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Abstract

Suppose estimating a model on each of a small number of potentially heterogeneous

clusters yields approximately independent, unbiased and Gaussian parameter estima-

tors. We make two contributions in this set-up. First, we show how to compare a
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scalar parameter of interest between treatment and control units using a two-sample

t-statistic, extending previous results for the one-sample t-statistic. Second, we de-

velop a test for the appropriate level of clustering, which tests the null hypothesis that

clustered standard errors from a much finer partition are correct. We illustrate the

approach by revisiting empirical studies involving clustered, time series and spatially

correlated data.
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Keywords: Dependence, clustered standard errors, two-sample t-statistic, vari-
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1 Introduction

The use of clustered standard errors has become widespread in empirical economics. For

instance, Bertrand, Duflo and Mullainathan (2004) stress the importance of allowing for

time series correlation in panel difference-in-difference applications. The usual asymptotic

justification for the use of clustered standard errors requires the number of clusters to go

to infinity, so that standard errors can be consistently estimated. In a number of contexts,

though, there are only few clusters that reliably provide independent information about

the parameter of interest. It is then not possible to estimate the correct standard errors

precisely, and the variability in the standard error estimator has to be taken into account

when conducting inference.

In a time series context, the asymptotic framework of Kiefer and Vogelsang (2002, 2005)

provides a model for the variability of such standard error estimators: Even asymptotically,

the denominator of their t-statistics remains random. But its asymptotic distribution is

known (at least up to a scaling constant that cancels in the overall fraction), so that an

appropriate critical value can be computed. Similarly, in a panel context, Hansen (2007) and

Donald and Lang (2007) derive asymptotically justified inference in which the variability of

the standard error is explicitly taken into account. Closely related approaches are developed

in Müller (2007, 2014), Stock and Watson (2008), Sun, Phillips and Jin (2008), Bester,

Conley and Hansen (2011) and Sun (2013, 2014).

An important limitation of these approaches is that the asymptotic distribution of the
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standard error estimator needs to be fully known, at least up to a scaling constant. This

requires strong homogeneity assumptions, ruling out clusters of different size or with sub-

stantially different design matrices, and, in a time series context, deterministic or stochastic

trends in second moments.

In general, allowing for variance heterogeneity leads to test statistics whose distribution

depends on the relative variances from each cluster. These nuisance parameters cannot be

consistently estimated, given that the point of clustering standard errors is to remain agnostic

about the form of intra-cluster correlations. With a finite number of clusters, also bootstrap

or subsampling methods have no theoretical justification. In Monte Carlo experiments,

Cameron, Gelbach and Miller (2008) found good performance of the percentile-t wild cluster

bootstrap even with a small number of clusters, although these experiments focussed on

relatively homogeneous designs. We consider explicitly heterogenous designs below and

find that the method does not generally control size under cluster heterogeneity. Further

analytical progress can be made by deriving bounds for the appropriate quantile of the test

statistic that hold for any value of the cluster variances.1

Bakirov and Székely (2005) establish the following remarkable small sample result: The

usual student-t critical values are valid for the t-test about the mean of  independent

and Gaussian observations, even if the variances are heterogeneous, at least at conventional

1See Imbens and Kolesár (2012), Carter, Schnepel and Steigerwald (2013), Webb (2014), MacKinnon and

Webb (2014) and Canay, Romano and Shaikh (2014) for some recent alternative suggestions for inference

with a small number of clusters.
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significance levels.2 In a previous paper, Ibragimov and Müller (2010), we rely on this result

to derive asymptotically valid inference about a scalar parameter of interest  as follows:

Partition the data into  ≥ 2 groups that provide approximately independent information

about . Estimate the model on each of the groups to obtain estimators ̂,  = 1      (the

model may contain additional parameters beyond , which are estimated along with ̂ but

then discarded). Then test the null hypothesis 0 :  = 0 with the usual t-test using the 

observations {̂}=1 and −1 degrees of freedom.3 Given the result of Bakirov and Székely

(2005), this test is asymptotically valid as long as the ̂’s are asymptotically independent,

unbiased and Gaussian of possibly different variances. Even severe heterogeneity in the

variability of the ̂’s can thus be accommodated, enabling valid inference with very few and

potentially heterogenous clusters. As discussed in more detail in Ibragimov andMüller (2010)

natural group choices in a time series or spatial setting lead to asymptotic independence of the

group estimators under conventional weak dependence assumptions, so that this approach

may be applied in a wide range of settings.

This paper extends this approach in two dimensions. First, we establish a corresponding

result for the comparison of a scalar parameter across two types of groups, such as treatment

2For a two-sided t-test, the result holds at the 8.3% level and below for all values of  ≥ 2, and it also

holds at the 10% level for  ≤ 14.
3The idea of using group estimates for a t-test goes back to Brillinger (1973); it is also known as the

“batch mean method” in the analysis of Markov Chain Monte Carlo output and as the “Fama and MacBeth

(1973) method” in finance. The contribution of Ibragimov and Müller (2010) is to demonstrate its validity

even with a small number of heterogeneous groups.
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and control groups, or pre- and post-structural break data with known break date. The

small sample problem here is the analysis of the usual two sample t-statistic when the

underlying observations in the two samples are independent and Gaussian, but of potentially

heterogeneous variance within and across the two samples. We prove that the critical value

of a student-t distribution with degrees of freedom equal to the smaller sample size minus

one lead to valid tests at conventional significance levels. This result then allows us to derive

asymptotically valid inference about a scalar parameter  = 1−2, where 1 and 2 describe

two different populations: Let {̂1}1=1 and {̂2}2=1 be the parameter estimates from the

two types of groups with population values 1 and 2, respectively, where 1 2 ≥ 2. The

null hypothesis 0 :  = 0 can then be tested with the usual two-sample t-test using the

observations {̂1}1=1 and {̂2}2=1, and a critical value from a student-t distribution with

min(1 2)− 1 degrees of freedom.

Second, we develop a test for the appropriate level of clustering. A researcher entertains

the null hypothesis that a fine level of clustering is appropriate, with the alternative that

only a coarser level of clustering (few groups with corresponding estimators {̂}=1) actu-

ally provides approximately independent information about the parameter of interest. For

example, in an analysis with a large panel of countries, a fine level of clustering might clus-

ter on countries, while a coarser level only imposes independence across a few (= ) larger

regions. We approximate the fine clustering by asymptotics where the number of clusters

goes to infinity, so that under the null hypothesis, the asymptotic variance 2 of each of

the ̂ can be consistently estimated. In the example, ̂ is the parameter estimator using
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data from region  only, and 2 is estimated using the usual clustered standard error in the

estimation of ̂, where the clustering is on countries. The suggested test then compares the

sample variance computed from the  observations {̂}=1 with what one would expect if

the ̂ where normal of variance proportional to the estimated value of 
2
 , as would be the

case asymptotically under the null hypothesis. The test can also be applied in the context

of comparisons between two populations, as described. Rejections of the test suggest that

usual inference with clustered standard errors using the fine level of clustering is invalid, so

that instead, the methods based on group estimators ̂ should be applied.

