
On the Power of Tests for Regime Switching

Andrew V. Carter
Department of Statistics

University of California, Santa Barbara

Benjamin Hansen
Department of Economics
University of Oregon

Douglas G. Steigerwald�

Department of Economics
University of California Santa Barbara

August 25, 2015

Abstract

This paper is concerned with the power of tests for regime switch-
ing. Asymptotic results are currently available only for the null distri-
bution, and this distribution is dependent on the underlying parameter
space. This paper addresses the lack of asymptotic results. The as-
ymptotic behavior of the test statistic is determined under a full range
of drifting sequences of true distributions. The results are based on a
construction of the test statistic in terms of Hermite polynomials. The
number of terms in the polynomial construction depends on the size of
the parameter space. Using this relation, a collection of power curves,
indexed by the sample space, is obtained. The �nite sample properties
of the test statistic are analyzed via Monte Carlo simulation.
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1 Introduction

The main contributions of this paper are as follows. (i) We provide a com-
plete description of the asymptotic power for a constrained likelihood ratio
test in (unobserved) regime switching models. (ii) We introduce a poly-
nomial representation of the limiting Gaussian process. The polynomial
terms correspond to moments of the underlying residuals and provide a nat-
ural interpretation of the standard series approximation. (iii) We analyze
the behavior of the polynomial representation as the constrained parame-
ter space changes. This provides a link between the size of the parameter
space and the in�uence of higher order moments on the test statistic. (iv)
We examine the �nite sample performance of the test and compare it with
standard tests based on skewness and kurtosis and with a test based on
serial correlation.

The main technical innovations of the paper are the following. (i) To
obtain the asymptotic distribution, we use a Hermite polynomial expansion.
The e¤ect of local alternatives is to shift the mean of the random variables
that form the expansion. (ii) For the asymptotic power results, we do an
expansion that varies over local alternatives. In consequence, for a sample
size of n the test only has the power to detect local alternatives that are
n�

1
4 distant from the null in certain neighborhoods.
We study models in which the null hypothesis is characterized not by

a point but by two lines in the plane. Consider, for example, the case
where the two regimes correspond to the Normal distributions, N

�
�; �2

�
and N

�
�+ �; �2

�
, which occur with respective probabilities 1 � � and �.1

The null hypothesis is characterized by the set of all pairs (�; �) such that
�� = 0. The lack of uniqueness under the null hypothesis implies, for
example, that � is not identi�ed if � = 0.

We suppose � = �� is estimated by maximizing a likelihood function
Ln (�; 
) over a parameter space �� �. For the above model, 
 =

�
�; �2

�
.

The null hypothesis of only a single regime is the following.

H0 : � = 0.

Let �n denote the likelihood ratio statistic.
In a local neighborhood of the null hypothesis, Ln (�; 
) is relatively �at:

(i) with respect to � when � = 1
2 and (ii) with respect to both � and � when

1Carter and Steigerwald (2013) establish that the likelihood ratio statistic is a function
of the scaled separation of the means. This implies that � is the number of standard
deviations that separate the means of the two regimes in models with unknown variance.
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(�; �) are both local to 0. This causes di¢ culties with standard asymptotic
expansions because the terms corresponding to the second derivative are
identically zero.2

This lack of uniqueness has rami�cations for the likelihood ratio statistic.
Hartigan (1985) argued that, if the parameter space for � is the whole real
line, then not only did the statistic not have a proper asymptotic distribution
but that the statistic diverged to in�nity with n, although at the slow rate
of log log n. Hall and Stewart (2005) make a direct connection between
the nonstandard behavior under the null hypothesis and loss of statistical
power. We follow this logic in the model we study, for which the estimatorb�n is n 1

2 consistent over part of the parameter space, but converges more
slowly (at the rate n

1
3 or n

1
4 ) in another part of the parameter space. In

consequence, when we establish the large sample properties of a constrained
likelihood ratio statistic over the full range of local alternatives we �nd
that the asymptotic power of the associated test depends crucially on the
curvature of Ln (�; 
).

Our results apply to the constrained likelihood ratio test where � 2
[a; b]. Although the constrained test does not have asymptotic optimality
properties, the asymptotic null distribution of the statistic is established for
the general case in which 
 is unknown. The unconstrained test, in contrast,
has an established asymptotic distribution only for the case in which 
 is
known.3

We introduce methods that link [a; b] to the polynomial representation
of the asymptotic distribution. As the magnitude of a or b increases, the
number of terms in the polynomial expansion must increase in order to
maintain a given level of approximation accuracy. As higher order terms in
the expansion correspond to higher order moments of the data, increasing
the parameter space increases the in�uence on the test statistic of moments
beyond the measures of skewness and kurtosis. Moreover, the relation
between the magnitude of a and b and the in�uence of higher order moments
on the test statistic, provides information on selection of [a; b] as a function
of the sample size.

The remainder of the paper is organized as follows. In Section 2 we
establish the asymptotic properties of the constrained likelihood ratio sta-

2Because the �rst derivative is identically 0 over the entire parameter space, the second
derivative forms the leading term of the expansion. Because the second derivative vanishes
in parts of the parameter space, the results of Andrews and Cheng (2012) do not apply.

