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Abstract

Markov regime switching models are widely considered in economics and �nance. Although

there have been persistent interests (see e.g., Hansen, 1992, Garcia, 1998, and Cho and White,

2007), the asymptotic distributions of likelihood ratio based tests have remained unknown. This

paper considers such tests and establishes their asymptotic distributions in the context of non-

linear models allowing for multiple switching parameters. The analysis simultaneously addresses

three di¢ culties: (i) some nuisance parameters are unidenti�ed under the null hypothesis, (ii)

the null hypothesis yields a local optimum, and (iii) conditional regime probabilities follow

stochastic processes that can only be represented recursively. Addressing these issues permits

substantial power gains in empirically relevant situations. Besides obtaining the tests�asymp-

totic distributions, this paper also obtains four sets of results that can be of independent interest:

(1) a characterization of conditional regime probabilities and their high order derivatives with

respect to the model�s parameters, (2) a high order approximation to the log likelihood ratio

permitting multiple switching parameters, (3) a re�nement to the asymptotic distribution, and

(4) a uni�ed algorithm for simulating the critical values. For models that are linear under

the null hypothesis, the elements needed for the algorithm can all be computed analytically.

The above results also shed light on why some bootstrap procedures can be inconsistent and

why standard information criteria, such as the Bayesian information criterion (BIC), can be

sensitive to the hypothesis and the model�s structure. When applied to the US quarterly real

GDP growth rates, the methods suggest fairly strong evidence favoring the regime switching

speci�cation, which holds consistently over a range of sample periods.
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1 Introduction

Markov regime switching models are widely considered in economics and �nance. Hamilton (1989)

is a seminal contribution, which provides not only a framework for describing economic recessions,

but also a general algorithm for �ltering, smoothing and maximum likelihood estimation while

building on the work of Goldfeld and Quandt (1973) and Cosslett and Lee (1985). Surveys of this

voluminous literature can be found in Hamilton (2008, 2014).

Three approaches have been considered for detecting regime switching. The �rst approach

translates this issue into testing for parameter homogeneity against heterogeneity. Neyman and

Scott (1966) studied the C(�) test. Chesher (1984) derived a score test and showed that it is

closely related to the information matrix test of White (1982). Lancaster (1984) and Davidson

and MacKinnon (1991) are related contributions. Carrasco, Hu and Ploberger (2014) have further

developed this approach by allowing for an alternative hypothesis where the heterogeneity takes the

form of a weakly dependent process. Their test is asymptotically locally optimal in the sense that

there exists no test that is more powerful for a speci�c alternative characterized in their paper. The

above tests have two common features. First, they only require estimating the model under the null

hypothesis. Second, they are designed for detecting general random coe¢ cients, not particularly

Markov regime switching. As a result, the tests can have power against a broad class of alternatives,

meanwhile the power can be lower than what is achievable if the parameters indeed follow a �nite

state Markov chain.

The second approach, due to Hamilton (1996), is to conduct generic tests of the hypothesis that

a K-regime model (e.g., K = 1) adequately describes the data. The insight is that if a K-regime

speci�cation is accurate, then the score function should have mean zero and form a martingale dif-

ference sequence. Otherwise, the model should be enriched to allow for additional features, in some

situations by introducing an additional regime. Hamilton (1996) demonstrated how to implement

such tests as a by-product of calculating the smoothed probability that a given observation is from

a particular regime. This makes the tests simple and widely applicable. Meanwhile, it remains im-

portant and useful to have testing procedures that focus speci�cally on detecting Markov switching

alternatives.

The third approach proceeds under the (quasi) likelihood ratio principle. The (quasi) likelihood

functions are constructed assuming a single regime under the null and two regimes under the

alternative hypothesis. The analysis faces three challenges. (i) Some nuisance parameters are

unidenti�ed under the null hypothesis. As a result, the log likelihood ratio is locally non-quadratic,
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causing the Chi-square approximation to its distribution to break down. This gives rise to the Davies

(1977) problem. (ii) The null hypothesis yields a local optimum (c.f. Hamilton, 1990), making the

score function identically zero when evaluated at the null parameter estimates. Consequently, a

second order Taylor approximation to the likelihood ratio is insu¢ cient for analyzing its asymptotic

properties. (iii) The conditional regime probability, i.e., the probability of being in a particular

regime at time t given the information up to the time t�1, follows a stochastic process that can only
be represented recursively. The �rst two di¢ culties are also present when testing for mixtures. It

is the simultaneous occurrence of all three di¢ culties that plagues the study of the likelihood ratio

in the current context. For example, when analyzing high order expansions of the likelihood ratio,

it is necessary to study high order derivatives of the conditional regime probability with respect

to the model�s parameters. So far, the statistical properties of the latter have remained elusive.

Consequently, the asymptotic distribution of the log likelihood ratio has also remained unknown.

Meanwhile, several important progresses have been made by Hansen (1992), Garcia (1998),

Cho and White (2007), and Carter and Steigerwald (2012). Speci�cally, Hansen (1992) clearly

documented why the di¢ culties (i) and (ii) cause the conventional approximation to the likelihood

ratio to break down. Further, he treated the likelihood function as a stochastic process indexed by

the transition probabilities (i.e., the probabilities of remaining in the �rst regime p and remaining

in the second regime q) and the switching parameters, and derived a bound for its asymptotic

distribution. His result provides a platform for conducting conservative inference. Garcia (1998)

suggested an approximation to the log likelihood ratio that would follow if the score had a positive

variance at the null estimates. Results in the current paper will show that this distribution is in

general di¤erent from the actual limiting distribution. Recently, Cho and White (2007) made a

signi�cant progress. They suggested a quasi likelihood ratio (QLR) test against a two-component

mixture alternative (i.e., a model where the current regime arrives independently of its past values).

There, the di¢ culty (iii) is avoided because the conditional regime probability is reduced to a

constant, which can further be treated as an additional unknown parameter. Carter and Steigerwald

(2012) further discussed a consistency issue related to QLR test. The current paper makes use of

several important techniques in Cho and White (2007). At the same time, it goes beyond their

framework to confront directly Markov switching alternatives. As will be seen, the power gains

from doing so can be quite substantial.

Speci�cally, this paper considers a family of likelihood ratio based tests and establishes their

asymptotic distributions in the context of nonlinear models allowing for multiple switching para-
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meters. The framework encompasses the important special cases of testing for regime switching in

autoregressive models and in autoregressive distributed lags models. Throughout the analysis, the

model has two regimes under the alternative hypothesis. Some parameters can remain constant

across the two regimes. The analysis is structured in �ve steps:

1. We characterize the dynamics of the conditional regime probability (i.e., the probability of

being in a particular regime at time t given the information up to the time t � 1) and its
high order derivatives with respect to the model�s parameters. We show that, when evaluated

at the null parameter estimates, the former reduces to a constant while the latter can all

be represented as linear �rst order di¤erence equations with the lagged coe¢ cients equal

to p + q � 1. Because 0 < p; q < 1, these equations are all stable and amenable to the

applications of uniform laws of large numbers and functional central limit theorems. This

novel characterization is a critical step that makes the subsequent analysis feasible.

2. We �x p and q and derive a fourth order Taylor approximation to the likelihood ratio. This

step builds on the analysis in Cho and White (2007), but accounts for the e¤ect of the

time variation in the conditional regime probability. The results are informative about why

substantial power gains relative to the QLR test are possible when the data are not generated

by simple mixtures.

3. We view the likelihood ratio as an empirical process indexed by p and q and derive its

limiting distribution. The values of p and q are required to be strictly between 0 and 1

satisfying p+ q � 1+ � with � being some arbitrarily small constant. These requirements are
compatible with applications in macroeconomics and �nance; see the discussion in Section 3.

The empirical process perspective undertaken here follows a rich array of studies, including

Hansen (1992), Garcia (1998), Cho and White (2007), and Carrasco, Hu and Ploberger (2014).

4. While the above limiting distributions are adequate for a broad class of models, they can lead

to over-rejections when a further singularity (the source of which is speci�ed later) is present.

To overcome this problem, we analyze a sixth order expansion of the likelihood ratio along

the line p+ q = 1 and an eighth order expansion at p = q = 1=2. The leading terms are then

incorporated into the asymptotic distribution to safe guard against their e¤ects. This leads to

a re�ned distribution that delivers reliable approximations throughout our experimentations.

This re�nement is valid whether or not this singularity is truly present.
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5. We provide a uni�ed algorithm for simulating the re�ned asymptotic distribution. For models

that are linear under the null hypothesis, the elements needed for this algorithm can all be

computed analytically. This permits developing a computer program, which mainly requires

the researcher writing down the model under the null hypothesis, specifying which parameters

are allowed to switch, and providing the permissible values for the two transition probabilities.

The asymptotic distribution shows some uncommon features. First, nuisance parameters,

though constrained to be constant across the regimes, can a¤ect the limiting distribution. Sec-

ond, properties of the regressors (i.e., whether they are strictly or weakly exogenous) also a¤ect the

distribution. Third, the distribution depends on which parameter (i.e., the intercept, the slope or

the residual variance) is allowed to switch. These features imply that some bootstrap procedures

can be inconsistent and that standard information criteria, such as BIC, can be sensitive to the

hypothesis and the model�s structure. The above implications are further discussed in Section 6.

We conduct simulations using a data generating process (DGP) considered in Cho and White

(2007). The results show that the power di¤erence can be large when the regimes are persistent,

a situation that is common in practice. We also apply the testing procedure to the US quarterly

real GDP growth rates, over the period 1960:I-2014:IV and a range of subsamples. The results

consistently favor the regime switching speci�cation. In addition, the smoothed regime probabilities

closely mirror NBER�s recession dating. To our knowledge, this is the �rst time such consistent

evidence for regime switching in mean output growth is documented through hypothesis testing.

From a methodological perspective, this paper contributes to the literature that studies hy-

pothesis testing when some regularity conditions fail to hold. Besides the works mentioned above,

closely related studies include the following. Davies (1987), King and Shively (1993), Andrews and

Ploberger (1994, 1995), and Hansen (1996) considered tests when a nuisance parameter is unidenti-

�ed under the null hypothesis. Andrews (2001) studied tests when, in addition to the above feature,

some parameter lies on the boundary of the maintained hypothesis. Hartigan (1985), Ghosh and Sen

(1985), Lindsay (1995), Liu and Shao (2003), Chen and Li (2009), and Gu, Koenker and Volgushev

(2013) tackled the issues of zero score and/or unidenti�ed nuisance parameters in the context of

mixture models. Chen, Ponomareva and Tamer (2014) considered uniform inference on the mixing

probability in mixture models when nuisance parameters are present. Rotnitzky, Cox, Bottai and

Robins (2000) developed a theory for deriving the asymptotic distribution of the likelihood ratio

statistic when the information matrix has rank one less than full; also see the discussions in their

paper (page 244) for other studies on the same issue in various contexts. Dovonon and Renault
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(2013) studied distributions of tests for moment restrictions when the associated Jacobian matrix

is degenerate at the true parameter value. The current work is the �rst that simultaneously tackles

the di¢ culties (i) to (iii) in the hypothesis testing literature. We conjecture that the techniques

developed can have implications for hypothesis testing in other related contexts that involve models

with hidden Markov structures.

The paper is structured as follows. Section 2 presents the model and the hypotheses. Section

3 introduces a family of test statistics. Section 4 studies the asymptotic properties of the log

likelihood ratio for prespeci�ed p and q. Section 5 presents four sets of results. It establishes the

weak convergence of the second order derivative of the concentrated log likelihood. It provides

the limiting distribution of the test statistic. It introduces a �nite sample re�nement. Finally, it

outlines an algorithm for obtaining the relevant critical values. Section 6 discusses some implications

of the theory for bootstrapping and information criteria. Section 7 examines the test�s �nite sample

properties. Section 8 considers an application to the US real GDP growth rates. Section 9 concludes.

All proofs are in the appendix.

The following notation is used. jjxjj is the Euclidean norm of a vector x. jjXjj is the vector
induced norm of a matrix X. x
k and X
k denote the k-fold Kronecker product of x and X,

respectively. The expression vec(A) stands for the vectorization of a k dimensional array A. For

example, for a three dimensional array A with n elements along each dimension, vec(A) returns

a n3-vector whose (i + (j � 1)n + (k � 1)n2)-th element equals A(i; j; k). 1f�g is the indicator
function. For a scalar valued function f(�) of � 2 Rp, r�f (�0) denotes a p-by-1 vector of partial
derivatives evaluated at �0, r�0f(�0) equals the transpose ofr�f (�0), andr�jf(�0) denotes its j-th
element. In addition, r�j1r�j2 � � �r�jk f(�0) denotes the k-th order partial derivative of f(�) taken
sequentially with respect to the j1; j2; :::; jk-th element of � evaluated at �0. The symbols �)�,
�!d�and �!p�denote weak convergence under the Skorohod topology, convergence in distribution

and in probability, and Op(�) and op(�) is the usual notation for the orders of stochastic magnitude.

2 Model and hypotheses

We sequentially discuss the following issues: the model, the log likelihood functions under the null

(i.e., one regime) and the alternative (i.e., two regimes) hypothesis, and some assumptions related

to these two aspects.

The model is as follows. Let f(yt; x0t)g be a sequence of random vectors with yt being a scalar

and xt a �nite dimensional vector. Let st be an unobserved binary variable, whose value determines
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the regime at time t. De�ne the information set at time t� 1 as


t�1 = �-�eld
�
:::; x0t�1; yt�2; x

0
t; yt�1

	
: (1)

Let f(�j
t�1;�; �) denote the conditional density of yt, satisfying

ytj(
t�1; st) v
�
f(�j
t�1;�; �1); if st = 1;
f(�j
t�1;�; �2); if st = 2;

(t = 1; ::::; T ): (2)

This speci�cation allows the vector � to switch between �1 and �2, while restricting the vector � to

remain constant across the regimes. Henceforth, we abbreviate the two densities on the right hand

side of (2) as ft(�; �1) and ft(�; �2), respectively.

The regimes are Markovian, i.e., p(st = 1j
t�1; st�1 = 1; st�2; :::) = p(st = 1jst�1 = 1) = p and
p(st = 2j
t�1; st�1 = 2; st�2; :::) = p(st = 2jst�1 = 2) = q. The resulting stationary (or invariant)
probability for st = 1 is given by

�� � ��(p; q) =
1� q

2� p� q : (3)

Evaluated at 0 < p; q < 1, the log likelihood function associated with (2) is such that

LA(p; q; �; �1; �2) (4)

=

TX
t=1

log
n
ft(�; �1)�tjt�1(p; q; �; �1; �2) + ft(�; �2)(1� �tjt�1(p; q; �; �1; �2))

o
;

where �tjt�1(�) denotes the probability of st = 1 given 
t�1, i.e.,

�tjt�1(p; q; �; �1; �2) = p(st = 1j
t�1; p; q; �; �1; �2) (t = 1; :::; T ); (5)

which satis�es the following recursive relationship

�tjt(p; q; �; �1; �2) =
ft (�; �1) �tjt�1(p; q; �; �1; �2)

ft (�; �1) �tjt�1(p; q; �; �1; �2) + ft (�; �2) (1� �tjt�1(p; q; �; �1; �2))
; (6)

�t+1jt(p; q; �; �1; �2) = p�tjt(p; q; �; �1; �2) + (1� q)(1� �tjt(p; q; �; �1; �2)): (7)

Throughout the paper, we set the initial value �1j0 = ��. As shown later, using a di¤erent initial

value does not a¤ect the asymptotic results. When �1 = �2 = �, the log likelihood reduces to

LN (�; �) =
TX
t=1

log ft(�; �): (8)

This paper studies tests based on (8) and (4) for the single regime speci�cation against the two

regimes speci�cation given in (2). To proceed, we impose the following restrictions on the DGP

and the parameter space. Let n� and n� denote the dimensions of � and �.
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Assumption 1 (i) The random vector (x0t; yt) is strict stationary, ergodic and �-mixing with the

mixing coe¢ cient �� satisfying �� � c�� for some c > 0 and � 2 [0; 1). (ii) Under the null

hypothesis, yt is generated by f(�j
t�1;��; ��), where �� and �� are interior points of � � Rn� and
� � Rn� with � and � being compact.

Part (i) is the same as Assumption A.1(i) in Cho and White (2007). As discussed there, the

�-mixing condition is commonly used when analyzing Markov processes. It allows xt to be a¤ected

by regime switching under the null hypothesis. Part (ii) speci�es the true parameter values. The

interior point requirement ensures that the asymptotic expansions considered later are well de�ned.

Assumption 2 Under the null hypothesis: (i) (��; ��) uniquely solves max(�;�)2���E[LN (�; �)];
(ii) for any 0 < p; q < 1, (��; ��; ��) uniquely solves max(�;�1;�2)2�����ELA(p; q; �; �1; �2).

Part (i) implies that (�; �) is globally identi�ed at (��; ��) under the null hypothesis. Part (ii)

implies that there does not exist a two-regime speci�cation (i.e., with �1 6= �2) that is observationally
equivalent to the single-regime speci�cation (i.e., with �1 = �2 = ��). The next assumption relates

the identi�cation properties in Assumption 2 to some asymptotic properties of the estimators.

Assumption 3 Under the null hypothesis, we have: (i) T�1[LN (�; �)�ELN (�; �)] = op (1) holds
uniformly over (�; �) 2 ��� with T�1

PT
t=1(r(�0;�0)0 log ft(�; �)(r(�0;�0) log ft(�; �)) being positive

de�nite in an open neighborhood of (��; ��) for su¢ ciently large T; (ii) for any 0 < p; q < 1,

T�1[LA(p; q; �; �1; �2)� ELA(p; q; �; �1; �2)] = op (1) holds uniformly over (�; �1; �2) 2 �����.

The above assumption states that (8) and (4) both satisfy uniform laws of large numbers. Along

with Assumption 2, it implies that, under the null hypothesis, the maximizers of (8) and (4) for

0 < p; q < 1 converge in probability to (��; ��) and (��; ��; ��) respectively. This assumption allows

(4) to have multiple local maximizers. The latter feature will be accounted for when analyzing the

likelihood expansions.

Assumptions 1 to 3 are similar to those used in Cho and White (2007), with two important

di¤erences. First, the likelihood (4) corresponds to a Markov switching model, not a mixture model.

Second, multiple parameters are allowed to be a¤ected by the regime switching.

Using the above notation, the null and alternative hypotheses can be more formally stated as:

H0 : �1 = �2 = �� for some unknown ��;

H1 : (�1; �2) = (�
�
1; �

�
2) for some unknown �

�
1 6= ��2 and (p; q) 2 (0; 1)� (0; 1):

7



Technically, as discussed in Cho and White (2007), the null hypothesis can also be formulated as:

H 0
0 : p = 1 and �1 = �� or H 00

0 : q = 1 and �2 = ��. In H 0
0, because the model remains in the

�rst regime with probability 1, any statement about the second regime becomes irrelevant. The

reversed holds for H 00
0 .

Below, we introduce a model that will be used throughout the paper to illustrate the main

components of the theory.

An illustrative model. An important application of regime switching is to linear models with

Gaussian errors:

yt = z
0
t�+ w

0
t
11fst=1g + w

0
t
21fst=2g + ut; (9)

where �; 
1 and 
2 are unknown �nite dimensional parameter vectors and ut are i.i.d. Normally

distributed whose unknown variance can also potentially switch. The variables zt and wt can

include lagged values of yt. Therefore, the speci�cation encompasses �nite order autoregressive

models and autoregressive distributed lags models as special cases. In relation to (1) and (2),

we have 
t�1 = �-�eld
�
:::; z0t�1; w

0
t�1; yt�2; z

0
t; w

0
t; yt�1

	
and x0t = (z0t; w

0
t). Three situations can

arise depending on which parameters are allowed to be a¤ected by regime switching: (a) Only

the variance of ut is a¤ected. Let �21 and �
2
2 denote its variances under the two regimes. Then, in

relation to (2), we have �1 = �21; �2 = �
2
2 and �

0 = (�0; 
0) with 
 = 
1 = 
2. (b) Only the regression

coe¢ cients are a¤ected. Let �2 denote the variance of ut. Then, we have �1 = 
1, �2 = 
2 and

�0 = (�0; �2). (c) Both components are a¤ected. We have �01 = (

0
1; �

2
1), �

0
2 = (


0
2; �

2
2) and � = �.

The results in this paper will encompass all three situations. In the most general situation (c), the

densities corresponding to (2) are given by24 ft(�; �1)
ft(�; �2)

35 =
264 1p

2��21
exp

n
� (yt�z0t��w0t
1)2

2�21

o
1p
2��22

exp
n
� (yt�z0t��w0t
2)2

2�22

o
375 :

Note that the normality assumption in this model can be replaced by other distributional assump-

tions, provided that ft(�; �1) and ft(�; �2) are replaced by the appropriate densities.

We now illustrate Assumptions 1-3 using this model. Regarding Assumption 1, because of the

linearity, the �-mixing requirement of (x0t; yt) reduces to that of xt. The latter is satis�ed if xt

follows a stationary VARMA(P,Q) process
PP
j=0Bjxt�j =

PQ
j=0Aj"t�j with "t being mean zero

i.i.d. random vectors whose density is absolutely continuous with respect to Lebesgue measure on

Rdim("t); see Mokkadem (1988). Other processes that are �-mixing with a geometric rate of decay,
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as reviewed in Chen (2013), include those generated by threshold autoregressive models, functional

coe¢ cient autoregressive models, and GARCH and stochastic volatilities models. Regarding As-

sumption 2, part (i) is satis�ed if Extx0t has full rank. Part (b) requires that, if the data are

generated by �1 6= �2 with 0 < p; q < 1, the conditional distribution of yt will exhibit features that
are not captured by the single regime linear speci�cation. That is, the resulting Kullback-Leibler

divergence will be positive. Finally, in Assumption 3, the rank requirement essentially requires

T�1
PT
t=1 xtx

0
t to be positive de�nite in large samples. The rest of the assumption requires uniform

laws of large numbers to hold. Because �tjt�1(p; q; �; �1; �2) are bounded between 0 and 1, the latter

hold under Assumption 1 and mild conditions on the moments of yt and xt. �

3 The test statistic

This section studies three issues. First, it considers a family of test statistics based on the log

likelihood ratio. Second, it previews the di¢ culties involved in deriving the limiting distribution

and outlines the strategies for addressing them. Third, it examines empirically relevant values for

the transition probabilities p and q. The latter is important not only for making the tests practically

relevant, but also for the technical analysis needed later in the paper.

Let e� and e� denote the maximizer of the null log likelihood:
(e�;e�) = argmax

�;�
LN (�; �): (10)

The log likelihood ratio evaluated at some 0 < p; q < 1 then equals

LR(p; q) = 2

�
max
�;�1;�2

LA(p; q; �; �1; �2)� LN (e�;e�)� . (11)

This leads to the following test statistic:

SupLR(��) = Sup
(p;q)2��

LR (p; q) ;

where �� is a compact set speci�ed below and the supremum is taken to obtain the strongest

evidence against the null hypothesis. Operators other than the supremum can also be used. For

example, following Andrews and Ploberger (1994) and Carrasco, Hu and Ploberger (2014), one can

consider ExpLR(��) =
R
��
LR (p; q) dJ(p; q), where J(p; q) is a function that assigns weights on p

and q. Such considerations lead to a family of test statistics based on LR(p; q). This paper focuses

on SupLR(��); the results extend immediately to ExpLR(��).
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The test statistic SupLR(��) is not new. For example, it has been studied by Hansen (1992)

and Garcia (1998). The contribution of this paper is in obtaining an adequate approximation to

its �nite distribution and in providing an algorithm for simulating it. We now discuss nonstandard

features associated with this statistic and highlight our strategy for tackling them.

First, the time varying regime probability �tjt�1(p; q; �; �1; �2) present challenges. On the one

hand, it can only be expressed recursively; see (6) and (7). On the other hand, when obtaining

asymptotic expansions, it is essential to study its high order derivatives with respect to �; �1 and �2.