The remainder of this paper is organized as follows. Section 2 provides evidence on

the failure of Cameron, Gelbach, and Miller’s (2008) percentile-t wild cluster bootstrap, as

well as Bester, Conley, and Hansen’s (2011) approach, to reliably control size under cluster

heterogeneity. Section 3 discusses inference about comparisons across two populations in

detail. Section 4 develops the test for the level of clustering, and provides some Monte Carlo

evidence on its small sample properties. Section 5 illustrates the new tests in four empirical

applications.
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2 Validity of Inference with Few Heterogeneous Clus-

ters

As an initial motivation, consider a linear regression

 =  0
 +  (1)

where  and  are the th of  observations from cluster ,  = 1      is a

non-random  × 1 regressor and  is mean zero normal and uncorrelated across clusters

[] = 0 for  6= , but not necessarily within clusters. Suppose we are interested in

inference about the first element of ,  = 01 with 1 = (1 0     0)
0. Specifically, we seek

to test the null hypothesis 0 :  = 0 against the two-sided alternative 1 :  6= 0.

The usual OLS estimator ̂


can be written as

̂


=  +

Ã
X

=1

Γ

!−1 X
=1

 (2)

where Γ =
P

=1
0
 =  0

, and  =
P

=1 are independent N (0Ψ) with

Ψ = Var[
P

=1]. The point of clustering is to remain agnostic about the value of

{Ψ}=1 while conducting inference about .

Let ̂ =  − Γ(̂
 − ). Then the usual clustered and degree of freedom corrected

standard error of ̂


= 01̂


is ̂, where

̂2 =


 − 1
0
1

Ã
X

=1

Γ

!−1Ã X
=1

̂ ̂
0


!Ã
X

=1

Γ

!−1
1 (3)
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and the corresponding t-statistic is

cluster =
̂
 − 0
̂

 (4)

Ibragimov and Müller’s (2010) (IM in the following) suggestion is to estimate the pa-

rameter of interest from each cluster, and then apply a t-test to the  estimates. If Γ is

invertible, the OLS estimator of  from cluster  is ̂ =  + Γ−1 , so that the cluster 

estimator of  is ̂ = + 01Γ
−1
 . Thus, IM’s suggestion is to reject 0 when the absolute

value of

 =
√

̂ − 0


(5)

is larger than the usual critical value cv from a student-t with  − 1 degrees of freedom,

where ̂ = −1
P

=1 ̂ and 2 = 1
−1
P

=1(̂ − ̂)2, yielding a confidence interval for

 with endpoints ̂ ± cv√. Since ̂ ∼ N ( 01Γ−1 ΨΓ
−1
 1) independent across , the

result of Bakirov and Székely (2005) described in the introduction ensures that this inference

remains valid for any value of the Ψ’s at significance level 8.3% and below.

Cameron, Gelbach andMiller (2008) (CGM in the following) instead consider a wild boot-

strap to approximate the null quantiles of cluster In the bootstrap world, the Γ’s are as in the

actual sample, but the ’s are replaced by ∗ ̂

 , where the  are i.i.d. random variables

with  (∗ = 1) =  (∗ = −1) = 12 and ̂ are the estimates of  under the null hypoth-

esis, that is with  the last  − 1 columns of , ̂ =  − Γ(
P

=1
0Γ)−1

P

=1
0.

Note that this bootstrap distribution consists of (at most) 2 distinct points. CGM find in

Monte Carlo simulations that under homogeneous clusters (Γ ≈ Γ and Ψ ≈ Ψ for all  ),
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this procedure works well even for fairly small .

Alternatively, Bester, Conley and Hansen (2011) (BCH in the following) suggest relying

on cluster with a critical value from a student-t with  − 1 degrees of freedom. Under

homogeneity of Γ =  0
 across clusters (Γ = Γ), this results in valid inference, because

cluster then reduces to IM’s statistic  via ̂ = ̂


.

Little is known about the validity of CGM’s and BCH’s method under general cluster

heterogeneity for finite  (validity under  → ∞ follows from standard arguments). Both

methods implicitly define a critical region CR, the subset of values of {}=1 for which the

null hypothesis 0 :  = 0 is rejected. The critical region depends on the observed matrices

{Γ}=1, CR = CR{Γ}=1. In this notation, the null rejection probability simply becomes

 ({}=1 ∈ CR{Γ}=1), which is a function of {Ψ}=1 via  ∼ N (0Ψ). As noted before,

the point of clustering is to remain agnostic about the value of {Ψ}=1. So for a given value

of {Γ}=1, the size of these methods is usefully defined as

sup
{Ψ}=1

 ({}=1 ∈ CR{Γ}=1), (6)

the largest rejection probability that can be induced by varying {Ψ}=1. It is computation-

ally difficult to determine this quantity, as the space of  covariance matrices of dimension

×  is large unless both  and  are very small. To get some sense for the reliability of the

CGM and BCH methods we compute their rejection probability for a relatively small set of

values of {Ψ}=1 at the edge of the parameter space, as detailed in the online appendix.

The largest of these null rejection probabilities is, by construction, a lower bound on actual

8



size (6).

 Table 1 about here 

Since size depends on {Γ}=1, we computed this lower bound for 100 independent draws

of {Γ}=1, where Γ are distributed i.i.d. Wishart with 2 degrees of freedom and scale

matrix . Table 1 reports summary statistics of these 100 draws for various values of  and

. One can see that both methods are very seriously oversized, at least for some values of

{Γ}=1. The one exception is CGM’s method for  = 1 and   4, for which we found no

evidence of size distortions. For  = 1 and  = 4 CGM’s method seems to result in an empty

critical region, i.e. it never rejects. With  = 4 the bootstrap distribution has only 2 = 16

points of support, and for  = 1, the realized value of test statistic cluster apparently always

falls between 2.5% and 97.5% quantiles of this distribution.

For computational reasons, we only considered the values 1, 2 and 3 for the number of

regressors . Note, however, that  can be thought of as the number of non-cluster specific

regressors. This follows from standard Frisch-Waugh logic: Let  be regressors that are

specific to one group, that is each element of is nonzero only for one cluster , let ̃ be

the ×1 non-cluster specific original regressors, and let ̃ be the original disturbances. Now

define  and  as the residuals of a linear regression of ̃ and ̃ on , respectively.

Then  are still uncorrelated across clusters, equations (2)-(4) still hold, and both CGM’s

and BCH’s method behave as described in Table 1. For instance, if a regression analysis

contains cluster fixed-effects and a single non-cluster specific regressor of interest, then the

 = 1 results of Table 1 apply.
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One might argue that this linear regression design with normal errors and fixed regressors

is fairly special. But consider asymptotics where the number of observations in each cluster

 is some positive fraction of , and  → ∞. A law of large numbers and a central

limit theorem applied to cluster averages then yields −1Γ = −1
P

=1
0


→  and

−12 =
P

=1 ⇒ N (0Ψ) independent across  (see IM for additional details and

a generalization to GMM models). The distributional assumption of treating the Γ as fixed

and  as independent mean-zero normals then arises naturally. The numbers in Table 1

are therefore also lower bounds on the the asymptotic size of the CGM and BCH method

under such asymptotics, and IM’s method controls asymptotic size no matter the value of

{Ψ}=1. Consequently, the results here point to IM’s method as a generally more reliable

procedure to conduct inference with few heterogeneous clusters.

