A

∗
<t(i,µ

∗
t (i))

(

min
µ̃′
>t∈S

∗((µ<t,µ̃t))
(µ<(i), µ

∗
t (i), µ̃

′
>t(i))

)

.

The third line follows from Claim 1. Thus, iP
∗µ≤t−1(i)
i µ∗

t (i). Hence, i can block µ∗
t in the

one-period economy used to derive µ∗
t . But this contradicts the stability of the one-period

matching µ∗
t .

Instead, and second, suppose agents m ∈ M and w ∈ W can block µ∗ = (µ<t, µ
∗
t , µ

∗
>t) in

period t. Thus, A∗
µ<t

(m,w) 6= ∅ and for all µ̃t ∈ A
∗
µ<t

(m,w),

(µ<t(m), w, µ̃′
>t(m)) ≻m (µ<t(m), µ∗

t (m), µ∗
>t(m))

9As usual, jR
∗µ<t(i)
i k if jP

∗µ<t(i)
i k or j = k.
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for all µ̃′
>t ∈ S

∗((µ<t, µ̃t). In particular, this implies

min
µ̃t∈A∗

µ<t
(m,w)

(

min
µ̃′
>t∈S

∗((µ<t,µ̃t))
(µ<t(m), w, µ̃′

>t(m))
)

≻m (µ<t(m), µ∗
t (m), µ∗

>t(m))

%m min
µ̃t∈Aµ∗

<t
(m,µ∗

t (m))

(

min
µ̃′
>t∈S

∗((µ<t,µ̃t))
(µ<t(m), µ∗

t (m), µ̃′
>t(m))

)

.

Thus, wP
∗µ<t(m)
m µ∗

t (m). Similarly, we conclude that mP
∗µ<t(w)
w µ∗

t (w). Thus, m and w can

block µ∗
t in the one-period economy, which is a contradiction. Thus, we conclude that µ∗

cannot be blocked in any period t′ ≥ t. Hence, µ∗
≥t ∈ S

∗(µ<t).

The following lemma is used in the proof of Theorem 3 below.

Lemma 3. Fix µ<t and suppose A
∗
µ<t

(i, j) = ∅. Then there exists some τ at which an

assignment of i to j is deemed individually incredible.

Proof. Consider a one-period matching µt such that µt(i) = j and µt(k) = k for all k 6= i, j.

Since A
∗
µ<t

(i, j) = ∅ and µt ∈ A(i, j), µt must involve an individually incredible assignment.

From Lemma 2, the matching where all agents are unmatched belongs to A
∗
µ<t

. Hence, all

the assignments in µt where k is assigned to k cannot be individually incredible. Therefore,

the assignment of i to j must be individually incredible at some step τ .

Proof of Theorem 3. For any partial matching µ≤t, let S(µ≤t) be the set of continuation

plans µ>t that cannot be blocked in any period t′ > t. Likewise, let S
∗(µ≤t) be the set of

continuation plans µ>t that cannot be prudently blocked in any period t′ > t. To prove the

theorem, it is sufficient to show that S
∗(µ≤t) ⊂ S(µ≤t) for all µ≤t, 0 ≤ t ≤ T − 1.

As the definitions of blocking and prudent blocking coincide in period T , S∗(µ≤T−1) =

S(µ≤T−1) for all µ≤T−1. Proceeding by induction, suppose that for all t′ ≥ t, S
∗(µ≤t′) ⊂

S(µ≤t′) for all µ≤t′. Now fix µ≤t−1 and consider µ∗
≥t ∈ S

∗(µ≤t−1). That is, (µ<t, µ
∗
≥t) cannot

be prudently blocked in any period t′ ≥ t. Thus, µ∗
>t ∈ S

∗((µ<t, µ
∗
t )). By the induction

hypothesis, S∗((µ<t, µ
∗
t )) ⊂ S((µ<t, µ

∗
t )). Hence, µ∗

>t ∈ S((µ<t, µ
∗
t )). Thus, (µ<t, µ

∗
≥t) cannot

be blocked in any period t′ > t.

To show that (µ<t, µ
∗
≥t) cannot be blocked in period t, assume the contrary. Suppose

that i and j can block (µ<t, µ
∗
≥t). Thus,

min
µ̃t∈A(i,j)

(

min
µ̃′
>t∈S((µ<t,µ̃t))

(µ<t(k), µ̃(k), µ̃
′
>t(k))

)

≻k (µ<t(k), µ
∗
t (k), µ

∗
>t(k))
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for each k ∈ {i, j}. By the induction hypothesis, S∗((µ<t, µ̃t)) ⊂ S((µ<t, µ̃t)) and S
∗((µ<t, µ̃t)) 6=

∅. Thus, since a minimum is evaluated over a smaller set,

min
µ̃t∈A(i,j)

(

min
µ̃′
>t∈S

∗((µ<t,µ̃t))
(µ<t(k), µ̃(k), µ̃

′
>t(k))

)

≻k (µ<t(k), µ
∗
t (k), µ

∗
>t(k)).

There are two cases.

1. Suppose A
∗
µ<t

(i, j) 6= ∅. As A
∗
µ<t

(i, j) ⊂ A(i, j),

min
µ̃t∈A∗

µ<t
(i,j)

(

min
µ̃′
>t∈S

∗((µ<t,µ̃t))
(µ<t(k), µ̃(k), µ̃

′
>t(k))

)

≻k (µ<t(k), µ
∗
t (k), µ

∗
>t(k)).

