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Abstract

Markov regime switching models are widely considered in economics and finance. Although
there have been persistent interests (see e.g., Hansen, 1992, Garcia, 1998, and Cho and White,
2007), the asymptotic distributions of likelihood ratio based tests have remained unknown. This
paper considers such tests and establishes their asymptotic distributions in the context of non-
linear models allowing for multiple switching parameters. The analysis simultaneously addresses
three difficulties: (i) some nuisance parameters are unidentified under the null hypothesis, (ii)
the null hypothesis yields a local optimum, and (iii) conditional regime probabilities follow
stochastic processes that can only be represented recursively. Addressing these issues permits
substantial power gains in empirically relevant situations. Besides obtaining the tests’ asymp-
totic distributions, this paper also obtains four sets of results that can be of independent interest:
(1) a characterization of conditional regime probabilities and their high order derivatives with
respect to the model’s parameters, (2) a high order approximation to the log likelihood ratio
permitting multiple switching parameters, (3) a refinement to the asymptotic distribution, and
(4) a unified algorithm for simulating the critical values. For models that are linear under
the null hypothesis, the elements needed for the algorithm can all be computed analytically.
The above results also shed light on why some bootstrap procedures can be inconsistent and
why standard information criteria, such as the Bayesian information criterion (BIC), can be
sensitive to the hypothesis and the model’s structure. When applied to the US quarterly real
GDP growth rates, the methods suggest fairly strong evidence favoring the regime switching

specification, which holds consistently over a range of sample periods.
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1 Introduction

Markov regime switching models are widely considered in economics and finance. Hamilton (1989)
is a seminal contribution, which provides not only a framework for describing economic recessions,
but also a general algorithm for filtering, smoothing and maximum likelihood estimation while
building on the work of Goldfeld and Quandt (1973) and Cosslett and Lee (1985). Surveys of this
voluminous literature can be found in Hamilton (2008, 2014).

Three approaches have been considered for detecting regime switching. The first approach
translates this issue into testing for parameter homogeneity against heterogeneity. Neyman and
Scott (1966) studied the C(«) test. Chesher (1984) derived a score test and showed that it is
closely related to the information matrix test of White (1982). Lancaster (1984) and Davidson
and MacKinnon (1991) are related contributions. Carrasco, Hu and Ploberger (2014) have further
developed this approach by allowing for an alternative hypothesis where the heterogeneity takes the
form of a weakly dependent process. Their test is asymptotically locally optimal in the sense that
there exists no test that is more powerful for a specific alternative characterized in their paper. The
above tests have two common features. First, they only require estimating the model under the null
hypothesis. Second, they are designed for detecting general random coefficients, not particularly
Markov regime switching. As a result, the tests can have power against a broad class of alternatives,
meanwhile the power can be lower than what is achievable if the parameters indeed follow a finite
state Markov chain.

The second approach, due to Hamilton (1996), is to conduct generic tests of the hypothesis that
a K-regime model (e.g., K = 1) adequately describes the data. The insight is that if a K-regime
specification is accurate, then the score function should have mean zero and form a martingale dif-
ference sequence. Otherwise, the model should be enriched to allow for additional features, in some
situations by introducing an additional regime. Hamilton (1996) demonstrated how to implement
such tests as a by-product of calculating the smoothed probability that a given observation is from
a particular regime. This makes the tests simple and widely applicable. Meanwhile, it remains im-
portant and useful to have testing procedures that focus specifically on detecting Markov switching
alternatives.

The third approach proceeds under the (quasi) likelihood ratio principle. The (quasi) likelihood
functions are constructed assuming a single regime under the null and two regimes under the
alternative hypothesis. The analysis faces three challenges. (i) Some nuisance parameters are

unidentified under the null hypothesis. As a result, the log likelihood ratio is locally non-quadratic,



causing the Chi-square approximation to its distribution to break down. This gives rise to the Davies
(1977) problem. (ii) The null hypothesis yields a local optimum (c.f. Hamilton, 1990), making the
score function identically zero when evaluated at the null parameter estimates. Consequently, a
second order Taylor approximation to the likelihood ratio is insufficient for analyzing its asymptotic
properties. (iii) The conditional regime probability, i.e., the probability of being in a particular
regime at time ¢ given the information up to the time ¢ —1, follows a stochastic process that can only
be represented recursively. The first two difficulties are also present when testing for mixtures. It
is the simultaneous occurrence of all three difficulties that plagues the study of the likelihood ratio
in the current context. For example, when analyzing high order expansions of the likelihood ratio,
it is necessary to study high order derivatives of the conditional regime probability with respect
to the model’s parameters. So far, the statistical properties of the latter have remained elusive.
Consequently, the asymptotic distribution of the log likelihood ratio has also remained unknown.

Meanwhile, several important progresses have been made by Hansen (1992), Garcia (1998),
Cho and White (2007), and Carter and Steigerwald (2012). Specifically, Hansen (1992) clearly
documented why the difficulties (i) and (ii) cause the conventional approximation to the likelihood
ratio to break down. Further, he treated the likelihood function as a stochastic process indexed by
the transition probabilities (i.e., the probabilities of remaining in the first regime p and remaining
in the second regime ¢) and the switching parameters, and derived a bound for its asymptotic
distribution. His result provides a platform for conducting conservative inference. Garcia (1998)
suggested an approximation to the log likelihood ratio that would follow if the score had a positive
variance at the null estimates. Results in the current paper will show that this distribution is in
general different from the actual limiting distribution. Recently, Cho and White (2007) made a
significant progress. They suggested a quasi likelihood ratio (QLR) test against a two-component
mixture alternative (i.e., a model where the current regime arrives independently of its past values).
There, the difficulty (iii) is avoided because the conditional regime probability is reduced to a
constant, which can further be treated as an additional unknown parameter. Carter and Steigerwald
(2012) further discussed a consistency issue related to QLR test. The current paper makes use of
several important techniques in Cho and White (2007). At the same time, it goes beyond their
framework to confront directly Markov switching alternatives. As will be seen, the power gains
from doing so can be quite substantial.

Specifically, this paper considers a family of likelihood ratio based tests and establishes their

asymptotic distributions in the context of nonlinear models allowing for multiple switching para-



meters. The framework encompasses the important special cases of testing for regime switching in
autoregressive models and in autoregressive distributed lags models. Throughout the analysis, the
model has two regimes under the alternative hypothesis. Some parameters can remain constant

across the two regimes. The analysis is structured in five steps:

1. We characterize the dynamics of the conditional regime probability (i.e., the probability of
being in a particular regime at time ¢ given the information up to the time ¢t — 1) and its
high order derivatives with respect to the model’s parameters. We show that, when evaluated
at the null parameter estimates, the former reduces to a constant while the latter can all
be represented as linear first order difference equations with the lagged coefficients equal
to p+q— 1. Because 0 < p,q < 1, these equations are all stable and amenable to the
applications of uniform laws of large numbers and functional central limit theorems. This

novel characterization is a critical step that makes the subsequent analysis feasible.

2. We fix p and ¢ and derive a fourth order Taylor approximation to the likelihood ratio. This
step builds on the analysis in Cho and White (2007), but accounts for the effect of the
time variation in the conditional regime probability. The results are informative about why
substantial power gains relative to the QLR test are possible when the data are not generated

by simple mixtures.

3. We view the likelihood ratio as an empirical process indexed by p and ¢ and derive its
limiting distribution. The values of p and ¢ are required to be strictly between 0 and 1
satisfying p + ¢ > 14 € with € being some arbitrarily small constant. These requirements are
compatible with applications in macroeconomics and finance; see the discussion in Section 3.
The empirical process perspective undertaken here follows a rich array of studies, including

Hansen (1992), Garcia (1998), Cho and White (2007), and Carrasco, Hu and Ploberger (2014).

4. While the above limiting distributions are adequate for a broad class of models, they can lead
to over-rejections when a further singularity (the source of which is specified later) is present.
To overcome this problem, we analyze a sixth order expansion of the likelihood ratio along
the line p 4+ ¢ = 1 and an eighth order expansion at p = ¢ = 1/2. The leading terms are then
incorporated into the asymptotic distribution to safe guard against their effects. This leads to
a refined distribution that delivers reliable approximations throughout our experimentations.

This refinement is valid whether or not this singularity is truly present.



5. We provide a unified algorithm for simulating the refined asymptotic distribution. For models
that are linear under the null hypothesis, the elements needed for this algorithm can all be
computed analytically. This permits developing a computer program, which mainly requires
the researcher writing down the model under the null hypothesis, specifying which parameters

are allowed to switch, and providing the permissible values for the two transition probabilities.

The asymptotic distribution shows some uncommon features. First, nuisance parameters,
though constrained to be constant across the regimes, can affect the limiting distribution. Sec-
ond, properties of the regressors (i.e., whether they are strictly or weakly exogenous) also affect the
distribution. Third, the distribution depends on which parameter (i.e., the intercept, the slope or
the residual variance) is allowed to switch. These features imply that some bootstrap procedures
can be inconsistent and that standard information criteria, such as BIC, can be sensitive to the
hypothesis and the model’s structure. The above implications are further discussed in Section 6.

We conduct simulations using a data generating process (DGP) considered in Cho and White
(2007). The results show that the power difference can be large when the regimes are persistent,
a situation that is common in practice. We also apply the testing procedure to the US quarterly
real GDP growth rates, over the period 1960:1-2014:IV and a range of subsamples. The results
consistently favor the regime switching specification. In addition, the smoothed regime probabilities
closely mirror NBER’s recession dating. To our knowledge, this is the first time such consistent
evidence for regime switching in mean output growth is documented through hypothesis testing.

From a methodological perspective, this paper contributes to the literature that studies hy-
pothesis testing when some regularity conditions fail to hold. Besides the works mentioned above,
closely related studies include the following. Davies (1987), King and Shively (1993), Andrews and
Ploberger (1994, 1995), and Hansen (1996) considered tests when a nuisance parameter is unidenti-
fied under the null hypothesis. Andrews (2001) studied tests when, in addition to the above feature,
some parameter lies on the boundary of the maintained hypothesis. Hartigan (1985), Ghosh and Sen
(1985), Lindsay (1995), Liu and Shao (2003), Chen and Li (2009), and Gu, Koenker and Volgushev
(2013) tackled the issues of zero score and/or unidentified nuisance parameters in the context of
mixture models. Chen, Ponomareva and Tamer (2014) considered uniform inference on the mixing
probability in mixture models when nuisance parameters are present. Rotnitzky, Cox, Bottai and
Robins (2000) developed a theory for deriving the asymptotic distribution of the likelihood ratio
statistic when the information matrix has rank one less than full; also see the discussions in their

paper (page 244) for other studies on the same issue in various contexts. Dovonon and Renault



(2013) studied distributions of tests for moment restrictions when the associated Jacobian matrix
is degenerate at the true parameter value. The current work is the first that simultaneously tackles
the difficulties (i) to (iii) in the hypothesis testing literature. We conjecture that the techniques
developed can have implications for hypothesis testing in other related contexts that involve models
with hidden Markov structures.

The paper is structured as follows. Section 2 presents the model and the hypotheses. Section
3 introduces a family of test statistics. Section 4 studies the asymptotic properties of the log
likelihood ratio for prespecified p and q. Section 5 presents four sets of results. It establishes the
weak convergence of the second order derivative of the concentrated log likelihood. It provides
the limiting distribution of the test statistic. It introduces a finite sample refinement. Finally, it
outlines an algorithm for obtaining the relevant critical values. Section 6 discusses some implications
of the theory for bootstrapping and information criteria. Section 7 examines the test’s finite sample
properties. Section 8 considers an application to the US real GDP growth rates. Section 9 concludes.
All proofs are in the appendix.

The following notation is used. ||z|| is the Euclidean norm of a vector z. || X]|| is the vector
induced norm of a matrix X. z®F and X®* denote the k-fold Kronecker product of z and X,
respectively. The expression vec(A) stands for the vectorization of a k dimensional array A. For
example, for a three dimensional array A with n elements along each dimension, vec(A) returns
a n3-vector whose (i + (j — 1)n + (k — 1)n?)-th element equals A(i,j,k). 1y is the indicator
function. For a scalar valued function f(6) of @ € RP, Vg f (0p) denotes a p-by-1 vector of partial
derivatives evaluated at 0y, Vg f(6o) equals the transpose of Vg f (0o), and Vi, f(6o) denotes its j-th
element. In addition, Vg, Vg, --- Vg, f(fo) denotes the k-th order partial derivative of f(¢) taken
sequentially with respect to the ji,jo, ..., je-th element of 6 evaluated at 6y. The symbols “=",
“4 and “—P” denote weak convergence under the Skorohod topology, convergence in distribution

and in probability, and O,(-) and o,(-) is the usual notation for the orders of stochastic magnitude.

2 Model and hypotheses

We sequentially discuss the following issues: the model, the log likelihood functions under the null
(i.e., one regime) and the alternative (i.e., two regimes) hypothesis, and some assumptions related
to these two aspects.

The model is as follows. Let {(y,z})} be a sequence of random vectors with y; being a scalar

and x; a finite dimensional vector. Let s; be an unobserved binary variable, whose value determines



the regime at time t. Define the information set at time ¢ — 1 as

Q;_1 = o-field {...,xé,l,yt_g,wg,yt_l} ) (1)

Let f(-|€%—1;08,0) denote the conditional density of y;, satisfying

f('|Qt—1;/8751)7 lf St = 17
f('|Qt—1;ﬂ752>7 lf St = 27

This specification allows the vector § to switch between §; and do, while restricting the vector 5 to

Ye|(Qi—1, 8¢) { (t=1,..,T). (2)

remain constant across the regimes. Henceforth, we abbreviate the two densities on the right hand
side of (2) as fi(,01) and f(B,d2), respectively.

The regimes are Markovian, i.e., p(s; = 1|Q_1,8¢-1 = 1,81-2,...) = p(sy = 1|s4—1 = 1) = p and
p(st = 2|Q—1,8—1 = 2,849,...) = p(st = 2|s;—1 = 2) = q. The resulting stationary (or invariant)
probability for s; = 1 is given by

l—gq
& =&(p,a) = m (3)
Evaluated at 0 < p,q < 1, the log likelihood function associated with (2) is such that

‘CA(paq:ﬁa51752) (4)

T
= > 108 { fi(B. 6181 (20 B,01,02) + fi(B,02)(1 — €y (9, 8,01,02)) |

t=1

where £,;_1 () denotes the probability of s; = 1 given 1, i.e.,

€t|t71(p)q75751762) = p(st - 1|Qt—l;pa qvﬁ751752) (t - ]-a "‘aT)v (5)

which satisfies the following recursive relationship

§ ( B 5 5 ) ft (5751)£t‘tfl(p7Q7/6761762)
e 4 2 01,02 F1(B101) €1 (02, B 61,02) + f1 (B, 62) (1 — ypp_1(p+ 4, B 01, 02))
€t+l|t(p)q75751752) = p€t|t(p7q)ﬁ751752)+(1_q)(l_£t|t(paQaﬁ751752))’ (7)

(6)

Throughout the paper, we set the initial value ;) = &,. As shown later, using a different initial

value does not affect the asymptotic results. When §; = d5 = 9, the log likelihood reduces to

T
LN(B,6) = log fu(B,0). (8)
t=1

This paper studies tests based on (8) and (4) for the single regime specification against the two
regimes specification given in (2). To proceed, we impose the following restrictions on the DGP

and the parameter space. Let ng and ns denote the dimensions of 8 and 4.



Assumption 1 (i) The random vector (z},y:) is strict stationary, ergodic and B-mixing with the
mixing coefficient 3. satisfying 5, < cp” for some ¢ > 0 and p € [0,1). (ii) Under the null
hypothesis, y; is generated by f(-|Q—1; By, dx), where B, and d, are interior points of © C R™ and
A C R™ with © and A being compact.

Part (i) is the same as Assumption A.1(i) in Cho and White (2007). As discussed there, the
B-mixing condition is commonly used when analyzing Markov processes. It allows x; to be affected
by regime switching under the null hypothesis. Part (ii) specifies the true parameter values. The

interior point requirement ensures that the asymptotic expansions considered later are well defined.

Assumption 2 Under the null hypothesis: (i) (B,,0x) uniquely solves maxg s)coxa E[LN(B,9)];
(ii) for any 0 < p,q < 1, (B,,0«,0x) uniquely solves MAaX (3.5, 5,)cOx AxA EEA(p,q,ﬂ, 01,02).

Part (i) implies that (3,0) is globally identified at (5,, ) under the null hypothesis. Part (ii)
implies that there does not exist a two-regime specification (i.e., with §; # d2) that is observationally
equivalent to the single-regime specification (i.e., with §; = d2 = d,). The next assumption relates

the identification properties in Assumption 2 to some asymptotic properties of the estimators.

Assumption 3 Under the null hypothesis, we have: (i) T~*[LN(B,8) — ELN(B,6)] = o, (1) holds
uniformly over (3,0) € © x A with T—! Zthl(V(5/75/)/ log ft(8,0)(V (g 5y log fi(8B,0)) being positive
definite in an open neighborhood of (B,,0x) for sufficiently large T; (ii) for any 0 < p,q < 1,
T LA(p, q,B,61,02) — ELA(p, q, B,01,62)] = op (1) holds uniformly over (3,91,02) € © x A x A.

The above assumption states that (8) and (4) both satisfy uniform laws of large numbers. Along
with Assumption 2, it implies that, under the null hypothesis, the maximizers of (8) and (4) for
0 < p,q < 1 converge in probability to (5,,ds) and (8,, 0, d«) respectively. This assumption allows
(4) to have multiple local maximizers. The latter feature will be accounted for when analyzing the
likelihood expansions.

Assumptions 1 to 3 are similar to those used in Cho and White (2007), with two important
differences. First, the likelihood (4) corresponds to a Markov switching model, not a mixture model.
Second, multiple parameters are allowed to be affected by the regime switching.

Using the above notation, the null and alternative hypotheses can be more formally stated as:

Hy : 01 =099 =9, for some unknown dy;

Hy :  (61,02) = (07, 05) for some unknown 07 # d5 and (p,q) € (0,1) x (0,1).



Technically, as discussed in Cho and White (2007), the null hypothesis can also be formulated as:
Hl:p=1and 0; = 6, or Hj : ¢ = 1 and 63 = .. In H{, because the model remains in the
first regime with probability 1, any statement about the second regime becomes irrelevant. The
reversed holds for Hy.

Below, we introduce a model that will be used throughout the paper to illustrate the main

components of the theory.

An illustrative model. An important application of regime switching is to linear models with
Gaussian errors:

Yy = zior+ Wiy Ly, =1y + wivalis,—2) + us, (9)

where «,y; and 75 are unknown finite dimensional parameter vectors and u; are i.i.d. Normally
distributed whose unknown variance can also potentially switch. The variables z; and w; can
include lagged values of y;. Therefore, the specification encompasses finite order autoregressive
models and autoregressive distributed lags models as special cases. In relation to (1) and (2),
we have Q1 = o-field{..., 2,_;,w]_1,y—2, 2, w}, yi—1} and z; = (z],w;). Three situations can
arise depending on which parameters are allowed to be affected by regime switching: (a) Only
the variance of u; is affected. Let 02 and o3 denote its variances under the two regimes. Then, in
relation to (2), we have §; = 03,2 = 03 and 8/ = (a/,') with v = 7, = 75. (b) Only the regression
coefficients are affected. Let o2 denote the variance of u;. Then, we have d; = 7,, da = 74 and
B = (a/,0?%). (c) Both components are affected. We have &) = (v}, 02), 05 = (75,03) and 8 = a.
The results in this paper will encompass all three situations. In the most general situation (c), the

densities corresponding to (2) are given by

1 (yi—zi0—wiy1)?

ft(ﬂadl) . \/2770'% eXp{_ t20% = }
N 1 _ (yr—zja—w}y,)?

ft(B,02) me}(p{ tgo.% ‘ }

Note that the normality assumption in this model can be replaced by other distributional assump-
tions, provided that fi(3,01) and fi(3,02) are replaced by the appropriate densities.

We now illustrate Assumptions 1-3 using this model. Regarding Assumption 1, because of the
linearity, the S-mizing requirement of (z},y:) reduces to that of x;. The latter is satisfied if z;
follows a stationary VARMA (P,Q) process Zf:o Bjxi_j = Z]Q:o Ajei_; with g; being mean zero
i.i.d. random vectors whose density is absolutely continuous with respect to Lebesgue measure on

RAim(z0); gee Mokkadem (1988). Other processes that are f-mixing with a geometric rate of decay,



as reviewed in Chen (2013), include those generated by threshold autoregressive models, functional
coefficient autoregressive models, and GARCH and stochastic volatilities models. Regarding As-
sumption 2, part (i) is satisfied if Ex,z; has full rank. Part (b) requires that, if the data are
generated by d1 # d with 0 < p,q < 1, the conditional distribution of y; will exhibit features that
are not captured by the single regime linear specification. That is, the resulting Kullback-Leibler
divergence will be positive. Finally, in Assumption 3, the rank requirement essentially requires
71 Zthl xx} to be positive definite in large samples. The rest of the assumption requires uniform
laws of large numbers to hold. Because §t‘t_1(p, q, 3,01, 02) are bounded between 0 and 1, the latter

hold under Assumption 1 and mild conditions on the moments of y; and z;. W

3 The test statistic

This section studies three issues. First, it considers a family of test statistics based on the log
likelihood ratio. Second, it previews the difficulties involved in deriving the limiting distribution
and outlines the strategies for addressing them. Third, it examines empirically relevant values for
the transition probabilities p and ¢q. The latter is important not only for making the tests practically
relevant, but also for the technical analysis needed later in the paper.