Note, however, that in order to implement IM’s t-statistic (5), it must be possible to

estimate the parameter  from each cluster. This rules out parameters of interest  that are

only identified from across cluster variation, rendering the Γ non-invertible. A particularly

important example is inference about the difference of a linear regression coefficient between

two populations, with the first 1 clusters from one population, and 2 =  − 1  0 inde-

pendent clusters from the second population. With a scalar regressor , this corresponds

in the above notation to inference about the first element of  in (1) with  = ( )
0

for  ≤ 1 and  = (0 )
0 for  = 1+1     1+ 2, leading to 2×2 matrices Γ =  0


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of the form

Γ =

⎛⎜⎜⎝  

 

⎞⎟⎟⎠ for  ≤ 1 and Γ =

⎛⎜⎜⎝ 0 0

0 

⎞⎟⎟⎠ for  = 1 + 1     1 + 2 (7)

with  =
P

=1 
2
  0, and  =

P
=1 ∼ N (0Ψ) with

Ψ =

⎛⎜⎜⎝  

 

⎞⎟⎟⎠ for  ≤ 1 and Γ =

⎛⎜⎜⎝ 0 0

0 

⎞⎟⎟⎠ for  = 1 + 1     1 + 2

for some  ≥ 0. As before, these expressions also remain valid in the presence of additional

cluster specific regressors  once  and  are defined as residuals of a linear regression

of the original scalar regressor of interest ̃ and the original disturbance ̃ on the cluster

specific regressors.

 Table 2 about here

Table 2 reports summary statistics of lower bounds on size (6) of the CGM and BCHmethods

in this “Two-Sample” design for various values of 1 and 2. As in Table 1, for each pair

of (1 2), we generated 100 draws of {}=1 with  i.i.d. Chi-squared with 2 degrees

of freedom. For each such realization of {}=1, we compute the largest null rejection

probability over a finite set of values of {}=1 detailed in the online appendix. As can be

seen from the table, neither of the two methods yields reliable inference. This motivates the

development of a version of IM’s method that guarantees valid inference in the two-sample

design, which we pursue in the next section.

11



3 Comparisons between Two Populations

3.1 Small Sample Result

Let  be independent random variables with distribution  ∼ N ( 2),  = 1     ,

 = 1 2, where  ≥ 2. Define the statistics ̄ = −1
P

=1  and 
2
 = (−1)−1

P
=1(−

̄)
2 for  = 1 2 The parameter of interest is ∆ = 1 − 2, so we seek to test 0 : ∆ = ∆0

against 1 : ∆ 6= ∆0. The usual two sample t-statistic is given by

 =
̄1 − ̄2 −∆0q

21
1
+

22
2

(8)

and the null hypothesis is rejected for large values of ||.4 In the case of homogenous samples

with  =   0, the null distribution of  only depends on the nuisance parameter 12,

and Mickey and Brown (1966) show that the quantiles of  are bounded by the appropriate

quantiles from a t-distribution with min(1 2)− 1 degrees of freedom. This bound is sharp,

since it is obtained as either 12 → 0 or 12 →∞.

The following theorem provides a corresponding result under heterogeneity within the

individual samples, where the nuisance parameter space involves in addition the 1 + 2 − 2

ratios 1,  = 2     ,  = 1 2.

Theorem 1 Let cv() be the 1−2 quantile of the student-t distribution with  degrees

of freedom. Under the null hypothesis of ∆ = ∆0,

sup
{1}1=1{2}

2
=1

 (||  cv(min(1 2)− 1)) = 

4We define  to be zero if 21 = 22 = ̄1 − ̄2 = 0, a zero probability event if max   0.
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for 2 ≤ 1 2 ≤ 50 and  ∈ {0001 0002     0083}, and also for  ∈ {0083 0084     010}

if 2 ≤ 1 2 ≤ 14

Theorem 1 is a new probabilistic result of potentially independent interest in the literature

of small sample properties of t-statistics and quadratic forms in symmetric and normal vari-

ates (cf. Efron (1969), Benjamini (1983), Dufour (1991), Dufour and Hallin (1993), Bakirov

(1989a, 1989b, 1995) and Bakirov and Székely (2005)). The most closely related work is

Bakirov (1998), who studies the behavior of the two-sample t-statistic with the “pooled”

variance estimator in the denominator under variance heterogeneity. Bakirov (1998) shows

that the student-t critical value with min(1 2) − 1 degrees of freedom yields a valid test

when min(1 2) ≥ 7 and for very low levels of  (much smaller than 1% for most values of

(1 2), and always less than 1%). The proof of Theorem 1 is involved. It relies in part on

the approach of Bakirov (1998), the insights of Bakirov and Székely (2005), and a number

of additional arguments. See the online appendix for details.

One step of the proof requires comparisons of a (large but finite) set of quantities that

depend on , 1 and 2. We performed these comparisons for the values indicated in the

theorem, but we would expect the result to go through also for additional values of  and

1 2  50 Under min(1 2) → ∞ and max   ∞ the validity of the t-test

follows, of course, from standard asymptotic arguments.

In small samples, the t-test (8) can be quite conservative, that is its null rejection prob-

ability can be substantially below the nominal level  for some values of 2. This raises a

concern about power. A natural comparison is a test based on the numerator ̄1 − ̄2 −∆0

13



in (8) with known variances, that is a test that rejects for large values of || with

 =
̄1 − ̄2 −∆0q

−21
P1

=1 
2
1 + −22

P2
=1 

2
2

(9)

and the usual normal critical values. Figures 1 and 2 plot the rejection probabilities for

some choices of 1, 2 and 2 of nominal 5% level tests. Note that in some scenarios, the

null rejection probability of the t-test is very small; for instance, in the upper right plot of

Figure 2, the null rejection probability is only 0.56% for 1 = 4 and 2 = 16. Remarkably,

this severe underrejection does not lead to a large loss in power: under alternatives where

the  test has roughly 50% power, the rejection probability of the the t-test seems almost

completely determined by min(1 2), irrespective of any variance heterogeneity. As such,

very substantial power losses compared to the -test under such moderate alternatives only

arise when min(1 2) = 4 (where the two-sided critical value is 3.18 for the -test, compared

to 1.96 for the -test). IM reported very similar findings for the one-sample t-statistic in

their Figure 3.

