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Abstract

This paper presents a regime-switching model of the yield curve with two states. One

is a normal state, the other is a zero-bound state that represents the case when the

monetary policy target rate is at its zero lower bound for a prolonged period. The model

delivers estimates of the time-varying probability of exiting the zero-bound state, and it

outperforms standard three- and four-factor term structure models as well as a shadow-

rate model at matching short-rate expectations and the compression in yield volatility
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1 Introduction

Understanding fixed-income markets is important, particularly when traditional monetary

policy is at its effective zero lower bound as it was in the United States from December

2008 to December 2015. Being near the zero boundary poses challenges, one of which is the

asymmetry in yield movements. For bond pricing and monetary policy analysis, it is crucial to

account for this asymmetry to accurately capture the yield dynamics near the zero boundary.

The basic premise of the analysis in this paper is that, once the monetary policy target

rate hits its nominal zero lower bound, the dynamics of fixed-income markets change because

there are limits to the downside yield movements.1 Furthermore, the next policy change by

the central bank can only be upwards. While the central bank can take other actions at the

zero bound such as purchasing long-term assets or providing forward guidance on how long it

expects the policy target rate to remain at the zero bound, these are just signaling tools that

do not change the fundamental fact that the next rate change will be up when the target rate

is at its effective lower bound. These observations lead to consideration of a regime-switching

model with a normal state and a special state that is referred to as the zero-bound state.

To understand the features that a model should capture in the zero-bound state and

to motivate the model, the paper first analyzes the shift in the statistical properties of the

U.S. Treasury yield curve before and after December 2008, with a particular emphasis on

the variation in short-term yields. The analysis reveals that the whole yield curve switches

dynamics in the zero-bound state, but the changes are particularly pronounced for yields with

less than one year to maturity. As a consequence, U.S. Treasury data seem to call for a fourth

factor with a unique role in the short end of the yield curve while in the zero-bound state.

Based on this observation, the Treasury yield curve in the normal state is modeled with a

standard three-factor term structure model, while the dynamics in the zero-bound state are

augmented with a fourth factor, which is a square-root process with a special role.

The key characteristic of the zero-bound state in the model is that it is given a literal

interpretation, that is, the instantaneous short rate in this regime is constant at zero. To

generate variation even in short-term yields, however, there is a positive chance of exiting

the zero-bound state at any time. This is modeled by a time-varying intensity process for a

Poisson point process, the first jump of which indicates the exit from the zero bound.2 In

structure, this is similar to the modeling of default events in the reduced-form credit risk

literature (Duffie and Singleton 1999 is an excellent example). Theoretically, the zero-bound

1Recently, monetary policy rates have moved into negative territory in several countries, most notably in
the euro area, and the presented model allows for a nonzero lower boundary. In the U.S. however, policy
makers have clearly indicated that zero is the lower bound, and the analysis in this paper works under that
assumption.

2Hamilton and Wu (2012) consider a model structure similar to the one presented in this paper, but they
only allow for constant exit probabilities.
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state is considered an undesirable temporary steady state, and U.S. monetary policymakers

are thought to agree, so investors should expect an exit from the zero-bound state, if at

all possible. Still, how can the switch out of the zero-bound state be unpredictable at the

same time as explicit or extended-period forward guidance has been provided by monetary

policymakers, as has been the case in the United States throughout most of the time spent

at the zero bound? In the context of U.S. monetary policy, one possibility would be for

the Federal Open Market Committee (FOMC) not to follow through as stated, which is not

likely, but theoretically possible and consistent with the interpretation given by the FOMC

that its policy is state-contingent. Another possibility is that, as new governors are appointed

and FOMC voting members rotate, the majority view on the policy committee could change.

FOMC members’ own projections of appropriate future target rates published regularly since

January 2012 do indicate dispersion in the views about future monetary policy among policy-

makers, which suggests that this could matter for the chance of exiting the zero-bound state.

In short, there are conditions and states of the world in which even explicit commitments

regarding the zero interest rate policy would not be honored. This validates the approach to

modeling the exit out of the zero-bound state.

As for the normal state, the yield curve is modeled using the arbitrage-free Nelson-Siegel

(AFNS) model developed in Christensen et al. (2011, henceforth CDR). In addition, it is

assumed that the probability of switching to the zero-bound state is so small that bond

investors neglect it for pricing purposes; as such this risk is not reflected in the yield curve in

the normal state. In support of this view, Christensen and Rudebusch (2015b) find that the

option value to hold currency, which is the source of the lower bound problem for nominal

yields, was negligible prior to December 2008. For the 2003-2004 period, when the federal

funds rate temporarily reached one percent, Bomfim (2003) in his calibration of a two-factor

shadow-rate model to U.S. interest rate swap data reports a probability of hitting the zero

boundary within the next two years equaling 3.6 percent as of January 2003. Thus, it appears

that bond investors did not perceive the risk of reaching the zero lower bound during the 2003-

2004 period of low interest rates to be material. The practical implication of this assumption

is that bond investors cannot (and did not) foresee a switch to the zero-bound state.

It is important to note that this modeling approach is different from the concept of un-

spanned macroeconomic risks. In that case, macroeconomic variables have dynamic relation-

ships with the priced risk factors in the yield curve, but their market prices of risk are such

that these dynamic interactions are exactly offset under the risk-neutral probability measure

used for pricing. As a consequence, the macroeconomic variables do not matter for the shape

of the yield curve, but they do help predict future bond excess returns, see Joslin et al. (2014)

for evidence and a discussion. Furthermore, under the assumptions in that literature, the dy-

namic relationships hold in general and are not supposed to change near the zero lower bound
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as in the model in this paper. On the other hand, the presented model does share similarities

with the disaster risk literature, in that it clearly requires unusually large negative shocks to

the economy for monetary policy makers to lower the target policy rate to its effective zero

lower bound. However, because that literature tries to explain regularly observed phenom-

ena such as the equity premium and corporate bond credit spread puzzles by focusing on

the risks of rare disasters and associated premiums, any uncovered dynamic relationships are

again assumed to be valid in general and not change when the economy is near the zero lower

bound.3

Furthermore, it is assumed that the economy will return to the old normal state when it

leaves the zero-bound state. The motivation for this choice is simple; it is a best guess of

what the yield curve dynamics will be after the economy exits the zero-bound state.4 This

choice can also be grounded with theoretical considerations. First, there is little evidence to

suggest that the way investors process and price information into the Treasury yield curve has

changed since the financial crisis.5 Second, there has been no change in the way the FOMC

operates and communicates its monetary policy decisions. If anything, it has become more

transparent, exemplified by the release of the explicit definition of price stability following the

January 2012 FOMC meeting as an annual change of 2 percent in the price index for personal

consumption expenditures. As such, the response function of the FOMC can be assumed to

be constant.6

Finally, the transition between the two states is assumed to be observed. In the empirical

implementation of the model, this implies that the regime switch to the zero-bound state

occurs on December 16, 2008, when the FOMC decided to lock its target rate in the range

from 0 to 25 basis points, which represents its effective lower bound, and this was observed

by all agents in the economy.

In the empirical analysis, the model is put through a comprehensive set of tests. To

assess its performance, it is compared with a set of competing models, including two es-

tablished three-factor models, a representative four-factor model, and a more recent three-

3For a recent example, see Wachter (2013) who introduces a model with a low but time-varying probability
of a significant drop in consumption to account for such pricing puzzles.

4Krippner (2015) shows that the AFNS model used for the yield curve in the normal state can be viewed
as a close approximation to any Gaussian three-factor model provided the eigenvalues corresponding to the
second and third principal components are close. Given that this historically has been the case, there is little
to suggest that this would not continue to hold after the exit from the zero-bound state. If so, the AFNS
model structure will still deliver a very close approximation to the data, even if the yield curve dynamics obey
an arbitrary three-factor Gaussian model.

5Swanson and Williams (2014) provide evidence that, in the 2009-2011 period, medium- and long-term
Treasury yields have responded to news in much the same way as in the prior decades. This supports the
model choice to keep the three factors from the normal state in the zero-bound state.

6The very stable ten-year inflation forecasts from the Survey of Professional Forecasters is consistent with
this view in that it reflects the public’s continued trust that the FOMC would counter any significant deviations
in the outlook for inflation over the medium-term to ensure that the stated long-run price stability goal would
be achieved.
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factor shadow-rate model, where the latter represents an alternative approach to modeling

the asymmetric behavior of yields near the zero boundary. In addition to providing a close fit

to the cross section of yields that is particularly accurate in the zero-bound state, the regime-

switching model’s short-rate projections are more closely aligned with the variation in rates of

federal funds futures than any of the alternative models considered. Also, its estimated term

premiums are highly correlated with those from the other models in the zero-bound state. Fi-

nally, it outperforms the shadow-rate model at matching the compression of short-term yield

volatilities in the zero-bound state. Thus, overall, the regime-switching model demonstrates

a strong ability to capture yield dynamics and the investor expectations priced into Treasury

yields during the period the economy has been in the zero-bound state.

To assess the accuracy of the estimated dynamics of the factor that determines the in-

tensity of exiting the zero-bound state and the associated exit time distribution, the model-

implied exit times are compared with exit time estimates from three quite different sources.

The first is based on the target rate projections from surveys of primary dealers performed reg-

ularly by the Federal Reserve Bank of New York, the second is constructed from rates of federal

funds futures, and the third is derived from simulations of a recent shadow-rate macro-finance

model introduced in Bauer and Rudebusch (2014b, henceforth BR). The regime-switching

model’s exit times align well with the information from these other sources about the like-

lihood of an end to the Fed’s zero interest rate policy. Furthermore, the model-implied exit

times are sensitive to Fed communications. For the period until the spring of 2013, there are

in most cases notable upward movements in the median exit time in the weeks after major

decisions by the FOMC regarding either its large-scale asset purchase (LSAP) programs or its

forward guidance for future policy. This can be interpreted as evidence of a signaling channel

in the response of Treasury yields, as also emphasized by Bauer and Rudebusch (2014a) and

Christensen and Rudebusch (2012, henceforth CR).

There are two strands of research literature particularly relevant for the analysis in this

paper. The first is the nascent but growing literature assessing the Fed’s exit (or “liftoff”

in Fed jargon) from the zero-bound state. A number of papers in this literature combine

Gaussian shadow-rate models that respect the zero lower bound for nominal yields with

macroeconomic variables (BR and Wu and Xia 2015 are examples).7 Unlike those studies,

the model estimation in this paper relies solely on Treasury yields, which allows for high

frequency updates and avoids the complication of determining any structural breaks between

bond market functioning and real economic variables as a consequence of the zero lower bound

on yields.

The second relevant literature, of course, is the vast literature on modeling the yield curve

7Koeda (2013) implements a Gaussian macro-finance model of Japanese bond yields with regime switches
to analyze the time-varying probability of the Bank of Japan leaving its zero interest rate policy.
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with regime switches. However, unlike that literature where, for tractable pricing, transition

probabilities under the risk-neutral Q-measure are at most regime dependent (e.g., Dai et

al. 2007 and Koeda 2013), the probability of exiting the zero-bound state in the model

introduced in this paper is truly stochastic under both the objective and the risk-neutral

probability measures. Technically, the study closest to this paper is the analysis by Piazzesi

(2005), who introduced a model in which jumps in the Fed’s policy rate are discrete with

stochastic intensity, but these jumps do not represent a switch in the dynamic structure as

in the model described here.

The remainder of the paper is structured as follows. Section 2 describes how U.S. Treasury

yields, short-term yields in particular, have behaved at the zero bound relative to the prior

normal period. This motivates the regime-switching model introduced in Section 3. Section 4

presents the estimation results, while Section 5 contains a comprehensive model performance

evaluation. Section 6 contains the analysis of the asymmetric exit time distribution. Section

7 concludes. Appendices contain additional details on bond price formulas, model estima-

tion, yield forecast performance, yield volatility projections, and the calculation of policy

expectations and term premiums.

2 U.S. Treasury Yields in Normal and Zero-Bound States

In the analysis, three- and six-month Treasury yields from the Federal Reserve’s H.15 data

series are combined with one-, two-, three-, five-, seven-, and ten-year Treasury yields from

the Gürkaynak et al. (2007) database.8 The data are continuously compounded zero-coupon

yields, measured weekly (Fridays), from January 4, 1985, to December 27, 2013. It is worth-

while to note up front that both the analysis in this section and the estimation results pre-

sented in subsequent sections are robust to the data used.9

First, I analyze the part of the sample from the period before the FOMC fixed the target

for the overnight federal funds rate in the 0-25 basis point range, that is, the period before

December 16, 2008, which defines the normal state. Figure 1(a) shows the variation in four of

the eight yield series during this period, while the top panel of Table 1 reports the summary

statistics for this subsample. The first observation is that the term structure slopes upward

on average. Second, short- and medium-term yields are more volatile than long-term yields.

Researchers have typically found that three factors are sufficient to model the time-

variation in the cross section of U.S. Treasury bond yields (e.g., Litterman and Scheinkman,

1991). Indeed, for the weekly U.S. Treasury bond yield data before mid-December 2008,

99.95% of the total variation is accounted for by three factors. The top panel of Table 2

8Both datasets are available online. See the links http://www.federalreserve.gov/releases/h15/ and
http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.

9Similar results are obtained with unsmoothed Fama-Bliss yields.
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(b) Zero-bound state.

Figure 1: U.S. Treasury Bond Yields.

Panel (a) shows time-series plots of U.S. zero-coupon Treasury bond yields at maturities of three months,

two years, five years, and ten years during the normal state. The data are weekly from January 4, 1985,

to December 12, 2008. Panel (b) shows the corresponding series during the zero-bound state. The data are

weekly from December 19, 2008, to December 27, 2013.

reports the eigenvectors that correspond to the first four principal components of the sub-

sample. The first principal component accounts for 94.7% of the variation in the Treasury

bond yields, and its loading across maturities is uniformly positive. Thus, like a level factor,

a shock to this component changes all yields in the same direction, irrespective of maturity.

The second principal component accounts for 5.0% of the variation in these data and has

sizable positive loadings for the shorter maturities and sizable negative loadings for the long

maturities. Thus, like a slope factor, a shock to this component steepens or flattens the yield

curve. Finally, the third component, which accounts for 0.2% of the variation, has a hump

shaped factor loading as a function of maturity, which is naturally interpreted as a curvature

factor. This motivates the use of the Nelson and Siegel (1987) model with its level, slope,

and curvature factors for modeling the subsample of U.S. Treasury yields that represent the

normal state, even though it should be noted that the estimated state variables are not iden-

tical to the principal component factors discussed here.10 Also, this is consistent with the

pre-crisis term structure literature where three factors are widely considered adequate.11

Next, I repeat the analysis but shift the focus to the data since the target rate hit the

zero lower bound in mid-December 2008. Figure 1(b) shows the time variation during this

10A number of recent papers use principal components as state variables. Joslin et al. (2011) is an example.
11Still, there is evidence that three factors may not be sufficient to fully capture all the variation in risk

premiums and excess returns; see Cochrane and Piazzesi (2005) and Duffee (2011) for examples and discussions.
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Normal state
Maturity

Mean Std. dev.
in months

(percent) (percent)
Skewness Kurtosis

3 4.68 2.07 -0.15 2.39
6 4.87 2.10 -0.14 2.38
12 5.08 2.11 -0.14 2.35
24 5.37 2.07 -0.04 2.41
36 5.60 2.02 0.08 2.46
60 5.95 1.93 0.28 2.52
84 6.22 1.86 0.41 2.54
120 6.52 1.77 0.51 2.58

Zero-bound state
Maturity

Mean Std. dev.
in months

(percent) (percent)
Skewness Kurtosis

3 0.09 0.06 0.64 3.15
6 0.16 0.09 1.15 4.46
12 0.29 0.15 1.05 3.25
24 0.53 0.29 0.69 2.19
36 0.85 0.43 0.48 1.94
60 1.55 0.65 0.20 1.71
84 2.18 0.77 0.05 1.65
120 2.90 0.82 -0.06 1.65

Table 1: Summary Statistics for U.S. Treasury Bond Yields.