Let B and & denote the maximizer of the null log likelihood:

(8,8) = argmax L (8. 6). (10)

)

The log likelihood ratio evaluated at some 0 < p,q < 1 then equals

LR(p7 Q) =2 ﬁr%lax ‘CA(pa Q7B> 51752) - ‘CN(Eag) . (11)

,01,02

This leads to the following test statistic:

SupLR(A¢) = Sup LR(p,q),
(p,g) €A,

where A is a compact set specified below and the supremum is taken to obtain the strongest
evidence against the null hypothesis. Operators other than the supremum can also be used. For
example, following Andrews and Ploberger (1994) and Carrasco, Hu and Ploberger (2014), one can
consider ExpLR(A,) = fAs LR (p,q)dJ(p,q), where J(p,q) is a function that assigns weights on p
and ¢. Such considerations lead to a family of test statistics based on LR(p,q). This paper focuses

on SupLR(A); the results extend immediately to ExpLR(A).



The test statistic SupLR(A¢) is not new. For example, it has been studied by Hansen (1992)
and Garcia (1998). The contribution of this paper is in obtaining an adequate approximation to
its finite distribution and in providing an algorithm for simulating it. We now discuss nonstandard
features associated with this statistic and highlight our strategy for tackling them.

First, the time varying regime probability &,;_,(p, g, 3, 01,02) present challenges. On the one
hand, it can only be expressed recursively; see (6) and (7). On the other hand, when obtaining
asymptotic expansions, it is essential to study its high order derivatives with respect to 8, d1 and d2.
So far, its effect on the log likelihood ratio has remained unknown, even for the simplest situation
where p and ¢ are prespecified. In an important contribution, Cho and White (2007, p. 1675)
suggested to avoid this difficulty by replacing the likelihood (4) with that for a mixture (i.e., a
model where the regime arrives independently of the past with §t|t71(p, q,3,01,02) = 7 throughout
the sample): ZtT:1 log {mfi(B,01) + (1 — ) fi(B,02)}. However, this quasi log likelihood function
behaves differently from the actual likelihood when p+¢—1 is different from zero. This can translate
into large power differences as seen later in this paper. This is troubling because in economic and
financial applications the regimes are typically substantially serially dependent. In this paper, we
make progresses by observing that Et‘t_l(p, q, 3,01, 02) and its derivatives can all be characterized
as first order difference equations, whose properties further simplify drastically once we evaluate
them at (B,g) This is a critical step that makes the subsequent analysis feasible.

Second, the log likelihood ratio has three nonstandard features as in mixture models: (i) The
values of p and ¢ are unidentified under the null hypothesis. Consequently, there are infinite
directions to approach any one distribution in the null hypothesis (i.e., the score space is infinite
dimensional). This complicates matters because a key step in establishing the asymptotic property
of the likelihood ratio lies in determining what happens to the score function as we approach the null
hypothesis. To address this, we treat the log likelihood ratio as an empirical process indexed by p
and ¢, such that once they are fixed, the score space becomes finite dimensional. Such an empirical
process perspective follows from a rich array of studies, with the most closely related being Hansen
(1992), Garcia (1998), Cho and White (2007), and Carrasco, Hu and Ploberger (2014). (ii) The
score of (4) is identically zero when evaluated at the null parameter estimates. Consequently, a
second order Taylor expansion is insufficient for analyzing the likelihood ratio. To address this, we
obtain likelihood expansions of the fourth order, and in some specifications, of the eighth order. The
obstacles for deriving such expansions are substantial, especially given that we allow for multiple

switching parameters. (iii) The values p = 1 and ¢ = 1 fall on the boundary of parameter space.
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Cho and White (2007) addressed this issue by considering the surfaces specified by Hy, Hj and H{
and then combined the results to obtain the null limiting distribution. Here, such an approach is
no longer feasible because of the additional challenge introduced by &;;_; (p,q, B,01,02). We pursue
a different route. That is, when defining the test statistic, we restrict the supports of p and ¢ to
be closed subsets of (0,1). This approach has also been used when testing for structural changes
(e.g., Hawkins, 1987, Andrews, 1993, Andrews and Ploberger, 1994, and Bai and Perron, 1998) and
threshold effects (e.g., Hansen, 1996). It is also used in Hansen (1992) and Garcia (1998).

We now examine empirically relevant values for the transition probabilities p and ¢. Hamilton
(2008, the first paragraph in p.1) reviewed 12 articles that applied regime switching models in a
wide range of contexts. Among them, 10 articles considered two-regime specifications with constant
transition probabilities. These studies are related to: exchange rates (Jeanne and Masson, 2000),
output growth (Hamilton, 1989 and Chauvet and Hamilton, 2006), interest rates (Hamilton, 1988,
2005, Ang and Bekaert, 2002b), debt-output ratio (Davig, 2004), bond prices (Dai, Singleton and
Yang, 2007), equity returns (Ang and Bekaert, 2002a) and consumption and dividend processes
(Garcia, Luger and Renault, 2003). Eighteen sets of estimates are reported. The values of the
transition probabilities are between 0.855 and 0.998 for the more persistent regime and 0.740 and
0.997 for the other. These estimates are representative of applications in economics and finance
and they strongly suggest two features. First, none of the values correspond to mixtures. That is,
the values of p + ¢ are all substantially above 1.0. Second, at least one regime is fairly persistent.
That is, the value of p (and ¢) can be fairly close to 1.0.

Motivated by the above observations, we suggest to specify A, as follows
Ac={(p,q):p+qg>1+eand e<p,qg<1—e€withe>0}. (12)

This set can be generalized to allow for different trimming proportions (e.g., replacing p+q > 1+e¢
and e <p,g<1—ewithp+¢g>1+e€ and 3 < p,q < 1— €3 with €1, €2,e3 > 0). The set can also
be narrowed if additional information about p and ¢ is available. For example, if their values are

both expected to be higher than 0.5, then we can consider
{(p,q) : 0.5+€e¢<p,qg<1—ewithe>0}. (13)

The specification (13) is in fact consistent with all the 10 studies mentioned in the previous para-
graph. In this paper, we focus on (12); the results continue to hold for the latter two specifications,

provided that the set A, in the limiting distribution is changed accordingly.
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As will be seen in the next section, for certain models and hypotheses, the asymptotic distrib-

utions of LR (p,q) at p+q =1 and p+ g > 1 can be different. This arises when
v5i1 v6i2 ft(ﬁa 5) = aglizv(ﬁ’ﬁ’l)’ft (Bv 5) (14)

holds for some 1,42 € {1,...,n5+ng}, where o, ;, is a known vector of constants. Because p+¢ =1
falls out of the set (12), such a change in the distribution does not interfere with the first order
asymptotic approximation to the likelihood ratio. However, the issue of approximation adequacy
when € is small will arise and we shall account for it using a high order refinement as follows. First,
we derive an asymptotic approximation to the likelihood ratio that is valid over (12) whether or
not (14) holds. Then, we study the adequacy of this approximation when (14) holds. The analysis
will show that the approximation becomes less adequate when p + ¢ is close to 1. Next, we derive
an higher order expansion of the likelihood ratio under p + ¢ = 1. Finally, the additional terms
in this expansion are incorporated into the original asymptotic distribution to obtain a refined
approximation. Note that whether or not (14) holds, as well as the values of «;,;,, will be known

once the model and the hypotheses are specified.

4 The log likelihood ratio under prespecified p and ¢

The conditional regime probability &, +1‘t(p, q, 3,01, d2) represents the key difference between Markov
switching and mixture models. We therefore begin by studying this quantity as well as its deriva-
tives with respect to 3,1 and d5. The results will further enable us to develop expansions of the
concentrated log likelihood under the null hypothesis. The results reported in this section all hold
uniformly over (p, q) € [e,1—¢€] X [e, 1 — €] with € being an arbitrary constant satisfying 0 < € < 1/2.

4.1 The conditional regime probability

We first make the following two observations. (a) The expressions (6) and (7) can be combined to

represent §t+1|t(p, q, 8,61, 02) recursively as (t = 1,2,...):

£t+1\t(pa Qa18761562) (15)
ft(5552)(§t|t71(p5 q,,61,62) — 1)
fe(B, 51)£t\t71(p? q,8,01,02) + fi(B,02)(1 — £t|t71(p7q,ﬂa 01,02))

This is a first order difference equation that relates &, 1,(p, g, 8,01,02) to &y—1(p, g, 8,01, 02).

= pt+(p+q-1)

Immediately, this relationship implies that the derivatives of &, +1|t(p,q, B,01,02) with respect to

B, 91,2 must also follow first order difference equations. (b) Although these difference equations
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are nonlinear when evaluated at general values of §; and Js, they simplify substantially once we
let 61 = 2. Because the asymptotic expansions considered later are around the null parameter
estimates, analyzing the latter case will be sufficient.

The next lemma contains the details on &, 1,(p,q,8,01,d2) and its derivatives evaluated at

01 = 05 = 0, where § represents an arbitrary value in A. Define an augmented parameter vector
0 =(8',01,03) (16)
and three sets of integers (they index the elements in 3, ; and d9, respectively)
In={1,...,ng}, i ={ng+1,...,ng+ns}, Lo ={ng+ns+1,...,n5+ 2ns}.

To ease the notation, let gt+1\t and f; denote Eiv11t(Ps @, B, 01,02) and fi(B,61) (or fe(B,02)) evalu-
ated at some 8 and 61 = do = §. Also, let Vo, Vo, ét‘H, Vo, -V, f1¢ and Vo, -V, for denote
the k-th order partial derivatives of ft‘t_l(p, q,8,61,02), ft(5,61) and fi(B,d2) with respect to the
j1-th,..., ji-th elements of 8 evaluated at some 5 and 07 = d5 = d. The following relationships hold:
ngl...Vejkflt = Vle...Vijth if 41,...,jx all belong to Iy, ngl...Vejkfu = 0 if any of j1, ..., jk
belongs to Iz, and Vg, ...V, for =0 if any of ji, ..., ji belongs to 1.

Lemma 1 Let p=p+q—1 andr = p&, (1 —&,) with &, defined in (3). Then, fort > 1, we have,
under 61 = 09 = §:
1. gt—i—l\t = f*’
2. V6j5t+1|t = pvejgtlt—l + gj,t; where
0 Zf] €Iy
Eip=9y Ve logfu i€l
—rVg,log for ifj €Iy

3. ngvgkétﬂ‘t = pngVngﬂtfl + Ejkt, where Ejpy is given by (with (1o, 1) denoting a case
with j € Iy and k € Iy; a,b=0,1,2):

Io,IO :0

T Ty) : _Tvejfzt Vg&flt TVerekfu
It Jt fe_

To. Iy) : Tvejfzz Vo, f2e TVerekaz

27"§*V0j fue V@kfu

I fe

I
Iy, I5):

~

[umy

1

)

ft _ fr _ ft _ ft
P2 DV &y a Vo for p(28 -1V, &1 Vo, e | (26— 1)V, 1t Vo, o

H
S

)

(
(
(
(
(
(

)

)

) Jt ft_ _ft _ _ _
) PA=26)Ve, &1 Ve, i | P(1-28)V0, &1 Ve, J1e n Vo, Ve, fit
)

)

It _ fe _ t Jt _
P26, =)V &4 111V, far " P28 1)V, &4e1 Vo, f2e V0, Vo, for  2r(€=1)Ve, fot Vg, fou
Je fe Ji Je Jr
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4. ng.ngV@gH”t = pVgJ.ngV@Eﬂt_l + gjkl,t; where the expressions for gjkl,t with j,k,l €
{Is, Iy, 1.} and a,b,c =0,1,2 are given in the appendiz.

Remark 1 The lemma holds for samples of any size. It shows that, when §1 = 02, the conditional
regime probability (EHW) equals the stationary probability (£,), while its derivatives up to third order
all follow first order linear difference equations. The lagged coefficients always equal p =p+ q — 1.
Because 0 < p,q < 1, these difference equations are always stable. As seen below, these features
allow us to apply properties of first order linear systems to analyze the properties of the log likelihood.

They are the key elements that make the subsequent analysis feasible.

Now we take a closer look at the four results in the lemma. The first result is intuitive. Because
the two regimes are identical when d; = §o, observing the data brings no information about the
regime probability. The second to fourth results reflect the first to third order effects of a unit
change in the parameters’ values on the regime probability. For the first order, changing the value
of 5 has no effect; §t+1‘t(p, q, 3,01, 02) remains equal to £,. Meanwhile, changing the values of 01
and d2 have exactly the opposite effects, i.e., W]Em“ = Vo, ., Et+1|t for any j € I;. The results
concerning the second order derivatives have a similar structure. In particular, changing £ only has
no effect, while changing §; and 5 after a change in § still have equal opposite effects, as indicated
by the cases (Ip, 1) and (Ip, I2). The remaining three cases are more complex, but they all show
that &y depend only on nggﬂt_l (j € I1 U I3) and quantities related to the density functions.
The third order effects consist of ten different cases corresponding to different combinations of j, k
and [. For the analysis later, the exact expressions of é_’jku will be unimportant. What matters
is that they depend only on lower order derivatives of Et‘t_l and quantities related to the density
functions.

The recursive structure within the results, i.e., the higher order derivatives depend successively
on the lower orders with the first order depending only on Vy, log f1r and Vi, log for, suggests
a strategy for analyzing their statistical properties. That is, we can start with the first order
derivatives, and then use the results cumulatively to study the second order followed by the third
order derivatives. Such a strategy is implemented in Lemma A.1 in the appendix.

Using &, as the initial value for &, 1,(p, ¢, 8, 1, §2) is not restrictive. With a generic finite initial
value, the first result in the lemma becomes &, ) = (1—-q)+ pgﬂt_l, while the other results also
hold, but with £, and r replaced by Et‘H and pgﬂt,l(l - gt|t—1)a respectively. Because |p| < 1,

Et\t—l converges at an exponential rate to &, as t increases. Consequently, the first to the fourth
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order derivatives all converge to their counterparts in the lemma at an exponential rate. This fast
rate of convergence implies that using a different finite initial value will not affect the asymptotic
results presented later.

Below, we further illustrate the results in the lemma using the linear model (9).

The illustrative model (cont’d). Consider the general case where the regression coefficients

and the error variance are both allowed to switch. Lemma 1.2 implies:

Vagt+1|t =0, (w.r.t. the non-switching parameters)

v71€t+1|t = valgﬂt—l +roh (yr — 2 —wyy),

- - (e law)? (w.r.t. the parameters in the first regime)
oo
Vorlii1)t = PV 28411 + 152 (7‘02 = — 1) ;

V& = V.. &
el e (w.r.t. the parameters in the second regime)

Vorbii1e = =Vl
When evaluated at the true parameter value, the derivatives with respect to v; and a% all reduce to
stationary AR(1) processes with mean zero. Their variances are finite and satisfy (with o2 denoting

the true value of o2 and V,,, the first order derivative w.r.t. the j-th element of 1)

_ 2 2 - 2
_ 2 2 _
E<v71j§t+1|t> = oz Bwjn E(Ve2lii1p)® = s
The processes specified by Lemma 1.3-1.4, although more complex, also have finite means and
variances when evaluated at the true parameter values, provided that the relevant moments of
wy, z¢ and u; exist. Such results for the general model (2) are established in Lemma A.1 in the

appendix.ll

4.2 Concentrated log likelihood and its expansion

To obtain an asymptotic approximation to the log likelihood ratio (11), a standard approach would
be to expand L£A(p, q, 3,61, 02) around the null estimates (B,g, 5) However, this is infeasible here
due to the complex dependence between the estimates of 61 and o as EA(p, q,3,61,602) can have
multiple local maxima. Cho and White (2007) encountered a similar problem and proceeded by
working with the concentrated likelihood. We adopt their insightful strategy. This allows us to
break the analysis into two steps. In the first step, we quantify the dependence between the
estimates of §1 and d9 using the first order conditions that define the concentrated likelihood (see

Lemma 2 below). This effectively removes 5 and §; from the subsequent analysis. In the second
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step, we expand the concentrated likelihood around o = 5 (see Lemma 3 below) and obtain an
approximation to LR(p, q).

Specifically, let 3(d2) and 61(d2) be the maximizer of the log likelihood for a given value 6y € A
(here the dependence of B and &1 on p and q is suppressed to simplify the notation), i.e.,

(B(02),61(62)) = argmax L4(p, q, 8,61, 32). (17)

;01

Let L(p,q,d2) denote the concentrated log likelihood, i.e., L(p,q,d2) = EA(p,q,B(ég),gl(ég),dg).
Then, the two terms in the likelihood ratio (11) satisfy: maxg s, 5, L(p, ¢, 8,61, 62) = maxs, L(p, g, 62)
and EN(E,E) = L(p, q,g). Consequently:

LR(p,q) = 2rrggx L(p,q,82) — L(p.q,5)] - (18)

For k > 1, let L'Z(f)% (p,q,02) (i1, ..., 7% € {1,...,n5}) denote the k-th order derivative of L(p, q,d2)
with respect to the (i1, ...,4;)-th elements of do. Let d; (j € {1,...,ns}) denote the j-th element of
(62 — 5) Then, a fourth order Taylor expansion of L(p, g, d2) around J is given by

ns ngs

£<p7q752) p7 q7 ZE p7Q7 d + = 21 ZZLJIC p7q7 d dk (19)
=1 k=1
ns mns ng

3!ZZZEJM P, 0, 0)djdyy
j=1 k=1 I=1
ng nsg mng ng

4' ZZZ Z ﬁ]k;lm D, q,0)d; idkdidrm,,

j=1k=11=1 m=1

where in the last term § is a value that lies between ds and J.

Below, we provide two lemmas to analyze this expansion. The next assumption is needed in
order to apply a law of large numbers and a central limit theorem to the terms in (19). It is similar
to but slightly stronger than Assumption A5 (iii) in Cho and White (2007). There, instead of
a(k)/k, the respective values are 4,2,2 and 1 for k = 1,2,3 and 4.

Assumption 4 There exists an open neighborhood of (B,,0x), denoted by B(S,,d), and a sequence
of positive, strictly stationary and ergodic random variables {vi} satisfying Ev,}+C < L < oo for
some ¢ > 0, such that
a(k)
k

Vo, .-V, ft(8,61)
sup < vy

(8,01)€B(B.,0+) ft(B,01)
for alliy,....ip € {1,...,n5 +ns}, where 1 <k <5; a(k) =6 if k=1,2,3 and (k) =5 if k = 4,5.

16



The next lemma characterizes the derivatives of 3(d2) and d1(d2) with respect to do evaluated
at d = 0. To shorten the expressions, let EHW and f; denote &§;114(p,q,B,61,62) and fi(8,01)
evaluated at (8,61,02) = (8,9,4). Also, let Vi, ...v(;ukEﬂH and Vs,, ...V, f1¢ denote the k-th
order derivative of & 14(p,q,B,01,062) and fi(B,61) with respect to the 4;-th, ..., ix-th elements of
01 evaluated at (3,01,02) = (B,g, g) Finally, define

_ 1 ([/1-¢, I I DA
Ujk,t = = { ( é. > v51jv51kf1t + ?v(sljét‘t—lvélkflt + §_2v51jf1tv51k£t|t—l} 3 (20)
t * * *
~ V r st /ﬁtN ~ V ’ st /ﬁtv r st J?it
Djk;,t — (6 7/3) Ujkj,ty It — (B 7/3) (/8 7~1) ,
Ji fi fe
_ T _ _ _ T _ _ T _
Viern = T UpptUtmts Dim =T7'Y  Dimy, T=T7"> T
t=1 t=1 t=1

Note that @k,t involves the first and second order derivatives with respect to the j-th and k-th ele-
ments of §;. The term inside the curly brackets can also be represented as ((1 — &,)/€.) Vs,, Vs,, fzt—
(1/53)v52j5t‘t_1v5%ﬁt — (1/53)%2].@%%@“_1. As will be seen, ﬁjk,t determines E;i)(p, )
while ﬁjk,t and I; appear within Eﬁ)lm(p, q,g).

Lemma 2 Under the null hypothesis and Assumptions 1-4, for all k,l,m € {1,...,ns}, we have:

1. Let e} be an ng-dimensional unit vector whose k-th element equals 1, then

V(Szk/bi((sl _ (f* . 1) 0 + Op(T71/2)'
£.V5,.01(0) ek

2. The second order derivatives satisfy

Vo V@B (5)

T
~ .1 ~
O | = S Bk oy
g*vagk V62l51(5) t=1

3. The third order derivatives satisfy

V53 Vg, Vg B(6)

N~ = 0p(1)-
€*v52k v521v52m51 (5)

The above results generalize Lemma B2(a)-(d) in Cho and White (2007) to Markov switching
models and will be used as inputs to analyze ng) - (p,q,02) in the expansion (19). They show

----- i

how the parameters §; and 3 need to change in order to maximize the likelihood when d5 is moved

17



away from S. Specifically, consider a unit change in the j-th element of §5. Then, Lemma 2.1 shows
that, in the first order, 31j(62) will change by (£, — 1)/€, + O,(T~/2), while all the other elements
of 81(52) and 3(52) will only change by a factor of order Op(T_l/ 2). Interestingly, the quantity
(1 —¢&,)/€, is simply the stationary probability of the second regime divided by the first. Lemma
2.2 pertains to changes in the second order. There, the time variation in the conditional regime
probability enters explicitly. Finally, the expression for the third order derivative is not needed for

the limiting distribution and therefore omitted.

Assumption 5 There exists 1 > 0, such that supp, 4cie1— SUD |5 < Tfl\ﬁgz)lmn(p, q,0)] = 0, (1)

forall j,k,l,m,n € {1,...,ns}, where € is an arbitrary small constant satisfying 0 < € < 1/2.