 Figures 1 and 2 about here 

3.2 Large Sample Inference with a Finite Number of Groups

Our interest in Theorem 1 mainly stems from its application to valid large sample inference as

follows. Suppose ,  = 1 2 are parameters of some econometric model, and we are interested

in inference about  = 1 − 2, that is we want to test the null hypothesis 0 :  = 0.

The model might be linear or nonlinear, and might involve additional parameters beyond
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. Suppose the total  observations are partitioned into 1+ 2 groups, such that 1 groups

provide at least asymptotically independent information about 1, and the remaining 2

groups provide asymptotically independent information about 2. Estimate the model 1+2

times, using observations of each group only, and let ̂,  = 1      be the resulting

estimators of ,  = 1 2. Under asymptotics in which the number 1 + 2 of groups is fixed,

and each group contains more and more observations, standard results on the large sample

behavior of a wide class of estimators ̂ imply

√
(̂ − )⇒ N (0 2),  = 1     ,  = 1 2 (10)

What is more, by assumption about the choice of groups, {̂} are asymptotically inde-

pendent. As discussed in IM, it is not necessary that the group data itself is independent

across groups for this to hold: standard weak dependence assumption in time or space induce

asymptotic independence under reasonable group choices, as most of the variability of ̂

stems from observations that are far from the “group borders”.

Now define ̂ = −1
P

=1 ̂ and 2 = ( − 1)−1
P

=1(̂ − ̂)
2 for  = 1 2 and let

2 =
̂1 − ̂2 − 0q

21
1
+

22
2

 (11)

the usual two sample t-statistic for the difference in means based on the two samples {̂1}1=1

and {̂2}2=1. As long as at least one of the asymptotic variances 2 is positive, max 2 

0, the continuous mapping theorem and (10) imply that

2 ⇒ ̄1 − ̄2 −∆0q
21
1
+

22
2

(12)
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under the null hypothesis, where the right-hand side of (12) is as in Section 3.1 with ∆ =

∆0. Thus, Theorem 1 implies that rejecting for values of |2| that are larger than the

corresponding critical value cv of a student-t distribution with min(1 2) − 1 degrees of

freedom (df) results in asymptotically valid inference. Equivalently, an asymptotically valid

confidence interval for  has endpoints ̂1 − ̂2 ± cv
p
211 + 222. Moreover, (12) also

holds under local alternatives where
√
( − 0) → ∆ − ∆0, so that the local asymptotic

power of such inference is equal to the small sample power of the two-sample t-statistic (8).

As is easily seen, for more distant alternatives where
√
| − 0| → ∞, the test based on

2 is consistent.

Returning to the linear regression set-up with design matrices (7) of Section 2, let  =

(1 − 2 2)
0, so that 1 and 2 are the coefficients in the two populations, and  = 1 − 2.

Let ̂1 = 1 + −1  be the estimated coefficient of a regression of  on  using group

 = 1     1 data only, and define ̂2 correspondingly as ̂2 = 2+
−1
1+1

1+,  = 1     2.

Then Theorem 1 implies that the test based on (11) is small sample valid under Gaussian

errors . What is more, in the important special case where  is constant across , the

power of 2 compares to the power of the (infeasible) test based on the estimator ̂


with known variance just like the -test and -test in Figures 1 and 2 above. (When  is

heterogeneous, then ̂


no longer equals ̂1 − ̂2, and relative power can go either way

depending on the relationship between the heterogeneity in , and the heterogeneity in the

variances. See IM for further discussion.)

It doesn’t pose any problems if the model contains additional parameters beyond  as
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long as ̂ can be estimated from each cluster. In addition, note that 2 is invariant to

transformations of the type ̂ → ̂ + for any  ∈ R, since  cancels in the numerator

in the difference ̂1− ̂2, and also in the expression for 21 and 22 . Thus, the basic assumption

(10) for the validity of inference based on 2 can be weakened to

√
(̂ − − )⇒ N (0 2),  = 1     ,  = 1 2 (13)

for an unknown sequence  that is not required to converge. For instance, consider an

intervention that has a time dimension  = 1      , so that in a linear model with time

fixed effects , the outcome  in cluster  = 1      of population  = 1 2 for an

individual  = 1      with characteristics  is

 =  + 0 +  + 

for some conditionally mean zero error term . Let ̂ be the OLS estimators of the time

fixed effects in a regression of  on  using data of cluster  from population  only

(excluding an additional constant). Then ̂ = −1
P

=1 ̂ estimates  + −1
P

=1 ,

and (13) holds with  =  = −1
P

=1  under sufficiently weak dependence of 

within cluster. This is true even under  → ∞ asymptotics, where there is no reason to

expect  to converge to anything. This approach can be generalized to two-way fixed

effects in a diff-in-diff application, see Section 5.4 below.

For the asymptotic validity of tests based on 2, the rate of convergence
√
 in (10) (or

(13)) is immaterial–any rate  →∞ would work, as it cancels in (11). The same approach

to inference is thus also applicable in some non-regular and semi-parametric settings, as
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long as estimators are asymptotically unbiased and Gaussian. Furthermore, one can replace

(10) by an assumption that (̂ − )⇒
p
, where  ∼ N (0 1), and  are

(possibly correlated) non-negative random variables that are independent of {}, as long

as sup   0 almost surely. The validity of inference based on 
2 then still follows from

Theorem 1 after conditioning on {}. This structure allows for the presence of stochastic

volatility affecting ̂, as well as convergence of ̂ to any distribution that can be written as

a scale mixture of normals. This is a rather large class of symmetric distributions, containing

all student-t distributions, the logistic distribution, the double exponential distribution and

all symmetric stable distributions. Thus, after a suitable partition of a time series, the

statistic 2 can also be used, say, for Chow (1960)-type tests about the change of location

of a serially correlated heavy-tailed time series in the domain of attraction of a symmetric

stable law, or for a Chow-test of other parameters whose estimators are known to converge

to a symmetric stable law (such as, for instance, the sample autocovariances in GARCH

processes and estimates of an autoregressive parameter in an AR(1) process with GARCH

errors under empirically plausible assumptions, see Davis and Mikosch (1998), Mikosch and

Stărică (2000), Borkovec (2001) and Cont (2001)). And, given the practical difficulty of

estimating the tail index, it seems that very few alternatives modes of inference are available

for such problems.
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4 Testing the Level of Clustering

In applied work it can be challenging to decide on the appropriate level of clustering: fine

clustering (many clusters) may rule out plausible correlations, but a coarse level of clustering

(few clusters) calls into question standard inference that is based on “consistent” clustered

standard errors. In this section, we develop a test  of the null hypothesis that a fine level of

clustering is appropriate, against the alternative that only fewer groups provide independent

information about the parameter of interest.

The setting is similar to what is described in Ibragimov and Müller (2010) and Section 3.2

above. An econometric model involves the scalar parameter of interest , possibly along with

additional parameters. There exists a partitioning of the  total observations into  groups

that provide asymptotically independent information about  even under the alternative.