The top panel reports the summary statistics for weekly U.S. zero-coupon Treasury bond yields during the

normal state from January 4, 1985, to December 12, 2008, at eight maturities ranging from three months

to ten years. There are 1,250 weekly observations total in this subsample. The bottom panel reports the

corresponding summary statistics for weekly U.S. zero-coupon Treasury bond yields during the zero-bound

state from December 19, 2008, to December 27, 2013, a total of 263 observations.

period for the same four yield maturities illustrated in Figure 1(a). A key distinguishing

feature of Treasury yields in the zero-bound state is that medium- and long-term yields can

vary significantly at the same time that three- and six-month yields exhibit minimal variation

as their downward movements are constrained by the zero lower bound. The bottom panel

of Table 1 contains the summary statistics of the yields in the zero-bound state. First, the

yield curve continues to slope upward, and now systematically so as observed in Figure 1(b).

However, equally important, all yields are less volatile, but obviously the short- to medium-

term yields have experienced the greatest reduction in yield volatility and are now much less

volatile than their long-term counterparts. Thus, a model that accounts for both a normal

state and a zero-bound state should replicate this pattern. Furthermore, it should account for

the change in the level of interest rates that occurs when the economy moves to the zero-bound

state.
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Normal state
Maturity
in months First P.C. Second P.C. Third P.C. Fourth P.C.

3 0.36 0.44 -0.57 -0.47
6 0.37 0.40 -0.19 0.32
12 0.38 0.28 0.27 0.53
24 0.38 0.06 0.47 -0.05
36 0.37 -0.10 0.39 -0.36
60 0.34 -0.31 0.08 -0.33
84 0.32 -0.43 -0.17 -0.01
120 0.30 -0.53 -0.40 0.40

% explained 94.68 5.04 0.23 0.04

Zero-bound state
Maturity
in months First P.C. Second P.C. Third P.C. Fourth P.C.

3 0.02 0.16 -0.33 0.72
6 0.04 0.30 -0.48 0.27
12 0.08 0.46 -0.44 -0.30
24 0.20 0.54 0.08 -0.30
36 0.31 0.43 0.35 -0.03
60 0.46 0.09 0.37 0.31
84 0.55 -0.18 0.06 0.19
120 0.59 -0.40 -0.46 -0.31

% explained 97.71 1.77 0.42 0.07

Table 2: Factor Loadings of U.S. Treasury Bond Yields.

In each panel, the top rows show the eigenvectors corresponding to the first four principal components. Put

differently, they show how the bond yields at various maturities load on the first four principal components. In

the final row of each panel the proportion of all bond yield variability explained by each principal component

is shown. In the top panel, the data are weekly U.S. zero-coupon Treasury bond yields during the normal state

from January 4, 1985, to December 12, 2008, while in the bottom panel the data are weekly U.S. zero-coupon

Treasury bond yields during the zero-bound state from December 19, 2008, to December 27, 2013.

As in the previous section, I perform a principal components analysis to better understand

the factors driving the variation in the yield curve in the zero-bound state. The result is

reported in the bottom panel of Table 2. The first three components explain 99.91 percent of

the variation, and the loadings on the corresponding eigenvectors across yield maturities have

changed though they still reflect a pattern of level, slope, and curvature for medium- to long-

term yields. Importantly, it now appears that a fourth factor explains 0.1% of the variation

in yields in the zero-bound state and is needed to fully account for the yield dynamics in that

state. Furthermore, the loadings on the fourth factor do not have a structure that matches

the pattern of either level, slope, or curvature. Its biggest loading is in the very short end of

the yield curve (more than twice the size of any of the other loadings). At the same time, the
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first and second principal components have seen a significant reduction in their loadings on

the short-term yields. Thus, it seems that the additional fourth factor is mainly operating in

the short end of the curve, where the most significant changes to the yield curve dynamics

are likely to occur when the economy enters the zero-bound state.

The next objective is to construct a model that accurately describes the Treasury yield

curve before it reaches the zero bound, while at the zero bound, and after the exit from the

zero bound.

3 Model Description

This section describes the regime-switching model studied in the remainder of the paper.

In the normal state, the yield curve is characterized by its usual level, slope, and curvature

factor, here denoted (Lt, St, Ct), which are modeled using the AFNS model introduced in

CDR.12 To preserve the Nelson-Siegel factor loading structure in the yield function, the

instantaneous risk-free rate is defined as:

rt = Lt + St. (1)

Furthermore, the risk-neutral (or Q-) dynamics of the state variables are given by the following

system of stochastic differential equations:13









dLt

dSt

dCt









=









0 0 0

0 −λ λ

0 0 −λ

















Lt

St

Ct









dt+Σ









dWL,Q
t

dW S,Q
t

dWC,Q
t









,

where Σ is the constant covariance (or volatility) matrix and assumed diagonal as recom-

mended by CDR. Based on this specification of the Q-dynamics, zero-coupon bond yields in

the normal state preserve the popular Nelson and Siegel (1987) factor loading structure as

yNt (τ) = Lt +

(

1− e−λτ

λτ

)

St +

(

1− e−λτ

λτ
− e−λτ

)

Ct −
AN (τ)

τ
, (2)

where AN (τ)/τ is a maturity-dependent yield-adjustment term that applies in the normal

state.14

The zero-bound state has two salient features. First, the instantaneous short rate is

12See Diebold and Rudebusch (2013) for a comprehensive presentation of applications of the AFNS model.
13As discussed in CDR, with a unit root in the level factor under the pricing probability measure, the model

is not arbitrage-free with an unbounded horizon; therefore, as is often done in theoretical discussions, an
arbitrary maximum horizon is imposed.

14CDR provide the analytical formula for AN (τ )/τ .
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assumed constant and fixed at zero to be consistent with the data.15 Second, it is assumed

that there is an additional state variable that drives the variation in the intensity process for

the Poisson jump process that indicates the switch out of the zero-bound state. This intensity

process is denoted ηt and assumed to follow a square-root process to preserve strict positivity

and ensure a well-defined intensity process:

dηt = κQη (θ
Q
η − ηt)dt+ ση

√
ηtdW

η,Q
t .

The implication of this modeling approach is that the switch from the zero-bound state

back to the normal state is unpredictable, even in the days before the actual announcement.

This modeling choice can be defended in two ways. First, from December 2008 until August

2011, the FOMC only used “extended period” language so it was left to anybody’s guess

what defined an extended period. Thus, during this period, the exact switch date could not

be foreseen. Second, after August 2011 when explicit forward guidance was introduced, it

was still uncertain whether the zero-bound period would extend beyond the explicit future

date or end before reaching that date in case the FOMC changed its mind. Hence, in reality,

it was never completely certain when and how the FOMC would exit the zero-bound state.

As shown by Duffie and Lando (2001), with this kind of uncertainty surrounding what might

otherwise be a predictable event, it is theoretically consistent to model it as an unpredictable

event with a stochastic intensity process that reflects the time-varying chance of exiting the

zero-bound state at any given time.

Because the principal components decomposition of the Treasury yield curve since De-

cember 19, 2008, shown in the bottom panel of Table 2 continues to contain a structure for

medium- and long-term yields that reflects elements of level, slope, and curvature, the dynam-

ics of the three regular state variables are assumed not to change when the economy switches

to the zero-bound state. As a consequence, I assume the dynamics of the state variables

under the pricing Q-measure in the zero-bound state are driven by the following system of

15In the daily H.15 database through 2013 (of which a weekly subsample is used), the zero boundary is never
violated. The one-month yield is 0 on 43 dates, the three-month yield is 0 on 8 dates, while the six-month yield
never goes below 2 basis points. Furthermore, since late 2008, the spread between the six- and three-month
yields is always nonnegative with a single exception, October 11, 2013, when it was negative 1 basis point.
Thus, with three- and six-month yields less than 10 basis points and the yield curve steep for much of the time
spent in the zero-bound state, the choice of zero for the short rate appears to be a reasonable assumption, if
not outright the true value.
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stochastic differential equations:















dLt

dSt

dCt

dηt















=















0 0 0 0

0 λ −λ 0

0 0 λ 0

0 0 0 κQη











































0

0

0

θQη















−














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St

Ct

ηt





























dt

+















σL 0 0 0

0 σS 0 0

0 0 σC 0

0 0 0 ση





























√
1 0 0 0

0
√
1 0 0

0 0
√
1 0

0 0 0
√
ηt





























dWL,Q
t

dW S,Q
t

dWC,Q
t

dW η,Q
t















.

In the zero-bound state, zero-coupon bond prices are given by (see Appendix A):

PZ(t, T ) = EQ
t

[

e−
∫ T
t

rudu
]

= EQ
t

[

1{In zero-bound state at T} +

∫ T

t

1{Exit zero-bound state at s}e
−

∫ T
s

rududs
]

= EQ
t

[

e−
∫ T

t
ηudu

]

+ EQ
t

[

∫ T

t

ηse
−

∫ s

t
ηudue−

∫ T

s
rududs

]

= EQ
t

[

e−
∫ T
t

ηudu
]

+

∫ T

t

EQ
t

[

ηse
−

∫ s
t
ηuduEQ

s [e
−

∫ T
s

rudu]
]

ds

= EQ
t

[

e−
∫ T

t
ηudu

]

+

∫ T

t

EQ
t

[

ηse
−

∫ s

t
ηudueA

N (s,T )+BN
L (s,T )Ls+BN

S (s,T )Ss+BN
C (s,T )Cs

]

ds.

The first term is the probability of remaining in the zero-bound state beyond time T in which

case discounting is done throughout at zero interest. The second term is the cumulative prob-

ability of exiting the zero-bound state prior to time T multiplied by risk-neutral discounting

using the normal-state dynamics of the short rate over the remaining time until T .

Note that zero-coupon bond prices in both regimes are known in analytical form (up to

the calculation of a single integral in the maturity dimension), which facilitates the empirical

implementation of the model. Also, applying the pricing formula above, zero-coupon bond

yields in the zero-bound state are easily calculated as

yZt (τ) = −1

τ
lnPZ(t, t+ τ). (3)

To complete the model, the risk premium structure that provides the connection between

the pricing dynamics described above and the real-world dynamics of the state variables needs

to be specified. Using the extended affine risk premiums introduced in Cheridito et al. (2007),
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the maximally flexible specification of the model has P -dynamics given by















dLt

dSt

dCt

dηt















=















κP11 κP12 κP13 κP14

κP21 κP22 κP23 κP24

κP31 κP32 κP33 κP34

0 0 0 κP44











































θP1

θP2

θP3

θP4















−















Lt

St

Ct

ηt





























dt

+















σL 0 0 0

0 σS 0 0

0 0 σC 0

0 0 0 ση





























√
1 0 0 0

0
√
1 0 0

0 0
√
1 0

0 0 0
√
ηt





























dWL,P
t

dW S,P
t

dWC,P
t

dW η,P
t















.

Similar to the approach for the Q-dynamics used for pricing, the P -dynamics of the level,

slope, and curvature are assumed to remain the same throughout. However, a switch in the

P -dynamics of the first three factors, when in the zero-bound state, can easily be incorporated

if deemed appropriate.16 Furthermore, to keep the model arbitrage-free, the ηt process must

be prevented from hitting the lower zero boundary. This positivity requirement is ensured by

imposing Feller conditions on its dynamics under both probability measures, that is,

κP44θ
P
4 >

1

2
σ2
η and κQη θ

Q
η >

1

2
σ2
η

are assumed throughout.

Finally, the model estimation is based on the extended Kalman filter and described in

Appendix B.

4 Estimation Results

In this section, the procedure to select a preferred specification of the regime-switching model

and related estimation results are described, while a more comprehensive performance eval-

uation is left for the subsequent section.

For the estimation of the probability of leaving the zero-bound state as well as for forecast-

ing and term premium decompositions, the specification of the mean-reversion matrix KP is

crucial. To select the best fitting specification of the model’s real-world dynamics, a general-

to-specific modeling strategy is used in which the least significant off-diagonal parameter of

KP is restricted to zero and the model is re-estimated. This strategy of eliminating the least

significant coefficient is carried out down to the most parsimonious specification, which has a

16The practical problem in imposing a regime switch on the upper three-dimensional part of KP , θP , and
Σ is twofold. First, it increases the number of parameters significantly. Second and more importantly, there is
only a short sample to identify these additional parameters from, which prevents efficient estimation.
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Alternative Goodness-of-fit statistics
specifications logL k p-value AIC BIC

(1) Unrestricted KP 70,466.83 40 n.a. -140,853.7 -140,640.8
(2) κP14 = 0 70,466.68 39 0.58 -140,855.4 -140,647.8
(3) κP14 = κP31 = 0 70,466.63 38 0.75 -140,857.3 -140,655.0
(4) κP14 = κP31 = κP32 = 0 70,466.46 37 0.56 -140,858.9 -140,662.0
(5) κP14 = . . . = κP21 = 0 70,462.58 36 0.01 -140,853.2 -140,661.6
(6) κP14 = . . . = κP12 = 0 70,460.76 35 0.06 -140,851.5 -140,665.3

(7) κP14 = . . . = κP34 = 0 70,453.94 34 < 0.01 -140,839.9 -140,658.9
(8) κP14 = . . . = κP24 = 0 70,451.14 33 0.02 -140,836.3 -140,660.7
(9) κP14 = . . . = κP23 = 0 70,434.85 32 < 0.01 -140,805.7 -140,635.4
(10) κP14 = . . . = κP13 = 0 70,430.90 31 < 0.01 -140,799.8 -140,634.8

Table 3: Evaluation of Alternative Specifications of the Regime-Switching Model.

Ten alternative estimated specifications of the regime-switching model are evaluated. Each specification is

listed with its maximum log likelihood (logL), number of parameters (k), and the p-value from a likelihood

ratio test of the hypothesis that the specification differs from the one directly above that has one more free

parameter. The information criteria (AIC and BIC) are also reported, and their minimum values are given in

boldface.

diagonal KP matrix. The final specification choice is based on the values of the Akaike and

Bayesian information criteria as in Christensen et al. (2010).17

The summary statistics of the model selection process are reported in Table 3. The Akaike

information criterion (AIC) is minimized by specification (4), which has a KP matrix given

by

KP
AIC =















κP11 κP12 κP13 0

κP21 κP22 κP23 κP24

0 0 κP33 κP34

0 0 0 κP44















,

while the Bayesian information criterion (BIC) prefers the more parsimonious specification

(6) with a KP matrix given by

KP
BIC =















κP11 0 κP13 0

0 κP22 κP23 κP24

0 0 κP33 κP34

0 0 0 κP44















.

In light of the relatively low number of observations from the zero-bound state, the po-

17The Akaike information criterion is defined as AIC = −2 logL + 2k, where k is the number of model
parameters, while the Bayesian information criterion is defined as BIC = −2 logL + k log T , where T is the
number of data observations. The data set contains 1,513 weekly observations for the full sample, but only
263 observations of ηt in the zero-bound state. Still, T is interpreted as referring to the longest data series and
is fixed at 1,513.
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KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 θP Σ

KP
1,· 0.3259 0.1091 -0.1434 0 0.0698 σL 0.0069

(0.0990) (0.0856) (0.0482) (0.0053) (0.0001)
KP

2,· 0.2812 0.3660 -0.4184 0.0241 -0.0324 σS 0.0110

(0.1969) (0.1617) (0.1164) (0.0078) (0.0116) (0.0002)
KP

3,· 0 0 0.9955 -0.0684 -0.0197 σC 0.0272

(0.2077) (0.0236) (0.0052) (0.0005)
KP

4,· 0 0 0 0.2437 1.1494 ση 0.7483

(0.1768) (0.0935) (0.0472)

Table 4: Estimated Parameters in the Regime-Switching Model.

The estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix for the regime-switching model

are shown. The estimated value of λ is 0.4711 (0.0026), while κQ
η = 0.0350 (0.0294) and θQη = 15.41 (0.6493).

The numbers in parentheses are the estimated parameter standard deviations. The maximum log likelihood

value is 70,466.46.

tential penalty for including additional parameters through the BIC could be too large. For

that reason, the specification preferred according to the AIC is analyzed in the remainder of

the paper.

For the upper 3 × 3 part of the mean-reversion matrix KP that represents the factor

dynamics in the normal state, the preferred specification is nesting the specification favored

by CR, who went through a careful and extensive model selection process to find a well-

specified AFNS model of U.S. Treasury yields for the 1987-2010 period given by









dLt

dSt

dCt









=









10−7 0 0

κP21 κP22 κP23

0 0 κP33

























0

θP2

θP3









−









Lt

St

Ct

















dt+Σ









dWL,P
t

dW S,P
t

dWC,P
t









(4)

with constant covariance matrix Σ.

As is evident, CR imposed a near unit-root property on the Nelson-Siegel level factor to

improve forecast performance and mitigate issues related to the finite-sample upward bias in

the estimated parameters of the KP mean-reversion matrix.18 As this seems to interfere with

the estimation of the off-diagonal elements in the fourth column of KP , this strategy is not

pursued further. Also, due to the long sample and the estimated high persistence of the state

variables, the gains from correcting for the finite-sample bias in the estimated parameters

of the upper 3 × 3 part of KP would presumably be modest and not warrant the added

computational burden.

Table 4 contains the estimated model parameters. As noted above, the level factor is

very persistent. The slope factor is slightly less persistent, while the curvature factor is much

18See Bauer et al. (2012) for a detailed discussion of this problem in the context of Gaussian dynamic term
structure models.
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(d) ηt process.

Figure 2: Factor Loadings in Yield Function.

Illustration of the factor loadings in the zero-coupon bond yield function. For the level, slope, and curvature

factors both the normal and the zero-bound state loadings are shown. For the zero-bound state, loadings are

shown both assuming the estimated average value of ηt as well as a low value of ηt = 0.05, while the three

other state variables are fixed at their sample averages during the zero-bound state period. The parameters

used in the calculations are those estimated on the full sample covering the period from January 4, 1985, to

December 27, 2013.

less persistent and more volatile. Finally, the ηt intensity process for the switch out of the

zero-bound state is about as persistent as the level factor. As shown in Appendix C, these

results are robust to using other data frequencies.

Figure 2 shows the factor loadings of the state variables in the zero-coupon bond yield
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function in the zero-bound state and compares them with those in the normal state. As

the zero-coupon bond yield function is nonlinear in the zero-bound state, the shown factor

loadings are calculated as first-order approximations with the first three state variables fixed

at their sample averages during the zero-bound state period, while ηt takes on two different

values, its sample mean and a low value, respectively. First, note the significant drop in the

sensitivity of short-term yields to variation in the level factor. This is more pronounced the

lower the value of ηt. Second, the slope factor has a loading across maturities very similar

to that of a curvature factor, which largely reflects the fact that the slope factor has only a

small role to play for the shortest yield maturities in the zero-bound state as the short rate

is constant zero. Again, this effect is more pronounced the lower the value of ηt, as an exit

to the normal state is less likely. Third, the curvature factor preserves a factor loading close

to that of the normal state and is not very sensitive to variations in ηt. Finally, Figure 2(d)

shows the factor loading of ηt. It exhibits a hump-shaped pattern, which is more pronounced

the lower the value of ηt, with a peak near the one- to two-year maturity. When ηt is low, the

economy is likely to remain in the zero-bound state longer. As a consequence, bond yields

become more sensitive to news about ηt and less sensitive to news about the other three

factors.

5 Model Performance Evaluation

In this section, the performance of the regime-switching model is evaluated in terms of fit,

match to short rate expectations, term premium estimates, and yield volatilities. Specifically,

the model is compared to two established three-factor Gaussian models, a more recent three-

factor shadow-rate model, and a representative four-factor model. This should provide a

broad overall assessment of the strengths and weaknesses of the regime-switching model.

The first established Gaussian model is the Kim and Wright (2005) model maintained at

the Federal Reserve Board, denoted the KW model,19 while the other is the standard AFNS

model favored by CR with P -dynamics given in equation (4), referred to as the CR model.

Shadow-rate models offer an alternative tractable way of modeling the asymmetric behavior of

yields near the zero lower bound. To account for the zero lower bound, Black (1995) proposed

using standard tools to model a shadow rate, st, that may be negative, while the observed short

rate is truncated: rt = max{st, 0}. Krippner (2013) provides an option-based approximation

to Black’s shadow-rate concept, while Christensen and Rudebusch (2015a) combine the latter

with the AFNS model class to derive tractable shadow-rate AFNS models. The shadow-rate

AFNS model considered is taken from Christensen and Rudebusch (2015b) and represents

the shadow-rate model equivalent of the CR model, that is, its dynamics for the shadow rate,

19See http://www.federalreserve.gov/econresdata/researchdata/feds200533.html.
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st, is given by equation (4) and referred to as the B-CR model.20,21 Finally, the four-factor

model included is the dynamic Nelson-Siegel-Svensson model analyzed in Christensen et al.

(2009), denoted the DNSS model, where the yield curve is assumed to have the following

form:

yt(τ) = Lt +
(1− e−λ1τ

λ1τ

)

St +
(1− e−λ1τ

λ1τ
− e−λ1τ

)

C1
t +

(1− e−λ2τ

λ2τ
− e−λ2τ

)

C2
t (5)

with λ1 > λ2 > 0. In this model, the yield curve has an additional curvature factor with slow

decay to improve the fit of longer-term yields in addition to the regular Nelson-Siegel level,

slope, and curvature factors.22

5.1 Model Fit

Table 5 provides the summary statistics of the fitted errors from the regime-switching model

and those from the CR, B-CR, and DNSS models.23 For each model the summary statistics are

calculated for two subsamples. The first is the normal state period that lasted until December

12, 2008, the other is the zero-bound state period from December 19, 2008, through 2013.

It is noted that the regime-switching model and the CR and B-CR models all underperform

in fitting short-term yields in the normal state. In the zero-bound state, the two latter models

continue to underperform in fitting short-term yields. In contrast, for the regime-switching

model, the introduction of the zero-bound state and to a lesser extent the associated fourth

factor with its unique characteristics are both beneficial for the fit of yields in the zero-bound

state in general, and for the fit of short-term yields in particular. Finally, the results for the

DNSS model suggest that it is useful for model fit to have four factors in both the normal state

and the zero-bound state. However, as demonstrated in the following section, the superiority

of the DNSS model in terms of fit does not translate into superior ability to capture investors’

expectations for future monetary policy as reflected in futures rates. Also, in Appendix D,

the DNSS model is found to be inferior at forecasting yields in the normal state despite its

better in-sample fit.

To better understand the differences across the four models in the zero-bound state, Figure

3 shows their fitted yield curves as well as the observed yields on two dates, December 28,

2012, and December 27, 2013. On December 28, 2012, yields are particularly low and the

term structure’s shape intriguing. The regime-switching model is able to provide a very close

fit to the entire yield curve on such days, while three-factor standard and shadow-rate models,

20Following Kim and Singleton (2012), the prefix “B-” denotes a shadow-rate model as in Black (1995).
21See Christensen et al. (2015a) for additional applications of the B-CR model.
22To allow the DNSS model to better fit the factor dynamics, its mean-reversion matrix is specified as a

flexible 4×4 matrix unlike the diagonal form implemented by Christensen et al. (2009).
23Summary statistics for the fit of the KW model are not available.
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Normal state
Maturity

CR model B-CR model DNSS model RS model
in months

Mean RMSE Mean RMSE Mean RMSE Mean RMSE

3 -16.75 32.71 -17.28 32.71 -4.69 12.14 -17.23 32.95
6 -5.92 15.64 -6.27 15.51 0.81 3.68 -6.17 15.72
12 0.00 0.00 -0.17 0.67 0.82 3.95 0.00 0.00
24 1.39 2.51 1.34 2.39 0.00 0.00 1.48 2.50
36 0.00 0.00 -0.02 0.09 0.20 0.97 0.00 0.00
60 -1.86 3.02 -1.88 2.81 0.00 0.00 -1.98 2.93
84 0.16 2.56 0.22 2.16 -0.08 0.45 0.21 2.03
120 7.58 10.57 7.87 10.49 1.12 3.49 8.26 10.60

All yields -1.93 13.45 -2.02 13.41 -0.23 4.87 -1.93 13.53

Zero-bound state
Maturity

CR model B-CR model DNSS model RS model
in months

Mean RMSE Mean RMSE Mean RMSE Mean RMSE

3 -16.75 21.23 -8.73 14.52 -2.37 5.72 1.05 3.47
6 -9.47 11.94 -5.13 8.03 -0.60 1.81 0.01 2.25
12 0.00 0.00 0.11 1.28 2.46 3.10 0.48 1.92
24 0.81 1.73 -0.65 1.39 0.00 0.00 -1.08 2.29
36 0.00 0.00 -0.31 0.61 0.03 1.03 0.53 1.94
60 -1.18 3.10 -0.53 2.10 0.00 0.00 0.15 0.98
84 0.16 3.57 -0.47 3.12 -0.08 0.53 -0.38 1.49
120 4.52 11.12 1.34 7.42 0.48 4.96 1.71 4.72

All yields -2.74 9.63 -1.80 6.60 -0.01 2.99 0.31 2.63

Table 5: Summary Statistics of Fitted Errors.

The mean fitted errors and the root-mean-square fitted errors (RMSEs) from the standard CR model, the

shadow-rate B-CR model, the four-factor DNSS model, and the regime-switching (RS) model are shown. In

each case, the summary statistics are calculated for two periods: (1) the normal state period from January 4,

1985, to December 12, 2008, and (2) the zero-bound state period from December 19, 2008, to December 27,

2013. The full sample used in each model estimation is weekly covering the period from January 4, 1985, to

December 27, 2013. All numbers are measured in basis points.

and even the four-factor DNSS model, may have difficulties matching the short end of the

yield curve. On the other hand, when yields are not particularly low or the term structure

simple, as on December 27, 2013, all models perform well and are much harder to distinguish

from each other. Still, it is clear that the DNSS model is a little off in its extrapolation to

the shortest yield maturities.

5.2 Short Rate Expectations

The objective of this section is to assess how reasonable the short-term interest rate projections

implied by the regime-switching model are. Since the Fed is targeting a short-term interest

rate, the overnight federal funds rate, in implementing its conventional monetary policy, this
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(b) December 27, 2013.

Figure 3: Fitted Yield Curves.

Panel (a) shows the fitted yield curves as of December 28, 2012, from the CR model, the B-CR model, the

DNSS model, and the regime-switching model. Panel (b) shows the corresponding results as of December 27,

2013.

exercise gives a sense of how well the model captures expectations for future monetary policy.

In the zero-bound state, the expected short rate τ years ahead is given by (see Appendix

E)

EP
t [rt+τ ] = 0 · EP

t

[

e−
∫ t+τ
t

ηudu
]

+EP
t

[

∫ t+τ

t

ηse
−

∫ s
t
ηudurt+τds

]

=

∫ t+τ

t

EP
t

[

ηse
−

∫ s
t
ηuduEP

s [rt+τ ]
]

ds,

while EP
t [rt+τ ] is straightforward to calculate in the normal state.

Ideally, the regime-switching model’s accuracy in projecting future short-term interest

rates should be tested in a real-time forecast exercise over many years like the ones per-

formed by CR and Christensen and Rudebusch (2015b). However, the limited data from the

zero-bound state prevents such an exercise. Instead, to assess the regime-switching model’s

short-rate projections during the most recent period, its full-sample estimates of monetary

policy expectations one and two years ahead are compared with the corresponding full-sample

estimation results from the KW, CR, B-CR, and DNSS models, and with the rates on one-

and two-year federal funds futures contracts, all shown in Figure 4.24 In doing so, it should be

24The futures data are from Bloomberg. The one-year futures rate is the weighted average of the rates on the
12- and 13-month federal funds futures contracts, while the two-year futures rate is the rate on the 24-month
federal funds futures contract through 2010, and the weighted average of the rates on the 24- and 25-month
contracts since then. The analysis starts in 2007 when data for the 24-month contracts become available.
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(a) One-year projections.
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(b) Two-year projections.

Figure 4: Short Rate Projections.

Panel (a) illustrates the one-year short rate projections from the KW, CR, B-CR, and regime-switching models

with a comparison to the rates on one-year federal funds futures. Panel (b) shows the corresponding results

for a two-year projection period with a comparison to the rates on two-year federal funds futures. The data

are weekly covering the period from January 5, 2007, to December 27, 2013.

emphasized that the existence of time-varying risk premiums, even in very short-term federal

funds futures contracts, is well documented (see Piazzesi and Swanson 2008). However, the

size of risk premiums in such short-term contracts are presumably small relative to the sizable

variation observed during the time period shown in Figure 4. As a consequence, the bulk of

the variation from 2007 to 2009 is assumed to reflect declines in short rate expectations. Fur-

thermore, between mid-2011 and mid-2013, most evidence—including that shown in Figure 5

below—suggests that risk premiums were significantly depressed, likely to a point that an as-

sumption of zero risk premiums in the short-term futures contracts studied here may provide

a satisfactory approximation. Combined these observations suggest that it is warranted for

most of the shown seven-year period to map the models’ short rate projections to the rates

on the federal funds futures contracts without adjusting the latter for risk premiums.

At the one- and two-year forecast horizons, the correlations between the short rate fore-

casts from the models and the federal funds futures rates are all quite high. The B-CR model

has the highest correlations, 98.2% and 92.5% at the one- and two-year horizon, respectively,

while the DNSS model has the lowest correlations, 96.8% and 86.7%, respectively. For the

regime-switching model, these correlations are 98.0% and 91.7%, respectively. Thus, the

performance is very similar across models, as measured by correlations.

If, instead, a distance metric is used, the results are more differential. Table 6 reports the

mean deviations and the root-mean-square deviations (RMSDs) from all five models relative
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One-year contract Two-year contract
Model

Mean RMSD Mean RMSD

KW model 46.89 65.71 85.00 110.75
CR model -34.64 53.34 -72.44 103.91
B-CR model -31.13 44.51 -80.12 98.88
DNSS model -25.73 46.21 -68.16 99.85
Regime-switching model -6.30 33.07 -25.42 63.57

Table 6: Summary Statistics of Differences relative to Federal Funds Futures Rates.

The mean deviations and the root-mean-square deviations (RMSDs) between the short rate expectations from

four term structure models, on one side, and federal funds futures rates, on the other, are reported for two

contract horizons. In each case, the summary statistics are calculated for the periods from January 5, 2007,

to December 27, 2013. All numbers are measured in basis points.

to the rates of the federal funds futures contracts. Note that the two standard Gaussian

models are not particularly close to the futures rates, either on average or as measured by

RMSDs. Thus, they appear to be less well placed to provide accurate estimates of the

changes in investors’ short- to medium-term expectations for future monetary policy, while

the economy is in the zero-bound state. On the other hand, the shadow-rate B-CR model

does deliver some improvement in accuracy of the estimated policy expectations relative to the

CR model, which is consistent with the findings of Christensen and Rudebusch (2015b). The

DNSS model also provides some improvement in short-rate projections relative to the KW

and CR models, but not relative to the B-CR model. More importantly, though, the regime-

switching model stands out based on this measure as it has the smallest mean deviations and

RMSDs at both contract horizons. This evidence suggests that the regime-switching model

delivers projections of future monetary policy rates that are at least as accurate as those of

any of the alternative models considered.