In a standard problem, we would need the second order derivative [,;i) (p,q,9d) to be continuous
in 0 (e.g., Amemiya, 1985, p.111), or the third order derivative T_lﬁﬁ)l(p, q,0) to be O, (1) to
ensure that a local quadratic expansion is an adequate approximation to the log likelihood. Here,

@

jklm(p, q,6) plays the same role as the second order derivative in a standard problem. This is why

the above assumption on the fifth order derivative is needed. The next lemma provides the leading

terms of ng)lk (p,q,0) (k=1,2,3,4) in the expansion (19).
Lemma 3 Under the null hypothesis and Assumptions 1-5, for all j, k,l,m € {1,...,ns}, we have
1. ﬁgl)(p,q,g) =0.
_ 2 < _ ~
2. T7V2LW (p,q.0) = TV XL Ujne + 0p (1),

3. T3LE) (p,q,8) = O, (TV/)

4' T_lﬁg‘i)lm(pa q, 5) = _{‘zklm_ﬁgkf_lﬁlm'i_vjmkl_ﬁz‘mf_lﬁkl"‘“;jlkm_B;‘lf_lﬁkm}"‘op (1)
The first order derivative Eg-l)(p, q,g) is identically zero for any sample size. Consequently, the

1/2 The second order derivative L’ﬁ) (p, q,g) is of

MLE of do will converge at a rate slower than T~
order O,(T'/?), rather than O,(T). As seen below, its leading term T-1/2 Y"1 ﬁjk,t converges to a
multivariate normal distribution, whose property depends explicitly on the time varying conditional
regime probability. The third order derivative Eﬁ)l (p, q, 5) is also of order Op(Tl/ 2). The expression
of its leading term is not needed to derive the limiting distribution, but we will further analyze
it when providing a finite sample refinement. Finally, the fourth order derivative E;;?lm(p, q,6) is

of order O,(T). Its leading term provides a consistent estimator of the asymptotic variance of

T2 Uk
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Remark 2 The first component of ﬁjk,t, (1 =£,)/8.) Vs, V(;lkflt/ft, is also present when testing
against mizture alternatives; see Cho and White (2007, Lemma 2(a)). It is sometimes called the dis-
persion score; see Lindsay (1995, p.71). The remaining two components are new and are due to the
Markov switching structure. They can be rewritten as ((1 — &,) /&) 22;11 p°(Vs,, log fi@_@)(Vglk log flt)

and ((1—¢&,)/€,) 22;11 p°(Vs,, log ﬁ(t,s))(v(;lj log flt) Intuitively, among the three components,
the first picks up overdispersion, while the remaining two pick up serial dependence introduced by
the Markov regimes. Further, the magnitudes of the latter two components become more pronounced
relative to the first as p approaches 1. This follows because the first component is independent of
p after division by ((1 —&,)/&,) while the latter two components involve weights p°. This feature
suggests that the power difference between testing against Markov switching alternatives and miz-

ture alternatives can be substantial when the regimes are persistent, i.e., when p is close to 1. This

1s confirmed by the simulations reported later.

The illustrative model (cont’d). We illustrate the leading terms of Tfl/QEﬁ)(p,q,g) and

T_1£(4)

jklm(p, q,g) in Lemma 3 using (9). Suppose only ~ is allowed to switch. Then, fjjk,t and ﬁjk,t

are, respectively,

1-¢. WjtWkt iz_ = s wj(t*S)at—S) <wk ﬂt) = s(wk(tfs)at—S) (w,'tﬂt>
(M) { e (B - 1) + T (™) () + o (M) (220) ] )

and

1~ ~2 1~ I~
| B L (B-1) 4] O (22)
where @; denote the residuals under the null and &2 = 7! Zle u2. These two expressions show
that U ikt and lN)jM depend only on the regressors and the estimates under the null hypothesis. This

makes the covariance function of 7-1/2 Zthl U jk,t» and therefore of T -1/ 25533 (p, q,g), consistently

estimable. This feature will be used when deriving the relevant critical values. B

5 Asymptotic approximations

Let £®)(p, q,g) be a square matrix whose (j,k)-th element is given by Cﬁ) (p, q,g) for j,k €
{1,2,...,ns}. This section consists of four sets of results. (1) It establishes the weak convergence of
T2 (p,q,8) over e < p,q < 1—e. (2) It obtains the limiting distribution of SupLR(A.). (3) It
develops a finite sample refinement that improves the asymptotic approximation when a singularity

is present. (4) It develops an algorithm to obtain the relevant critical values.
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5.1 Weak convergence of £ (p,q,6)
For 0 < pr,qr,ps,qs < 1 and 7, k,l,m € {1,2,...,ns}, define
Wiktm (Pr Gr3 Ps> @s) = Vikim (Prs @i Pss @s) — D (Prs @) I~ Dign (ps, qs), (23)

where ‘/}'klm (pr; dr; Ps, QS) =F [Ujk,t (pr; QT) Ulm,t (p57 QS)] 7Djk(pra QT) = EDjk,t(pT7 qT)? and I =
E1;. Here, Ujrt (pr,qr) , Djkt(pr,qr) and I; are defined as ﬁjk,h ﬁjk,t and I, in (20) but evaluated

at (pr, qr, B, 5*) instead of (pm%:Bag)-
Proposition 1 Under the null hypothesis and Assumptions 1-5, we have, over e < p,g<1—¢:
T2L®)(p,q,0) = G (p,q)

where the elements of G (p, q) are mean zero continuous Gaussian processes satisfying Cov|G i (pr, ¢r),

Glm(psv QS)]:ijlm(pTv qr;Ds, Qs) forj,k:,l,m € {172;"';”‘5}; where wjklm(pT;Q’r';p87qs) is given by (23)

In the appendix, the result is proved by first showing the finite dimensional convergence and
then the stochastic equicontinuity.

Below, we illustrate some important features of wjgim (Dr,@r;Ds,qs). It will emerge that this
function depends on: (1) the model’s dynamic properties (e.g., whether the regressors are strictly
exogenous or predetermined), (2) which parameters are allowed to switch (e.g., regressions coeffi-
cients or the variance of the errors), and (3) whether nuisance parameters are present. Consequently,
to make the test easy to apply in practice, we will need a procedure that can adapt to these fea-
tures to obtain critical values without requiring laborious derivations from the practitioner. Such

a procedure is developed in Section 5.4.

The illustrative model (cont’d). We consider a simpler version of (9) for which the covariance

function wjxim (Pr, ¢r; Ps, ¢s) can be computed analytically:

Yt = Wiy lig=1) T Wy l{s,—2y + U,

where u; ~i.i.d.N(0,02), and w; is a scalar regressor that is either strictly exogenous (e.g., a
constant) or equals y;—1. Define p, = p, + ¢, — 1 and p, = ps + ¢s — 1. The subscript “*” continues
to denote the true parameter value.

First, we allow 7 to switch, while assuming o2 is unknown but remains constant across the
regimes. Then, in the strictly exogenous regressor case, the covariance function (23) equals

2(1 —p,)(1 — ps) Var(w?) + 2322 (p,0,)" E(wiw? )]
(1_‘]1")(1_‘.78) Uil '

(24)
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In the lagged dependent variable case, it equals

1—p)(1— 1 4 4 2 1
(I —pr)(1 —ps) < 2) - prps2 < 4 > (25)
(1-g¢)1=g) \1=92) | 1= 1-72\1=pp? 1-pep,
1607572 16p,p37% B 16,9572
(L=pD) A =ppsyd)  (L=paD) L= pepsyi) (L= p2)(1 = ps73)

These two functions are different even when w; ~ 4.i.d.N(0,1) and 7, = 0. This follows because
V4, &je—1 is independent of V., f1; when wy is strictly exogenous, but not when it is only predeter-
mined. This comparison shows that the covariance function is affected by the dynamic properties
of the model.

Now, we consider the same situation as above but assume o2 is known. Then, in the strictly

exogenous regressor case, the covariance function equals

2(1 — ) (1= ps) [B(wf) + 2350, (p,0,)" B(wiw? )]

26
(1= )1 —g) o1 ’ (26)
while in the lagged dependent variable case, it equals
(1 - pr)(l - ps) < 1 > 6 + 4p7«,05 < 2 + 1 > (27)
(1=g)1—q) \1=92) |1=72 1-72\1-pps72 1—p.ps
N 16070573 . 16p, 0373 B 16p, 0573 '
(1=p72) (A= popy?)  (L=p2) (1= popsy?) (1= p92)(1 = psy?)

These two functions are different from (24) and (25). This shows that the presence of nuisance
parameters can also alter the covariance function.
Next, we allow o2 to switch but require the unknown regression coefficient 7, to remain constant

across the regimes. Then, irrespective of whether w; is strictly exogenous, we have

Cov (6 (4,6 (proa)) = (1 oy =24 {g n (ﬂgﬂ) } . (28)

This function is different from both (24) and (25). Thus, even after conditioning on the model, the

covariance function can still be different depending on which parameter is allowed to switch.

We report some simulation results to complement the above analysis. The parameter values
are v, = 0.5 and 02 = 1. In the strictly exogenous regressor case, w; is generated as being in-
dependent of ug at all leads and lags by w; = 0.5w;—1 + &¢ with ¢, ~ 7..d.N(0,1). This ensures
that the regressors follow the same DGP in both cases. Further, we let (p,,¢-) = (0.6,0.9) and
(ps,qs) = (0.6, z) with = varying between 0.1 and 0.9. Figure 1 reports the five correlations func-

tions given by (24)-(27) (Here, correlations instead of covariances are plotted to ease comparisons).
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The solid lines starting from the top correspond to (28), (26), (24), (27) and (25), respectively.
These functions demonstrate clearly the dependence on the three factors highlighted above. Also
included in the figure are correlations computed from simulations (i.e., the dashed lines). They are
generated by simulating samples of 250 observations using the same parameter value as above, com-
puting 71/2 ZtT:1 ffjk,t using each series and then repeating 10,000 times to obtain the empirical

correlations. The values are close to their asymptotic approximations in all five cases. W

5.2 Limiting distribution of SupLR(A,)

Let Q(p,q) be an n2-dimensional square matrix whose (j + (k — 1)ng,l + (m — 1)ns)-th element
is given by wjgim (P, ¢;p, q). Then, Proposition 1 implies E[vec G (p,q) vecG (p,q)'] = Q(p,q). The
next result gives the asymptotic distribution of SupLR(A,).

Proposition 2 Suppose the null hypothesis and Assumptions 1-5 hold. Then:

SupLR(Ag) = sup sup W(2) (p7 q, 77)7 <29)
(p,q)E€Ae NER™S

where A¢ is given by (12) and

W (p,q,m) = (1%%) vec G (p,q) — i (1*%) Qp, q) (n®?)

The quantity 7 plays the role of T—1/4(8y — g) in (19). Its dimension is unaffected by the
presence of nuisance parameters. If ng = 1, then the optimization over 7 can be solved analytically,
leading to SupLR(A.) = max]0, SUD(p,q) €A« G(p,q)/ m The right hand side can equal
zero with positive probablhty, with the value of the latter depending on the covariance function of

q)/ \/T over (p,q). If ng > 1, the optimization will need to be carried out numerically.
However, because W )(p, q, 17) is a quadratic function of n®2, the optimization remains relatively
standard.

Below, we illustrate the above limiting distribution and also examine its adequacy in finite
samples. The illustration also suggests the desirability for a finite sample refinement when a further

singularity is present.

The illustrative model (cont’d). We consider the following special case of (9):

Yt = P+ QY1 + ug, (30)
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where u; ~ i.4.d. N(0,02) and p,a and o2 are unknown. As shown below, the distribution of
SupLR(A,), as well as the adequacy of the asymptotic approximation, can differ substantially
depending on whether p or « is allowed to switch.

Figure 2 summarizes the finite sample and asymptotic distributions of SupLR(A,) for testing
regime switching in z only or a only. We consider pt = 0, = 0.5 and 0 = 1. The set A, is specified
as (13) with e = 0.05, The sample size is 250 and all results are based on 5000 replications. Two
features emerge. First, the finite sample (the solid lines) and asymptotic (the long dashed lines)
distributions are both quite different between the two cases. This is consistent with the covariance
function of T—1/2 Zthl ﬁjk,t being parameter dependent; see the illustration in Section 5.1. Second,
the asymptotic distribution provides an adequate approximation when testing for switching in «,
but not when testing for switching in u. For the latter case, the asymptotic distribution falls to
the left of the finite sample distribution. The structure of 7-1/2 Z?:l ﬁjk,t is informative about

the second feature. It is given by:

For p switching: % (%) {T_1/2 ZtT:1 (Zé - 1) + 2771/ ZtT:1 (Zi;ﬁ Psatgi_s%> }v

s _ _
For a switching: 25 (%) {T‘l/z Zthl (% — 1) v+ 2T~ 1/2 Zthl (Ei;ll ps%%)} ’

&2 *

where %, denote the residuals under the null and 5% = T~} Zthl u?. When testing for switching
in u, the first term in the curly brackets is in fact identically zero for any sample size. Also, the
magnitude of the second term decreases as p approaches 0, i.e., as p+¢q approaches 1. Consequently,
in finite samples, the magnitude of 7—1/2 Zthl ﬁjk,t can be too small to dominate the higher order
terms in the likelihood expansion. This explains why the asymptotic distribution that relies entirely
on T—1/2 Z;f:l ljjm can be inadequate. In contrast, when testing for switching in «, the first term
in the curly brackets converges to a normal distribution that is independent of p and ¢. Therefore,
the issues discussed do not arise.

Figure 3 provides some further information by comparing the finite sample and asymptotic
distributions of LR(p,q) when testing for p switching at some selected values of (p, ¢) that equal
(0.90,0.90), (0.90,0.75) and (0.90,0.60). Consistent with the discussion above, a gap between the
finite sample distribution (the solid line) and the asymptotic distribution (the long dashed line)
opens up and grows wider as p + ¢ approaches 1. We have also found in unreported simulations,
that when testing for « switching, these two distributions remain close to each other in all three
cases. Wl

In summary, the illustration suggests that the asymptotic approximation in Proposition 2 needs
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to be improved if the hypotheses imply that £3 (p, q,g) equals zero when p+ ¢ = 1. When testing
for switching in the intercept in the illustrative model, the latter arises because the following linear

relationship holds for all ¢t: V2 f1,(ji, &, 52) = 0.5V, V. fu(p, o, 52).
5.3 A refinement

This section derives a sixth order expansion of the likelihood ratio along p + ¢ = 1 and an eighth
order expansion at p = ¢ = 1/2. (The reason for why the latter is needed is explained below.) The
respective leading terms are then incorporated into the limiting distribution to deliver a refined

approximation. These expansions are derived under the following assumption.

Assumption 6 The following linear relationship holds for all t and all i1,i9 € {1,...,n5} :

V1, Vo, flt = aU)/ngvlt + agf%Vgl fu, (31)

1112

1 2 ) ‘
where agm and agﬂ?z are ng and ns dimensional known vectors of constants.

Whether or not this assumption holds is known once the model and the hypotheses are specified.
The following assumption strengthens Assumption 4. It is similar to A.5 (iv) in Cho and White
(2007). The subsequent analysis makes heavy use of their results developed in Section 2.3.2.

Assumption 7 There exists an open neighborhood of (B,,0ds), B(B,,0«), and a sequence of posi-

1+c
t

tive, strictly stationary and ergodic random variables {v¢} satisfying Ev < oo for some ¢ > 0,

such that the supremums of the following quantities over B(3,,0x) are bounded from the above by vy:
4 2
Vo, Vo, f (B:01) /i (B.60)| | Vau, Vo, f2 (8,80) /£ (8,80)] [V, Vo, £ (B,61) /£ (8,61),

V0, V0., Vo, J2 (8,8) 11 (8,81, [0, Vo, Vo, Vo, fo (B,81) /Fi (8,61)|, where k = 1,2,3,4,
m=29,6,7, 11,...,17 € {1, -~y B —i—n(;} and j1,j2 € {1,...,715}.

Before proceeding, we first establish some notation. To approximate the third and sixth order

derivatives of the concentrated log likelihood, define (the symbol s stands for skewness)

~ (1 - p) (p - Q) v51j vélkvéllﬁt
Sikl t\D, q) = ~
il - qp 7

and let Gg;?l (p, q) be a continuous Gaussian process with mean zero satisfying

(32)

3
wEk)lmnu (ph dr; Ds, QS)

= COV(GS]?l (prv qT) s Gq(‘r%'ZLu (pSa QS))
Vg .5,)f1t
ft

Vg sy fu

Sjkl,t(pra%")] ! [ 1

= F [Sjkht(pra QT)Smnu,t(ps> QS)] —-F Smnu,t(psa QS) s
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where sji1+(p, q) is the same as S +(p, q) but evaluated at the true parameter values (the other
quantities are also evaluated at the true parameter values). To approximate the fourth and eighth

order derivatives, define (the symbol k stands for kurtosis.)

= 1—-p 1-p\*\ Vo, Vor Viy Vi fue
Eime(,q) = — |1 J .
e (p20) 2_p_q< +<1_q)) 2 (33)

1-p)? 1
+ (1 _ q) Z { V(hll V5112 vﬁ fltOéZ?)24 V(shl V(;MQ V(; f]-taz3z4
(i1,i2,i3,i4)€S I

1
+ 511)2 V5V fltaz324 5122 VBV(S' flta13z4 }

and let GEI 222314 (p, q) denote a continuous Gaussian process with mean zero satisfying

4 4 4
wglgg‘..ig (pr@r;ps,qs) = Cov <G£122i3i4 (Prsqr) 5 Gl(m)ei?is (Pss qS))
= F [k%li2i3i4,t (p'r‘7 Qr) ki5i6i7i8,t (p57 qs)]

Vg o)1t 1 [V ey fue
—F [(ﬁl)kiligigu,t (pTaqT'):| ! |:(f;)ki5i6i7i8,t (Ps,qs) | »

where the index set S in (33) is given by S = {jkim, jlkm, jmkl, kljm, kmjl,Ilmjk}, kijiyizis,e (P, Q)

is equivalent to E1i2i3i47t(p, q) but evaluated at the true parameter values (the remaining quantities

are also evaluated at the true parameter values).

The next lemma characterizes the asymptotic properties of ngz)zzk

{1,..,ns} and k = 3,...,8. It generalizes Lemma 3, 4(a), 5(a)-(e) in Cho and White (2007) by

(p,l —p,g) for iq,...,1; €

allowing for multiple switching parameters.
Lemma 4 Under the null hypothesis and Assumptions 1-7:

1. The following results hold uniformly over {(p,q) : e <p,q<1—¢€,p+q=1}:

T
T2 (p.q,0) = T71/2Z%kl’t(p,q)+op(1);»Gﬁ)l(p,q),

T (9.0.8) = 0,(1), TV (p,q.3)=0,(1),

T_lﬁg-k)lmnr(p,qﬁ) = - > wgf’gg,,,iﬁ(p,q;p,q)+0p(1),

(il,iz,...,iG)EIND

where IND={jkimnr,jkmlinr,jknlmr,jkrimn,jlmknr,jinkmr,jirkmn, jmnkir, jmrkin,jnrklm }.
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2. The following results hold at p=q=1/2:

V2L (p,0,8) = o0p(1),

T
T’lﬂﬁﬁ)lm(p, 0,0) = T2 kijpimae(p, @) + 0p (1) = Gﬁ}m(% q),

t=1
T*1/2£§f32mik (p, q,g) = O, (1), where iy, ....,i;, € {1,...,n5} for k=5,6 and 7,
_1 (8 5 4
T lﬁg’k)lmnrsu(pa q,0) = - Z wglgz---is (P, 4;p,q) +0p (1).

(41,32,...,ig)EIND
where the elements of IND are as follows: i1 = j; each triplet (iz,i3,14) corresponds to one of

the 35 outcomes of picking 3 elements from {k,l,m,n,r, s,u} (the ordering does not matter);

and 15,16, 17,18 correspond to the remaining elements.

The above two sets of results characterize the high order derivatives along the line p + g = 1.
When p # 1/2, the third order term 7—1/2 Zlegjkl,t(pv 1 — p) replaces the second order term
T-1/2 Zthl ﬁjkyt to become the leading term in the likelihood expansion. Consequently, a sixth
order expansion is needed to approximate the likelihood ratio. When p = 1/2, the fourth order term
T-1/2 Zle Ejklm,t(p, 1 —p) becomes the leading term, and consequently an eighth order expansion
is needed.

The restriction p = 1—g is not imposed when representing the leading term in 7/ 2[,%)[ (p, q,g).
This ensures that the coefficient in front of (Vs,, V(;lkv(;uflt / }’Vt) is correct even when p + ¢ # 1.
For the same reason, we also do not impose p = ¢ = 1/2 when expressing the leading term
of TV QEﬁ)lm(p,q,g). The results assumes all the second order derivatives with respect to the
switching parameters can be written as linear combinations of the first order derivatives (this holds
when testing for switching in the intercept in a linear model). If such a relationship holds only for
a subset of derivatives (this is the case when testing for switching in both the intercept and the

1 _ 0 and a(2) = 0 for

slope parameter), then when constructing s;xim,(p, q), we simply set o ;, i
those cases where (31) is not satisfied.

We now incorporate the leading terms in Lemma 4 to obtain a refined approximation. To ease
notation, we first express the relevant quantities in the lemma using matrix notations. Let G (3) (p,q)
be a n3- dimensional vector whose (j + (k — 1)ns + (I — 1)n?)-th element is given by Gﬁ)l (p,q). Let
QB)(p, q) denote an n? by n? matrix whose (j + (k — 1)ns + (I — 1)nZ, m+ (n — 1)ns + (r — 1)n2)-th

element is given by wﬁ)lmm(p, q;p,q). Define

1 1
W (p,q,n) =T '3 (n®%) vec GO (p,q) — T~V 6 (n®%)" Q% (p,q) (n®?) .
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Let G (p, q) be an n}- dimensional vector whose (j + (k — 1)ns + (I — 1)nZ 4 (m — 1)n3)-th element

is given by G\ (p,q). Let Q¥ (p,q) be an ni by n} matrix whose (j + (k — 1)ns + (I — 1)n2 +

Jkim
(m—1)n3,n+ (r—1)ns+ (s — 1)n? + (u — 1)n3)-th element is given by wﬁ)lmmsu(p, q;p,q). Define
19 1 4 1
WO (p,q,n) = T2 5 (1%) vee GO (p.g) = T o () 2 (p,q) (n®1).
We propose approximating the distribution of the SupLR(A,) test using
Seo(Ae) = sup  sup {W(z) (2, a,m) + W (p, q,m) + W (p,q, 77)} : (34)

(p,q)€Ae NERTS

where A, is specified in (12).
Corollary 1 Under Assumptions 1-7 and the null hypothesis, we have, over (12):
Pr (SupLR(A¢) <) — Pr(Sx(A¢) <s) — 0.

