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Abstract

We incorporate externalities into the stable matching theory of two-sided markets. Ex-

tending the classical substitutes condition to allow for externalities, we establish that stable

matchings exist when agent choices satisfy substitutability. In addition, we show that the

standard insights of matching theory, like the existence of side-optimal stable matchings

and the deferred acceptance algorithm, remain valid despite the presence of externalities

even though the standard fixed-point techniques do not apply. Furthermore, we establish

novel comparative statics on externalities.

1 Introduction

Externalities are present in many two-sided markets. For instance, couples in a labor market

pool their resources as do partners in legal or consulting partnerships. As a result, the pref-

erences of an agent may depend on the contracts signed by the partner(s). Likewise, a firm’s

hiring decisions are affected by how candidates compare to competitors’ employees. Finally,

because of technological requirements of interoperability, an agent’s purchase decisions may

change because of other agents’ decisions.
⇤First online version: August 2, 2014; first presentation: February 2012. We would like to thank Peter Chen

and Michael Egesdal for stimulating conversations early in the project. For their comments, we would also like
to thank Omer Ali, Andrew Atkeson, James Fisher, George Mailath, Preston McAfee, SangMok Lee, Michael
Ostrovsky, David Reiley, Michael Richter, Tayfun Sonmez, Alex Teytelboym, Simpson Zhang, and audiences of
presentations at UCLA, Carnegie Mellon University, and Unuiversity of Pennsylvania Workshop on Multiunit
Allocation. Pycia is affiliated with UCLA, 9371 Bunche Hall Los Angeles, CA 90095; Yenmez is affiliated with
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cia@ucla.edu and byenmez@andrew.cmu.edu. Yenmez gratefully acknowledges financial support from National
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In this paper, we incorporate externalities into the stable matching theory of Gale and Shap-

ley (1962) and Hatfield and Milgrom (2005).1 We refer to the two sides of the market as buyers

and sellers. Each buyer-seller pair can sign many bilateral contracts. Furthermore, each agent

is endowed with a choice function that selects a subset of contracts from any given set condi-

tional on other agents’ contracts.2 We build a theory of matching with externalities that both

extends to this more general setting some of the key insights of the classical theory without

externalities, such as the existence of stable matchings and Gale and Shapley’s deferred ac-

ceptance (or cumulative offer) algorithm and establishes new insights, including comparative

statics on externalities.

Our theory is built on a substitutes condition that extends the classical substitutes condition

to the setting with externalities. We require that each agent rejects more contracts from a larger

set (as in the classical substitutes condition) and also that each agent rejects more contracts

conditional on a matching that reflects better market conditions for his side of the market. We

formalize the latter idea in two steps. A matching reflects better market conditions for one

side of the market than another matching whenever the first matching is chosen by agents on

this side of the market from a larger set conditional on a matching while the second matching

is chosen by the agents from a smaller set conditional on the same matching. The second

matching then reflects worse market conditions. Furthermore, we also say that a matching

reflects better market conditions for one side of the market than another matching whenever the

first matching is chosen by agents on this side of the market from some set conditional on some

matching while the second matching is chosen by these agents from a smaller set conditional

on a matching that reflects worse market conditions. When there are no externalities, this

substitutes condition reduces to the classical gross substitutes condition of Kelso and Crawford

(1982) and Hatfield and Milgrom (2005).

We start by proposing a deferred acceptance algorithm for the setting with externalities

which may be important in potential market design applications. In particular, our version of

the algorithm can be viewed as a new auction that performs well in the presence of externali-
1Let us stress that even though we derive our results in a general many-to-many matching setting with con-

tracts, the results are new in all special instances of our setting, including many-to-one and one-to-one matching
problems.

2We formulate most of our results in terms of choice functions satisfying the irrelevance of rejected contracts.
A choice function satisfies the irrelevance of rejected contracts if removing a rejected contract does not change
the chosen set conditional on the same matching. When there are no externalities, this condition reduces to the
one used in Aygün and Sönmez (2013). This is a basic rationality axiom: it is satisfied tautologically whenever
agents’ choice can be rationalized through a strict preference ordering.
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ties.3 Since an agent’s choice depends on others’ matching, we keep track not only of which

offers are already made and rejected but also of the reference matchings that agents on each

side use to condition their choice. The construction requires care because after the reference

matching has changed an agent on the accepting side might want to go back to a contract that

is already rejected, or an agent on the proposing side might want to withdraw a contract al-

ready made. To ensure that this does not happen, we construct the initial reference matchings

in a preliminary phase of the algorithm.4 Relatedly, we cannot stop the algorithm as soon as

there are no rejections and no new offers: we need to continue until the reference matchings

converge. Our construction of initial reference matchings ensures that subsequent reference

matchings change in a monotonic way with respect to the “better market conditions” preorder,

thus ensuring that from some point on the reference matchings belong to the same equivalence

class. While these equivalence classes might consist of many matchings, we further show that

the algorithm converges to one of them and never cycles among the members of the same

equivalence class. In Section 4, we use a simple example to illustrate these points.

Our first two main results shows that our deferred acceptance algorithm always converges

to a stable matching when choice functions satisfy substitutability (Theorem 1), and hence that

stable matchings exist (Theorem 2). We focus on the classical short-sighted stability concept

in which each agent assumes that other agents do not react to his or her choice. Our results,

however, are applicable to many other stability concepts including far-sighted ones because we

formulate the results in terms of agents’ choice behavior and not in terms of their preferences.

As we discuss in Remark 1, agents’ choice behavior captures both agents’ preferences and

their conjectures about the reactions of other agents’ to choices.5

Our third main result is a comparative statics on the strength of externalities and substitutes.

Comparing two profiles of choice functions, we say that substitutes are stronger when agents

reject more. In addition, we say that a reference choice function has weaker externalities than

another choice function when the reference choice function reflects better market conditions
3See, e.g., Abdulkadiroğlu and Sönmez (2003) and Sönmez and Switzer (2013) for market design applications

of deferred acceptance, and Kelso and Crawford (1982) and Hatfield and Milgrom (2005) for the relationship
between deferred acceptance and ascending auctions.

4The cumulative offer phase of the algorithm builds on the approach of Fleiner (2003) and Hatfield and Mil-
grom (2005). The preliminary phase of the algorithm has no forerunners. It may be omitted if there is an
underlying lattice structure on the set of all matchings; in general, however, such a lattice structure does not exist
and neither do side-optimal matchings.

5 While the study of stability in terms of choice behavior is well established (see e.g. Aygün and Sönmez,
2013), we believe that this conceptual point is new. The choice-based approach allows us to also consider agents
whose choice behavior cannot be represented in terms of preferences as long as this choice behavior satisfies the
rationality postulate discussed in footnote 2.
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(when the market conditions are measured by the reference choice function) than the other

choice function. This comparison of the strength of externalities satisfies some natural proper-

ties: for instance, the choice function exhibiting no externalities has weaker externalities than

any other choice function. We prove that agents on one side of the market face better market

conditions as their side of the market exhibits stronger substitutes and weaker externalities and

they face worse market conditions if the other side of the market exhibits stronger substitutes

and weaker externalities (Theorem 5).

In addition to these results, we extend the classical theory of matching to the setting with

externalities. In Section 6.2, we study vacancy-chain dynamics. What are the welfare impli-

cations of an agent leaving the market? We show that when agents recontract according to

an algorithm akin to the deferred acceptance algorithm (Gale and Shapley, 1962), all agents

on the same side are better off and all agents on the other side are worse off (Theorem 6).

In the setting without externalities and when agents on one side of the market can sign only

one contract, the corresponding results have been proven by Kelso and Crawford (1982) and

Crawford (1991). Similarly, our results generalize those of Blum, Roth, and Rothblum (1997)

and Hatfield and Milgrom (2005), none of whom looked at the setting with externalities.

Furthermore, we analyze the existence of side-optimal stable matchings, that is, matchings

that represent the optimal market conditions. A side-optimal stable matching exists under the

additional assumption that there exists a side-optimal matching (Theorem 4). This additional

assumption is satisfied trivially in finite settings without externalities, where the existence of

side-optimal stable matchings was established already by Gale and Shapley (1962).

We also generalize the rural hospitals theorem of Roth (1986), which states that each hospi-

tal gets the same number of doctors in each stable matching in many-to-one matching without

externalities (in Appendix A).6 Our generalization allows different contracts to have different

weights that may depend on the quantity, price, or quality of the contracts. For this purpose,

we introduce a general law of aggregate demand. An agent’s choice function satisfies the law

of aggregate demand if the weight of contracts chosen from a set conditional on a reference

matching is greater than the weight of contracts chosen from a subset conditional on a match-

ing that has worse market conditions than the reference matching. We show that when choice

functions satisfy the law of aggregate demand in addition to the aforementioned properties,

all stable matchings have the same weight for every agent (Theorem 7). When there are no

externalities, this law of aggregate demand reduces to the monotonicity condition of Fleiner
6Roth’s theorem has been previously extended to more general settings without externalities, see e.g. Hatfield

and Milgrom (2005).
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(2003).

To the best of our knowledge, our development of comparative statics and results such as

the rural hospitals theorem with externalities have no forerunners in the literature analyzing

externalities in the setting of (Gale and Shapley, 1962). We thus contribute to the matching

literature by showing how one can incorporate externalities into standard models of matching,

including matching with contracts (e.g., Hatfield and Milgrom (2005)),7 by offering new in-

sights, and by showing that many of the insights of the classical literature remain valid in the

presence of externalities.8

On the other hand, our existence result contributes to a rich literature analyzing the ex-

istence and nonexistence results in matching with externalities. In an early influential paper,

Sasaki and Toda (1996) showed that stable one-to-one matchings need not exist. Their insight

led the subsequent literature to take one of two routes: to modify the stability concept, or to

impose assumptions on agents’ preferences. Sasaki and Toda’s seminal paper belongs to the

first strand of literature. They focused on a weak stability concept that allows a pair of agents

to block a matching only if they benefit from the block under all possible rematches of the

remaining agents. They show that such weak stable matchings exist.9 In contrast, our paper

uses the standard stability concept of Gale and Shapley (1962) and the literature on match-

ing without externalities.10 We guarantee the existence of stable matchings not by modifying

the stability concept but by imposing assumptions on preferences in line with the standard

approach of restricting attention to substitutable preferences. While we primarily focus on

the standard (short-sighted) stability concept, our results are applicable to many other stability
7The matching with contracts approach has not only been useful as a theoretical tool but also as a practical tool

to design markets. For example, see Sönmez and Switzer (2013); Sönmez (2013). It has also been extended to the
many-to-many matching and more general settings without externalities, see e.g. Ostrovsky (2008). In particular,
Ostrovsky showed that stable matchings exists even in the presence of well-behaved complementarities among
contracts. See also Azevedo and Hatfield (2013); Che, Kim, and Kojima (2015) who establish general existence
of stable matchings allowing for complements in large markets without externalities.

8In fact, our main comparative statics result is new even in the setting without externalities as is our synthesis
of classical and far-sighted stability.

9The rich subsequent literature, e.g., Chowdhury (2004); Hafalir (2008); Eriksson, Jansson, and Vetander
(2011); Chen (2013); Gudmundsson and Habis (2013); Salgado-Torres (2011a,b)—maintained the focus on the
existence question while refining Sasaki and Toda’s weak stability concept by varying the degree to which the
rematches of other agents penalize the blocking pair. Bodine-Baron, Lee, Chong, Hassibi, and Wierman (2011)
analyze a related weak stability concept in a setting with peer effects.

10In line with this literature, a set of agents forms a blocking coalition if it benefits them in the absence of
any reaction from the remaining agents. Note that the question of how other agents react to the formation of
a blocking coalition is important whether externalities are present or not. In particular, even in the absence of
externalities, one might entertain an alternative solution concept in which an agent might be unwilling to enter
a blocking coalition if she is concerned that doing so will trigger a chain of events that will lead her to losing a
partner she blocks with.
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concepts including Sasaki and Toda’s and other far-sighted concepts (see Remark 1).