5.3 Term Premiums in the Zero-Bound State

In this section, it is first described how long-term yields are decomposed into policy expecta-

tions and term premium components within the regime-switching model, before its ten-year

yield decomposition is compared with those from the four alternative models considered in

the previous section.

In general, the term premium component in the yield of a zero-coupon bond with maturity

in τ years is defined as

TPt(τ) = yt(τ)−
1

τ

∫ t+τ

t

EP
t [rs]ds

and reflects the difference between the long-term yield that can be settled today and the
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Figure 5: Estimated Ten-Year Term Premiums.

Illustration of the estimated ten-year zero-coupon term premium from the regime-switching model with a

comparison to the corresponding estimates from the KW, CR, B-CR, and DNSS models. The data shown

cover the period from December 19, 2008, to December 27, 2013.

expected return from a rollover strategy that earns the risk-free rate.25

In the normal state, the term premium takes its usual form

TPN
t (τ) = yNt (τ)− 1

τ

∫ t+τ

t

EP
t [rs]ds,

where the instantaneous short rate is the sum of the first two factors

rt = Lt + St.

As explained in Appendix F, the formula for the term premium in the zero-bound state

is instead given by

TPZ
t (τ) = yZt (τ)−

1

τ

(

0 ·EP
t [e

−
∫ t+τ
t

ηudu] +EP
t [

∫ t+τ

t

ηse
−

∫ s
t
ηudu

∫ t+τ

s

rududs]
)

= yZt (τ)−
1

τ

∫ t+τ

t

EP
t

[

ηse
−

∫ s
t
ηuduEP

s [

∫ t+τ

s

rudu]
]

ds.

The full-sample estimates of the ten-year term premium since late 2008 are illustrated in

25Note that a Jensen’s inequality term has been left out for the rollover strategy in this definition.
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Ten-year term premiums
Correlation

KW model CR model B-CR model DNSS model RS model

KW model 1 0.967 0.972 0.956 0.948
CR model 1 0.998 0.896 0.972
B-CR model 1 0.895 0.971
DNSS model 1 0.893
RS model 1

Table 7: Pairwise Correlations of Term Premiums.

The table contains the pairwise correlations between the ten-year term premiums from the KW model, the

CR model, the B-CR model, the DNSS model, and the regime-switching (RS) model. The sample is weekly

from December 19, 2008, to December 27, 2013.

Figure 5. All five models broadly paint a similar picture. From early 2009 through mid-2011,

term premiums were mainly elevated before dropping significantly in the early fall of 2011

after the Fed started to provide explicit policy forward guidance for the first time at the

August 2011 FOMC meeting and announced its maturity extension program, or “twist,” at

the September 2011 FOMC meeting.26 Between then and the first half of 2013, a combination

of forward guidance and asset purchases by the Fed kept term premiums at historically low

levels. Finally, during the summer of 2013, markets reacted strongly in anticipation of the

first decision to reduce or taper the on-going, open-ended asset purchases at the time.27 The

similarity in time variation is confirmed in Table 7, which reports the correlations between all

five ten-year term premium series since late 2008 that are indeed all very high. Still, Figure

5 shows that there is a notable difference in levels most of the time between the estimates

from the CR, B-CR, and DNSS models, on one side, and those from the regime-switching

and KW models, on the other. This difference can be traced back to a level difference in the

projected paths for future short rates at medium- to long-term horizons, where in particular

the short rate projections from the B-CR and DNSS models indicate a very protracted and

gradual normalization of monetary policy, which raises some doubts about the reliability of

those estimates.

26This program operated from September 2011 through 2012 and involved purchases of more than $600
billion of long-term Treasury securities (defined as bonds with more than six years to maturity) financed by
selling an equal amount of shorter-term Treasuries (defined as bonds with less than three years to maturity).
See Cahill et al. (2013) and Li and Wei (2013) for analysis.

27The Fed’s third asset purchase program (QE3) was launched in September 2012 and at first only involved
purchases of mortgage-backed securities (MBS) at a monthly pace of $40 billion. In December 2012, the
program was expanded to include purchases of Treasury securities at a monthly pace of $45 billion. In December
2013, the Fed started the process of gradually tapering down the asset purchases. However, throughout the
period analyzed here, the QE3 program was open ended, in that no specific end date was provided for the
program.
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5.4 Yield Volatility

In this section, the regime-switching model’s ability to match observed measures of yield

volatility is analyzed in detail. First, the model’s normal state volatility dynamics are studied

before proceeding to an assessment of its zero-bound state volatility dynamics.

5.4.1 Yield Volatility in the Normal State

In the normal state, where zero-coupon yields are affine functions of the state variables, the

conditional predicted yield volatilities implied by the regime-switching model are given by

the square root of

V P
t [yNT (τ)] =

1

τ2
BN (τ)V P

t [XT ]B
N (τ)′, (6)

where T − t is the prediction period, τ is the yield maturity, BN (τ) contains the yield factor

loadings, and V P
t [XT ] is the conditional covariance matrix. For affine diffusion processes, the

latter is in general given by28

V P [XT |Xt] =

∫ T

t

exp(−KP (T − s))ΣD(EP [Xs|Xt])D(EP [Xs|Xt])
′Σ′ exp(−(KP )′(T − s))ds. (7)

By letting T → ∞, the unconditional covariance matrix is obtained and can be combined with

equation (6) to calculate the unconditional volatility of yields for any maturity τ . Using the

regime-switching model’s normal-state dynamics, Figure 6 shows the resulting unconditional

yield volatility term structure for τ ∈ (0, 10). Also shown are the realized yield standard

deviations over the entire normal-state period for the eight yield maturities reported in the top

panel of Table 1, which represent the sample estimates of their unconditional yield volatility

in the normal state.

Note that the normal state dynamics in the regime-switching model do not replicate the

slight hump in the yield volatility term structure around the one-year yield maturity. Also,

the overall yield volatility level implied by the model in the normal state is somewhat lower

than that observed in the data. This is partly due to the fact that yield changes have been

below historical averages in recent years, which matters to some extent for the estimated

model dynamics.

5.4.2 Yield Volatility in the Zero-Bound State

In this section, it is documented that the regime-switching model produces notably lower

volatility of short-term yields in the zero-bound state than in the normal state. Furthermore, it

is demonstrated that its conditional volatilities for those yields are closer to realized measures

28The conditional covariance matrix is calculated using analytical solutions from Fisher and Gilles (1996).
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Figure 6: Unconditional Yield Volatility Term Structure in the Normal State.

Illustration of the unconditional yield volatility term structure in the normal state implied by the regime-

switching model. Also shown are the estimates of the unconditional yield volatility in the normal state

calculated as the standard deviation of the observed yields over the period from January 4, 1985, to December

12, 2008.

of yield volatility than those implied by the shadow-rate B-CR model.29

In the zero-bound state, zero-coupon yields in the regime-switching model are nonlinear

functions of the state variables. By implication, its conditional yield volatilities must be

generated by simulation similar to what Christensen and Rudebusch (2015b) do to generate

yield volatilities from the B-CR model. For both models the shown series represent full-sample

estimates.

To evaluate the fit of these predicted one-month-ahead conditional yield standard devia-

tions, they are compared to a standard measure of realized volatility based on the same data

used in the model estimation, but at daily frequency. The realized standard deviation of the

daily changes in the interest rates is calculated for the 31-day period ahead on a rolling basis.

This realized variance measure is also used by Andersen and Benzoni (2010), Collin-Dufresne

et al. (2009), and Jacobs and Karoui (2009) in their assessments of stochastic volatility

models. For each observation date t, the number of trading days n during the subsequent

31-day time window is determined (where n is most often 21 or 22) and the realized standard

29The KW, CR, and DNSS models are not included in this analysis due to their Gaussian nature.
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Maturity B-CR model RS model
in months Mean RMSD Mean RMSD

3 -10.67 11.92 1.70 2.62
6 -10.09 10.96 -1.04 2.57
12 -6.95 7.77 -1.80 4.04
24 -3.43 6.06 -3.02 6.61
36 -0.80 6.48 -2.73 8.18
60 3.14 8.57 -0.03 9.20
84 6.13 10.66 3.09 10.01
120 8.77 12.66 6.15 11.33

Table 8: Summary Statistics of Distance to Realized Yield Volatilities.

The mean deviations and the root-mean-square deviations (RMSDs) between the conditional one-month yield

volatilities implied by the B-CR and regime-switching (RS) models, respectively, and the corresponding realized

yield volatility measure calculated from daily yield changes are reported. In each case, the summary statistics

are calculated for the period from December 19, 2008, to December 27, 2013. All numbers are measured in

basis points.

deviation is calculated as

RV STD
t,τ =

√

√

√

√

n
∑

i=1

∆y2t+i(τ),

where ∆yt+i(τ) is the change in yield y(τ) from trading day t+ (i− 1) to trading day t+ i.30

Figure 7 shows the results for four yield maturities: three-month, two-year, five-year, and

ten-year. In the normal state, yields with five years or less to maturity have conditional

one-month yield volatilities close to 35 basis points, while ten-year yields are less volatile with

a conditional one-month volatility of 26 basis points. Importantly, they are all constant due

to the Gaussian dynamics. In the zero-bound state, the regime-switching model produces

projected yield volatilities for short-term yields that closely match the corresponding subse-

quent yield volatility realizations. However, further along the yield curve, the model starts to

approximate the normal state dynamics characterized by constant yield volatility. Still, there

remains a wedge between the normal state and zero-bound state yield volatility dynamics,

even at the longer maturities, and the model continues to provide a fairly close fit to those

realized yield volatility series.31

To quantify the projection errors, Table 8 reports the mean deviations and the RMSDs

between the one-month yield volatilities from the model and the realized yield volatility

measures. Also reported are the corresponding statistics for the B-CR model. The results

30Note that other measures of realized volatility have been used in the literature, such as the realized mean
absolute deviation measure as well as fitted GARCH estimates. Collin-Dufresne et al. (2009) also consider
option-implied volatility as a measure of realized volatility.

31Unreported results show that the fit of long-term yield volatilities can be improved by incorporating
stochastic volatility into the Nelson-Siegel level factor as in Christensen et al. (2015b). However, this is left
for future refinement.
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(a) Three-month yield.
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(b) Two-year yield.
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(c) Five-year yield.
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(d) Ten-year yield.

Figure 7: One-Month Conditional Yield Volatilities.

Illustration of the one-month conditional volatility of the three-month, two-year, five-year, and ten-year

Treasury yields implied by the regime-switching model using both its normal state and zero-bound state

P -dynamics, as well as those implied by the B-CR model. Also shown are the subsequent 31-day realized

volatility series calculated based on daily data as described in the main text. The period shown covers the

zero-bound state from December 19, 2008, to December 27, 2013, while the full sample used in model estimation

covers the period from January 4, 1985, to December 27, 2013.

show that the regime-switching model is competitive at matching the compression in volatility

in the short end of the yield curve relative to the B-CR model since late 2008. Unreported

results show that using a 91-day window leads to similar conclusions. Finally, in Appendix G,

the robustness of the findings is further documented with a comparison to yield curve models
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with stochastic volatility where the results are also favorable to the regime-switching model.

5.5 Summary of Model Performance

To summarize, the performance evaluation documents several favorable characteristics of the

regime-switching model. First, its fit to the cross section of yields matches that of three-factor

standard and shadow-rate models in the normal state as well as that of a representative

four-factor model in the zero-bound state. Second, its short rate projections are closer to

the short-term interest rate expectations reflected in federal funds futures rates than the

competing models, including the shadow-rate B-CR model advocated by Christensen and

Rudebusch (2015b). Third, partly as a consequence of the previous finding, its estimated ten-

year term premiums seem reasonable relative to those from the competing models. Finally,

the model is able to replicate the compression in short-term yield volatility in the zero-bound

state, and better so than the B-CR model.

6 The Exit from the Zero-Bound State

Encouraged by the regime-switching model’s performance, I now analyze what it can teach

us about the exit from the zero-bound state. First, the distribution of the exit time from

the zero-bound state that is unique to the regime-switching model is described in detail.

Second, the median of the exit time distribution is compared to other estimates of the timing

of the Fed’s exit from its zero interest rate policy, including those implied by a shadow-rate

macro-finance model.32

6.1 The Distribution of the Exit Time

The estimated probability of remaining in the zero-bound state is given by

EP
t

[

e−
∫ T

t
ηudu

]

= exp
(

AP
η (t, T ) +BP

η (t, T )ηt

)

, (8)

while the continuous intensity of exiting the zero-bound state is

EP
t

[

ηT e
−

∫ T

t
ηudu

]

= exp
(

AP
η (t, T ) +BP

η (t, T )ηt

)

×
[

CP
η (t, T ) +DP

η (t, T )ηt

]

, (9)

32Monfort et al. (2014) construct an affine term structure model that delivers exit time distributions from
spells of near-zero interest rates and apply it to Japanese data. Therefore, it is not included in the comparison.
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Figure 8: Distribution of the Exit Time from the Zero-Bound State.

Panel (a) shows the continuous intensity of exiting the zero-bound state as of December 28, 2012. Panel (b)

shows the continuous intensity of exiting the zero-bound state as of December 27, 2013. In both panels, vertical

dashed lines indicate the mode and the median of the exit time distribution.

where33

AP
η (t, T ) =

2κP44θ
P
4

σ2
η

ln

[

2φP
η e

1
2
(φP

η +κP
44)(T−t)

2φP
η + (φP

η + κP44)(e
φP
η (T−t) − 1)

]

,

BP
η (t, T ) =

−2(eφ
P
η (T−t) − 1)

2φP
η + (φP

η + κP44)[e
φP
η (T−t) − 1]

,

CP
η (t, T ) = 2κP44θ

P
4

eφ
P
η (T−t) − 1

2φP
η + (φP

η + κP44)(e
φP
η (T−t) − 1)

,

DP
η (t, T ) =

4(φP
η )

2eφ
P
η (T−t)

[

2φP
η + (φP

η + κP44)(e
φP
η (T−t) − 1)

]2

with

φP
η =

√

(κP44)
2 + 2σ2

η .

Figure 8 shows the continuous intensity of the exit time distribution on two recent dates,

December 28, 2012, and December 27, 2013. Note that both distributions are skewed to the

right. On December 28, 2012, the probability of remaining in the zero-bound state was high.

As a consequence, both the mode and the median of the exit time are located relatively far

in the future. On the other hand, on December 27, 2013, the probability of remaining in

33These results are obtained by combining the P -dynamics of the ηt-process with analytical formulas provided
in Christensen (2007).
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Figure 9: Expected and Median Exit Times from the Zero-Bound State.

Illustration of the estimated expected and median exit times from the zero-bound state under both the objective

P probability measure and the risk-neutral Q probability measure from December 19, 2008, to December 27,

2013.

the zero-bound state was much lower. As a result, the exit time distribution is less skewed

and the mode is almost for an immediate exit to the normal state. Due to the asymmetric

distribution, the mode may not be the most appropriate statistic to describe the exit time

distribution, even though it obviously indicates the most likely single exit date. Instead, in

the following, both the expected exit time and the median exit time that splits the probability

mass in half are considered.34

The variation in the estimated expected and median exit times from the zero-bound state

since December 19, 2008, are shown in Figure 9. Also shown are the risk-neutral expected and

median exit times calculated based on the model’s estimated Q-dynamics used for pricing.