The number of groups  is fixed as a function of the overall sample size . Estimation of

the model on the data of each of the  groups yields the estimators ̂,  = 1     . These

estimators satisfy

√
(̂ − )⇒ N (0 2) (14)

and are asymptotically independent, both under the null and alternative hypothesis about

the appropriate level of clustering.

Under the null hypothesis, also a fine level of clustering is justified. Consider asymptotics

in which each of the  groups eventually contain an infinite number of (asymptotically)

independent clusters. The usual clustered standard errors ̂ computed for each of the 
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estimations can then be employed to accurately estimate ̂ =
√
̂

→ , so that 
2
 in

(14) is effectively known under the null hypothesis.

Our suggestion for  can now be thought of as a Hausman (1978)-type test about the

(asymptotic) variance of
√
̂ =

√
−1

P

=1 ̂. Under the null hypothesis, this variance

can be accurately estimated by −2
P

=1 ̂
2
 . Under the alternative, a natural estimator is

given by

 = 2, 2 = ( − 1)−1
X

=1

(̂ − ̂)2,

the (rescaled) sample variance of {̂}=1. In contrast to the usual Hausman (1978) set-up,

these two estimators have different rates of convergence, though, since  has a nondegen-

erate (and non-Gaussian) limiting distribution, while −2
P

=1 ̂
2


→ −2
P

=1 
2
 under the

null hypothesis. The distribution theory for the comparison of the two estimators is thus

dominated by the variability of  .

Under the null hypothesis, the distribution of  is very well approximated by the distri-

bution of  = 2  with 2 = ( − 1)−1
P

=1( − ̄ )2 and ̄ = −1
P

=1 , where the

independent random variables  have distribution N (0 ̂2) (conditional on the standard

error estimate ̂). Let cv () be the 1 −  quantile of  , which can easily be computed

by simulation or other techniques. The test  then rejects if and only if  is larger than

cv (). It is easily seen that  is of asymptotic level .
5 Note that the rate

√
 in (14)

and in the relation ̂ =
√
̂ is immaterial– can be implemented by simply comparing

5This follows since under the null hypothesis,  and ̃ have identical limiting distribution ( −

1)−1
P

=1( − ̄ )2, where the  are independent and distributed  ∼ N (0 2 ).
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 = 2 with the appropriate quantile of 2 , neither of which involve ̂, or any scaling

by  (see the Synopsis in Section 5).

Under the alternative, the fine level of clustering ignores correlations among the obser-

vations in the groups, and ̂ is no longer an accurate estimator of the standard error of

̂. In particular, inference about  based on the usual clustered standard error formula

will overstate the significance if positive correlations within the  groups are ignored. In

this case,  takes on larger values than one would expect if indeed ̂ ∼ N ( ̂2), leading

to a rejection of  . Formally, the asymptotic distribution of  stochastically dominates

the distribution of  whenever ̂ →  ≤  with some strict inequalities, inducing an

asymptotic rejection probability of  larger than .

 Table 3 about here 

Table 3 reports some small sample rejection probabilities of  in a simple panel setting.

The null rejection probabilities are fairly close to the nominal level, even when the number of

independent entities within each group is as small as 5 (where the standard error estimates

̂ are quite imprecise).

A rejection of  indicates that there are correlations across the fine clusters (but within

the coarse clusters) that increase the variability of ̂ relative to what is accounted for by the

fine clustering. In the presence of such correlations, valid inference is obtained by relying

on IM’s one-sample statistic  in (5) and critical values from a student-t distribution with

−1 degrees of freedom, at least asymptotically. As is common for diagnostic tests, however,
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a systematic determination of the mode of inference as a function of  will in general induce

pre-test biases due to type-I and type-II errors. If the appropriate level of clustering is in

doubt, then it makes sense to report the significance of results based on various clustering

assumptions, and to interpret the resulting inference conditional on the validity of these

assumptions. In this perspective the test  merely provides empirical evidence on the

plausibility of one particular clustering assumption.

Having said that, in the Monte Carlo simulation of Table 3, a t-test for the population

mean based on OLS standard errors of 5% nominal level has null rejection probability of

18.7%-26.8% when the time series correlation is ignored (what is called “Alternative Hy-

pothesis” in Table 3). A switch to  -inference as a function of the outcome of the 5% level

test  reduces these size distortions to 5.9%-15.3% (compared to 3.6%-7.9% of pure 

based inference). So while not perfect, a systematic use of  as a pre-test does substantially

reduce size distortions, at least in this simple set-up.

The test  has a natural counterpart in the two-sample problem, with the variance of

̂1 − ̂2 then playing the role of the variance of ̂. In the implementation, the statistics 
2

and 2 are to be replaced by  = 211 + 222 and  = 211 + 222, respectively,

where 2 = (−1)−1
P

=1(−̄)2, ̄ = −1
P

=1  and  ∼ N (0 ̂2) conditional on

{̂}, where ̂ is the clustered standard error of the estimator ̂,  = 1     ,  = 1 2

that assume that fine clustering is justified.
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5 Illustrations

 Table 4 about here

We now illustrate the cluster test and t-statistic based inference in four empirical applica-

tions. All reported t-tests are two-sided. The implementation of the various tests suggested

here are summarized in Table 4.

5.1 Few Independent Clusters: Dal Bó and Fréchette (2011)

Dal Bó and Fréchette (2011) experimentally study the degree of cooperation in infinitely

repeated games as a function of the probability of continuation  ( in the notation of Dal

Bó and Fréchette (2011)), and the pay-off of cooperation . They consider two values of

 ∈ {1
2
 3
4
} and three values of the cooperation pay-off  ∈ {32 40 48} leading to a total of 6

treatments. For each treatment, they conduct three sessions, where each session involves be-

tween 12-20 individuals that are randomly re-matched for a total of 50 minutes of play. The

bottom right panel of their Table 3 provides the results of significance tests of equal propen-

sity to cooperate in 7 pairs of treatment, using all games and all rounds of play (reproduced

in Panel B of Table 5 of this paper). The comparisons are conducted by running a probit

regression on a constant and a dummy for the treatment under consideration, with standard

errors clustered at the session level. Since there are only 3 sessions per treatment, there

is very substantial variability in these standard error estimates. This variability, however,

is not appropriately taken into account in the assessment of significance using the default

23



clustering approach.

 Table 5 about here

An alternative mode of inference is to estimate the propensity to cooperate session by

session. Under the assumption that there is enough independence within sessions for a

central limit theorem to hold, the resulting 18 estimators are independent and normal, and

each triple of sessions corresponding to the same treatment have the same mean. Given the

heterogeneity in the number of individuals and games played across sessions, one would not

want to assume that these estimators have the same variance. But given Theorem 1, valid

pairwise comparisons between treatments may still be conducted by simply employing the

two-sample t-statistic (11) with the 3 probit coefficients as observations from each treatment,

using the critical value from a student-t distribution with 2 degrees of freedom. Table 5

reports the results. Compared to the original analysis in Dal Bó and Fréchette (2011), the

significance of differences between treatments is lower. But even though the 10% and 5%

two-sided critical values of a student-t statistic with 2 degrees of freedom are 1.92 and 4.30,

respectively, four of the 7 tests are still significant at the 10% level, and one at the 5% level.