The second strand of the literature analyzes the standard stability concept.11 Prior work in

this second strand of the literature identified several assumptions under which stable match-

ings exist. Particular attention has been devoted to externalities among couples (Dutta and

Massó, 1997; Klaus and Klijn, 2005; Kojima, Pathak, and Roth, 2013; Ashlagi, Braverman,

and Hassidim, 2014) and to peer effects among students matched to the same college (Dutta

and Massó, 1997; Echenique and Yenmez, 2007; Pycia, 2012; Inal, 2015). We are not restrict-

ing our attention to either of these two types of externalities.

Our existence contribution is closest to the few papers that look at standard stability in the

general matching problem with externalities. Bando (2012; 2014) studies many-to-one match-

ing allowing externalities in the choice behavior of firms (agents who match with potentially

many agents on the other side) but not of workers; he further assumes that each firm’s choice

function depends on the matching of other firms only through the set of workers hired by other

firms, and imposes several other elegant assumptions on firms’ choice behavior. Under these

assumptions, he proves the existence of stable matchings and analyzes the deferred acceptance

algorithm.12 In another related work, Teytelboym (2012) looks at externalities among agents

in a component of a network and shows that a stable matching exists provided agents’ pref-

erences are aligned in the sense of Pycia (2012). Finally, Fisher and Hafalir (2014) consider

a setting in which each agent cares only about the level of externality in the overall economy

(such as pollution) and study the existence of stable matchings when there are such aggregate

externalities.13

Our work is also related to the exploration of efficiency in markets with externalities (see,

e.g., Pigou (1932); Chade and Eeckhout (2014); Watson (2014)); while this literature focuses

on efficiency, we focus on stability. Similarly related to our work is the literature on contract-

ing in the presence of externalities (see, e.g., Segal, 1999; Segal and Whinston, 2003) and auc-

tions with externalities (e.g., Jehiel, Moldovanu, and Stacchetti 1996; Jehiel and Moldovanu
11We follow this second approach. As discussed above, we also go beyond this second approach by offering a

synthesis of standard and far-sighted approaches to stability.
12Under Bando’s assumptions, there is no need to keep track of the reference matchings in the deferred accep-

tance algorithm (and hence no need for the preliminary phase that constructs the initial reference matchings), and
his algorithm terminates as soon as there are no rejections.

13Also of note is Uetake and Watanabe (2012) who provide an empirical analysis of firm mergers using a
matching model with externalities, and Mumcu and Saglam (2010) who analyze the question when all matchings
in the non-empty collection of top matchings are stable. Baccara, Imrohoroglu, Wilson, and Yariv (2012) analyze
stable one-sided allocations with externalities. Hatfield and Kominers (2015) study the existence of competitive
equilibria in a multilateral matching setting with externalities, and Baldwin and Klemperer (2015) study the
existence of competitive equilibria with indivisibilities allowing for complements. Leshno (2015), a work in
progress, looks at large matching markets.
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2001).14 While our focus is on stable matchings, the contracts and auctions literature looks at

specific noncooperative games and analyzes their equilibria.

2 Examples

In this section, we provide some examples to motivate and illustrate our work.15 All these

examples satisfy the substitutes condition that we need for the existence of stable matchings as

we show in the next section after formally defining the substitutes condition.

We first present our motivating examples and then our simpler but more abstract illustrative

example.

2.1 Motivating Examples

For simplicity, we consider only one side of the market in our examples. One could model the

other side in the same or a different way because we impose no assumptions relating the choice

behavior of agents across sides.

2.1.1 Sharing

Our theory applies to situations in which agents share profits, for instance because they work

for the same firm or have some insurance arrangements. The following examples illustrate

such situations.

Our theory applies to a labor market with couples in which an agent becomes more selective

as his or her partner gets a better job.

Example 1. [Couples in a Local Labor Market] 16 Agents on one side of the market rep-

resent workers and agents on the other side of the market represent firms. Workers are either

single or are members of exogenously married couples. The labor participation decision of a

married man depends on the job of his wife: the better the job she has, the more selective he
14See also, e.g., Aseff and Chade (2008); Skreta and Figueroa (2008); Brocas (2013).
15As it is well known, even the existence of stable matchings is not guaranteed in the presence of externalities.

Consider for instance a one-to-one matching setting between two men m1 and m2 and one woman. Regardless of
the matching, the woman prefers man m2 over man m1 and she prefers either of them to being unmatched; and
man m1 prefers being matched to being unmatched. The preference ranking of man m2 depends on the matching
however: man m2 prefers being matched to being unmatched if and only if the other man is matched. In this
simple situation no matching is stable.

16We are grateful to Michael Ostrovsky for providing this example.
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becomes. In other words, the outside option of not working becomes more attractive when a

man’s wife earns more.17

A richer example of sharing is as follows.

Example 2. [Profit Sharing] Agents on one side of the market represent attorneys organized

in law firms. Each attorney can work on up to k � 0 contracts with clients on the other side of

the market; an attorney works on all contracts he or she signs and the attorney can also work on

selected contracts signed by others in the same firm. Each contract allows an arbitrary number

of attorneys to contribute; the profit an attorney makes from a contract does not depend on

how many other attorneys contribute to it.18 Each attorney prioritizes the contracts she works

on, and the profit attorney i earns on a contract depends on whether it is the first, second, etc.

contract in attorney i’s priorities. We assume that each attorney must prioritize the contracts

she signs over other contracts that she works on.

Attorneys choose what contracts to sign and what contracts to work on so as to maximize

their profits: An attorney’s profit is the sum of the profits from all the contracts she works on

whether she signed it or not. We denote by l (x, i,`) � 0 the profit that accrues to attorney i

from working on contract x that she prioritizes in position ` 2 {1, ...,k}. For simplicity, let us

also assume that there are no indifferences.19 This example satisfies our assumptions provided

l (x, i,1)> l (y, i,`)

for all contracts x and y as long as attorney i is the signatory of contract x and `> 1.

2.1.2 Relative comparisons

Our theory also applies to situations in which market participants care about the relative stand-

ings of their partners. The following two examples illustrate this.

Example 3. [The Marriage Problem with Influence Hierarchy and Relative Comparisons]
Men and women form pairs as in Gale and Shapley (1962); however, how attractive being

single is to an agent, say a man, may depend on how many other men are married and how
17We assume that there are no externalities for firms (whose preferences satisfy the standard substitutes condi-

tion), single workers or the married women.
18This assumption and some of our other assumptions can be relaxed.
19To formalize this assumption let us define a work schedule f given a non-empty set of k or fewer contracts Y

to be a one-to-one mapping Y ! {1, ...,k}. We then assume that no attorney i is indifferent between two different
work schedules f1 and f2, that is Âx2Domain(f1)

l (x, i,f1 (x)) 6= Âx2Domain(f2)
l (x, i,f2 (x)).
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attractive their partners are. We formalize this dependence as follows. Men are ordered in

terms of how influential they are from the most influential man named 1, through the second

most influential man named 2, etc. For each man j the set of acceptable women depends on the

matching of men who are more influential than he is while his ranking of acceptable women

does not depend on other agents’ matches. The higher man 1’s partner in his ranking, the more

selective man j becomes. If man 1 has the same partner in two matchings, then the higher man

2’s partner in his ranking, the more selective man j becomes, etc. lexicographically.20

Example 4. [Relative Rankings in Hiring] Agents on one side of the market represent col-

leges and agents on the other side represent academics in a particular field. For each college

i and each academic j the productivity of j at i is denoted by l (i, j) � 0. For simplicity, as-

sume that no two academics have the same productivity at a college. Now, suppose that each

college hires at most two academics in the field considered, and that it wants to hire at least

one academic and would like to hire another one only if his or her productivity is at least as

high as the productivity of all academics in at least half of the other colleges. Formally, the

choice function ci(Xi|µ) of college i is as follows: from choice set Xi, the college chooses the

academic j 2 Xi with highest productivity l (i, j), and it chooses a second academic j0 2 Xi if

and only if l (i, j0) is greater than or equal to the productivity of all academics in at least half

of the other colleges under matching µ . More generally, we can fix k 2 [0,1] and assume that

college i chooses a second academic j0 2 Xi if and only if l (i, j0) is greater or equal than the

productivity of academics in at least a fraction k of other colleges.21

2.1.3 Interoperability

Our theory also applies to situations in which agents choose basic products with no regard to

the choices of others but choose add-ons in a way that depends on others’ choices of basic

products. For instance, consider buyers who choose between Mac, PC, and Linux computers

(and operating systems) in a way that does not depend on other buyers’ choices and who

take the hardware/operating system choices of others into account when buying productivity

software.
20Notice that we do not impose any assumptions on how preferences of one agent relate to preferences of

another. In particular, one man might prefer woman w over woman w0 while another man might have the opposite
preference. Also, a woman might prefer man 17 over man 1 while another woman might prefer man 1 over man
17.

21 We can alternatively include this fraction the college whose choice function despite the self-referentiality of
doing so. While we focus our discussion on non-self-referential situations, we can in general allow the choice
function of an agent to depend on this agent’s choice; see the discussion in footnote 26.
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Example 5. [Interoperability and Add-on Contracts] Suppose agents on one side (buyers)

sign two types of contracts with sellers on the other side: for instance, agents might be signing

primary contracts and add-on (or maintenance) contracts. These two classes of contracts are

disjoint.22 In line with the literature on add-on pricing, suppose that agents ignore the add-

on contracts when deciding which primary contracts to sign (Gabaix and Laibson, 2006), and

suppose that each agent signs at most one primary contract and that there are no externalities

among primary contracts.23

We assume that no agent’s choice of add-on contracts depends on the other agents’ choices

of add-on contracts, and we allow a buyer’s choice among add-on contracts to depend on his

and the other agents’ choices of primary contracts in an arbitrary way as long as the buyer

rejects weakly more (in the inclusion sense) add-on contracts out of X conditional on µ than

he would reject out of X 0 conditional on µ 0 whenever X ◆ X 0 and the agent prefers his primary

contracts in µ to those in µ 0.

2.2 Illustrative Example

In the next example, we consider a simple market with a few agents on both sides of the market.

This example is used for illustrative purposes in the rest of the paper.

Example 6. Suppose that there are two sellers s1 and s2 and two buyers b1 and b2. Seller s1

and buyer b1 can sign contract x1 and seller s1 and buyer b2 can sign contract x2. Seller s2 can

sign contract x3 with buyer b2 only.

Figure 1: Contractual structure in Example 6.

Buyer b1 wants to sign contract x1 regardless of the contracts signed by b2. Buyer b2 signs
22Similar examples can be written for hardware contracts and software contracts, or contracts on inputs and

outputs.
23Formally, we assume that each buyer’s choice among primary contracts contracts does not depend on other

agents’ matches nor on the availability of add-on contracts. One reason that the agents ignore add-on contracts
when signing primary contracts might be that the agents do not know which add-on contracts are available when
signing the primary contracts as in Ellison (2005). We can relax the assumption that each agent signs at most
one primary contract and assume instead that each agent’s choice among primary contracts satisfies the standard
substitutes assumption (see the next section).
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contract x2 whenever it is available but signs contract x3 only when contract x2 is not available

conditional on buyer b1 and seller s1 not signing contract x1. Choice functions are summarized

by the following tables.24

{x1} /0
cb1(·|{x2,x3}) {x1} /0

cb1(·|{x2}) {x1} /0
cb1(·|{x3}) {x1} /0

cb1(·| /0) {x1} /0

{x2,x3} {x2} {x3} /0
cb2(·|{x1}) {x2} {x2} /0 /0

cb2(·| /0) {x2} {x2} {x3} /0

Table 1: Buyers’ choice functions in Example 6.