Remark 3 The above result holds irrespective of whether or not the relationship (31) holds. This
follows because the additional terms W) (p, ¢, 1)+ W (n) both converge to zero as T — oo. These

terms provide refinement in finite samples, having no effect asymptotically.

Below, we illustrate the refined approximation using the AR(1) model considered above. As will
be seen, the refinement substantially improves the approximation when testing for regime switching
in the intercept, while having little effect when testing for switching in the slope coefficient. For

the latter, the original approximation in Proposition 2 is already adequate.

The illustrative model (cont’d). First, consider testing for regime switching in x in (30). The

quantities (32) and (33) are equal to, respectively,

oy [(3) 3%,
ot (00 () -3 ()] 3 (8) -0 (8) 3}

The refined approximations are reported as dotted lines in the second subfigure in Figures 2 and

3. The results confirm that the improvements are substantial.
Next, consider testing for regime switching in . The quantities (32) and (33) are equal to,

respectively,

rpleco 1 f(Tn)? gty |
o (14 (122)°) & { (B) - (Fa) 5.
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The refined approximation is reported as the dotted lines in the first subfigure in Figure 2. As a

desirable feature, the refinement has little effects on the approximation. W

5.4 Obtaining critical values

This section shows how to obtain the critical values of So(A.) defined in (34). The idea is to
sample from the distribution of the vector process [vec G (p,q)",vec G®) (p,q)",vec G (p,q)'] and
then solve the maximization problem (34) over (p,q) € A and n € R™. Because this vector process
is Gaussian with mean zero, to generate the desired draws it suffices to obtain a consistent estimator
of its covariance function over A.. Such an observation has also been made by Hansen (1992) and
Garcia (1998).

Let ﬁt@) (p,q) be an n2-dimensional vector whose (j + (k — 1)ng)-th element is given by ﬁjk,t
n (20). Let ﬁt(?)) (p, g) be an ni-dimensional vector whose (j + (k — 1)ns + (I — 1)n?)-th element is
given by Sk +(p, q) in (32). Let ﬁt(4) (p, q) be an n}-dimensional vector whose (j + (k — 1)ns + (I —
1)nZ + (m — 1)n3)-th element is given by %jklm,t(l?, q) in (33). Define

U (p, q)
Gt (p.q) = ﬁt(3) (p,q)
0 (p.q)

Let U™ (p,0), U (9,0), UL (p.q) and Gy (p,q) be defined as U (p,q), U (p,), U" (p.q) and
G} (p,q) but evaluated at the true values under the null hypothesis. Because the vector process
T-1/2 Z?zl G (p,q) converges weakly to [vec G (p,q) ,vec G®)(p,q), vec G (p,q)'] over € < p,q

< 1 —¢, its covariance function provides a consistent estimator for the latter. Further, we have

T
7723 "G (p.q)
=1
12 a PAYATH Qe T— 5'5' 1fie
T th (p7Q) - th p) f T Z Op (1)’
=1

where all the quantities on the right hand side are evaluated at the true parameter values under
the null hypothesis. The term inside the curly brackets converges to a nonrandom matrix by the

law of large numbers. Therefore, a consistent estimator of the desired covariance function is given
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T
7! Z gt (pm QT) th (Ps, QS)/ (35)

t=1
{ 1th anr ﬁ;flt} { 1th p57q:; Bl.;flt} )

where T is the estimated information matrix, i.e., I = 7 Z?ZI[V(B/yéll)/ﬁt/ﬁ] [V(ﬁ’,é’l)flt/ﬁ]‘

Remark 4 The estimator (35) has three desirable features. First, the parameter values are the
MLE from estimating the null model. They are simple to obtain. Second, the relevant quantities
can all be expressed as functions of (ngflt/ﬁ), (ngVQkVQlflt/ﬁ) and (ngvekvglvgmﬁt/ﬁ).
For models the are linear under the null hypothesis, they can all be computed analytically. Third,
nuisance parameters do not affect the dimension of the optimization in (84). Therefore, they do

not noticeably increase the computational cost.

The illustrative model (cont’d). We show how to compute the quantities in (35) when testing
for switching in g in the model (30). In more general linear models with multiple switching para-
meters, the relevant quantities can be obtained in a similar manner. The vector th (pr, qr) consists

of three elements (u; denote OLS residuals):
0P v.0) = & (122) D0+ a - 1 B,
0 .0) = SR & { ()" - 5% ),
7000 = |25 (1 (1))~ (59)"] 4 {(2)" -0 (%) +s},

They depend on the model only through the OLS residuals. The vector Vig.s, )flt / ft also consists

of three elements:

Vg s1)f1t _ { yerlie 1. (ﬁ B 1) i }
7, 7 252\ & |
They depend on the model only through the OLS residuals and the regressor 3;_1 and are also simple

to compute. The estimated information matrix is I = 7 Ef’zl[vw%),ﬁt/ﬁ] [V([317511)J?1t/ﬁ]. |

6 Implications for bootstrap procedures and information criteria

The results in the previous section provide a platform for evaluating the consistency of various

bootstrap procedures. Although a comprehensive study of such procedures is beyond the scope of
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the paper, it is possible to illustrate some important aspects using the linear model (9). Throughout

this section the test is computed over A, defined by (12).

Bootstrap procedures. We begin with the important special case where the regressors con-
tain only a constant and lagged values of y;, and the errors are normally distributed. A standard
parametric bootstrap procedure proceeds as follows. (1) Estimate the model under the null hy-
pothesis (e.g., estimate an autoregressive model), (2) Sample from the Normal distribution whose
mean equals zero and variance equals the sample variance of the residuals. Use the draws along
with the estimated coefficients to generate a new autoregressive series. (3) Compute the test using
the newly generated series. (4) Repeat the steps (1)-(3). The above procedure is asymptotically
valid. This follows because all the parameters are estimated consistently, and the normality and
the AR(1) structure are also preserved. Consequently, the covariance function in the bootstrap
world is consistent with what determines the asymptotic distribution in Proposition 1.

Next, consider the more general situation where a second variable is present in the regressors;
e.g., an autoregressive distributed lags (ADL) model. Because the model does not specify the joint
distribution of the dependent variable and the regressors, the bootstrap procedure described above
is no longer applicable. Two alternative approaches deserve some consideration.

The first approach involves keeping the regressors fixed at their original values when generating
the data, i.e., using the fixed regressor bootstrap. This procedure has been shown to be asymp-
totically valid in the context of testing for structural breaks (Hansen, 2000). However, the same
procedure is in general no longer consistent in the current context. This is because, in contrast to
the original model, in the bootstrap world the regressors are strictly but not weakly exogenous.
This alters the covariance function appearing in Proposition 1 (c.f. (24) and (25) and the accom-
panying discussions). We provide some simulation results to illustrate the potential severity of the
size distortion. The data are generated using the model (30) with the same specifications. The
sample size T" = 250. The solid line in Figure 4 shows the finite sample distribution, while the
dashed line corresponds to the fixed regressor bootstrap. The difference is quite substantial. This
difference does not decrease when the sample size is increased to 500.

The second approach involves specifying the joint distribution of the data. For example, if we
have an ADL model with normal errors, we specify a full model that corresponds to a Gaussian
vector autoregression. Then, we can apply the parametric bootstrap to the augmented model. Such

a bootstrap procedure will be consistent if it asymptotically produces the same covariance function
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in Proposition 1. A key property of this procedure is that it entails specifying a parametric model
for the regressors. Investigating the sensitivity to such specifications is useful but is beyond the

scope of this paper.

Information criteria. The asymptotic results also imply that the finite sample properties of
conventional information criteria, such as BIC, can be sensitive to the structure of the model and
also which parameters are allowed to switch. This is because the distribution of the likelihood
ratio depends on which parameter is allowed to switch, while in BIC the penalty term depends
only on the dimension of the model and the sample size. We illustrate such sensitivities using the
model (30) by contrasting the outcomes from the following two applications. (1) We apply BIC to
determine whether there is regime switching in the intercept. The other parameters are assumed
to be constant. (2) The same as (1) except that the slope parameter is allowed to switch. In the
simulated data, no regime switching is present; ;1 = 0, = 0.5 and 02 = 1. The set A, is specified
as (13) with € = 0.05. The sample size is 250. Out of the 5000 realizations, BIC falsely classifies
12.5% for the first application, while only 2.4% for the second application. Because the penalty
terms in the Akaike information criterion and the Hannan—Quinn information criterion have the

same structure, they are also expected to exhibit the same sensitivity.

7 Monte Carlo

We examine the test’s size and power properties and also compare with the tests of Cho and White

(2007) and Carrasco, Hu and Ploberger (2014). The DGP is
Yt = py - L{s,=1) + Ho - 1{s,—2) + ayt—1 +er with e; ~ ivi.d. N(0,0?), (36)

where the intercept switches between two regimes with p(s; = 1|s;—1 = 1) = p and p(s; = 2|s4—1 =
2) = ¢, @ = 0.5 and 0% = 1. The choice of this DGP is motivated by two considerations. First, it is
considered in Cho and White (2007), therefore using it facilities the comparison between the tests.
Second, as seen in the empirical application in Section 8, such a specification provides a sensible
approximation to the postwar U.S. quarterly real GDP growth series. Throughout this section, we
specify Ac as (12) with € = 0.05 and 0.02. The distribution (34) is simulated using 5000 realizations.
The rejection frequencies reported are all based on 5000 replications.

Let 6 = (12, a,&'?)’ denote the MLE under the null hypothesis. The supTS of Carrasco, Hu
and Ploberger (2014) is implemented as follows. First, obtain py,(p) = (1/(25%) st PITEEES,
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Tr(p) =T33 pay(p), and Er(p) = T~ 31 e4(p)ei(p), where & = yi—fi—ayi—1, p = p+q—
1, and &¢(p) are the residuals from regressing yi5 ;(p) on the score with the latter computed under the
null hypothesis and evaluated at 6. Next, compute the supremum of 0.5[max(I'z(p)/+/Er(p), 0)]2
over p. We consider p € [0.05,0.90] and p € [0.02,0.96]. They correspond to Ag s and Ago2
specified above. The resulting tests are denoted by supTS; and supTSy respectively.

Table 1 reports rejection frequencies under the null hypothesis, i.e., with p; = py = 0. The
rejection frequencies of SupLR(A,) are overall close to the nominal levels, although some mild over-
rejections do exist. In particular, when T' = 200, the rejection rates at the 5% and 10% levels are
6.60% and 14.46% for € = 0.05, and 6.22% and 13.62% for ¢ = 0.02. Similar rejection rates are
observed when 7' = 500. The results also confirm that the QLR and supTS tests have excellent
size properties.

For power properties, following Cho and White (2007), we let 1y = —puy with py = 0.2, 0.6 and
1.0. Motivated by the empirical estimates discussed in Section 3, we consider three pairs of values
for (p,q): (0.70,0.70), (0.70,0.90) and (0.90,0.90). The rejection frequencies at the 5% nominal
levels are reported in Table 2.

As none of the alternatives correspond to mixtures (i.e., p+q # 1), the power of the SupLR(A,)
test is consistently higher than that of QLR. The difference increases significantly as one or both of
the regimes become more persistent, i.e., as the value of p + ¢ increases. For example, consider the
cases jiy = 0.6 and 1.0. When (p, ¢) = (0.7,0.7), the rejection frequencies for the SupLR(Ag.05) test
are 20.24% and 96.58%, with the corresponding values for QLR being 9.46% and 68.83%. When
(p,q) = (0.7,0.9), the rejection frequencies for the SupLR(Ag05) test become 38.14% and 99.80%
with the corresponding values for QLR being 13.40% and 60.56%. Further, when (p,q) = (0.9,0.9),
the values become 60.30% and 100% for SupLR(A¢.05), and 7.06% and 7.30% for QLR. The results
strongly suggest that although the test of Cho and White (2007) can be valuable for detecting
mixtures, the SupLR(A,) test can offer substantial power gains when the DGPs are expected to
fall outside that family.

The comparison with the supTS tests shows a similar pattern. However, the reason behind
the power difference is not the same. Specifically, a key component of the test is ji9,(p), which
measures the correlation between the residuals (e;) obtained under the null hypothesis. On the
one hand, omitting regime switching causes €; to be positively correlated. On the other hand, such
an omission makes & upward biased, with the bias growing stronger as the regimes become more

persistent (such a phenomenon is studied extensively in Perron (1990 and 1991), which showed
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that omitting a structural change can cause the autoregressive coefficient to be upward biased,
potentially leading to low testing power for hypotheses related to unit roots or deterministic trends).
The bias in a causes overdifferencing the series and consequently makes €; negatively correlated.
In finite samples, these two opposite effects can potentially annihilate each other, making the value
of f19,(p) insensitive to the departure from the null hypothesis. This finding is consistent with the
simulation results in Carrasco, Hu and Ploberger (2014, Table II), which show that the test can
have good power properties when the lagged dependent variable is not present.

Some further simulations and comparisons are provided in the next section using parameters

calibrated to empirical estimates.

8 Application

Following the influential work of Hamilton (1989), a large body of literature has considered modeling
the US real output growth as a regime switching process. Here, we apply the SupLR(A) test to
assess the evidence for such a specification. The analysis is based on the real GDP growth rates
(Series GDPC1, available from the Saint Louis Fed website). It utilizes a full sample that consists
of quarterly observations over the period 1960:1-2014:1V and a range of subsamples specified later.
The analysis proceeds as follows. First, we examine whether the SupLR(A.) test detects strong
evidence for regime switching that holds consistently over different subsamples. Next, we examine
whether such evidence is still present when the QLR and supTS tests are used instead. Then, we
compute the smoothed regime probabilities to examine the empirical relevance of the model and the
results. Finally, some simulations are conducted with parameters values calibrated to the empirical
estimates to further illustrate the test’s size and power properties in this important application.
The model (36) is used throughout, though sensitivity analysis will also be conducted. The set A,

is as in (12) with € = 0.02. All the results are based on 5% critical values unless stated otherwise.

The testing results. We begin with the full sample. The SupLR(Ag.02) test equals 8.75, with
the critical value being 7.62. The null hypothesis is therefore rejected at the 5% level. Note that
the above full sample includes the recent Great Recession, which might have had a large effect on
the test. To evaluate the evidence further, we consider a subsample that corresponds to 1960:I1-
2006:1V. The SupLR(Ag.p2) test equals 8.57. The critical value is 7.61. The null hypothesis remains
rejected.

The analysis can be taken further. That is, the SupLR(Ag g2) test can be computed over a range
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of subsamples to evaluate the consistency of the results. To this end, we let the first subsample
be 1960:1-1980:1 and then gradually incorporate additional observations quarter-by-quarter. This
leads to 140 subsamples of increasing sizes. The resulting values are shown in Figure 5(a). Note
that the critical values are pointwise with respect to the subsamples, therefore the figure should be
interpreted as an informal illustration. There, the test statistics exceed the critical values for 106
out of the 140 subsamples. We conclude that there is fairly consistent evidence favoring the regime
switching specification. To our knowledge, this is the first occasion such consistent evidence for
regime switching in output growth is documented through hypothesis testing.

Figures 5(b)-(c) report the QLR and supTS tests over the same subsamples. The two tests
exceed the critical values only when the Great Recession period is included. Overall, the evidence

for the regime switching specification is not as strong when viewed through these two tests.

Recession probabilities. Figures 6(a)-(b) report the regime probabilities for the two samples
1960:1-2006:1V and 1960:1-2014:1V. This allows us to examine the simple model (36)’s empirical
adequacy and also assess the effect of the Great Recession on the estimates. In the figures, the
shaded areas correspond to NBER’s recession dating available from its website.

The results suggest that the model provides an informative approximation. Specifically, for the
period 1960:1-2006:1V, the recession probabilities agree well with the NBER’s dating for all the
recessions. For the full sample, the two results remain consistent, except that the model now assigns
low probabilities to the relatively shallow recessions of 1969IV-1970:1V and 2001:1-2001:IV. This
follows because when the Great Recession is included, the estimates for (uy, pis, @, 0%, p, q) change
from (—0.16,0.97,0.09,0.48,0.77,0.94) to (—0.54,0.75,0.19,0.49, 0.66,0.96) and, consequently, the
mean growth rate during recessions decreases from —0.18 to —0.67. The difference can therefore

be viewed as reflecting the unusual nature of the recent recession.

Robustness checks. We evaluate the results’ robustness along two dimensions.

In practice, the lag order of the autoregression under the null hypothesis is unknown and often
determined using some information criterion. To reflect such an uncertainty, we estimate the lag
orders associated with the subsamples using BIC and then repeat the analysis. The minimum and
maximum lag orders are set to 1 and 4. Note that here BIC is applied under the null hypothesis to
control the size of the test. This is different from using it to determine whether regime switching
is present as described in Section 6. The null hypothesis is rejected at the 5% level for 92 of

the 140 subsamples. The evidence of regime switching remains fairly consistent. At the same
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time, the results also points to the increased difficulty in distinguishing between a regime switching
specification and a linear specification that allows for more flexible serial dependencies.

We repeat the analysis but using reverse recursive subsamples. That is, we let 1994:1V-2014:1V
be the first subsample and then incorporate additional observations backward quarter-by-quarter.
The lag order is determined by BIC for each subsample. The results show that the null hypothesis
is rejected at the 5% level for 120 of the 140 subsamples. Finally, we exclude the Great Recession,
i.e., letting 1986:IV-2006:1V be the first subsample and then incorporate additional observations
backward quarter-by-quarter. The null hypothesis is now rejected at the 5% level for 47 out of
the 108 subsamples. It is rejected in 88 out of the 108 subsamples if the 10% nominal level is
used instead. Therefore, although the evidence in the latter situation is overall weaker, it remains

considerable and fairly consistent across the subsamples.

Further simulations. We evaluate the size and power properties using the parameter estimates
obtained above. Specifically, we simulate data using the model (36) with the parameter values
(1, pbo, @, 0%, p, q) set to the estimates obtained under the null and alternative hypotheses. The
sample sizes correspond to those implied by 1960:1-2006:1V and 1960:1-2014:1V. The results are
summarized below.

Consider the rejection frequencies under the null hypothesis. For the period 1960:1-2006:1V,
we obtain (1i, &, 52) = (0.60,0.28,0.65). The rejection frequencies at the 2.5%, 5.0%, 7.5% and 10%
levels are 3.18%, 6.62%, 10.30% and 14.68% for SupLR(Ag.05) and 2.98%, 7.36%, 10.74% and 14.36%
for SupLR(Agp2). For the period 1960:1-2014:IV, we obtain (i, @,02) = (0.51,0.33,0.64). At the
the same levels, the rejection frequencies are 2.74%, 5.76%, 9.10% and 13.02% for SupLR(Ag.05) and
2.80%, 5.64%,9.38% and 12.94% SupLR(Agg2). These values are consistent with the simulation
results reported in the previous section.

Consider the rejection rates under the alternative hypothesis. The estimates of (p, 1o, @, 02, p, q)
for the two periods are (—0.16,0.97,0.09,0.48,0.77,0.94) and (—0.54,0.75,0.19,0.49,0.66,0.96).
The rejection frequencies of SupLR(Ag.02) equal 66% and 65%. Overall, the results suggest the test
can be informative in empirically relevant situations. In comparison, the rejection frequencies for

the QLR test are 14% and 25%, and for the supTSs test are 24% and 10%, respectively.
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9 Conclusion

This paper analyzed a family of likelihood based tests for Markov regime switching in the context
of nonlinear models allowing for multiple switching parameters. In addition to deriving the limiting
distribution and obtaining a finite sample refinement, a unified algorithm for simulating the critical
values was also developed. When applied to the US quarterly real GDP growth rates, the tests
delivered consistent evidence favoring the regime switching specification. It is conjectured that
the techniques developed can have implications for hypothesis testing in other related contexts,
such as testing for Markov switching in state space models and in multivariate regressions. Such

investigations are currently in progress.
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Appendix
Throughout the appendix, ft‘t_l(p, q,B3,01,62), ft(B,61) and f¢(B,d2) are abbreviated as &;,_1, fit
and for, respectively. As stated prior to Lemma 1, "=" (e.g, §t|t_1) denotes that a quantity is eval-
uated at 01 = §2 = 0, where § is some arbitrary parameter value in A.
Proof of Lemma 1. The equation (15) can be written as

Ay
Eer1e :p+P§t7 (A.1)

where p is as defined in the lemma, Ay = for(§;—1 — 1) and By = (fur — fae)§yp—1 + for-

Consider Lemma 1.1. Apply fi; = for = fi:
Bt = ft and At = ﬁ(gt\tfl — 1) (AQ)

Plugging this into (A.1), we obtain &1, = p + p(§;;—1 — 1). This implies &5y = p+ p(&p — 1) =
p+p&, —1) =¢&,, where the last equality follows from the definition of p and &,. This process
can be iterated forward, leading to Et+1|t =¢, forallt > 1.

Consider Lemma 1.2. Differentiate (A.1) with respect to 6; (j = 1,...,ng + 2n;):

Vo Ay AV By
VoSt = P{ ét - Btzj } ; (A.3)
where
Vo, Ac = Vo, far(§e1 — 1) + f2t V0,801
Vo,Br = (Vo fu — Vo, fa)€yje—1 + (fie — f2) Vo, &1 + Vo, fau.
Below, we evaluate the right hand side of (A.3) under three possible situations:
(1). If j € Io, then Vg, f1 = Vg, for and fir = far = fi, implying
vejlet = (Eﬂtfl - 1)v9j f_2t + ftvﬁjgﬂtfl and VGjBt = v@jf_Qt (A4)

Combining this with (A.2), we obtain nggtﬂ‘t = pnggt‘tfl. In particular, at ¢ = 1: nggg‘l =
pPVo;€110 = pPVe; € = 0, where the last equality holds because £, is independent of 6. This process
can be iterated forward, leading to nggtﬂ‘t =0 forallt>1.