3Liu and Shao (2004), who focus on the case where the mean and variance of the null
distribution are known, establish that �n � log logn has an asymptotic null distribution
that is an extreme value type.
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tistic under local alternatives. In Section 3 we introduce the link between
the parameter space and the polynomial approximation. Section 4 provides
asymptotic and �nite sample numerical results for common models of regime
switching. Our results may show that the imposition of the boundary may
lead to inconsistent estimators and a loss of power. Section 5 explains how
to employ the method in an empirical setting explored in Hamilton (2014).

2 Asymptotic Power

To �x ideas, consider the model in which

Yt = X
T
t � + �St + Ut; (1)

where Xt is a vector of suitably exogenous covariates (the �rst column of
which corresponds to the intercept �), fUtg is a sequence of i:i:d:Gaussian
random variables with mean 0 and variance �2, and the unobserved state
variable St 2 f0; 1g indicates regimes. The sequence fStgnt=1 is gener-
ated as a �rst-order Markov process with P (St = 1jSt�1 = 0) = p0 and
P (St = 0jSt�1 = 1) = p1. Inclusion of the boundary values p0 = 0 and
p1 = 0 in the null parameter space plays an important role by guard-
ing against falsely classifying a small group of extremal values as a second
regime. Their inclusion, however, when there is a Markov process for St,
renders analysis of the likelihood intractable. To render asymptotic analy-
sis tractable, we construct the test statistic from a quasi-likelihood ratio for
which the Markov structure of the state variable is ignored and fStgnt=1 is
a sequence of i.i.d. random variables. Under the i.i.d. restriction we need
only consider the stationary probability P (St = 1) = �.4

The key parameters for test of H0 : � = 0 are (�; �), the remaining
parameters are (�; �). One of the lines that characterizes the null hypothesis
corresponds to � = 0, which represents two regimes that have the same mean
and both of which can occur with positive probability. The second line
corresponds to � = 0, which represents two regimes with di¤erent means,
but one of which occurs with probability 1. There is a third case, which
corresponds to the value � = 1, but as the asymptotic behavior of the test
statistic when � = 0 is symmetric to the asymptotic behavior when � = 1,
the full asymptotic behavior is captured by H0.

4Kasahara, Okimoto and Shimotsu (2014) construct a modi�ed likelihood-ratio test
with a simpler asymptotic null distribution, but the simpli�cation comes at the expense of
ignoring the boundary values that guard against the false classi�cation of extremal values.
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The (quasi-) log-likelihood is thus a function of �, �, �, and �:

L (�; �; �; �) =

nX
t=1

log [� (vt)] +

nX
t=1

log
h
1 + �

�
evt��

1
2
�2 � 1

�i
;

where � (�) is the standard Gaussian density function and vt = yt�xTt �
� is

the residual under the null hypothesis. To express the log-likelhood as a
function of �, which captures the full null hypothesis, we note that � = �=�
and follow Chen and Chen (2001) to write

L (�; �; �; �) =

nX
t=1

log [� (vt)] +

nX
t=1

log [1 + �Z� (vt)] ;

where Z� (vt) := 1
�

�
evt��

1
2
�2 � 1

�
. The function Z� (�), through which �

enters the log-likelihood, is akin to a su¢ cient statistic for �.
If � = 0, then the MLE is the OLS estimator with standardized residualevt and mean-squared error s2. Thus

max
�;�

L (�; �; 0; �) = �n
2
log
�
s2
�
� 1
2

nX
t=1

ev2t = �n2 log �s2�� n2 :
The test statistic is the likelihood ratio

Qn = 2

�
max
�
L (�; �; �; �)� L (b; s; 0; �)

�
(2)

= maxn log

�
s2

�2

�
+

nX
t=1

�
1� v2t

�
+ 2

nX
t=1

log [1 + �Z� (vt)] :

We assume � = �� [0; 1], where � 2 � = [a; b].
Let qn (�; �; �; �) be the value of the likelihood expression (2) as a func-

tion of (�; �; �; �). In a neighborhood of the null hypothesis, qn (�; �; �; �)
has three local maxima: the �rst occurs when maximizing over � for �xed
�, the second occurs when maximizing over � for � = 1

2 , and the third occurs
when maximizing over � for �xed � 6= 1

2 . The three local maxima, and the
associated behavior of the estimator b�, can be understood through analysis
of the derivatives of the likelihood. First consider

@

@�
L =

nX
t=1

evt���
2=2 � 1

1 + �
�
evt���

2=2 � 1
� :
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When evaluated at � = 0 the derivative is identically 0, re�ecting the lack
of identi�cation of � when � = 0. For �xed � 6= 0, the derivative is not
identically zero in a local neighborhood of � = 0, so standard asymptotics
imply that b� is n 1

2 -consistent for local alternatives where �n = hp
n
and

� = ��. Next consider

@

@�
L =

nX
t=1

� (vt � �) evt���
2=2

1 + �
�
evt���

2=2 � 1
� :

When evaluated at � = 0 the derivative is identicaly 0, re�ecting the lack of
identi�cation of � when � = 0. For �xed � 6= 0, the derivative is identically
zero in a local neighborhood of � = 0, because @

@�L
��
�=0

= �
Pn
t=1 vt andPn

t=1 vt = 0, so standard asymptotics do not apply. Indeed, if � 2
�
0; 12
�

then b� is n 1
3 -consistent and if � = 1

2 , then
b� is n 1

4 -consistent.