Note that the priced or risk-neutral expected and median exit times are always shorter than

the corresponding objective exit times, but with varying differences. This suggests that the

risk of exiting the zero-bound state carries a notable time-varying premium, which is higher

when it is more likely for the economy to remain in the zero-bound state as it would be

particularly costly for bond investors to be wrong in projecting a continuation of the zero-

bound state under those circumstances.

Also included in Figure 9 are seven key dates with major decisions by the FOMC regarding

34Expected exit times are calculated as Et[τ ] = Et[
∫∞

t
sηse

−
∫ s
t ηududs] =

∫∞

t
sEt[ηse

−
∫ s
t ηudu]ds.
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either its LSAP programs or its forward guidance for future policy. For the announcements

until spring 2013, there are notable upward spikes in the estimated probability of remaining

at the zero bound in the weeks after each announcement, with the extension of the forward

guidance at the January 2012 FOMC meeting being the notable exception. This suggests

that part of the effect from unconventional monetary policies arises from a signaling channel

through which the FOMC policy actions are interpreted to indicate that the policy rate will

remain at its lower bound longer, as also emphasized by Bauer and Rudebusch (2014b) and

CR. Consistent with this interpretation, the probability of remaining in the zero-bound state

declined in the period after the June 2013 FOMC meeting when then-Chairman Bernanke

indicated that the FOMC would soon taper its asset purchases. Clearly, investors saw it as

an indication that the zero-interest rate policy might come to an end earlier than previously

anticipated. Finally, as a consequence of investors’ forward-looking behavior, the actual

announcement of the first tapering decision at the December 2013 FOMC meeting generated

only a modest additional reaction.

6.2 Comparison to Other Estimates of the Exit Time

To further assess the exit-time distribution implied by the regime-switching model, it is com-

pared to three other estimates of the timing for when the Fed will end its zero interest rate

policy, which defines the exit from the zero-bound state within the regime-switching model.

The first is taken from the Survey of Primary Dealers (SPD) performed regularly by the

Federal Reserve Bank of New York. The second is market-based and derived from the rates

of federal funds futures. The third and final estimate is generated from simulations of the

shadow-rate macro-finance model introduced in BR.

The SPD is collected regularly before each scheduled FOMC meeting. The results of

the surveys have been publicly available since January 2011 and the number of respondents

have varied between 19 and 22.35 In the survey, primary dealers, that is, brokers or financial

institutions that are able to trade Treasury securities directly with the Fed, are asked to

submit forecasts of the target federal funds rate from the current quarter up to several years

ahead as well as their expected long-run value. More importantly for the analysis in this

section, since January 2011 the survey has asked a direct question about participants’ views

about the timing of the first federal funds target rate increase. The median of the individual

estimates of the exit time defined in this way is plotted with red circles in Figure 10. Since

these represent objective real-world estimates of the median exit time, arguably from a limited

sample of about 20 professional economists, they should be compared with the median exit

time from the regime-switching model calculated using its objective P -dynamics, shown with

a solid black line in the figure.

35The data is available at http://www.newyorkfed.org/markets/primarydealer survey questions.html.
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Figure 10: Comparison of Objective Median Exit Time Estimates.

Illustration of the estimated objective median exit time from the zero-bound state within the regime-switching

model. These series are weekly from December 31, 2010, to December 27, 2013. The figure also shows the

median response to the question about the timing of the first federal funds target rate increase in the Survey

of Primary Dealers as well as the minimum forward guidance provided by the FOMC on three occasions.

On average, these two median exit time series are very similar for the overlapping period

since January 2011. The regime-switching model produces estimated median exit times that

average 2.15 years over that period, while the SPD’s average median exit time is 2.13 years.

Obviously, the median exit time from the model exhibits more variation, partly because it is

available weekly and not just eight times per year like the SPD. The SPD series also is the

median of about 20 responses, which tends to smooth out erratic variation in the individual

responses.

To put the two median exit-time series discussed so far into perspective, Figure 10 also

shows the three dates when the FOMC provided explicit minimum forward guidance about

its future monetary policy intentions. On August 9, 2011, the FOMC announced that its

target rate would likely have to remain exceptionally low at least though mid-2011, or almost

2 years. On January 25, 2012, the FOMC extended its forward guidance, suggesting that an

exceptionally low target rate would likely be required at least until late 2014 (interpreted as

the middle of the fourth quarter of 2014), or about 2.75 years. Finally, on September 13,

2012, the FOMC provided the last update of its explicit forward guidance, stating that an

exceptionally low target rate would likely be required at least through mid-2015, which is
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Figure 11: Comparison of Risk-Neutral Expected Exit Time Estimates.

Illustration of the estimated expected exit time from the zero-bound state within the regime-switching model

under the risk-neutral Q probability measure. Also shown are the expected exit times estimated from rates

of federal funds futures as described in the main text. Both series are weekly from December 19, 2008, to

December 27, 2013.

again about 2.75 years. This guidance is shown with dark violet crosses in the figure.

Note that, at the time of each of the three FOMC announcements, the expectations for

the exit reflected in the SPD were below the guidance. However, this is not all that surprising.

Provided it had been the other way around, there would presumably have been little benefit in

terms of easing financial conditions from extending the forward guidance, in particular given

that it is a minimum of intended future action that is being announced. Furthermore, it

should be emphasized that the FOMC guidance was, and remains, conditional on a forecast

of economic slack and price inflation. If economic conditions change, the FOMC clearly

reserves the right to change its policy and guidance accordingly. By implication, the FOMC

guidance should merely be considered a useful guidepost or benchmark. As a consequence,

there is room for differences in opinion among investors and professional forecasters about

the exit time rooted in different projections of future economic performance. Hence, the fact

that neither the SPD’s nor the regime-switching model’s median exit time aligns exactly with

the FOMC guidance does not imply that either can or should be dismissed.

To construct the second market-based estimate of the exit time from the Fed’s zero interest

rate policy, I use federal funds futures contracts, which are ideal for this purpose because their
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rates represent investors’ bets on the monthly average of the overnight federal funds rate

targeted by the Fed. It is assumed that 25 basis points is the critical threshold for the federal

funds rate that indicates when the Fed has abandoned its zero interest rate policy. Given this

definition of the exit, it is straightforward to generate an estimate of the expected exit time

from the futures rates by linearly interpolating between contracts with expirations in monthly

increments up to 36 months ahead.36 The point at which the projected future federal funds

rate crosses the 25-basis-point line determines the exit time. These estimates are shown in

Figure 11. With the exception of the first 18 months, the expected exit time derived from

the federal funds futures and the risk-neutral expected exit time from the regime-switching

model are quite close most of the time. The mean expected exit time estimated from federal

funds futures is 1.10 years, while the average of the risk-neutral expected exit times from the

regime-switching model is 1.45 years during the shown period.

The third and final estimate of exit times is from the shadow-rate macro-finance model

introduced in BR, denoted the BR model. This is a shadow-rate model as defined in Black

(1995) with two latent yield factors in addition to two macro factors that are assumed to be

spanned by the yield curve.37 Thus, the BR model is an example of a macro-finance model

with spanned macroeconomic risks.38 The first macroeconomic variable in the BR model is

the year-over-year change in the core consumer price index (CPI), that is, the CPI for all items

less food and energy. The other is the unemployment gap measured as the unemployment

rate minus the natural rate of unemployment estimated by the Congressional Budget Office.

These two variables are included to reflect the Fed’s dual mandate that emphasizes both

maximum employment and price stability. In addition, note that the yield data used in the

estimation of the BR model is identical to the yield sample considered in this paper. However,

to align the yields with the macroeconomic variables, they are only observed at the end of

each month from January 1985 to December 2013. Two more points about the empirical

implementation of the BR model need to be highlighted. First, it is only estimated once with

data until December 2007, while the parameters are locked at those estimated values for the

analysis of the remaining part of the sample. Second and more importantly, all model output

considered here is generated under the risk-neutral Q probability measure as in the analysis

in BR.

As in the construction of exit times based on the futures rates, a threshold is required

to identify conditions within the BR model that can be interpreted as an exit from the

36As already noted in Section 5.2, only contracts with expirations up to 24 months ahead were trading before
March 2011. However, this is without consequence for the analysis as all of the estimated exit times are less
than two years during that period.

37This is the MZ(2) model in the notation of BR. I thank Michael Bauer for sharing the model output.
38More recently, there is a nascent literature on modeling unspanned macroeconomic risks; see Joslin et al.

(2014). However, their analysis stops in 2007 and does not address the issue of the zero lower bound and its
implications for bond yield dynamics. Thus, a comparison with this literature is a topic for future research.
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Figure 12: Comparison of Risk-Neutral Median Exit Time Estimates.

Illustration of the estimated median exit time from the zero-bound state within the regime-switching model

under the risk-neutral Q probability measure. These series are weekly from December 19, 2008, to December

27, 2013. The figure also shows the risk-neutral median of 10,000 exit times simulated from the BR model

under the Q probability measure as well as the associated interquartile range. These series are monthly from

end-of-December 2008 to end-of-December 2013.

Fed’s zero interest rate policy. To that end, BR use 25 basis points as the critical level for

the instantaneous short rate. In this way, the determination of exit times becomes a first-

hitting-time problem for a multi-dimensional Brownian motion with drift. To solve it, BR

use simulations and, in principle, the distribution of exit times is straightforward to obtain.

However, in practice, it turns out to be a little more involved to get robust distributional

properties of the simulated exit times, as explained in BR. Specifically, they impose the

additional requirement that the simulated path for the shadow-rate process must remain

above 25 basis points over the following twelve months after having crossed that threshold

from below to qualify as an exit. According to BR, this gives a more stable exit distribution

than just recording all times the shadow rate process crosses the 25-basis-point level from

below. However, it comes at the potential cost of biasing upward the reported exit times.

Repeating this 10,000 times gives a whole distribution of exit times. Figure 12 shows the

median (solid blue line) as well the range between the lower and upper quartile (shaded gray

area) of the distributions obtained from repeating this exercise from December 2008 through

December 2013.
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Given that the median exit times from the BR model are simulated using its Q-dynamics,

the appropriate comparable is the risk-neutral median exit time from the regime-switching

model also shown in Figure 12. In comparing the two, the first thing to note is that their

correlation is a fairly high 67.7 percent over the shown period. Second, these two median

exit time series are rather similar during the period from 2009 to mid-2011, and again from

mid-2013 through the end of the sample. For the regime-switching model the average of

the risk-neutral median exit times during these two periods combined is 1.01 years, while

the corresponding average from the BR model is 1.11 years. Thus, it is mainly in the two-

year period from mid-2011 to mid-2013 that there are sizable and maybe even statistically

significant (extrapolating from the interquartile range for the BR model) differences between

the two measures. Part of this difference is likely to be a consequence of the bias arising from

how BR defines exit times in their simulations. This bias is likely to be particularly severe in

that period as yields were very low and the yield curve had little slope.

To summarize, the three types of estimates—derived from surveys, federal funds futures,

and a shadow-rate macro-finance model—tend to be close to the corresponding exit time

estimates from the regime-switching model. This is a strong result that suggests that the

regime-switching model is able to accurately extract the expectations for the exit out of the

zero-bound state investors have priced into the yields of Treasury securities.

7 Conclusion

In this paper, it is first argued that a switch in the dynamics of the Treasury yield curve

occurred when the Fed lowered its key policy rate to its effective zero lower bound on December

16, 2008. To account for the special dynamics of the Treasury yield curve when the monetary

policy instrument is at its effective lower bound, the paper then introduces a novel regime-

switching model. In addition to the normal regime with the yield curve characterized by its

level, slope, and curvature, the model contains another regime referred to as the zero-bound

state in which the instantaneous risk-free rate is constant at zero. A unique feature of the

model is that the probability of returning to the normal state is allowed to be time-varying

under both the objective and risk-neutral probability measures.

In the empirical analysis, the model is put through a comprehensive set of performance

tests. Its fit, projections of future short rates, and match to measures of yield volatility are

found to be competitive relative to a set of models, including two established Gaussian models

and a more recent shadow-rate model.

The highlight of the model is its estimates of the time-varying probability distribution of

the economy leaving the zero-bound state. In a separate analysis, these estimates are studied

in detail and compared to the exit times implied by surveys of primary dealers, rates of federal
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funds futures, and a shadow-rate macro-finance model. The model’s exit time estimates align

well with these other sources of information about the likelihood of an end to the Fed’s

zero interest rate policy. This demonstrates the model’s ability to extract the expectations

investors have priced into the Treasury yield curve in the zero-bound state.

Encouraged by these results, the model is envisioned to be a useful tool in assessing

investors’ expectations for future monetary policy in other countries where the conventional

policy rate is stuck at, or near, its effective lower bound, notably Japan and the U.K. come

to mind.

Finally, it is prudent to note that the model does not impose a zero lower boundary for

the model-implied bond yields. However, this could be achieved by incorporating stochastic

volatility into the three state variables in the normal state along the lines of Christensen et

al. (2014). Such refinements are left for future research.
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Appendix A: The Bond Price Formula in the Zero-Bound State

The formulas needed to calculate zero-coupon bond prices in the zero-bound state are provided in the

following proposition.39

Proposition 1:

In the zero-bound state, zero-coupon bond prices are calculated as follows:

PZ(t, T ) = EQ
t

[
e−

∫
T
t

ηudu
]
+

∫ T

t

EQ
t

[
ηse

−
∫
s
t

ηudueA
N (s,T )+BN

L (s,T )Ls+BN
S (s,T )Ss+BN

C (s,T )Cs

]
ds,
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−2(eφη(T−t) − 1)

2φη + (φη + κQ
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, (12)
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ηudueA
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39The calculations leading to the formulas in Proposition 1 are available upon request.

38



Finally, the boundary values in the formulas above are:

A
N
(s, T ) = σ2
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6
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Throughout it holds that
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√
(κQ

η )2 + 2σ2
η .

In case of a fixed lower bound, rmin, different from zero, the bond price formula in the lower-bound state

becomes:

PZ(t, T ) = e−rmin(T−t)EQ
t

[
e−

∫
T
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ηudu
]
+

∫ T

t

e−rmin(s−t)EQ
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−
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S (s,T )Ss+BN
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]
ds.

This might be relevant in order to apply the model to data from countries such as the U.K., where policy rates

have been locked at levels different from zero.

Appendix B: Extended Kalman Filter Estimation of the Regime-
Switching Model

The estimation of the regime-switching model is based on the Kalman filter, but is nonstandard for two

reasons. First, the switch to the zero-bound state in mid-December 2008 needs to be handled. Second, once

the economy is in the zero-bound state, zero-coupon bond yields are no longer affine functions of the state

variables and the added fourth state variable has non-Gaussian dynamics. For a start, though, it is important

to note that, in the normal state, the model is Gaussian and identical to the AFNS models introduced in CDR.

Hence, for that part of the sample, the Kalman filter algorithm proceeds as described in CDR and is repeated

here for convenience in order to detail the adjustments needed to filter in the zero-bound state.

For affine Gaussian models, in general, the conditional mean vector and the conditional covariance matrix

are

EP [XT |Ft] = (I − exp(−KP∆t))θP + exp(−KP∆t)Xt,

V P [XT |Ft] =

∫ ∆t

0

e−KP sΣΣ′e−(KP )′sds,

where ∆t = T − t. Conditional moments of discrete observations are computed and the state transition

equation is obtained as

Xt = (I − exp(−KP∆t))θP + exp(−KP∆t)Xt−1 + ξt,

where ∆t is the time between observations. The measurement equation is (see equation (2))

yt = A+BXt + εt.
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The assumed error structure is

(
ξt

εt

)

∼ N

[(
0

0

)

,

(
Q 0

0 H

)]

,

where the matrix H is assumed to be diagonal, while the matrix Q has the following structure40

Q =

∫ ∆t

0

e−KP sΣΣ′e−(KP )′sds.