So far, its e¤ect on the log likelihood ratio has remained unknown, even for the simplest situation

where p and q are prespeci�ed. In an important contribution, Cho and White (2007, p. 1675)

suggested to avoid this di¢ culty by replacing the likelihood (4) with that for a mixture (i.e., a

model where the regime arrives independently of the past with �tjt�1(p; q; �; �1; �2) = � throughout

the sample):
PT
t=1 log f�ft(�; �1) + (1� �)ft(�; �2)g. However, this quasi log likelihood function

behaves di¤erently from the actual likelihood when p+q�1 is di¤erent from zero. This can translate
into large power di¤erences as seen later in this paper. This is troubling because in economic and

�nancial applications the regimes are typically substantially serially dependent. In this paper, we

make progresses by observing that �tjt�1(p; q; �; �1; �2) and its derivatives can all be characterized

as �rst order di¤erence equations, whose properties further simplify drastically once we evaluate

them at (e�;e�). This is a critical step that makes the subsequent analysis feasible.
Second, the log likelihood ratio has three nonstandard features as in mixture models: (i) The

values of p and q are unidenti�ed under the null hypothesis. Consequently, there are in�nite

directions to approach any one distribution in the null hypothesis (i.e., the score space is in�nite

dimensional). This complicates matters because a key step in establishing the asymptotic property

of the likelihood ratio lies in determining what happens to the score function as we approach the null

hypothesis. To address this, we treat the log likelihood ratio as an empirical process indexed by p

and q, such that once they are �xed, the score space becomes �nite dimensional. Such an empirical

process perspective follows from a rich array of studies, with the most closely related being Hansen

(1992), Garcia (1998), Cho and White (2007), and Carrasco, Hu and Ploberger (2014). (ii) The

score of (4) is identically zero when evaluated at the null parameter estimates. Consequently, a

second order Taylor expansion is insu¢ cient for analyzing the likelihood ratio. To address this, we

obtain likelihood expansions of the fourth order, and in some speci�cations, of the eighth order. The

obstacles for deriving such expansions are substantial, especially given that we allow for multiple

switching parameters. (iii) The values p = 1 and q = 1 fall on the boundary of parameter space.
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Cho and White (2007) addressed this issue by considering the surfaces speci�ed by H0;H 0
0 and H

00
0

and then combined the results to obtain the null limiting distribution. Here, such an approach is

no longer feasible because of the additional challenge introduced by �tjt�1(p; q; �; �1; �2). We pursue

a di¤erent route. That is, when de�ning the test statistic, we restrict the supports of p and q to

be closed subsets of (0; 1). This approach has also been used when testing for structural changes

(e.g., Hawkins, 1987, Andrews, 1993, Andrews and Ploberger, 1994, and Bai and Perron, 1998) and

threshold e¤ects (e.g., Hansen, 1996). It is also used in Hansen (1992) and Garcia (1998).

We now examine empirically relevant values for the transition probabilities p and q. Hamilton

(2008, the �rst paragraph in p.1) reviewed 12 articles that applied regime switching models in a

wide range of contexts. Among them, 10 articles considered two-regime speci�cations with constant

transition probabilities. These studies are related to: exchange rates (Jeanne and Masson, 2000),

output growth (Hamilton, 1989 and Chauvet and Hamilton, 2006), interest rates (Hamilton, 1988,

2005, Ang and Bekaert, 2002b), debt-output ratio (Davig, 2004), bond prices (Dai, Singleton and

Yang, 2007), equity returns (Ang and Bekaert, 2002a) and consumption and dividend processes

(Garcia, Luger and Renault, 2003). Eighteen sets of estimates are reported. The values of the

transition probabilities are between 0:855 and 0:998 for the more persistent regime and 0:740 and

0:997 for the other. These estimates are representative of applications in economics and �nance

and they strongly suggest two features. First, none of the values correspond to mixtures. That is,

the values of p+ q are all substantially above 1.0. Second, at least one regime is fairly persistent.

That is, the value of p (and q) can be fairly close to 1:0.

Motivated by the above observations, we suggest to specify �� as follows

�� = f(p; q) : p+ q � 1 + � and � � p; q � 1� � with � > 0g : (12)

This set can be generalized to allow for di¤erent trimming proportions (e.g., replacing p+ q � 1+ �
and � � p; q � 1� � with p+ q � 1 + �1 and �2 � p; q � 1� �3 with �1; �2; �3 > 0). The set can also
be narrowed if additional information about p and q is available. For example, if their values are

both expected to be higher than 0:5, then we can consider

f(p; q) : 0:5 + � � p; q � 1� � with � > 0g : (13)

The speci�cation (13) is in fact consistent with all the 10 studies mentioned in the previous para-

graph. In this paper, we focus on (12); the results continue to hold for the latter two speci�cations,

provided that the set �� in the limiting distribution is changed accordingly.
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As will be seen in the next section, for certain models and hypotheses, the asymptotic distrib-

utions of LR (p; q) at p+ q = 1 and p+ q > 1 can be di¤erent. This arises when

r�i1r�i2ft(e�;e�) = �0i1i2r(�0;�01)0ft(e�;e�) (14)

holds for some i1; i2 2 f1; :::; n�+n�g, where �i1i2 is a known vector of constants. Because p+q = 1
falls out of the set (12), such a change in the distribution does not interfere with the �rst order

asymptotic approximation to the likelihood ratio. However, the issue of approximation adequacy

when � is small will arise and we shall account for it using a high order re�nement as follows. First,

we derive an asymptotic approximation to the likelihood ratio that is valid over (12) whether or

not (14) holds. Then, we study the adequacy of this approximation when (14) holds. The analysis

will show that the approximation becomes less adequate when p+ q is close to 1. Next, we derive

an higher order expansion of the likelihood ratio under p + q = 1. Finally, the additional terms

in this expansion are incorporated into the original asymptotic distribution to obtain a re�ned

approximation. Note that whether or not (14) holds, as well as the values of �i1i2 , will be known

once the model and the hypotheses are speci�ed.

4 The log likelihood ratio under prespeci�ed p and q

The conditional regime probability �t+1jt(p; q; �; �1; �2) represents the key di¤erence between Markov

switching and mixture models. We therefore begin by studying this quantity as well as its deriva-

tives with respect to �; �1 and �2. The results will further enable us to develop expansions of the

concentrated log likelihood under the null hypothesis. The results reported in this section all hold

uniformly over (p; q) 2 [�; 1� �]� [�; 1� �] with � being an arbitrary constant satisfying 0 < � < 1=2.

4.1 The conditional regime probability

We �rst make the following two observations. (a) The expressions (6) and (7) can be combined to

represent �t+1jt(p; q; �; �1; �2) recursively as (t = 1; 2; :::):

�t+1jt(p; q; �; �1; �2) (15)

= p+ (p+ q � 1)
ft(�; �2)(�tjt�1(p; q; �; �1; �2)� 1)

ft(�; �1)�tjt�1(p; q; �; �1; �2) + ft(�; �2)(1� �tjt�1(p; q; �; �1; �2))
:

This is a �rst order di¤erence equation that relates �t+1jt(p; q; �; �1; �2) to �tjt�1(p; q; �; �1; �2).

Immediately, this relationship implies that the derivatives of �t+1jt(p; q; �; �1; �2) with respect to

�; �1; �2 must also follow �rst order di¤erence equations. (b) Although these di¤erence equations
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are nonlinear when evaluated at general values of �1 and �2, they simplify substantially once we

let �1 = �2. Because the asymptotic expansions considered later are around the null parameter

estimates, analyzing the latter case will be su¢ cient.

The next lemma contains the details on �t+1jt(p; q; �; �1; �2) and its derivatives evaluated at

�1 = �2 = �, where � represents an arbitrary value in �. De�ne an augmented parameter vector

� = (�0; �01; �
0
2)
0 (16)

and three sets of integers (they index the elements in �; �1 and �2, respectively)

I0 = f1; :::; n�g ; I1 = fn� + 1; :::; n� + n�g ; I2 = fn� + n� + 1; :::; n� + 2n�g :

To ease the notation, let ��t+1jt and �ft denote �t+1jt(p; q; �; �1; �2) and ft(�; �1) (or ft(�; �2)) evalu-

ated at some � and �1 = �2 = �. Also, let r�j1 :::r�jk
��tjt�1, r�j1 :::r�jk

�f1t and r�j1 :::r�jk
�f2t denote

the k-th order partial derivatives of �tjt�1(p; q; �; �1; �2), ft(�; �1) and ft(�; �2) with respect to the

j1-th,:::; jk-th elements of � evaluated at some � and �1 = �2 = �. The following relationships hold:

r�j1 :::r�jk
�f1t = r�j1 :::r�jk

�f2t if j1; :::; jk all belong to I0, r�j1 :::r�jk
�f1t = 0 if any of j1; :::; jk

belongs to I2, and r�j1 :::r�jk
�f2t = 0 if any of j1; :::; jk belongs to I1.

Lemma 1 Let � = p+ q� 1 and r = ���(1� ��) with �� de�ned in (3). Then, for t � 1, we have,
under �1 = �2 = �:

1. ��t+1jt = ��.

2. r�j��t+1jt = �r�j��tjt�1 + �Ej;t, where

�Ej;t =

8>>><>>>:
0

rr�j log �f1t
�rr�j log �f2t

if j 2 I0
if j 2 I1
if j 2 I2

:

3. r�jr�k��t+1jt = �r�jr�k��tjt�1 + �Ejk;t, where �Ejk;t is given by (with (Ia; Ib) denoting a case
with j 2 Ia and k 2 Ib; a; b = 0; 1; 2):

(I0; I0) : 0

(I0; I1) : �
rr�j �f2t

�ft

r�k �f1t
�ft

+
rr�jr�k �f1t

�ft

(I0; I2) :
rr�j �f2t

�ft

r�k �f2t
�ft

�
rr�jr�k �f2t

�ft

(I1; I1) :
�(1�2��)r�j��tjt�1r�k �f1t

�ft
+

�(1�2��)r�k��tjt�1r�j �f1t
�ft

+
rr�jr�k �f1t

�ft
�

2r��r�j �f1t
�ft

r�k �f1t
�ft

(I1; I2) :
�(2���1)r�j��tjt�1r�k �f2t

�ft
�

�(2���1)r�k��tjt�1r�j �f1t
�ft

+
r(2���1)r�j �f1t

�ft

r�k �f2t
�ft

(I2; I2) :
�(2���1)r�j��tjt�1r�k �f2t

�ft
+

�(2���1)r�k �tjt�1r�j �f2t
�ft

�
rr�jr�k �f2t

�ft
�

2r(���1)r�j �f2t
�ft

r�k �f2t
�ft

:
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4. r�jr�kr�l��t+1jt = �r�jr�kr�l��tjt�1 + �Ejkl;t, where the expressions for �Ejkl;t with j; k; l 2
fIa; Ib; Icg and a; b; c = 0; 1; 2 are given in the appendix.

Remark 1 The lemma holds for samples of any size. It shows that, when �1 = �2, the conditional

regime probability (��t+1jt) equals the stationary probability (��); while its derivatives up to third order

all follow �rst order linear di¤erence equations. The lagged coe¢ cients always equal � = p+ q � 1.
Because 0 < p; q < 1, these di¤erence equations are always stable. As seen below, these features

allow us to apply properties of �rst order linear systems to analyze the properties of the log likelihood.

They are the key elements that make the subsequent analysis feasible.

Now we take a closer look at the four results in the lemma. The �rst result is intuitive. Because

the two regimes are identical when �1 = �2, observing the data brings no information about the

regime probability. The second to fourth results re�ect the �rst to third order e¤ects of a unit

change in the parameters�values on the regime probability. For the �rst order, changing the value

of � has no e¤ect; �t+1jt(p; q; �; �1; �2) remains equal to ��. Meanwhile, changing the values of �1

and �2 have exactly the opposite e¤ects, i.e., r�j��t+1jt = �r�j+n�
��t+1jt for any j 2 I1. The results

concerning the second order derivatives have a similar structure. In particular, changing � only has

no e¤ect, while changing �1 and �2 after a change in � still have equal opposite e¤ects, as indicated

by the cases (I0; I1) and (I0; I2). The remaining three cases are more complex, but they all show

that �Ejk;t depend only on r�j��tjt�1 (j 2 I1 [ I2) and quantities related to the density functions.
The third order e¤ects consist of ten di¤erent cases corresponding to di¤erent combinations of j; k

and l. For the analysis later, the exact expressions of �Ejkl;t will be unimportant. What matters
is that they depend only on lower order derivatives of ��tjt�1 and quantities related to the density

functions.

The recursive structure within the results, i.e., the higher order derivatives depend successively

on the lower orders with the �rst order depending only on r�j log �f1t and r�j log �f2t, suggests
a strategy for analyzing their statistical properties. That is, we can start with the �rst order

derivatives, and then use the results cumulatively to study the second order followed by the third

order derivatives. Such a strategy is implemented in Lemma A.1 in the appendix.

Using �� as the initial value for �t+1jt(p; q; �; �1; �2) is not restrictive. With a generic �nite initial

value, the �rst result in the lemma becomes ��t+1jt = (1 � q) + ���tjt�1, while the other results also
hold, but with �� and r replaced by ��tjt�1 and ���tjt�1(1 � ��tjt�1), respectively. Because j�j < 1,

��tjt�1 converges at an exponential rate to �� as t increases. Consequently, the �rst to the fourth
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order derivatives all converge to their counterparts in the lemma at an exponential rate. This fast

rate of convergence implies that using a di¤erent �nite initial value will not a¤ect the asymptotic

results presented later.

Below, we further illustrate the results in the lemma using the linear model (9).

The illustrative model (cont�d). Consider the general case where the regression coe¢ cients

and the error variance are both allowed to switch. Lemma 1.2 implies:

r���t+1jt = 0; (w.r.t. the non-switching parameters)

r
1��t+1jt = �r
1��tjt�1 + r
wt
�2
(yt � z0t�� w0t
) ;

r�21
��t+1jt = �r�21

��tjt�1 + r
1
2�2

�
(yt�z0t��w0t
)

2

�2
� 1
�
;

9=; (w.r.t. the parameters in the �rst regime)
r
2��t+1jt = �r
1��t+1jt;

r�22
��t+1jt = �r�21

��t+1jt:

9=; (w.r.t. the parameters in the second regime)
When evaluated at the true parameter value, the derivatives with respect to 
1 and �

2
1 all reduce to

stationary AR(1) processes with mean zero. Their variances are �nite and satisfy (with �2� denoting

the true value of �2 and r
1j the �rst order derivative w.r.t. the j-th element of 
1)

E
�
r
1j��t+1jt

�2
= r2

(1��2)�2�
Ew2jt; E(r�21

��t+1jt)
2 = r2

2(1��2)�4�
:

The processes speci�ed by Lemma 1.3-1.4, although more complex, also have �nite means and

variances when evaluated at the true parameter values, provided that the relevant moments of

wt; zt and ut exist. Such results for the general model (2) are established in Lemma A.1 in the

appendix.�

4.2 Concentrated log likelihood and its expansion

To obtain an asymptotic approximation to the log likelihood ratio (11), a standard approach would

be to expand LA(p; q; �; �1; �2) around the null estimates (e�;e�;e�). However, this is infeasible here
due to the complex dependence between the estimates of �1 and �2 as LA(p; q; �; �1; �2) can have
multiple local maxima. Cho and White (2007) encountered a similar problem and proceeded by

working with the concentrated likelihood. We adopt their insightful strategy. This allows us to

break the analysis into two steps. In the �rst step, we quantify the dependence between the

estimates of �1 and �2 using the �rst order conditions that de�ne the concentrated likelihood (see

Lemma 2 below). This e¤ectively removes � and �1 from the subsequent analysis. In the second
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step, we expand the concentrated likelihood around �2 = e� (see Lemma 3 below) and obtain an
approximation to LR(p; q).

Speci�cally, let �̂(�2) and �̂1(�2) be the maximizer of the log likelihood for a given value �2 2 �
(here the dependence of �̂ and �̂1 on p and q is suppressed to simplify the notation), i.e.,

(�̂(�2); �̂1(�2)) = argmax
�;�1

LA(p; q; �; �1; �2): (17)

Let L(p; q; �2) denote the concentrated log likelihood, i.e., L(p; q; �2) = LA(p; q; �̂(�2); �̂1(�2); �2).
Then, the two terms in the likelihood ratio (11) satisfy: max�;�1;�2 LA(p; q; �; �1; �2) = max�2 L(p; q; �2)
and LN (e�;e�) = L(p; q;e�). Consequently:

LR(p; q) = 2max
�2

h
L(p; q; �2)� L(p; q;e�)i : (18)

For k � 1, let L(k)i1:::ik(p; q; �2) (i1; :::; ik 2 f1; :::; n�g) denote the k-th order derivative of L(p; q; �2)
with respect to the (i1; :::; ik)-th elements of �2. Let dj (j 2 f1; :::; n�g) denote the j-th element of
(�2 � e�). Then, a fourth order Taylor expansion of L(p; q; �2) around e� is given by

L(p; q; �2)� L(p; q;e�) =

n�X
j=1

L(1)j (p; q;e�)dj + 1

2!

n�X
j=1

n�X
k=1

L(2)jk (p; q;e�)djdk (19)

+
1

3!

n�X
j=1

n�X
k=1

n�X
l=1

L(3)jkl(p; q;e�)djdkdl
+
1

4!

n�X
j=1

n�X
k=1

n�X
l=1

n�X
m=1

L(4)jklm(p; q; ��)djdkdldm;

where in the last term �� is a value that lies between �2 and e�.
Below, we provide two lemmas to analyze this expansion. The next assumption is needed in

order to apply a law of large numbers and a central limit theorem to the terms in (19). It is similar

to but slightly stronger than Assumption A5 (iii) in Cho and White (2007). There, instead of

�(k)=k, the respective values are 4; 2; 2 and 1 for k = 1; 2; 3 and 4.

Assumption 4 There exists an open neighborhood of (��; ��), denoted by B(��; ��), and a sequence

of positive, strictly stationary and ergodic random variables f�tg satisfying E�1+ct < L < 1 for

some c > 0, such that

sup
(�;�1)2B(��;��)

�����r�i1 :::r�ik ft (�; �1)ft (�; �1)

�����
�(k)
k

< �t

for all i1; :::; ik 2 f1; :::; n� + n�g ; where 1 � k � 5; �(k) = 6 if k = 1; 2; 3 and �(k) = 5 if k = 4; 5.

16



The next lemma characterizes the derivatives of �̂(�2) and �̂1(�2) with respect to �2 evaluated

at �2 = e�. To shorten the expressions, let e�t+1jt and eft denote �t+1jt(p; q; �; �1; �2) and ft(�; �1)
evaluated at (�; �1; �2) = (e�;e�;e�). Also, let r�1i1 :::r�1ike�tjt�1 and r�1i1 :::r�1ik ef1t denote the k-th
order derivative of �t+1jt(p; q; �; �1; �2) and ft(�; �1) with respect to the i1-th; :::; ik-th elements of

�1 evaluated at (�; �1; �2) = (e�;e�;e�). Finally, de�ne
eUjk;t =

1eft
��

1� ��
��

�
r�1jr�1k ef1t + 1

�2�
r�1je�tjt�1r�1k ef1t + 1

�2�
r�1j ef1tr�1ke�tjt�1� ; (20)

eDjk;t =
r(�0;�01)0

ef1teft eUjk;t; eIt = r(�0;�01)0
ef1teft r(�0;�01)

ef1teft ;

eVjklm = T�1
TX
t=1

eUjk;t eUlm;t; eDlm = T�1 TX
t=1

eDlm;t; eI = T�1 TX
t=1

eIt:
Note that eUjk;t involves the �rst and second order derivatives with respect to the j-th and k-th ele-
ments of �1. The term inside the curly brackets can also be represented as ((1� ��)=��)r�2jr�2k ef2t�
(1=�2�)r�2je�tjt�1r�2k ef2t � (1=�2�)r�2j ef2tr�2ke�tjt�1. As will be seen, eUjk;t determines L(2)jk (p; q;e�)
while eDjk;t and eIt appear within L(4)jklm(p; q;e�).
Lemma 2 Under the null hypothesis and Assumptions 1-4, for all k; l;m 2 f1; :::; n�g, we have:

1. Let ek be an n�-dimensional unit vector whose k-th element equals 1, then24 r�2k �̂(e�)
��r�2k �̂1(e�)

35 = (�� � 1)
24 0

ek

35+Op(T�1=2):
2. The second order derivatives satisfy24 r�2kr�2l �̂(e�)

��r�2kr�2l �̂1(e�)
35 = �eI�1 1

T

TX
t=1

eDkl;t +Op(T�1=2):
3. The third order derivatives satisfy24 r�2kr�2lr�2m �̂(e�)

��r�2kr�2lr�2m �̂1(e�)
35 = Op(1):

The above results generalize Lemma B2(a)-(d) in Cho and White (2007) to Markov switching

models and will be used as inputs to analyze L(k)i1;:::;ik(p; q; �2) in the expansion (19). They show
how the parameters �1 and � need to change in order to maximize the likelihood when �2 is moved
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away from e�. Speci�cally, consider a unit change in the j-th element of �2. Then, Lemma 2.1 shows
that, in the �rst order, �̂1j(�2) will change by (��� 1)=��+Op(T�1=2), while all the other elements
of �̂1(�2) and �̂(�2) will only change by a factor of order Op(T�1=2). Interestingly, the quantity

(1 � ��)=�� is simply the stationary probability of the second regime divided by the �rst. Lemma
2.2 pertains to changes in the second order. There, the time variation in the conditional regime

probability enters explicitly. Finally, the expression for the third order derivative is not needed for

the limiting distribution and therefore omitted.

Assumption 5 There exists � > 0, such that supp;q2[�;1��] supj��e�j<� T�1jL(5)jklmn(p; q; �)j = Op (1)
for all j; k; l;m; n 2 f1; :::; n�g, where � is an arbitrary small constant satisfying 0 < � < 1=2.

In a standard problem, we would need the second order derivative L(2)jk (p; q; �) to be continuous
in � (e.g., Amemiya, 1985, p.111), or the third order derivative T�1L(3)jkl(p; q; �) to be Op (1) to
ensure that a local quadratic expansion is an adequate approximation to the log likelihood. Here,

L(4)jklm(p; q; �) plays the same role as the second order derivative in a standard problem. This is why
the above assumption on the �fth order derivative is needed. The next lemma provides the leading

terms of L(k)i1;:::;ik(p; q; �) (k = 1; 2; 3; 4) in the expansion (19).

Lemma 3 Under the null hypothesis and Assumptions 1-5, for all j; k; l;m 2 f1; :::; n�g, we have

1. L(1)j (p; q;e�) = 0:
2. T�1=2L(2)jk (p; q;e�) = T�1=2PT

t=1
eUjk;t + op (1).

3. T�3=4L(3)jkl(p; q;e�) = Op �T�1=4� :
4. T�1L(4)jklm(p; q; ��) = �feVjklm� eD0jkeI�1 eDlm+ eVjmkl� eD0jmeI�1 eDkl+ eVjlkm� eD0jleI�1 eDkmg+op (1).
The �rst order derivative L(1)j (p; q;e�) is identically zero for any sample size. Consequently, the

MLE of �2 will converge at a rate slower than T�1=2. The second order derivative L(2)jk (p; q;e�) is of
order Op(T 1=2), rather than Op(T ). As seen below, its leading term T�1=2

PT
t=1

eUjk;t converges to a
multivariate normal distribution, whose property depends explicitly on the time varying conditional

regime probability. The third order derivative L(3)jkl(p; q;e�) is also of order Op(T 1=2). The expression
of its leading term is not needed to derive the limiting distribution, but we will further analyze

it when providing a �nite sample re�nement. Finally, the fourth order derivative L(4)jklm(p; q; ��) is
of order Op(T ). Its leading term provides a consistent estimator of the asymptotic variance of

T�1=2
PT
t=1

eUjk;t:
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Remark 2 The �rst component of eUjk;t, ((1� ��)=��)r�1jr�1k ef1t= eft, is also present when testing
against mixture alternatives; see Cho and White (2007, Lemma 2(a)). It is sometimes called the dis-

persion score; see Lindsay (1995, p.71). The remaining two components are new and are due to the

Markov switching structure. They can be rewritten as ((1� ��)=��)
Pt�1
s=1 �

s(r�1j log ef1(t�s))(r�1k log ef1t)
and ((1� ��)=��)

Pt�1
s=1 �

s(r�1k log ef1(t�s))(r�1j log ef1t). Intuitively, among the three components,
the �rst picks up overdispersion, while the remaining two pick up serial dependence introduced by

the Markov regimes. Further, the magnitudes of the latter two components become more pronounced

relative to the �rst as � approaches 1. This follows because the �rst component is independent of

� after division by ((1� ��)=��) while the latter two components involve weights �s. This feature
suggests that the power di¤erence between testing against Markov switching alternatives and mix-

ture alternatives can be substantial when the regimes are persistent, i.e., when � is close to 1. This

is con�rmed by the simulations reported later.

The illustrative model (cont�d). We illustrate the leading terms of T�1=2L(2)jk (p; q;e�) and
T�1L(4)jklm(p; q;e�) in Lemma 3 using (9). Suppose only 
 is allowed to switch. Then, eUjk;t and eDjk;t
are, respectively,�

1���
��

��
wjtwkte�2

� eu2te�2 � 1�+ t�1P
s=1

�s
�
wj(t�s)eut�se�2

��
wkteute�2

�
+
t�1P
s=1

�s
�
wk(t�s)eut�se�2

��
wjteute�2

��
(21)

and h
z0teute�2 1

2e�2
� eu2te�2 � 1� w0teute�2

i0 eUjk;t; (22)

where eut denote the residuals under the null and e�2 = T�1PT
t=1 eu2t . These two expressions show

that eUjk;t and eDjk;t depend only on the regressors and the estimates under the null hypothesis. This
makes the covariance function of T�1=2

PT
t=1

eUjk;t, and therefore of T�1=2L(2)jk (p; q;e�), consistently
estimable. This feature will be used when deriving the relevant critical values. �

5 Asymptotic approximations

Let L(2)(p; q;e�) be a square matrix whose (j; k)-th element is given by L(2)jk (p; q;e�) for j; k 2
f1; 2; :::; n�g. This section consists of four sets of results. (1) It establishes the weak convergence of
T�1=2L(2)(p; q;e�) over � � p; q � 1� �. (2) It obtains the limiting distribution of SupLR(��). (3) It
develops a �nite sample re�nement that improves the asymptotic approximation when a singularity

is present. (4) It develops an algorithm to obtain the relevant critical values.