2.1 Local Maxima 1

For the local maxima in which b� is n 1
2 -consistent,

H1;n : �n =
hp
n

� = ��.

As detailed in Carter and Steigerwald (2013) this local neighborhood cap-
tures the empirically relevant case in which a researcher is trying to avoid
mistakenly classifying a small group of outliers as a second regime.

Under H1;n, a Taylor expansion yields

qn (�; �; �; �) = n log

�
s2

�2

�
+

nX
t=1

(1� vt)2+2�
nX
t=1

Z� (vt)��2
nX
t=1

Z� (vt)
2+oP

�
n�3
�
:

(3)

Lemma 1: For each �xed value of � we have that under both H0 and
H1;n:

max
�;�;�

qn (�; �; �; �) =

�
�p
n

Pn
t=1 Z� (~vt)

�2
exp

�
�2
�
� 1� �2 � �4

2

+ oP (1) :

Proof: See Appendix.

The behavior of qn (�) is determined by the behavior of Z� (vt). A key
to our results is the representation of Z� (vt) as an expansion of Hermite
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polynomials fHj (�)gJj=1, which are de�ned in the Appendix. Importantly,
the expansion holds under both the null and under a sequence of local al-
ternatives.

Lemma 2: If as n!1, Jn !1, and Jn
n ! 0, then for each �:

Z� (vt) =

JnX
j=3

�j�1

j!
Hj (vt) + oP (1) :

Proof: See Appendix.

A multivariate central limit theorem for triangular arrays then yields the
asymptotic distribution for the scaled sum 1p

n

Pn
t=1 Z� (~vt) under both the

null and a sequence of local alternatives.

Lemma 3: If vt � N (0; 1), then under both H0 and H1;n:

1p
n

nX
t=1

Z� (~vt) N (m;V ) ;

where V = ��2
�
exp

�
�2
�
� 1� �2 � �4

2

�
and

i) under H0, m = 0;

ii) under H1;n, m = h
�

�
exp (���)� 1� ��� � (���)

2

2

�
.

Proof: See Appendix.

Here Qn = sup�2� qn (�). Our main result yields the asymptotic dis-
tribution of the test statistic under both the null and a sequence of local
alternatives.

Theorem 1: If vt � N (0; 1), then:

Qn  max

�
(max (0; G))2 ; sup

�2�
(min [0;G (�)])2

�
;

where V = ��2
�
exp

�
�2
�
� 1� �2 � �4

2

�
and

i) under H0,
a) G (�) is a correlated zero-mean Gaussian process with G (�) �

N (0; 1),
b) G � N (0; 1) and is correlated with G (�);

ii) under H1;n,
a) G (�) is a correlated nonzero-mean Gaussian process with G (�) �

N
�
h
�

�
exp (���)� 1� ��� � (���)

2

2

�
; 1
�
,

7



b) G � N
�
h�3�p
6
; 1
�
and is correlated with G (�).

Proof: See Appendix.

Remarks: The asymptotic behavior is uniform over all � outside an
��neighborhood of 0. Inside the neighborhood, the behavior depends on
the value of �. If � 6= 1

2 , then the third Hermite polynomial remains the

leading term in the expansion, but the rate of convergence of �̂ slows from n
1
2

to n
1
6 . If � = 1

2 , then the third Hermite polynomial vanishes (because the
skewness is 0) and the fourth Hermite polynomial is the leading term in the
expansion. Moreover, for this case, the rate of convergence of �̂ slows further
to n

1
8 . The portion of the null space with the irregular behavior may not

play a vital role in empirical applications as it corresponds to two regimes
with nearly identical means. Also, with known 
, the score for � evaluated
under the null hypothesis,

Pn
t=1

�
y2t � 1

�
, is not identically zero. Hence the

likelihood has su¢ cient curvature to be locally approximated by a quadratic
function and the results on weak identi�cation in Andrews and Cheng (2012)
hold. Importantly this means that the asymptotic distribution is described
completely by considering only neighborhoods of �.

3 Parameter Space Selection

From the central limit theorem in Lemma 3, it follows that

G (�) = ��
1X
j=3

�jp
j!
�j �� =

�
e�

2 � 1� �2 � �
4

2

�� 1
2

:

The random variable �j has the same limiting distribution as Hj , where the
Hermite polynomial Hj is the jth central moment of ~vt. Importantly

�j
H0� N (0; 1) �j

H1;n� N
�
h�j�; 1

�
:

In a local neighborhood of � = 0, the leading terms of the expansion domi-
nate and

G (�) � ��
�3p
3!
�3 if � 6= 1

2
;

G (�) � ��
�4p
4!
�4 if � =

1

2
:

Because G (�) is the asymptotic distribution of qn (�), we �nd that in a local
neighborhood of � = 0 that the test statistic is equivalent to the skewness in
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~v if � 6= 1
2 , and is equivalent to the kurtosis in ~v if � =

1
2 . Thus in this local

neighborhood, qn (�) is approximately the maximum of the sample excess
skewness and excess kurtosis. As � increases in magnitude, additional
terms in the Hermite polynomial expansion grow in importance. As these
additional terms correspond to higher-order moments, the behavior of qn (�)
depends on higher-order moments for larger values of �. To understand
how these moments enter, Figure 1 contains a graph of the weights attached
to each term in the expansion for G (�). These weights, which are given by
��

�jp
j!
, are graphed as a function of � from which one can see that the peaks

are at
p
j for moderate values of j. Thus the leading curve corresponds to

H3 and reveals that near the origin, the skewness of the data is the dominant
component.