3 Model

There is a finite set of agents I partitioned into buyers, B, and sellers, S , B[S =I . Agent

i’s type is denoted as q(i) 2 {b,s}. If q is a type, then �q is the other type, that is, �b ⌘ s

and �s ⌘ b. Agents interact with each other bilaterally through contracts. Each contract x

specifies a buyer b(x), a seller s(x), and terms, which may include prices, salaries and fringe

benefits. There exists a finite set of contracts X . For any X ✓ X , Xi denotes the maximal

set of contracts in X involving agent i, that is Xi ⌘ {x 2 X : i 2 {b(x),s(x)}}. Similarly, X�i

denotes the maximal set of contracts not involving agent i, that is, X�i ⌘ X \Xi. We refer to

all sets of contracts as matchings and we embed problems such as one-to-one matchings in

our model by treating the relevant quota constraints as embedded in agents’ choice behavior

(discussed below). For instance, we model one-to-one matching markets by assuming that

each agent chooses at most one contract from any choice set. Thus, examples of our setting

include standard one-to-one and many-to-one matching problems with and without transfers.25

Each agent i has a choice function ci, where ci (Xi|µ�i) is the set of contracts that i chooses

from Xi given that µ�i is the set of contracts signed by the other agents on the same side.26

We expand the domain of the choice function so that ci (X |µ) = ci (Xi|µ�i). Let ri (X |µ) ⌘
24Columns are indexed by choice sets.
25Without affecting any of the results, we could alternatively model one-to-one matching and other matching

environments with quota constraints by assuming that only some sets of contracts are matchings. This alternative
route is straightforward if agents condition their choice behavior on subsets of contracts rather than on matchings.
As is usual in models of matching with contracts, in applications with transfers, we assume that there is a lowest
monetary unit.

26We could allow choice functions ci that depend not only on Xi and µ�i but also on µi (that is the set of con-
tracts signed by i) with no change in our proofs. See footnote 21 for an example of when such self-referentiality
is natural.
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Xi \ ci (X |µ) be the set of contracts rejected by agent i from Xi given matching µ . Similarly

define Cq (X |µ)⌘[i2q ci (X |µ) and Rq (X |µ)⌘[i2q ri (X |µ) to be the set of contracts chosen

and rejected from set X by side q given matching µ , respectively. Note that for any X ,µ ✓ X

and q , Cq (X |µ) and Rq (X |µ) form a partition of X since every contract involves one agent

from both sides of the market. A matching problem is a tuple (B,S ,X ,Cb,Cs).

Matching µ is individually rational for agent i if ci(µ|µ) = µi. Less formally, given the

remaining contracts, agent i wants to keep all of her contracts. A buyer i and seller j form

a blocking pair for matching µ if there exists a contract x 2 Xi \X j such that x /2 µ and

x 2 ci(µ [ {x}|µ)\ c j(µ [ {x}|µ). Matching µ is stable if it is individually rational for all

agents and there are no blocking pairs. This stability concept is identical to stability studied in

settings without externalities (see Roth, 1984).27

We illustrate this stability notion using Example 6. Suppose that there are no externalities

for sellers and that they choose all available contracts, that is, Cs(X |µ) = X for any set of con-

tracts X and µ . In this example, Y = {x1,x2} is a stable matching. First of all, it is individually

rational: buyer b1 always wants to keep contract x1, buyer b2 also wants to sign contract x2,

and, likewise, seller s1 wants to keep both contracts. Furthermore, there are no blocking pairs.

The only potential blocking pair is seller s2 and buyer b2 with contract x3. But buyer b2 does

not want to sign contract x3 given contract x1, i.e., x3 /2 cb2(Y [ {x3}|Y ). Therefore, Y is a

stable set.

Remark 1. We take choice functions as primitives of our model.28 In general, when agents have

preferences over matchings (sets of contracts) then these preferences and agents’ predictions of

how others will react to the changes in a matching allows us to construct the choice functions.

In particular, while we focus on standard stability in which agents assume that their choice

does not trigger chains of reactions by others, the general choice formulation we study implies

that our results are equally applicable to theories of far-sighted stability. In this remark we

give two simple examples of how agents’ preferences over matchings translate to their choice

behavior.

As a preparation, let us note that when there are externalities, preferences range not only
27As in the standard settings without externalities, stability defined in terms of individual and pairwise blocking

is equivalent to core stability; see Appendix B. Defining stability in terms of agents’ choices rather than prefer-
ences allows us to be agnostic whether blocking agents expect no further reaction to their blocking, as in canonical
stability concepts, or whether blocking agents have more complex expectations about the consequences of them
blocking; see Remark 1.

28As we explain in this remark, this approach allows us to offer a unified theory of stability that does not depend
on blocking agents’ hypothesis on how other agents react. This approach has many other benefits (Chambers and
Yenmez, 2013) and it has been used in a matching context before (Alkan and Gale, 2003; Fleiner, 2003).
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over the sets of contracts that list agents as a buyer or seller but over all contracts. In this case,

the alternative approach works as follows. Denote agent i’s preference by ⌫i (and the strict

part by �i). We assume that ⌫i is strict if the matching for the rest of the agents is fixed, that

is, if X�i ✓ X�i is a set of contracts that do not have agent i as a buyer or seller, Xi,X 0
i ✓ Xi

such that Xi 6= X 0
i , then either Xi [X�i �i X 0

i [X�i or X 0
i [X�i �i Xi [X�i. This assumption

guarantees that agent i’s choice function, which we construct below, is well defined.29

1. (Choice functions without prediction) We construct the choice of agent i given µ from

any set X , ci (X |µ)✓ Xi, as follows:

ci (X |µ)[µ�i ⌫i X 0
i [µ�i for every X 0

i ✓ Xi.

This is the choice behavior we assume in the examples of Section 2.30 We could also analyze

these examples with the choice behavior that we discuss next.31

2. (Choice functions with prediction) For simplicity, we specify the choice behavior for the

special case of our model in which each agent signs at most one contract. This is the one-to-one

matching problem with contracts.

Let A(x; µ) be the set of contracts in µ that have to be removed when contract x is added

to matching µ . These are the contracts signed by the buyer and seller associated with contract

x in µ . More formally,

A({x}; µ)⌘ µb(x)[µs(x).

In particular, if x is the empty contract, then A({x}; µ) = /0. The choice of agent i from a set X

given µ , ci (X |µ)✓ Xi, is then defined as follows:32

ci (X |µ)[ (µ�i \A(ci (X |µ) ; µ))⌫i X 0
i [

�
µ�i \A

�
X 0

i ; µ
��

for every X 0
i ✓ Xi,

��X 0
i
�� 1.

We can similarly construct choice functions for many-to-one matching markets by appro-

priately changing the definition of A({x}; µ). In general, any deterministic theory of how

agents react to the matching of an agent allows the agent to compare the resulting matchings
29In the special case when there are no externalities, each agent’s preference depends only on the set of contracts

that she signs, i.e., for any Xi,X 0
i ✓ Xi and X�i ✓ X�i, we have Xi [X�i ⌫i X 0

i [X�i () Xi [X�i ⌫i X 0
i [X�i.

30One could easily generalize the above approach as follows. For each µ�i, let there be a strict preference
relation ⌫µ�i

i of agent i. The choice function can be constructed similarly as above: ci (X |µ)[ µ�i ⌫µ�i
i X 0

i [
µ�i for every X 0

i ✓ Xi.
31For instance, in Example 4 it does not matter for the choice behavior whether the colleges assume that an

academic they are hiring is part of the benchmark of other hired academics or not because whether he or she is
included in the benchmark does not affect the comparison of this academic’s productivity to the benchmark.

32Note that this choice behavior is implicit in, for instance, Bando (2012; 2014).
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and thus can be easily incorporated in our model.33

Our results and analysis remain the same regardless of how choice functions are constructed

from agents’ preferences. Furthermore, we allow for more general choice behavior including

non-rationalizable ones.

3.1 Properties of Choice Functions

To guarantee the existence of stable matchings and mechanisms with desirable properties, we

impose more structure on the choice functions. Let us first define the auxiliary concept of

consistency.34

Definition 1. A preorder ⌫̃q is consistent with the choice function Cq if for any X ,X 0,µ,µ 0 ✓
X ,

X 0 ◆ X & µ 0⌫̃q µ =) Cq �X 0|µ 0�⌫̃qCq (X |µ) .

To define our conditions, we consider consistent preorders. The following lemma estab-

lishes the existence and uniqueness of the minimal preorder that is consistent with a side choice

function.

Lemma 1. There exists a minimal preorder that is consistent with the choice function Cq .

Furthermore, the minimal preorder is unique.

Proof. First of all, the preorder on the set X that includes all possible pairs of matchings

is consistent with the choice function Cq . Hence, there exists at least one preorder that is

consistent with the choice function Cq . Now, let us construct a minimal preorder consistent

with Cq . Suppose that {⌫q
1 ,⌫q

2 , . . . ,⌫q
k } is the set of all preorders that are consistent with

33In analyzing far-sighted stability based on such deterministic theories, we may need to take care of the
possibility that two choices might lead to the same outcome. In such cases, the preferences over final outcomes
need to be supplemented with a tie-breaking procedure to determine choice behavior. Such indifference situations
never arise in the constructions 1 and 2 above. Theories of far-sighted stability that are not directly based on
deterministic assumptions on agents reactions are harder to map into our framework; see, for example, Konishi
and Ünver (2007) and Ray and Vohra (2015).

34In our context, a binary relation ⌫̃q on domain A q is a set of ordered pairs of elements from A q . It is
reflexive if for any µ 2 A q , µ⌫̃q µ . It is transitive, if µ1⌫̃q µ2 and µ2⌫̃q µ3 imply µ1⌫̃q µ3. A reflexive and
transitive binary relation is called a preorder. In defining our conditions on choice, we set the domain of the
preorder to be A q = 2X . Alternatively, we can restrict attention to any smaller domain that contains /0 and
satisfies Cq (X |µ) 2 A q whenever X ✓ X and µ 2 A q . The minimal such domain is A q ⌘ [

t=0,1,...
A q

t where

A q
0 ⌘ { /0} and A q

t for t � 1 are defined recursively A q
t ⌘ {Cq (X |µ) : X ✓ X ,µ 2 A q

t�1}[A q
t�1. Since there

exists a finite number of contracts, this A q is well defined; it is the set of all matchings that can be reached from
the empty set by applying the choice function Cq .
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choice function Cq . Define the following binary relation: µ 0 ⌫q µ if and only if µ 0 ⌫q
j µ for

every j = 1, . . . ,k. The binary relation ⌫q is reflexive and transitive, so it is a preorder. In

addition, let X 0 ◆ X and µ 0 ⌫q µ . Then µ 0 ⌫q
j µ for every j = 1, . . . ,k. By consistency of ⌫q

j ,

we get Cq (X 0|µ 0) ⌫q
j Cq (X |µ) for every j = 1, . . . ,k. As a result, Cq (X 0|µ 0) ⌫q Cq (X |µ).

Therefore, ⌫q is also consistent with the choice function Cq . Since the number of preorders is

finite, this argument shows that there exists a unique minimal preorder ⌫q which is consistent

with Cq .

We define our conditions using this minimal preorder ⌫q . To simplify exposition, when

µ 0 ⌫q µ we say that µ 0 has a better market condition than µ for side q . Sometimes we refer to

the preorder as a side ranking.

Definition 2. Choice function Cq satisfies substitutability if for any X ,X 0,µ,µ 0 ✓ X ,

X 0 ◆ X & µ 0 ⌫q µ =) Rq �X 0|µ 0�◆ Rq (X |µ) .