(2). If j € I, then Vg, fo; = 0 and f1; = for = f, implying

Vo,Ar = fiVe,Ey—1 and Vg, By = &1V, fir- (A.5)

Combining this with (A.2), we have nggtﬂ‘t = pngEﬂt_l - p(gt‘t_l - 1)§t‘t_1V9j log fir =
PV, -1 — p (& — 1) §. Vg, log fir. The result then follows because r = p (1 —§,)§,. Note that
ngétﬂ‘t can also be written as

t—1

V9j5t+1|t = TZPSVOj log .fl(t—s) (A.6)
s=0
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(8). If j € I, then Vi, fi; = 0 and fi; = fo = f;, implying
Vo, Ay =V, f2t(§t\t 1= 1)+ fiV, 5t|t 1 and Vy, By= (1~ gt|t71)v9jf_2t' (A7)

Therefore, Vg, €t+1\t = pVo,& -1 + p(Er—1 — D&—1Vo; 10g for = =1 3424 p° Vo, 10g fo—s)- Be-
cause Vy, f2t s) = Vo,_ néflt s) When j € Iy, it follows that Vj, §t+1|t equals the negative of

(A.6).
Consider Lemma 1.3. Differentiating (A.3) with respect to 6y:

. Vg]. ng At V@]. Athk By Vek AtVQj By Ath]. ng By AtVQj Btvngt
v@j Vek gt—i—l\t =p B - Bt2 - Bt2 - Bt2 B? )

(A.8)
where

Vo, Vo, Ae = Vo, Vo, for(§p—1 — 1) + Vo, [2V0,8410-1 + Vo, f2t Vo, E4e—1 + 26 V0, Vo, Egje—1s
vejvekBt = (Vejvekflt - v@jvekfét)gt‘tfl + (vejflt - v@ijt)VGkgt‘tfl
+(Vo, fit — Vo, f2) Vo, &1 + (fie — f20)V0; Vo, Eee—1 + Vo, Vo, fou.

We now evaluate the right hand side of (A.8) at §; = d2 = ¢ under six possible situations:

(1). If j € Iy and k € Iy, then fi, = for = fi, Vo, f1e = Vo, for, Vo, fie = Ve, for, Vo, Vo, fie =
Vo, Vo, far and Vo, & 1 = Vo, &y pqy = 0, implying Vo, Vo, Ay = Vo, Vo, for(§p—1—1)+fi Vo, Vo, &1
and Vg, Vg, By = Vg, Vg, for. Combining them with (A 2) and (A. 4) Vo, Vo, &ei1pe equals

fe IZ
(ft\t 1=V, f2t Vo, far (Et\t—1*1)vejvekf2t +2(§tt—11)vﬂjf2tvek.f2t}

{Vejvekfzt(ﬁm1—1)+ftvejvekftt1 B (Etjt-1—1) Vo, 2V, for

2 Ji I?
= pVy;, Vakgm—l-

Starting at ¢ = 1 and iterating forward, we have Vj, ngétmt =0forallt>1.
The proof for the remaining five cases uses similar arguments; we only outline the main steps.
(2). If j € Ip and k € Iy, then Vj, fie = Vo, fot, Vo, for = Vo, Vo, for = Vo, §t+1‘t = 0, implying
V@ V@kAt V. f2tv9kft|t 1+ ftVQ v9k€t|t 1 and V@ V.ngt fﬂt 1V0 Vekflt Combining these
two equations with (A.2), (A.4) and (A.5), Vy, V9k§t+1|t equals

vejsztVGkEﬂtfl""fthjV9k5t|t71 B \F f2t(£t\t 1_1)5t|t 1V9kf1t . V9k5t|t71v9jf2t
P 7 7? 7
(ét\tﬂ—l)gt\tqvejVekflt 2(E4pp—1—1Exp— 1V, f2tVo, fie
- 7. + 72

The result follows from rearranging the terms.
(3) Ifj S I[) and k S IQ, then VQ flt = VQ fgt and VQkflt - VG Vekflt - V@ €t+1|t = 0

implying Vo, Vg, Ar = Vo, Vo, far(§p—1 — 1) + Vo, ft Vo, Eye—1 + [:Vo, Vo, &1 and Vo, Vg, By =
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(1- Et‘t_l)VQj Vo, f2r. Combining these results with (A.2), (A.4) and (A.7), Vo, Vo, &1 equals

{ Vo, Vekf2t(gt\t71_1)+v9j f2tv9k5t\t71+.ftvej Vo, €ji—1 n (Eﬂt,l—l)Qng F2t Vo, far
fi 72

_[VBkf2t(gt|t71_1)4:2fifv0kgt\t71]vejf2t n (émfl—l)%vejvekfzt B 2(§m1—1)2v29jf2tvekf2z}
ft ft ft ’

The result follows from rearranging the terms.

(4). If j € I and k € I;, then ngfgt = ngfgt = ngv(gkfzt = O,ﬁimpl;ifing ng.ngflt =
ﬁvejvékgﬂtfl and vejvekét = gﬂtflv&jvekfjlt + VijTltvekEﬂtfl + vekfltVngt‘tfl‘ Combining
them with (A.2), (A.5), Vg, Vg, & 1) equals

= Et—1Vo &1V fie  Ep_1Ve,Ee—1 Vo, f1e
P{Vejvekftt—l - . T - 7 :
~ E€yem1=DIEye—1V0; Vo, J1utVo, 1Yoy &yem1+Vo,€0—1 Vo, f1e] n 2(£tt1_1)£?t_zlv9jf1tv9kflt}
ft ft ’

The result follows from rearranging the right hand side terms.

(5). _Ifj € 117 and 7]{: € Ig,ithen Velfgt = Vo, f1t = ngvekflt = ngVQkat = 9, im;zlying
Vo, Vo, Av = Vo, [2eVo, &1+ [tV Vo, Ehyp 1 and Vo, Vo, By = Vo, f1eVo, §yp 1 — Vo, [tV 6,841
Combining them with (A.2), (A.5) and (A.7), Vg, Vg, & 1) equals

{Vekfztvejftt1+ftV9jV0k§tt1 _ (1_Et|t71)v925t\t—1vekfTZt B [vﬂkfTQt(gt‘tfl_1)+ﬁzek5t\t—1}ét|t—1vejflt
It Jt fi

G D[Vo, fVo 1= Vo, Vo s] 2111 Vo, FuVo, fan }
Je 7 ’
The result follows from rearranging the terms.

(6). If j € Iy and k € I, then Vejflt = Vo, it = ngvakfu = 0, implying ngVkalt =
vajVka%(gﬂt_l - 1) + Vej Jf2tv0kgf,|t_1 + Vekfmtvejgﬂt_l + ftvejv%gﬂt—l and Vej VekBt = (1 -
E0-1)V0; Vo, for — Vo, f2:V0, &1 — Vo, f2tVe;E—1-  Combining them with (A.2) and (A.7),
Vo, Vo, &1 equals

{ Vo, Ve, f2t(€s—1=1)+Ve, [t Vo, &t 1+ Ve, F2 Vo, & 1+FtVo, Vo, Ev 1

Ji
Vo Far(Eae—1=D+FiVo, Eae-1](1=E4e-1) Vo, For [VGjf?t(gﬂtfl_1)+ftv9jgt\t71](1_Et\t71)v9kf2t
77 ft
_(Et\t71*1)[(1*5z|t71)vojVekfzt*Yejfztvekgt\tle*Vekfztvejgt\tq] +2(gt|t11)3Y29jf2tv9k.f2t}
fe fi '

The result follows from rearranging the terms.
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Consider Lemma 1.4. Differentiating (A.8) with respect to 6;:

Vo, Vo, Voiy
- VGjVGkVGZAt B Vg].ngAtVQZBt B ngVQZAtVQkBt B ngAtV9kV9lBt QVGjAtVGkBtVQlBt
=P By B? B? B? B?
ngVQZAtVQjBt vekAtVGjVQZBt n QVGkAtvngtvngt
B} B} B}
_VGZAtVGjVQkBt B Atvgjvgkvngt i 2AtV9jV9kBtV9lBt
B} B} B}
2V9lAtV9jBthkBt 2AtV9j VngtVQkBt 2AtV9jBthkV91Bt GAtvngtvngtvngt
+ 3 + 3 + 3 - 4 9
Bt Bt Bt Bt

where

Vo, Vo, Vo A = Vo,Vo, Vo, for(§i—1 — 1) + Vo, Vo, f2V o, Ei—1 + Vo, Vo, [2 V0, €41
+Vo,/2tVo, Vo, &ei—1 + Vo, Vo, [26V 0,1 + Vo, [V, Vo, 8401
+Vo,f2V0,Vo,&hye—1 + [24V60; V6, Vo, Sip1,

Vo,Vo, Vo Bt = (Vo; Vo, Vo, f1t —Vo; Vo, Vo, fot)se—1 + (Vo, Ve, fit — Vo, Vo, f20) Vo, i1
+(Vo, Vo, f1it = Vo, Vo, f2)Vo;Ee—1 + (Vo fie — Vo, [20) Vo, Vo, i1
+Vo, Vo, Vo, for + (Vo, Vo, fit — Vo, Ve, fo1) Ve, Eiyi—1
+(Vo, fie = Vo, f20)Vo, Vo, &ii—1 + (Vo fie — Vo, f21) Vo, Vo, €1
+(f1t = f2)Vo,; Vo, Vo, &1

We now evaluate the above terms at §; = do = 9 for 10 possible cases. We only report the values
of é_'jku but omit the derivation details.

(1). If jelp,k € lpand !l € Iy, then gjkl,t = 0.

(2). If j € lp,k € Iy and [ € I7, then gjkl,t equals

Vo, Vo, f2tVe fit Vo f2eVe, Vo fir Vo, f20Vo. Ve fre = Vo, Ve, Vo fie Vo, f2tVo, f2t Ve, fit
- ) - ) ) - 73 .
fi fi fi Tt fi

(8). If j € Iy, k € Iy and [ € I, then &4 equals

, Vejvekfmvalfzt n Veijtjekvelf2t n Vekf2tY0jVelf2t B Vajvelivelfm B zveijtVGijQtvelfm .
12 1z Iz ft 72

(4). If j € Ip,k € I; and | € I, then S_jkl’t equals

p(1—2¢,) |:V9jv91fl}tv9két|t1 n Vejvekfgvalgt\tfl n Vél.fltVG}_tVBkgt\tf]_ n Vekf_uve}ztvelzmq

_Vejﬁtvelfuvekgt\tq B v9jf2tv9kf1tv915tltl} g [Vejvokvolfu . Vejfmsvekvelfu]

2 f? Tt e

Velfuvajvekfu Vekfuvajvelfu Vejfztvekfltvelfu
—2rg, 72 + 72 - 73
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(5). If j € I,k € I and [ € I, then &4 equals

p(1—2¢,) [v"kf”v‘}l‘tvf’zgttl _ vezﬁfVG}tv%gﬂtfl + Vejﬁtvelj;;tvekgt\tA

ve]-fTQtVkaTltvﬂlgﬂtfl Vajvekfltvelft\tﬂ vejv(?lf}tvekgt\t—l
f? Tt ft

Vo.Vo, f1:Vo, f2 Vo,V f2tVe, f1 Yo.F2rVe, 1t Ve, fo
_T(1_2€*)|: . kft2t l t+ 1 lffzt k t—2 Tk J% s t:|.

(6). If j € Io,k € I and [ € I, then gjkl’t equals

Vo.Ve, f2tVa, & Vo.Vo, f2tVe i Vo, f2tVo. Vo, Espr Vo, f2tV9. Ve &
—p(l _25*) |: 91 0; 2}} 0 St|t—1 + 6] 0 j?tt 0;St|t—1 + 0,2t 0}; 0. St[t—1 + 0, J2t <9flt 0;St|t—1
_Vejfmvelfzzvekgm_l B Vo, f2tVe, f2tVe €t 1 ., Vo, Ve, Vo, fat B Vo, f2tVe, Ve, for
7 17 fi fe ’
Vo, f2tVe. Vo, for Vo, f2tVo. Vo, for Vo.f2tVo, f2tVe, for
+2T(1 - f*) |: l ft2] . + . ftzj : -2 J%’ : :|

(7). If j € [1,k € I and | € I1, then &4 equals

Vojvekf_ltvelgﬂtq Vejvelfltvekgﬂtq Vekvelfltvejgt\tq
p(1—2¢,) I + 7 + T
Vejf.ltvelfvtﬁgﬂtfl I VkaTltVBZ-legt\tfl i Velfuvej;vekgt\tq
Tt e ft
_2p |:V6]-flzvak§t|t_1velft|t_1 + Vekfltvejgtit_1velgt|t_1 + Velflzvajft|t_1vekftt_1:|
fe fe fe

Veo.f1iVo, FutVeo Eeo1 Ve, f1eVe FitVo.Eir Ve, F1tVe. 1tV Epe
+p(6§2—4§*)[ 0571t kaglt 015t[t 1+ O J1t elf;t 0S¢t 1+ 0,J1¢ ejszz 0,5t|t 1:|

Vo.Ve, f1tVo, fie Vo.Ve, f1tVe, fie Vo, Vo, f1tVo. fie Vo.Ve, Vo, fit Vo.f1tVe, f1¢Vae, fit
—2r¢, |: ! kf2 : + lf2 E + —* lf2 ! ! }Et ! + 67"53 ! I‘c3 l
t t t t

(8). If j € 1,k € I and | € I5, then &4 equals

—p(l p ) VejV9kEt|_t71velf2t B VejVe?lEt‘f,lVf)kfu B ngVOIEt‘_t,:Lngflt _ V9jv9kf1_tv9lét|t4
* ft ft ft ft

Vo, [11Ve, P20V Eio1 Vo, F10Ve, [2:V0, Eji
P(6536§*+1)[ 05 J1t glf;t 081 | Ve e Blf;t 0,84t 1}

+2p [VeletV9j§t|t1V9kftt1 _ Vej.fltvekgt\t71vﬂlgt|t71 B Vﬁkfltvﬁj€t|t1v9l§tt1:|

ft ft ft

—7’(1 B 25*)ngV9k]€21tV9lf2t I (653 _ 45*) pvgjfltVka{;ltvglgﬂf—l . TVejfltV(g;}fltV(;lﬁt] .
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(9). If j € 1,k € I, and | € Iy, then &4 equals

B (1 py: ) Vejvekét|t71volf2t n VejVOIZt\tf:lVekfzt B VokVe)th‘t,;Lngflt " ngVQZfth9j£t|t71
P * 7 7 Iz 7
Vo, f2tVo, 11V, Ei1 | Vo, [t Vo, 11V €11 Vo, Ve, f2tVe, fit

pwﬁ6a+n[ i + i }Ml%g 7

Vo, f2tVo &1t -1Ve &1 Ve f2eVe &t 1Vo, &1 Vo, [1eVe &1V, 81
ft Jt i

—I—Zp[ I — + I — -

Vo, [2tV6, 2tV Ei—1 Vi, flfvﬁkutvelth:|

+[6(1 - 5*)2 —4(1-¢,)] |:P / ftzl I+ 7

(10). If j € Is,k € Iy and | € Iy, then S_jkl,t equals

_p(1—26,) |:V9jv9kf‘2fiv915tt1 n v@jVGZfTthTtVGkEt\tfl n VekvelfzfévejgﬂtA
Vajf;tvekvelgt\t—l X Vekfztvejvelgt\zﬂ X Velfzzvejvakgqtq
fi fi fi

Vo, f2tVo, Vo, far Vo f2tVa Vo, for Vo f2rV9 Vo, fat

+2r(1—¢&,) [ fzk 2t Yoy 7 2t V0 ft k }
VfoV£ VfoV§ VfoV{
+ma1—5g?—q1—@ﬂ[9 R %Qtﬁitg”tﬂ
Vo, f2tV9k§t|t 1v615t\t 1 Vekfmsve Et\t 1v9l§t|t 1 Velthve gt\t 1V9k5t\z 1

+2p [ 72 + 72 + 72

Vo.Vg, V v v v
Y 9],% 0, fat —6r(1— g*)z 0, fat efkat elth‘ -
t

The next lemma provides stochastic bounds for &, +1p¢ and its derivatives.

Lemma A.1 Suppose Assumption 4 hold. Then, there exists an open neighborhood of (8,,0x),
denoted by B (f,,0«), and a sequence of strictly stationary and ergodic random wvariables {\}
satisfying E)\%Jrc < M < o for some ¢, M > 0, such that:
e
sup Vo, Vo, Syt *
(B,01)€B(B.,0+)

for all iy, ...;ip € {1,..,2n5 + ng} and k =1,2,3 and 4, where a(k) =6 if k =1,2,3 and a(k) =5
if k = 4. The above inequalities hold uniformly over ¢ < p,q < 1 — € with € being an arbitrary
number satisfying 0 < e < 1/2.

Proof of Lemma A.1. We use the difference equations in Lemma 1 to relate Vy, ...Vy, Et+1|t to
the density functions fi; and fo; and their derivatives. Because the higher order derivatives depend
successively on the lower orders, we start with £k = 1. Without loss of generality, suppose j € I;.

Then, apply (A.6):
1 6 00 6
‘vajgt+1|t‘ <Z ) <Z ”f‘p |U1/6> S (Z(l - E)svl}/i> 9
0 s=0
A-6

vﬂflt s)
fts




where the second inequality follows from Assumption 4 and the last inequality uses p = p + ¢ — 1.
Because {v;} is stationary and ergodic, the right hand side is also stationary and ergodic (White,
2001, Theorem 3.35). Denote it by A; and apply Minkowski’s inequality for an infinite sum:

0o 6(1+4c) 0o 1 6(1+c)
ENY = E 2(1—6)SU§/§] S{Z[E((l—g)syg/i)ﬁ(lﬂ)} 6<1+c>}
s=0 s=0
) L 6(1+c) 0o 6(1+4c)
_ {zu—as [Evitg]w} <L{z<l—e>s} ,
s=0 s=0

where the last inequality holds because Fv.T¢ is finite by Assumption 4. Because Yool —

€)* = 1/e < 0o, we have EAT¢ < L/e80+9) < oo, This establishes the result for & = 1. Let
M = L/€6(1+C).

The proof for k& > 1 is similar. For k = 2, we have \ngV9i5t+1|t|3 < (20 |p°Ejii—s|)®. We
provide upper bounds for ]gji,t\ for five possible cases. Specifically, if j € Iy and i € 1, then

_ V. for Vo. rVo.Vo.f: V. for Vo. f: rVo.Vo. fi
‘gji,t‘ | 93f2t ezf” n 0; 791f1t < 93f2t 91f1t b; 701f1t <2lr |U1/3'
It Tt It Tt It Tt
The same bound holdsif j € Ipandi € Ir. If j € Iy and i € Iy, then |£j;,] < 2|p (1 — 2¢,)| A Sv}/5+

3lr|vy/3 I j € I and i € I, then |Eji4| < 2]p (1 — 26,)| A5 /S + |r(2¢6, — 1)|v}/?. If j € I, and

k € I, then [£j;4] < 2[p (1 — 26| A80l® + (Jr| + |2r(€, — 1)]) v}’®. Consequently, there exists a

finite constant C4, such that for all the five cases we have ]c‘fji,t| < C’l()\tl/ﬁi t1/6 +v t1/3

z 3 oo 1/6 1/6 , 1/3,\3 . .
Vo, V9i§t+1|t’ < (Zs:[] Ci(1—e)*(Nqv " + vy )) . The right side is stationary and ergodic;

we continue to denote it by A\;. By Minkowski’s inequality:
Yy y y

). This implies

> 1y 3(1+0)
3(1+c¢)] 30+0)
E)\tHC < {Z [E (Cl(l - 6)8()\1/6112%/6 + Ui/?))) } o } . (A.9)
s=0
Apply Minkowski’s inequality followed by the Cauchy—Schwarz inequality to the summands:
3(1+c¢)
B (1= 50l +0i)
5\3(14c) (14¢)/2 (14c)/2 ﬁ (1+¢) ﬁ 3(1+4c)
< (Ci(1—e)*) (BN 2) T (i)
$13(14¢) (14+6) 1 (1+0)\ 50F5 (L40)\ TS 3(1+c)
< (Gi(1-¢)) (A 2o +) T 4 (1) |

Because E)\gl_tc) < M and EviHC) < L, the last term in the preceding display is no greater than

3(1+c
(1 — ¢)3(+e)s 30+ [(ML)*euia + L73(11+c)] o _ Co(1 — )31+, (A.10)

where C9 is a finite constant independent of p and ¢. Plug this into (A.9), we have E)\%“LC <
Co (320 (1 — €)%)30+) = 0y /3(1+¢) < 0o, This proves the result for k = 2.
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Now, consider k£ = 3. Inspecting the expressions of gjil,t reported in the proof of Lemma 1

shows that they comprise the following terms (a,b,c =1,2):

V94V9-fatvelf_‘bt V9~V9vvelfat Vefatve-fbtvelfct Velfatve Vo, Eet-1

f2 9 f 9 f3 9 ft 9 (A 11)
Vo, fatVe, [t Vo, Ei—1 Vo, Ve, fatVo €1 Vo, [atVe &1V, Erjr 1 )
12 ’ fi ’ ft

By Assumption 4 and the above results for £ = 1 and 2, the quantities in (A.11) are bounded, respec-
tively, by vt/ 1/2,Ut1/2,Ui/6)\i/?i,vtl/3)\;/q,vt1/3)\ /6 1/6)\,1/3
fied in Lemma 1 all satisfy ‘Sﬂl t‘ < Cs( 1/2+ 1/6)\1/3 +v 1/3)\1/6) where (5 is a finite constant inde-

pendent of p and g. This implies ‘ng.VgnglétH‘t‘ )ZS o1 —¢€)°Cs(vy 2y ,}/6)\2131 + vz/g)\iﬁ)
Denote the right hand side by \; and proceed along the same lines as between (A.9) and (A.10).
It then follows that E)\g+C < o0. For k = 4, the expressions of gjilm,ta although omitted here,
include terms as in (A.11) but with the orders of derivatives sum to 4 instead of 3. Using the same
arguments as between (A.9) and (A.10), it can be shown that EA; ™ < oo holds. M