The relationship between the values of � and the weights on the terms
in the expansion for the limiting process G (�), can be used to inform a
researcher on how to select � The logic is, as � is increased, the maximizing
value of �̂n may be larger. The adequacy of the asymptotic approximation
at these larger values increasingly depends on higher-order moments, which
rely on larger samples for variance control. Thus the larger is �, the larger
the sample size to ensure the adequacy of the asymptotic approximation
across �. We note that even with a smaller value of �, say one that is
adequately approximated by the �rst three terms in the expansion, the test
statistic can still have substantial power to reject as one component that
shifts the entire process away from the origin itself is shifted by h�3�.

4 Finite Sample Performance

We provide Monte Carlo evidence regarding two points: (i) the adequacy
of the asymptotic approximation for �nite samples and (ii) the power to
detect alternatives with Qn when the full LR test is not available. For (i)
we employ the model

yt = �+ �st + ut st � Bernoulli (�) :

The key parameter values are set to resemble estimates for the growth rate
of postwar quarterly real U.S. GDP as reported in Hamilton (2011), where
st = 1 indicates a contraction: � = �2 and � = :24.5 We also consider

5The average growth rate of expansions is 2 standard deviations above that of con-
tractions, so � = 0 and � = 1. The stationary probability corresponds to the estimated
Markov probabilities: P (St = 0jSt�1 = 0) = :92 and P (St = 1jSt�1 = 1) = :74.
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the closely related autoregression model, although we note that the OLS
estimator used to construct b
 is only asymptotically equivalent to the MLE,

yt = �+ �st + �yt�1 + ut st � Bernoulli (�) :

For (ii) we employ the model

yt = �+ �st + x
T
t � + stx

T
t �+ ut st � Bernoulli (�) ;

which can also inclued several other departures, namely

V ar (utjst = i) = �2i

and
� = f (xt) :

This latter generalization is likely to cause di¢ culties, as larger values of x
both increase y directly and indirectly (through increasing the probability
of state 1). Note that Qn implicitly sets � = 0, �2i = �

2, and treats � as an

unknown constant that does not depend on x. In this way, Ln
�b�;b�; b
� does

not correspond to the unconstrained MLE for the full model. If the full
model is used to estimate the unconstrained likelihood, then the asymptotic
null distribution of the corresponding LR test is unknown. As our test is
valid in these cases, we investigate the power of the test under these more
complex models.

We should compare our test to the unconstrained QLR test, with critical
values from Hall and Stewart, to simple shape tests, of the type listed below,
and to the Carrasco, Hu, and Ploberger test. Perhaps the simplest way to
understand what power we will have, is to look at the residuals from the
OLS regressions (as these are the estimates under the null). The degree of
skewness and kurtosis in these residuals will go a long way to determining
the power of the test.

To determine the �nite-sample performance of the QLR statistic using
the subsample critical value, we compare the empirical size and power of the
Qn statistic against two other useful tests. If the errors follow the normal
distribution, as they do for our data, then either skewness or kurtosis can
reveal evidence of regime switching. The Bera-Jarque statistic is designed
to test for skewness and excess kurtosis, and is given by

BJn = n

�
s2n
6
+
(kn � 3)2
24

�
;
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where the sample skewness sn and kurtosis kn are formed from the residuals
generated by the null estimates (0; �; ~
). Under the null hypothesis, BJn
has an asymptotic �2 distribution with 2 degrees of freedom.

While the Bera-Jarque statistic is widely used to test for regime switch-
ing, it is less well known that the C (�) statistic of Neyman and Scott can
also be used to test for regime switching. The original C (�) statistic, which
considers dispersion of the empirical distribution of the original data, must
be modi�ed to account for the zero second derivative of the log-likelihood.
Cho and White construct the modi�ed statistic

C(�)n = n �max
"
s2n
6
;min

�
0;
kn � 3
241=2

�2#
:

The limit distribution of this C (�) statistic is max
h
Z21 ;min [0; Z2]

2
i
; where

Z1 and Z2 are independent standard normal random variables.

5 Remarks

We establish the limiting distribution of Qn under a sequence of local alter-
natives.

One could also determine the power to detect Markov switching. To
determine the power of the test to detect regimes with Markov switching,
we also consider speci�cations in which the latent regime is governed by

P (Rt = 1jRt�1 = 1) = �22,

while P (Rt = 0jRt�1 = 0) = �11.
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6 Appendix A: Proof of Results

Proof of Lemma 1: To write (2) as a function of evt, by Taylor expansionX
Z�(vt) =

X
Z�(~vt) +

X
(vt � ~vt) [(1 + �Z�(~vt)] +O

�X
(vt � ~vt)2

�
(4)

=
X

Z�(~vt) +
1

�
1TX(b� �) + �

� s
�
� 1
�X

~vtZ�(~vt) +

+�
hX

xtZ�(~vt)
i
(b� �)=� +O

�X
(vt � ~vt)2

�
;

and X
Z�(vt)

2 =
X

Z�(~vt)
2 +O

�X
(vt � ~vt)Z�(~vt)

�
: (5)

Therefore, (2) is

qn(�; �; �; �) = n log

�
s2

�2

�
+ n

�
1� s2

�2

�
� 1

�2
(b� �)TXTX(b� �) +

+2�
X

Z�(~vt) +
2�

�
1TX(b� �) + 2��

� s
�
� 1
�X

~vtZ�(~vt)� �2
nX
t=1

Z�(~vt)
2 +

+2��
hX

xtZ�(~vt)
i
(b� �)=� + Cn

where the error term in the approximation is on the order of n�3+ �
P
(vt�

~vt)
2 + �2

P
(vt � ~vt)Z�(~vt) from (3) and (4) and (5).