Less formally, the choice function of side q satisfies substitutability if it rejects less con-

tracts from a set X given a matching µ than it rejects from a superset of X given a matching

µ 0 that has a better market condition than µ . When µ 0 = µ or when there are no externalities,

a choice function satisfies substitutability if the corresponding rejection function is monotone,

or equivalently, a contract that is chosen from a larger set is also chosen from a smaller set in-

cluding that contract. This special case is standard substitutability; it was introduced by Kelso

and Crawford (1982) for a matching market with transfers, and generalized to the setting with

contracts by Roth (1984).35 Our definition is more general and incorporates externalities since

the choice function of an agent depends on the set of contracts signed by the rest of the agents.

In substitutability, we condition the choice set and rejection set on matchings; in particular,

we impose that µ 0 has a better market condition than µ . This is a novel property. Importantly,

when there are no externalities for side q , the preorder ⌫q is defined as the revealed preference

for agents on side q .36 In addition, substitutability reduces to the regular one studied in the

literature when there are no externalities as the conditioning on matchings is no longer impor-

tant. It is also satisfied in the slightly more general setting in which externalities affect agents’

preferences but not their choices (for instance, if the agents’ utility can be additively separated

into utility from one’s own contracts and utility from contracts of other agents’ on the same
35See also Fleiner (2003) and Hatfield and Milgrom (2005). Note that in the presence of externalities, our

substitutes assumption imposes a preference restriction even on agents who sign at most one contract.
36X is revealed preferred to Y if Cq (X [Y ) = X .
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side of the market). This observation is straightforward; notice that X ✓ X 0 implies that the

choice out of X 0 is from a larger set, and hence revealed preferred.

Substitutability can be decomposed into two separate conditions. First is the case when

µ 0 = µ , which is similar to the standard substitutability: we discuss this in the preceding

paragraph. Second, when X 0 = X , we reject more students conditional on a matching that

has a better market condition. The conjunction of these two special cases are equivalent to

substitutability.

Furthermore, if substitutability is satisfied for a preorder consistent with the choice func-

tion, then it is also satisfied for the minimal preorder ⌫q . This will be useful in our applications

as we do not have to find the minimal preorders consistent with the choice functions but just

some preorders consistent with the choice functions. As a result, we can potentially use many

preorders ⌫q for each side q . One example of such a preorder can be defined as follows when

agents have preferences over sets of contracts: for any matchings µ and µ 0, µ ⌫q µ 0 if µ ⌫i µ 0

for all i 2 q (in words, side q prefers matching µ to µ 0 if all agents in q prefer µ to µ 0). But

we are not restricting our attention to such preorders. In particular, the preorder might capture

some properties of the underlying fundamentals. For instance, if agents contract over quali-

ties and payments, we might have µ ⌫q µ 0 if the profile of qualities in µ is higher than the

profile of qualities in µ 0 (irrespective of payments, and hence of agents’ utilities). In Example

2, where attorneys share profits, we can use the following preorder for the attorneys: µ ⌫q µ 0

if and only if the profit accrued from the contract that has the highest priority is greater in µ
compared to that in µ 0 for every attorney. In Example 4, where colleges care about the relative

ranking of their hires, µ ⌫q µ 0 for colleges if and only if the maximum quality of hires in µ
is weakly better than that of µ 0 for each college. In Example 5, where buyers sign primary

and add-on contracts, µ ⌫q µ 0 for buyers when the primary contracts in µ are better than the

primary contracts in µ 0 for every buyer.

Next, we introduce a basic rationality axiom for a choice function. Let us stress that this

axiom is tautologically satisfied when the choice behavior is rationalizable as in Remark 1 and

in our examples.

Definition 3. Choice function Cq satisfies the irrelevance of rejected contracts if for all

X 0,X ,µ ✓ X , we have

Cq (X 0|µ)✓ X ✓ X 0 =)Cq �X 0|µ
�
=Cq (X |µ).

If choice function Cq satisfies the irrelevance of rejected contracts, then excluding contracts
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that are not chosen does not change the chosen set. This is a basic rationality axiom for choice

functions. It has been studied in the matching with contracts literature by Aygün and Sönmez

(2013) when there are no externalities. They show that, without this condition, substitutability

alone does not guarantee the existence of stable matchings; but these two conditions together

imply the existence. If choice functions are constructed from preferences as in Remark 1, then

the irrelevance of rejected contracts is automatically satisfied.

By construction, Cq satisfies the irrelevance of rejected contracts (or substitutability) if and

only if ci satisfies the irrelevance of rejected contracts (or substitutability) for every agent i on

side q . Therefore, we can impose these two conditions on either agents’ choice functions or

the choice functions for each side of the market.

3.2 Examples Revisited

Now, we illustrate these properties with our examples. We focus on substitutability because it

is straightforward to see that the irrelevance of rejected contracts is satisfied.

Example 1 revisited: Worker choice functions satisfy substitutability for preorder ⌫q such

that µ 0 ⌫q µ when each married woman gets a better job in µ 0 compared to µ . This preorder

is consistent because as there are more contracts available married women are better off since

their choice functions do not exhibit externalities. The substitutes condition is satisfied because

a married man becomes more selective whenever his wife gets a better job, so he rejects more

contracts conditional on µ 0 compared to µ whenever µ 0 ⌫q µ .

Example 2 revisited: Attorney choice functions satisfy substitutability if we define the

preorder ⌫q so that µ 0 ⌫q µ if and only if maxx2µ 0(i)l (x, i,1) � maxx2µ(i)l (x, i,1) for all

agents i 2 q .37 This preorder is consistent with choice: When more contracts are available,

the profitability of the best contract signed by each attorney goes up (irrespective of what

contracts other attorneys sign). The substitutability condition holds for each attorney i: When

more contracts are available and when the profitability of the best contract signed by other

attorneys (and hence the outside option of attorney i) increases, the attorney continues to reject

the contracts she previously rejected.

Example 3 revisited: Man choice functions satisfy substitutability if we define the pre-

order ⌫q so that µ 0 ⌫q µ if and only if for some man µ 0 ( j) � j µ ( j) and µ 0 (i) = µ (i) for

i < j. This preorder is consistent with the choice functions, and the substitutability condition

is satisfied as choosing out of larger (in inclusion sense) choice set conditional on a matching
37We use the convention that the maximum over the empty set is �•.
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higher in this preorder, each man continues to reject the women he previously rejected.

Example 4 revisited: College choice functions satisfy substitutability if we define the pre-

order ⌫q so that µ 0 ⌫q µ if and only if max j2µ 0(i)l (i, j) is weakly higher than max j2µ(i)l (i, j)

for all colleges i.38 This preorder is consistent with the choice functions: when more academics

are around then the maximum quality of the academics a college hires goes up (whether or not

the benchmark quality of academics increases). The substitutability condition is then satisfied:

when more academics are around and when the benchmark quality of academics increases,

each college continues to reject the academics it previously rejected.

Example 5 revisited: Buyer choice functions satisfy substitutability for the preorder ⌫q

such that µ 0 ⌫q µ when each buyer prefers her primary contracts signed under µ 0 to those

signed under µ . This preorder is consistent: ⌫q depends only on primary contracts, and each

agent prefers to choose from larger choice sets over choosing from smaller choice sets. It is

enough to check substitutability separately for the primary contracts and the add-on contracts:

it holds for the primary contracts as the choice over them is not affected by externalities, and it

holds for the add-on contracts as we explicitly assumed it.

Example 6 revisited: Using individual buyer choice functions, we can construct a choice

function Cb for the buyer side.

{x1,x2,x3} {x1,x2} {x1,x3} {x2,x3} {x1} {x2} {x3} /0
Cb(·|{x1,x2,x3}) {x1,x2} {x1,x2} {x1} {x2} {x1} {x2} /0 /0

Cb(·|{x1,x2}) {x1,x2} {x1,x2} {x1} {x2} {x1} {x2} /0 /0
Cb(·|{x1,x3}) {x1,x2} {x1,x2} {x1} {x2} {x1} {x2} /0 /0
Cb(·|{x2,x3}) {x1,x2} {x1,x2} {x1,x3} {x2} {x1} {x2} {x3} /0

Cb(·|{x1}) {x1,x2} {x1,x2} {x1} {x2} {x1} {x2} /0 /0
Cb(·|{x2}) {x1,x2} {x1,x2} {x1,x3} {x2} {x1} {x2} {x3} /0
Cb(·|{x3}) {x1,x2} {x1,x2} {x1,x3} {x2} {x1} {x2} {x3} /0

Cb(·| /0) {x1,x2} {x1,x2} {x1,x3} {x2} {x1} {x2} {x3} /0

Table 2: Buyer-side choice function in Example 6.

We use the following preorder for buyers: {x1,x2}⌫b {x1,x3},{x1},{x2}⌫b {x3}, /0; {x1,x3}⇠b

{x1}; and {x3}⇠b /0. This preorder is consitent with Cb: for example, {x1,x2}⌫b {x1}, so we

must have Cb({x1,x3}|{x1,x2})⌫b Cb({x3}|{x1}), which is true since Cb({x1,x3}|{x1,x2}) =
{x1}⌫b /0=Cb({x3}|{x1}). Likewise, {x1,x2}⌫b {x2} implies Cb({x1,x3}|{x1,x2})⌫b Cb({x1,x3}|{x2}).
Again, this holds because Cb({x1,x3}|{x1,x2}) = {x1}⌫b {x1,x3}=Cb({x1,x3}|{x2}). Sub-

stitutability is satisfied for this consistent preorder. For example, {x1,x2}⌫b {x1}, as a result,
38When µ (i) is empty, we set the maximum equal to �•.
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we must have Rb({x1,x3}|{x1,x2})◆Rb({x3}|{x1}), which is true since Rb({x1,x3}|{x1,x2})=
{x3} ◆ {x3} = Rb({x3}|{x1}). Likewise, {x1,x2} ⌫b {x2} implies Rb({x1,x3}|{x1,x2}) ◆
Rb({x1,x3}|{x2}). Again, this holds because Rb({x1,x3}|{x1,x2})= {x3}◆ /0=Rb({x1,x3}|{x2}).
Finally, {x3}⇠ /0 implies Rb(X |{x3}) = Rb(X | /0) for any set of contracts X , which is true.

4 Deferred Acceptance with Externalities and the Existence
of Stable Matchings

As in classical matching theory, a key step in proving the existence of stable matchings is

the deferred acceptance algorithm. We describe the version of the algorithm in which sellers

make proposals and buyers tentatively accept some of them and reject others. Of course, an

analogous algorithm in which buyers propose works as well.

Our generalization of the deferred acceptance algorithm has two phases. First, we construct

an auxiliary matching µ⇤ such that Cs(X |µ⇤) �s µ⇤. Then, we use µ⇤ to construct a stable

matching in a way resembling the classic deferred acceptance algorithm of Gale and Shapley

(1962) and, particularly, its extensions by Adachi (2000); Fleiner (2003); Hatfield and Milgrom

(2005): we run the algorithm in rounds, t = 1,2, .... In any round t � 1, we denote by As(t) the

set of contracts that have not yet been rejected by buyers, by Ab(t) the set of contracts that have

been offered by the sellers to the buyers, and thus the set of contracts held at the beginning of

each round is As(t)\Ab(t). We also track the reference matchings for each side: µs(t) is the

seller reference matching and µb(t) is the buyer reference matching.39

Deferred Acceptance Phase 1: Construction of an auxiliary matching µ⇤ 2 M s such
that µ⇤ ⌫s Cs(X |µ⇤). Set µ0 ⌘ /0 and define recursively µk ⌘ Cs(X |µk�1) for every k � 1.

