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Abstract 
 

An important input to monetary policymaking is estimating the current level of inflation. This 

paper examines empirically whether the measurement of trend inflation can be improved by 

using disaggregated data on sectoral inflation to construct indexes akin to core inflation but with 

a time-varying distributed lags of weights, where the sectoral weight depends on the time-

varying volatility and persistence of the sectoral inflation series and on the comovement among 

sectors. The model is estimated using U.S. data on 17 components of the personal consumption 

expenditure inflation index. The modeling framework is a dynamic factor model with time-

varying coefficients and stochastic volatility as in del Negro and Otrok (2008); this is the 

multivariate extension of the univariate unobserved components-stochastic volatility model of 

trend inflation in Stock and Watson (2007). Our main empirical results are (i) the resulting 

multivariate estimate of trend inflation is similar to the univariate estimate of trend inflation 

computed using core PCE inflation (excluding food and energy) in the first half of the sample, 

but introduces food in the second half of the sample; (ii) the model-based uncertainty about trend 

headline inflation is substantially reduced by using the disaggregated series in a multivariate 

model; (iii) the multivariate and univariate trends constructed using core measures of inflation 

forecast average inflation over the 1-3 year horizon more accurately than a variety of other 

benchmark inflation measures, although there is considerable sampling uncertainty in these 

forecast comparisons. 

 
JEL codes: C33, E31 
 
Key words: inflation forecasts, non-Gaussian state space, time-varying parameters, dissagregated 
prices 
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1. Introduction 

 

A classic yet still-important problem of measuring the rate of price inflation is filtering 

out the noise in inflation data to provide an estimate of the “trend” value of inflation. Following 

Bryan and Cecchetti (1994), we think of trend inflation as the long-term estimate of the inflation 

rate based on data on prices through the present. Having a good estimate of trend inflation is an 

important input to monetary policy and to a myriad of private decisions. For example, as this is 

written, a pressing question in the United States and the Eurozone is how far trend inflation is 

below the 2% target. Because there are multiple sources of noise in inflation data and because 

the nature of the noise can change over time, the task of estimating trend inflation is both 

difficult and of ongoing relevance.  

Producing an accurate estimate of trend inflation requires distinguishing persistent 

variations in inflation from those that are unlikely to persist into the future. Broadly speaking, 

there are two distinct approaches to this signal extraction problem. 

The first approach is to use cross-sectional data on inflation (sectoral-level inflation data), 

with a scheme that downweights sectors with large non-persistent variation. The most important 

example of this approach is the standard measure of core inflation, which excludes food and 

energy prices (Gordon (1975), Eckstein (1981); see Wynne (2008) for a discussion of the history 

of core inflation). Other methods that exploit cross-sectional smoothing include trimmed means 

or medians of sectoral inflation rates, see Bryan and Cecchetti (1994); these methods impose 

zero/one weighting on each component, with weights that vary over time.1 For recent references 

on core inflation see Crone, Khettry, Mester, and Novak (2013). 

The second common approach to the signal extraction problem uses time-series 

smoothing methods. Simple yet effective smoothers include the exponential smoother implied by 

the IMA(1,1) model of Nelson and Schwert (1977) and the four-quarter average of quarterly 

inflation (Atkeson and Ohanian (2001)). Stock and Watson (2007) and Cogley and Sargent 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 The Cleveland Fed publishes a median and trimmed mean CPI 
(https://www.clevelandfed.org/en/Our%20Research/Indicators%20and%20Data/Current%20Median%20CPI.aspx) 
and the Dallas Fed publishes a monthly trimmed mean PCE inflation index (http://www.dallasfed.org/research/pce/).  
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(2015) provide methods that allow for time-variation in the smoother depending on changes in 

the signal-to-noise ratio of the persistent and non-persistent components. 

We follow this literature on core and trend inflation and consider estimates derived from 

the price indexes and corresponding expenditure share weights used in the construction of the 

headline inflation series of interest. A vast literature considers the problem of using other series, 

such as measures of economic activity, interest rates, and terms of trade to forecast inflation. At 

an abstract level, the distinction between using only price data, and price data combined with 

other data, can be thought of as measurement vs. forecasting; the focus here is measurement. At 

a practical level, at least for the U.S., some forecasting models using non-price data can improve 

upon forecasts based solely on prices, but those improvements are small and, in many cases, 

ephemeral. This underscores the practical relevance of estimates of trend inflation based on 

constituent sectoral price data. 

This paper combines the cross-sectional and time-series smoothing approaches to 

examine four questions about the measurement of trend inflation and its relation to core inflation. 