The properties of the OLS estimator, together with a Taylor expansion
around s = �, yields

max
�;�

qn(�; �; �; �) = n�
2+
n�2�2

2

�
1

n

X
~vtZ�(~vt)

�2
+2�

X
Z�(~vt)��2

nX
t=1

Z�(~vt)
2+Cn:

This implies that under Assumption 1

p
n�̂ =

1p
n

P
Z�(~vt)

1
n

Pn
i=1 Z�(~vt)

2 � 1� �2

2

+ oP(1)

and

max
�;�;�

qn(�; �; �; �) =

h
�p
n

P
Z�(~vt)

i2
exp(�2)� 1� �2 � �4

2

+ oP (1)

as long as we can argue that the error term Cn
P! 0.
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This error term includes the following approximations:

��21T ~Z� = n��
2

"
1

n

nX
t=1

Z�(~vt)

#
P! 0;

�2�2 ~Z T
�

�
X
�
XTX

��1
XT
�
~Z�

P! 0;

�
X
(vt � ~vt)2 = n�

� s
�
� 1
�2
+ �

�
b� �
�

�T
XTX

�
b� �
�

�T
=

n�3�2

4

�
1

n

X
~vtZ�(~vt)

�2
+ �3

�
1 + � ~Z�

�T
X
�
XTX

��1
XT

�
1 + � ~Z�

�
P! 0;

and

�2
X
(vt � ~vt)Z�(~vt) = �2

� s
�
� 1
� nX
t=1

~vtZ�(~vt) + �
2
nX
t=1

Z�(~vt)x
T
t

�
b� �
�

�

=
n��3

2

�
1

n

X
~vtZ�(~vt)

�2
+ �3 ~Z T

� X
�
XTX

��1
XT

�
1 + � ~Z�

�
P! 0;

where we use ~Z� as the column vector of the Z�(~vt) terms so that
Pn
t=1 xtZ�(~vt) =

~Z T
� X. We also used these law of large number limits in the denominator,

1

n

X
~vtZ�(~vt)

P! 1

1

n

nX
t=1

Z�(~vt)
2 P! 1

�2

�
e�

2 � 1
�
:

Q.E.D.

Proof of Lemma 2: Let êt =
yt��̂�xTt �̂

�̂ be the standardized residuals
constructed from estimates of the full model with two regimes, so �̂ = �x� �̂.
Observe �rst that

Ln

�
�̂; �; 
̂

�
= �n

2
ln �̂2 � 1

2

nX
t=1

ê2t +
1

2

264
h
1p
n

Pn
t=1 Z� (êt)

i2
1
n

Pn
t=1 Z

2
� (êt)

375+ oP (1) :
A Taylor series approximation yields

1p
n

nX
t=1

Z� (êt) =
1p
n

nX
t=1

Z� (et)+
1p
n

nX
t=1

(êt � et) [�Z� (et) + 1]+O
�
[êt � et]2

�
;

13



where d
dxZ� (x) = exp

�
x� � �2=2

�
= �Z� (x) + 1. Because our analysis

is local to � = 0, the quantity �̂ is in a local neighborhood of 0, imply-

ing
Pn
t=1 Z�

�
yt���xTt �

�

�
lies in a local neighborhood of 0 and so the term

(êt � et) � �Z� (et) is negligible

1p
n

nX
t=1

Z� (êt) =
1p
n

nX
t=1

Z� (et) +
1p
n

nX
t=1

(êt � et) + oP (1)

=
1p
n

nX
t=1

Z� (et) +
1p
n

nX
t=1

êt + oP (1) ;

because
Pn
t=1 et = 0.

In similar fashion

1

n

nX
t=1

Z2� (êt) =
1

n

nX
t=1

Z2� (et) +
2

n

nX
t=1

(êt � et)
�
�Z2� (et) + Z� (et)

�
+O

�
[êt � et]2

�
=

1

n

nX
t=1

Z2� (et) +
2

n

nX
t=1

(êt � et)Z� (et) + oP (1) :

To show that 1
n

Pn
t=1 (êt � et)Z� (et) is asymptotically negligible, by the

Cauchy-Schwarz inequality"
1

n

nX
t=1

(êt � et)Z� (et)
#2
�
"
1

n

nX
t=1

(êt � et)2
#"
1

n

nX
t=1

Z2� (et)

#
:

Further, there exists a constant vector c such that (êt � et) � cTv for all t,
where vT =

�
j�̂� ~�j ;

����̂ � ~���� ; j�̂ � ~�j�. Because v !
P
0 under both H0 and

H1;n,
h
1
n

Pn
t=1 (êt � et)