Since the number of contracts is finite, there exists n and m � n such that µm+1 = µn. We take

the minimum m satisfying this property and set µ⇤ = µm.
39The tracking of reference matchings has no counterpart in earlier formulations of the deferred acceptance

algorithms of, among many others, Gale and Shapley (1962), Adachi (2000), Roth (1984), Fleiner (2003), Hatfield
and Milgrom (2005), Echenique and Oviedo (2006), Ostrovsky (2008), Hatfield and Kojima (2010), and Bando
(2014). In these papers, there is no need to track reference matchings and the deferred acceptance algorithm
terminates when there are no more rejections and no new offers. However, in our setting, the lack of rejections
and new offers is not sufficient to stop the algorithm and we need to run it until the reference matchings converge.
We run the algorithm in a symmetric way: in each round agents on both sides respond to the offers and rejections
from the previous round. This is formally different from the standard approach where agents on the proposing
side respond to rejections from the earlier round but the agents on the accepting side respond to offers in the
current round. This difference is not substantive: we could run the deferred acceptance algorithm in the latter
manner with straightforward adjustments.
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We establish below that the matching constructed in phase 1 satisfies the property that

µ⇤ ⌫s Cs(X |µ⇤).

Deferred Acceptance Phase 2 (the cumulative offer process): Construction of a stable
matching. Set As(1) ⌘ X (no contracts have been rejected by the buyers), Ab(1) ⌘ /0 (the

sellers have made no offers yet), and the reference matchings are µs(1) = µ⇤, and µb(1) = /0.

In each round t = 1,2, ..., we update these sets and matchings as follows:

As (t +1) ⌘ X \Rb(Ab(t)|µb(t)),

Ab (t +1) ⌘ X \Rs(As(t)|µs(t)),

µs (t +1) ⌘ Cs(As(t)|µs(t)),

µb (t +1) ⌘ Cb(Ab(t)|µb(t)).

Thus, the buyers reject some of the contracts offered in Ab (t) given their reference matching

µb (t) and the set of not-yet rejected contracts after the round is As(t+1)=X \Rb(Ab(t)|µb(t));

the sellers make new offers from the set of contracts that have not been rejected yet, and the set

of contracts offered to the buyers after the round is Ab(t +1) = X \Rs(As(t)|µs(t)). We also

update the reference matchings: at each round, the sellers’ reference matching is the matching

the sellers would choose out of contracts not yet rejected, and the buyers’ reference matching

is the matching buyers would choose out of contracts offered so far.

We continue updating these sets until round T such that As (T +1) = As (T ), Ab (T +1) =

Ab (T ), µs (T +1) = µs (T ), and µb (T +1) = µb (T ). The outcome of the deferred acceptance

is then As (T )\Ab (T ).

The main result of this section establishes that the deferred acceptance algorithm terminates

at some round T despite the presence of externalities and, furthermore, it produces a stable

matching.

Theorem 1. Suppose that the choice functions satisfy substitutability and the irrelevance of

rejected contracts. Then, the deferred acceptance algorithm terminates, its outcome is stable,

and

µs (T ) = µb (T ) = As (T )\Ab (T ) .

Let us recognize the following immediate corollary.

Theorem 2. Suppose that the choice functions satisfy substitutability and the irrelevance of

rejected contracts. Then there exists a stable matching.
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In particular, this result implies the existence of stable matchings in all the examples of

Section 2.

Before embarking on the proof of Theorem 1, let us notice the similarities and differences

with the standard deferred acceptance algorithm, consider an example of how the algorithm

runs, and establish two auxiliary properties of the transformation iteratively performed in the

second phase of the deferred acceptance algorithm.

4.1 An Illustration of the Deferred Acceptance Algorithm

Similarly to the standard deferred acceptance algorithm, in each round of phase 2, substitutabil-

ity and the irrelevance of rejected contracts imply that As(t+1)✓ As (t) and Ab (t +1)◆ Ab (t),

i.e., the sellers make more offers to the buyers while more contracts are rejected by the buyers

with each passing round (Lemma 2). As a consequence, the sellers’ reference matching wors-

ens and the buyers’ reference matching improves. Hence, both of these two sets converges at

some round t; however, the algorithm does not necessarily terminate when As(t + 1) = As (t)

and Ab (t +1) = Ab (t). Indeed, because of externalities, the set of contracts held at such a

round, As(t)\Ab(t), is not necessarily stable at such a round. Instead, the algorithm converges

only when As(t + 1) = As (t), Ab (t +1) = Ab (t), µs(t + 1) = µs (t) and µb (t +1) = µb (t).

And the set of contracts held at such a round is stable.

The following example, which is a special case of Example 1, illustrates this point and

shows the steps of the algorithm. This example also illustrates that our deferred acceptance

algorithm can be viewed as an ascending auction in the presence of externalities.

Example 7. Suppose there is one employer f (a firm) and two workers w1 and w2. The firm

can sign two types of contracts with different wages: a low wage, L, and a high wage, H.

The contracts are denoted as follows: x1L = ( f ,w1,L), x1H = ( f ,w1,H), x2L = ( f ,w2,L), and

x2H = ( f ,w2,H). The firm would like to hire as many workers as it can and pay as low wages

as it can. In other words, from any given set of contracts, the firm chooses the contract with

the lowest wage associated for each worker.

Notice that in this simple example all contracts involve firm f , and hence its preferences

do not depend on the reference matching (i.e., there are no externalities for the firm). Worker

w1’s preferences do not depend on the reference matching (that is on what contract w2 signs)

and worker w1 is willing to work only at the high wage: x1H �w1 /0 �w1 x1L. Worker w2’s

preferences depend on the contract of worker w1 (we may think of these two workers as a

married couple as in Example 1). More precisely, worker w2 is willing to work at any wage
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only if worker w1 is not employed: if worker w1 is not employed then worker w2’s preference

ranking is x2H �w2 x2L �w2 /0 and if worker w1 is employed then worker w2’s ranking is /0 �w2

x2H ,x2L. The workers’ choice functions are constructed from these preferences.

Consider the firm-proposing version of the algorithm. Thus, the firm plays the role of a

single seller and the workers play the roles of buyers. The first phase of the algorithm yields

µ⇤ = {x1L,x2L}.40 We then run the second phase as summarized in the following table.

As(t) Ab(t) µs(t) µb(t) Cs(As(t)|µs(t)) Cb(Ab(t)|µb(t))
t = 1 X /0 {x1L,x2L} /0 {x1L,x2L} /0
t = 2 X {x1L,x2L} {x1L,x2L} /0 {x1L,x2L} {x2L}
t = 3 {x1H ,x2L,x2H} {x1L,x2L} {x1L,x2L} {x2L} {x1H ,x2L} {x2L}
t = 4 {x1H ,x2L,x2H} {x1L,x1H ,x2L} {x1H ,x2L} {x2L} {x1H ,x2L} {x1H ,x2L}
t = 5 {x1H ,x2L,x2H} {x1L,x1H ,x2L} {x1H ,x2L} {x1H ,x2L} {x1H ,x2L} {x1H}
t = 6 {x1H ,x2H} X {x1H ,x2L} {x1H} {x1H ,x2H} {x1H}
t = 7 {x1H} X {x1H ,x2H} {x1H} {x1H} {x1H}
t = 8 {x1H} X {x1H} {x1H} {x1H} {x1H}
t = 9 {x1H} X {x1H} {x1H} {x1H} {x1H}

Table 3: Steps of the Deferred Acceptance Algorithm.

In the first round, firm f offers low wage contracts to both workers. Workers respond to

the offers in the initial set Ab (1) = /0.41 At the end of this round, As (2) = X and Ab (2) =

{x1L,x2L}, and the reference matchings are unchanged. In the second round, firm f faces

the same choice problem while workers are now choosing from Ab (2) = {x1L,x2L} and thus

worker w1 rejects the offered contract x1L, while worker w2 accepts x2L.

The algorithm continues to proceed in this way. Notice that between the fouth and fifth

rounds the sets of contracts already offered are the same, Ab (4) = Ab (5), as are the sets

of contracts not yet rejected, As (4) = As (5). In the standard deferred acceptance algorithm

without externalities, we could stop the algorithm here and set the outcome to the matching

As (4)\Ab (4) = {x1H ,x2L}. In our setting, this matching is not stable as w2 prefers not to

work given that w1 is working. And, indeed, our deferred acceptance does not converge yet

as the new reference matching for the workers is µb (5) = {x1H ,x2L} which is different from
40Since the firm’s preferences do not exhibit externalities, this initial matching does not impact how the algo-

rithm runs. However, the initial matching matters for the worker-proposing version of the algorithm which we
discuss next.

41In the variant of the deferred acceptance algorithm in which workers respond to offers made in the current
round (see footnote 39) workers would be reacting to offers in {x1L,x2L} with worker w1 rejecting the offered
contract x1L, and worker w2 accepting x2L. In the symmetric cumulative process version of the algorithm, workers
react to round 1 offers only in round 2.
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µb (4) = {x2L}. Given this change of the reference matching, worker w2 rejects the contract

x2L. In round 6, firm f thus raises worker w2’s wage to H, and worker w2 rejects this high wage

offer in round 7. The reference matchings are adjusted in round 8 and by then the algorithm

converges: the contract sets and reference matchings are the same in rounds 8 and 9.

The worker-proposing deferred acceptance algorithm works similarly where workers play

the role of the sellers and the firm plays the role of the buyer. The workers’ initial reference

matching µ⇤ matters and in the first phase of the algorithm we calculate it as follows: We set

µ0 = /0; then µ1 =Cb ({x1L,x1H ,x2L,x2H}| /0) = {x1H ,x2H}, and finally

µ2 =Cb ({x1L,x1H ,x2L,x2H}|{x1H ,x2H}) = {x1H}.

Since µ3 = µ2, we set µ⇤ = {x1H}. The cumulative-offer phase of deferred acceptance obtains

µ⇤ after the first round.

4.2 A Characterization of Stable Matchings via Fixed Points of a Mono-
tone Function

Let us introduce some notation for the proof of Theorem 1 and the subsequent proofs. Each

iteration in the second phase of the deferred acceptance algorithm can be described as the

following transformation function

f
⇣

As,Ab,µs,µb
⌘
⌘
⇣
X \Rb(Ab|µb), X \Rs(As|µs),Cs (As|µs) ,Cb(Ab|µb)

⌘
.

Notice that in the deferred acceptance algorithm the reference matchings µs,µb are always

sets of contracts that can be chosen by the two sides of the market. In view of this, we define

M q =
�

Cq (X |X 0) |X ,X 0 ✓ X
 

and define f as a function from 2X ⇥ 2X ⇥M s ⇥M b into

itself.42

The deferred acceptance function f has two important properties, monotonicity and stabil-

ity of its fixed points, that are captured in the following two auxiliary results.

Lemma 2. Suppose that the choice functions satisfy substitutability. Then, the deferred ac-

ceptance transformation function f is monotone increasing with respect to the preorder v on

2X ⇥2X ⇥M s ⇥M b defined as follows:
42If the domain of the preorder �q is A q ( 2X , then we define M q =

�
Cq (X |X 0) |X ,X 0 ✓ X

 
\A q ; see

footnote 34.
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(As,Ab,µs,µb)v (Ãs, Ãb, µ̃s, µ̃b)() As ✓ Ãs,Ab ◆ Ãb,µs �s µ̃s,µb ⌫b µ̃b.

Proof. Function f is monotonic in v because for any As ✓ Ãs,Ab ◆ Ãb,µs �s µ̃s,µb ⌫b µ̃b,

substitutability implies that

X \Rb(Ab|µb) ✓ X \Rb(Ãb|µ̃b),

X \Rs(As|µs) ◆ X \Rs(Ãs|µ̃s),

and consistency implies that

Cs(As|µs) �s Cs(Ãs|µ̃s),

Cb(Ab|µb) ⌫b Cb(Ãb|µ̃b).

Therefore, (As,Ab,µs,µb)v (Ãs, Ãb, µ̃s, µ̃b) implies that f (As,Ab,µs,µb)v f (Ãs, Ãb, µ̃s, µ̃b).