The approach thus still yields at least somewhat informative inference.

One might argue that given the small number of sessions, it would be more appropriate

to cluster at the level of individuals. But when we test the validity of clustering at the

level of the individual, against the alternative of coarser clustering at the session level using

the test  described in Section 4 above, we reject at the 5% level for six out of the seven
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comparisons. (This might not be too surprising: individuals play against each other in each

session, after all, which might well lead to non-trivial interaction effects). Thus, Dal Bó and

Fréchette (2011) were right to be concerned about intra-session correlation, and inference

based on the t-statistic (11) adequately accounts for the (substantive!) additional variability

of the resulting inference.

5.2 Time Series Correlations: Keim (1983)

In a classic paper, Keim (1983) provides evidence that the size anomaly of stock returns is,

to a substantial degree, due to very high excess returns in January. In his Table 2, he reports

average differences between daily CRSP excess returns of portfolios constructed from firms

in the top and bottom decile of equity market value, for each January of the 17 years 1963 to

1979, along with the OLS standard error estimate. The overall January average over these

years is reported to equal 0.714 percent, with a t-statistic of 11.8.

The standard errors are not adjusted for potential serial correlation. Treating the av-

erage from each January as potentially heteroskedastic independent normal variates with

common mean, one can apply the Ibragimov and Müller (2010)-method (that is, a t-test

with 16 degrees of freedom using the 17 January estimators) to obtain valid inference that

accounts for arbitrary serial correlation within each January.6 Such an analysis still leads to

a significant January size effect at the 0.1% level, confirming the result in Keim (1983). At

6The fact that the Ibragimov and Müller (2010)-method accommodates heterogenous variances is quite

attractive here, given that stock returns display time dependent (stochastic) volatility.
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the same time, using the 17 pairs of estimator and OLS standard error as inputs to the level

of clustering test  leads to a rejection at the 0.1% level, indicating that Keim’s original

standard errors are too small.

Theorem 1 of this paper also allows for the straightforward implementation of a Chow

(1960)-type test of the stability of the January size effect: Consider the null hypothesis that

the January size effect is time invariant, against the alternative that it is different in the 60s

and the 70s. Again allowing for arbitrary serial correlation within each January, this can be

tested by computing a two-sample t-test, with the 7 January averages from the years 1963

to 1969 in one group, and the 10 January averages from the year 1970 to 1979 in the other.

The resulting test rejects at the 10% level, providing weak evidence against time invariance.

5.3 Spatial Correlations: Obstfeld, Shambaugh and Taylor (2010)

Maurice Obstfeld (2010) study the determinants of central bank reserve holdings with a cross

country regression involving an unbalanced panel of 26 years and 134 countries, for a total

of 2671 observations. Their theoretical framework motivates a focus on four variables that

relate to financial stability of a country: an index for “financial openness”, dummies for a

“Peg” or “Soft Peg”, and the log of the ratio of M2 to GDP “ln(M2/GDP)”. In regression

(5) of their Table 1, they assess the significance of these four variables in a horserace against

other factors, clustering standard errors by country to account for arbitrary serial correlation.
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We reproduce these results in Panel B of Table 6 for convenience.

 Table 6 about here 

Give the close economic, political and historical ties between neighboring countries, one

might worry about the presence of additional spatial correlation. To formally test this, we

categorize the 134 countries into 6 regions: Western Europe/North America, Eastern Europe,

Asia/Pacific, Middle East, South America and Africa, with 15 to 39 countries in each region.

We re-estimated the horserace regression separately in each region, and used the 6 estimators

and standard errors (clustered at the country level) to test for the validity of clustering at

the country level. As reported in Table 5, the test  of Section 4 is significant for two of the

four coefficients of interest, indicating significant evidence of spatial correlation.7 A test of

significance of the coefficients based on the 6 estimates from each region using the Ibragimov

and Müller (2010) method shows no evidence of the importance of Soft Peg, and only weak

evidence for the importance of ln(M2/GDP), in contrast to the analysis in Maurice Obstfeld

(2010).

An alternative interpretation of the results of the test  is that there is regional het-

erogeneity in the parameter of interest, that is the effect  of, say, financial openness on

central bank reserve holdings differs across the six regions. In this interpretation some of

the observed differences between the ̂’s in Panel A of Table 6 are due to heterogeneous

7The different results of  for the 4 coefficients are not necessarily contradictory: the structure of intra-

region correlation can be such that the standard error estimator, clustered by country, is correct for one

coefficient, but too small for another.
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means  = , rather than just estimation error ̂ ∼ N ( 2). But the homogeneity of 

can only be tested with some knowledge of 2 , so that empirically, one cannot distinguish

between unspecific heterogeneity in the ’s and the presence of intra-regional correlations

that invalidate the standard error estimator ̂2 . In any event, the analysis in Maurice Obst-

feld (2010) implicitly assumes world homogeneity of , and the test  in Panel B of Table

3 provides inference about this parameter allowing for intra-regional spatial correlations.8

5.4 Difference-in-Difference: Bloom et al. (2013)

Bloom, Eifert, Mahajan, McKenzie and Roberts (2013) conducted a field experiment on

randomly selected firms in the textile industry in India to determine the importance of

management practices on productivity. Fourteen treatment plants received extensive man-

agement consulting over several months, while 6 control plants were only subject to an initial

diagnostic consulting phase that lasted about one month.

Let  be a weekly productivity measurement of plant  in week  in the treatment

( = 1) and control group ( = 2), respectively. Consider an arrangement of data such that

the 0 time periods    are pre-treatment for all plants, the 1 time periods  ≥  are

post-treatment for all plants. Then posit the model

 = treat +  +  +  (15)

8As noted in Section 3.3 of IM, if the heterogeneity in means arises due to  =  + , where  is

independent across  with a distribution that be written as a scale mixture of mean zero normals, then 

still provides valid inference about .
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where treat = 1[ ≥  and  = 1] is an indicator for treatment,  is a full set of plant

fixed effects,  is a full set of time fixed effects, and  is a mean zero unobserved error

term that is independent across firms. The parameter of interest is the coefficient .

Now construct the difference in average productivity between post- and pre-treatment

periods for each plant, ̂ = −11
P

≥  − −10
P

 ,  = 1     ,  = 1 2. Note

that in these differences, the plant fixed effect  cancels, and [̂] =  +  with

 = 1[ = 1] and  = −11
P

≥  − −10
P

 . Furthermore, in the difference of the

differences ̂ = ̂1 − ̂2 = −11
P1

=1 ̂1 − −12
P2

=1 ̂2, as well as in the variance estimators

2 = ( − 1)−1
P

=1(̂ − ̂)
2,  = 1 2, also the average time fixed effects  cancel (cf.

the discussion around (13) above).9 Thus, if there are sufficiently many observations in time

and  is weakly dependent, then a central limit theorem yields approximate normality for

−11
P

≥  − −10
P

 , (13) holds and inference based on the t-statistic 
 (11)

with 5 degrees of freedom is justified via Theorem 1.