In addition, the transition and measurement errors are assumed to be orthogonal to the initial state.

Now consider Kalman filtering, which is used to evaluate the likelihood function.

Due to the assumed stationarity, the filter is initialized at the unconditional mean and variance of the

state variables under the P -measure: X0 = θP and Σ0 =
∫∞

0
e−KP sΣΣ′e−(KP )′sds.

Denote the information available at time t by Yt = (y1, y2, . . . , yt), and denote model parameters by ψ.

Consider period t − 1 and suppose that the state update Xt−1 and its mean square error matrix Σt−1 have

been obtained. The prediction step is

Xt|t−1 = EP [Xt|Yt−1] = ΦX,0
t (ψ) + ΦX,1

t (ψ)Xt−1,

Σt|t−1 = ΦX,1
t (ψ)Σt−1Φ

X,1
t (ψ)′ +Qt(ψ),

where ΦX,0
t = (I − exp(−KP∆t))θP , ΦX,1

t = exp(−KP∆t), and Qt =
∫∆t

0
e−KP sΣΣ′e−(KP )′sds, while ∆t is

the time between observations.

In the time-t update step, Xt|t−1 is improved by using the additional information contained in Yt:

Xt = E[Xt|Yt] = Xt|t−1 + Σt|t−1B(ψ)′F−1
t vt,

Σt = Σt|t−1 − Σt|t−1B(ψ)′F−1
t B(ψ)Σt|t−1,

where

vt = yt −E[yt|Yt−1] = yt − A(ψ)−B(ψ)Xt|t−1,

Ft = cov(vt) = B(ψ)Σt|t−1B(ψ)′ +H(ψ),

H(ψ) = diag(σ2
ε(τ1), . . . , σ

2
ε(τN)).

At this point, the Kalman filter has delivered all ingredients needed to evaluate the Gaussian log likelihood,

the prediction-error decomposition of which is

log l(y1, . . . , yT ;ψ) =
T∑

t=1

(
− N

2
log(2π)− 1

2
log |Ft| −

1

2
v′tF

−1
t vt

)
,

where N is the number of observed yields. Now, the likelihood is numerically maximized with respect to

ψ using the Nelder-Mead simplex algorithm. Upon convergence, the standard errors are obtained from the

estimated covariance matrix,

Ω̂(ψ̂) =
1

T

[ 1
T

T∑

t=1

∂ log lt(ψ̂)

∂ψ

∂ log lt(ψ̂)

∂ψ

′]−1

,

where ψ̂ denotes the estimated model parameters.

40Throughout, conditional and unconditional covariance matrices are calculated using the analytical solutions
provided in Fisher and Gilles (1996).
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The introduction of stochastic volatility in the zero-bound state implies that the factors are no longer

simply Gaussian for that part of the sample. The way to proceed is to simply approximate the true probability

distribution of the state variables with the first and second moments and use the Kalman filter algorithm as

if the state variables were Gaussian.41 Thus, the state equation continues to be given by

Xt = (I − exp(−KP∆t))θP + exp(−KP∆t)Xt−1 + ξt, ξt ∼ N(0, Vt−1),

while the conditional covariance matrix for affine diffusion processes with stochastic volatility is given by

V P [XT |Xt] =

∫ T

t

exp(−KP (T − s))ΣD(EP [Xs|Xt])D(EP [Xs|Xt])
′Σ′ exp(−(KP )′(T − s))ds.

In handling the switch date to the zero-bound state, I follow the approach of Christensen et al. (2010).

For the first 24 years of the sample when the economy is in the normal state, e−KP ∆t, (1− e−KP ∆t)θP , and

the conditional covariance matrix

V P [XT |Ft] =

∫ ∆t

0

e−KP sΣΣ′e−(KP )′sds

are calculated using the upper 3× 3 part of KP and the upper 3× 1 part of θP . Once the economy enters the

zero-bound state on December 16, 2008, the θP , KP , and Σ used in the Kalman filter algorithm represent the

full four-dimensional dynamics of the state variables and the conditional covariance matrix is calculated as42

∫ t+τ

t

e−KP (t+τ−s)ΣD(EP [Xs|Xt])D(EP [Xs|Xt])
′Σ′e−(KP )′(t+τ−s)ds.

Furthermore, in the zero-bound state, the extended Kalman filter is needed because the zero-coupon bond

yields are no longer affine functions of the state variables. Instead, the measurement equation takes the general

form

yZt = z(Xt;ψ) + εZt .

In the extended Kalman filter, this equation is linearized using a first-order Taylor expansion around the best

guess of Xt in the prediction step of the Kalman filter algorithm. Thus, in the notation introduced above, this

best guess is denoted Xt|t−1 and the approximation is given by

z(Xt;ψ) ≈ z(Xt|t−1;ψ) +
∂z(Xt;ψ)

∂Xt

∣∣∣
Xt=Xt|t−1

(Xt −Xt|t−1).

Thus, by defining

At(ψ) ≡ z(Xt|t−1;ψ)−
∂z(Xt;ψ)

∂Xt

∣∣∣
Xt=Xt|t−1

Xt|t−1 and Bt(ψ) ≡
∂z(Xt;ψ)

∂Xt

∣∣∣
Xt=Xt|t−1

,

the measurement equation can be given on an affine form as

yZt = At(ψ) +Bt(ψ)Xt + εZt

and the steps in the algorithm proceed as previously described.

Figure 13 provides evidence that the bond yield function in the zero-bound state is close to linear locally

even in the dimension of ηt. This suggests that the approximation error of the extended Kalman filter is likely

to be small.

41A few notable examples of papers that follow this approach include Duffee (1999), Driessen (2005), and
Feldhütter and Lando (2008).

42Once the economy exits the zero-bound state, the change in the transition equation is simply reversed.
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Figure 13: Linearity of Yield Function in the Zero-Bound State.

Illustration of the combinations of (Lt, ηt), (St, ηt), and (Ct, ηt) that deliver a perfect fit to the six-month,

two-year, and ten-year Treasury yields implied by the regime-switching model as of December 27, 2013.

Finally, in the empirical implementation, the measurement error distribution is assumed to switch as well.

Hence, both an HN and HZ matrix, each with eight σ2
ε(τi) parameters, are estimated to account for the

difference in the size of the fitted errors across the two regimes.
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(b) Slope.

1985 1990 1995 2000 2005 2010 2015

−
0.

12
−

0.
08

−
0.

04
0.

00
0.

04

E
st

im
at

ed
 fa

ct
or

 v
al

ue

Daily data    
Weekly data   
Monthly data 

(c) Curvature.
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(d) ηt process.

Figure 14: Estimated Factor Paths.

Illustration of the state variables from the regime-switching model estimated using data observed at daily,

weekly, and monthly frequency, respectively. The daily sample covers the period January 2, 1985, to December

27, 2013; the weekly sample covers the period from January 4, 1985, to December 27, 2013; and the monthly

sample covers end-of-month data from January 1985 to December 2013.

Appendix C: Regime-Switching Model Results with Daily and
Monthly Data

In this appendix, the sensitivity of the estimation results for the regime-switching model to the frequency

of the yield data is analyzed. To do so, the model is estimated using the same yield data, but observed daily

and monthly instead of the weekly frequency considered in the main part of the paper.

For a start, Figure 14 compares the estimated state variables from all three model estimations. The
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Normal state
Maturity

Daily data Weekly data Monthly data
in months

Mean RMSE Mean RMSE Mean RMSE

3 -16.48 32.24 -17.23 32.95 -16.72 33.37
6 -5.67 15.41 -6.17 15.72 -6.19 15.71
12 -0.03 0.19 0.00 0.00 0.00 0.00
24 1.38 2.44 1.48 2.50 1.54 2.51
36 0.00 0.04 0.00 0.00 0.00 0.00
60 -1.90 2.82 -1.98 2.93 -2.01 2.85
84 0.06 1.58 0.21 2.03 0.37 1.83
120 7.28 9.84 8.26 10.60 9.17 11.23

All yields -1.92 13.18 -1.93 13.53 -1.73 13.71

Zero-bound state
Maturity

Daily data Weekly data Monthly data
in months

Mean RMSE Mean RMSE Mean RMSE

3 1.32 3.78 1.05 3.47 1.26 3.38
6 0.31 2.50 0.01 2.25 0.59 2.56
12 0.69 2.16 0.48 1.92 0.63 2.12
24 -1.39 1.76 -1.08 2.29 -0.91 2.18
36 0.06 0.36 0.53 1.94 0.88 2.02
60 0.05 0.31 0.15 0.98 0.38 1.15
84 0.03 0.25 -0.38 1.49 -0.25 1.53
120 1.81 4.87 1.71 4.72 2.24 5.30

All yields 0.36 2.56 0.31 2.63 0.60 2.81

Table 9: Summary Statistics of Fitted Errors at Different Data Frequencies.

The table reports the mean fitted errors and the root-mean-square fitted errors (RMSEs) from the regime-

switching model estimated with daily, weekly, and monthly data, respectively. In each case, the summary

statistics are calculated for two periods: (1) the normal state period which is the part of the sample before

December 16, 2008, and (2) the zero-bound state period which starts on December 16, 2008, and continues to

the end of the sample. All numbers are measured in basis points.

level, slope, and curvature factors are practically indistinguishable and hence entirely insensitive to the data

frequency, but even for the ηt process the deviations are relatively small.

Table 9 reports the summary statistics of the fitted errors of the model estimations based on daily, weekly,

and monthly data, respectively. In light of the closeness of the estimated state variables, it is not surprising

that the fitted errors are very similar across all maturities in both the normal and the zero-bound state.

Finally, Tables 10 and 11 report the estimated model parameters for the sample of daily and monthly

data, respectively. Comparing these to the estimated parameters reported in Table 4 that are based on the

weekly sample, the main change is in how the ηt process affects the slope and curvature factor. With daily

data, ηt has no significant effect on the slope factor and its effect on the curvature factor has switched sign,

while monthly data generate the same structure obtained with the weekly data. Beyond that the dynamic

properties of all four state variables are qualitatively similar across all three estimations.

To conclude, the presented evidence show that the estimation results are robust to variation in the data

frequency.

Appendix D: Yield Forecast Performance in the Normal State

Predictive accuracy has been a key metric to evaluate the adequacy of yield-curve models; recent examples

include Mönch (2008), CDR, and Chen and Niu (2014). In this appendix, the forecast performance of the
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KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 θP Σ

KP
1,· 0.1407 0.1436 -0.0467 0 0.0952 σL 0.0061

(0.0697) (0.0652) (0.0378) (0.0416) (0.0000)
KP

2,· 0.1793 0.2735 -0.2288 -0.0041 -0.0599 σS 0.0094
(0.1363) (0.1294) (0.0665) (0.0123) (0.0455) (0.0001)

KP
3,· 0 0 0.3757 0.0881 -0.0335 σC 0.0268

(0.1662) (0.0683) (0.0152) (0.0001)
KP

4,· 0 0 0 0.6083 0.5304 ση 0.2980
(0.1369) (0.0231) (0.0059)

Table 10: Estimated Parameters in the Daily Regime-Switching Model.

The estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix for the regime-switching model

based on daily data are shown. The estimated value of λ is 0.4559 (0.0006), while κQ
η = 0.0291 (0.0275) and

θQη = 11.81 (1.0832). The numbers in parentheses are the estimated parameter standard deviations. The

maximum log likelihood value is 355,649.0.

KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 θP Σ

KP
1,· 0.3507 0.1064 -0.1502 0 0.0713 σL 0.0078

(0.1168) (0.1007) (0.0597) (0.0055) (0.0003)
KP

2,· 0.2883 0.5300 -0.5734 0.0587 -0.0333 σS 0.0139
(0.3091) (0.2260) (0.1815) (0.0173) (0.0119) (0.0007)

KP
3,· 0 0 0.8380 -0.0768 -0.0200 σC 0.0279

(0.2378) (0.0364) (0.0067) (0.0011)
KP

4,· 0 0 0 0.2216 0.8594 ση 0.6171
(0.2739) (0.1988) (0.0997)

Table 11: Estimated Parameters in the Monthly Regime-Switching Model.

The estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix for the regime-switching model

based on monthly data are shown. The estimated value of λ is 0.4794 (0.0062), while κQ
η = 0.0346 (0.0082)

and θQη = 13.21 (2.5617). The numbers in parentheses are the estimated parameter standard deviations. The

maximum log likelihood value is 15,362.54.

regime-switching model is analyzed and compared to that of a set of competing models. Ideally, the ability to

forecast yields should be evaluated in both the normal state and the zero-bound state. Unfortunately, the short

sample covering the zero-bound state prevents a statistically sound forecast evaluation for that period. First,

a minimum period of data is required to accurately estimate the dynamic parameters of ηt in the zero-bound

state. Second, an additional time span is required between the forecast generation and the realization of the

associated forecast errors. For these reasons the forecast exercise is limited to the normal period.

In the normal state, the dynamics of the preferred specification of the regime-switching model are identical

to an AFNS model with the following specification of the objective P -dynamics:





dLt

dSt

dCt



 =





κP
11 κP

12 κP
13

κP
21 κP

22 κP
23

0 0 κP
33













θP1

θP2

θP3



−





Lt

St

Ct







 dt+ Σ





dWL,P
t

dW S,P
t

dWC,P
t



 ,

where Σ is a diagonal matrix.

In addition to the CR and B-CR models, the DNSS model is included in the analysis. Its yield curve fitted
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to the data is given by equation (5), while its factor dynamics are assumed to follow a VAR(1) specification:43





Lt − µL

St − µS

C1
t − µC1

C2
t − µC2




=





a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44









Lt−1 − µL

St−1 − µS

C1
t−1 − µC1

C2
t−1 − µC2




+





ηt(L)

ηt(S)

ηt(C
1)

ηt(C
2)




,

where the error terms ηt(L), ηt(S), ηt(C
1), and ηt(C

2) have a conditional covariance matrix given by

Q =





q211 0 0 0

0 q222 0 0

0 0 q233 0

0 0 0 q244




.

Also, three other AFNS models are included for robustness. The first is the unconstrained AFNS model

with P -dynamics given by:









dLt

dSt

dCt









=









κP
11 κP

12 κP
13

κP
21 κP

22 κP
23

κP
31 κP

32 κP
33

























θP1

θP2

θP3









−









Lt

St

Ct

















dt+









σ11 0 0

σ21 σ22 0

σ31 σ32 σ33

















dWL,P
t

dWS,P
t

dWC,P
t









.

This is the AFNS model closest to the canonical A0(3) model of Dai and Singleton (2000). The second is the

most parsimonious independent-factor AFNS model favored by CDR, while the third is the AFNS model with

diagonal Σ volatility matrix, but unrestricted KP mean-reversion matrix. This is the AFNS model closest to

the DNSS model implemented.

All models described above are re-estimated on a weekly basis over the period from January 6, 1995, to

December 12, 2008, adding one week of data at a time, in order to fully reflect the data available to market

participants in real time. The models are then used to forecast U.S. Treasury yields six months, one year,

and two years ahead on a weekly basis over the indicated period.44 The summary statistics for the forecast

errors of the three-month, two-year, five-year, and ten-year Treasury yields are reported in Table 12, which

also contains the forecast errors obtained using a random walk assumption.

First, focusing on the most flexible models (the unconstrained AFNS and DNSS models), the results

suggest that added flexibility may be advantageous for forecasting short-term yields, but provide little to no

gain relative to the random walk assumption for forecasting medium- and long-term yields, as also observed

by CDR. Thus, the good in-sample fit of the DNSS model in the normal state reported in Table 5 does not

translate into good forecast performance.