When choice functions are substitutable, a matching is stable if and only if it can be sup-

ported as a fixed point of f .

Theorem 3. Suppose that the choice functions satisfy substitutability and the irrelevance of

rejected contracts. Then a matching µ is stable if and only if there exist sets of contracts

As,Ab ✓ X such that
�
As,Ab,µ,µ

�
is a fixed point of the deferred acceptance transformation

function f .

The proof is provided in Appendix C.

4.3 Proof of Theorem 1

First, let us consider the first phase of deferred acceptance and check that µ⇤ ⌫s Cs(X |µ⇤).

By construction, µk 2 M s for every k � 1. By the irrelevance of rejected contracts, we get

Cs(µk|µk�1) = µk for every k � 1. We show that µk ⌫s µk�1 for every k � 1. The proof is by

mathematical induction on k. For the base case when k = 1, note that X ◆ /0 and consistency

imply that

µ1 =Cs(X | /0)⌫s Cs( /0| /0) = /0 = µ0.
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For the general case, µk ⌫s µk�1 and X ◆ µk imply that (by consistency)

µk+1 =Cs(X |µk)⌫s Cs(µk|µk�1) = µk.

Therefore, {µk}k�1 is a monotone sequence with respect to the preorder ⌫s. Since the number

of contracts is finite, there exists n and m � n such that µm+1 = µn; we take the minimum m

satisfying this property and set µ⇤ = µm. Then,

Cs(X |µm) = µm+1 = µn �s µm

where the monotonicity comparison follows as �s is transitive.

It remains to show that the second phase of deferred acceptance converges and that the re-

sulting matching is stable. It is easy to see that f (X , /0,µ⇤, /0)v (X , /0,µ⇤, /0), since Cs(X |µ⇤)�s

µ⇤ by construction and Cb( /0| /0) = /0 ⌫b /0 by reflexivity of ⌫b. By Lemma 2, f is mono-

tone increasing, so we can repeatedly apply it to the last inequality to get f k(X , /0,µ⇤, /0) v
f k�1(X , /0,µ⇤, /0) for every k. We consider two separate cases. Suppose first that this sequence

converges. Therefore, there exists k such that f k�1(X , /0,µ⇤, /0) = f k(X , /0,µ⇤, /0). As a re-

sult, f k�1(X , /0,µ⇤, /0) is a fixed point of f . Let (A⇤s,A⇤b,µ⇤s,µ⇤b) ⌘ f k�1(X , /0,µ⇤, /0). By

Lemma 4, µ⇤s = µ⇤b and µ⇤b is a stable matching by Theorem 3.

Otherwise, if the sequence does not converge, there exists a subsequence f n(X , /0,µ⇤, /0)w
f n+1(X , /0,µ⇤, /0)w . . .w f m(X , /0,µ⇤, /0)w f m+1(X , /0,µ⇤, /0) = f n(X , /0,µ⇤, /0) because the

number of contracts is finite. By transitivity of the preorder w and the previous inequal-

ity, we get f n(X , /0,µ⇤, /0) = f m+1(X , /0,µ⇤, /0) w f m(X , /0,µ⇤, /0) w f n(X , /0,µ⇤, /0). Let

f n(X , /0,µ⇤, /0) = (As
1,A

b
1,µs

1,µb
1 ) and f m(X , /0,µ⇤, /0) = (As

2,A
b
2,µs

2,µb
2 ). By definition of w,

we get that As
1 = As

2, Ab
1 = Ab

2, µs
1 ⇠s µs

2, and µb
1 ⇠b µb

2 . Now, by construction Cs(As
2|µs

2) = µs
1

and by substitutability Cs(As
2|µs

2) = Cs(As
1|µs

1), which imply that Cs(As
1|µs

1) = µs
1. Similarly,

we get that Cs(As
1|µb

1 ) = µb
1 . Furthermore, by substitutability, X \Rb(Ab

2|µb
2 ) =X \Rb(Ab

1|µb
1 )

and, by construction, X \Rb(Ab
2|µb

2 ) = Ab
1, which imply X \Rb(Ab

1|µb
1 ) = Ab

1. Similarly, we

get X \Rs(As
1|µs

1) = As
1. Therefore, (As

1,A
b
1,µs

1,µb
1 ) is a fixed point of f . This shows that the

sequence converges as in the previous paragraph, so there exists a stable matching.
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4.4 Comments

Note that the proof above does not rely on Tarski’s fixed point theorem, which is routinely used

in the matching literature.43 In fact, Tarski’s fixed point theorem cannot be directly applied in

our setting because even though f is monotone increasing, the domain of f does not have to

be a (complete) lattice. In addition, there do not have to exist matchings that are optimal for

buyers or sellers. As a result, the domain of f does not have extremal points, so the standard

approach of applying f to the extreme points to get a fixed point fails. Furthermore, the binary

relation v on the domain of f is not a partial order, which means that even if extreme points in

the domain existed applying f would not necessarily converge to a fixed point as the preorder

v could cycle.44

Theorems 1 and 2 establish that stable matchings exist when choice functions satisfy sub-

stitutability and the irrelevance of rejected contracts. Both conditions are necessary in the sense

that when only one of them is satisfied there may not be any stable matchings: Example 1 of

Aygün and Sönmez (2013) satisfies substitutability for the revealed preference but there exists

no stable matching (because the irrelevance of rejected contracts fails). In the next example,

the irrelevance of rejected contracts is satisfied but there exists no stable matching.

Example 8. Suppose that there are two buyers b1,b2 and one seller, s1. There is only one

contract associated with every seller-buyer pair. Let the contract between b1 and s1 be x1 and

the contract between b2 and s1 be x2. Since there is only one seller, there are only externalities

for buyers. Agents have the following preferences:

⌫b1 : {x1}� /0,{x2}� {x1,x2};

⌫b2 : {x1,x2}� {x1}, /0 � {x2};

⌫s1 : {x1,x2}� {x1}� {x2}� /0.

Construct agents’ choice functions from their preferences. As a result, the choice functions

satisfy the irrelevance of rejected contracts. Yet there exists no stable matching. To see this,

first note that /0 is not a stable matching because (b1,s1) forms a blocking pair with contract x1.

Second, {x1} is not a stable matching because (b2,s1) forms a blocking pair with contract x2.
43For example, see Adachi (2000).
44Hatfield and Kojima (2010); Sönmez and Switzer (2013) also do not rely on Tarski for a different reason:

their choice functions do not satisfy the standard substitutes condition.
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Third, {x2} is not a stable matching because it is not individually rational for buyer b2. Finally,

{x1,x2} is not a stable matching because it is not individually rational for buyer b1.

5 Side-Optimal Stable Matchings

A key insight in the standard theory of stable matchings without externalities is that not only

do stable matchings exist but also side-optimal stable matchings exist. The counterpart of this

insight with externalities is given by the following:

Theorem 4. Suppose that the choice functions satisfy substitutability, the irrelevance of re-

jected contracts, and, in addition, for side q there exists a set of contracts µ̄q such that for any

µ 2M q , µ̄q ⌫q µ . Then, there exists a stable matching µ̂ such that for any stable matching µ ,

we have µ̂ ⌫q µ and µ̂ ��q µ; that is, µ̂ is the q -optimal and (�q)-pessimal stable matching.

Furthermore, matching µ̂ can be obtained by running the second phase of side-q -proposing

deferred acceptance with µ⇤ set to µ̄q .

In the standard theory, side optimality is measured with respect to the preference rankings

of agents on this side. This standard result is subsumed when ⌫q is derived from agents’

preferences (as in the in-text example at the beginning of Section 3.1).

The assumption that there exists a set of contracts µ̄q such that for any µ 2 M q , µ̄q ⌫q µ
is not innocuous but it is satisfied in all the motivating examples of Section 2. We comment

more on this assumption below.

Proof. Without loss of generality assume that q = s. For any (As,Ab,µs,µb) 2 2X ⇥ 2X ⇥
M s⇥M b we have (X , /0, µ̄s, /0)w (As,Ab,µs,µb). Therefore, (X , /0, µ̄s, /0)w f (X , /0, µ̄s, /0).

By Lemma 2, the deferred-acceptance transformation function f is monotone increasing, so

we can repeatedly apply it to the last inequality to get f k�1(X , /0, µ̄s, /0)w f k(X , /0, µ̄s, /0) for

every k. Since 2X ⇥ 2X ⇥M s ⇥M b is a finite set, this sequence converges at some point

as in the proof of Theorem 1, so there exists k such that f k�1(X , /0, µ̄s, /0) = f k(X , /0, µ̄s, /0).

Therefore, f k�1(X , /0, µ̄s, /0) is a fixed point of f . By Lemma 4 there is
�
Âs, Âb, µ̂, µ̂

�
that is

equal to f k�1(X , /0, µ̄s, /0). Theorem 3 tells us that µ̂ is a stable matching.

We next show that µ̂ is a seller-optimal and buyer-pessimal stable matching. Let µ be any

stable matching. By Theorem 3, there exist As and Absuch that (As,Ab,µ,µ) is a fixed point

of f . Since (X , /0, µ̄s, /0) w (As,Ab,µ,µ) and f is monotonic increasing, f can be applied

repeatedly while preserving the order. Therefore, f k(X , /0, µ̄s, /0) w f k(As,Ab,µ,µ) for every
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k, which implies
�
Âs, Âb, µ̂, µ̂

�
w (As,Ab,µ,µ). Therefore, µ̂ ⌫s µ and µ̂ �b µ , so µ̂ is the

seller-optimal and buyer-pessimal stable matching.

The assumption that there exists a set of contracts µ̄q such that for any µ 2 M q , µ̄q ⌫q µ
plays a crucial role in the proof of Theorem 4. In the absence of externalities, this assump-

tion is automatically satisfied when ⌫q is defined as µ ⌫q µ 0 if and only if for every i 2 q ,

ci(µ(i)[ µ 0(i)) = µ(i) (or, if and only, if all agents on side q prefer µ over µ 0). Indeed, we

can take µ̄ to be the set of contracts which assigns each agent on side q his unconstrained

best set of contracts.45 Furthermore, for this preorder ⌫q substitutability and irrelevance of

rejected contracts are equivalent to the standard ones without externalities. Thus, Theorem

4 subsumes the standard insight that, in the absence of externalities, there exists a q -optimal

stable matching with respect to ⌫q if preferences satisfy substitutability and the irrelevance of

rejected contracts. This matching is also (�q)-pessimal.

Furthermore, our assumption on µ̄ is equivalent to the following: for any two matchings

µ and µ 0, there exists another matching µ̃ such that µ̃ ⌫q µ and µ̃ ⌫q µ 0. In fact, in light of

our analysis of the first phase of deferred acceptance, it is enough to impose this assumption

on matchings µ such that Cq (X |µ)�q µ .

6 Comparative Statics and “Vacancy Chain” Dynamics

In this section, we first present a comparative statics result that goes beyond the classic theory

of stable matchings. Then we look at the welfare implications of an agent retiring from the

market.

6.1 Comparative Statics on Strength of Externalities and Substitutes

How do stable matchings change when externalities and substitutability are strengthened? To

answer this question, we first introduce the notions of having weaker externalities and stronger

substitutability.

Definition 4. Choice function Ĉq exhibits stronger substitutability than choice function Cq

if Rq (X |µ)✓ R̂q (X |µ) for any µ,X ✓ X .
45Notice that this point remains true regardless of whether all sets of contracts are matchings or only some sets

of contracts are matchings because of some feasibility constraints as, for instance, in one-to-one matching. This
is so because we allow µ̄ to be any set of contracts.
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Strengthening the substitutes means that agents choose fewer contracts or reject more.