The next lemma establishes stochastic orders of some quantities related to §y,—q, f1z and fo.

and v Therefore, the ten cases speci-

The quantities are all evaluated at (B,g, g)

Lemma A.2 Let i, js,ls, ms,ng be arbitrary integers satisfying 1 < iy, js, ls, ms, ng < 2n5+ng for
s €{1,2,3,4}. The following results hold uniformly over e < p,q < 1 — € with € being an arbitrary
number satisfying 0 < e < 1/2:

1. For any a € {1,2},u € {1,2,3,4} and v € {0, 1,2, 3} satisfying u+v < 4, we have (interpret
Vo, Vo, Ee—1 as 1 when v =10)

Ve fat ~
— Z — MV Ve, € = 0p(1), (A.12)
t 1

Further, if u+ v < 3, then the result holds with o,(1) replaced by Op(T_l/Q).
2. For any (a,b,c) € {1,2}, (u,w) € {1,2,3} and v € {0, 1,2} satisfying u+v+w <4:
1 & Vo, Vo, Jat Vo, Ve, Jot Vo, Vo, fu
r=s J f
3. For any (a,b,c) € {1,2}, (u,w) € {1,2,3} and (v, 2) € {0,1} satisfyingu+v+w+2z<3:
1 L Vo, fat Vo, -V, Fut Vo, -V, fet
Tﬁl J e i
Proof of Lemma A.2. By the mean value theorem, the left hand side of (A.12) equals
L Vo, Vo, [
p It

T _
) Vo, Vo, fat ] _
+ {T 3/2 E VQ/ <1ftvﬁj1 --'vejvgﬂtl) } T1/2 (6 - 9*) ’
t=1 @

A-8

= 0,(1).

ngl .-.Vemwgt|t_1van1 ---vénzgﬂt—l = Op(l)'

T Vo, Vo, & (A.13)



where "+" and "-" denote that the relevant quantities are evaluated at the true values 0, =

(B.,6",6") and 0’ = (B/, &, 5’) , where 0 lies between g = (El,g,,g,) and 0,. The first summation

v/a(k), u/o(k)
Ut

is over terms that are stationary and ergodic, which are bounded by A, by Assumption

4 and Lemma A.1. Apply Holder’s inequality:

v

a(k)—v
a(k)/v\ ak) a(k)/(a(k)—v a(k)
E()\;’/a(k)vg/a(k))l+c < <E (}\:(l-i-c)/a(k)) )/ ) (E <U?(1+c)/o¢(k)) ( ( )>

(EU%JFC) ((1<)k)

< (E)\lJrc)

where the last inequality follows because u + v < a(k). Both terms on the right hand side are
finite by Assumption 4 and Lemma A.1. Therefore, the first term in the display (A.13) is o, (1) by
Theorem 3.34 in White (2001). Now turn to the second term in the display (A.13). We have, for
any k € {1,...,2n; + ng}

_3/2 d velu fa’t P
92w, f—wh Vo, &
=1 at
T _
_ V@i ...V@iu V@ fat - VG fat =
S T 3/2 Z 1 f_t k ijl"'Vijgt‘t_l 3/22 v@]lveﬁ) v0k€t|t—1
t=1 @

T — _
3 Vo, Vo, fat Vo, far z
T73/2 ‘1 _ tu f a VQ. V@ € —

t=1 fat fat . ottt

< T-3/2 Z{ (u+1)/a(k) )\v/a(k) + U;L/a(k))\gvﬂ)/a(k)} =0, (T—1/2> :

where the equality follows from Assumption 4, Lemma A.1 and u + v + 1 < 5. Therefore, the
display (A.13) is o, (1).
Now we consider the cases with u4+v < 3. If u4+v < 3, then the terms inside the first summation
of (A.13) are bounded by )\U/G u/6 We have

v/3 3—v)/3
E(/6,4/0)2040) < (E()\;)(1+c)/3)%) / (E(U;L(lJrc)/S)(?)EU))( )/ < (EA%*C)”/?’ (Ev}*c)(3_”)/3.

The right hand side is finite. If u+v = 3, i.e., u = 3 and v = 0, then E()\U/6 u/6) (1+e) = gy, (+e) <
0o. Apply the central limit theorem; it follows that the left hand side of (A.12) is O, (T_l/Q).

Lemma A.2.2 and A.2.3 can be proved using the same arguments, i.e., first applying the mean
value theorem and then obtaining bounds for the two resulting terms separately. It follows that
the left hand side quantity in Lemma A.2.2 is bounded by 7! Zt LV (u+v+w)/a( )+ Op(T_l/Q),
while that in Lemma A.2.3 is bounded by T-' Y/, t1+u+v)/a( ))\Ewﬂ)/a( )+ O,(T~1/?). The two
leading terms both satisfy a law of large numbers, therefore are Op(1). W

We state some notations to be used in subsequent proofs. Define

(62) - (B( ) 31(52)/75/2)/7
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where (3(d2) and 61(d2) are defined in (17). Let §t+1\t»f1t and fo; denote §ii11e(Ps @5 B, 01, 02),
fo(B,61) and fy(8,02) evaluated at (8,61,82) = (B(32),61(32),82). Also, let Vo, ..V, & p1yp,
Veil---v% flt and v%'"v% fzt denote the k-th order derivatives of gtﬂ‘t, fi1r and fo; with re-

spect to the 41-th,...iz-th elements of 6 evaluated at (3(d2),d1(d2), d2).

Proof of Lemma 2. As the proof is long, we organize it into three parts, corresponding to Lemma
2.1, 2.2 and 2.3 respectively.

Proof of the first result in Lemma 2. By construction, 9(52) satisfies

T ~

_ M; )
Mg‘l)(p)q;(;Q) =T IZBTT =0 (.] = 17"'7nﬂ+n5)’ (A14')
t=1
where
By = (fi— fo)bupr + For. (A.15)

Mj = (Vo fit = Vo, f2t)§sp—1 + (fit — f26) Vo, &1 + Vo, for-
Because (A.14) holds for all 2 € A, its derivatives with respect to d2 must equal zero. The
proof makes use of this property. It proceeds in three steps. For an arbitrary k € {1,...,ns}, the
first step differentiates the ng + ns equations in (A.14) with respect to dgi to obtain a system of
ng + ns linear equations, with Vs, B (62) and ngkgl(ég) being the unknowns. The second step
evaluates these equations at dy = 5 and provides approximations to them. The third step solves
these approximating equations to obtain explicit expressions for Vs, B(S) and Vs, 31(5) These
three steps are then repeated for all k € {1,...,ns} to prove Lemma 2.1. The idea of differentiating
the first order conditions is inspired by Cho and White (2007). At the same time the proof here is
more complex due to the presence of §; |, and the allowance for multiple switching parameters.
Step 1 for proving Lemma 2.1. Consider an arbitrary k € {1,...,n5} and an arbitrary j €
{1,...,n3 +ns}. Taklng the first order derivative of the j-th equation (A.14) with respect to the
dor (Here, view B, and th as functions of p,q and d9; note that 5 and d; are now functions of
these three elements.):

T .
MG (0, 4,02) = tz; V‘bgt - ;; VE}B LN, =0, (A.16)
where
Vo Mjr = {Etuflvajveffu + (1= &,_1)Ve, Vo for + (Vo, fru — Vo, o) Vr€ypy (A1T)
+(V9j§t|t—1)(veff1t — Ve for) + (fie — fgt)(ngV(,/ét‘t_l)} V(;%@((Sg),
and
Vo Bt = {ét\t—lve'flt +(1— ét|t—1)v0’f2t + (fie — f2t)v9/ét‘t_1} Vs,,0(62) (A.18)
with A
) V50, 8(02)
Vi 0(02) = | Vi, 01(d2) |, (A.19)
€k

A-10



where e; is an ng-dimensional vector whose k-th element equals 1 and otherwise zero. We view
(A.16) as a linear equation with the first (ng + ;) elements of Vs, 6(d9) being the unknowns. The
above differentiation can be carried for all j = 1,...,n3 4+ ns, while keeping k fixed at the same
value. This delivers ng + ns equations with the same number of unknowns specified in (A.19).

Step 2 for proving Lemma 2.1. We first evaluate T~ 121: 1(V52kBt/Bt) ¢ in (A.16) at 09 = 5
for an arbitrary j € {1,...,ng + ns}. It equals (using fir = for = f; and Eip—1 = &4)

IZT: £V, fie + (ft2 £V, for

T (6 fis + (1= £V ]V, 00).
Using (A.19), this can be rewritten as

1 = &V, fie + (1= €V, far = ~ Vs, B(5)
fz 72 [ Ve fie Vi fie ] [ €.V5,.61(5) ]
V. 1—&,)V. o _
+% Z d ejflt - (f2 d ) 6]f2t (1 - 6*)v52kf2t)
t=1 t

where Vg flt denotes the derivative of f; (f,01) with respect to [ evaluated at ,6’( ) and &1 (g),

Vg flt and Vs, fgt are defined analogously. Further, if j € {1,...,n3}, then preceding display

equals (using Vej flt = Vej f2t)
T

lz [ Vojf~1t Vo fi Vejflt Vé’lflt ]

T—HL f  h oo R

V52k5( )
€.V 5,,01(6)

1 V.1t Vs, f
1 . E j S J2t A.20
( 3 )t - 7. 7, ( )

Meanwhile, if j € {ng+ 1,...,ng + ns}, then the same display equals (using Vy, for = 0) &, times
(A.20). Let D be a diagonal matrix whose first ng diagonal elements equal 1 and the rest &,. Then
the above two cases for j can be combined, leading to

308 _ g1 5T Vﬁflt V§2kf2t
Df vé%ﬁA(dl (1 g*) =1 ft ft (A21)
&V 01(0) (- g5 YafuTufn |-
i - ft ft

where T is defined in (20).
Now consider the first term in (A.16). It equals (using fir = for = fr and §;,_1 = &,)

= Ve/fﬂt 1+ Vo, 5t\t 1W] } véQké(g)‘

1T §*VejV9/]?1t (1—5*)V9jvglf2t Vejfu Vo, for
{ Ztl[ A AR

All the terms inside the curly brackets are O,(T~'/2) by Lemma A.2.1. Their effects are dominated
by I, which is positive definite in large samples. Combining this with (A.21) and (A.16), we have:

fat
- 1-¢, 1T V,efn Vs%
R e IR Ay ) PR DT
§*v62k51 (5) (1—¢ ) T V61f1t Voo f2t
* - ft ft

A-11



The preceding display provides (ng + ns) linear equations with the same number of unknowns.
Step 3 for proving Lemma 2.1. We show how to solve (A.22) for k = ns. Consider the following
partition of the system (A.22) with I22, ¢y and Bg being scalars:

In T | [ 6, ] [ B
~11 ~12 ?1 _ ~1 + OP(T_1/2).
Iy Iz | | &2 | | B2
This implies
I I 178 1 [ B
oo he o1 | _ | I s o, 1, (A.23)
0 Dp—Inlyhe || ¢ | | Ba—Inly B

which further implies ¢2 [32—121111 Bl]/[Igg—Igllu 112]—1—0 (T—Y/?). Because By = & -1 Iio
and By = (£, — 1) Iy, after cancellation we have ¢y = £, — 140 (T~ 1/2) . Plugging this result into
the first set of equations in (A.23), we obtain ¢; = IlllBl—Ill I12¢2+O (T2 = (&, - 1) [11 Ta—
Illlllz (&, —1)+0 (T_1/2)] + 0,(T~/?) = O,(T~'/?). This completes the proof for the case
k = ng. For other values of k, the same argument can be used after exchanging the k- and ns-th
columns of I and the k- and ng-th elements of ng and B. |

Proof of the second result in Lemma 2. View the quantities in (A.16) as functions of d2, p
and ¢ and differentiate them with respect to the I-th element of d2 (I =1,...,n4) :

1 Vs, V Vs, MjiVs,B: Vs, Vs, Bi ~
Mﬁ)l(p,qﬁz) _ Z dok 521 Jt_ Ok zt2 0oy Pt §2kA252l tht (A.24)
t:l Bt Bt
BV, By -
V52k v521 V52k f3v52z tht -0,
Bt Bt
where
ng+2ns
Vo VouMje = ) {wsm1vajvesfu+ft|tNejvesveffu (A.25)
s=1

~Voki1Ve; Vo, fa + (1= E4i_1)Ve, Vo,V fou
+(Veo, Ve f1e — Vo, Ve/fzt)veséﬂtq + (Vo, fie — Vo, th)vﬁsve’ét\t—l
+(Vo, fre = Vo f2)Vo,Vlyi1 + (Vo Vo fr — Vo,V f2) Vo, 1

+(Vo fre — Vo f2) Vo, Vo, &1 + (Fre — f%)VejVesVe'éﬂt—l} X
v52k98(52)v521é(52)

+{§t|t1V6jV9'f1t + (1= &)V, Vo for + (Vo, fre — Vo, f2) Vi
+(Vo fie — Vo fat)Vo, 1 + (Fre — f2t)V0jV9/ét|t1}V52kV5219(52),
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and

TL5+2TL5

Vo VouB: = Y {v6’€t|t—lv6’sflt+ét|t—1v95v6’f1t_ve’gtt—lvesf% (A.26)

s=1
+(1 = &)V, Vo for + (Vo fro = Vo far) Vo &1 + (fre — f2t)vesvé/ét|t—l}
xv52kés(52)v(5glé(52)
+ {ét\t—lve’flt + (1= &ye1) Ve fou + (fre — f2t)v0’ét\t—1} Vs V5, 0(02)

We now apply (A.17), (A.18), (A. 25) and (A 26) to analyze the five terms in (A.24). Start with
the third term 7! Zt V6, Vo, Br/ B Mj. At 53 = 6, it equals

ng +2ns ng +2ns

*v T Ox v »~ ~ ~ ~ ~ ~
Z Z{ Z”: ‘)f”(fQ VG Voot £V, V0, Fut — VB Vo, o
t

+ (1 =€)V, Vo, for + (Vo fir — Veu.]?%)vesgﬂt—l] }V52léu(5)v52k98(5)

ng+mngs v Vi _ _ o
n Z{ Zg* efﬁiz ) "f”[s*vesfw<1—mv@sfgt]}vmvamesw).

Because V(52l@u(g) and V(;Qk@s(g) are O, (T_l/Q) except when s € {ng + k,ng + ns + k} and
u € {ng + [, ng + ns + [}, the preceding display equals

7Z§*v9 f1t+gc f*)VQ f2t
t

(1 - 5*)v51kv51zf2t + (v(suflt - v51lEt)vtslkgt\tfl}vézzsll(g)vtszkglk(g)

72 €.Vo, fui + (f2 £V, far
t

+(1— 5*)v61kv621f2t + (vtbzflt - v52zth)vtslkgt\t—l}v%zSZl (S)V(;%élk(g)

L Z f*VQ flt + 302 5*)v9 f2t
t

+(1 - &)Vé%vauf% + (Vo f1t = Vou Fot) Vo €ijp—1 1V, 01(0) Vi, 021 (0)

*Z €0, i + <f -~ E)V0,f
t

+(1 — &)V&zkv(sz,fm + (Végll?lt — Vamf%)vézkgt\t—ﬁvézzg?l (5)v52k82k(5)

{V(Sllgt‘tflvélk ﬁt + f*v(sm vlsllflt - vtsugt\tflv(hk Et

{v52lgt|t—lv51k flt + £*v51kv52lflt - v52zgt|t—lv51kf?t

{Véllzﬂt—lvz&k]?lt + f*szz,cv&uJ?lt - V51lgt|t—1v52kf2t

{v(szlgﬂt—lvtszk.]?lt + f*vézkvéglflt - v5zzgt|t—lv52k]?2t

n5+n5

T €.V fi+ (1—€,)V, fo _ N o
D3 {;Zf . ejf%[&*vesfqu(1—&)Vesf%]}va%wzl@s@)+0p(T_1/2)~
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Apply Vi, 61(8) = (£, 1)/640p (T712), V5, 014(8) = (£,—1)/6,+0, (T7Y/2) and V5,,621(8) =
V52152l(5) = 1 and rearrange the terms, the preceding display reduces to

AV (1—¢€,)Ve, fo - -
;”Zg . flt - ft - ejf%{(l §*§*> Vo, Vo f1t (A.27)
fzvdll‘gﬂt 1V51kf1t+ £2V611f1tv61k§t|t 1}
ng+mng o rs _ _ -
> { Zg*ve f”HfQ el [mesfm<1—mvesfzt]}w%v@mes(a)+op<T1/2>.
t

As in the proof of Lemma2.1, the above display leads to (ng + ns) equations with j taking values
between 1 and (ng + ns). These equations can be written collectively as

1T Vit 77
T Zat=1"7F, kit
T Vs fie7s
T Z«t=1 "7, Uit

v52k V%Lﬂ( )
§*v52k v52161 (5)

DI +D + 0,(T7Y?).

This completes the analysis for the third term in (A.24). Below we show the other terms in (A.24)
are all asymptotically negligible.

Consider the first term in (A.24). Applying the expression (A.25) to (A.24) leads to quantities of
the following form: 7127 1(Vo,, - Vgluf}ug/{ft)(v%1 V9]U£t|t 1), where a € {1,2},u € {1,2,3}
and v € {0,1,2} with 1 < u +v < 3. They are all O,(T~/?) because of Lemma A.2.1. Therefore,
this term is negligible. Consider the second term in (A.24). At §y =0, Vs, Bt can be rewritten as

ng n5+n5
s=1 s=ng+1
TLB+21’L5 _ _
+ Y (1= &)V f2 Vs, 04(0)
s*ng-‘,—ngg-‘,—l
VAV AG S Ve fuVandi@) ¢ Vo (6. V81 @) + (1= £) -
s=1 s=1,s#k

The preceding display is O ,(T~1/2) because Vs,, (6 5) = 0,(T~%/2) and V52k81s(g) = 0,(T~1/?)

for s # k, and §*V52k61k(5) (1 —¢,) = Op(T~Y/?). Therefore, the second term in (A.24) is also

negligible. The fourth and fifth terms are also O,(T~/2) after applying (A.28) to Vs, B:.
Combining the above results for the five terms, we can rewrite (A.24) as

15T Vﬁflt’v
P Ve TmB0) || e q Ul (pey.
§*v52k v52151(5) % ;:1 V(s;;flt Ukl,t

Dividing both sides by I leads to the desired result. MW
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Proof of the third result in Lemma 2. View the quantities in (A.24) as functions of d3, p and
g and differentiate them with respect to the h-th element of d2 (h = 1,...,ns):

4
M§k)lh(p7 q,02) =

(A.29)

= Z {v52kv521v52hth . v52kv5zzthv52hBt

BZ

_v52kv52h jtv(Slet . Vs, ]tv521v52h3t v52ijtv521Etv52hBt
Bt2 32 B3
_ Vi Végzv%h By th Vo v52th V52hM +92 v52k v5zthv52hBt th
B} ? 3
Vi Voo B - Vs, B Vs, BiVs,, B -
— dok _ §2h tvamM 52k tv 21v62h ]t + 2 dok fg dan tvgﬂ th
t t t
v52kv62hBtV52lBt V52kBtv521V52hBt v
+ 2 - M,
33 Bf
+2v52ka3v521 Bt Vs, M ]t _ 6v52kBtv5§l4Btv5tht th.} —0.
t t

Among the fifteen terms, only the 1st and the 6th term involve third order derivatives. They will be
analyzed later. Among the remaining terms, we have the following five cases: (1) The 4th, 7th and
9th terms involve second order derivatives of 35 and first order derivatives of M. ity which lead to:

T30 (Ve Ve, fat/ft)(VOHVGJQ ot/ Fo), TEY L 1(Ve,, i/ J0)(Vo, fbt/ft)Vehﬁt\t 1Vo,, &1,
T Zt 1(v6’11fat/ft)(VGleemfbt/ft) 12,5 1(V911fat/ft)(vﬁhfbt/ft)vﬁngﬂt 1 and
7! Zt 1 (Vo zlvﬁzgfat/ft)vé’“gt\t 1, where 1 <'iy,142,j1,j2 < ng+2n5, a =1,2and b =1,2. They
are all Oy, (1) by Lemma A.2. (2) The 2rd, 3rd and 10th terms consist of first order derivatives of
B, and second order derivatives of th. They lead to: 71 EtT 1(V911 fat/ﬁ)(vg Vo,, Vo, ]?bt/ﬁ)
T3, (Ve, Ve, ﬁt/ﬁ)(vehﬁt/ﬁ)vemgﬂt AR Sl 1(V611fat/ft)(ve,2 fbt/ft)vehvemé}\t 1
S (Vo, Vo, fat/ J0)(Va,, fur/ J) and T~ 1Zt (Yo, fat/ J0)(Vo,, Fo/ J1)Vo,, €1, which are
all O (1). These three terms are thus O,(T~/?) after applying (A.28) to the first order derivatives
of Bt. (3) The 5th, 11th and 14th terms consist of: 71 Zthl(Vgil ﬁt/ﬁ)(v% ﬁt/ﬁ)(vgh Vo, Fet) o),
T Zle(wilﬁt/ﬁ)(v% ﬁt/ﬁ)(w% ﬁt/ﬁ)V9jlgt|t_1, which are all O, (1). Consequently, these
three terms are Op (1™ 1/2) after applying (A. 28) (4) The 8th, 12th and 13th terms lead to:
1Zt 1(v911fat/ft)(vehfbt/ft)<v0]2fct/ft) 121‘, 1(V9,1fat/ft)(v%fbt/ft)(vehvemfct/ft)
-1 Zt 1(V911fat/ft)(V912 fbt/ft)(w% fct/ft)V9J1§t|t 1, which are all Oy, (1). (5) The 15th term
(

consists of T~ 371 | Vo, fat/ﬂ«,)(Vgl2 fbt/ft)(ngs fct/ft)(V9l4 for/ for). This term is O, (T71/2) at-
ter applying (A.28).
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To analyze the remaining two terms in (A.29), we need third order derivatives of th and By:

Vs, Vg Vg, Mt
ng +2ns ng +2ns

- > ¥ {veuét|t_1vejvasveffu+veuvefétt_1vejvesfu+ét|t_1vojvesveuveffu
u=1 s=1

+Vo &y 1V0,V0, Vo, fit — Vo,&1:1V0, V0, Ve for — Vo, Vs 1Ve, Vo, fau
+(1 = &-1)Ve; Vo, Vo, Vo for = Volyi—1V0,V0,Vo, for

+(Vo,Vo, Vo fre — Vo,V0, Vo f2) V.11 + (Vo, Vo, fre — Vo, Vo, fat) Vo, V&1
+(Vo, Vo fit — Vo,V f2)V0, Vo, &1 + (Vo, fre — Vo, f2) V0, Vo, Vo1
+(Vo,Vo fro = Vo,V f21) Vo, Vo, &1 + (Yo, frr = Vo, f2) Ve, Vo, V&
+(Vo,Vo, Vo fre — Vo,Vo, Vo f20)V0,611 + (Vo, Vo, frt — Vo, Vo, f21) Vo, Voyi s
+(Vo, Vo frt = Vo, Vo fat)V0, Vo641 + (Yo, fit = Vo, f20) Vo, Vo, Vi
+(Vo fie — Vo f26)Ve, V0, Vo, &y 1

+(fu — th)VOjVGSVGuVG’Eﬂt1}végkés(52)v6219u(52)v52h9(52)

ng+2ns ng+2ns
+ Y > {vmmNejvesfumtlvejvesveufu—veugttlvejvesfzt
u=1 s=1

+(1 = &y-1) Vo, Vo, Vo, for + (Yo, Vo, fit = Vo, Vo, 2) Vo, &y
+(Vo, it = Vo, f20) V0. Vo, &1 + (Yo, fre — Vo, f2) Vo, Vo, &1
+(Vo. Vo, frt — Vo, Vo, f20)Vo, &1 + (Vo fre — Vo, fot) Ve, v@ggt\t—l

+(flt - f?t)VQj Vo, veuéﬂtfl } [VJ% vézhé8(52)v521 éu (62) + vézk é5(52)v521v52héu (62)]

TLB—l-QTLg
+ Z {§t|t—1v9jv(95va’f1t + Vo&ii-1Vo, Vo, fre + (1 = &-1) Vo, Vo, Vo fr
s=1

—V@wfﬂt_lvaj Vo, fa + (Vo, Ve fre — Vo, va’f%)VGséﬂt—l + (Vo, fie — Vo, fzt)v9sve'ét|t_1
+(Vo, Vo fre = Vo,V F2)Vo,E1 + (Vo, fre — Vo, for) Vo, V&

+(Vo fie — Vo f2t)Vo, Vo, &1 + (fre — f%)vejvasvg/éﬂt1}v(s%é(agva%vamés(éz),
+{ét|t1v93‘ Vo fie + (1= &p1)Vo, Vo for + (Vo, fre = Vo, fat) Vordi

+(Vo fie = Vo fat)Vo, 1 + (Fre — fgt)vejva/ém1}v52kv52lv5%9(62>,
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and

Vi3 Vg Vo, Bt
ng +2ns ng +2ns

- > > {veuveéﬂt_lvasﬁt+veuétt_1vesv9/fu+v9fétt_1vesveufu

+ét\t71V65v9uve’f1t - V9uvn9/ét|tflvesf2t - Veuét\tflvbkve'f;t +(1- ét|t71)v95v9uv0’f2t
~Volii-1V0. Vo, for + (Vo Vo fre = Vo,V fat)Vo.&up—1 + (Voufre — Vo, fo1) Vo, Vil

+(Vo fre — Vo F2) Vo, Vo, &1 + (fre — f21) Vo, Vo, Vo }vame (02)Vs,,05(62)Vs,, 0(52)

ng +2ng n5+2n5
+ > 0> {veustt_lvesfu+5t|t_1vesveufu—veuﬁtt_lvesfm<1—gﬂt_l)vesveufzt

+(Vo, frt = Vo, f20) Vo, &y + (fu — th)vesveuétt—l} X

|:V(52hv(521éu(62)v62k95(62) + V(sméu(52)v62hv62k98(62):|
TLﬁ—I—QTLg
+ > {V9'§t|t—1vesf1t +&it-1Vo Vo fre + (1 = &e-1) Vo, Vo for = V&1 Vo, for

+(Vo fre = Vo fo) Vo, Lyt + (Fre — f21) Vo, Virype 1}v52h0(62)v52kv5210 (62)
+ [gt\tqvefflt + (1 =& 1)V for + (Fre — fzt)ve'ét\tq} Vias Voo V6,0, 0(62).

Consider the 1st term in (A.29). In the expression of Vs, Vs, Vs,, M. ]t, only the last two lines
involve third order derivatives of 0(35). These derivatives are multiplied by (after division by ft).
T 301 Vo, Vo, far/fr and TV (Yo, far/ F1) Ve, Eujr—1> where a = 1,2. They are O,(T71/2)
by Lemma A.2. The remaining components of Vs, Vs, Vs, th lead to: 71 Zthl(VGil ...Vgik f;t/ﬁ)
for a = 1,2 and k < 4 and T2 (Vy, ...V, far/F)(Vo,,..Vo, &) for a = 1, 2 and
k 4+ m < 4. They are all 0,(1) by Lemma A.2. Therefore the contribution of Vs, Vs, Vs, Mj: to
(A.29) is 0,(1). Finally, we turn to the 6th term in (A.29). In the expression for Vs,, Vs, Vs,, Br,
only the final line involves third order derivatives of 9(52) It can be analyzed in the same way as the
second term in (A.16); see Step 2 of the proof there. The remammg components, multiplied by M,; Lt,

lead to: 713" 1(V911fat/ft)(VGLbet/ft)(VGMvemgt\t D), T 1(V911v012fat/ft)(v9hfbt/ft)
Ty 1(v911v012fat/ft)(v9]1fbt/ft)(vﬁmgﬂt D, T 1(v671V012v913fat/ft)(v6’71fbt/ft) and

1Zt 1(V9”fat/ft)(v%fbt/ft)(vtg“ft‘t 1) for a = 1,2 and b = 1,2. They are all O, (1) by
Lemma A.2. This implies the desired result. W
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Proof of Lemma 3. The first order derivative with respect to the j-th element of do satisfies
T

1 - . N . R X .
ﬁg-l)(l?, q,02) = Z B (ve’fltfﬂt—l + Vo fa(L = &g 1) + (f1e — f2t)v9’§t|t—1) Visy;0(02)
t=1 7t
ng+ng T 1 o R . R . . .
= Z {Z B (Vﬁsfltfﬂtq + Vo, far(1 = §e1) + (f1e — f2t)v935t\t71> } Vis,,05(02)
s=1 (=1t

+ Z (Vagj For(1 = E&yemr) + (fu — fzt)vagjéqtq) )

where the second equality follows from the definition of V(;zj@(ég); see (A.19). The term inside
the curly brackets equals zero because of the first order conditions determining 3(d2) and 01(82).

Therefore, we can write
T A

p,q,52 =

where By is defined in (A.15) and Lj = Vs, far(1 — gﬂH) + (fit = f2t)Viss,&4:1- The following
results hold at &o = o Et|t—1 = 5*,31(5) = § and B(E) = B Consequently, Eél)(p,q,g) =(1-
&) Zle (Vs for / ft) = 0, where the last equality follows because § is the MLE of the null likelihood.

This proves the first result in the lemma.
Now consider the second result. Because §;;_; = &,, the following identity holds at d = ¢:

Ljr = [(1 = £)/6] Mgy (A.30)
This relationship generalizes an analogous result in Cho and White (2007, p. 1683-1684, c.f.
the relationship between h; (62) and ki (f2)) to Markov switching models. It allows us to re-

late ﬁ( )(p,q,dg) to M n)ﬁﬂ

differentiate Eg» )(p, q,62) with respect to the k-th element of ds:

T > T
2 Vo, Ljt Vi, Bt -
£§k)(p7q> 52) = Z QTZJ - Z 2k thv
t=1

(p,q,02) when analyzing the former’s properties. Specifically, we

where
v52kijt = {v52j v@’th(l - ét|t—1) - V§2jf2tvﬁ’ét\t—1 (A'?’l)
+(Vy fre — Ve'f%)vézj»éﬂt—l + (fre - th)v52jv@’éﬂt—l}v%ké(é?)'

2
Because ./\/lgn)ﬁﬂ)k(p, q,92) = 0, we have

_ — 1- g*
T l/zﬁgi) (p7 q, 52) = T 1/2‘C’§i;) (pa q, 62) - T1/2 <£*> Mgi)ﬁ-‘r])k‘(p’ q, 62) (A32)

— 712 Z ngk gt <1 - 5*> Vg M, (”6+J)t
3§ B,
_ Vs, B [ 1-¢\ -
T 1/22 % {Lﬁ - (5> M(nw)t} :
t=1 B 5*

t
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where second summation on the right hand side equals 0 at d2 = 4 because of (A.30). Now consider
the two terms in the first summation separately. At 8o = 8, T—1/2 Zthl Vs, Ljt/ By equals

T2 Z { (1-¢,) Véuvélkflt + VJU fltvdlkft\t 1T Vélkfltvézjft\t 1} + 0, (T7172).

£ £

Meanwhile, at do = 5 T-1/2 Zt 1 Vi, (n5+])t/Bt equals

T_l/zz { (1-¢,) Véljvélkflt + Véufltvélkfﬂt 1+ V(Slkfltv62]§t|t 1} + 0, (T712).

€.

The result follows by combining the above two displays.
Consider the third order derivatives. Using (A.32), we have

€x

- — &
T 3/4/35-2(177 q,82) — T/ ( ¢ M(n5+])kl<p7 q,902) (A.33)
T N
- T_3/4Z v52kVA521LJ’t . (1 — §*> v52kV52iM(n3+j)t
t=1 Bt g* Bt
T . R
_T*3/4Z véngt V621€th . <1 - §*> VoM (ﬂ5+j)t
t=1 Bt Bt f* Bt
_—3/4 ZT: V52kBt V52zf’jt . <1 - f*> v52lM(n,3+j)t
t=1 Bt Bt f* Bt
T .
_ Vs,. Ve, Bt [ » 1-¢,
-1 3/42%“722lt {Lﬁ - < ¢ >M(n@+1) }

t=1
V(S Btv(S Bt - é*
Y 3/42 2k 21 {L]t _ < f* >M(nﬁ+]) }

where the last two summations equal 0 because of (A.30) and

Vo, Voo Ljt
n@+2n5

= Z {v52jv95v9’f2t(1 - ét\t—l) - v52jv95f2tv9’gt|t—1 - vézjve’f%v%ét\t—l
s=1

—Vs, F20V0, Vi1 + (Vo Vo fre — Vo,V f2) Vs, &1 + (Vo, fie — Vo, fot) Voo, Vr&i

+(V9’f1t - ve’th)v§2j Vasgﬂt_l + (flt - f?t)v52j v93v9’5t|t—1}v52ké8(52)v521é(52)
+{V6zj ve’f%(l - ét|t—1) - v52jf2tv0’ét\t—l + (Ve'flt - ve’f%)vézjéﬂt—l
+(fre — f2t)V52j Ve’éﬂt—l}végkv%lé(é?)‘
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The first summation in (A.33) consists of the following: T3/4 EtT:1(v9il ..V, fat/ﬁ)v% ...ngvgﬂt_l
with u +v < 3. They are O, (T ~1/4) by the first result in Lemma A.2. Combining this result with
Lemma 2, it follows that this summation is O,(7~/%). The remaining two summations in (A.33)
have the same structure. They are both O,(T~1/4) after applying (A.28).

Consider the fourth order derivatives. Applying (A.33) and omitting terms that are zero implied
by (A.30), we have

4 1-&, 4
lﬁék)lm(pﬂ q,02) — < . ) Mgn)ﬁ+j)k;lm<p7 q,02) (A.34)
- 71 Z v52kv52zv52m gt <1 - 5*) v52k v52lv‘j2mM(”B+j)t
' B,
_p-1 deAth v52kVA52l Ly . <1 - f*> V52kV521AM("B+J')t
— B By ' By
T R R .
_p-1 v5zsz52th v52ijt . (1 - 5*) V‘S%J\{(”ﬁ*‘j)t
t=1 Bt Bt g* Bt
e XT: Viu Bt [ Viu, VouLit <1 - £*> Vo, Vo, Ming 1)1
=1 By By €y B,
T A A
o7l Z V(;Qth VészjAtyézth B <1 —&, ) \. (nﬁzj)tvéth
t=1 Bt B 5* Bt
T N
71 Z v52kv52th v52m gt _ <1 - §*> v52mM(nB+J')t
t=1 Bt Bt f* Bt
T A A~
_Tfl Z v52k v62m Bt v52l L]t o (1 - 5*) v62l (nB+J)t
—1 Bt Bt g* Bt
T N
_Tfl Z vtstBt szleégm Jt i <1 - 5*) V62lvd2mM(ng+j)t
- DBt By € By
T A A « A N
+2T_1 Z v52Ak By v521LJ’tAZ52th . <1 - 5*) V‘SZthV‘E?QlM("ﬂ"Fj)t
Bt Bt g* Bt
T ~ A “ .
+2T_3/4 Z V(Sgk vaéngt V&QT L]t o <1 — €*> v52m ]\?(ng"rj)t ,
Btz Bt ‘5* Bt
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where

v52k V525 Vom th
ng +2ns ng +2ns

= > > {Vazjvesveuve'fzt(l — &ie—1) + Vs, Vo, Vo, far Vo
u=1 s=1

~Vi2, V0.V F26V0,&0101 — Voo, Vo, f26V0, Vo1

—V53, Vo,V f2tVo.Eup—1 — Vo, Vo, f2t V0, Vi

—Vs,, Vefotvesveuéqtq = Vs, fztvesveuvefﬂtq

+(V0. Vo,V fre = V0.V0, Vo f2) Voo, €1 + (V0. Vo, fit = Vo, Vo, f2t) Vi, Vo
+(Vo, Vo fre = Vo, Vo f20) Vs, Voulyr—1 + (Vo fir = Vo, f2t) Vi, Vo, Vorlye
+(Vo, Vo fre — Veuveffm)végj Veséqtq + (Vo fie — Veufzt)végj Vesve'éﬂtfl

+(Vo fie = Vo fat)Viy, Vo, Vo, &1 + (fit — fat) Vi, Vesveuve'éﬂtq} X
V52ké3(52)v52zéu(52)v52mé(62)
TLﬁ+27’L5 n5+2n5

+ Z Z {v52jv95v0uf2t(1 — &40-1) — V5, Vo, F2tV0,&u1—1 — Vo, Vou f2t Vo &

u=1 s=1
—Vs,,; f2tV95V9uét|t—1 +(Vo, Vo, fir — Vesveuf2t)vagj§t\t_1 + (Vo fie — V95f2t)V52jVau§t|t_1
+(v0u flt - v0u th)V(SQj v‘gsgt‘t—l + (flt - th)v(;Qj ves veu%t't—l} X

| Va0 V520 05(02) V5,0(02) + Vi, 0.(02) Vs Vs, (6|
ng+2ns
+ ) {Vazjvesveffm(l — &yi—1) — Vo, Vo, [V ey
s=1

_v62j v@’thVQSéﬂt—l - v52j f2tv0sve'gt\t—1
+(Vo, Ve f1e — Vesveffzt)vagjémq + (Vo fu — Vesf%)végjvefét\tq

+(Vor fre = Vo for) Vi, Voo + (fu — f2t>v52jv93v9’étt—l} X

~ A~

Vg, V5, 05(02) Vs, 0(52)
nﬁ+2n5

+ Z {V(stVesfm(l - ét|t_1) - vézijtVGSgﬂt—l + (Vo fue — Veszt)V52j%t\t_1
s=1

+(fue — f2) Vs, Vesét|t_1 }Vazk Vo Vo 05 (52).

We consider the terms in (A.34) separately. The first summation involves the following quanti-
ties: -1 Y01 (Vo, Vo, far/ft) fork = 2,3, 4and T Y07 (Vo, . Vo, far/1)(Ve;, Vo, 1)
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for 2 < k+m < 4. They are all 0,(1). Consequently the first summation is also op, (1). The 2nd,
4th, 5th, 8th, 9th and 10th terms involve first order derivatives of By, and are o, (1) because of the
relationship (A.28). The remaining three terms have the same structure. It suffices to analyze the

first of them:

_7- 1i Véglvaszt {Végfffjt _ <1 — & > Vi M (ng+i)t } (A.35)

By Ex Bt

Further, for Vs,, Vs,,. By, it suffices to consider ((1—-¢&,)/8) V(;uVglm]?lﬁt(l/fz)vfs”ﬁtV51mgt‘t,1+
(1/¢2 )Véufﬂt 1V61mf1t+znﬁ+n6(§*ve flt+(1 &)V, Et)V52lV52m@ (5) For V(gzk A]t, it suffices
to consider (1 *5*)V517V(slkf1t+(1/€*)valjfltV51k€t|t 1+(1/€*)v517€t|t \ Vi f1e. For vész(nB—l—j) t
it suffices to consider — (1 —5*)V51]V61kf1t (1/5*)V61]f1tvélkft\t 1 (1/5*)V61]§t|t 1 Vi fir.
Combining the above three formulas, we have, at 5 (A.35) equals

TL5+7’L5

Vo fie + IV e
T 12 Uit + Z AVA (ft ) 0f2tV52lV52m93(5) Ujri + 0p (1)

S ~ Vigsnfit) ~ o~
= -7} Z OimaUjpg =TS {Ujk,t(ﬁ’fl)f”} T Dy + 0 (1)
t=1 t=1 i
= - {‘7jklm - Eékf_lﬁzm} +op(1),
where the first equality uses Lemma 2.2 and the second applies (20). Consequently,
—1 p(4) < g*
T L, q.0) =T ( ¢ > M(nﬁﬂ)klm(p, g,9)

= —{Vittm = DI ™ Dim + Vints = D} T Dt + Vemst = Dyl Dy} + 0, (1).

This proves the final result of the lemma. B
The next lemma will be used in the proof of Proposition 1 for establishing the stochastic
equicontinuity. We use "*" to signify that the quantity is evaluated at the true parameter value.

Lemma A.3 Let Assumptions 1-5 and the null hypothesis hold. Let z(p) = T-1/2 ZS 10 % 580,
where ey = Vs, f1,/ fi and ;s = Vs, fi/f5. Then, for any p, p; and py satzsfymg e—1<p <
p < py <1 —¢€, we have

2 2

T

Z[zt(l)) — zt(p1)]

t=1

T

Z[Zt(/?z) — zt(p)]

t=1

E <C(p—p), (A.36)

where C' is a finite constant that depends only on 0 < € < 1/2 and the moments of €;x and €;s up
to the fourth order.

Proof. Let ¢;_4(p) = T 205, ¢;_s(py1, p) = cr—s(p) — ci—s(py) and z(s,7) = 2z(r) — z(s). We
first show that the left hand side of (A.36) is bounded from above by

<cht s pla ) (cht h Papz > (A37)

t=1 s=1 t=1 h=1
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Because €5 and ¢;; are martingale differences, the left hand side equals

T
EY z(p1,p)*2i(p, p2) +EZ Z 21(p1, )2k (p, p2)’
t=1

=1 k=1 koAt
T T

+2E> Y 2o p)alpr p)zp, p2) 2 (p; p2)
t=11=1,i#t

= (T.1)+(T.2)+(T.3).
We analyze the three terms separately:

241

k—1 2
T2 = EZelt <th s pl, 5]S> Zalk (ch n(p, po 5]h>
k=1 h=1
T E—1 21 t—1 2
+EZ€?;€ (ch n(p, po 5]h) 5t <Z ci—s(p1sp 5]S> .

k=1 h=1 t=1 s=1

Due to symmetry, it suffices to consider the first term on the right hand side, which equals
T t—1 t— k—1
33 (St ) (Sewntomts) 0
h=1

+C1 ct—s(p1, p)ct—n(p1 p)cr—s(ps p2)ck—n(p, p2)  (II)

for some 0 < C; < oo, where C depends only on Ee? and Ee?t. (Below, the finite constants C
(s =2,3,4,5) also depend only on the moments of €;; and €, up to the fourth order). Term (I) is
further bounded by

T t—1 k—1 T -1 T -1
Coad Y O sl )OO cknlps pa)®) < C Z > cs(pi0)?) DO cionlp p2)?)
h=1 t=1

t=1 k<t s=1 s=1 t=1 h=1
(A.38

)
Applying the Cauchy- Schwarz inequality to the elements of (II), we have Z];;ll let—s(p1, p)Cck—s(py p2)
2

k— k— k—1
(25:11 ct—s(p1,p) )1/2(25 1 Ch—s(P; P2) 2)1/2 and Zh:i |ct—n(p1, P)ck—n(p, p2)| < (D=1 ce—n(p1, p)
(Zi;} ch_n(p, po)?)'/2. Combining these two inequalities:

T k—1
< oYy (z roslrp

| <
)1/2

¢

—1
( ck—n(p, pa) ) (A.39)
t=1 k<t s=1 h=1
T t—1 t—1
< olz(zwpb ) ( cthp,m)
t=1 \s=1 t=1 \h=1

which is proportional to (A.38). Hence,

T t—1
1)+ <H|<c3§j<zct W, )Z( e n(py p2) ) (A.40)

t=1 \h=1
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Apply the Cauchy-Schwarz inequality to (T.3):

T T
(T.3)| < E (Z zt(pl,p)2> (Z z(p, p2)2>

t=1
T T T
> ulpne)® D wk(pp)’ Z (p1, )2 (p, p2)*, (A.41)
=1 k=1 k£t =1

where the first term is the same as (T.2) and the second term equals (T.1). Consequently, a separate
analysis of (T.3) is not needed.
Finally, we turn to (T.1). It equals

T t—1t—1¢t-1¢t-1
Bl y (E YN NN e slprs p)e—rprs p)ei—n(ps p2)ee-i(p, Pz)gjsfjkgjh*?jl)
k=1h=1Il=1
1 2 T t—1 t—1
= EE'LtEE?tZ (Z Ct—s plv Ct 8(p7 p2) ) +E€zt EE Z Z Z Ct—s(pl’p)th—h(T7 T2)2
t=1 \ s=1h=1h#s

t—1 t—1

T
2
+2Eej, (Be3,)™ ) th s(p1s p)ct—s(p p2) ci-k(p1, P)ee—k(p, p2)
k=1 ks

IN
2
b
N
S
vy
e
t‘

t—1 t—1
- Ct n(ps p2) ) (I1I)
-1

T t—1 t
+Ci Y Y as(prs p)er—s(p, po) ci-k(p1, p)er—k(p,p2) | - (IV)
s=1 k=1,k+#s

As in (A.39), we have [(IV)] < 4 X7, Y7 era(pr, )2 Y cro i, pa)2. Henee,

T t—1 T t—1
|(IID)+(IV)| < Cs (Zth s(p1,p ) (Z ce—n(p, po) ) (A.42)

t=1 s=1 t=1 h=1

Combining (A.40), (A.41), and (A.42) leads to (A.37).
By the mean value theorem: ¢;_4(py,p) = T Y2(pt=* pt_s) < T*I/Q(t s)(1—2¢)!=5" L (p—p,).
The right hand side of (A.37) is therefore bounded by C{T~* 327 | S™71 (1—5)2(1—2¢)2(t—5= D12 (p, —
p1)%. The term in the curly brackets is finite; the result follows after redefining the constant C. W
Proof of Proposition 1. Apply the mean value theorem:

T T
Tfl/QZUjk,t = T*1/2ZUjk’t+ { ZVQ/UJM} (0 0. ) (A43)
t=1 t=1

where Ujy s and ﬁjk,t have the same definition as ﬁjk,t but evaluated at the true value 6, and some
value 6 that lies between 6 and 6., respectively.
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We establish the weak convergence of the first term of (A.43) in two steps. First, for any e < p,
g<1—¢ T2 Zthl Uik, satisfies the central limit theorem. Second, to verify its stochastic
equicontinuity, it suffices to consider the second component in its definition (20). This term equals

12 L Ve Jie (1 _p> T7—1/2 - Vo) | Vo fue
T 2 Zvéljft\t T <1 I Z Z fr—s fi

s=1

where the quantities are all evaluated at the true value 6, and the equality follows from (A.6)
and (3). Denote the quantity inside the curly brackets as W(p). Note that we have |p| < 1 — 2e.
Then, Lemma A.3 implies, for any p;, < p < py, we have E[[W(p;) — W(p)* W (p) — W (ps)|?] <
C (p; — py)?, where C is a finite constant. This fulfills the condition required in Theorem 13.5
in Billingsley (1999; c.f. the Display (13.14) in p. 143). This shows that W (p) is stochastic
equicontinuous.