Second, as emphasized by Christensen and Rudebusch (2015b), imposing a shadow-rate interpretation is

useful for forecasting short-term yields as evidenced by the slightly better performance of the B-CR model over

the CR model for forecasting the three-month yield. However, for longer yield maturities, these two models

exhibit effectively identical forecast performance, and for good reason; in the normal state, most yields are

sufficiently far from the zero lower bound for it not to matter. Thus, the B-CR model effectively collapses to

the CR model during most of the forecast period. This is practical evidence in support of the view that the

zero-bound state did not matter for pricing and forecast performance in the normal state.

Third, the independent-factor AFNS model favored by CDR appears to be too parsimonious to fully

43To allow the DNSS model to better fit the factor dynamics, its mean-reversion matrix is specified as a
flexible 4×4 matrix unlike the diagonal form implemented by Christensen et al. (2009).

44See CDR for the details of the construction of the forecast errors.
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Six-month forecast One-year forecast Two-year forecast
Three-month yield

Mean RMSE Mean RMSE Mean RMSE

Random walk -20.19 90.14 -39.28 157.11 -75.03 248.91
Unconstrained AFNS model -18.07 98.74 -20.89 161.29 -33.96 243.03
Unrestricted KP AFNS model -16.52 85.68 -16.81 148.70 -22.42 247.46
Indep.-factor AFNS model -39.81 97.48 -59.57 163.69 -95.98 248.31
CR model -29.27 89.51 -46.30 154.19 -86.86 254.06
B-CR model -32.45 88.29 -53.80 151.39 -97.65 248.18
DNSS model -19.61 81.15 -38.49 142.34 -82.95 244.35
Regime-switching model -21.42 84.98 -32.59 144.14 -66.85 235.20

Six-month forecast One-year forecast Two-year forecast
Two-year yield

Mean RMSE Mean RMSE Mean RMSE

Random walk -20.14 86.68 -36.74 132.02 -73.05 207.26
Unconstrained AFNS model -9.20 96.17 -19.16 138.53 -50.59 197.72
Unrestricted KP AFNS model -3.54 90.00 -7.45 134.17 -24.22 196.19
Indep.-factor AFNS model -30.27 91.83 -54.07 140.53 -98.42 208.43
CR model -19.69 86.87 -39.00 130.61 -82.26 203.61
B-CR model -21.23 86.46 -42.06 130.06 -86.14 202.56
DNSS model -23.34 89.59 -45.89 135.11 -99.25 219.16
Regime-switching model -15.10 88.07 -33.06 127.68 -79.02 190.08

Six-month forecast One-year forecast Two-year forecast
Five-year yield

Mean RMSE Mean RMSE Mean RMSE

Random walk -17.02 74.15 -29.19 98.38 -58.79 137.49
Unconstrained AFNS model -16.85 78.88 -30.98 108.31 -71.20 149.04

Unrestricted KP AFNS model -10.74 79.49 -15.90 107.94 -35.76 138.59
Indep.-factor AFNS model -33.38 78.35 -54.64 108.52 -95.08 153.16
CR model -24.38 73.83 -40.66 98.68 -76.62 140.18
B-CR model -25.01 74.04 -41.98 99.06 -78.25 140.75
DNSS model -25.85 82.32 -47.72 112.99 -98.84 169.61
Regime-switching model -23.50 79.18 -42.44 105.52 -88.46 145.47

Six-month forecast One-year forecast Two-year forecast
Ten-year yield

Mean RMSE Mean RMSE Mean RMSE

Random walk -12.76 59.13 -20.87 72.80 -42.42 84.95
Unconstrained AFNS model -13.90 64.75 -29.62 90.45 -71.67 124.20
Unrestricted KP AFNS model 0.95 66.29 -4.03 89.79 -22.50 109.50
Indep.-factor AFNS model -14.07 58.95 -29.77 76.49 -61.33 99.20
CR model -7.21 56.33 -18.34 69.85 -44.06 85.19
B-CR model -7.77 56.50 -19.32 70.26 -45.30 86.25
DNSS model -22.52 70.63 -41.79 94.88 -85.98 130.93
Regime-switching model -9.43 64.66 -25.89 86.78 -66.10 116.26

Table 12: Summary Statistics for Forecast Errors of U.S. Treasury Yields.

Summary statistics of the forecast errors—mean and root-mean-square errors (RMSEs)—of the three-month,

two-year, five-year, and ten-year U.S. Treasury yields six months, one year, and two years ahead. The forecasts

are weekly from January 6, 1995, to December 12, 2008, a total of 728 forecasts for all three forecast horizons.

All measurements are expressed in basis points.

capture the yield dynamics during the 1995-2008 period. This contrasts with the findings of CDR. However,

they only performed real-time yield forecasts over the shorter period from 1997 to 2002 using a yield sample

covering the period from 1987 to 2002. To explain this, unreported results for standard likelihood ratio tests

show that the restrictions imposed on the independent-factor AFNS model relative to the unrestricted AFNS

model are strongly rejected by the data since the early 2000s.
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Finally, note that the normal-state dynamics in the regime-switching model produce yield forecasts superior

to those from the CR and B-CR models for yields with maturities up to two years at all three forecast horizons.

In those races, the regime-switching model also shows a strong performance relative to the random walk

assumption. However, it lags behind slightly at forecasting long-term yields in the normal state relative to

those three models, and more so the longer the forecast horizon.

To summarize, the comprehensive real-time forecast exercise over a 14-year period suggests that the

normal-state dynamics of the regime-switching model have been competitive in the previous normal-state

period. Also, the DNSS model lags behind the competing models in forecast performance despite its superior

in-sample fit in the normal state.

Appendix E: Policy Expectations in the Regime-Switching Model

In the normal state, the instantaneous short rate is the sum of the first two factors

rt = Lt + St.

Neglecting the minuscule chance of switching to the zero-bound state, the conditional mean of the state

variables can be calculated as

EP [Xt+τ |Ft] = (I − exp(−KP τ ))θP + exp(−KP τ )Xt,

where, in general,

KP =





κP
11 κP

12 κP
13

κP
21 κP

22 κP
23

κP
31 κP

32 κP
33



 and θP =





θP1

θP2

θP3



 .

Next, the conditional mean of the instantaneous short rate is given by

EP
t [rt+τ ] = EP

t [Lt+τ ] + EP
t [St+τ ].

In the zero-bound state, the expected instantaneous short rate τ years ahead is given by

EP
t [rt+τ ] = 0 · EP

t

[
e−

∫ t+τ
t ηudu

]
+ EP

t

[ ∫ t+τ

t

ηse
−

∫ s
t ηudurt+τds

]
=

∫ t+τ

t

EP
t

[
ηse

−
∫ s
t ηuduEP

s [rt+τ ]
]
ds.

Thus, the formula for EP
s [rt+τ ] from the normal state is needed to be able to calculate the involved

conditional expectation. This is an affine function in the state variables:

EP
s [rt+τ ] = B

PE

L (s, t+ τ )Ls +B
PE

S (s, t+ τ )Ss +B
PE

C (s, t+ τ )Cs + C
PE

(s, t+ τ ),

where

B
PE

L (s, t+ τ ) = [exp(−KP (t+ τ − s))]1,1 + [exp(−KP (t+ τ − s))]2,1,

B
PE

S (s, t+ τ ) = [exp(−KP (t+ τ − s))]1,2 + [exp(−KP (t+ τ − s))]2,2,

B
PE

C (s, t+ τ ) = [exp(−KP (t+ τ − s))]1,3 + [exp(−KP (t+ τ − s))]2,3,

C
PE

(s, t+ τ ) = [(I − exp(−KP (t+ τ − s)))θP ]1 + [(I − exp(−KP (t+ τ − s)))θP ]2.
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Now, the following expectation is of interest

EP
t

[
ηse

−
∫ s
t ηuduEP

s [rt+τ ]
]

= EP
t

[
ηse

−
∫ s
t

ηudu
(
B

PE

L (s, t+ τ )Ls +B
PE

S (s, t+ τ )Ss +B
PE

C (s, t+ τ )Cs + C
PE

(s, t+ τ )
)]
.

To calculate it, Christensen (2007) has the following result.

Proposition 2:

Let the state variables Xt be described by an affine diffusion process

dXt = [µ0 + µ1Xt]dt+ ΣD(Xt)dWt (13)

defined on a set M ⊂ Rn. Here, D :M → Rn×n is assumed to have the following diagonal structure

D(Xt) =





√
γ1 + δ11X

1
t + . . .+ δ1nX

n
t . . . 0

...
. . .

...

0 . . .
√
γn + δn1X

1
t + . . .+ δnnX

n
t



 .

To simplify notation below, γ and δ are defined as

γ =





γ1

...

γn



 and δ =





δ11 . . . δ1n
...

. . .
...

δn1 . . . δnn



 .

In addition, assume the discount process to be affine in the state variables

R(Xt) = ρ0 + ρ′1Xt.

Then the expectation

G(Xt, t, T ) = E
[
e−

∫ T
t R(Xs)dseB

′
XT +C

[
X ′

TDXT +E
′
XT + F

]∣∣∣Ft

]
,

where D ∈ Rn×n, B,E ∈ Rn, and C ∈ R, is given by

G(Xt, t, T ) = exp
(
B(t, T )′Xt +C(t, T )

)[
X ′

tD(t, T )Xt + E(t, T )′Xt + F (t, T )
]
,

if the following conditions are satisfied.

(i). There exists a unique solution Xt for the stochastic differential equation (13) for all 0 ≤ t ≤ T .

(ii). There exist functions B(t, T ), C(t, T ), D(t, T ), E(t, T ), and F (t, T ) which are the unique solutions for

the following system of first-order ordinary differential equations (ODE)45

45Here, δj denotes the jth row of the δ-matrix.
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dB(t, T )

dt
= ρ1 − (µ1)′B(t, T )− 1

2

n∑

j=1

(Σ′B(t, T )B(t, T )′Σ)j,j(δ
j)′, B(T, T ) = B,

dC(t, T )

dt
= ρ0 −B(t, T )′µ0 − 1

2

n∑

j=1

(Σ′B(t, T )B(t, T )′Σ)j,jγ
j , C(T, T ) = C,

dD(t, T )

dt
= −(µ1)′D(t, T )−D(t, T )µ1 −

n∑

j=1

(Σ′B(t, T ))j(D(t, T )Σ)·,jδ
j

−
n∑

j=1

(Σ′B(t, T ))j(D(t, T )′Σ)·,jδ
j , D(T, T ) = D,

dE(t, T )

dt
= −(µ1)′E(t, T )−D(t, T )′µ0 −D(t, T )µ0 −

n∑

j=1

(Σ′B(t, T )E(t, T )′Σ)j,j(δ
j)′

−
n∑

j=1

(Σ′D(t, T )Σ)j,j(δ
j)′ −

n∑

j=1

(Σ′B(t, T ))j(D(t, T )Σ)·,jγ
j

−
n∑

j=1

(Σ′B(t, T ))j(D(t, T )′Σ)·,jγ
j , E(T, T ) = E,

dF (t, T )

dt
= −E(t, T )′µ0 −

n∑

j=1

(Σ′D(t, T )Σ)j,jγ
j −

n∑

j=1

(Σ′B(t, T )E(t, T )′Σ)j,jγ
j , F (T, T ) = F ,

(iii). The following technical conditions are met

(a) E[|ΦT |] < ∞,

(b) E
[

(
∫ T

0 ηtη
′

tdt)
1/2

]

< ∞ for ηt =
(
ΦtB(t, T )′ +Ψt[E(t, T )′ +X ′

t(D(t, T ) +D(t, T )′)]
)
ΣD,

where Φt = e−
∫

t

0
r(Xs,s)dseB(t,T )′Xt+C(t,T )[X ′

tD(t, T )Xt + E(t, T )′Xt + F (t, T )] and

Ψt = e−
∫

t

0
r(Xs,s)dseB(t,T )′Xt+C(t,T ) for all 0 ≤ t ≤ T .

This proposition implies that it only requires the solution of a system of ODEs to calculate conditional short

rate expectations in the zero-bound state. In this paper, this is done by standard fourth-order Runge Kutta

methods.

In the zero-bound state, the joint P -dynamics of the state variables are given by





dLt

dSt

dCt

dηt




=





κP
11 κP

12 κP
13 κP

14

κP
21 κP

22 κP
23 κP

24

κP
31 κP

32 κP
33 κP

34

0 0 0 κP
44













θP1

θP2

θP3

θP4




−





Lt

St

Ct

ηt








dt

+





σL 0 0 0

0 σS 0 0

0 0 σC 0

0 0 0 ση









√
1 0 0 0

0
√
1 0 0

0 0
√
1 0

0 0 0
√
ηt









dWL,P
t

dW S,P
t

dWC,P
t

dW η,P
t




.

Thus, the vectors and matrices describing the P -dynamics of the state variables and appearing in the
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system of ODEs are given by:

ρ0 = 0, ρ1 =





0

0

0

1




, µ0 =





κP
11 κP

12 κP
13 κP

14

κP
21 κP

22 κP
23 κP

24

κP
31 κP

32 κP
33 κP

34

0 0 0 κP
44









θP1

θP2

θP3

θP4




, µ1 = −





κP
11 κP

12 κP
13 κP

14

κP
21 κP

22 κP
23 κP

24

κP
31 κP

32 κP
33 κP

34

0 0 0 κP
44




,

Σ =





σL 0 0 0

0 σS 0 0

0 0 σC 0

0 0 0 ση




, γ =





1

1

1

0




, and δ =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1




.

Finally, the boundary conditions in the system of ODEs in Proposition 2 are given by:

B =





0

0

0

0




, C = 0, D =





0 0 0 1
2
B

PE

L (s, t+ τ )

0 0 0 1
2
B

PE

S (s, t+ τ )

0 0 0 1
2
B

PE

C (s, t+ τ )
1
2
B

PE

L (s, t+ τ ) 1
2
B

PE

S (s, t+ τ ) 1
2
B

PE

C (s, t+ τ ) 0




,

E =





0

0

0

C
PE

(s, t+ τ )




, F = 0.

Next, denote the solution to the system of ODEs in Proposition 2 by BPE(t, s, t + τ ), CPE(t, s, t + τ ),

DPE(t, s, t+ τ ), EPE(t, s, t+ τ ), and FPE(t, s, t+ τ ), and it follows that

EP
t

[
ηse

−
∫
s
t ηuduEP

s [rt+τ ]
]

= EP
t

[
ηse

−
∫ s
t

ηudu
(
B

PE

L (s, t+ τ )Ls +B
PE

S (s, t+ τ )Ss +B
PE

C (s, t+ τ )Cs + C
PE

(s, t+ τ )
)]

= exp
(
BPE(t, s, t+ τ )′Xt + CPE(t, s, t+ τ )

)[
X ′

tD
PE(t, s, t+ τ )Xt + EPE(t, s, t+ τ )′Xt + FPE(t, s, t+ τ )

]
.

Thus, the expected instantaneous short rate in the zero-bound state is given by

EP
t [rt+τ ] =

∫ t+τ

t

EP
t

[
ηse

−
∫ s
t

ηuduEP
s [rt+τ ]

]
ds

=

∫ t+τ

t

exp
(
BPE(t, s, t+ τ )′Xt + CPE(t, s, t+ τ )

)

×
[
X ′

tD
PE(t, s, t+ τ )Xt + EPE(t, s, t+ τ )′Xt + FPE(t, s, t+ τ )

]
ds.

Appendix F: Term Premiums in the Regime-Switching Model

In general, the term premium part of the yield on a zero-coupon bond with maturity in τ years is defined

as

TPt(τ ) = yt(τ )−
1

τ

∫ t+τ

t

EP
t [rs]ds.