19



5.1 Weak convergence of L(2)(p; q;e�)
For 0 < pr; qr; ps; qs < 1 and j; k; l;m 2 f1; 2; :::; n�g, de�ne

!jklm (pr; qr; ps; qs) = Vjklm (pr; qr; ps; qs)�D0jk(pr; qr)I�1Dlm(ps; qs); (23)

where Vjklm (pr; qr; ps; qs) = E [Ujk;t (pr; qr)Ulm;t (ps; qs)] ; Djk(pr; qr) = EDjk;t(pr; qr), and I =

EIt. Here, Ujk;t (pr; qr) ; Djk;t(pr; qr) and It are de�ned as eUjk;t, eDjk;t and eIt in (20) but evaluated
at (pr; qr; ��; ��) instead of (pr; qr; e�;e�).
Proposition 1 Under the null hypothesis and Assumptions 1-5, we have, over � � p; q � 1� � :

T�1=2L(2)(p; q;e�)) G (p; q) ;

where the elements of G (p; q) are mean zero continuous Gaussian processes satisfying Cov[Gjk(pr; qr),

Glm(ps; qs)]=!jklm(pr; qr; ps; qs) for j,k,l,m 2 f1,2,:::,n�g, where !jklm(pr,qr; ps,qs) is given by (23).

In the appendix, the result is proved by �rst showing the �nite dimensional convergence and

then the stochastic equicontinuity.

Below, we illustrate some important features of !jklm (pr; qr; ps; qs). It will emerge that this

function depends on: (1) the model�s dynamic properties (e.g., whether the regressors are strictly

exogenous or predetermined), (2) which parameters are allowed to switch (e.g., regressions coe¢ -

cients or the variance of the errors), and (3) whether nuisance parameters are present. Consequently,

to make the test easy to apply in practice, we will need a procedure that can adapt to these fea-

tures to obtain critical values without requiring laborious derivations from the practitioner. Such

a procedure is developed in Section 5.4.

The illustrative model (cont�d). We consider a simpler version of (9) for which the covariance

function !jklm (pr; qr; ps; qs) can be computed analytically:

yt = wt
11fst=1g + wt
21fst=2g + ut;

where ut �i.i.d.N(0; �2�), and wt is a scalar regressor that is either strictly exogenous (e.g., a
constant) or equals yt�1. De�ne �r = pr + qr � 1 and �s = ps+ qs� 1. The subscript �*�continues
to denote the true parameter value.

First, we allow 
 to switch, while assuming �2� is unknown but remains constant across the

regimes. Then, in the strictly exogenous regressor case, the covariance function (23) equals

2(1� pr)(1� ps)
(1� qr)(1� qs)

[V ar(w2t ) + 2
P1
k=1 (�r�s)

k E(w2tw
2
t�k)]

�4�
: (24)
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In the lagged dependent variable case, it equals

(1� pr)(1� ps)
(1� qr)(1� qs)

�
1

1� 
2�

�(
4

1� 
2�
+
4�r�s
1� 
2�

�
2

1� �r�s
2�
+

1

1� �r�s

�
(25)

+
16�2r�s


2
�

(1� �r
2�) (1� �r�s
2�)
+

16�r�
2
s

2
�

(1� �s
2�) (1� �r�s
2�)
� 16�r�s


2
�

(1� �r
2�)(1� �s
2�)

)
:

These two functions are di¤erent even when wt � i:i:d:N(0; 1) and 
� = 0. This follows because

r
1�tjt�1 is independent of r
1f1t when wt is strictly exogenous, but not when it is only predeter-
mined. This comparison shows that the covariance function is a¤ected by the dynamic properties

of the model.

Now, we consider the same situation as above but assume �2� is known. Then, in the strictly

exogenous regressor case, the covariance function equals

2(1� pr)(1� ps)
(1� qr)(1� qs)

[E(w4t ) + 2
P1
k=1 (�r�s)

k E(w2tw
2
t�k)]

�4�
; (26)

while in the lagged dependent variable case, it equals

(1� pr)(1� ps)
(1� qr)(1� qs)

�
1

1� 
2�

�(
6

1� 
2�
+
4�r�s
1� 
2�

�
2

1� �r�s
2�
+

1

1� �r�s

�
(27)

+
16�2r�s


2
�

(1� �r
2�) (1� �r�s
2�)
+

16�r�
2
s

2
�

(1� �s
2�) (1� �r�s
2�)
� 16�r�s


2
�

(1� �r
2�)(1� �s
2�)

)
:

These two functions are di¤erent from (24) and (25). This shows that the presence of nuisance

parameters can also alter the covariance function.

Next, we allow �2� to switch but require the unknown regression coe¢ cient 
� to remain constant

across the regimes. Then, irrespective of whether wt is strictly exogenous, we have

Cov (G (pr; qr) ; G (ps; qs)) =
(1� pr)(1� ps)
(1� qr)(1� qs)

1

�8�

�
3

2
+

�
�r�s

1� �r�s

��
: (28)

This function is di¤erent from both (24) and (25). Thus, even after conditioning on the model, the

covariance function can still be di¤erent depending on which parameter is allowed to switch.

We report some simulation results to complement the above analysis. The parameter values

are 
� = 0:5 and �2� = 1. In the strictly exogenous regressor case, wt is generated as being in-

dependent of us at all leads and lags by wt = 0:5wt�1 + "t with "t � i:i:d:N(0; 1). This ensures

that the regressors follow the same DGP in both cases. Further, we let (pr; qr) = (0:6; 0:9) and

(ps; qs) = (0:6; x) with x varying between 0:1 and 0:9. Figure 1 reports the �ve correlations func-

tions given by (24)-(27) (Here, correlations instead of covariances are plotted to ease comparisons).
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The solid lines starting from the top correspond to (28), (26), (24), (27) and (25), respectively.

These functions demonstrate clearly the dependence on the three factors highlighted above. Also

included in the �gure are correlations computed from simulations (i.e., the dashed lines). They are

generated by simulating samples of 250 observations using the same parameter value as above, com-

puting T�1=2
PT
t=1

eUjk;t using each series and then repeating 10,000 times to obtain the empirical
correlations. The values are close to their asymptotic approximations in all �ve cases. �

5.2 Limiting distribution of SupLR(��)

Let 
(p; q) be an n2�-dimensional square matrix whose (j + (k � 1)n�; l + (m � 1)n�)-th element
is given by !jklm (p; q; p; q). Then, Proposition 1 implies E[vecG (p; q) vecG (p; q)

0] = 
(p; q). The

next result gives the asymptotic distribution of SupLR(��).

Proposition 2 Suppose the null hypothesis and Assumptions 1-5 hold. Then:

SupLR(��)) sup
(p;q)2��

sup
�2Rn�

W(2)(p; q; �); (29)

where �� is given by (12) and

W(2)(p; q; �) =
�
�
2
�0
vecG (p; q)� 1

4

�
�
2
�0

(p; q)

�
�
2
�
:

The quantity � plays the role of T�1=4(�2 � e�) in (19). Its dimension is una¤ected by the
presence of nuisance parameters. If n� = 1, then the optimization over � can be solved analytically,

leading to SupLR(��) ) max[0; sup(p;q)2�� G (p; q) =
p

(p; q)]2. The right hand side can equal

zero with positive probability, with the value of the latter depending on the covariance function of

G (p; q) =
p

(p; q) over (p; q). If n� > 1, the optimization will need to be carried out numerically.

However, because W(2)(p; q; �) is a quadratic function of �
2, the optimization remains relatively

standard.

Below, we illustrate the above limiting distribution and also examine its adequacy in �nite

samples. The illustration also suggests the desirability for a �nite sample re�nement when a further

singularity is present.

The illustrative model (cont�d). We consider the following special case of (9):

yt = �+ �yt�1 + ut; (30)
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where ut � i:i:d: N(0; �2) and �; � and �2 are unknown. As shown below, the distribution of

SupLR(��), as well as the adequacy of the asymptotic approximation, can di¤er substantially

depending on whether � or � is allowed to switch.

Figure 2 summarizes the �nite sample and asymptotic distributions of SupLR(��) for testing

regime switching in � only or � only. We consider � = 0; � = 0:5 and �2 = 1. The set �� is speci�ed

as (13) with � = 0:05, The sample size is 250 and all results are based on 5000 replications. Two

features emerge. First, the �nite sample (the solid lines) and asymptotic (the long dashed lines)

distributions are both quite di¤erent between the two cases. This is consistent with the covariance

function of T�1=2
PT
t=1

eUjk;t being parameter dependent; see the illustration in Section 5.1. Second,
the asymptotic distribution provides an adequate approximation when testing for switching in �,

but not when testing for switching in �. For the latter case, the asymptotic distribution falls to

the left of the �nite sample distribution. The structure of T�1=2
PT
t=1

eUjk;t is informative about
the second feature. It is given by:

For � switching: 1e�2
�
1���
��

�n
T�1=2

PT
t=1

� eu2te�2 � 1�+ 2T�1=2PT
t=1

�Pt�1
s=1 �

s eut�se� eute�
�o
,

For � switching: 1e�2
�
1���
��

�n
T�1=2

PT
t=1

� eu2te�2 � 1� y2t�1 + 2T�1=2PT
t=1

�Pt�1
s=1 �

s yt�s�1eut�se� yt�1eute�
�o
;

where eut denote the residuals under the null and e�2 = T�1
PT
t=1 eu2t . When testing for switching

in �, the �rst term in the curly brackets is in fact identically zero for any sample size. Also, the

magnitude of the second term decreases as � approaches 0, i.e., as p+q approaches 1. Consequently,

in �nite samples, the magnitude of T�1=2
PT
t=1

eUjk;t can be too small to dominate the higher order
terms in the likelihood expansion. This explains why the asymptotic distribution that relies entirely

on T�1=2
PT
t=1

eUjk;t can be inadequate. In contrast, when testing for switching in �, the �rst term
in the curly brackets converges to a normal distribution that is independent of p and q. Therefore,

the issues discussed do not arise.

Figure 3 provides some further information by comparing the �nite sample and asymptotic

distributions of LR(p; q) when testing for � switching at some selected values of (p; q) that equal

(0:90; 0:90); (0:90; 0:75) and (0:90; 0:60). Consistent with the discussion above, a gap between the

�nite sample distribution (the solid line) and the asymptotic distribution (the long dashed line)

opens up and grows wider as p + q approaches 1. We have also found in unreported simulations,

that when testing for � switching, these two distributions remain close to each other in all three

cases. �
In summary, the illustration suggests that the asymptotic approximation in Proposition 2 needs
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to be improved if the hypotheses imply that L(2)(p; q;e�) equals zero when p+ q = 1. When testing
for switching in the intercept in the illustrative model, the latter arises because the following linear

relationship holds for all t: r�2f1t(e�; e�; e�2) = 0:5r�r�f1t(e�; e�; e�2).
5.3 A re�nement

This section derives a sixth order expansion of the likelihood ratio along p + q = 1 and an eighth

order expansion at p = q = 1=2. (The reason for why the latter is needed is explained below.) The

respective leading terms are then incorporated into the limiting distribution to deliver a re�ned

approximation. These expansions are derived under the following assumption.

Assumption 6 The following linear relationship holds for all t and all i1; i2 2 f1; :::; n�g :

r�1i1r�1i2 ef1t = �(1)0i1i2
r� ef1t + �(2)0i1i2

r�1 ef1t; (31)

where �(1)i1i2 and �
(2)
i1i2

are n� and n� dimensional known vectors of constants.

Whether or not this assumption holds is known once the model and the hypotheses are speci�ed.

The following assumption strengthens Assumption 4. It is similar to A.5 (iv) in Cho and White

(2007). The subsequent analysis makes heavy use of their results developed in Section 2.3.2.

Assumption 7 There exists an open neighborhood of (��; ��), B(��; ��), and a sequence of posi-

tive, strictly stationary and ergodic random variables f�tg satisfying E�1+ct < 1 for some c > 0,

such that the supremums of the following quantities over B(��; ��) are bounded from the above by �t:���r�i1 :::r�ik ft (�; �1) =ft (�; �1)���4 ; ���r�i1 :::r�imft (�; �1) =ft (�; �1)���2 ; ���r�i1 :::r�i8ft (�; �1) =ft (�; �1)���,���r�j1r�i1 :::r�i7ft (�; �1) =ft (�; �1)��� ; ���r�j1r�j2r�i1 :::r�i6ft (�; �1) =ft (�; �1)���, where k = 1; 2; 3; 4,
m = 5; 6; 7; i1; :::; i7 2 f1; :::; n� + n�g and j1; j2 2 f1; :::; n�g.

Before proceeding, we �rst establish some notation. To approximate the third and sixth order

derivatives of the concentrated log likelihood, de�ne (the symbol es stands for skewness)
esjkl;t(p; q) = (1� p) (p� q)

(1� q)2
r�1jr�1kr�1l ef1teft (32)

and let G(3)jkl(p; q) be a continuous Gaussian process with mean zero satisfying

!
(3)
jklmnu(pr; qr; ps; qs)

= Cov(G
(3)
jkl (pr; qr) ; G

(3)
mnu (ps; qs))

= E [sjkl;t(pr; qr)smnu;t(ps; qs)]� E
�r(�0;�01)f1t

ft
sjkl;t(pr; qr)

�
I�1

�r(�0;�01)0f1t
ft

smnu;t(ps; qs)

�
;
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where sjkl;t(p; q) is the same as esjkl;t(p; q) but evaluated at the true parameter values (the other
quantities are also evaluated at the true parameter values). To approximate the fourth and eighth

order derivatives, de�ne (the symbol ek stands for kurtosis.)
ekjklm;t(p; q) =

1� p
2� p� q

 
1 +

�
1� p
1� q

�3! r�1jr�1kr�1lr�1m ef1teft (33)

+

�
1� p
1� q

�2 X
(i1;i2;i3;i4)2S

1eft
(
�r�1i1r�1i2r�0 ef1t�(1)i3i4 �r�1i1r�1i2r�01 ef1t�(2)i3i4

+
1

2
�
(1)0
i1i2
r�r�0 ef1t�(1)i3i4 + �(1)0i1i2

r�r�01
ef1t�(2)i3i4

)

and let G(4)i1i2i3i4(p; q) denote a continuous Gaussian process with mean zero satisfying

!
(4)
i1i2:::i8

(pr; qr; ps; qs) = Cov
�
G
(4)
i1i2i3i4

(pr; qr) ; G
(4)
i5i6i7i8

(ps; qs)
�

= E [ki1i2i3i4;t (pr; qr) ki5i6i7i8;t (ps; qs)]

�E
�r(�0;�01)f1t

ft
ki1i2i3i4;t (pr; qr)

�
I�1

�r(�0;�01)0f1t
ft

ki5i6i7i8;t (ps; qs)

�
;

where the index set S in (33) is given by S = fjklm; jlkm; jmkl; kljm; kmjl; lmjkg, ki1i2i3i4;t(p; q)
is equivalent to eki1i2i3i4;t(p; q) but evaluated at the true parameter values (the remaining quantities
are also evaluated at the true parameter values).

The next lemma characterizes the asymptotic properties of L(k)i1i2:::ik(p; 1 � p;e�) for i1; :::; ik 2
f1; :::; n�g and k = 3; :::; 8. It generalizes Lemma 3, 4(a), 5(a)-(e) in Cho and White (2007) by

allowing for multiple switching parameters.

Lemma 4 Under the null hypothesis and Assumptions 1-7:

1. The following results hold uniformly over f(p; q) : � � p; q � 1� �; p+ q = 1g:

T�1=2L(3)jkl(p; q;e�) = T�1=2
TX
t=1

esjkl;t(p; q) + op (1)) G
(3)
jkl(p; q);

T�1=2L(4)jklm(p; q;e�) = Op (1) ; T�1=2L(5)jklmn(p; q;e�) = Op (1) ;
T�1L(6)jklmnr(p; q;e�) = �

X
(i1;i2;:::;i6)2IND

!
(3)
i1i2:::i6

(p; q; p; q) + op (1) ;

where IND={jklmnr,jkmlnr,jknlmr,jkrlmn,jlmknr,jlnkmr,jlrkmn,jmnklr,jmrkln,jnrklm}.
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2. The following results hold at p = q = 1=2 :

T�1=2L(3)jkl(p; q;e�) = op (1) ;

T�1=2L(4)jklm(p; q;e�) = T�1=2
TX
t=1

ekjklm;t(p; q) + op (1)) G
(4)
jklm(p; q);

T�1=2L(k)i1i2:::ik(p; q;e�) = Op (1) , where i1; :::; ik 2 f1; :::; n�g for k=5,6 and 7,

T�1L(8)jklmnrsu(p; q;e�) = �
X

(i1;i2;:::;i8)2IND
!
(4)
i1i2:::i8

(p; q; p; q) + op (1) :

where the elements of IND are as follows: i1 = j; each triplet (i2; i3; i4) corresponds to one of

the 35 outcomes of picking 3 elements from {k; l;m; n; r; s; ug (the ordering does not matter);
and i5; i6; i7;i8 correspond to the remaining elements.

The above two sets of results characterize the high order derivatives along the line p + q = 1.

When p 6= 1=2, the third order term T�1=2
PT
t=1 esjkl;t(p; 1 � p) replaces the second order term

T�1=2
PT
t=1

eUjk;t to become the leading term in the likelihood expansion. Consequently, a sixth

order expansion is needed to approximate the likelihood ratio. When p = 1=2, the fourth order term

T�1=2
PT
t=1
ekjklm;t(p; 1� p) becomes the leading term, and consequently an eighth order expansion

is needed.

The restriction p = 1�q is not imposed when representing the leading term in T�1=2L(3)jkl(p; q;e�).
This ensures that the coe¢ cient in front of (r�1jr�1kr�1l ef1t= eft) is correct even when p + q 6= 1.

For the same reason, we also do not impose p = q = 1=2 when expressing the leading term

of T�1=2L(4)jklm(p; q;e�). The results assumes all the second order derivatives with respect to the
switching parameters can be written as linear combinations of the �rst order derivatives (this holds

when testing for switching in the intercept in a linear model). If such a relationship holds only for

a subset of derivatives (this is the case when testing for switching in both the intercept and the

slope parameter), then when constructing esjklm;t(p; q), we simply set �(1)i1i2 = 0 and �(2)i1i2 = 0 for

those cases where (31) is not satis�ed.

We now incorporate the leading terms in Lemma 4 to obtain a re�ned approximation. To ease

notation, we �rst express the relevant quantities in the lemma using matrix notations. Let G(3)(p; q)

be a n3�- dimensional vector whose (j + (k� 1)n� + (l� 1)n2�)-th element is given by G
(3)
jkl(p; q). Let


(3)(p; q) denote an n3� by n
3
� matrix whose (j+(k� 1)n� +(l� 1)n2� ;m+(n� 1)n� +(r� 1)n2�)-th

element is given by !(3)jklmnr(p; q; p; q). De�ne

W(3)(p; q; �) = T�1=4
1

3

�
�
3
�0
vecG(3)(p; q)� T�1=2 1

36

�
�
3
�0

(3)(p; q)

�
�
3
�
:
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Let G(4)(p; q) be an n4�- dimensional vector whose (j+(k�1)n�+(l�1)n2�+(m�1)n3�)-th element
is given by G(4)jklm(p; q). Let 


(4)(p; q) be an n4� by n
4
� matrix whose (j + (k � 1)n� + (l � 1)n2� +

(m� 1)n3� ; n+ (r� 1)n� + (s� 1)n2� + (u� 1)n3�)-th element is given by !
(4)
jklmnrsu(p; q; p; q). De�ne

W(4)(p; q; �) = T�1=2
1

12

�
�
4
�0
vecG(4)(p; q)� T�1 1

576

�
�
4
�0

(4)(p; q)

�
�
4
�
:

We propose approximating the distribution of the SupLR(��) test using

S1(��) � sup
(p;q)2��

sup
�2Rn�

n
W(2)(p; q; �) +W(3)(p; q; �) +W(4)(p; q; �)

o
; (34)

where �� is speci�ed in (12).

Corollary 1 Under Assumptions 1-7 and the null hypothesis, we have, over (12):

Pr (SupLR(��) � s)� Pr (S1(��) � s)! 0:

Remark 3 The above result holds irrespective of whether or not the relationship (31) holds. This

follows because the additional terms W(3)(p; q; �)+W(4)(�) both converge to zero as T !1. These
terms provide re�nement in �nite samples, having no e¤ect asymptotically.

Below, we illustrate the re�ned approximation using the AR(1) model considered above. As will

be seen, the re�nement substantially improves the approximation when testing for regime switching

in the intercept, while having little e¤ect when testing for switching in the slope coe¢ cient. For

the latter, the original approximation in Proposition 2 is already adequate.

The illustrative model (cont�d). First, consider testing for regime switching in � in (30). The

quantities (32) and (33) are equal to, respectively,

(1�p)(p�q)
(1�q)2

1e�3
�� eute� �3 � 3 eute� � ;�

1�p
2�p�q

�
1 +

�
1�p
1�q

�3�
� 3

�
1�p
1�q

�2�
1e�4
�� eute� �4 � 6� eute� �2 + 3� :

The re�ned approximations are reported as dotted lines in the second sub�gure in Figures 2 and

3. The results con�rm that the improvements are substantial.

Next, consider testing for regime switching in �. The quantities (32) and (33) are equal to,

respectively,

(1�p)(p�q)
(1�q)2

1e�3
�� eutyt�1e�

�3
� 3 eutyt�1e�

�
;

1�p
2�p�q

�
1 +

�
1�p
1�q

�3�
1e�4
�� eutyt�1e�

�4
� 6

� eutyt�1e�
�2
+ 3

�
:
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The re�ned approximation is reported as the dotted lines in the �rst sub�gure in Figure 2. As a

desirable feature, the re�nement has little e¤ects on the approximation. �

5.4 Obtaining critical values

This section shows how to obtain the critical values of S1(��) de�ned in (34). The idea is to

sample from the distribution of the vector process [vecG (p; q)0 ; vecG(3) (p; q)0 ; vecG(4) (p; q)0] and

then solve the maximization problem (34) over (p; q) 2 �� and � 2 Rn� . Because this vector process
is Gaussian with mean zero, to generate the desired draws it su¢ ces to obtain a consistent estimator

of its covariance function over ��. Such an observation has also been made by Hansen (1992) and

Garcia (1998).

Let eU (2)t (p; q) be an n2�-dimensional vector whose (j + (k � 1)n�)-th element is given by eUjk;t
in (20). Let eU (3)t (p; q) be an n3�-dimensional vector whose (j + (k � 1)n� + (l � 1)n2�)-th element is
given by esjkl;t(p; q) in (32). Let eU (4)t (p; q) be an n4�-dimensional vector whose (j + (k � 1)n� + (l �
1)n2� + (m� 1)n3�)-th element is given by ekjklm;t(p; q) in (33). De�ne

eGt (p; q) =
26664
eU (2)t (p; q)eU (3)t (p; q)eU (4)t (p; q)

37775 :

Let U (2)t (p; q); U
(3)
t (p; q); U

(4)
t (p; q) and Gt (p; q) be de�ned as eU (2)t (p; q), eU (3)t (p; q), eU (4)t (p; q) andeGt (p; q) but evaluated at the true values under the null hypothesis. Because the vector process

T�1=2
PT
t=1

eGt (p; q) converges weakly to [vecG (p; q)0 ; vecG(3)(p; q)0; vecG(4)(p; q)0] over � � p; q

� 1� �, its covariance function provides a consistent estimator for the latter. Further, we have

T�1=2
TX
t=1

eGt (p; q)
= T�1=2

TX
t=1

Gt (p; q)�
(
T�1

TX
t=1

Gt (p; q)
r(�0;�01)f1t

ft

)
I�1T�1=2

TX
t=1

r(�0;�01)0f1t
ft

+ op (1) ;

where all the quantities on the right hand side are evaluated at the true parameter values under

the null hypothesis. The term inside the curly brackets converges to a nonrandom matrix by the

law of large numbers. Therefore, a consistent estimator of the desired covariance function is given
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by

T�1
TX
t=1

eGt (pr; qr) eGt (ps; qs)0 (35)

�
(
T�1

TX
t=1

eGt (pr; qr) r(�0;�01) ef1teft
) eI�1(T�1 TX

t=1

eGt (ps; qs) r(�0;�01) ef1teft
)0
;

where eI is the estimated information matrix, i.e., eI = T�1PT
t=1[r(�0;�01)0

ef1t= eft][r(�0;�01) ef1t= eft].
Remark 4 The estimator (35) has three desirable features. First, the parameter values are the

MLE from estimating the null model. They are simple to obtain. Second, the relevant quantities

can all be expressed as functions of (r�j ef1t= eft); (r�jr�kr�l ef1t= eft) and (r�jr�kr�lr�m ef1t= eft).
For models the are linear under the null hypothesis, they can all be computed analytically. Third,

nuisance parameters do not a¤ect the dimension of the optimization in (34). Therefore, they do

not noticeably increase the computational cost.