2
i
!
P
0 and

1

n

nX
t=1

Z2� (êt) =
1

n

nX
t=1

Z2� (et) + oP (1) :

Therefore

Ln

�
�̂; �; 
̂

�
= �n

2
ln �̂2�1

2

nX
t=1

ê2t+
1

2

264
h
1p
n

Pn
t=1 Z� (et) +

1p
n

Pn
t=1 êt

i2
1
n

Pn
t=1 Z

2
� (et)

375+oP (1) :

14



To proceed, and replace the terms involving êt from the likelihood, we
employ the �rst-order conditions for 
̂, which yield

P
êt =

�
n�1

P
Z2� (et)� 1

��1P
Z� (et)

and
P
ê2t = n+ n

�1 (
P
êt)

2. Hence

Ln

�
�̂; �; 
̂

�
= �n

2
ln �̂2 � n

2
+
1

2

264
h
1p
n

Pn
t=1 Z� (et)

i2
1
n

Pn
t=1 Z

2
� (et)� 1

375+ oP (1) :
Q.E.D.

We thus must understand the behavior of Z�
�
yt��̂
�̂

�
to understand the

behavior of Rn (�). To do so, we use the expansion

ex��
1
2
�2 =

1X
j=0

Hj (x)
�j

j!
;

whereHj (�) is the jth Hermite polynomial (de�ned in Appendix B). Because
H0 (x) = 1,

Z�

�
yt � �̂
�̂

�
=

1X
j=1

Hj

�
yt � �̂
�̂

�
�j�1

j!
:

By construction, for the standardized argument yt��̂�̂ ,H1
�
yt��̂
�̂

�
= H2

�
yt��̂
�̂

�
=

0. In consequence

Z�

�
yt � �̂
�̂

�
=

1X
j=3

Hj

�
yt � �̂
�̂

�
�j�1

j!
:

Because

1

n

1X
j=1

�j�1

j!
Hj

�
yt � �
�

�
=
1

n

JX
j=1

�j�1

j!
Hj

�
yt � �
�

�
+OP (1) ;

we then have

Rn;J (�) =

26664
PJ
j=1

�
n�1=2

Pn
t=1Hj

�
yt��̂
�̂

��
�j�1

j!�
1
n�2
Pn
t=1

h
exp

��
yt��̂
�̂

�
� � �2

2

�
� 1
i2�1=2

37775
2

+OP (1) ;

under both H0 and H1;n.
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Q.E.D.

Proof of Theorem 2A: Under the null hypothesis Yt��
� � N (0; 1),

so the properties of the moment generating function imply:

E
�
Z�

�
Yt � �
�

��
= 0;

V ar

�
Z�

�
Yt � �
�

��
=

e�
2 � 1
�2

;

Cov

�
Z�1

�
Yt � �
�

�
; Z�2

�
Yt � �
�

��
=

e�1�2 � 1
�1�2

:

Hence by a pointwise law of large numbers, for each �: 
1

n�2

nX
t=1

�
exp

�
yt� �

�2

2

�
� 1
�2!

P!
H0

e�
2 � 1
�2

:

Under the alternative hypothesis Yt��� � N (0; 1) with probability 1� hp
n

and Yt��
� � N (��; 1) with probability hp

n
, so the properties of the moment

generating function imply:

E
�
Z�

�
Yt � �
�

��
=

hp
n

�
e�

�� � 1
�

�
;

V ar

�
Z�

�
Yt � �
�

��
=

�
1� hp

n

� �e�2 � 1�
�2

+
hp
n

�
e�

2+2��� � 2e��� + 1
�

�2
:

Because hp
n
! 0, a pointwise law of large numbers implies, for each �: 

1

n�2

nX
t=1

�
exp

�
yt� �

�2

2

�
� 1
�2!

P!
H1

e�
2 � 1
�2

:

Q.E.D.

Proof of Theorem 3A:
Part i) The results in Appendix B on Hermite polynomials imply that

under the null hypothesis Hj (Yt) is a random variable with mean zero and
variance j!. Hence, given j, a pointwise central limit theorem applies and
for each �:

n�1=2
nX
t=1

Hj (Yt) 
H0
N (0; j!) :
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Part ii) The results in Appendix B on shifted Hermite polynomials imply
that under the alternative hypothesisHj (Yt) is a random variable with mean

�n�
j
� and variance j!

�
1 + �n

Pj
m=1

�
j
m

�
�2m�
m! � �

2
n
�2j�2�
j!

�
. This implies

that for �n = hp
n
:

n�1=2
nX
t=1

�
Hj (Yt)� h�j�

�
 N (0; j!) ;

which in turn implies

n�1=2
nX
t=1

Hj (Yt) 
H1
N
�
h�j�; j!

�
:

Q.E.D.

Proof of Theorem 4A:
Part i) From the results in Appendix B for Hermite polynomials

n
Hj(Yt)p

j!

o
j�1

is a sequence of uncorrelated random variables, so Theorem 3A part i to-
gether with a multivariate central limit theorem yields(

1p
n

nX
t=1

Hj (Yt)p
j!

)J
j=1

 
H0

�
�j
	J
j=1

;

where
�
�j
	J
j=1

is a sequence of independent N (0; 1) random variables. By
Theorem 2A and Slutsky�s Lemma we havePJ

j=1
�j�1p
j!