Equivalently, we can think of shrinking the choice function so that agents choose only a subset

of the previously chosen contracts.46 To get a sense of this assumption, consider for instance

Example 4 (in its general, quantile form). In this example, the larger k is the stronger substi-

tutability of the colleges’ choice function. In Example 2, the choice functions satisfy stronger

substitutability as an attorney’s profits from contracts signed by the attorney decrease relative

to his profits from working on contracts signed by other attorneys.

Definition 5. Choice function Ĉq exhibits weaker externalities than choice function Cq if

Ĉq (X |µ)⌫̂qCq (X |µ) for any µ,X ✓ X .

Note that if choice function Ĉq exhibits no externalities then it has weaker externalities

than any other choice function when ⌫̂q is the revealed preference for side q . In the context of

Example 4, the positive externalities are weaker when the benchmark ratio k is higher. Notice

that the choice function when k=• and the choice function when k= 0 exhibit no externalities,

and thus have weaker externalities than the intermediate choice functions.

In the result below, we consider two seller choice functions Cs and Ĉs. Suppose that pre-

order ⌫s is consistent with Cs and preorder ⌫̂s is consistent with Ĉs. Assume that both choice

functions satisfy the irrelevance of rejected contracts and substitutability.

Theorem 5. Suppose that Ĉs exhibits stronger substitutability and weaker externalities than

Cs. Then for any (Cb,Cs)-stable matching µ there exists a (Cb,Ĉs)- stable matching µ⇤ such

that µ ⌫b µ⇤ and µ⇤⌫̂sµ .

In the context of Example 4, as colleges raise the hiring benchmark, the quality of aca-

demics hired in stable matchings increases. Whenever the side-optimal and side-pessimal sta-

ble matchings exist, the market conditions are better for buyers in the buyer-optimal ⌫̂-stable

matching than in the buyer-optimal ⌫-stable matching; and the converse holds for the sellers.

When one side of the market faces no externalities, then the preorder ⌫q that ranks µ above µ⇤

whenever all agents on this side prefer µ over µ⇤ is consistent with this side’s choice behavior.

Hence, if, say, buyers face no externalities then they would all prefer µ over µ⇤. This gives us:

Corollary 1. Suppose that Ĉs does not exhibit any externalities and that Ĉs has stronger substi-

tutes than Cs. Then for any (Cb,Cs)-stable matching µ there exists a (Cb,Ĉs)- stable matching
46In the terminology of Echenique and Yenmez (2012), choice function Cq is an expansion of choice function

Ĉq if for any µ,X ✓ X , Cq (X |µ) ◆ Ĉq (X |µ). This is equivalent to the stronger substitutes comparison above.
Note that the result of this subsection specialized to the setting without externalities does not have a counterpart
in Echenique and Yenmez (2012).
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µ⇤ such that all buyers prefer µ over µ⇤.

Proof of Theorem 5. For any As,Ab,µs,µb ✓ X , let

f̂
⇣

As,Ab,µs,µb
⌘
⌘
⇣
X \Rb(Ab|µb), X \R̂s(As|µs), Ĉs (As|µs) ,Cb(Ab|µb)

⌘
.

Since µ is a (Cs,Cb)-stable matching, there exist As,Ab ✓ X such that (As,Ab,µ,µ) is a

fixed point of f (Theorem 3). By Lemma 4, Cs(As|µ) = Cb(Ab|µ) = µ . By strong sub-

stitutes, X \ R̂s(As|µ) ✓ X \Rs(As|µ); by weaker externalities, Ĉs (As|µ)⌫̂sCs(As|µ). Hence,

(As,Ab,µ,µ)= f (As,Ab,µ,µ)v̂ f̂ (As,Ab,µ,µ). Since f̂ is monotone f̂ k�1(As,Ab,µ,µ)v̂ f̂ k(As,Ab,µ,µ)
for all k � 1. Since the number of contracts is finite, there exists k such that f̂ k�1(As,Ab,µ,µ) is

a fixed point of f̂ as in the proof of Theorem 2. By Lemma 4, f̂ k�1(As,Ab,µ,µ)= (Âs, Âb,µ⇤,µ⇤),

and by Theorem 3, µ⇤ is a (Ĉs,Cb)-stable matching. By construction, µ⇤⌫̂sµ and µ ⌫b µ⇤.

6.2 Vacancy Chain Dynamics

Let us consider the classic retirement problem in matching. Suppose that agent i 2 q retires.

Then all of the contracts that agent i has signed are annulled. Some agents may be affected by

the removal of these contracts. Therefore, agents may want to add new contracts, or they may

want to remove some of the existing contracts. But the addition or removal of a new contract

may also affect the remaining agents in the market, which may lead to other changes in the

set of contracts. We analyze such changes and show that there is a vacancy chain dynamics

(Crawford, 1991; Blum, Roth, and Rothblum, 1997) that leads to a stable matching in which

agents on side q are better off and agents on side �q are worse off. Similar vacancy chain

dynamics have been studied in different matching markets without externalities (e.g., Kelso

and Crawford, 1982; Hatfield and Milgrom, 2005). Our construction shows that vacancy chain

dynamics extend to the setting with externalities.

Without loss of generality, we fix the choice functions of agents other than some seller i

while we compare two possible choice functions of seller i, say ci and ĉi, where this agent re-

jects all contracts under ĉi. Let the corresponding rejection functions be ri and r̂i, respectively.

Less formally, the retirement of seller i is interpreted as no offers being accepted by seller i and

so all offers being rejected by her. Thus, she prefers the empty set of contracts to any other set

regardless of the contracts signed by the rest of the agents. On the other hand, the rejection set

for the buyers is the same. For any X ,µ ✓ X , Ĉs (X |µ)⌘ ĉi(X |µ)[
S

j2s\{i}
c j(X |µ).
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We assume that Cs satisfies substitutability and the irrelevance of rejected contracts for

preorder ⌫s. In addition, assume that Ĉs satisfies substitutability and the irrelevance of rejected

contracts for preorder ⌫̂s. Likewise, Cb satisfies substitutability and the irrelevance of rejected

contracts for preorder ⌫b. Notice that in the contexts of our motivating examples, all these

assumptions are satisfied.

To study the vacancy-chain dynamics, we need to modify the function f . For any As,Ab,µs,µb ✓
X ,

f̂
⇣

As,Ab,µs,µb
⌘
⌘
⇣
X \Rb(Ab|µb), X \R̂s(As|µs), Ĉs (As|µs) ,Cb(Ab|µb)

⌘
.

Let (As(0),Ab(0),µs(0),µb(0)) be the initial matching that is stable with seller i present

in the market. After removing seller i from the market, agents start recontracting dynami-

cally. This process can be described through the function f̂ . Let (As(t),Ab(t),µs(t),µb(t)) ⌘
f̂ (As(t �1),Ab(t �1),µs(t �1),µb(t �1)). We call this the vacancy chain dynamics. In our

setting, f̂ is monotonic since we impose the substitutes and irrelevance of rejected contracts

assumptions both on the original choice function profile and on the profile when agent i rejects

all offers (or, equivalently, has retired).

Theorem 6. Suppose that Ĉs exhibits stronger positive externalities than Cs. Let (As,Ab) be

a (Ĉs,Cb)-stable set of contracts with stable matching µ ⌘ As \Ab. Then the vacancy chain

dynamics converges to (A⇤
s ,A⇤

b,µ⇤,µ⇤) where µ⇤ is a (Ĉs,Cb)-stable matching such that µ⇤⌫̂sµ
and µ ⌫b µ⇤.

The assumption that Ĉs exhibits stronger positive externalities than Cs is satisfied in Ex-

ample 4. Thus, in this example the closure of one of the colleges leads to an increase in the

quality of academics hired by the remaining colleges.

Proof. Since (As,Ab) is a stable set of contracts, (As,Ab,µ,µ) is a fixed point of f . By Lemma

4, Cs(As|µ) =Cb(Ab|µ) = µ . By definition, X \ R̂s(As|µ)✓ X \Rs(As|µ), and Ĉs (As|µ) =
µ�i. By stronger externalities, we have µ�i⌫̂

sµ . Hence, (As,Ab,µ,µ)= f (As,Ab,µ,µ)v̂ f̂ (As,Ab,µ,µ).
Since f̂ is monotone f̂ k�1(As,Ab,µ,µ)v̂ f̂ k(As,Ab,µ,µ) for all k � 1. Since the number of

contracts is finite, there exists k such that f̂ k�1(As,Ab,µ,µ) is a fixed point of f̂ as in the proof

of Theorem 2. By Lemma 4, f̂ k�1(As,Ab,µ,µ) = (Âs, Âb,µ⇤,µ⇤), and by Theorem 3, µ⇤ is a

stable matching in the market without seller i. By construction, µ⇤⌫̂sµ and µ ⌫b µ⇤.
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7 Conclusion

In this paper, we have studied a two-sided matching problem with externalities where each

agent’s choice depends on other agents’ contracts. For such settings, we have developed the

the theory of stable matchings by introducing conditions on agents’ choice behavior. More

explicitly, we have studied the existence of stable matchings, side-optimal stable matchings,

vacancy-chain dynamics, the deferred acceptance algorithm, comparative statics depending

on the strength of externalities and substitutes, and the rural hospitals theorem (which is in

Appendix A). Unlike the previous matching literature, we have not relied on fixed point theo-

rems; instead, we have used elementary techniques to overcome the difficulties associated with

externalities.

Even though we have studied two-sided markets, our techniques are applicable to more

general markets such as the supply chain networks of Ostrovsky (2008) where externalities

may naturally appear. This is left open for future research.
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Appendix A: Law of Aggregate Demand and the Rural Hos-
pitals Theorem

We provide a generalization of the law of aggregate demand (Hatfield and Milgrom, 2005)

and size monotonicity (Alkan and Gale, 2003; Alkan, 2002), which is due to Fleiner (2003)

for markets without externalities. For each contract x 2 X , there is a corresponding positive

weight denoted by w(x). The generalized law of aggregate demand requires that for agent i 2 q
the total weight of contracts chosen from X conditional on µ is weakly smaller than the total

weight of contracts chosen from X 0 conditional on µ 0 for any X 0 ◆ X and µ 0 ⌫q µ . For a set of

contracts X ✓ X , let w(X)⌘ Â
x2X

w(x). We provide a formal definition as follows.

Definition 6. Choice function ci satisfies the law of aggregate demand if i 2 q and for any

X ✓ X 0 and µ �q µ 0 then w(ci(X |µ)) w(ci(X 0|µ 0)).

Previous definitions in the matching literature are restricted to the settings without ex-

ternalities, and assume that the weight on all contracts are exactly equal.47 Under this as-

sumption, the generalized law of aggregate demand reduces to for any X ✓ X 0 and µ ✓ X ,

|ci(X |µ)|  |ci(X 0|µ)|. In terms of the demand metaphor of Hatfield and Milgrom (2005), all

contracts are traded at price one. In contrast, we allow any prices.

We study how the weight of contracts changes for an agent in different stable matchings.

We show that the weight remains the same regardless of the stable matching. This extends

the rural hospitals theorem of Roth (1986) in two directions:48 We allow different contracts

to have different weights and also preferences of an agent can depend on contracts signed by

others.
47The only exception is Fleiner (2003).
48Hatfield and Milgrom (2005) show the rural hospitals theorem for the many-to-one matching with contracts

setup in which there are no externalities.
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Theorem 7. Suppose that choice functions satisfy substitutability, the irrelevance of rejected

contracts, and the law of aggregate demand for a weight function w. In addition, there exists

a matching µ̄q such that for any µ 2 M q , µ̄q ⌫q µ for side q . Then for any two stable

matchings µ and µ 0, w(µi) = w(µ 0
i ) for every agent i.