The illustrative model (cont�d). We show how to compute the quantities in (35) when testing

for switching in � in the model (30). In more general linear models with multiple switching para-

meters, the relevant quantities can be obtained in a similar manner. The vector eGt (pr; qr) consists
of three elements (eut denote OLS residuals):

eU (2)t (p; q) = 2e�2
�
1�p
1�q

�Pt�1
s=1(p+ q � 1)s

eut�seute�2 ;

eU (3)t (p; q) = (1�p)(p�q)
(1�q)2

1e�3
�� eute� �3 � 3 eute� � ;

eU (4)t (p; q) =

�
1�p
2�p�q

�
1 +

�
1�p
1�q

�3�
� 3

�
1�p
1�q

�2�
1e�4
�� eute� �4 � 6� eute� �2 + 3� :

They depend on the model only through the OLS residuals. The vector r(�0;�01)
ef1t= eft also consists

of three elements:
r(�0;�01)

ef1teft =
h
yt�1eute�2 1

2e�2
� eu2te�2 � 1� eute�2

i
:

They depend on the model only through the OLS residuals and the regressor yt�1 and are also simple

to compute. The estimated information matrix is eI = T�1PT
t=1[r(�0;�01)0

ef1t= eft][r(�0;�01) ef1t= eft]. �
6 Implications for bootstrap procedures and information criteria

The results in the previous section provide a platform for evaluating the consistency of various

bootstrap procedures. Although a comprehensive study of such procedures is beyond the scope of
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the paper, it is possible to illustrate some important aspects using the linear model (9). Throughout

this section the test is computed over �� de�ned by (12).

Bootstrap procedures. We begin with the important special case where the regressors con-

tain only a constant and lagged values of yt, and the errors are normally distributed. A standard

parametric bootstrap procedure proceeds as follows. (1) Estimate the model under the null hy-

pothesis (e.g., estimate an autoregressive model), (2) Sample from the Normal distribution whose

mean equals zero and variance equals the sample variance of the residuals. Use the draws along

with the estimated coe¢ cients to generate a new autoregressive series. (3) Compute the test using

the newly generated series. (4) Repeat the steps (1)-(3). The above procedure is asymptotically

valid. This follows because all the parameters are estimated consistently, and the normality and

the AR(1) structure are also preserved. Consequently, the covariance function in the bootstrap

world is consistent with what determines the asymptotic distribution in Proposition 1.

Next, consider the more general situation where a second variable is present in the regressors;

e.g., an autoregressive distributed lags (ADL) model. Because the model does not specify the joint

distribution of the dependent variable and the regressors, the bootstrap procedure described above

is no longer applicable. Two alternative approaches deserve some consideration.

The �rst approach involves keeping the regressors �xed at their original values when generating

the data, i.e., using the �xed regressor bootstrap. This procedure has been shown to be asymp-

totically valid in the context of testing for structural breaks (Hansen, 2000). However, the same

procedure is in general no longer consistent in the current context. This is because, in contrast to

the original model, in the bootstrap world the regressors are strictly but not weakly exogenous.

This alters the covariance function appearing in Proposition 1 (c.f. (24) and (25) and the accom-

panying discussions). We provide some simulation results to illustrate the potential severity of the

size distortion. The data are generated using the model (30) with the same speci�cations. The

sample size T = 250. The solid line in Figure 4 shows the �nite sample distribution, while the

dashed line corresponds to the �xed regressor bootstrap. The di¤erence is quite substantial. This

di¤erence does not decrease when the sample size is increased to 500.

The second approach involves specifying the joint distribution of the data. For example, if we

have an ADL model with normal errors, we specify a full model that corresponds to a Gaussian

vector autoregression. Then, we can apply the parametric bootstrap to the augmented model. Such

a bootstrap procedure will be consistent if it asymptotically produces the same covariance function
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in Proposition 1. A key property of this procedure is that it entails specifying a parametric model

for the regressors. Investigating the sensitivity to such speci�cations is useful but is beyond the

scope of this paper.

Information criteria. The asymptotic results also imply that the �nite sample properties of

conventional information criteria, such as BIC, can be sensitive to the structure of the model and

also which parameters are allowed to switch. This is because the distribution of the likelihood

ratio depends on which parameter is allowed to switch, while in BIC the penalty term depends

only on the dimension of the model and the sample size. We illustrate such sensitivities using the

model (30) by contrasting the outcomes from the following two applications. (1) We apply BIC to

determine whether there is regime switching in the intercept. The other parameters are assumed

to be constant. (2) The same as (1) except that the slope parameter is allowed to switch. In the

simulated data, no regime switching is present; � = 0; � = 0:5 and �2 = 1. The set �� is speci�ed

as (13) with � = 0:05. The sample size is 250. Out of the 5000 realizations, BIC falsely classi�es

12:5% for the �rst application, while only 2:4% for the second application. Because the penalty

terms in the Akaike information criterion and the Hannan�Quinn information criterion have the

same structure, they are also expected to exhibit the same sensitivity.

7 Monte Carlo

We examine the test�s size and power properties and also compare with the tests of Cho and White

(2007) and Carrasco, Hu and Ploberger (2014). The DGP is

yt = �1 � 1fst=1g + �2 � 1fst=2g + �yt�1 + et with et � i:i:d: N(0; �
2); (36)

where the intercept switches between two regimes with p(st = 1jst�1 = 1) = p and p(st = 2jst�1 =
2) = q, � = 0:5 and �2 = 1. The choice of this DGP is motivated by two considerations. First, it is

considered in Cho and White (2007), therefore using it facilities the comparison between the tests.

Second, as seen in the empirical application in Section 8, such a speci�cation provides a sensible

approximation to the postwar U.S. quarterly real GDP growth series. Throughout this section, we

specify �� as (12) with � = 0:05 and 0:02. The distribution (34) is simulated using 5000 realizations.

The rejection frequencies reported are all based on 5000 replications.

Let e� = (e�; e�; e�2)0 denote the MLE under the null hypothesis. The supTS of Carrasco, Hu
and Ploberger (2014) is implemented as follows. First, obtain �2;t(�) = (1=(2e�4))Ps<t �

t�seetees,
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�T (�) = T
�1=2PT

t=1 �2;t(�), and ET (�) = T�1
PT
t=1 "t(�)

0"t(�), where eet = yt�e��e�yt�1, � = p+q�
1, and "t(�) are the residuals from regressing �2;t(�) on the score with the latter computed under the

null hypothesis and evaluated at e�. Next, compute the supremum of 0:5[max(�T (�)=
p
ET (�); 0)]2

over �. We consider � 2 [0:05; 0:90] and � 2 [0:02; 0:96]. They correspond to �0:05 and �0:02

speci�ed above. The resulting tests are denoted by supTS1 and supTS2 respectively.

Table 1 reports rejection frequencies under the null hypothesis, i.e., with �1 = �2 = 0. The

rejection frequencies of SupLR(��) are overall close to the nominal levels, although some mild over-

rejections do exist. In particular, when T = 200, the rejection rates at the 5% and 10% levels are

6.60% and 14.46% for � = 0:05, and 6.22% and 13.62% for � = 0:02. Similar rejection rates are

observed when T = 500. The results also con�rm that the QLR and supTS tests have excellent

size properties.

For power properties, following Cho and White (2007), we let �1 = ��2 with �2 = 0:2, 0:6 and
1:0. Motivated by the empirical estimates discussed in Section 3, we consider three pairs of values

for (p; q): (0:70; 0:70), (0:70; 0:90) and (0:90; 0:90). The rejection frequencies at the 5% nominal

levels are reported in Table 2.

As none of the alternatives correspond to mixtures (i.e., p+q 6= 1), the power of the SupLR(��)
test is consistently higher than that of QLR. The di¤erence increases signi�cantly as one or both of

the regimes become more persistent, i.e., as the value of p+ q increases. For example, consider the

cases �2 = 0:6 and 1:0. When (p; q) = (0:7; 0:7), the rejection frequencies for the SupLR(�0:05) test

are 20.24% and 96.58%, with the corresponding values for QLR being 9.46% and 68.83%. When

(p; q) = (0:7; 0:9), the rejection frequencies for the SupLR(�0:05) test become 38.14% and 99.80%

with the corresponding values for QLR being 13.40% and 60.56%. Further, when (p; q) = (0:9; 0:9),

the values become 60.30% and 100% for SupLR(�0:05), and 7.06% and 7.30% for QLR. The results

strongly suggest that although the test of Cho and White (2007) can be valuable for detecting

mixtures, the SupLR(��) test can o¤er substantial power gains when the DGPs are expected to

fall outside that family.

The comparison with the supTS tests shows a similar pattern. However, the reason behind

the power di¤erence is not the same. Speci�cally, a key component of the test is �2;t(�), which

measures the correlation between the residuals (eet) obtained under the null hypothesis. On the
one hand, omitting regime switching causes eet to be positively correlated. On the other hand, such
an omission makes e� upward biased, with the bias growing stronger as the regimes become more
persistent (such a phenomenon is studied extensively in Perron (1990 and 1991), which showed
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that omitting a structural change can cause the autoregressive coe¢ cient to be upward biased,

potentially leading to low testing power for hypotheses related to unit roots or deterministic trends).

The bias in e� causes overdi¤erencing the series and consequently makes eet negatively correlated.
In �nite samples, these two opposite e¤ects can potentially annihilate each other, making the value

of �2;t(�) insensitive to the departure from the null hypothesis. This �nding is consistent with the

simulation results in Carrasco, Hu and Ploberger (2014, Table II), which show that the test can

have good power properties when the lagged dependent variable is not present.

Some further simulations and comparisons are provided in the next section using parameters

calibrated to empirical estimates.

8 Application

Following the in�uential work of Hamilton (1989), a large body of literature has considered modeling

the US real output growth as a regime switching process. Here, we apply the SupLR(��) test to

assess the evidence for such a speci�cation. The analysis is based on the real GDP growth rates

(Series GDPC1, available from the Saint Louis Fed website). It utilizes a full sample that consists

of quarterly observations over the period 1960:I�2014:IV and a range of subsamples speci�ed later.

The analysis proceeds as follows. First, we examine whether the SupLR(��) test detects strong

evidence for regime switching that holds consistently over di¤erent subsamples. Next, we examine

whether such evidence is still present when the QLR and supTS tests are used instead. Then, we

compute the smoothed regime probabilities to examine the empirical relevance of the model and the

results. Finally, some simulations are conducted with parameters values calibrated to the empirical

estimates to further illustrate the test�s size and power properties in this important application.

The model (36) is used throughout, though sensitivity analysis will also be conducted. The set ��

is as in (12) with � = 0:02. All the results are based on 5% critical values unless stated otherwise.

The testing results. We begin with the full sample. The SupLR(�0:02) test equals 8.75, with

the critical value being 7.62. The null hypothesis is therefore rejected at the 5% level. Note that

the above full sample includes the recent Great Recession, which might have had a large e¤ect on

the test. To evaluate the evidence further, we consider a subsample that corresponds to 1960:I�

2006:IV. The SupLR(�0:02) test equals 8.57. The critical value is 7.61. The null hypothesis remains

rejected.

The analysis can be taken further. That is, the SupLR(�0:02) test can be computed over a range
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of subsamples to evaluate the consistency of the results. To this end, we let the �rst subsample

be 1960:I�1980:I and then gradually incorporate additional observations quarter-by-quarter. This

leads to 140 subsamples of increasing sizes. The resulting values are shown in Figure 5(a). Note

that the critical values are pointwise with respect to the subsamples, therefore the �gure should be

interpreted as an informal illustration. There, the test statistics exceed the critical values for 106

out of the 140 subsamples. We conclude that there is fairly consistent evidence favoring the regime

switching speci�cation. To our knowledge, this is the �rst occasion such consistent evidence for

regime switching in output growth is documented through hypothesis testing.

Figures 5(b)-(c) report the QLR and supTS tests over the same subsamples. The two tests

exceed the critical values only when the Great Recession period is included. Overall, the evidence

for the regime switching speci�cation is not as strong when viewed through these two tests.

Recession probabilities. Figures 6(a)-(b) report the regime probabilities for the two samples

1960:I�2006:IV and 1960:I�2014:IV. This allows us to examine the simple model (36)�s empirical

adequacy and also assess the e¤ect of the Great Recession on the estimates. In the �gures, the

shaded areas correspond to NBER�s recession dating available from its website.

The results suggest that the model provides an informative approximation. Speci�cally, for the

period 1960:I�2006:IV, the recession probabilities agree well with the NBER�s dating for all the

recessions. For the full sample, the two results remain consistent, except that the model now assigns

low probabilities to the relatively shallow recessions of 1969IV-1970:IV and 2001:I-2001:IV. This

follows because when the Great Recession is included, the estimates for (�1; �2; �; �
2; p; q) change

from (�0:16; 0:97; 0:09; 0:48; 0:77; 0:94) to (�0:54; 0:75; 0:19; 0:49; 0:66; 0:96) and, consequently, the
mean growth rate during recessions decreases from �0:18 to �0:67. The di¤erence can therefore
be viewed as re�ecting the unusual nature of the recent recession.

Robustness checks. We evaluate the results�robustness along two dimensions.

In practice, the lag order of the autoregression under the null hypothesis is unknown and often

determined using some information criterion. To re�ect such an uncertainty, we estimate the lag

orders associated with the subsamples using BIC and then repeat the analysis. The minimum and

maximum lag orders are set to 1 and 4. Note that here BIC is applied under the null hypothesis to

control the size of the test. This is di¤erent from using it to determine whether regime switching

is present as described in Section 6. The null hypothesis is rejected at the 5% level for 92 of

the 140 subsamples. The evidence of regime switching remains fairly consistent. At the same
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time, the results also points to the increased di¢ culty in distinguishing between a regime switching

speci�cation and a linear speci�cation that allows for more �exible serial dependencies.

We repeat the analysis but using reverse recursive subsamples. That is, we let 1994:IV�2014:IV

be the �rst subsample and then incorporate additional observations backward quarter-by-quarter.

The lag order is determined by BIC for each subsample. The results show that the null hypothesis

is rejected at the 5% level for 120 of the 140 subsamples. Finally, we exclude the Great Recession,

i.e., letting 1986:IV-2006:IV be the �rst subsample and then incorporate additional observations

backward quarter-by-quarter. The null hypothesis is now rejected at the 5% level for 47 out of

the 108 subsamples. It is rejected in 88 out of the 108 subsamples if the 10% nominal level is

used instead. Therefore, although the evidence in the latter situation is overall weaker, it remains

considerable and fairly consistent across the subsamples.

Further simulations. We evaluate the size and power properties using the parameter estimates

obtained above. Speci�cally, we simulate data using the model (36) with the parameter values

(�1; �2; �; �
2; p; q) set to the estimates obtained under the null and alternative hypotheses. The

sample sizes correspond to those implied by 1960:I�2006:IV and 1960:I�2014:IV. The results are

summarized below.

Consider the rejection frequencies under the null hypothesis. For the period 1960:I�2006:IV,

we obtain (e�; e�; e�2) = (0:60; 0:28; 0:65). The rejection frequencies at the 2:5%; 5:0%; 7:5% and 10%

levels are 3:18%; 6:62%; 10:30% and 14:68% for SupLR(�0:05) and 2:98%; 7:36%; 10:74% and 14:36%

for SupLR(�0:02). For the period 1960:I�2014:IV, we obtain (e�; e�; e�2) = (0:51; 0:33; 0:64). At the
the same levels, the rejection frequencies are 2:74%; 5:76%; 9:10% and 13:02% for SupLR(�0:05) and

2:80%; 5:64%; 9:38% and 12:94% SupLR(�0:02). These values are consistent with the simulation

results reported in the previous section.

Consider the rejection rates under the alternative hypothesis. The estimates of (�1; �2; �; �
2; p; q)

for the two periods are (�0:16; 0:97; 0:09; 0:48; 0:77; 0:94) and (�0:54; 0:75; 0:19; 0:49; 0:66; 0:96).
The rejection frequencies of SupLR(�0:02) equal 66% and 65%. Overall, the results suggest the test

can be informative in empirically relevant situations. In comparison, the rejection frequencies for

the QLR test are 14% and 25%, and for the supTS2 test are 24% and 10%, respectively.
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9 Conclusion

This paper analyzed a family of likelihood based tests for Markov regime switching in the context

of nonlinear models allowing for multiple switching parameters. In addition to deriving the limiting

distribution and obtaining a �nite sample re�nement, a uni�ed algorithm for simulating the critical

values was also developed. When applied to the US quarterly real GDP growth rates, the tests

delivered consistent evidence favoring the regime switching speci�cation. It is conjectured that

the techniques developed can have implications for hypothesis testing in other related contexts,

such as testing for Markov switching in state space models and in multivariate regressions. Such

investigations are currently in progress.
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Appendix
Throughout the appendix, �tjt�1(p; q; �; �1; �2); ft(�; �1) and ft(�; �2) are abbreviated as �tjt�1; f1t

and f2t; respectively. As stated prior to Lemma 1, "�" (e.g, ��tjt�1) denotes that a quantity is eval-
uated at �1 = �2 = �, where � is some arbitrary parameter value in �.
Proof of Lemma 1. The equation (15) can be written as

�t+1jt = p+ �
At
Bt
; (A.1)

where � is as de�ned in the lemma, At = f2t(�tjt�1 � 1) and Bt = (f1t � f2t)�tjt�1 + f2t:
Consider Lemma 1.1. Apply �f1t = �f2t = �ft:

�Bt = �ft and �At = �ft(��tjt�1 � 1): (A.2)

Plugging this into (A.1), we obtain ��t+1jt = p+ �(��tjt�1 � 1). This implies ��2j1 = p+ �(��1j0 � 1) =
p + � (�� � 1) = ��, where the last equality follows from the de�nition of � and ��. This process
can be iterated forward, leading to ��t+1jt = �� for all t � 1:

Consider Lemma 1.2. Di¤erentiate (A.1) with respect to �j (j = 1; :::; n� + 2n�):

r�j�t+1jt = �
�r�jAt

Bt
�
Atr�jBt
B2t

�
; (A.3)

where

r�jAt = r�jf2t(�tjt�1 � 1) + f2tr�j�tjt�1;
r�jBt = (r�jf1t �r�jf2t)�tjt�1 + (f1t � f2t)r�j�tjt�1 +r�jf2t:

Below, we evaluate the right hand side of (A.3) under three possible situations:
(1). If j 2 I0, then r�j �f1t = r�j �f2t and �f1t = �f2t = �ft, implying

r�j �At = (��tjt�1 � 1)r�j �f2t + �ftr�j��tjt�1 and r�j �Bt = r�j �f2t (A.4)

Combining this with (A.2), we obtain r�j��t+1jt = �r�j��tjt�1. In particular, at t = 1: r�j��2j1 =
�r�j��1j0 = �r�j�� = 0, where the last equality holds because �� is independent of �. This process
can be iterated forward, leading to r�j��t+1jt = 0 for all t � 1:

(2). If j 2 I1, then r�j �f2t = 0 and �f1t = �f2t = �ft, implying

r�j �At = �ftr�j��tjt�1 and r�j �Bt = ��tjt�1r�j �f1t: (A.5)

Combining this with (A.2), we have r�j��t+1jt = �r�j��tjt�1 � �(��tjt�1 � 1)��tjt�1r�j log �f1t =
�r�j��tjt�1 � � (�� � 1) ��r�j log �f1t. The result then follows because r = � (1� ��) ��. Note that
r�j��t+1jt can also be written as

r�j��t+1jt = r
t�1X
s=0

�sr�j log �f1(t�s) (A.6)
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(3). If j 2 I2, then r�j �f1t = 0 and �f1t = �f2t = �ft, implying

r�j �At = r�j �f2t(��tjt�1 � 1) + �ftr�j��tjt�1 and r�j �Bt = (1� ��tjt�1)r�j �f2t: (A.7)

Therefore, r�j��t+1jt = �r�j��tjt�1 + �(��tjt�1 � 1)��tjt�1r�j log �f2t = �r
Pt�1
s=0 �

sr�j log �f2(t�s). Be-
cause r�j �f2(t�s) = r�j�n�

�f1(t�s) when j 2 I2, it follows that r�j��t+1jt equals the negative of
(A.6).

Consider Lemma 1.3. Di¤erentiating (A.3) with respect to �k:

r�jr�k�t+1jt = �
nr�jr�kAt

Bt
�

r�jAtr�kBt
B2t

�
r�kAtr�jBt

B2t
�

Atr�jr�kBt
B2t

+ 2
Atr�jBtr�kBt

B3t

o
;

(A.8)
where

r�jr�kAt = r�jr�kf2t(�tjt�1 � 1) +r�jf2tr�k�tjt�1 +r�kf2tr�j�tjt�1 + f2tr�jr�k�tjt�1;
r�jr�kBt = (r�jr�kf1t �r�jr�kf2t)�tjt�1 + (r�jf1t �r�jf2t)r�k�tjt�1

+(r�kf1t �r�kf2t)r�j�tjt�1 + (f1t � f2t)r�jr�k�tjt�1 +r�jr�kf2t:

We now evaluate the right hand side of (A.8) at �1 = �2 = � under six possible situations:
(1). If j 2 I0 and k 2 I0, then �f1t = �f2t = �ft, r�j �f1t = r�j �f2t;r�k �f1t = r�k �f2t;r�jr�k �f1t =

r�jr�k �f2t andr�j��t+1jt = r�k��t+1jt = 0, implyingr�jr�k �At = r�jr�k �f2t(��tjt�1�1)+ �ftr�jr�k��tjt�1
and r�jr�k �Bt = r�jr�k �f2t. Combining them with (A.2) and (A.4), r�jr�k��t+1jt equals

�

�
r�jr�k �f2t(��tjt�1�1)+ �ftr�jr�k��tjt�1

�ft
�

(��tjt�1�1)r�j �f2tr�k �f2t
�f2t

�
(��tjt�1�1)r�k �f2tr�j �f2t

�f2t
�

(��tjt�1�1)r�jr�k �f2t
�ft

+ 2
(��tjt�1�1)r�j �f2tr�k �f2t

�f2t

�
= �r�jr�k��tjt�1:

Starting at t = 1 and iterating forward, we have r�jr�k��t+1jt = 0 for all t � 1.
The proof for the remaining �ve cases uses similar arguments; we only outline the main steps.
(2). If j 2 I0 and k 2 I1, then r�j �f1t = r�j �f2t;r�k �f2t = r�jr�k �f2t = r�j��t+1jt = 0, implying

r�jr�k �At = r�j �f2tr�k��tjt�1 + �ftr�jr�k��tjt�1 and r�jr�k �Bt = ��tjt�1r�jr�k �f1t. Combining these
two equations with (A.2), (A.4) and (A.5), r�jr�k��t+1jt equals

�

�
r�j �f2tr�k��tjt�1+ �ftr�jr�k��tjt�1

�ft
�

r�j �f2t(��tjt�1�1)��tjt�1r�k �f1t
�f2t

�
r�k��tjt�1r�j �f2t

�ft

�
(��tjt�1�1)��tjt�1r�jr�k �f1t

�ft
+

2(��tjt�1�1)��tjt�1r�j �f2tr�k �f1t
�f2t

�
The result follows from rearranging the terms.