First, can more precise measures of trend inflation be obtained using disaggregated sectoral 

inflation measures, relative to time series smoothing of aggregate ("headline") inflation? Second, 

if there are improvements to be had by using sectoral inflation measures, do the implied sectoral 

weights evolve over time or are they stable, and how do they compare to the corresponding 

sectoral shares in consumption? Third, how do the implied time-varying weights and the 

resulting multivariate estimate of trend inflation compare to conventional core inflation 

measures? And fourth, do these trend inflation measures improve upon conventional core 

inflation when it comes to forecasting inflation over the 1-3 year horizon? 

We investigate these questions empirically using a univariate and multivariate 

unobserved-components stochastic volatility outlier-adjusted (UCSVO) model that allows for 

common persistent and transitory factors, time-varying factor loadings, and stochastic volatility 

in the common and sectoral components. The time-varying factor loadings allow for changes in 

the comovements across sectors, such as the reduction in energy price pass-through into other 

prices. Introducing separate sectoral and common stochastic volatility in transitory and 

permanent innovations allows for changes in the persistence of sectoral inflation and for sector-

specific changes in volatility. One source of the changing volatility in the component inflation 

rates is changes in the methods and/or underlying data sources used to construct the historical 
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series. A strength of the method used here is that the resulting estimates of historical trends 

adjust for changes in measurement methods as well as for fundamental changes in the volatility 

and persistence of the component series. 

At a technical level, the model closest to that used here is del Negro and Otrok (2008), 

which has time-varying factor loadings and stochastic volatility (their application is to 

international business cycles, not inflation). Our model has some differences to fit our 

application to U.S. sectoral inflation data, including distinct sectoral trends, a common trend, and 

model-based detection of and adjustment for outliers. 

The data we use are 17 sectors comprising the personal consumption expenditure (PCE) 

price index for the United States, 1959Q1-2015Q2. Our main findings are: (i) the multivariate 

trend estimates are more precise than the univariate estimates: posterior intervals for trend 

inflation using the multivariate model are roughly one-third narrower than intervals based on 

headline inflation alone; (ii) although the implied weights in the multivariate trend on most 

sectoral components are close to their share weights, the implied weight on some series varies 

substantially; (iii) broadly speaking, the multivariate trend estimate is a temporally smoothed 

version of core (excluding food & energy) through the 1970s, but starting in the 1980s places 

more weight on food (both off-premises and food services & accommodation) and less weight on 

financial services, so that the composition of multivariate trend in the 2000s is roughly similar to 

inflation for PCE excluding energy; and (iv) viewed as forecasts, the multivariate and univariate 

trend estimates constructed using core inflation improve upon forecasts that use headline 

inflation alone and several other benchmark forecasts, but the forecasting gains are imprecisely 

estimated. 

In addition to the literatures discussed above on core and trend inflation, this work is 

related to three other large literatures. First, our modeling framework extends work estimating 

common factors of multiple inflation series, including Bryan and Cecchetti (1993), Cristadoro, 

Forni, Reichlin, and Veronese (2005), Amstad and Potter (2007), Kiley (2008), Altissimo, 

Mojon, and Zaffaroni (2009), Boivin, Giannoni, and Mihov (2009), Reis and Watson (2010), and 

Sbrana, Silvestrini, and Venditti (2015). Mumtaz and Surico (2012) introduce stochastic 

volatility and time-varying factor dynamics into a model of 13 international inflation rates. 

Second, the issues of including or excluding energy inflation is related to the literature on 

changes in the pass-through of energy prices to headline or core inflation (something allowed for 
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in our model); see Hooker (2002), De Gregorio, Landerretche, and Neilson (2007), van den 

Noord and André (2007), Chen (2009), Blanchard and Galı (2010), Clark and Terry (2010), and 

Baumeister and Peersman (2013). Also related is work that uses variables other than prices to 

measure trend inflation, e.g. Mertens (2015), Garnier, Mertens, and Nelson (2015), and Mertens 

and Nason (2015).  

The next section presents the univariate and multivariate UCSVO models and discusses 

their estimation. Section 3 provides the resulting univariate trend estimates for headline, core, 

and PCE excluding energy. Section 4 presents multivariate results, first for the 17-sector model 

then for a model with only three components: core, food, and energy. Section 5 compares the 

forecasting performance of the various trend estimates over the 1-3 year horizon, and Section 6 

concludes. 