The second term in (A.43) equals, by the mean value theorem,

S g (o

= —Dyl™! {T—1/2 3 (v(ﬁ 5 yf”) } +op (1),

where the quantities are all evaluated at the true value 8, and the second equality holds because of
the uniform law of large numbers. The term inside the last curly brackets is independent of p and
q and satisfies the central limit theorem. Combining the above results for the two terms in (A.43),
it follows that 7—1/2 Zthl ﬁjk,t converges weakly over € < p, ¢ < 1 —e. The covariance function
follows immediately; we omit the details.l

Proof of Proposition 2. Let n = T-Y4(dy — ). The expansion (19) can be equivalently
represented in matrix notation as

E(pa q, 52) - [’(p7 Q7g)

1 <71
5 (0%2) [ 7712 vee L0 (p.q.8)| + o (%) 5 0, (T71) =

5 (77®2) [Q(p, q) + 0, (1)] (n®?) .

Because €(p, q) is positive definite, the right hand side will be negative with probability approaching
1 unless n = O, (1). Thus, for any ¢ > 0, we can choose M < oo such that P (||| < M) >1—-¢
for sufficiently large T'. Restricting to this set, we have

sup  sup [E(nq,éz)—ﬁ(p,qﬁ)}
(p,@) €A |InlI<M

= 1
= sup  sup {(77®2)' [T*1/2 vec £?) (p, q, 5)} - (77@2)/9@7 q) (77@2)} +o, (1)
(P,g)EAC |Inll<M

1
—  sup sup {(77@2)'61(29,61)—4(77®2)'Q(p,c1)(77®2)},
(p.)EA ]| <M

where the convergence follows from Proposition 1 and that the supremum operator is continuous
when taken over a compact set. Finally, the result follows because € can be made arbitrarily small.
|
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Lemma A.4 Under Assumptions 1-7 and the null hypothesis, the following results hold uniformly
over {(p,q) : €e<p,q<1—¢€,p+q=1} for any k,l € {1,...,ns}

1. Let e be an ng dimensional unit vector whose k-th element equals 1, then

Va%ﬂ( ) | e 0
£.5,01(6) ] =& -1 [ e ]

2. The second order derivatives satisfy

v§2kv62l3(5) (1 — & > ~ 1 a 1 v5v51kv51lf1t
) | = an =1 *Zf ¢,
f*V62kzv52151(5) f* T t=1 < )V(Slv(slkvtsllflt
Ll Z 1 [ VsV fral) +v5v5, fral }+op(T1/2)
t 1 ft V51v5/f1t04kl

where I is defined in (20) and ) = (a,gll)', a,(fl)/).

Proof of Lemma A.4. When p + ¢ = 1, the derivatives of §t|t_1 with respect to 6 all equal zero
when evaluated at d; = d5 = §. This essentially reduces the problem to that of Cho and White
(2007), except for the complication induced by multiple switching parameters. The first result in
the lemma follows from the same argument as in Lemma 2; we omit the details. The second result
is more complex; its proof is given below.

Consider (A.24). There, only the summations over the first and the third terms are nonzero
by the relationship (A.28) and the first result of this lemma. Evaluate these two terms at the null
estimates over j € {1,...,ng + ns}, we obtain,

1-¢,\ V5Vsy, Ve, i V5V fi zaaflt
piy | () 72 | 1o | PR Vavad0) + - e Ve Vb
T 1-¢€, 2 V51v51kv51ﬂ?1t T Vélvﬁfflt ~ v51vé  fue
t=1 & fe t=1 Tv%kv%zﬁ(é) + 7v52kv52l51 (5)
and
o~ 1 7T V,@fu Vs kvéllflt
DT vézkvézz@(él +D <1 - ’S*) T £ut=1 ft 1 fi ~
g*v(;%v(;%dl(é) &, 1 T Vslfn Vo, Vay 1t

T ~t=1""7 fi
where D has the same definition as in (A.21). Combine the preceding two displays, we obtain

\ V(SQZBA(SEV
£« Vs, v52161 (5)

1 T Vi vélkv51lflt

o f* I_ T t=1 .)?t ft f_l 1 T ) ft VGB v51kv5ll flt
- f 1 T Vélflt Vélkvéllflt + T Z 175* 2 V V. V
* T 21=1"§, 7 t=1 3 05, V o1k 6uf1t

V3V fi VsV fie N~

aly S 5y, Vi B0) + ——5 6.V 5, V5, 01(0)
* T Z Vs, Vi fie ~ Vélvé r fue

=1 #vlszk vlszzﬁ((s) +

t

Vo v52161 (5)
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Apply Vs, VélkJ?lt = a;kv(ﬂ/’(;/l)/flt and Zthl(V(;lV(;/l fi¢/f:) = 0, the preceding display equals

Vi Vo B ( )
€.V 5, V5, 01(0) ] (A.44)

T 1-6. ) 1 f
= - (1_§*>akz+fllz < & >ftveﬁvélkv5“flt

2 ~
2 g t=1 (lgf*> iv% Vi1 Vo fie
V5V fi VsV fue
+f‘11§: 7 V5 Vi B(8) + ——€.V5,, V5,61 (0)
T

t=1

ivaljﬁ'f“va%vwa)

Here, Vs, V(;QZB (5) and V(;%V(;ngl(g) appear on both sides of the display. We address this in two
steps. First, because the last two terms on the right hand side are O, (T -1/ 2), we have

v52k V521 BA(SL _ < 1 =&, ) akl)
€.V 53, V55,01 (0) £, o

Second, apply this result, to the third term on the right hand side of (A.44). The latter equals

+0,(T71/?).

VaVghu () VeVl (2)

&\ 1 Z i T TR Y ‘o (T*1/2>.
Vs,V fir (1) P
7

ft

The result follows by applying this expression to (A.44). B
Proof of Lemma 4. The key to the proof is that when p + ¢ = 1, the likelihood corresponds to
that of a mixture model. The arguments used here rely heavily on that in Lemmas C2, 3 and 4 in
Cho and White (2007). Below we outline the main steps.

Consider the first result. Among the summations on the right hand side of (A.33), only the
first is nonzero. Further, when evaluated at the null estimates, 7~ /2 ZtT:l(V(;%V(;QZI:ﬁ /By) and

((1 - 5*)/5*)7‘71/2 Z?:l(vézk V52l M(ng-&-j)t/ét) equal

T s T rs
_ Vs, Vs, Vs, fe _ Vs, Vi fie a
(1—¢) T2y =2 f L (1) TN S Vs, B(0),
t=1 t t=1 t

1 T Vs Vs Vs i Vs, Varfi 3(5
Ul Youtnatufe, ¢ ey Yadefio, o, 56)
* i— t t=1 t

Taking their difference gives

T ~
(9.3 = L&) (=260 7y > Vo, VouVauhe _ )

7-1/2,0) .
gi T=1 ft I

jkl

Now we turn to T_I/QEﬁ)lm(p, q,g). In (A.34), only the 1st, 3rd, 6th and 7th summation on the

right hand side are nonzero. For the 1st summation, T-1/2 Zthl \. V52ZV52,,Lf/jt / Bt evaluated at
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5 equals

(1-8)T" 1/2 Zt 17 {v52; Vi3 Voo Voo f2t + v52y V52lv5/f2tv52mv‘§2k6( )
+v52j Vi, V,B/thv%zv(Szmﬁ(é) + v52j v52mv5’f2tv52k vfszzﬁ( )+ v52j vﬁlthvéﬂcv(Sle(SZmB(é)} .

Meanwhile, ((1 —¢&,)/€,)T~1/? Ethl V(;QkV(SQZVngM(Wﬂ)t/Bt at  equals

(1 - €)/e)T V2 2T L { S50, V5, Vi, Vi, Fu
+ (& — 1) Vs, Vauvgffltvagkvaznﬁ( )+ (€ — 1) Vs,; V5, Ve fltvézkvéznﬁl(@
+ (& — 1) Vs, V51kvﬁ/f1tv52zv52m/8( )+ (& — 1) V5, V5, Vs, fltvaglvaz,,ﬁl(fs)
+ (£ — 1) Vs, v61mv,8’fltv62kv62l/3( )+ (& — 1) Vs, V5, Ve F16V5,,, V5,01 (5)
65,V PV, V5 Vs 3(62)}

Their difference equals

(1 — f*) <1 + <1€§*)3> T_1/2 T_1 Vale51ijuV51mﬂt

ft

—e.\2 Vs, Vs, Vi fie _¢\3 Vs, Vs V/fu

1-¢, -1/2 T 515 Vo Ve (1) 1-¢, —1/2 T 15 Vo1 Ve (2)
(6*>2T / l%akmi( £, )3T / t= 1v ]vftv . X,

1-¢, _1/9—T Vs1;Vs Vo1 f1e (1) 1-¢, _1/9 T 51; Ve Var fie (o)
B (&>2T 23 %alm -4 3T 2y —v ’ Vft vl falm

1-¢, _ T V5,,;Vs mvg/fu (1) 1-¢, _ T 51, Vo1, Vo 1t (2)
_( £, ) DVEES E?t Qg _( £, ) TRy 7 ay’ +op(1).

The preceding display is O, (1) by Lemma 2 and Assumption 4. The 3rd, 6th and 7th summation
in (A.34) share the same structure. Applying Lemma A.4.2, the 3rd term equals,

N2 s \3 Vs Vg, Vo, fit
1-¢, _ I VeV, Vs, fii (1 1-¢, _ I 84 Vo1 Viim 2
( 5& ) T 1/22 " B/ V81, Y 81m I1t gk) ( 5*6 ) 1/2Zt L 1ﬁ a()

* fi gk
_ _ 1y, VeV 'flt 2 _ _ VeVl (1
. <1$*§ > T-1/2 Zt 1( ( )) fi O‘l(nz _ (15*6*) T—1/2 Zt ( ) B ff 1t (nz
1-¢, _ 2\ Ve, Varfie (1
_ (%) T-1/2 Zt:l(ag’k)), 51 ff 1t0‘l(r,2 =0,(1).

Now consider the fifth order derivative. The components of

_ — 1-— g*
T 1/2£§i)lmn(p7 q, 62) — T2 <§> MEiLJrj)klmn(p’ 7 52) (A45)

can be grouped into three subsets according to whether they depend on the first, second or third
order derivatives of By, c.f. (A.33). First, those depending on the first order derivatives are
identically zero using the relatlonshlp (A. 28) Second, apply the first result of Lemma A.4 to
(A.26). We have Vs, Vs, B / ft evaluated at o equals

(1 — £*> V(ﬂ'{a)'fltakl N Vi sy
&s fi fi

(A.46)

v521 v52m/BA(g)~ '
§*v52z v52m51 (5)
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Applying the second result in Lemma A.4, the term involving [(1 — &£,)/&,]ag gets canceled and
the remainder term is of lower order. Consequently, in (A.45), the terms depending on the second
order derivatives of B; are all O, (1). Third, the terms depending on the third order derivatives of
B, are of the following form:

1/22 V52kV52ZV52th (V(;gﬁjt B <1 25 > Vo, B("fH—J)t) . (A.47)
t * t

When evaluated at &, Vs, L it/ By and (V(;QRM(”BJFJ 1/ By) are representable as linear functions of
(Mit/By) (i = 1,...,n5 + ns) because of V(;lJValnflt = a, Vg oy S, ef. (A31), (A.17) and
(A.15). Such an 1ns1ghtfu1 observation is made in Cho and White (2007). This implies that, at ¢,
the order of (A.47) is the same as that of

B M
T7—-1/2 Z Vﬁzk V521V52m t ; . ng + ng. (A.48)

B’

The order of (A.48) can be found by analyzing (A.29). There, the terms that depend on the Oth,
Ist and 2rd order derivatives of B; are all of order O,(T~'/?) after applying (A.28) and (A.46).
The only term that remains is (A.48). Therefore, for (A.29) to equal zero, (A.48) must be of order
Op(1) when evaluated at 5. This implies (A.47) is O, (1).

Now, consider the sixth order derivatives. To this end, we need to obtain expressions for
V(;%V(;NV(;%B(E) and §*V52kV52ZV52h31(5) by analyzing (A.29). The effects of the terms other
than (A.48) are negligible. Writing out the expression for (A.48) explicitly, we obtain

,f —1)2 f
t=1

*

+2n5
/75/ /flt i ~ ~ A o~
+(18f/;) Z [(6* - 1)v51kVQuf1t + (1 - g*)v52kv9uf2t}v(52hv5zleu(é)
t u=1

V /6/ Iﬁ_t n3+2n6 ~ ~ ~ ~
+(B’f;) > & = DV6, Vi fr+ (1= £V, Vi, f21] Vg, Vi, 05(6)
t s=1
AL N _ s
(IB}V;) Z [(5* - 1)v93v51h flt + (1 - 5*)v95v52hf2t]v52k v52l95(6)
t s=1

+f v62kvé2lv52h@(}§l N (1) )
£*v52kv52lv52h51(5) 8

+
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Equivalently,

v52kv52lv52h/§(51 (A.49)
€*v52k v52lv52h61 (5)

! ! J— 2 ~
= 1T 1 Z 6 6 ) flt |: & 52 1> (f* - 1) + (1 - 5*) v51kv51zv51hf1t
t=1 *

ns

_(f* - 1) Z[akuv52h v52181u(5) + aluv52h v52kglu(g) + O‘huv(Szk V52181u(5)] +0p (1) :

u=1

Now apply the above expression to analyze 7-1£0) (p, q,g). The latter equals, by using the

Jklmnr

same argument as in Cho and White (2007, 1.13-24 in p. 1713),

SIS

(1,32,...,i6)EIND t=1

1-¢
£

v6214 v62z5 v6216

<v52¢2 v52z‘3 i’ilt - : v62i2 v52¢3 M(n5+i1)t) +0p (1),

where all the quantities are evaluated at dy = 6. Further, at dy = 9, Vi, Vi, Voo By equals

(5* B 1)2 s
572(6* - 1) + (1 - f*) v51i4v51i5 v511:6 Jue
ns
u=1

+Vig 5,)f1t 02iq ¥ O2ig 62165() ]

g*V5214 v5225 V5216 61 (6)

Because of (A.49), the above display equals

T
(6, — (1 —2¢,) = = 1 & Vg gy S
62 v61i4v61i5 v61i6 fie — (v(ﬁ’,6’1)flt> T Z 7v5114 v51z5 v5116 flt
* t=1 i
The result follows because, when evaluated at 4, V2, Voo, Lis—[(1=¢,) /¢, V65, Vo, M (Tlﬁ"rll)

equals [(€, — 1)(1 — 2£,)/€2]V5,,, Vs,,, Vi, fre.
Consider p = ¢ = 1/2. The results for the 3rd to the 6th order derivatives follow immediately

from the proofs above. The arguments for showing T*1/2£(7 i (1/2,1/2, 0) = O, (1) are similar
to those for Tfl/zﬁz(-i)mi5 (p,1 —q,8). The proof for T~ 1/2£ i (1/2,1/2, 0) is similar to that of
T‘1/2£§?3“i6 (p, q,g). We omit the details. H
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Table 1: Rejection frequencies under the null hypothesis

Level 2.50 5.00 7.50 10.00
T=200 SupLR(Ag5) 2.98 6.60 10.84 14.46
SupLR (Ag.02) 2.88 6.22 9.64 13.62
QLR 2.43 5.30 7.50 10.00
supTS; 2.76 5.32 7.72 9.84
supTSy 2.38 5.34 7.76 9.94
T=500 SupLR(Ag5) 2.34 6.34 9.54 13.50
SupLR(Ag.02) 2.38 6.26 10.24 13.92
QLR 2.33 5.43 7.53 10.20
supT'Sy 2.54 5.42 7.78 10.22
supT'S, 2.22 4.86 7.28 10.36

Note. The values corresponding to the QLR test are taken from Table IT in Cho and
White (2007). The values related to the supTS tests are obtained using the accom-
panying code of Carrasco, Hu and Ploberger (2014) adapted to the model considered

here. Number of replications: 5000.

Table 2: Rejection frequencies under the alternative hypothesis

(p,q) py = 0.20  py = 0.60 sy = 1.00
(0.70,0.70) SupLR(Agos)  7.40 20.24 96.58
SupLR(Aggs) 7.6 18.28 96.28

QLR 6.16 9.46 68.83

supT'S; 5.68 10.78 33.60

sup TSy 5.28 9.66 32.88

(0.70,0.90) SupLR(Agos)  6.94 33.14 99.80
SupLR(Aggs)  7.30 33.58 99.72

QLR 6.14 13.40 60.56

supTS; 4.90 5.90 19.50

supT'Ss 4.94 5.14 16.90
(0.90,0.90) SupLR(Agos) 8.22 60.30 100.00
SupLR(Ag.02) 8.44 56.52 100.00

QLR 5.76 7.06 7.30

supTS; 6.66 11.22 5.54

supTSs 6.42 10.86 5.24

Note. The values corresponding to the QLR test are taken from Table IIT in Cho
and White (2007). Note that there the values in the rows of 0.1 and 0.9 in their
table should be exchanged. The values related to the supTS tests are obtained using

the accompanying code of Carrasco, Hu and Ploberger (2014) adapted to the model

considered here. Replications: 5000. Nominal level: 5%. Sample size: 500.



FI1GURE 1. Correlation functions
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Note. The figure shows correlations between G(p;,q,) and G(ps,qs) with (p,,¢.) = (0.6,0.9) and
(ps,qs) = (0.6, ), where x varies between 0.1 and 0.9. The solid lines starting from the top correspond
to expressions in displays (27), (25), (23), (26) and (24) in the paper. The dashed lines are correlations
computed using simulations with 7" = 250.



FIGURE 2. Distributions in an AR(1) model

(a) Testing the slope coefficient (b) Testing the intercept
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Note. The figure shows three distributions that arise when testing for regime switching in an AR(1)
model: y; = p+ ay_1 + ug with uy ~ i.i.d.N(0,0?). The finite sample distribution is generated with
T = 250. The original approximation corresponds to the distribution in Proposition 2. The refined
approximation is given in Corollary 1.



Ficure 3. Distributions when testing for switching in the intercept evalu-
ated at fixed p and ¢

(a) p=0.90, g=0.90 (b) p=0.90, g=0.75
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(c) p=0.90, g=0.60

Note. See Figure 2.
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FIGURE 4. A bootstrap procedure applied to an AR(1) model
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Note. The model under the null hypothesis is y; = pu+ ay;_1 +us with uy ~ i.i.d.N(0,0?). The figure
shows the finite sample distribution when testing for regime switching in the intercept (the solid line)
and the bootstrapped distribution obtained by keeping the regressor fixed (the dashed line). T = 250.

The true parameter values are y =0, = 0.5,0 = 1.
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FIGURE 5. Test values over subsamples

(a) SupLR
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(c) supTS
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(b) QLR
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Note. SupLR: the proposed test. QLR: the test of
Cho and White (2007). supTS: the test of Carrasco,
Hu and Ploberger (2014). The dotted lines corre-
spond to 5% critical values.
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FIGURE 6. Smoothed recession probabilities

(a) 1960:1-2006:1V
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(b) 1960:1-2014:1V
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Note. The solid lines are the estimates. The shaded areas correspond to NBER’s recession dating.
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