1p
n

Pn
t=1

Hj(Yt)p
j!�

1
n�2
Pn
t=1 Z

2
� (Yt)

� 1
2

 
H0

JX
j=1

 
�j

p
j!
p
e�

2 � 1

!
�j

pointwise for each value of � in �.
Part ii) From the results in Appendix B for shifted Hermite polynomialsn

Hj(Yt)p
j!

o
j�1

is a sequence of correlated random variables, so Theorem 3A

part ii together with a multivariate central limit theorem yields(
1p
n

nX
t=1

Hj (Yt)p
j!

)J
j=1

 
H1;n

�
�j
	J
j=1

;
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where
�
�j
	J
j=1

is a sequence of independent N
�
h�j�; j!

�
random variables.

By Theorem 2A and Slutsky�s Lemma we havePJ
j=1

�j�1p
j!

1p
n

Pn
t=1

Hj(Yt)p
j!�

1
n�2
Pn
t=1 Z

2
� (Yt)

� 1
2

 
H1;n

JX
j=1

 
�j

p
j!
p
e�

2 � 1

!
�j

pointwise for each value of � in �.
Q.E.D.

Proof of Theorem 5A:
Part i) From Theorem 4A we have

Rn;J (�) 
Ho
GJ (�) ;

where GJ (�) :=
PJ
j=1

�
�j

p
j!
p
e�
2�1

�
�j . Further, if J ! 1 and J

n ! 0, we

have
E [G (�)� GJ (�)]2 !

P
0:

Finally, observe that � must be between 0 and �, so if
Pn
t=1 Z� (Yt) di¤ers

in sign from � then b� = 0. Because the sign of Pn
t=1 Z� (Yt) corresponds to

the sign of G (�), we have

Rn (�) 
H0

8<:
[max (0;G (�))]2 if � > 0

0 if � = 0
[min (0;G (�))]2 if � < 0

:

From the moment calculations for Z� (Yt) we have

Corr

0B@ 1p
n

Pn
t=1 Z�1 (Yt)�

1
n

Pn
t=1 Z

2
�1
(Yt)

� 1
2

;

1p
n

Pn
t=1 Z�2 (Yt)�

1
n

Pn
t=1 Z

2
�2
(Yt)

� 1
2

1CA =
E (Z�1 (Yt)Z�2 (Yt))�

E
h
Z2�1 (Yt)

i
E
h
Z2�2 (Yt)

i� 1
2

=
e�1�2 � 1�

e�
2
1 � 1

� 1
2
�
e�

2
2 � 1

� 1
2

q
�21�

2
2

�1�2
;

with
p
�21�

2
2

�1�2
= sign (�1�2). An implication of the multivariate central limit

theorem is

Cov

0B@ 1p
n

Pn
t=1 Z�1 (Yt)�

1
n

Pn
t=1 Z

2
�1
(Yt)

� 1
2

;

1p
n

Pn
t=1 Z�2 (Yt)�

1
n

Pn
t=1 Z

2
�2
(Yt)

� 1
2

1CA!
P
Cov (G (�1) ;G (�2)) :
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Part ii) The argument is identical to part i with the exception of the
logic for

E [G (�)� GJ (�)]2 !
P
0:

Because the Hermite polynomials are correlated under the alternative hy-
pothesis, and because there are n2�n such terms, the convergence requires
J = o (

p
n).

Q.E.D.

Presentation of Lemma A1

The key component of the limit distribution is the correlation structure
of the Gaussian process. Let �1 and �2 be two distinct values, then as
Carter and Steigerwald (2013) detail

Cov [G (�1) ;G (�2)] =
e�1�2 � 1� �1�2 � (�1�2)

2

2�
e�

2
1 � 1� �21 �

�41
2

� 1
2
�
e�

2
2 � 1� �22 �

�42
2

� 1
2

:

To verify that the likelihood ratio diverges asymptotically we establish that
the covariance between two widely separated elements of the process con-
verges to zero.

Lemma A1: For any �xed value �1,

lim
�2!1

Cov [G (�1) ;G (�2)] = 0:

Proof: If we multiply Cov [G (�1) ;G (�2)] by e��
2
2=2=e��

2
2=2, then for

the numerator we have

lim
�2!1

 
e�1�2p
e�

2
2

� 1p
e�

2
2

� �1�2p
e�

2
2

� (�1�2)
2

2
p
e�

2
2

!
= 0;

and for the denominator we have

lim
�2!1

�
e�

2
1 � 1� �21 �

�41
2

� 1
2
�
1� 1

e�
2
2

� �22

e�
2
2

� �42

2e�
2
2

� 1
2

=

�
e�

2
1 � 1� �21 �

�41
2

� 1
2

;

which follow from the basic properties of the exponential function that
lim
x!1

xk=
p
ex2 = 0 and lim

x!1
ex=
p
ex2 = 0 for any k.

Q.E.D.

Thus for any �1 it is possible to select �2 to make the correlation between
these elements of the process arbitrarily small. Also, for any k it is possible
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to select a set of values f�1; : : : ; �kg to make all the pair wise correlations ar-
bitrarily small. This is the essence of the argument in Hartigan and implies
that G (�) contains in�nitely many asymptotically independent components.
In consequence, for any given " 2 (0; 1) and positive number M , we can
select f�igk(";M)

i=1 such that P
�
sup

�2f�igk(";M)
i=1

jG (�)j > M
�
> 1� ". Because

M can take an arbitrarily large value, it follows that the supremum of jG (�)j
over the real line diverges to in�nity.