(3). If j 2 I0 and k 2 I2, then r�j �f1t = r�j �f2t and r�k �f1t = r�jr�k �f1t = r�j��t+1jt = 0,
implying r�jr�k �At = r�jr�k �f2t(��tjt�1 � 1) +r�j �f2tr�k��tjt�1 + �ftr�jr�k��tjt�1 and r�jr�k �Bt =
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(1� ��tjt�1)r�jr�k �f2t. Combining these results with (A.2), (A.4) and (A.7), r�jr�k�t+1jt equals(
r�jr�k �f2t(��tjt�1�1)+r�j �f2tr�k��tjt�1+ �ftr�jr�k��tjt�1

�ft
+

(��tjt�1�1)2r�j �f2tr�k �f2t
�f2t

�
[r�k �f2t(��tjt�1�1)+ �ftr�k��tjt�1]r�j �f2t

�f2t
+

(��tjt�1�1)2r�jr�k �f2t
�ft

�
2(��tjt�1�1)2r�j �f2tr�k �f2t

�f2t

)
:

The result follows from rearranging the terms.
(4). If j 2 I1 and k 2 I1, then r�j �f2t = r�k �f2t = r�jr�k �f2t = 0, implying r�jr�k �At =

�ftr�jr�k��tjt�1 and r�jr�k �Bt = ��tjt�1r�jr�k �f1t +r�j �f1tr�k��tjt�1 +r�k �f1tr�j��tjt�1. Combining
them with (A.2), (A.5), r�jr�k�t+1jt equals

�

(
r�jr�k��tjt�1 �

��tjt�1r�j��tjt�1r�k �f1t
�ft

�
��tjt�1r�k��tjt�1r�j �f1t

�ft

�
(��tjt�1�1)[��tjt�1r�jr�k �f1t+r�j �f1tr�k��tjt�1+r�j��tjt�1r�k �f1t]

�ft
+

2(��tjt�1�1)��
2
tjt�1r�j �f1tr�k �f1t
�f2t

)
:

The result follows from rearranging the right hand side terms.
(5). If j 2 I1 and k 2 I2, then r�j �f2t = r�k �f1t = r�jr�k �f1t = r�jr�k �f2t = 0, implying

r�jr�k �At = r�k �f2tr�j��tjt�1+ �ftr�jr�k��tjt�1 and r�jr�k �Bt = r�jf1tr�k��tjt�1�r�k �f2tr�j��tjt�1.
Combining them with (A.2), (A.5) and (A.7), r�jr�k��t+1jt equals

�

(
r�k �f2tr�j��tjt�1+ �ftr�jr�k��tjt�1

�ft
�

(1���tjt�1)r�j��tjt�1r�k �f2t
�ft

� [
r�k �f2t(��tjt�1�1)+ �ftr�k��tjt�1]��tjt�1r�j �f1t

�f2t

�
(��tjt�1�1)

h
r�j f1tr�k��tjt�1�r�k �f2tr�j��tjt�1

i
�ft

�
2(��tjt�1�1)2��tjt�1r�j �f1tr�k �f2t

�f2t

)
:

The result follows from rearranging the terms.
(6). If j 2 I2 and k 2 I2, then r�j �f1t = r�k �f1t = r�jr�k �f1t = 0, implying r�jr�k �At =

r�jr�k �f2t(��tjt�1 � 1) +r�j �f2tr�k��tjt�1 +r�k �f2tr�j��tjt�1 + �ftr�jr�k��tjt�1 and r�jr�k �Bt = (1�
��tjt�1)r�jr�k �f2t � r�j �f2tr�k��tjt�1 � r�k �f2tr�j��tjt�1. Combining them with (A.2) and (A.7),
r�jr�k��t+1jt equals

�

�
r�jr�k �f2t(��tjt�1�1)+r�j �f2tr�k��tjt�1+r�k �f2tr�j��tjt�1+ �ftr�jr�k��tjt�1

�ft

� [
r�k �f2t(��tjt�1�1)+ �ftr�k��tjt�1](1���tjt�1)r�j �f2t

�f2t
�

h
r�j �f2t(��tjt�1�1)+ �ftr�j��tjt�1

i
(1���tjt�1)r�k �f2t

�f2t

�
(��tjt�1�1)[(1���tjt�1)r�jr�k �f2t�r�j �f2tr�k��tjt�1�r�k �f2tr�j��tjt�1]

�ft
+2

(��tjt�1�1)3r�j �f2tr�k �f2t
�f2t

�
:

The result follows from rearranging the terms.
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Consider Lemma 1.4. Di¤erentiating (A.8) with respect to �l:

r�jr�kr�l�t+1jt

= �
nr�jr�kr�lAt

Bt
�

r�jr�kAtr�lBt
B2t

�
r�jr�lAtr�kBt

B2t
�

r�jAtr�kr�lBt
B2t

+
2r�jAtr�kBtr�lBt

B3t

�
r�kr�lAtr�jBt

B2t
�

r�kAtr�jr�lBt
B2t

+
2r�kAtr�jBtr�lBt

B3t

�
r�lAtr�jr�kBt

B2t
�

Atr�jr�kr�lBt
B2t

+
2Atr�jr�kBtr�lBt

B3t

+
2r�lAtr�jBtr�kBt

B3t
+

2Atr�jr�lBtr�kBt
B3t

+
2Atr�jBtr�kr�lBt

B3t
�

6Atr�jBtr�kBtr�lBt
B4t

o
;

where

r�jr�kr�lAt = r�jr�kr�lf2t(�tjt�1 � 1) +r�jr�lf2tr�k�tjt�1 +r�kr�lf2tr�j�tjt�1
+r�lf2tr�jr�k�tjt�1 +r�jr�kf2tr�l�tjt�1 +r�jf2tr�kr�l�tjt�1
+r�kf2tr�jr�l�tjt�1 + f2tr�jr�kr�l�tjt�1;

r�jr�kr�lBt = (r�jr�kr�lf1t �r�jr�kr�lf2t)�tjt�1 + (r�jr�lf1t �r�jr�lf2t)r�k�tjt�1
+(r�kr�lf1t �r�kr�lf2t)r�j�tjt�1 + (r�lf1t �r�lf2t)r�jr�k�tjt�1
+r�jr�kr�lf2t + (r�jr�kf1t �r�jr�kf2t)r�l�tjt�1
+(r�jf1t �r�jf2t)r�kr�l�tjt�1 + (r�kf1t �r�kf2t)r�jr�l�tjt�1
+(f1t � f2t)r�jr�kr�l�tjt�1

We now evaluate the above terms at �1 = �2 = � for 10 possible cases. We only report the values
of �Ejkl;t but omit the derivation details.

(1). If j 2 I0; k 2 I0 and l 2 I0, then �Ejkl;t = 0:
(2). If j 2 I0; k 2 I0 and l 2 I1, then �Ejkl;t equals

r

�
�
r�jr�k �f2tr�l �f1t

�f2t
�

r�j �f2tr�kr�l �f1t
�f2t

�
r�k �f2tr�jr�l �f1t

�f2t
+

r�jr�kr�l �f1t
�ft

+ 2
r�j �f2tr�k �f2tr�l �f1t

�f3t

�
.

(3). If j 2 I0; k 2 I0 and l 2 I2, then �Ejkl;t equals

r

�
r�jr�k �f2tr�l �f2t

�f2t
+

r�j �f2tr�kr�l �f2t
�f2t

+
r�k �f2tr�jr�l �f2t

�f2t
�

r�jr�kr�l �f2t
�ft

� 2
r�j �f2tr�k �f2tr�l �f2t

�f3t

�
.

(4). If j 2 I0; k 2 I1 and l 2 I1, then �Ejkl;t equals

�(1� 2��)
�
r�jr�l �f1tr�k��tjt�1

�ft
+

r�jr�k �f1tr�l��tjt�1
�ft

+
r�l �f1tr�jr�k��tjt�1

�ft
+

r�k �f1tr�jr�l��tjt�1
�ft

�
r�j �f2tr�l �f1tr�k��tjt�1

�f2t
�

r�j �f2tr�k �f1tr�l��tjt�1
�f2t

�
+ r

�
r�jr�kr�l �f1t

�ft
�

r�j �f2tr�kr�l �f1t
�f2t

�
�2r��

�
r�l �f1tr�jr�k �f1t

�f2t
+

r�k �f1tr�jr�l �f1t
�f2t

� 2
r�j �f2tr�k �f1tr�l �f1t

�f3t

�
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(5). If j 2 I0; k 2 I1 and l 2 I2, then �Ejkl;t equals

�(1� 2��)
�
r�k �f1tr�jr�l��tjt�1

�ft
�

r�l �f2tr�jr�k��tjt�1
�ft

+
r�j �f2tr�l �f2tr�k��tjt�1

�f2t

�
r�j �f2tr�k �f1tr�l��tjt�1

�f2t
+

r�jr�k �f1tr�l�tjt�1
�ft

�
r�jr�l �f2tr�k��tjt�1

�ft

�
�r(1� 2��)

�
r�jr�k �f1tr�l �f2t

�f2t
+

r�jr�l �f2tr�k �f1t
�f2t

� 2
r�j �f2tr�k �f1tr�l �f2t

�f3t

�
:

(6). If j 2 I0; k 2 I2 and l 2 I2, then �Ejkl;t equals

��(1� 2��)
�
r�jr�l �f2tr�k��tjt�1

�ft
+

r�jr�k �f2tr�l��tjt�1
�ft

+
r�l �f2tr�jr�k��tjt�1

�ft
+

r�k �f2tr�jr�l��tjt�1
�ft

�
r�j �f2tr�l �f2tr�k��tjt�1

�f2t
�

r�j �f2tr�k �f2tr�l��tjt�1
�f2t

�
� r

�
r�jr�kr�l �f2t

�ft
�

r�j �f2tr�kr�l �f2t
�ft

�
:

+2r(1� ��)
�
r�l �f2tr�jr�k �f2t

�f2t
+

r�k �f2tr�jr�l �f2t
�f2t

� 2
r�j �f2tr�k �f2tr�l �f2t

�f3t

�
(7). If j 2 I1; k 2 I1 and l 2 I1, then �Ejkl;t equals

�(1� 2��)
�
r�jr�k �f1tr�l��tjt�1

�ft
+

r�jr�l �f1tr�k��tjt�1
�ft

+
r�kr�l �f1tr�j��tjt�1

�ft

+
r�j �f1tr�kr�l��tjt�1

�ft
+

r�k �f1tr�jr�l��tjt�1
�ft

+
r�l �f1tr�jr�k��tjt�1

�ft

�
�2�

�
r�j �f1tr�k��tjt�1r�l��tjt�1

�ft
+

r�k �f1tr�j��tjt�1r�l��tjt�1
�ft

+
r�l �f1tr�j��tjt�1r�k��tjt�1

�ft

�
+�(6�2� � 4��)

�
r�j �f1tr�k �f1tr�l��tjt�1

�f2t
+

r�k �f1tr�l �f1tr�j��tjt�1
�f2t

+
r�l �f1tr�j �f1tr�k��tjt�1

�f2t

�
�2r��

�
r�jr�k �f1tr�l �f1t

�f2t
+

r�jr�l �f1tr�k �f1t
�f2t

+
r�kr�l �f1tr�j �f1t

�f2t

�
+ r

r�jr�kr�l �f1t
�ft

+ 6r�2�
r�j �f1tr�k �f1tr�l �f1t

�f3t

(8). If j 2 I1; k 2 I1 and l 2 I2, then �Ejkl;t equals

��(1� 2��)
�
r�jr�k��tjt�1r�l �f2t

�ft
�

r�jr�l��tjt�1r�k �f1t
�ft

�
r�kr�l��tjt�1r�j �f1t

�ft
�

r�jr�k �f1tr�l��tjt�1
�ft

�
��(6�2� � 6�� + 1)

�
r�k �f1tr�l �f2tr�j��tjt�1

�f2t
+

r�j �f1tr�l �f2tr�k��tjt�1
�f2t

�
+2�

�
r�l �f2tr�j��tjt�1r�k��tjt�1

�ft
�

r�j �f1tr�k��tjt�1r�l��tjt�1
�ft

�
r�k �f1tr�j��tjt�1r�l��tjt�1

�ft

�
�r(1� 2��)

r�jr�k �f1tr�l �f2t
�f2t

+ (6�2� � 4��)
�
�
r�j �f1tr�k �f1tr�l��tjt�1

�f2t
� r

r�j �f1tr�k �f1tr�l �f2t
�f3t

�
:
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(9). If j 2 I1; k 2 I2 and l 2 I2, then �Ejkl;t equals

��(1� 2��)
�
r�jr�k��tjt�1r�l �f2t

�ft
+

r�jr�l��tjt�1r�k �f2t
�ft

�
r�kr�l��tjt�1r�j �f1t

�ft
+

r�kr�l �f2tr�j��tjt�1
�ft

�
��(6�2� � 6�� + 1)

�
r�l �f2tr�j �f1tr�k��tjt�1

�f2t
+

r�k �f2tr�j �f1tr�l��tjt�1
�f2t

�
� r(1� 2��)

r�kr�l �f2tr�j �f1t
�f2t

+2�

�
r�k �f2tr�j��tjt�1r�l��tjt�1

�ft
+

r�l �f2tr�j��tjt�1r�k��tjt�1
�ft

�
r�j �f1tr�k��tjt�1r�l��tjt�1

�ft

�
+[6(1� ��)2 � 4(1� ��)]

�
�
r�k �f2tr�l �f2tr�j��tjt�1

�f2t
+ r

r�j �f1tr�k �f2tr�l �f2t
�f3t

�
:

(10). If j 2 I2; k 2 I2 and l 2 I2, then �Ejkl;t equals

��(1� 2��)
�
r�jr�k �f2tr�l��tjt�1

�ft
+

r�jr�l �f2tr�k��tjt�1
�ft

+
r�kr�l �f2tr�j��tjt�1

�ft

+
r�j �f2tr�kr�l��tjt�1

�ft
+

r�k �f2tr�jr�l��tjt�1
�ft

+
r�l �f2tr�jr�k��tjt�1

�ft

�
+2r(1� ��)

�
r�j �f2tr�kr�l �f2t

�f2t
+

r�k �f2tr�jr�l �f2t
�f2t

+
r�l �f2tr�jr�k �f2t

�f2t

�
+�[6(1� ��)2 � 4(1� ��)]

�
r�j �f2tr�k �f2tr�l��tjt�1

�f2t
+

r�j �f2tr�l �f2tr�k��tjt�1
�f2t

+
r�k �f2tr�l �f2tr�j��tjt�1

�f2t

�
+2�

�
r�j �f2tr�k��tjt�1r�l��tjt�1

�f2t
+

r�k �f2tr�j��tjt�1r�l��tjt�1
�f2t

+
r�l �f2tr�j��tjt�1r�k��tjt�1

�f2t

�
�r

r�jr�kr�l �f2t
�ft

� 6r(1� ��)2
r�j �f2tr�k �f2tr�l �f2t

�f3t
: �

The next lemma provides stochastic bounds for ��t+1jt and its derivatives.

Lemma A.1 Suppose Assumption 4 hold. Then, there exists an open neighborhood of (��; ��) ;
denoted by B (��; ��) ; and a sequence of strictly stationary and ergodic random variables f�tg
satisfying E�1+ct < M <1 for some c;M > 0, such that:

sup
(�;�1)2B(��;��)

���r�i1 :::r�ik��t+1jt����(k)k < �t (t = 1; :::; T )

for all i1; :::; ik 2 f1; ::; 2n� + n�g and k = 1; 2; 3 and 4, where �(k) = 6 if k = 1; 2; 3 and �(k) = 5
if k = 4. The above inequalities hold uniformly over � � p; q � 1 � � with � being an arbitrary
number satisfying 0 < � < 1=2.

Proof of Lemma A.1. We use the di¤erence equations in Lemma 1 to relate r�i1 :::r�ik
��t+1jt to

the density functions �f1t and �f2t and their derivatives. Because the higher order derivatives depend
successively on the lower orders, we start with k = 1. Without loss of generality, suppose j 2 I1.
Then, apply (A.6):���r�j��t+1jt���6 �

 
t�1X
s=0

�����r�sr�j �f1(t�s)�ft�s

�����
!6

�
 1X
s=0

jr�sj �1=6t�s

!6
�
 1X
s=0

(1� �)s�1=6t�s

!6
;
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where the second inequality follows from Assumption 4 and the last inequality uses � = p+ q � 1.
Because f�tg is stationary and ergodic, the right hand side is also stationary and ergodic (White,
2001, Theorem 3.35). Denote it by �t and apply Minkowski�s inequality for an in�nite sum:

E�1+ct = E

" 1X
s=0

(1� �)s�1=6t�s

#6(1+c)
�
( 1X
s=0

h
E((1� �)s�1=6t�s)6(1+c)

i 1
6(1+c)

)6(1+c)

=

( 1X
s=0

(1� �)s
�
E�1+ct�s

� 1
6(1+c)

)6(1+c)
� L

( 1X
s=0

(1� �)s
)6(1+c)

;

where the last inequality holds because E�1+ct�s is �nite by Assumption 4. Because
P1
s=0(1 �

�)s = 1=� < 1, we have E�1+ct � L=�6(1+c) < 1. This establishes the result for k = 1. Let
M = L=�6(1+c):

The proof for k > 1 is similar. For k = 2, we have jr�jr�i��t+1jtj3 � (
P1
s=0

���s �Eji;t�s��)3. We
provide upper bounds for j �Eji;tj for �ve possible cases. Speci�cally, if j 2 I0 and i 2 I1, then

�� �Eji;t�� =
������rr�j �f2t�ft

r�i �f1t
�ft

+
rr�jr�i �f1t

�ft

����� �
�����rr�j �f2t�ft

r�i �f1t
�ft

�����+
�����rr�jr�i �f1t�ft

����� � 2 jrj �1=3t :

The same bound holds if j 2 I0 and i 2 I2. If j 2 I1 and i 2 I1, then j �Eji;tj � 2 j� (1� 2��)j�
1=6
t�1�

1=6
t +

3 jrj �1=3t . If j 2 I1 and i 2 I2, then j �Eji;tj � 2 j� (1� 2��)j�
1=6
t�1�

1=6
t + jr(2�� � 1)j �

1=3
t . If j 2 I2 and

k 2 I2, then j �Eji;tj � 2 j� (1� 2��)j�
1=6
t�1�

1=6
t + (jrj+ j2r(�� � 1)j) �

1=3
t . Consequently, there exists a

�nite constant C1, such that for all the �ve cases we have j �Eji;tj � C1(�1=6t�1�
1=6
t +�

1=3
t ). This implies���r�jr�i��t+1jt���3 � �P1

s=0C1(1� �)s(�
1=6
t�1�

1=6
t + �

1=3
t )

�3
. The right side is stationary and ergodic;

we continue to denote it by �t. By Minkowski�s inequality:

E�1+ct �
( 1X
s=0

�
E
�
C1(1� �)s(�1=6t�1�

1=6
t + �

1=3
t )

�3(1+c)� 1
3(1+c)

)3(1+c)
: (A.9)

Apply Minkowski�s inequality followed by the Cauchy�Schwarz inequality to the summands:

E
�
C1(1� �)s(�1=6t�1�

1=6
t + �

1=3
t )

�3(1+c)
� (C1(1� �)s)3(1+c)

��
E�

(1+c)=2
t�1 �

(1+c)=2
t

� 1
3(1+c)

+
�
E�

(1+c)
t

� 1
3(1+c)

�3(1+c)
� (C1(1� �)s)3(1+c)

��
E�

(1+c)
t�1 E�

(1+c)
t

� 1
6(1+c)

+
�
E�

(1+c)
t

� 1
3(1+c)

�3(1+c)
:

Because E�(1+c)t�1 < M and E�(1+c)t < L, the last term in the preceding display is no greater than

(1� �)3(1+c)sC3(1+c)1

h
(ML)

1
6(1+c) + L

1
3(1+c)

i3(1+c)
� C2(1� �)3(1+c)s; (A.10)

where C2 is a �nite constant independent of p and q. Plug this into (A.9), we have E�1+ct �
C2(
P1
s=0(1� �)s)3(1+c) = C2=�3(1+c) <1. This proves the result for k = 2.
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Now, consider k = 3. Inspecting the expressions of �Ejil;t reported in the proof of Lemma 1
shows that they comprise the following terms (a; b; c = 1; 2):

r�jr�i �fatr�l �fbt
�f2t

;
r�jr�ir�l �fat

�ft
;
r�j �fatr�i �fbtr�l �fct

�f3t
;
r�l �fatr�jr�i��tjt�1

�ft
;

r�j �fatr�l �fbtr�i��tjt�1
�f2t

;
r�jr�i �fatr�l��tjt�1

�ft
;
r�j �fatr�i��tjt�1r�l��tjt�1

�ft
:

(A.11)

By Assumption 4 and the above results for k = 1 and 2, the quantities in (A.11) are bounded, respec-
tively, by �1=2t ; �

1=2
t ; �

1=2
t ; �

1=6
t �

1=3
t�1; �

1=3
t �

1=6
t�1; �

1=3
t �

1=6
t�1 and �

1=6
t �

1=3
t�1. Therefore, the ten cases speci-

�ed in Lemma 1 all satisfy
�� �Ejil;t�� � C3(�1=2t +�

1=6
t �

1=3
t�1+�

1=3
t �

1=6
t�1), where C3 is a �nite constant inde-

pendent of p and q. This implies
���r�jr�ir�l��t+1jt���2 � ���P1

s=0(1� �)sC3(�
1=2
t + �

1=6
t �

1=3
t�1 + �

1=3
t �

1=6
t�1)

���2.
Denote the right hand side by �t and proceed along the same lines as between (A.9) and (A.10).
It then follows that E�1+ct < 1. For k = 4, the expressions of �Ejilm;t; although omitted here,
include terms as in (A.11) but with the orders of derivatives sum to 4 instead of 3. Using the same
arguments as between (A.9) and (A.10), it can be shown that E�1+ct <1 holds. �

The next lemma establishes stochastic orders of some quantities related to �tjt�1, f1t and f2t.

The quantities are all evaluated at (e�;e�;e�):
Lemma A.2 Let is; js; ls;ms; ns be arbitrary integers satisfying 1 � is; js; ls;ms; ns � 2n�+n� for
s 2 f1; 2; 3; 4g. The following results hold uniformly over � � p; q � 1� � with � being an arbitrary
number satisfying 0 < � < 1=2:

1. For any a 2 f1; 2g; u 2 f1; 2; 3; 4g and v 2 f0; 1; 2; 3g satisfying u+ v � 4, we have (interpret
r�j1 :::r�jve�tjt�1 as 1 when v = 0)

1

T

TX
t=1

r�i1 :::r�iu efateft r�j1 :::r�jve�tjt�1 = op(1); (A.12)

Further, if u+ v � 3, then the result holds with op(1) replaced by Op(T�1=2).

2. For any (a; b; c) 2 f1; 2g; (u;w) 2 f1; 2; 3g and v 2 f0; 1; 2g satisfying u+ v + w � 4 :

1

T

TX
t=1

r�i1 :::r�iu efateft r�j1 :::r�jv efbteft
r�l1 :::r�lw

efcteft = Op(1):

3. For any (a; b; c) 2 f1; 2g; (u;w) 2 f1; 2; 3g and (v; z) 2 f0; 1g satisfying u+ v + w + z � 3 :

1

T

TX
t=1

r�i1 efateft r�j1 :::r�ju efbteft
r�l1 :::r�lv

efcteft r�m1 :::r�mwe�tjt�1r�n1 :::r�nze�tjt�1 = Op(1):
Proof of Lemma A.2. By the mean value theorem, the left hand side of (A.12) equals

T�1
TX
t=1

r�i1 :::r�iuf
�
at

f�t
r�j1 :::r�jv �

�
tjt�1 (A.13)

+

(
T�3=2

TX
t=1

r�0
 
r�i1 :::r�iu �fat

�fat
r�j1 :::r�jv��tjt�1

!)
T 1=2

�e� � ��� ;
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where "�" and "�" denote that the relevant quantities are evaluated at the true values �0� =
(�0�; �

0
�; �

0
�) and ��

0
=
�
��
0
; ��
0
; ��
0
�
; where �� lies between e�0 = (e�0;e�0;e�0) and ��. The �rst summation

is over terms that are stationary and ergodic, which are bounded by �v=�(k)t �
u=�(k)
t by Assumption

4 and Lemma A.1. Apply Hölder�s inequality:

E(�
v=�(k)
t �

u=�(k)
t )1+c �

�
E
�
�
v(1+c)=�(k)
t

��(k)=v� v
�(k)

�
E
�
�
u(1+c)=�(k)
t

��(k)=(�(k)�v)��(k)�v
�(k)

�
�
E�1+ct

� v
�(k)

�
E�1+ct

��(k)�v
�(k)

where the last inequality follows because u + v < �(k). Both terms on the right hand side are
�nite by Assumption 4 and Lemma A.1. Therefore, the �rst term in the display (A.13) is op (1) by
Theorem 3.34 in White (2001). Now turn to the second term in the display (A.13). We have, for
any k 2 f1; :::; 2n� + n�g :�����T�3=2

TX
t=1

r�k

 
r�i1 :::r�iu �fat

�fat
r�j1 :::r�jv��tjt�1

!�����
�

�����T�3=2
TX
t=1

r�i1 :::r�iur�k �fat
�fat

r�j1 :::r�jv��tjt�1

�����+
�����T�3=2

TX
t=1

r�i1 :::r�iu �fat
�fat

r�j1 :::r�jvr�k��tjt�1

�����
+

�����T�3=2
TX
t=1

r�i1 :::r�iu �fat
�fat

r�k �fat
�fat

r�j1 :::r�jv��tjt�1

�����
� T�3=2

TX
t=1

n
2�
(u+1)=�(k)
t �

v=�(k)
t + �

u=�(k)
t �

(v+1)=�(k)
t

o
= Op

�
T�1=2

�
;

where the equality follows from Assumption 4, Lemma A.1 and u + v + 1 � 5. Therefore, the
display (A.13) is op (1).

Now we consider the cases with u+v � 3. If u+v < 3; then the terms inside the �rst summation
of (A.13) are bounded by �v=6t �

u=6
t . We have

E(�
v=6
t �

u=6
t )2(1+c) �

�
E(�

v(1+c)=3
t )

3
v

�v=3 �
E(�

u(1+c)=3
t )

3
(3�v)

�(3�v)=3
�
�
E�1+ct

�v=3 �
E�1+ct

�(3�v)=3
:

The right hand side is �nite. If u+v = 3, i.e., u = 3 and v = 0, then E(�v=6t �
u=6
t )2(1+c) = E�t

(1+c) <

1. Apply the central limit theorem; it follows that the left hand side of (A.12) is Op
�
T�1=2

�
.