Bloom et al. (2013) implement the inference suggested here and find significant effects

of the treatment on output, but not on quality defects, inventory and TFP on the 5% level.

See their paper for details.

More generally, if within each cluster  of population , one were to observe several firms

 = 1      with firm specific regressors , one would set ̂ = −11
P

≥ ̂ −
9For this cancellation to occur, it is necessary that the same time periods correspond to pre- and post-

treatment for all observations. As the treatment in Bloom et al. (2013) was staggered in time, this requires

omitting some productivity observations in the middle of their sample.
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−10
P

 ̂, where ̂ are the OLS estimators of the time fixed effects in a regression

of the outcome  on  using data from cluster  of population  only, where the

regression includes both time and firm fixed effects (with the time fixed effect for  = 1, say,

normalized to zero). Since [̂] = treat + , [̂] =  + as above.
10 For the

approximate normality of ̂, one could again resort to time series asymptotics under weak

dependence, or argue that there are sufficiently many independent firms  in each cluster.

Either way, (13) applies, and inference based on the t-test (11) would be asymptotically

justified.

6 Conclusion

As the examples of the last section demonstrate, the approach developed in this paper is

potentially useful in a variety of contexts, and entirely straightforward to implement. A

key regularity assumption is the approximate Gaussianity of estimators from each group,11

although in contrast to previously developed approaches, no additional homogeneity assump-

tions on second moments are required. The approximate Gaussianity follows from a central

limit theorem if each group contains a reasonably large number of sufficiently independent

10If one is willing to assume that firms within a cluster have a common firm fixed effect  =  , then one

could drop the firm fixed effects from the cluster specific regressions, so that now [̂] = treat++ ,

and  again cancels in [̂ ] =  + , so (13) remains applicable.

11As mentioned at the end of Section 3.2, many forms of heavy-tailed distributions do not actually pose

a problem for our approach, but asymmetric distributions generally do.
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observations, or if few observations in each group are already averages over sufficiently (ob-

served or unobserved) independent quantities. The appropriateness of such an assumption

can be hard to assess in practice. At the same time, some assumption seems necessary:

The results of Bahadur and Savage (1956) show that without any constraint on the distrib-

ution, it is impossible to conduct inference about the population mean, and thus a fortiori,

also about differences between population means. Nonparametric alternatives, such as the

Mann-Whitney U test or permutation tests, require that under the null hypothesis, treated

and control sample have identical distributions, and not just identical means, which can also

be quite unappealing in many contexts. We consider the transparency and familiarity of t-

statistic based inference an attractive feature of our proposal, and believe that approximate

Gaussianity of estimators from each group may at least be a reasonable starting point in

many applications.
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Mikosch, Thomas and Cătălin Stărică, “Limit theory for the sample autocorrelations

and extremes of a GARCH(1,1) process,” Annals of Statistics, 2000, 24, 1427—1451.

Müller, Ulrich K., “A Theory of Robust Long-Run Variance Estimation,” Journal of

Econometrics, 2007, 141, 1331—1352.

, “HAC Corrections for Strongly Autocorrelated Time Series,” Journal of Business and

Economic Statistics, 2014, 32, 311—322.

Shambaugh, Alan M. Taylor Maurice Obstfeld Jay C., “Financial Stability, the

Trilemma, and International Reserves,” American Economic Journal: Macroeconomics,

2010, 2, 57—94.

Stock, James H. and Mark W. Watson, “Heteroskedasticity-Robust Standard Errors

for Fixed Effect Panel Data Regression,” Econometrica, 2008, 76, 155—174.

Sun, Yixiao, “Heteroscedasticity and Autocorrelation Robust F Test Using Orthonormal

Series Variance Estimator,” The Econometrics Journal, 2013, 16, 1—26.

, “Let’s fix it: Fixed-b asymptotics versus small-b asymptotics in heteroskedasticity and

autocorrelation robust inference,” Journal of Econometrics, 2014, 178, 659—677.

, Peter C. B. Phillips, and Sainan Jin, “Optimal Bandwidth Selection in

Heteroskedasticity-Autocorrelation Robust Testing,” Econometrica, 2008, 76, 175—794.

36



Webb, Matthew D., “Reworking Wild Bootstrap Based Inference for Clustered Errors,”

QueenŠs Economics Department Working Paper No. 1315, 2014.



Figure 1: Rejection Probabilties of Two-Sample -test and -test when 1 = 2

Notes: Rejection probabilities of nominal 5% level -test (8) and -test (9), with the

alternative for ∆ normalized so that  ∼ N ( 1) throughout, with the value of  reported

on the x-axes. Under variance heterogeneity within sample, the variance of the first 2

observations is 9 times as as large as of the last 2 observations, in both samples. Under

variance heterogeneity across samples the variances in one sample is 9 times as large as the

variances of the other sample.



Figure 2: Rejection Probabilties of Two-Sample -test and -test when 1  2

Notes: See Figure 1.



Table 1: Lower Bounds on Size of Tests in Generic Normal Linear Regression with Few

Clusters and Heterogeneous  0


CGM BCH

min Q1 med Q3 max min Q1 med Q3 max

 = 4

 = 1 0.0 0.0 0.0 0.0 0.0 3.9 8.6 14.0 17.4 100.0

 = 2 3.7 7.2 9.1 12.4 63.6 4.7 8.6 15.3 20.0 100.0

 = 3 6.3 11.2 14.5 20.6 68.8 6.2 11.8 17.5 20.8 100.0

 = 8

 = 1 4.3 4.4 4.5 4.8 4.9 6.6 9.7 11.8 16.7 27.3

 = 2 4.8 9.1 11.1 13.9 33.2 6.3 9.3 11.6 14.9 27.4

 = 3 6.3 10.8 14.0 17.8 35.8 6.0 9.3 11.6 14.7 26.2

 = 12

 = 1 4.5 4.6 4.7 5.0 5.1 7.2 9.8 12.0 15.9 24.2

 = 2 5.3 6.8 8.3 10.2 19.9 6.0 8.4 10.0 12.9 28.2

 = 3 6.3 8.5 9.9 13.0 22.2 6.3 8.5 10.6 12.8 22.2

Notes: Entries are lower bounds on size in percent of nominal 5 percent tests using the

Cameron et al. (2008) (CGM) and Bester et al. (2011) (BCH) methods for inference about a

scalar coefficient with  clusters in a linear regression with  non-cluster specific regressors.

The columns report the minimum, first quartile, median, third quartile and maximum of

the lower bound over 100 draws of { 0
}=1 from an i.i.d. Wishart distribution with 2



degrees of freedom and scale matrix . Based on 10,000 Monte Carlo draws.