In the normal state, the term premium takes its usual form

TPN
t (τ ) = yNt (τ )− 1

τ

∫ t+τ

t

EP
t [rs]ds,
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where the instantaneous short rate is the sum of the first two factors

rt = Lt + St.

In the zero-bound state, the formula for the term premium is given by

TPZ
t (τ ) = yZt (τ )−

1

τ

(
0 · EP

t [e−
∫ t+τ
t ηudu] + EP

t [

∫ t+τ

t

ηse
−

∫ s
t ηudu

∫ t+τ

s

rududs]
)

= yZt (τ )−
1

τ

∫ t+τ

t

EP
t

[
ηse

−
∫
s
t ηuduEP

s [

∫ t+τ

s

rudu]
]
ds.

Thus, the formula for EP
s [
∫ t+τ

s
rudu] from the normal state is needed to be able to calculate the involved

conditional expectation efficiently.

Define

Y0,t =

∫ t

0

rudu =

∫ t

0

(Lu + Su)du ⇒ dY0,t = (Lt + St)dt.

Adding the Y0,t-process to the dynamics of the state variables in the normal state, leaves an augmented system

of stochastic differential equations given by





dLt

dSt

dCt

dY0,t




=





κP
11 κP

12 κP
13 0

κP
21 κP

22 κP
23 0

κP
31 κP

32 κP
33 0

0 0 0 0









θP1

θP2

θP3

0




−





κP
11 κP

12 κP
13 0

κP
21 κP

22 κP
23 0

κP
31 κP

32 κP
33 0

−1 −1 0 0









Lt

St

Ct

Y0,t




dt

+





σL 0 0 0

0 σS 0 0

0 0 σC 0

0 0 0 0









dWL,P
t

dW S,P
t

dWC,P
t

dW Y,P
t




,

where Z0,t = (Lt, St, Ct, Y0,t) represents the augmented state vector.

First, define vectors and matrices related to the model dynamics as follows

ρ0 = 0, ρ1 =





0

0

0

0




, µ0 =





κP
11 κP

12 κP
13 0

κP
21 κP

22 κP
23 0

κP
31 κP

32 κP
33 0

0 0 0 0









θP1

θP2

θP3

0




, µ1 = −





κP
11 κP

12 κP
13 0

κP
21 κP

22 κP
23 0

κP
31 κP

32 κP
33 0

−1 −1 0 0




,

Σ =





σL 0 0 0

0 σS 0 0

0 0 σC 0

0 0 0 0




, γ =





1

1

1

1




, and δ =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




.

Second, define the boundary conditions as follows

B =





0

0

0

0




, C = 0, D = 0, E =





0

0

0

1




F = 0.
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Now, Proposition 2 implies that

EP
0 [

∫ t

0

rudu] = EP
0 [Y0,t]

= EP
0

[
e−

∫ t
0
(ρ0+ρ1Z0,s)dseB

′
Z0,t+C

[
Z′

0,tDZ0,t + E
′
Z0,t + F

]]

= exp
(
B(0, t)′Z0,0 +C(0, t)

)[
Z′

0,0D(0, t)Z0,0 +E(0, t)′Z0,0 + F (0, t)
]
,

where B(0, t), C(0, t), D(0, t), E(0, t), and F (0, t) are the unique solutions to the system of ODEs provided in

the proposition.

To summarize this intermediate step, the requisite conditional expectation is an affine function in the state

variables:46

EP
s [

∫ t+τ

s

rudu] = B
TP

L (s, t+ τ )Ls +B
TP

S (s, t+ τ )Ss +B
TP

C (s, t+ τ )Cs + C
TP

(s, t+ τ ),

where

B
TP

L (s, t+ τ ) = E(0, t+ τ − s)1,

B
TP

S (s, t+ τ ) = E(0, t+ τ − s)2,

B
TP

C (s, t+ τ ) = E(0, t+ τ − s)3,

C
TP

(s, t+ τ ) = F (0, t+ τ − s).

Now, the following expectation is of interest

EP
t

[
ηse

−
∫ s
t

ηuduEP
s [

∫ t+τ

s

rudu]
]

= EP
t

[
ηse

−
∫ s
t ηudu

(
B

TP

L (s, t+ τ )Ls +B
TP

S (s, t+ τ )Ss +B
TP

C (s, t+ τ )Cs + C
TP

(s, t+ τ )
)]
,

where Proposition 2 can again be applied.

Assuming the unrestricted specification of the joint P -dynamics of the state variables in the zero-bound

state, the vectors and matrices describing the P -dynamics of the state variables and appearing in the system

of ODEs in Proposition 2 are given by:

ρ0 = 0, ρ1 =





0

0

0

1




, µ0 =





κP
11 κP

12 κP
13 κP

14

κP
21 κP

22 κP
23 κP

24

κP
31 κP

32 κP
33 κP

34

0 0 0 κP
44









θP1

θP2

θP3

θP4




, µ1 = −





κP
11 κP

12 κP
13 κP

14

κP
21 κP

22 κP
23 κP

24

κP
31 κP

32 κP
33 κP

34

0 0 0 κP
44




,

Σ =





σL 0 0 0

0 σS 0 0

0 0 σC 0

0 0 0 ση




, γ =





1

1

1

0




, and δ =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1




.

Finally, the boundary conditions are given by:

B =





0

0

0

0




, C = 0, D =





0 0 0 1
2
B

TP

L (s, t+ τ )

0 0 0 1
2
B

TP

S (s, t+ τ )

0 0 0 1
2
B

TP

C (s, t+ τ )
1
2
B

TP

L (s, t+ τ ) 1
2
B

TP

S (s, t+ τ ) 1
2
B

TP

C (s, t+ τ ) 0




,

46Here, B(0, t) = 0, C(0, t) = 0, and D(0, t) = 0 for all t > 0. In addition, Yt,t = 0 for any t.
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E =





0

0

0

C
TP

(s, t+ τ )




, F = 0.

Now, denote the solution to the system of ODEs in Proposition 2 by BTP (t, s, t + τ ), CTP (t, s, t + τ ),

DTP (t, s, t+ τ ), ETP (t, s, t+ τ ), and F TP (t, s, t+ τ ), and it follows that

EP
t

[
ηse

−
∫
s
t

ηuduEP
s [

∫ t+τ

s

rudu]
]

= EP
t

[
ηse

−
∫ s
t ηudu

(
B

TP

L (s, t+ τ )Ls +B
TP

S (s, t+ τ )Ss +B
TP

C (s, t+ τ )Cs + C
TP

(s, t+ τ )
)]

= exp
(
BTP (t, s, t+ τ )′Xt + CTP (t, s, t+ τ )

)[
X ′

tD
TP (t, s, t+ τ )Xt + ETP (t, s, t+ τ )′Xt + F TP (t, s, t+ τ )

]
.

Thus, the term premium in the zero-bound state is calculated as

TPZ
t (τ ) = yZt (τ )−

1

τ

∫ t+τ

t

EP
t

[
ηse

−
∫ s
t ηuduEP

s [

∫ t+τ

s

rudu]
]
ds

= yZt (τ )−
1

τ

∫ t+τ

t

exp
(
BTP (t, s, t+ τ )′Xt + CTP (t, s, t+ τ )

)

×
[
X ′

tD
TP (t, s, t+ τ )Xt + ETP (t, s, t+ τ )′Xt + F TP (t, s, t+ τ )

]
ds.

Appendix G: Comparison to AffineModels with Stochastic Volatil-
ity

In this appendix, alternative affine models with stochastic volatility are considered. Specifically, four

admissible combinations of allowing for spanned stochastic volatility generated by zero, one, two, or all three

factors in the AFNS model are considered following the work of Christensen et al. (2014).

These models are also referred to as AFNS models because they share the key properties of the standard

Gaussian AFNS model. First, the three state variables represent a level, slope, and curvature factor structure,

respectively. Second, these three state variables have joint dynamics under the risk-neutral Q probability

measure used for pricing closely matching the AFNS model introduced in CDR. Third, the short rate is

defined as in equation (1). To keep the notation simple, AFNSi denotes a model as defined above with i

referring to the number of factors generating stochastic volatility, while letters—L, S, and C—are used to

indicate the source(s) of stochastic volatility in the model.

To exemplify, the AFNS1-L model where the level factor is allowed to generate stochastic volatility has

dynamics under the risk-neutral Q probability measure given by





dLt

dSt

dCt



 =





10−7 0 0

0 λ −λ
0 0 λ













θQ1

0

0



−





Lt

St

Ct







 dt

+





σ11 0 0

0 σ22 0

0 0 σ33









√
Lt 0 0

0
√
1 0

0 0
√
1









dWL,Q
t

dW S,Q
t

dWC,Q
t



 .

For each AFNSi model class, a careful model selection process is performed similar to the one described in

Section 4 to find a preferred specification. The models are then evaluated based on their fit to the yield data

and their model-implied stochastic yield volatility. The purpose is to demonstrate that the regime-switching
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Normal state
Maturity

AFNS0 AFNS1-L AFNS2-SC AFNS3 RS model
in months

Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

3 -16.75 32.71 -12.32 30.49 -16.96 31.45 -15.45 28.63 -17.23 32.95
6 -5.92 15.64 -3.47 14.73 -6.16 14.99 -4.73 12.82 -6.17 15.72
12 0.00 0.00 0.00 0.00 -0.28 2.31 1.24 6.84 0.00 0.00
24 1.39 2.51 0.30 1.76 1.16 2.44 3.16 10.93 1.48 2.50
36 0.00 0.00 0.00 0.00 -0.12 1.51 2.11 9.22 0.00 0.00
60 -1.86 3.02 -0.01 1.49 -1.84 2.96 -0.81 2.67 -1.98 2.93
84 0.17 2.56 0.14 0.56 0.21 2.48 -1.69 5.82 0.21 2.03
120 7.59 10.57 -1.20 5.14 7.44 10.14 -0.09 11.51 8.26 10.60

All yields -1.92 13.45 -2.07 12.14 -2.07 12.97 -2.03 13.27 -1.93 13.53

Zero-bound state
Maturity

AFNS0 AFNS1-L AFNS2-SC AFNS3 RS model
in months

Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

3 -16.76 21.24 -20.02 23.71 -15.13 20.78 -2.50 6.60 1.05 3.47
6 -9.48 11.94 -11.13 13.11 -8.36 12.06 -4.33 8.27 0.01 2.25
12 0.00 0.00 0.00 0.00 0.45 2.84 -7.38 13.40 0.48 1.92
24 0.81 1.74 1.17 1.66 0.75 1.75 -16.11 19.69 -1.08 2.29
36 0.00 0.00 0.00 0.00 -0.08 0.50 -15.29 17.46 0.53 1.94
60 -1.19 3.11 -0.81 1.83 -1.03 2.95 -4.04 6.14 0.15 0.98
84 0.14 3.56 0.48 1.10 0.51 3.70 6.27 11.73 -0.38 1.49
120 4.48 11.08 -0.68 6.12 5.07 11.04 9.89 19.10 1.71 4.72

All yields -2.75 9.63 -3.87 9.87 -2.23 9.57 -4.19 13.80 0.31 2.63

Table 13: Summary Statistics of Fitted Errors.

The mean fitted errors and the root-mean-square fitted errors (RMSEs) from the four AFNSi models with

and without stochastic volatility and the regime-switching (RS) model are shown. In each case, the summary

statistics are calculated for two periods: (1) the normal state period from January 4, 1985, to December 12,

2008, and (2) the zero-bound state period from December 19, 2008, to December 27, 2013. The full sample

used in each model estimation is weekly covering the period from January 4, 1985, to December 27, 2013. All

numbers are measured in basis points.

model is competitive relative to alternative AFNSi models with spanned stochastic volatility.

First, Table 13 compares the models in terms of their fit to the yield data in the normal state and the

zero-bound state. Similar to what Christensen et al. (2014) report, incorporating stochastic volatility into

affine models does provide a slight improvement in model fit in normal times. However, in the zero-bound

state, these models perform no better than the standard Gaussian AFNS0 model. Particularly noteworthy is

the performance of the AFNS3 model. In this model, all three factors are square-root processes and for that

reason it respects the zero lower bound. However, in the zero-bound state where one could have expected this

model to excel, this turns out not to be the case. In fact, it provides the poorest fit in this state of all the

models considered in the paper.

Figure 15 shows the one-month conditional volatility of four Treasury yields in the zero-bound state implied

by the regime-switching model and the four AFNSi models with and without stochastic volatility. For obvious

reasons the AFNS0 model produces constant yield volatility for each maturity. The AFNS1-L model generates

very similar variation in the yield volatility across all maturities as this variation is only allowed to come

from the level factor. The AFNS2-SC model generates notable variation in the yield volatility at short- to

medium-term maturities where the slope and curvature factors have their largest loadings, while its volatility

for long-term yields is much more stable. The AFNS3 model can replicate the compression in yield volatility

for short-term yields at the same time as it generates significant variation in the volatilities of long-term bond
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Maturity AFNS0 AFNS1-L AFNS2-SC AFNS3 RS model
in months Mean RMSD Mean RMSD Mean RMSD Mean RMSD Mean RMSD

3 -28.31 28.40 -41.22 41.56 -23.10 23.63 2.41 3.02 1.70 2.62
6 -28.22 28.32 -40.61 40.92 -22.79 23.35 1.31 2.26 -1.04 2.57
12 -25.02 25.45 -36.63 37.00 -18.78 19.96 2.78 4.53 -1.80 4.04
24 -20.20 21.72 -30.32 30.82 -12.27 15.78 5.29 7.68 -3.02 6.61
36 -15.71 18.31 -24.32 25.21 -6.87 12.98 7.56 10.00 -2.73 8.18
60 -8.37 13.04 -14.85 16.82 0.32 11.12 10.13 12.94 -0.03 9.20
84 -2.95 10.33 -8.55 12.37 4.54 11.59 11.45 14.90 3.09 10.01
120 2.09 9.93 -3.16 10.42 7.70 12.73 12.71 16.63 6.15 11.33

Table 14: Summary Statistics of Distance to Realized Yield Volatilities.

The mean deviations and the root-mean-square deviations (RMSDs) between, on one side, the conditional

one-month yield volatilities implied by the four AFNS(i) models with and without stochastic volatility and

the regime-switching (RS) model and, on the other side, the corresponding realized yield volatility measure

calculated from daily yield changes. In each case, the summary statistics are calculated for the period from

December 19, 2008, to December 27, 2013. All numbers are measured in basis points.

yields. Unfortunately, as for accuracy, the latter tend to be well below the realized volatility of long-term

yields. Finally, it is clear that the regime-switching model produces time-varying yield volatilities that closely

match the realized yield volatilities across all maturities.

To assess the quality of the yield volatility projections, Table 14 reports the mean deviations and the

RMSDs between the one-month yield volatilities from the models and the realized yield volatility measures.

The results show that the regime-switching model is indeed competitive at matching the compression in

volatility in the short end of the yield curve relative to the AFNSi models with stochastic volatility since late

2008. Unreported results show that using a 91-day window leads to similar conclusions.
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(a) Three-month yield.
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(b) Two-year yield.
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(c) Five-year yield.
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(d) Ten-year yield.

Figure 15: One-Month Conditional Yield Volatilities.

Illustration of the one-month conditional volatility of the three-month, two-year, five-year, and ten-year Trea-

sury yields implied by the regime-switching model using its zero-bound state P -dynamics as well as those

implied by four AFNS(i) models with and without stochastic volatility. Also shown are the subsequent 31-day

realized volatility series calculated based on daily data as described in the main text. The period shown covers

the zero-bound state from December 19, 2008, to December 27, 2013, while the full sample used in model

estimation covers the period from January 4, 1985, to December 27, 2013.
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