Lemma A.2.2 and A.2.3 can be proved using the same arguments, i.e., �rst applying the mean
value theorem and then obtaining bounds for the two resulting terms separately. It follows that
the left hand side quantity in Lemma A.2.2 is bounded by T�1

PT
t=1 �

(u+v+w)=�(k)
t + Op(T

�1=2),

while that in Lemma A.2.3 is bounded by T�1
PT
t=1 �

(1+u+v)=�(k)
t �

(w+z)=�(k)
t +Op(T

�1=2). The two
leading terms both satisfy a law of large numbers, therefore are Op(1): �

We state some notations to be used in subsequent proofs. De�ne

�̂(�2) = (�̂(�2)
0; �̂1(�2)

0; �02)
0;
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where �̂(�2) and �̂1(�2) are de�ned in (17). Let �̂t+1jt; f̂1t and f̂2t denote �t+1jt(p; q; �; �1; �2),

ft(�; �1) and ft(�; �2) evaluated at (�; �1; �2) = (�̂(�2); �̂1(�2); �2). Also, let r�i1 :::r�ik �̂t+1jt,
r�i1 :::r�ik f̂1t and r�i1 :::r�ik f̂2t denote the k-th order derivatives of �t+1jt; f1t and f2t with re-
spect to the i1-th,:::ik-th elements of � evaluated at (�̂(�2); �̂1(�2); �2).
Proof of Lemma 2. As the proof is long, we organize it into three parts, corresponding to Lemma
2.1, 2.2 and 2.3 respectively.
Proof of the �rst result in Lemma 2. By construction, �̂(�2) satis�es

M(1)
j (p; q; �2) = T

�1
TX
t=1

M̂jt

B̂t
= 0 (j = 1; :::; n� + n�); (A.14)

where

B̂t = (f̂1t � f̂2t)�̂tjt�1 + f̂2t; (A.15)

M̂jt = (r�j f̂1t �r�j f̂2t)�̂tjt�1 + (f̂1t � f̂2t)r�j �̂tjt�1 +r�j f̂2t:

Because (A.14) holds for all �2 2 �, its derivatives with respect to �2 must equal zero. The
proof makes use of this property. It proceeds in three steps. For an arbitrary k 2 f1; :::; n�g, the
�rst step di¤erentiates the n� + n� equations in (A.14) with respect to �2k to obtain a system of
n� + n� linear equations, with r�2k �̂(�2) and r�2k �̂1(�2) being the unknowns. The second step
evaluates these equations at �2 = e� and provides approximations to them. The third step solves
these approximating equations to obtain explicit expressions for r�2k �̂(e�) and r�2k �̂1(e�). These
three steps are then repeated for all k 2 f1; :::; n�g to prove Lemma 2.1. The idea of di¤erentiating
the �rst order conditions is inspired by Cho and White (2007). At the same time the proof here is
more complex due to the presence of �t+1jt and the allowance for multiple switching parameters.

Step 1 for proving Lemma 2.1. Consider an arbitrary k 2 f1; :::; n�g and an arbitrary j 2
f1; :::; n� + n�g. Taking the �rst order derivative of the j-th equation (A.14) with respect to the
�2k (Here, view B̂t and M̂jt as functions of p; q and �2; note that � and �1 are now functions of
these three elements.):

M(2)
jk (p; q; �2) =

1

T

TX
t=1

r�2kM̂jt

B̂t
� 1

T

TX
t=1

r�2kB̂t
B̂2t

M̂jt = 0; (A.16)

where

r�2kM̂jt =
n
�̂tjt�1r�jr�0 f̂1t + (1� �̂tjt�1)r�jr�0 f̂2t + (r�j f̂1t �r�j f̂2t)r�0 �̂tjt�1 (A.17)

+(r�j�tjt�1)(r�0 f̂1t �r�0 f̂2t) + (f̂1t � f̂2t)(r�jr�0 �̂tjt�1)
o
r�2k �̂(�2);

and

r�2kB̂t =
n
�̂tjt�1r�0 f̂1t + (1� �̂tjt�1)r�0 f̂2t + (f̂1t � f̂2t)r�0 �̂tjt�1

o
r�2k �̂(�2) (A.18)

with

r�2k �̂(�2) =

264 r�2k �̂(�2)
r�2k �̂1(�2)

ek

375 ; (A.19)
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where ek is an n�-dimensional vector whose k-th element equals 1 and otherwise zero. We view
(A.16) as a linear equation with the �rst (n� +n�) elements of r�2k �̂(�2) being the unknowns. The
above di¤erentiation can be carried for all j = 1; :::; n� + n�; while keeping k �xed at the same
value. This delivers n� + n� equations with the same number of unknowns speci�ed in (A.19).

Step 2 for proving Lemma 2.1. We �rst evaluate T�1
PT
t=1(r�2kB̂t=B̂2t )M̂jt in (A.16) at �2 = e�

for an arbitrary j 2 f1; :::; n� + n�g. It equals (using ef1t = ef2t = eft and e�tjt�1 = ��)
1

T

TX
t=1

��r�j ef1t + (1� ��)r�j ef2tef2t [��r�0 ef1t + (1� ��)r�0 ef2t]r�2k �̂(e�):
Using (A.19), this can be rewritten as

1

T

TX
t=1

��r�j ef1t + (1� ��)r�j ef2tef2t [ r�0 ef1t r�01
ef1t ]

"
r�2k �̂(e�)
��r�2k �̂1(e�)

#

+
1

T

TX
t=1

��r�j ef1t + (1� ��)r�j ef2tef2t (1� ��)r�2k ef2t;
where r�0 ef1t denotes the derivative of ft (�; �1) with respect to � evaluated at �̂(e�) and �̂1(e�);
r�01

ef1t and r�2k ef2t are de�ned analogously. Further, if j 2 f1; :::; n�g, then preceding display
equals (using r�j ef1t = r�j ef2t)
1

T

TX
t=1

�
r�j ef1teft r�0 ef1teft r�j ef1teft

r�01
ef1teft
�"

r�2k �̂(e�)
��r�2k �̂1(e�)

#
+
1

T
(1� ��)

TX
t=1

r�j ef1teft r�2k ef2teft : (A.20)

Meanwhile, if j 2 fn� + 1; :::; n� + n�g, then the same display equals (using r�j ef2t = 0) �� times
(A.20). Let D be a diagonal matrix whose �rst n� diagonal elements equal 1 and the rest ��. Then
the above two cases for j can be combined, leading to

DeI " r�2k �̂(e�)
��r�2k �̂1(e�)

#
+D

264 (1� ��) 1T
PT
t=1

r� ef1teft r�2k ef2teft
(1� ��) 1T

PT
t=1

r�1 ef1teft r�2k ef2teft

375 ; (A.21)

where eI is de�ned in (20).
Now consider the �rst term in (A.16). It equals (using ef1t = ef2t = eft and e�tjt�1 = ��)�
1
T

PT
t=1

�
��r�jr�0 ef1teft +

(1���)r�jr�0 ef2teft +
r�j ef1t�r�j ef2teft r�0e�tjt�1 +r�je�tjt�1r�0 ef1t�r�0 ef2teft

��
r�2k �̂(e�):

All the terms inside the curly brackets are Op(T�1=2) by Lemma A.2.1. Their e¤ects are dominated
by eI; which is positive de�nite in large samples. Combining this with (A.21) and (A.16), we have:

eI " r�2k �̂(e�)
��r�2k �̂1(e�)

#
= �

264 (1� ��) 1T
PT
t=1

r� ef1teft r�2k ef2teft
(1� ��) 1T

PT
t=1

r�1 ef1teft r�2k ef2teft

375+Op(T�1=2): (A.22)
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The preceding display provides (n� + n�) linear equations with the same number of unknowns.
Step 3 for proving Lemma 2.1. We show how to solve (A.22) for k = n�. Consider the following

partition of the system (A.22) with eI22; e�2 and eB2 being scalars:" eI11 eI12eI21 eI22
#" e�1e�2

#
=

" eB1eB2
#
+Op(T

�1=2):

This implies " eI11 eI12
0 eI22 � eI21eI�111 eI12

#" e�1e�2
#
=

" eB1eB2 � eI21eI�111 eB1
#
+Op(T

�1=2); (A.23)

which further implies e�2 = [ eB2�eI21eI�111 eB1]=[eI22�eI21eI�111 eI12]+Op(T�1=2). Because eB1 = (�� � 1) eI12
and eB2 = (�� � 1) eI22, after cancellation we have e�2 = ���1+Op(T�1=2). Plugging this result into
the �rst set of equations in (A.23), we obtain e�1 = eI�111 eB1�eI�111 eI12e�2+Op(T�1=2) = (�� � 1) eI�111 eI12�eI�111 eI12 �(�� � 1) +Op(T�1=2)� + Op(T�1=2) = Op(T

�1=2). This completes the proof for the case
k = n�. For other values of k; the same argument can be used after exchanging the k- and n�-th
columns of eI and the k- and n�-th elements of e� and eB. �
Proof of the second result in Lemma 2. View the quantities in (A.16) as functions of �2, p
and q and di¤erentiate them with respect to the l-th element of �2 (l = 1; :::; n�) :

M(3)
jkl(p; q; �2) =

1

T

TX
t=1

(
r�2kr�2lM̂jt

B̂t
� r�2kM̂jtr�2lB̂t

B̂2t
� r�2kr�2lB̂t

B̂2t
M̂jt (A.24)

�r�2kB̂t
B̂2t

r�2lM̂jt + 2
r�2kB̂tr�2lB̂t

B̂3t
M̂jt

)
= 0;

where

r�2kr�2lM̂jt =

n�+2n�X
s=1

(
r�0 �̂tjt�1r�jr�s f̂1t + �̂tjt�1r�jr�sr�0 f̂1t (A.25)

�r�0 �̂tjt�1r�jr�s f̂2t + (1� �̂tjt�1)r�jr�sr�0 f̂2t
+(r�jr�0 f̂1t �r�jr�0 f̂2t)r�s �̂tjt�1 + (r�j f̂1t �r�j f̂2t)r�sr�0 �̂tjt�1
+(r�s f̂1t �r�s f̂2t)r�jr�0 �̂tjt�1 + (r�sr�0 f̂1t �r�sr�0 f̂2t)r�j �̂tjt�1

+(r�0 f̂1t �r�0 f̂2t)r�jr�s �̂tjt�1 + (f̂1t � f̂2t)r�jr�sr�0 �̂tjt�1

)
�

r�2k �̂s(�2)r�2l �̂(�2)

+

(
�̂tjt�1r�jr�0 f̂1t + (1� �̂tjt�1)r�jr�0 f̂2t + (r�j f̂1t �r�j f̂2t)r�0 �̂tjt�1

+(r�0 f̂1t �r�0 f̂2t)r�j �̂tjt�1 + (f̂1t � f̂2t)r�jr�0 �̂tjt�1

)
r�2kr�2l �̂(�2);
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and

r�2kr�2lB̂t =

n�+2n�X
s=1

(
r�0 �̂tjt�1r�s f̂1t + �̂tjt�1r�sr�0 f̂1t �r�0 �̂tjt�1r�s f̂2t (A.26)

+(1� �̂tjt�1)r�sr�0 f̂2t + (r�0 f̂1t �r�0 f̂2t)r�s �̂tjt�1 + (f̂1t � f̂2t)r�sr�0 �̂tjt�1

)
�r�2k �̂s(�2)r�2l �̂(�2)

+
n
�̂tjt�1r�0 f̂1t + (1� �̂tjt�1)r�0 f̂2t + (f̂1t � f̂2t)r�0 �̂tjt�1

o
r�2kr�2l �̂(�2):

We now apply (A.17), (A.18), (A.25) and (A.26) to analyze the �ve terms in (A.24). Start with
the third term T�1

PT
t=1[r�2kr�2lB̂t=B̂2t ]M̂jt. At �2 = e�, it equals

n�+2n�X
u=1

n�+2n�X
s=1

(
1

T

TX
t=1

��r�j ef1t + (1� ��)r�j ef2tef2t [r�ue�tjt�1r�s ef1t + ��r�sr�u ef1t �r�ue�tjt�1r�s ef2t
+ (1� ��)r�sr�u ef2t + (r�u ef1t �r�u ef2t)r�se�tjt�1]

)
r�2l �̂u(e�)r�2k �̂s(e�)

+

n�+n�X
s=1

(
1

T

TX
t=1

��r�j ef1t + (1� ��)r�j ef2tef2t [��r�s ef1t + (1� ��)r�s ef2t]
)
r�2kr�2l �̂s(e�):

Because r�2l �̂u(e�) and r�2k �̂s(e�) are Op �T�1=2� except when s 2 fn� + k; n� + n� + kg and
u 2 fn� + l; n� + n� + lg, the preceding display equals

1

T

TX
t=1

��r�j ef1t + (1� ��)r�j ef2tef2t fr�1le�tjt�1r�1k ef1t + ��r�1kr�1l ef1t �r�1le�tjt�1r�1k ef2t
+(1� ��)r�1kr�1l ef2t + (r�1l ef1t �r�1l ef2t)r�1ke�tjt�1gr�2l �̂1l(e�)r�2k �̂1k(e�)
+
1

T

TX
t=1

��r�j ef1t + (1� ��)r�j ef2tef2t fr�2le�tjt�1r�1k ef1t + ��r�1kr�2l ef1t �r�2le�tjt�1r�1k ef2t
+(1� ��)r�1kr�2l ef2t + (r�2l ef1t �r�2l ef2t)r�1ke�tjt�1gr�2l �̂2l(e�)r�2k �̂1k(e�)
+
1

T

TX
t=1

��r�j ef1t + (1� ��)r�j ef2tef2t fr�1le�tjt�1r�2k ef1t + ��r�2kr�1l ef1t �r�1le�tjt�1r�2k ef2t
+(1� ��)r�2kr�1l ef2t + (r�1l ef1t �r�1l ef2t)r�2ke�tjt�1gr�2l �̂1l(e�)r�2k �̂2k(e�)
+
1

T

TX
t=1

��r�j ef1t + (1� ��)r�j ef2tef2t fr�2le�tjt�1r�2k ef1t + ��r�2kr�2l ef1t �r�2le�tjt�1r�2k ef2t
+(1� ��)r�2kr�2l ef2t + (r�2l ef1t �r�2l ef2t)r�2ke�tjt�1gr�2l �̂2l(e�)r�2k �̂2k(e�)
+

n�+n�X
s=1

(
1

T

TX
t=1

��r�j ef1t + (1� ��)r�j ef2tef2t [��r�s ef1t + (1� ��)r�s ef2t]
)
r�2kr�2l �̂s(e�) +Op(T�1=2):
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Apply r�2l �̂1l(e�) = (���1)=��+Op �T�1=2�, r�2k �̂1k(e�) = (���1)=��+Op �T�1=2� and r�2l �̂2l(e�) =
r�2l �̂2l(e�) = 1 and rearrange the terms, the preceding display reduces to

1

T

TX
t=1

��r�j ef1t + (1� ��)r�j ef2tef2t
(�

1� ��
��

�
r�1kr�1l ef1t (A.27)

+
1

�2�
r�1le�tjt�1r�1k ef1t + 1

�2�
r�1l ef1tr�1ke�tjt�1

)

+

n�+n�X
s=1

(
1

T

TX
t=1

��r�j ef1t + (1� ��)r�j ef2tef2t [��r�s ef1t + (1� ��)r�s ef2t]
)
r�2kr�2l �̂s(e�) +Op(T�1=2):

As in the proof of Lemma2.1, the above display leads to (n� + n�) equations with j taking values
between 1 and (n� + n�). These equations can be written collectively as

DeI " r�2kr�2l �̂(e�)
��r�2kr�2l �̂1(e�)

#
+D

24 1
T

PT
t=1

r� ef1teft eUkl;t
1
T

PT
t=1

r�1 ef1teft eUkl;t
35+Op(T�1=2):

This completes the analysis for the third term in (A.24). Below we show the other terms in (A.24)
are all asymptotically negligible.

Consider the �rst term in (A.24). Applying the expression (A.25) to (A.24) leads to quantities of
the following form: T�1

PT
t=1(r�i1 :::r�iu efat= eft)(r�j1 :::r�jve�tjt�1); where a 2 f1; 2g; u 2 f1; 2; 3g

and v 2 f0; 1; 2g with 1 � u+ v � 3. They are all Op(T�1=2) because of Lemma A.2.1. Therefore,
this term is negligible. Consider the second term in (A.24). At �2 = e�, r�2kB̂t can be rewritten as

n�X
s=1

r�s ef1tr�2k �̂s(e�) + n�+n�X
s=n�+1

��r�s ef1tr�2k �̂s(e�) (A.28)

+

n�+2n�X
s=n�+n�+1

(1� ��)r�s ef2tr�2k �̂s(e�)
=

n�X
s=1

r�s ef1tr�2k �̂s(e�) + n�X
s=1;s 6=k

��r�1s ef1tr�2k �̂1s(e�) +r�1k ef1t ���r�2k �̂1k(e�) + (1� ��)� :
The preceding display is Op(T�1=2) because r�2k �̂s(e�) = Op(T�1=2) and r�2k �̂1s(e�) = Op(T�1=2)
for s 6= k, and ��r�2k �̂1k(e�) + (1 � ��) = Op(T�1=2). Therefore, the second term in (A.24) is also
negligible. The fourth and �fth terms are also Op(T�1=2) after applying (A.28) to r�2kB̂t.

Combining the above results for the �ve terms, we can rewrite (A.24) as

eI " r�2kr�2l �̂(e�)
��r�2kr�2l �̂1(e�)

#
= �

24 1
T

PT
t=1

r� ef1teft eUkl;t
1
T

PT
t=1

r�1 ef1teft eUkl;t
35+Op �T�1=2� :

Dividing both sides by eI leads to the desired result. �
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Proof of the third result in Lemma 2. View the quantities in (A.24) as functions of �2, p and
q and di¤erentiate them with respect to the h-th element of �2 (h = 1; :::; n�):

M(4)
jklh(p; q; �2) =

1

T

TX
t=1

(
r�2kr�2lr�2hM̂jt

B̂t
� r�2kr�2lM̂jtr�2hB̂t

B̂2t
(A.29)

�r�2kr�2hM̂jtr�2lB̂t
B̂2t

� r�2kM̂jtr�2lr�2hB̂t
B̂2t

+ 2
r�2kM̂jtr�2lB̂tr�2hB̂t

B̂3t

�r�2kr�2lr�2hB̂t
B̂2t

M̂jt �
r�2kr�2lB̂t

B̂2t
r�2hM̂jt + 2

r�2kr�2lB̂tr�2hB̂t
B̂3t

M̂jt

�r�2kr�2hB̂t
B̂2t

r�2lM̂jt �
r�2kB̂t
B̂2t

r�2lr�2hM̂jt + 2
r�2kB̂tr�2hB̂t

B̂3t
r�2lM̂jt

+2
r�2kr�2hB̂tr�2lB̂t

B̂3t
M̂jt + 2

r�2kB̂tr�2lr�2hB̂t
B̂3t

M̂jt

+2
r�2kB̂tr�2lB̂t

B̂3t
r�2hM̂jt � 6

r�2kB̂tr�2lB̂tr�2hB̂t
B̂4t

M̂jt:

)
= 0:

Among the �fteen terms, only the 1st and the 6th term involve third order derivatives. They will be
analyzed later. Among the remaining terms, we have the following �ve cases: (1) The 4th, 7th and
9th terms involve second order derivatives of B̂t and �rst order derivatives of M̂jt, which lead to:
T�1

PT
t=1(r�i1r�i2 efat= eft)(r�j1r�j2 efbt= eft), T�1PT

t=1(r�i1 efat= eft)(r�i2 efbt= eft)r�j1e�tjt�1r�j2e�tjt�1,
T�1

PT
t=1(r�i1 efat= eft)(r�j1r�j2 efbt= eft), T�1PT

t=1(r�i1 efat= eft)(r�j1 efbt= eft)r�j2e�tjt�1 and
T�1

PT
t=1(r�i1r�i2 efat= eft)r�j1e�tjt�1, where 1 � i1; i2; j1; j2 � n�+2n�, a = 1; 2 and b = 1; 2. They

are all Op (1) by Lemma A.2. (2) The 2rd, 3rd and 10th terms consist of �rst order derivatives of
B̂t and second order derivatives of M̂jt. They lead to: T�1

PT
t=1(r�i1 efat= eft)(r�j1r�j2r�j3 efbt= eft),

T�1
PT
t=1(r�i1r�i2 efat= eft)(r�j1 efbt= eft)r�j2e�tjt�1, T�1PT

t=1(r�i1 efat= eft)(r�i2 efbt= eft)r�j1r�j2e�tjt�1,
T�1

PT
t=1(r�i1r�i2 efat= eft)(r�j1 efbt= eft) and T�1PT

t=1(r�i1 efat= eft)(r�j1 efbt= eft)r�j2e�tjt�1, which are
all Op (1). These three terms are thus Op(T�1=2) after applying (A.28) to the �rst order derivatives
of B̂t. (3) The 5th, 11th and 14th terms consist of: T�1

PT
t=1(r�i1 efat= eft)(r�i2 efbt= eft)(r�j1r�j2 efct= eft),

T�1
PT
t=1(r�i1 efat= eft)(r�i2 efbt= eft)(r�i3 efct= eft)r�j1e�tjt�1, which are all Op (1). Consequently, these

three terms are Op(T�1=2) after applying (A.28). (4) The 8th, 12th and 13th terms lead to:
T�1

PT
t=1(r�i1 efat= eft)(r�j1 efbt= eft)(r�j2 efct= eft), T�1PT

t=1(r�i1 efat= eft)(r�i2 efbt= eft)(r�j1r�j2 efct= eft),
T�1

PT
t=1(r�i1 efat= eft)(r�i2 efbt= eft)(r�i3 efct= eft)r�j1e�tjt�1, which are all Op (1). (5) The 15th term

consists of T�1
PT
t=1(r�i1 efat= eft)(r�i2 efbt= eft)(r�i3 efct= eft)(r�i4 efct= efct). This term is Op

�
T�1=2

�
af-

ter applying (A.28).
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To analyze the remaining two terms in (A.29), we need third order derivatives of M̂jt and B̂t:

r�2kr�2lr�2hM̂jt

=

n�+2n�X
u=1

n�+2n�X
s=1

(
r�u �̂tjt�1r�jr�sr�0 f̂1t +r�ur�0 �̂tjt�1r�jr�s f̂1t + �̂tjt�1r�jr�sr�ur�0 f̂1t

+r�0 �̂tjt�1r�jr�sr�u f̂1t �r�u �̂tjt�1r�jr�sr�0 f̂2t �r�ur�0 �̂tjt�1r�jr�s f̂2t
+(1� �̂tjt�1)r�jr�sr�ur�0 f̂2t �r�0 �̂tjt�1r�jr�sr�u f̂2t
+(r�jr�ur�0 f̂1t �r�jr�ur�0 f̂2t)r�s �̂tjt�1 + (r�jr�u f̂1t �r�jr�u f̂2t)r�sr�0 �̂tjt�1
+(r�jr�0 f̂1t �r�jr�0 f̂2t)r�sr�u �̂tjt�1 + (r�j f̂1t �r�j f̂2t)r�sr�ur�0 �̂tjt�1
+(r�sr�0 f̂1t �r�sr�0 f̂2t)r�jr�u �̂tjt�1 + (r�s f̂1t �r�s f̂2t)r�jr�ur�0 �̂tjt�1
+(r�sr�ur�0 f̂1t �r�sr�ur�0 f̂2t)r�j �̂tjt�1 + (r�sr�u f̂1t �r�sr�u f̂2t)r�jr�0 �̂tjt�1
+(r�ur�0 f̂1t �r�ur�0 f̂2t)r�jr�s �̂tjt�1 + (r�u f̂1t �r�u f̂2t)r�jr�sr�0 �̂tjt�1
+(r�0 f̂1t �r�0 f̂2t)r�jr�sr�u �̂tjt�1

+(f̂1t � f̂2t)r�jr�sr�ur�0 �̂tjt�1

)
r�2k �̂s(�2)r�2l �̂u(�2)r�2h �̂(�2)

+

n�+2n�X
u=1

n�+2n�X
s=1

(
r�u �̂tjt�1r�jr�s f̂1t + �̂tjt�1r�jr�sr�u f̂1t �r�u �̂tjt�1r�jr�s f̂2t

+(1� �̂tjt�1)r�jr�sr�u f̂2t + (r�jr�u f̂1t �r�jr�u f̂2t)r�s �̂tjt�1
+(r�j f̂1t �r�j f̂2t)r�sr�u �̂tjt�1 + (r�s f̂1t �r�s f̂2t)r�jr�u �̂tjt�1
+(r�sr�u f̂1t �r�sr�u f̂2t)r�j �̂tjt�1 + (r�u f̂1t �r�u f̂2t)r�jr�s �̂tjt�1

+(f̂1t � f̂2t)r�jr�sr�u �̂tjt�1

)
[r�2kr�2h �̂s(�2)r�2l �̂u(�2) +r�2k �̂s(�2)r�2lr�2h �̂u(�2)]

+

n�+2n�X
s=1

(
�̂tjt�1r�jr�sr�0 f̂1t +r�0 �̂tjt�1r�jr�s f̂1t + (1� �̂tjt�1)r�jr�sr�0 f̂2t

�r�0 �̂tjt�1r�jr�s f̂2t + (r�jr�0 f̂1t �r�jr�0 f̂2t)r�s �̂tjt�1 + (r�j f̂1t �r�j f̂2t)r�sr�0 �̂tjt�1
+(r�sr�0 f̂1t �r�sr�0 f̂2t)r�j �̂tjt�1 + (r�s f̂1t �r�s f̂2t)r�jr�0 �̂tjt�1