Table 2: Lower Bounds on Size of Tests on Dummy Coefficient in Two-Sample Design of

a Normal Linear Regression with Few Clusters and Heterogeneous  0


CGM BCH

min Q1 med Q3 max min Q1 med Q3 max

1 + 2 = 4

1 = 2 5.1 11.0 13.1 16.2 32.9 18.3 22.6 35.6 100.0 100.0

1 + 2 = 8

1 = 2 19.6 38.9 42.3 46.1 100.0 20.9 28.9 32.0 100.0 100.0

1 = 3 10.8 17.0 20.3 25.9 47.8 11.7 21.7 27.5 32.4 100.0

1 = 4 7.5 13.0 15.8 19.4 38.9 13.4 22.8 27.3 30.6 100.0

1 + 2 = 12

1 = 2 36.1 44.2 46.0 47.8 100.0 21.0 32.8 34.5 100.0 100.0

1 = 3 16.9 20.6 22.6 28.5 100.0 11.3 19.3 24.2 31.8 100.0

1 = 4 10.2 13.1 16.2 21.0 41.3 10.1 16.6 22.2 26.8 100.0

1 = 5 8.2 10.8 12.3 16.1 100.0 11.2 16.4 21.7 25.2 100.0

1 = 6 7.7 12.1 14.9 18.4 36.1 13.4 20.2 24.1 27.8 100.0

Notes: Entries are lower bounds on size in percent of nominal 5 percent tests using

the Cameron et al. (2008) (CGM) and Bester et al. (2011) (BCH) methods for inference

about the difference between a scalar regression coefficient between two populations, with 1

clusters from the first population and 2 clusters from the second population. The columns

report the minimum, first quartile, median, third quartile and maximum of the lower bound



over 100 draws of  0
 that are proportional to i.i.d. Chi-squared random variables with 2

degrees of freedom. Based on 10,000 Monte Carlo draws.



Table 3: Small Sample Rejection Probabilities of Level of Clustering Test 

Null hypothesis Alternative hypothesis

homogenous  heterogeneous  homogenous  heterogeneous 

\ 5 10 20 5 10 20 5 10 20 5 10 20

Normal innovations  ∼ N (0 1)

4 7.2 6.6 5.2 8.3 7.2 5.5 45.7 47.1 46.2 42.8 42.7 41.6

8 6.0 5.4 5.0 7.0 5.9 5.5 65.7 69.1 69.7 58.6 61.8 60.8

16 5.1 5.4 5.0 5.9 5.6 5.1 87.2 89.7 90.0 79.6 82.7 83.1

Chi-squared innovations  ∼ 21 − 1

4 3.9 3.1 3.1 7.9 6.0 5.0 43.5 46.4 45.1 45.0 44.3 42.3

8 2.8 2.4 3.0 4.3 3.1 3.5 58.9 63.9 67.3 57.1 58.4 59.7

16 1.7 1.8 2.5 2.4 2.2 2.5 79.0 86.2 88.9 72.9 78.7 81.5

Notes: Rejection probabilities in percent of nominal 5% level test  . The data generating

process is  =  + ,  = 1 · · ·    = 1     , where  =  + , 0 = 0, and

 is i.i.d. across  and . Standard errors ̂ for ̂ = −1
P

=1  are computed via the

usual OLS formula ̂2 = ( ( − 1))−1P

=1( − ̂)
2, that is “fine clustering” treats all

observations as independent. The autocorrelation  is zero under the null hypothesis, and

 = 05 under the alternative. Under homogeneity,  is a positive constant, and under

heterogeneity, half of the groups  = 1     2 have  twice as large as the remaining

groups,  = 22+. Based on 10,000 replications.
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Table 5: Empirical Results in Dal Bó and Fréchette (2011)

Panel A: Probit coefficients ̂ and estimated standard errors ̂ (clustered by individ-

ual) in session  of treatment 

 () ̂1 ̂1 ̂2 ̂2 ̂3 ̂3

1 (1
2
 32) -1.538 0.163 -0.963 0.183 -1.698 0.216

2 (1
2
 40) -1.052 0.147 -0.813 0.146 -0.878 0.148

3 (1
2
 48) -0.262 0.185 -0.261 0.221 -0.684 0.179

4 (3
4
 32) -0.833 0.142 -0.698 0.167 -0.974 0.198

5 (3
4
 40) 0.176 0.153 0.905 0.099 -0.200 0.205

6 (3
4
 48) 0.458 0.118 1.037 0.132 0.674 0.113

Panel B: Significance Tests

0 is equal cooperation under (1 1) and (2 2)

(1 1) (1
2
 32) (1

2
 40) (1

2
 32) (1

2
 40) (1

2
 48) (3

4
 32) (3

4
 40)

(2 2) (1
2
 40) (1

2
 48) (3

4
 32) (3

4
 40) (3

4
 48) (3

4
 40) (3

4
 48)

p-value of Test of 0 : 1 = 2

Dal Bó and Fréchette 86% 00% 39% 00% 00% 00% 115%

2 with df = 2  10% 84%  10% 68% 37% 78%  10%

p-value Test of validity of clustering at level of individuals

 2.5% 28.5% 3.6% 0.0% 3.7% 0.0% 0.0%

Notes: For all considered tests, rejections are in the direction of (1 1) yielding a lower

level of cooperation than (2 2). The row labelled “Dal Bó and Fréchette” reports the



original results of Dal Bó and Fréchette (2011) based on probit regressions, clustered by

session. The row “2 with df=2” implements the two-sample t-test (11) using a critical

value with two degrees of freedom, based on the probit coefficient estimates ̂ of panel A.



Table 6: Empirical Results in Obstfeld, Shambaugh and Taylor (2010)

Panel A: Estimators ̂ and estimated standard errors ̂ (clustered by country)

fin. openness Peg Soft Peg ln(M2/GDP)

Region ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂

Asia/Pacific 1.110 0.221 0.035 0.113 -0.060 0.119 0.627 0.164

W Europe/N America 0.805 0.430 0.089 0.179 0.069 0.147 1.041 0.319

Eastern Europe 0.423 0.353 0.317 0.168 0.281 0.111 0.633 0.144

Africa 0.508 0.433 0.413 0.151 0.318 0.101 -0.019 0.179

Middle East 1.665 0.438 -0.236 0.193 -0.056 0.153 0.511 0.152

South America 0.770 0.309 -0.279 0.165 -0.067 0.146 -0.201 0.196

Panel B: Significance Tests

variable fin. openness Peg Soft Peg ln(M2/GDP)

Tests of 0 is that coefficient of variable is zero

Obstfeld et al. 0.1% 24.6% 0.8% 0.1%

 with df = 5 0.51% 10% 10% 7.0%

Tests of validity of clustering at level of countries

 19.3% 1.4% 10.8% 0.1%

Notes: For all considered tests, rejections are in the direction of a positive coefficient.

The row labelled “Obstfeld et al.” reports the original results of Obstfeld et al. (2010) based

on a single linear regression, clustered by countries. The row “ with df=5” implements



the Ibragimov and Müller (2010) t-test using the 6 coefficient estimates ̂ of panel A.
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