But this implies that i and j can prudently block (µ<t, µ
∗
≥t) in period t, which is a

contradiction.

2. Suppose A
∗
µ<t

(i, j) = ∅.

By Lemma 3, the assignment of i to j must be deemed incredible at some step τ of

Algorithm 1. Thus, without loss of generality focusing on agent i,

min
µ̂t∈A

τ−1
µ<t

(i,i)

(

min
µ̂′
≥t

∈S∗((µ<t ,µ̂t))
(µ<t(i), µ̂t(i), µ̂

′
>t(i))

)

≻i min
µ̃t∈A

τ−1
µ<t

(i,j)

(

min
µ̃′
≥t

∈S∗((µ<t,µ̃t))
(µ<t(i), µ̃t(i), µ̃

′
>t(i))

)

(1)

As A
∗
µ<t

(i, i) ⊂ A
τ−1
µ<t

(i, i),

min
µ̂t∈A∗

µ<t
(i,i)

(

min
µ̂′
≥t

∈S∗((µ<t,µ̂t))
(µ<t(i), µ̂t(i), µ̂

′
>t(i))

)

%i max
µ̃t∈A

τ−1
µ<t

(i,i)

(

max
µ̃′
≥t

∈S∗((µ<t,µ̃t))
(µ<t(i), µ̃t(i), µ̃

′
>t(i))

)

(2)

As A
τ−1
µ<t

(i, j) ⊂ A(i, j) and S
∗(µ≤t′) ⊂ S(µ≤t′) for all t′ ≥ t and µ≤t′ ,

max
µ̃t∈A

τ−1
µ<t

(i,j)

(

max
µ̃′
≥t

∈S∗((µ<t ,µ̃t))
(µ<t(i), µ̃t(i), µ̃

′
>t(i))

)

%i min
µ̃t∈A

τ−1
µ<t

(i,j)

(

min
µ̃′
≥t

∈S∗((µ<t,µ̃t))
(µ<t(i), µ̃t(i), µ̃

′
>t(i))

)

%i min
µ̃t∈A(i,j)

(

min
µ̃′
≥t

∈S((µ<t ,µ̃t))
(µ<t(i), µ̃t(i), µ̃

′
>t(i))

)

≻i (µ<t(i), µ
∗
t (i), µ

∗
>t(i)) (3)
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Combining (2) and (3) via (1), we conclude that

min
µ̂t∈A∗

µ<t
(i,i)

(

min
µ̂′
≥t

∈S∗((µ<t,µ̂t))
(µ<t(i), µ̂t(i), µ̂

′
>t(i))

)

≻i (µ<t(i), µ
∗
t (i), µ

∗
>t(i)).

But this implies that i can prudently block (µ<t(i), µ
∗
≥t(i)) in period t, which is a

contradiction.

As each of the preceding cases led us to a contradiction, we conclude that (µ<t, µ
∗
≥t) cannot

be blocked in period t. Therefore, µ∗
≥t ∈ S(µ≤t−1), which proves the theorem.

5 Concluding Remarks

We have proposed a new stability concept for multi-period matching economies. Robust

prescient stability combines foresight concerning what can happen while maintaining ambi-

guity concerning what will happen. It balances these two competing themes, which recur in

models of multi-period matching. Prudent prescient stability offers a plausible refinement

of RPS. It reduces the stable set’s size by precluding some implausible contemporaneous

outcomes given a considered blocking action.

Noting the brevity of our analysis, many extensions are possible. Applications of RPS

or PPS to many-to-one and to many-to-many matching economies seem promising as does

a further extension incorporating monetary transfers. There is also a literature on one-

sided, multi-period matching economies generalizing Shapley and Scarf’s (1974) model of a

housing market. Kurino (2014) is a recent example. Adapting RPS or PPS to this class of

problems may also yield new insights. Further refinements of RPS, similar in spirit to PPS

but employing different definitions of the sets A
∗ or S∗, are an additional possible direction.
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A Preferences in Example 2

While dynamically stable matchings do not depend an agents’ preferences over assignments

that are not individually rational, i.e. worse than being unmatched in all periods, robust pre-

scient stability depends on the full preference specification. Here we provide the completion

of the preferences that support the conclusion of Example 2:

≻ m1 : w2w2, w2w1, w2w3w1, w1, w3w3, m1m1,

w3m1, w3w2, w3w1, w2m1, w1m1, w1w3, w1w2, m1w3, m1w2, m1w1

≻m2
: w3w3, w2w2, w3w1, w1w1, m2m2,

w3m2, w3w2, w2m2, w2w3, w2w1, w1m2, w1w3, w1w2, m2w3, m2w2, m2w1

≻m3
: w1w1, w1w3, w3w3, w1w2, w2w2, m3, m3,

w3m3, w3w2, w3w1, w2m3, w2w3, w2w1, w1m3, m3w3, m3w2, m3w1

≻w1
: m2m2, m1m1, m2m1, m1m2, w1m2, m3m2, w1w1,

m3m3, m1w1, m1m3, m3w1, m3m1, m2w1, m2m3, w1m1, w1m3

≻w2
: m3m3, m2m2, m3m2, m2m3, w2m3, m1m3, w2w2,

m1m1, m1w2, m1m2, m3w2, m3m1, m2w2, m2m1, w2m1, w2m2

≻w3
: m1m1, m1m3, m3m1, w3m1, m2m1, m3, m3, w3w3,

m2m2, m1w3, m1m2, m3w3, m3m2, m2w3, m2m3, w3m3, w3m2
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