Proof of Theorem 6A:
Parts i and ii) Because �jq

j!(e�2�1)
is in�nitely di¤erentiable it is uni-

formly continuous in �, so the convergence in Theorem 5A is uniform over
�.

Proof of Result 3.2: The full asymptotic theory requires that we
analyze the asymptotic behavior of Qn in neighborhoods of the null space
� = 0 corresponding to both � = 0 and � = 0. If we �x �, then a local
neighborhood of � = 0 corresponds to a local neighborhood of � = 0. If
we let � shrink to zero at a certain rate, then a local neighborhood of � = 0
corresponds to � �xed in a local neighborhood of � = 0.

To begin we consider the limiting behavior of the likelihood ratio for a
�xed value of �. With �2 = 1 the log-likelihood, ignoring the constant in
the Gaussian density, is

L� (�; �) = �
1

2

nX
t=1

(yt � �)2 +
nX
t=1

log [1 + �Z� (yt � �)] ;

where Z� (yt � �) := 1
�

�
exp

�
(yt � �) � � 1

2�
2
�
� 1
�
. Because

exp

�
(yt � �) � �

1

2
�2
�
� 1 = e(�y��)��Z� (yt � �y) +

�
e(�y��)� � 1

�
;

we have

L� (�; �) = �1
2

nX
t=1

(yt � �y)2 �
n

2
(�y � �)2

+

nX
t=1

log

"
1 + �e(�y��)�Z� (yt � �y) + �

 
e(�y��)� � 1

�

!#
:

To explore the behavior of the log-likelihood as a function of � we need
the maximizing values of � and �. As EYt = � + �, we approximate the
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maximum of the log-likelihood by replacing � with �y � � so that

max
�;�
L� (�; �) = max

�
L� (�; �̂) � max

�
� 1
2

nX
t=1

(yt � �y)2 �
n

2
�2

+
nX
t=1

log

�
1 + �e��Z� (yt � �y) + �

�
e�� � 1
�

��
:

We write the likelihood ratio for a �xed value of � as

Rn (�; �) = 2
nX
t=1

�
log

�
1 + �Zt;�;�y + � (�Zt;�;�y + 1)

�
e�� � 1
�

��
� �

2

4

�
:

7 Appendix B: Hermite Polynomials

Hermite Polynomials
We de�ne the Hermite polynomial Hj (x) in terms of the generating

function

ex���
2=2 =

1X
j=0

Hj (x)

j!
�j : (6)

Speci�cally, the �rst 6 Hermite polynomials are

H0 (x) = 1

H1 (x) = x

H2 (x) = x2 � 1
H3 (x) = x3 � 3x
H4 (x) = x4 � 6x2 + 3
H5 (x) = x5 � 10x3 + 15x
H6 (x) = x6 � 15x4 + 45x2 � 15:

The Hermite polynomials can be used to form an orthonormal series. That
is, for a standard normal V ,

E [Hj (V )Hk (V )] =
�
j! for j = k
0 for j 6= k : (7)

To prove this, we follow the arguments described in Lebedev (1965, pages
60-76) and take a product of the generating series

eV ���
2=2eV 
�


2=2 =

1X
j=0

1X
k=0

Hj (V )Hk (V )

j!k!
�j
k:
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From the properties of the moment generating function of a normal random
variable, the left side of this equation has expectation

EeV (�+
)��
2=2�
2=2 = e�
 :

From the power series expansion of an exponential function we have

e�
 =
1X
j=0

�j
j

j!
:

Thus 1X
j=0

1X
k=0

E [Hj (V )Hk (V )]
j!k!

�j
k =

1X
j=0

�j
j

j!
:

Because this is true for any � and 
, the coe¢ cients in the two expansions
must be the same. This implies (7), so Hj (V ) (j!)

�1=2 for j � 1, is an
uncorrelated set of random variables with mean 0 and variance 1.

Shifted Hermite Polynomials
Let W = V + �, with V � N (0; 1). Then

Hj (W ) =

jX
m=0

�
j
m

�
Hm (V ) �

j�m:

It follows from the fact that EHm (V ) = 0 for m > 0 that EHj (V ) = �j .
Furthermore,

EHm (V )2 =

jX
m=0

�
j
m

�2
EHm (V )2 �2(j�m)

=

jX
m=0

�
j
m

�2
m!�2(j�m);

which implies

V ar (Hm (V )) =

jX
m=1

�
j
m

�2
m!�2(j�m)

= j!

j�1X
q=0

�
j
q

�2
�2q

q!
:
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Further, for j < k,

Cov (Hj (V ) ;Hk (V )) =

jX
m=0

kX
q=0

�
j
m

��
k
q

�
�j�m+k�qCov (Hm (V ) ;Hq (V ))

=

jX
m=1

�
j
m

��
k
m

�
�j+k�2mm!

= k!

�
�k�j

(k � j)! + j
�k�j�2

(k � j � 1)! + � � �+ j
�k+j�2

(k � 1)!

�
:
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