+(r�0 f̂1t �r�0 f̂2t)r�jr�s �̂tjt�1 + (f̂1t � f̂2t)r�jr�sr�0 �̂tjt�1

)
r�2h �̂(�2)r�2kr�2l �̂s(�2);

+

(
�̂tjt�1r�jr�0 f̂1t + (1� �tjt�1)r�jr�0 f̂2t + (r�j f̂1t �r�j f̂2t)r�0 �̂tjt�1

+(r�0 f̂1t �r�0 f̂2t)r�j �̂tjt�1 + (f̂1t � f̂2t)r�jr�0 �̂tjt�1

)
r�2kr�2lr�2h �̂(�2);
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and

r�2kr�2lr�2hB̂t

=

n�+2n�X
s=1

n�+2n�X
u=1

(
r�ur�0 �̂tjt�1r�s f̂1t +r�u �̂tjt�1r�sr�0 f̂1t +r�0 �̂tjt�1r�sr�u f̂1t

+�̂tjt�1r�sr�ur�0 f̂1t �r�ur�0 �̂tjt�1r�s f̂2t �r�u �̂tjt�1r�sr�0 f̂2t + (1� �̂tjt�1)r�sr�ur�0 f̂2t
�r�0 �̂tjt�1r�sr�u f̂2t + (r�ur�0 f̂1t �r�ur�0 f̂2t)r�s �̂tjt�1 + (r�u f̂1t �r�u f̂2t)r�sr�0 �̂tjt�1

+(r�0 f̂1t �r�0 f̂2t)r�sr�u �̂tjt�1 + (f̂1t � f̂2t)r�sr�ur�0 �̂tjt�1

)
r�2l �̂u(�2)r�2k �̂s(�2)r�2h �̂(�2)

+

n�+2n�X
s=1

n�+2n�X
u=1

(
r�u �̂tjt�1r�s f̂1t + �̂tjt�1r�sr�u f̂1t �r�u �̂tjt�1r�s f̂2t + (1� �̂tjt�1)r�sr�u f̂2t

+(r�u f̂1t �r�u f̂2t)r�s �̂tjt�1 + (f̂1t � f̂2t)r�sr�u �̂tjt�1

)
�h

r�2hr�2l �̂u(�2)r�2k �̂s(�2) +r�2l �̂u(�2)r�2hr�2k �̂s(�2)
i

+

n�+2n�X
s=1

(
r�0 �̂tjt�1r�s f̂1t + �̂tjt�1r�sr�0 f̂1t + (1� �̂tjt�1)r�sr�0 f̂2t �r�0 �̂tjt�1r�s f̂2t

+(r�0 f̂1t �r�0 f̂2t)r�s �̂tjt�1 + (f̂1t � f̂2t)r�sr�0 �̂tjt�1

)
r�2h �̂(�2)r�2kr�2l �̂s(�2)

+
h
�̂tjt�1r�0 f̂1t + (1� �̂tjt�1)r�0 f̂2t + (f̂1t � f̂2t)r�0 �̂tjt�1

i
r�2kr�2lr�2h �̂(�2):

Consider the 1st term in (A.29). In the expression of r�2kr�2lr�2hM̂jt, only the last two lines
involve third order derivatives of �̂(�2). These derivatives are multiplied by (after division by eft):
T�1

PT
t=1r�i1r�i2 efat= eft and T�1PT

t=1(r�i1 efat= eft)r�j1e�tjt�1, where a = 1; 2. They are Op(T�1=2)
by Lemma A.2. The remaining components ofr�2kr�2lr�2hM̂jt lead to: T�1

PT
t=1(r�i1 :::r�ik

efat= eft)
for a = 1; 2 and k � 4 and T�1

PT
t=1(r�i1 :::r�ik

efat= eft)(r�j1 :::r�jme�tjt�1) for a = 1; 2 and

k +m � 4: They are all op(1) by Lemma A.2. Therefore the contribution of r�2kr�2lr�2hM̂jt to
(A.29) is op(1). Finally, we turn to the 6th term in (A.29). In the expression for r�2kr�2lr�2hB̂t,
only the �nal line involves third order derivatives of �̂(�2). It can be analyzed in the same way as the
second term in (A.16); see Step 2 of the proof there. The remaining components, multiplied by M̂jt,
lead to: T�1

PT
t=1(r�i1 efat= eft)(r�i2 efbt= eft)(r�j1r�j2e�tjt�1), T�1PT

t=1(r�i1r�i2 efat= eft)(r�j1 efbt= eft),
T�1

PT
t=1(r�i1r�i2 efat= eft)(r�j1 efbt= eft)(r�j2e�tjt�1), T�1PT

t=1(r�i1r�i2r�i3 efat= eft)(r�j1 efbt= eft) and
T�1

PT
t=1(r�i1 efat= eft)(r�i2 efbt= eft)(r�j1e�tjt�1) for a = 1; 2 and b = 1; 2. They are all Op (1) by

Lemma A.2. This implies the desired result. �
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Proof of Lemma 3. The �rst order derivative with respect to the j-th element of �2 satis�es

L(1)j (p; q; �2) =
TX
t=1

1

B̂t

�
r�0 f̂1t�̂tjt�1 +r�0 f̂2t(1� �̂tjt�1) + (f̂1t � f̂2t)r�0 �̂tjt�1

�
r�2j �̂(�2)

=

n�+n�X
s=1

(
TX
t=1

1

B̂t

�
r�s f̂1t�̂tjt�1 +r�s f̂2t(1� �̂tjt�1) + (f̂1t � f̂2t)r�s �̂tjt�1

�)
r�2j �̂s(�2)

+
TX
t=1

1

B̂t

�
r�2j f̂2t(1� �̂tjt�1) + (f̂1t � f̂2t)r�2j �̂tjt�1

�
;

where the second equality follows from the de�nition of r�2j �̂(�2); see (A.19). The term inside
the curly brackets equals zero because of the �rst order conditions determining �̂(�2) and �̂1(�2).
Therefore, we can write

L(1)j (p; q; �2) =
TX
t=1

L̂jt

B̂t
;

where B̂t is de�ned in (A.15) and L̂jt = r�2j f̂2t(1 � �̂tjt�1) + (f̂1t � f̂2t)r�2j �̂tjt�1. The following
results hold at �2 = e�: e�tjt�1 = ��; �̂1(e�) = e� and �̂(e�) = e�. Consequently, L(1)j (p; q;e�) = (1 �
��)
PT
t=1(r�2j ef2t= eft) = 0, where the last equality follows because e� is the MLE of the null likelihood.

This proves the �rst result in the lemma.
Now consider the second result. Because e�tjt�1 = ��, the following identity holds at �2 = e�:

L̂jt = [(1� ��)=��]M̂(n�+j)t: (A.30)

This relationship generalizes an analogous result in Cho and White (2007, p. 1683-1684, c.f.
the relationship between ht (�2) and kt (�2)) to Markov switching models. It allows us to re-
late L(2)jk (p; q; �2) to M

(2)
(n�+j)k

(p; q; �2) when analyzing the former�s properties. Speci�cally, we

di¤erentiate L(1)j (p; q; �2) with respect to the k-th element of �2:

L(2)jk (p; q; �2) =
TX
t=1

r�2k L̂jt
B̂t

�
TX
t=1

r�2kB̂t
B̂2t

L̂jt,

where

r�2k L̂jt = fr�2jr�0 f̂2t(1� �̂tjt�1)�r�2j f̂2tr�0 �̂tjt�1 (A.31)

+(r�0 f̂1t �r�0 f̂2t)r�2j �̂tjt�1 + (f̂1t � f̂2t)r�2jr�0 �̂tjt�1gr�2k �̂(�2):

BecauseM(2)
(n�+j)k

(p; q; �2) = 0, we have

T�1=2L(2)jk (p; q; �2) = T�1=2L(2)jk (p; q; �2)� T
1=2

�
1� ��
��

�
M(2)

(n�+j)k
(p; q; �2) (A.32)

= T�1=2
TX
t=1

(
r�2k L̂jt
B̂t

�
�
1� ��
��

� r�2kM̂(n�+j)t

B̂t

)

�T�1=2
TX
t=1

r�2kB̂t
B̂2t

�
L̂jt �

�
1� ��
��

�
M̂(n�+j)t

�
;
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where second summation on the right hand side equals 0 at �2 = e� because of (A.30). Now consider
the two terms in the �rst summation separately. At �2 = e�, T�1=2PT

t=1r�2k L̂jt=B̂t equals

T�1=2
TX
t=1

1eft
�
(1� ��)r�1jr�1k ef1t + 1

��
r�1j ef1tr�1ke�tjt�1 + 1

��
r�1k ef1tr�2je�tjt�1�+Op(T�1=2):

Meanwhile, at �2 = e�, T�1=2PT
t=1r�2kM̂(n�+j)t=B̂t equals

�T�1=2
TX
t=1

1eft
�
(1� ��)r�1jr�1k ef1t + 1

��
r�1j ef1tr�1ke�tjt�1 + 1

��
r�1k ef1tr�2je�tjt�1�+Op(T�1=2):

The result follows by combining the above two displays.
Consider the third order derivatives. Using (A.32), we have

T�3=4L(3)jkl(p; q; �2)� T
1=4

�
1� ��
��

�
M(3)

(n�+j)kl
(p; q; �2) (A.33)

= T�3=4
TX
t=1

(
r�2kr�2lL̂jt

B̂t
�
�
1� ��
��

� r�2kr�2lM̂(n�+j)t

B̂t

)

�T�3=4
TX
t=1

r�2lB̂t
B̂t

(
r�2k L̂jt
B̂t

�
�
1� ��
��

� r�2kM̂(n�+j)t

B̂t

)

�T�3=4
TX
t=1

r�2kB̂t
B̂t

(
r�2lL̂jt
B̂t

�
�
1� ��
��

� r�2lM̂(n�+j)t

B̂t

)

�T�3=4
TX
t=1

r�2kr�2lB̂t
B̂2t

�
L̂jt �

�
1� ��
��

�
M̂(n�+j)t

�

+2T�3=4
TX
t=1

r�2kB̂tr�2lB̂t
B̂3t

�
L̂jt �

�
1� ��
��

�
M̂(n�+j)t

�
;

where the last two summations equal 0 because of (A.30) and

r�2kr�2lL̂jt

=

n�+2n�X
s=1

(
r�2jr�sr�0 f̂2t(1� �̂tjt�1)�r�2jr�s f̂2tr�0 �̂tjt�1 �r�2jr�0 f̂2tr�s �̂tjt�1

�r�2j f̂2tr�sr�0 �̂tjt�1 + (r�sr�0 f̂1t �r�sr�0 f̂2t)r�2j �̂tjt�1 + (r�s f̂1t �r�s f̂2t)r�2jr�0 �̂tjt�1

+(r�0 f̂1t �r�0 f̂2t)r�2jr�s �̂tjt�1 + (f̂1t � f̂2t)r�2jr�sr�0 �̂tjt�1

)
r�2k �̂s(�2)r�2l �̂(�2)

+

(
r�2jr�0 f̂2t(1� �̂tjt�1)�r�2j f̂2tr�0 �̂tjt�1 + (r�0 f̂1t �r�0 f̂2t)r�2j �̂tjt�1

+(f̂1t � f̂2t)r�2jr�0 �̂tjt�1

)
r�2kr�2l �̂(�2):
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The �rst summation in (A.33) consists of the following: T�3=4
PT
t=1(r�i1 :::r�iu efat= eft)r�j1 :::r�jve�tjt�1

with u+ v � 3. They are Op(T�1=4) by the �rst result in Lemma A.2. Combining this result with
Lemma 2, it follows that this summation is Op(T�1=4). The remaining two summations in (A.33)
have the same structure. They are both Op(T�1=4) after applying (A.28).

Consider the fourth order derivatives. Applying (A.33) and omitting terms that are zero implied
by (A.30), we have

T�1L(4)jklm(p; q; �2)�
�
1� ��
��

�
M(4)

(n�+j)klm
(p; q; �2) (A.34)

= T�1
TX
t=1

(
r�2kr�2lr�2mL̂jt

B̂t
�
�
1� ��
��

� r�2kr�2lr�2mM̂(n�+j)t

B̂t

)

�T�1
TX
t=1

r�2mB̂t
B̂t

(
r�2kr�2lL̂jt

B̂t
�
�
1� ��
��

� r�2kr�2lM̂(n�+j)t

B̂t

)

�T�1
TX
t=1

r�2lr�2mB̂t
B̂t

(
r�2k L̂jt
B̂t

�
�
1� ��
��

� r�2kM̂(n�+j)t

B̂t

)

�T�1
TX
t=1

r�2lB̂t
B̂t

(
r�2mr�2k L̂jt

B̂t
�
�
1� ��
��

� r�2kr�2mM̂(n�+j)t

B̂t

)

+2T�1
TX
t=1

r�2mB̂t
B̂t

(
r�2k L̂jtr�2lB̂t

B̂2t
�
�
1� ��
��

� r�2kM̂(n�+j)tr�2lB̂t
B̂2t

)

�T�1
TX
t=1

r�2kr�2lB̂t
B̂t

(
r�2mL̂jt
B̂t

�
�
1� ��
��

� r�2mM̂(n�+j)t

B̂t

)

�T�1
TX
t=1

r�2kr�2mB̂t
B̂t

(
r�2lL̂jt
B̂t

�
�
1� ��
��

� r�2lM̂(n�+j)t

B̂t

)

�T�1
TX
t=1

r�2kB̂t
B̂t

(
r�2lr�2mL̂jt

B̂t
�
�
1� ��
��

� r�2lr�2mM̂(n�+j)t

B̂t

)

+2T�1
TX
t=1

r�2kB̂t
B̂t

(
r�2lL̂jtr�2mB̂t

B̂2t
�
�
1� ��
��

� r�2mB̂tr�2lM̂(n�+j)t

B̂2t

)

+2T�3=4
TX
t=1

r�2kB̂tr�2lB̂t
B̂2t

(
r�2mL̂jt
B̂t

�
�
1� ��
��

� r�2mM̂(n�+j)t

B̂t

)
;
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where

r�2kr�2lr�2mL̂jt

=

n�+2n�X
u=1

n�+2n�X
s=1

(
r�2jr�sr�ur�0 f̂2t(1� �̂tjt�1) +r�2jr�sr�u f̂2tr�0 �̂tjt�1

�r�2jr�sr�0 f̂2tr�u �̂tjt�1 �r�2jr�s f̂2tr�ur�0 �̂tjt�1
�r�2jr�ur�0 f̂2tr�s �̂tjt�1 �r�2jr�u f̂2tr�sr�0 �̂tjt�1
�r�2jr�0 f̂2tr�sr�u �̂tjt�1 �r�2j f̂2tr�sr�ur�0 �̂tjt�1
+(r�sr�ur�0 f̂1t �r�sr�ur�0 f̂2t)r�2j �̂tjt�1 + (r�sr�u f̂1t �r�sr�u f̂2t)r�2jr�0 �̂tjt�1
+(r�sr�0 f̂1t �r�sr�0 f̂2t)r�2jr�u �̂tjt�1 + (r�s f̂1t �r�s f̂2t)r�2jr�ur�0 �̂tjt�1
+(r�ur�0 f̂1t �r�ur�0 f̂2t)r�2jr�s �̂tjt�1 + (r�u f̂1t �r�u f̂2t)r�2jr�sr�0 �̂tjt�1

+(r�0 f̂1t �r�0 f̂2t)r�2jr�sr�u �̂tjt�1 + (f̂1t � f̂2t)r�2jr�sr�ur�0 �̂tjt�1

)
�

r�2k �̂s(�2)r�2l �̂u(�2)r�2m �̂(�2)

+

n�+2n�X
u=1

n�+2n�X
s=1

(
r�2jr�sr�u f̂2t(1� �̂tjt�1)�r�2jr�s f̂2tr�u �̂tjt�1 �r�2jr�u f̂2tr�s �̂tjt�1

�r�2j f̂2tr�sr�u �̂tjt�1 + (r�sr�u f̂1t �r�sr�u f̂2t)r�2j �̂tjt�1 + (r�s f̂1t �r�s f̂2t)r�2jr�u �̂tjt�1

+(r�u f̂1t �r�u f̂2t)r�2jr�s �̂tjt�1 + (f̂1t � f̂2t)r�2jr�sr�u �̂tjt�1

)
�h

r�2mr�2k �̂s(�2)r�2l �̂u(�2) +r�2k �̂s(�2)r�2lr�2m �̂u(�2)
i

+

n�+2n�X
s=1

(
r�2jr�sr�0 f̂2t(1� �̂tjt�1)�r�2jr�s f̂2tr�0 �̂tjt�1

�r�2jr�0 f̂2tr�s �̂tjt�1 �r�2j f̂2tr�sr�0 �̂tjt�1
+(r�sr�0 f̂1t �r�sr�0 f̂2t)r�2j �̂tjt�1 + (r�s f̂1t �r�s f̂2t)r�2jr�0 �̂tjt�1

+(r�0 f̂1t �r�0 f̂2t)r�2jr�s �̂tjt�1 + (f̂1t � f̂2t)r�2jr�sr�0 �̂tjt�1

)
�

r�2kr�2l �̂s(�2)r�2m �̂(�2)

+

n�+2n�X
s=1

(
r�2jr�s f̂2t(1� �̂tjt�1)�r�2j f̂2tr�s �̂tjt�1 + (r�s f̂1t �r�s f̂2t)r�2j �̂tjt�1

+(f̂1t � f̂2t)r�2jr�s �̂tjt�1

)
r�2kr�2lr�2m �̂s(�2):

We consider the terms in (A.34) separately. The �rst summation involves the following quanti-
ties: T�1

PT
t=1(r�i1 :::r�ik

efat= eft) for k = 2; 3; 4 and T�1PT
t=1(r�i1 :::r�ik

efat= eft)(r�j1 :::r�jme�tjt�1)
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for 2 � k +m � 4. They are all op(1). Consequently the �rst summation is also op (1). The 2nd,
4th, 5th, 8th, 9th and 10th terms involve �rst order derivatives of B̂t, and are op (1) because of the
relationship (A.28). The remaining three terms have the same structure. It su¢ ces to analyze the
�rst of them:

�T�1
TX
t=1

r�2lr�2mB̂t
B̂t

(
r�2k L̂jt
B̂t

�
�
1� ��
��

� r�2kM̂(n�+j)t

B̂t

)
(A.35)

Further, forr�2lr�2mB̂t; it su¢ ces to consider ((1� ��)=��)r�1lr�1m ef1t+(1=�2�)r�1l ef1tr�1me�tjt�1+
(1=�2�)r�1le�tjt�1r�1m ef1t+Pn�+n�

s=1 (��r�s ef1t+(1���)r�s ef2t)r�2lr�2m �̂s(e�). For r�2k L̂jt, it su¢ ces
to consider (1� ��)r�1jr�1k ef1t+(1=��)r�1j ef1tr�1ke�tjt�1+(1=��)r�1je�tjt�1r�1k ef1t. Forr�2kM̂(n�+j)t,

it su¢ ces to consider � (1� ��)r�1jr�1k ef1t � (1=��)r�1j ef1tr�1ke�tjt�1 � (1=��)r�1je�tjt�1r�1k ef1t.
Combining the above three formulas, we have, at e� (A.35) equals

�T�1
TX
t=1

24eUlm;t + n�+n�X
s=1

��r�s ef1t + (1� ��)r�s ef2teft r�2lr�2m �̂s(e�)
35 eUjk;t + op (1)

= �T�1
TX
t=1

eUlm;t eUjk;t � T�1 TX
t=1

(eUjk;tr(�0;�01) ef1teft
) eI�1 eDlm + op (1)

= �
neVjklm � eD0jkeI�1 eDlmo+ op (1) ;

where the �rst equality uses Lemma 2.2 and the second applies (20). Consequently,

T�1L(4)jklm(p; q;e�)� T�1�1� ����

�
M(4)

(n�+j)klm
(p; q;e�)

= �
neVjklm � eD0jkeI�1 eDlm + eVjmkl � eD0jmeI�1 eDkl + eVkmjl � eD0kmeI�1 eDjlo+ op (1) :

This proves the �nal result of the lemma. �
The next lemma will be used in the proof of Proposition 1 for establishing the stochastic

equicontinuity. We use "*" to signify that the quantity is evaluated at the true parameter value.

Lemma A.3 Let Assumptions 1-5 and the null hypothesis hold. Let zt(�) = T�1=2
Pt�1
s=1 �

t�s"js"it,
where "it = r�1if�1t=f�t and "js = r�1jf�1s=f�s . Then, for any �, �1 and �2 satisfying � � 1 � �1 �
� � �2 � 1� �, we have

E

0@�����
TX
t=1

[zt(�)� zt(�1)]
�����
2 �����

TX
t=1

[zt(�2)� zt(�)]
�����
2
1A � C (�� �1)2 ; (A.36)

where C is a �nite constant that depends only on 0 < � < 1=2 and the moments of "it and "js up
to the fourth order.

Proof. Let ct�s(�) = T�1=2�t�s, ct�s(�1; �) = ct�s(�) � ct�s(�1) and zt(s; r) = zt(r) � zt(s). We
�rst show that the left hand side of (A.36) is bounded from above by

C

 
TX
t=1

t�1X
s=1

ct�s(�1; �)
2

! 
TX
t=1

t�1X
h=1

ct�h(�; �2)
2

!
: (A.37)
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Because "js and "it are martingale di¤erences, the left hand side equals

E
TX
t=1

zt(�1; �)
2zt(�; �2)

2 + E
TX
t=1

TX
k=1;k 6=t

zt(�1; �)
2zk(�; �2)

2

+2E
TX
t=1

TX
l=1;l 6=t

zt(�1; �)zl(�1; �)zt(�; �2)zl(�; �2)

= (T.1)+(T.2)+(T.3).

We analyze the three terms separately:

(T.2) = E
TX
t=1

"2it

 
t�1X
s=1

ct�s(�1; �)"js

!2 t�1X
k=1

"2ik

 
k�1X
h=1

ck�h(�; �2)"jh

!2

+E

TX
k=1

"2ik

 
k�1X
h=1

ck�h(�; �2)"jh

!2 k�1X
t=1

"2it

 
t�1X
s=1

ct�s(�1; �)"js

!2
:

Due to symmetry, it su¢ ces to consider the �rst term on the right hand side, which equals

C1

TX
t=1

t�1X
k=1

E

 
t�1X
s=1

ct�s(�1; �)
2"2js

!
"2ik

 
k�1X
h=1

ck�h(�; �2)
2"2jh

!
(I)

+C1

TX
t=1

t�1X
k=1

k�1X
s=1

k�1X
h=1;h 6=s

ct�s(�1; �)ct�h(�1; �)ck�s(�; �2)ck�h(�; �2) (II)

for some 0 < C1 < 1, where C1 depends only on E"2it and E"2jt. (Below, the �nite constants Cs
(s = 2; 3; 4; 5) also depend only on the moments of "jt and "it, up to the fourth order). Term (I) is
further bounded by

C2

TX
t=1

X
k<t

(
t�1X
s=1

ct�s(�1; �)
2)(

k�1X
h=1

ck�h(�; �2)
2) � C2

TX
t=1

(
t�1X
s=1

ct�s(�1; �)
2)

TX
t=1

(
t�1X
h=1

ct�h(�; �2)
2):

(A.38)
Applying the Cauchy-Schwarz inequality to the elements of (II), we have

Pk�1
s=1 jct�s(�1; �)ck�s(�; �2)j �

(
Pk�1
s=1 ct�s(�1; �)

2)1=2(
Pk�1
s=1 ck�s(�; �2)

2)1=2 and
Pk�1
h=1 jct�h(�1; �)ck�h(�; �2)j � (

Pk�1
h=1 ct�h(�1; �)

2)1=2

(
Pk�1
h=1 ck�h(�; �2)

2)1=2. Combining these two inequalities:

j(II)j � C1

TX
t=1

X
k<t

 
k�1X
s=1

ct�s(�1; �)
2

! 
k�1X
h=1

ck�h(�; �2)
2

!
(A.39)

� C1

TX
t=1

 
t�1X
s=1

ct�s(�1; �)
2

!
TX
t=1

 
t�1X
h=1

ct�h(�; �2)
2

!
;

which is proportional to (A.38). Hence,

j(I)+(II)j � C3
TX
t=1

 
t�1X
s=1

ct�s(�1; �)
2

!
TX
t=1

 
t�1X
h=1

ct�h(�; �2)
2

!
: (A.40)
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Apply the Cauchy-Schwarz inequality to (T.3):

j(T.3)j � E
 

TX
t=1

zt(�1; �)
2

! 
TX
t=1

zt(�; �2)
2

!

= E

0@ TX
t=1

zt(�1; �)
2

TX
k=1;k 6=t

zk(�; �2)
2

1A+ E TX
t=1

zt(�1; �)
2zt(�; �2)

2; (A.41)

where the �rst term is the same as (T.2) and the second term equals (T.1). Consequently, a separate
analysis of (T.3) is not needed.