Proof. Without loss of generality assume that q = s. Then by Theorem 4, there exists a stable

matching µ⇤, which is seller-optimal and buyer-pessimal simultaneously. We show that for

any stable matching µ , w(µi) = w(µ⇤
i ). As it is shown in the proof of Theorem 4 f has two

fixed points (A⇤s,A⇤b,µ⇤,µ⇤) and (As,Ab,µ,µ) such that (A⇤s,A⇤b,µ⇤,µ⇤) w (As,Ab,µ,µ).
Therefore, A⇤s ◆ As, A⇤b ✓ Ab, µ⇤ ⌫s µ and µ⇤ �b µ . Now by the law of aggregate de-

mand for any i 2 S, w(ci(A⇤s|µ⇤))� w(ci(As|µ)), which is equivalent to w(µ⇤
i )� w(µi) since

(A⇤s,A⇤b,µ⇤,µ⇤) and (As,Ab,µ,µ) are fixed points of f . When this is summed over all sell-

ers, we get w(µ⇤) � w(µ). Similarly, for any i 2 B, w(ci(A⇤b|µ⇤))  w(ci(Ab|µ)), which is

equivalent to w(µ⇤
i )  w(µi) since (A⇤s,A⇤b,µ⇤,µ⇤) and (As,Ab,µ,µ) are fixed points of f .

When summed over all buyers, this implies w(µ⇤)  w(µ). Therefore, w(µ⇤) = w(µ), more-

over, all of the individual inequalities must hold as equalities implying that for any agent i,

w(µ⇤
i ) = w(µi).

Remark 2. When all the weights are positive, substitutability and the law of aggregate demand

imply the irrelevance of rejected contracts. This is easy to see: Suppose that X 0,X ,µ ✓ X are

such that ci(X 0
i |µ)✓ Xi ✓ X 0

i for agent i. Then substitutability implies that ci(Xi|µ)◆ ci(X 0
i |µ).

Since weights are positive we get w(ci(Xi|µ)) � w(ci(X 0
i |µ)). Now, since Xi ✓ X 0

i , the law

of aggregate demand implies that w(ci(Xi|µ))  w(ci(X 0
i |µ)). Consequently, we need to have

w(ci(Xi|µ)) = w(ci(X 0
i |µ)). Since all weights are positive and ci(Xi|µ) ◆ ci(X 0

i |µ), we get

ci(Xi|µ) = ci(X 0
i |µ), the desired conclusion.

In addition, under these assumptions an agent’s choice from the same set conditional on

two ranked matchings needs to be the same. Let i 2 q be an agent. Suppose that X ,µ,µ 0 ✓ X

are such that µ �q µ 0. Then, by substitutability, ci(X |µ)◆ ci(X |µ 0). But the law of aggregate

demand implies that w(ci(X |µ))  w(ci(X |µ 0)). Since all weights are positive, we get that

ci(X |µ) = ci(X |µ 0). However, this argument does not mean that we cannot have externalities

because the choice conditional on two matchings that are not ranked with respect to ⌫q can

still be different.
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Appendix B: Core Stability

A set X ✓ X blocks matching µ if X * µ and for all i 2 I we have Xi ✓ ci(µ [X |µ). Less

formally, conditional on matching µ , every agent who is associated with a contract in X wants

to have all contracts in X associated with her. In this case, X is also called a blocking set for µ .

Without externalities, this stability concept is the same as core stability (Roth and Sotomayor,

1990). Therefore, a matching is core stable if it is individually rational matching and it does

not have any blocking.

Proposition 1. [Equivalence of Stability and Core Stability] A matching is stable if and only

if it is core stable.

See Roth and Sotomayor (1990), Echenique and Oviedo (2004), and Hatfield and Kominers

(2014) for earlier developments of this equivalence. To prove the proposition it is enough to

prove the following

Lemma 3. Suppose X blocks matching µ and choice functions satisfy substitutability. Then

for every x 2 X \µ , {x} blocks µ .

Proof. If X is a blocking set, then X ✓Cs(µ [X |µ)\Cb(µ [X |µ). Take any x 2 X \µ . Since

choice function ci satisfies substitutability, we have ri(µ[{x}|µ)✓ ri(µ[X |µ) for every agent

i. This implies x 2 ci(µ [{x}|µ) for every i, so x 2Cs(µ [{x}|µ)\Cb(µ [{x}|µ). Therefore,

{x} is a blocking set for µ .

Appendix C: Proof of Theorem 3

Let us first observe that the fixed points of f satisfy the following:

Lemma 4. Let
�
As,Ab,µs,µb� be a fixed point of the deferred-acceptance transformation func-

tion f . Then As [Ab = X and

µs = µb = As \Ab =Cb(Ab|µb) =Cs(As|µs).

Proof. As [Ab = As [ [X \Rs(As|µs))]◆ As [ [X \As] = X , so

As [Ab = X .

39



Similarly, As\Ab =As\ [X \Rs(As|µs))] =As\Rs(As|µs)=Cs (As|µs), which implies Cs (As|µs)=

As \Ab. Analogously for b, Cb �Ab|µb�= As \Ab. Finally, µq =Cq �Aq |µq� implies

µs = µb = As \Ab =Cb(Ab|µb) =Cs (As|µs) .

Proof of Theorem 3. Suppose that
�
As,Ab,µ,µ

�
is a fixed point of f . Before we show

that µ is a stable matching, we need the following.

Claim 1. Suppose that choice functions satisfy substitutability and the irrelevance of re-

jected contracts. Then matching µ is stable.

Proof. Suppose for contradiction that µ is not stable. Then there are three possibilities, all

of which we proceed to rule out.

1. Matching µ is not individually rational for some seller j, that is c j(µ|µ) ( µ j. Since
�
As,Ab,µ,µ

�
is a fixed point of f , Cs(As|µ) = µ and As ◆ µ . But substitutability and

c j(µ|µ) ( µ j imply that there is a contract x 2 µ j rejected out of As by agent j, that is

x /2Cs (As|µ), a contradiction.

2. Matching µ is not individually rational for some buyer i, that is ci(µ|µ) ( µi.This is

analogous to the previous case since f treats buyers and sellers symmetrically.

3. There exists a blocking pair with contract x 2 X \µ . Since
�
As,Ab,µ,µ

�
is a fixed point

of f , by Lemma 4 As [ Ab = X . Therefore, without loss of generality, assume that

x 2 Ab. Since {x} is a blocking set, there exists buyer i such that x 2 ci(µ [{x}|µ)\µ .

Again, since
�
As,Ab,µ,µ

�
is a fixed point of f , by Lemma 4 Cb(Ab|µ) = µ , which

implies that ci(Ab|µ) = µi. By the irrelevance of rejected contracts, for any set Y such

that Ab ◆Y ◆ µ , ci(Y |µ) = µi. In particular, for Y = µ [{x}, ci(µ [{x}|µ) = µi, which

is a contradiction because x 2 ci(µ [{x}|µ)\µ .

To finish the proof of the theorem, we need to show that if matching µ is stable then there exist

sets of contracts As,Ab such that
�
As,Ab,µ,µ

�
is a fixed point of f . The following is useful in

our construction of As and Ab.

Claim 2. Suppose that choice functions satisfy substitutability and the irrelevance of re-

jected contracts. Then the function Mq (µ) ⌘ max{X ✓ X |Cq (X |µ) = µ}, where the maxi-

mum is with respect to set inclusion, is well defined. Moreover, for any contract z 62 Mq (µ),
z 2Cq (Mq (µ)[ z|µ).
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Proof. If there are two sets M0 and M00 such that Cq (M0|µ) = Cq (M00|µ) = µ , then (by

substitutability)

Cq �M0 [M00|µ
�

=
�
M0 [M00�\Rq �M0 [M00|µ

�
=
h
M0 \Rq �M0 [M00|µ

�i
[
h
M00 \Rq �M0 [M00|µ

�i

✓
h
M0 \Rq �M0|µ

�i
[
h
M00 \Rq �M00|µ

�i
= µ.

If Cq (M0 [M00|µ) was a proper subset of µ , then the irrelevance of rejected contracts would

imply that Cq (M0|µ) = Cq (M00|µ) = Cq (M0 [M00|µ), which is a contradiction. Therefore,

Mq (µ) is well defined. Let x 62M =Mq (µ). If x 62Cq (M[x|µ), then Cq (M[x|µ) =Cq (M|µ)
by the irrelevance of rejected contracts. But this implies Cq (M[ x|µ) = µ , which contradicts

maximality of M. Hence x 2Cq (M[ x|µ).
Claim 3. Suppose that the matching µ is stable and the choice functions satisfy substi-

tutability and the irrelevance of rejected contracts. Then there exist sets of contracts As and Ab

such that
�
As,Ab,µ,µ

�
is a fixed point of f .

Proof. By Claim 2, there exists the largest set Mq (µ)⌘ max{X ✓ X |Cq (X |µ) = µ}. Let

As ⌘ Ms(µ) and Ab ⌘ X \Rs(As|µ). By definition, Ab = X \Rs(As|µ) and µ = Cs(As|µ).
Thus, we get As \Ab = As \ (X \Rs(As|µ)) =Cs(As|µ) = µ . To finish the proof, we need to

show µ =Cb(Ab|µ) and As = X \Rb(Ab|µ).
Note that Ab =X \Rs(As|µ) = (X \As)[Cs(As|µ) = (X \As)[µ . In particular, Ab ◆ µ .

If Cb(Ab|µ) = Y 6= µ , there are two cases, both of which contradict stability of µ . First,

if Y ( µ, then the irrelevance of rejected contracts implies Cb(µ|µ) = Y , implying that µ
is not individually rational for some buyers, contradicting stability. Second, if Y * µ, then

there exists a y 2 Y \ µ , and y 2 Cb(µ [ {y}|µ) by substitutability since y 2 Cb(Ab|µ) and

Ab ◆ µ [ {y}. But we also have that y 2 Cs(As [ {y}|µ) by Claim 2. Then {y} blocks µ ,

contradicting stability. Thus, the only case consistent with stability is Cb(Ab|µ) = µ .

Finally, we show that As = X \Rb(Ab|µ) = X \Rb(X \Rs(As|µ)|µ). Since Cb(Ab|µ) =
µ , then X \Rb(Ab|µ) = X \ (Ab \µ) = X \ (((X \As)[µ)\µ) = X \ (X \As) = As and

we have the result.
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Appendix D: Another Illustration of the Deferred Acceptance
Algorithm

We use Example 6 to offer another illustration of the deferred acceptance algorithm. Suppose

that there are no externalities for sellers and that Cs(X |µ) = X for any set of contracts X and

µ . We need to find a matching µ⇤ such that Cs(X |µ⇤) �s µ⇤ where X = {x1,x2,x3}. Since

Cs(X |µ⇤) = X , µ⇤ = X works.

The algorithm starts at As(1) = X , Ab(1) = /0, µs(1) = X , and µb(1) = /0. The table

below shows the iterations of the algorithm.

As(t) Ab(t) µs(t) µb(t) Cs(As(t)|µs(t)) Cb(Ab(t)|µb(t))
t = 1 X /0 X /0 X /0
t = 2 X X X /0 X {x1,x2}
t = 3 {x1,x2} X X {x1,x2} {x1,x2} {x1,x2}
t = 4 {x1,x2} X {x1,x2} {x1,x2} {x1,x2} {x1,x2}
t = 5 {x1,x2} X {x1,x2} {x1,x2} {x1,x2} {x1,x2}

Table 4: Steps of the Deferred Acceptance Algorithm.

For t = 2, we first compute As(2) = X \Rb(Ab(1)|µb(1)) = X . For buyers, Ab(2) =

X \ Rs(As(1)|µs(1)) = X . The chosen contracts for buyers and sellers give us µs(2) =

Cs(As(1)|µs(1)) = X and µb(2) =Cb(Ab(1)|µb(1)) = /0.

We keep iterating these steps until we arrive at a fixed point, which happens at Step 5.

Therefore, the generalized deferred acceptance algorithm produces As(5)\Ab(5) = µs(5) =

µb(5) = {x1,x2}, which is a stable matching.
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