Finally, we turn to (T.1). It equals

E"4it

TX
t=1

 
E
t�1X
s=1

t�1X
k=1

t�1X
h=1

t�1X
l=1

ct�s(�1; �)ct�k(�1; �)ct�h(�; �2)ct�l(�; �2)"js"jk"jh"jl

!

= E"4itE"
4
jt

TX
t=1

 
t�1X
s=1

ct�s(�1; �)
2ct�s(�; �2)

2

!
+ E"4it

�
E"2jt

�2 TX
t=1

0@ t�1X
s=1

t�1X
h=1;h 6=s

ct�s(�1; �)
2ct�h(r; r2)

2

1A
+2E"4it

�
E"2jt

�2 TX
t=1

0@ t�1X
s=1

ct�s(�1; �)ct�s(�; �2)
t�1X

k=1;k 6=s
ct�k(�1; �)ct�k(�; �2)

1A
� C4

TX
t=1

 
t�1X
s=1

t�1X
h=1

ct�s(�1; �)
2ct�h(�; �2)

2

!
(III)

+C4

TX
t=1

0@ t�1X
s=1

ct�s(�1; �)ct�s(�; �2)
t�1X

k=1;k 6=s
ct�k(�1; �)ct�k(�; �2)

1A : (IV)
As in (A.39), we have j(IV)j � C4

PT
t=1

Pt�1
s=1 ct�s(�1; �)

2
Pt�1
k=1 ct�k(�; �2)

2. Hence,

j(III)+(IV)j � C5

 
TX
t=1

t�1X
s=1

ct�s(�1; �)
2

! 
TX
t=1

t�1X
h=1

ct�h(�; �2)
2

!
: (A.42)

Combining (A.40), (A.41), and (A.42) leads to (A.37).
By the mean value theorem: ct�s(�1; �) = T

�1=2(�t�s��t�s1 ) � T�1=2(t�s)(1�2�)t�s�1(���1).
The right hand side of (A.37) is therefore bounded by CfT�1

PT
t=1

Pt�1
s=1(t�s)2(1�2�)2(t�s�1)g2(�2�

�1)
2. The term in the curly brackets is �nite; the result follows after rede�ning the constant C. �

Proof of Proposition 1. Apply the mean value theorem:

T�1=2
TX
t=1

eUjk;t = T�1=2 TX
t=1

Ujk;t +

(
T�1

TX
t=1

r�0 �Ujk;t

)
T 1=2(e� � ��); (A.43)

where Ujk;t and �Ujk;t have the same de�nition as eUjk;t but evaluated at the true value �� and some
value �� that lies between e� and ��, respectively.
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We establish the weak convergence of the �rst term of (A.43) in two steps. First, for any � � p;
q � 1 � �, T�1=2

PT
t=1 Ujk;t satis�es the central limit theorem. Second, to verify its stochastic

equicontinuity, it su¢ ces to consider the second component in its de�nition (20). This term equals

T�1=2
1

�2�

TX
t=1

r�1j�tjt�1
r�1kf1t
ft

=

�
1� p
1� q

�(
T�1=2

TX
t=1

 
t�1X
s=1

�s
r�1jf1(t�s)
ft�s

!
r�1kf1t
ft

)
:

where the quantities are all evaluated at the true value ��; and the equality follows from (A.6)
and (3). Denote the quantity inside the curly brackets as W (�). Note that we have j�j � 1 � 2�.
Then, Lemma A.3 implies, for any �1 � � � �2, we have E[jW (�1)�W (�)j2 jW (�)�W (�2)j2] �
C (�1 � �2)2, where C is a �nite constant. This ful�lls the condition required in Theorem 13.5
in Billingsley (1999; c.f. the Display (13.14) in p. 143). This shows that W (�) is stochastic
equicontinuous.

The second term in (A.43) equals, by the mean value theorem,

�
(
T�1

TX
t=1

�r(�0;�0)f1t
ft

�
Ujk;t

)
I�1

(
T�1=2

TX
t=1

 
r(�0;�0)0f1t

ft

!)
+ op (1)

= �DjkI�1
(
T�1=2

TX
t=1

 
r(�0;�0)0f1t

ft

!)
+ op (1) ;

where the quantities are all evaluated at the true value �� and the second equality holds because of
the uniform law of large numbers. The term inside the last curly brackets is independent of p and
q and satis�es the central limit theorem. Combining the above results for the two terms in (A.43),
it follows that T�1=2

PT
t=1

eUjk;t converges weakly over � � p; q � 1 � �. The covariance function
follows immediately; we omit the details.�
Proof of Proposition 2. Let � = T�1=4(�2 � e�). The expansion (19) can be equivalently
represented in matrix notation as

L(p; q; �2)� L(p; q;e�)
=

1

2!

�
�
2
�0 h
T�1=2 vecL(2)(p; q;e�)i+ 1

3!

�
�
3
�0 �Op �T�1=4�� 1

8

�
�
2
�0
[
(p; q) + op (1)]

�
�
2
�
:

Because 
(p; q) is positive de�nite, the right hand side will be negative with probability approaching
1 unless � = Op (1). Thus, for any " > 0, we can choose M < 1 such that P (k�k �M) � 1 � "
for su¢ ciently large T . Restricting to this set, we have

sup
(p;q)2��

sup
k�k�M

h
L(p; q; �2)� L(p; q;e�)i

= sup
(p;q)2��

sup
k�k�M

��
�
2
�0 h
T�1=2 vecL(2)(p; q;e�)i� 1

4

�
�
2
�0

(p; q)

�
�
2
��
+ op (1)

=) sup
(p;q)2��

sup
k�k�M

��
�
2
�0
G(p; q)� 1

4

�
�
2
�0

(p; q)

�
�
2
��
;

where the convergence follows from Proposition 1 and that the supremum operator is continuous
when taken over a compact set. Finally, the result follows because " can be made arbitrarily small.
�
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Lemma A.4 Under Assumptions 1-7 and the null hypothesis, the following results hold uniformly
over f(p; q) : � � p; q � 1� �; p+ q = 1g for any k; l 2 f1; :::; n�g

1. Let ek be an n� dimensional unit vector whose k-th element equals 1, then"
r�2k �̂(e�)
��r�2k �̂1(e�)

#
= (�� � 1)

"
0

ek

#

2. The second order derivatives satisfy"
r�2kr�2l �̂(e�)
��r�2kr�2l �̂1(e�)

#
= �

�
1� ��
��

�(
�kl � eI�1 1

T

TX
t=1

1eft
"

r�r�1kr�1l ef1t�
1���
��

�
r�1r�1kr�1l ef1t

#

+eI�1 1
T

TX
t=1

1eft
"
r�r�0 ef1t�(1)kl +r�r�01 ef1t�(2)kl

r�1r�0 ef1t�(1)kl
#)

+op(T
�1=2);

where eI is de�ned in (20) and �0kl = (�(1)0kl ; �
(2)0
kl ):

Proof of Lemma A.4. When p+ q = 1, the derivatives of �tjt�1 with respect to � all equal zero
when evaluated at �1 = �2 = �. This essentially reduces the problem to that of Cho and White
(2007), except for the complication induced by multiple switching parameters. The �rst result in
the lemma follows from the same argument as in Lemma 2; we omit the details. The second result
is more complex; its proof is given below.

Consider (A.24). There, only the summations over the �rst and the third terms are nonzero
by the relationship (A.28) and the �rst result of this lemma. Evaluate these two terms at the null
estimates over j 2 f1; :::; n� + n�g, we obtain,

D
1

T

TX
t=1

264
�
1���
��

� r�r�1kr�1l ef1teft�
1���
��

�2 r�1r�1kr�1l ef1teft

375+D 1
T

TX
t=1

264 r�r�0 ef1teft r�2kr�2l �̂(e�) + r�r�01
ef1teft ��r�2kr�2l �̂1(e�)

r�1r�0 ef1teft r�2kr�2l �̂(e�) + r�1r�01
ef1teft r�2kr�2l �̂1(e�)

375
and

DeI " r�2kr�2l �̂(e�)
��r�2kr�2l �̂1(e�)

#
+D

�
1� ��
��

�264 1
T

PT
t=1

r� ef1teft r�1kr�1l ef1teft
1
T

PT
t=1

r�1 ef1teft r�1kr�1l ef1teft

375 ;
where D has the same de�nition as in (A.21). Combine the preceding two displays, we obtain"

r�2kr�2l �̂(e�)
��r�2kr�2l �̂1(e�)

#

= �
�
1� ��
��

� eI�1
264 1

T

PT
t=1

r� ef1teft r�1kr�1l ef1teft
1
T

PT
t=1

r�1 ef1teft r�1kr�1l ef1teft

375+ eI�1 1
T

TX
t=1

24
�
1���
��

�
1eftr��r�1kr�1l ef1t�

1���
��

�2
1eftr��1r�1kr�1l ef1t

35

+eI�1 1
T

TX
t=1

264 r�r�0 ef1teft r�2kr�2l �̂(e�) + r�r�01
ef1teft ��r�2kr�2l �̂1(e�)

r�1r�0 ef1teft r�2kr�2l �̂(e�) + r�1r�01
ef1teft r�2kr�2l �̂1(e�)

375 :
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Apply r�1jr�1k ef1t = �0jkr(�0;�01)0 ef1t and PT
t=1(r�1r�01

ef1t= eft) = 0, the preceding display equals"
r�2kr�2l �̂(e�)
��r�2kr�2l �̂1(e�)

#
(A.44)

= �
�
1� ��
��

�
�kl + eI�1 1

T

TX
t=1

24
�
1���
��

�
1eftr��r�1kr�1l ef1t�

1���
��

�2
1eftr��1r�1kr�1l ef1t

35
+eI�1 1

T

TX
t=1

264 r�r�0 ef1teft r�2kr�2l �̂(e�) + r�r�01
ef1teft ��r�2kr�2l �̂1(e�)

r�1r�0 ef1teft r�2kr�2l �̂(e�)
375 :

Here, r�2kr�2l �̂(e�) and r�2kr�2l �̂1(e�) appear on both sides of the display. We address this in two
steps. First, because the last two terms on the right hand side are Op(T�1=2), we have"

r�2kr�2l �̂(e�)
��r�2kr�2l �̂1(e�)

#
= �

�
1� ��
��

�"
�
(1)
kl

�
(2)
kl

#
+Op(T

�1=2):

Second, apply this result, to the third term on the right hand side of (A.44). The latter equals

�
�
1� ��
��

�
1

T
eI�1 TX

t=1

264 r�r�0 ef1teft �
(1)
kl +

r�r�01
ef1teft �

(2)
kl

r�1r�0 ef1teft �
(1)
kl

375+ op �T�1=2� :
The result follows by applying this expression to (A.44). �
Proof of Lemma 4. The key to the proof is that when p + q = 1, the likelihood corresponds to
that of a mixture model. The arguments used here rely heavily on that in Lemmas C2, 3 and 4 in
Cho and White (2007). Below we outline the main steps.

Consider the �rst result. Among the summations on the right hand side of (A.33), only the
�rst is nonzero. Further, when evaluated at the null estimates, T�1=2

PT
t=1(r�2kr�2lL̂jt=B̂t) and

((1� ��)=��)T�1=2
PT
t=1(r�2kr�2lM̂(n�+j)t=B̂t) equal

(1� ��)T�1=2
TX
t=1

r�1jr�1kr�1l ef1teft + (1� ��)T�1=2
TX
t=1

r�1jr�0 ef1teft r�2kr�2l �̂(e�);
(1� ��)3

�2�
T�1=2

TX
t=1

r�1jr�1kr�1l ef1teft + (1� ��)T�1=2
TX
t=1

r�1jr�0 ef1teft r�2kr�2l �̂(e�):
Taking their di¤erence gives

T�1=2L(3)jkl(p; q;e�) = �(1� ��) (1� 2��)�2�
T�1=2

TX
T=1

r�1jr�1kr�1l ef1teft ) G
(3)
jkl:

Now we turn to T�1=2L(4)jklm(p; q;e�). In (A.34), only the 1st, 3rd, 6th and 7th summation on the
right hand side are nonzero. For the 1st summation, T�1=2

PT
t=1r�2kr�2lr�2mL̂jt=B̂t evaluated at
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e� equals
(1� ��)T�1=2

PT
t=1

1eft
n
r�2jr�2kr�2lr�2m ef2t +r�2jr�2lr�0 ef2tr�2mr�2k �̂(e�)

+r�2jr�2kr�0 ef2tr�2lr�2m �̂(e�) +r�2jr�2mr�0 ef2tr�2kr�2l �̂(e�) +r�2jr�0 ef2tr�2kr�2lr�2m �̂(e�)o :
Meanwhile, ((1� ��)=��)T�1=2

PT
t=1r�2kr�2lr�2mM̂(n�+j)t=B̂t at

e� equals
((1� ��)=��)T�1=2

PT
t=1

1eft
n
(���1)3
�2�

r�1jr�1kr�1lr�1m ef1t
+(�� � 1)r�1jr�1lr�0 ef1tr�2kr�2m �̂(e�) + (�� � 1)r�1jr�1lr�01 ef1tr�2kr�2m �̂1(e�)
+ (�� � 1)r�1jr�1kr�0 ef1tr�2lr�2m �̂(e�) + (�� � 1)r�1jr�1kr�01 ef1tr�2lr�2m �̂1(e�)
+ (�� � 1)r�1jr�1mr�0 ef1tr�2kr�2l �̂(e�) + (�� � 1)r�1jr�1mr�01 ef1tr�2kr�2l �̂1(e�)
+ ��r�1jr�0 ef1tr�2kr�2lr�2m �̂(�2)o :

Their di¤erence equals

(1� ��)
�
1 +

�
1���
��

�3�
T�1=2

PT
t=1

r�1jr�1kr�1lr�1m ef1teft
�
�
1���
��

�2
T�1=2

PT
t=1

r�1jr�1lr�0 ef1teft �
(1)
km �

�
1���
��

�3
T�1=2

PT
t=1

r�1jr�1lr�01
ef1teft �

(2)
km

�
�
1���
��

�2
T�1=2

PT
t=1

r�1jr�1kr�0 ef1teft �
(1)
lm �

�
1���
��

�3
T�1=2

PT
t=1

r�1jr�1kr�01
ef1teft �

(2)
lm

�
�
1���
��

�2
T�1=2

PT
t=1

r�1jr�1mr�0 ef1teft �
(1)
kl �

�
1���
��

�3
T�1=2

PT
t=1

r�1jr�1mr�01
ef1teft �

(2)
kl + op (1) :

The preceding display is Op (1) by Lemma 2 and Assumption 4. The 3rd, 6th and 7th summation
in (A.34) share the same structure. Applying Lemma A.4.2, the 3rd term equals,�

1���
��

�2
T�1=2

PT
t=1

r�0r�1lr�1m ef1teft �
(1)
jk +
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1���
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(2)
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��
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(1)
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0 r�r�01
ef1teft �

(2)
lm �

�
1���
��

�2
T�1=2

PT
t=1(�

(1)
jk )

0 r�r�0 ef1teft �
(1)
lm

�
�
1���
��

�2
T�1=2

PT
t=1(�

(2)
jk )

0 r�1r�0 ef1teft �
(1)
lm = Op (1) :

Now consider the �fth order derivative. The components of

T�1=2L(5)jklmn(p; q; �2)� T
�1=2

�
1� ��
��

�
M(5)

(n�+j)klmn
(p; q; �2) (A.45)

can be grouped into three subsets according to whether they depend on the �rst, second or third
order derivatives of B̂t, c.f. (A.33). First, those depending on the �rst order derivatives are
identically zero using the relationship (A.28). Second, apply the �rst result of Lemma A.4 to
(A.26). We have r�2kr�2lB̂t= eft evaluated at e� equals�

1� ��
��

� r(�0;�01)0 ef1teft �kl +
r(�0;�01)0

ef1teft
"

r�2lr�2m �̂(e�)
��r�2lr�2m �̂1(e�)

#
: (A.46)
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Applying the second result in Lemma A.4, the term involving [(1 � ��)=��]�kl gets canceled and
the remainder term is of lower order. Consequently, in (A.45), the terms depending on the second
order derivatives of B̂t are all Op (1). Third, the terms depending on the third order derivatives of
B̂t are of the following form:

T�1=2
TX
t=1

r�2kr�2lr�2mB̂t
B̂t

 
r�2nL̂jt
B̂t

�
�
1� ��
��

� r�2nM̂(n�+j)t

B̂t

!
: (A.47)

When evaluated at e�, r�2nL̂jt=B̂t and (r�2nM̂(n�+j)t=B̂t) are representable as linear functions of

(M̂it=B̂t) (i = 1; :::; n� + n�) because of r�1jr�1n ef1t = �0jnr(�0;�01)0
ef1t, c.f. (A.31), (A.17) and

(A.15). Such an insightful observation is made in Cho and White (2007). This implies that, at e�;
the order of (A.47) is the same as that of

T�1=2
TX
t=1

r�2kr�2lr�2mB̂t
B̂t

M̂it

B̂t
, i = 1; :::; n� + n�: (A.48)

The order of (A.48) can be found by analyzing (A.29). There, the terms that depend on the 0th,
1st and 2rd order derivatives of B̂t are all of order Op(T�1=2) after applying (A.28) and (A.46).
The only term that remains is (A.48). Therefore, for (A.29) to equal zero, (A.48) must be of order
Op(1) when evaluated at e�. This implies (A.47) is Op (1) :

Now, consider the sixth order derivatives. To this end, we need to obtain expressions for
r�2kr�2lr�2h �̂(e�) and ��r�2kr�2lr�2h �̂1(e�) by analyzing (A.29). The e¤ects of the terms other
than (A.48) are negligible. Writing out the expression for (A.48) explicitly, we obtain

T�1
TX
t=1

(
r(�0;�01)0

ef1tef2t
�
(�� � 1)2

�2�
(�� � 1) + (1� ��)

�
r�1kr�1lr�1h ef1t

+
r(�0;�01)0

ef1tef2t
n�+2n�X
u=1

[(�� � 1)r�1kr�u ef1t + (1� ��)r�2kr�u ef2t]r�2hr�2l �̂u(e�)
+
r(�0;�01)0

ef1tef2t
n�+2n�X
s=1

[(�� � 1)r�sr�1l ef1t + (1� ��)r�sr�2l ef2t]r�2hr�2k �̂s(e�)
+
r(�0;�01)0

ef1tef2t
n�+2n�X
s=1

[(�� � 1)r�sr�1h ef1t + (1� ��)r�sr�2h ef2t]r�2kr�2l �̂s(e�)
+eI " r�2kr�2lr�2h �̂(e�)

��r�2kr�2lr�2h �̂1(e�)
#)

= op (1) :
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Equivalently,"
r�2kr�2lr�2h �̂(e�)
��r�2kr�2lr�2h �̂1(e�)

#
(A.49)

= �eI�1T�1 TX
t=1

r(�0;�01)0
ef1tef2t
�
(�� � 1)2

�2�
(�� � 1) + (1� ��)

�
r�1kr�1lr�1h ef1t

�(�� � 1)
n�X
u=1

[�kur�2hr�2l �̂1u(e�) + �lur�2hr�2k �̂1u(e�) + �hur�2kr�2l �̂1u(e�)] + op (1) :
Now apply the above expression to analyze T�1L(6)jklmnr(p; q;e�). The latter equals, by using the
same argument as in Cho and White (2007, l.13-24 in p. 1713),

T�1
X
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t=1
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r�2i2r�2i3M̂(n�+i1)t

�
+ op (1) ;

where all the quantities are evaluated at �2 = e�. Further, at �2 = e�, r�2i4r�2i5r�2i6 B̂t equals�
(�� � 1)2

�2�
(�� � 1) + (1� ��)

�
r�1i4r�1i5r�1i6 ef1t

+(�� � 1)r(�0;�01)
ef1t n�X

u=1

[�i4ur�2i5r�2i6 �̂1u(e�) + �i5ur�2i4r�2i6 �̂1u(e�) + �i6ur�2i4r�2i5 �̂1u(e�)]
+r(�0;�01)

ef1t " r�2i4r�2i5r�2i6 �̂(e�)
��r�2i4r�2i5r�2i6 �̂1(e�)

#
:

Because of (A.49), the above display equals

(�� � 1)(1� 2��)
�2�

(
r�1i4r�1i5r�1i6 ef1t � �r(�0;�01) ef1t� eI�1

"
1

T

TX
t=1

r(�0;�01)0
ef1tef2t r�1i4r�1i5r�1i6 ef1t

#)

The result follows because, when evaluated at e�, r�2i2r�2i3 L̂i1t � [(1� ��)=��]r�2i2r�2i3M̂(n�+i1)t

equals [(�� � 1)(1� 2��)=�2�]r�1i1r�1i2r�1i3 ef1t.
Consider p = q = 1=2. The results for the 3rd to the 6th order derivatives follow immediately

from the proofs above. The arguments for showing T�1=2L(7)i1;:::i7(1=2; 1=2;e�) = Op (1) are similar

to those for T�1=2L(5)i1;:::i5(p; 1 � q;e�). The proof for T�1=2L(8)i1;:::i8(1=2; 1=2;e�) is similar to that of
T�1=2L(6)i1;:::i6(p; q;e�). We omit the details. �
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Table 1: Rejection frequencies under the null hypothesis
Level 2.50 5.00 7.50 10.00

T=200 SupLR(�0:05) 2.98 6.60 10.84 14.46
SupLR(�0:02) 2.88 6.22 9.64 13.62
QLR 2.43 5.30 7.50 10.00
supTS1 2.76 5.32 7.72 9.84
supTS2 2.38 5.34 7.76 9.94

T=500 SupLR(�0:05) 2.34 6.34 9.54 13.50
SupLR(�0:02) 2.38 6.26 10.24 13.92
QLR 2.33 5.43 7.53 10.20
supTS1 2.54 5.42 7.78 10.22
supTS2 2.22 4.86 7.28 10.36

Note. The values corresponding to the QLR test are taken from Table II in Cho and

White (2007). The values related to the supTS tests are obtained using the accom-

panying code of Carrasco, Hu and Ploberger (2014) adapted to the model considered

here. Number of replications: 5000.

Table 2: Rejection frequencies under the alternative hypothesis
(p; q) �2 = 0:20 �2 = 0:60 �2 = 1:00

(0.70,0.70) SupLR(�0:05) 7.40 20.24 96.58
SupLR(�0:02) 7.66 18.28 96.28
QLR 6.16 9.46 68.83
supTS1 5.68 10.78 33.60
supTS2 5.28 9.66 32.88

(0.70,0.90) SupLR(�0:05) 6.94 38.14 99.80
SupLR(�0:02) 7.30 33.58 99.72
QLR 6.14 13.40 60.56
supTS1 4.90 5.50 19.50
supTS2 4.94 5.14 16.90

(0.90,0.90) SupLR(�0:05) 8.22 60.30 100.00
SupLR(�0:02) 8.44 56.52 100.00
QLR 5.76 7.06 7.30
supTS1 6.66 11.22 5.54
supTS2 6.42 10.86 5.24

Note. The values corresponding to the QLR test are taken from Table III in Cho

and White (2007). Note that there the values in the rows of 0.1 and 0.9 in their

table should be exchanged. The values related to the supTS tests are obtained using

the accompanying code of Carrasco, Hu and Ploberger (2014) adapted to the model

considered here. Replications: 5000. Nominal level: 5%. Sample size: 500.



Figure 1. Correlation functions
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Note. The figure shows correlations between G(pr, qr) and G(ps, qs) with (pr, qr) = (0.6, 0.9) and
(ps, qs) = (0.6, x), where x varies between 0.1 and 0.9. The solid lines starting from the top correspond
to expressions in displays (27), (25), (23), (26) and (24) in the paper. The dashed lines are correlations
computed using simulations with T = 250.



Figure 2. Distributions in an AR(1) model
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(a) Testing the slope coefficient
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(b) Testing the intercept

Note. The figure shows three distributions that arise when testing for regime switching in an AR(1)
model: yt = µ+ αyt−1 + ut with ut ∼ i.i.d.N(0, σ2). The finite sample distribution is generated with
T = 250. The original approximation corresponds to the distribution in Proposition 2. The refined
approximation is given in Corollary 1.



Figure 3. Distributions when testing for switching in the intercept evalu-
ated at fixed p and q
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(a) p=0.90, q=0.90
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(b) p=0.90, q=0.75

0 5 10 15
0

0.2

0.4

0.6

0.8

1
(c) p=0.90, q=0.60

Note. See Figure 2.



Figure 4. A bootstrap procedure applied to an AR(1) model
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Note. The model under the null hypothesis is yt = µ+αyt−1 +ut with ut ∼ i.i.d.N(0, σ2). The figure
shows the finite sample distribution when testing for regime switching in the intercept (the solid line)
and the bootstrapped distribution obtained by keeping the regressor fixed (the dashed line). T = 250.
The true parameter values are µ = 0, α = 0.5, σ = 1.



Figure 5. Test values over subsamples
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Note. SupLR: the proposed test. QLR: the test of
Cho and White (2007). supTS: the test of Carrasco,
Hu and Ploberger (2014). The dotted lines corre-
spond to 5% critical values.



Figure 6. Smoothed recession probabilities
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Note. The solid lines are the estimates. The shaded areas correspond to NBER’s recession dating.
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