 

2. The Unobserved Components Model with Stochastic Volatility, Common Factors, and 

Outlier Adjustment 

 

The univariate UCSVO model. The univariate unobserved components/stochastic 

volatility outlier-adjustment (UCSVO) model used in this paper expresses the rate of inflation as 

the sum of a permanent and transitory component, where the innovations to both components 

have variances that evolve over time according to independent stochastic volatility processes, 

and where the innovation to the temporary component can have heavy tails (outliers): 

 

πt = τt + εt         (1) 

τt = τt-1 + σΔτ,t  × ητ,t        (2) 

εt = σε,t × st × ηε,t.        (3) 

Δln( 2
,tεσ ) =  γενε,t        (4) 

Δln( 2
,tτσΔ ) =  γΔτνΔτ,t        (5) 

 

where (ηε, ητ, νε, νΔτ) are iidN(0, I4), and where st is an i.i.d. random variable that generates 

outliers in εt. 
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This model expresses the rate of inflation πt as the sum of a permanent component τt 

(trend) and a transitory component εt (1), in which τt follows a martingale (2) and the transitory 

component is serially uncorrelated(3), and in which both innovations follow a logarithmic 

random walk stochastic volatility processes (4) and (5). Conditional on the stochastic volatility 

process, the transitory innovation εt is modeled in (3) as a mixture of normals via the i.i.d. 

variable st, where st = 1 with probability (1 − p), and st ~ U[2,10] with probability p. This 

mixture model allows for outliers in inflation − that is, large one-time shifts in the price level  − 

which occur each period with probability p. 

The UCSVO model (1) - (5) has only three parameters: γε and γΔτ govern the scale of the 

innovation in the stochastic volatility process, and p governs the frequency of outliers. At a given 

point in time, the autocovariance structure of πt is that of a IMA(1,1) process, however the outlier 

distribution of the transitory innovation means that the estimate of τt is not always well 

approximated by the linear exponential smoother associated with a local IMA(1,1) filter. 

This difference between (1) - (5) and the Stock-Watson (2007) UCSV model is that the 

USCVO model includes an explicit model-based treatment of outliers. As will be seen below, 

large infrequent spikes in inflation are observed in the data, especially in the sectoral 

components.2 Stock and Watson (2007) made preliminary judgmental adjustments for outliers 

prior to model estimation, however that approach is not feasible for real-time trend estimation 

because it requires knowing whether a large change will mean-revert. Ignoring outliers is not 

appealing because doing so runs the risk of mistaking a single large outlier for a more systematic 

increase in the volatility of the transitory component. Because we are interested in real-time 

trend estimation, (3) therefore extends the Stock-Watson (2007) model to make outlier 

adjustments part of the model by modeling the transitory innovation as a mixture-of-normals. 

The multivariate UCSVO model. This multivariate UCSVO (MUCSVO) model extends 

the UCSVO model to include a common latent factor in both the trend and idiosyncratic 

components of inflation, where the factor loadings are also time-varying. Let the subscripts c 

denote the common latent factor and i denote the sector. The multivariate model is the del Negro 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 An example of such a sectoral outlier is the April 2009 increase in the Federal cigarette tax, which resulted in a 
22% increase in cigarette prices that month. This tax increase drove a one-time jump in the rate of PCE inflation for 
other nondurable goods (the category that contains tobacco) in 2009Q2 of 10.4% at an annual rate, well above the 
2.7% average rate of inflation for that category in 2008 and 2009 excluding that quarter. 
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and Otrok (2008) dynamic factor model with time-varying factor loadings and stochastic 

volatility, extended to have permanent and transitory components and to handle outliers in the 

transitory disturbance. 

The multivariate UCSV model is, 

 

    πi,t = αi,τ,t τc,t + αi,ε,t εc,t + τi,t + εi,t,         (6) 

    τc,t = τc,t-1 + σΔτ,c,t  × ητ,c,t            (7) 

    εc,t = σε,c,t × sc,t × ηε,c,t           (8) 

    τi,t = τi,t-1 + σΔτ,i,t  × ητ,i,t             (9) 

      εi,t = σε,i,t × si,t × ηε,i,t                   (10) 

αi,τ,t =  α i,τ, t-1 + λi,τζ i,τ,t  and αi,ε,t =  α i,ε,t-1 + λi,εζ i,ε,t          (11) 

Δln( 2
, ,c tτσΔ ) = γΔτ,cνΔτ,c,t, Δln( 2

, ,c tεσ ) = γε,cνε,c,t, Δln( 2
, ,i tτσΔ ) = γΔτ,iνΔτ,i,t, and 

Δln( 2
, ,i tεσ ) = γε,iνε,i,t,           (12) 

 

where the disturbances (ητ,c,t ,ηε,c,t ,ητ,i,t ,ηε,i,t ,ζi,τ,t, ζi,ε,t,νΔτ,c,t,νε,c,t,νΔτ,i,t,νε,i,t) are i.i.d. standard 

normal.  

Equation (6) represents sector i inflation as the sum of a latent common factor for trend 

inflation, τc,t, a latent common transient component, εc,t, and sector-specific trends and transient 

components, τi,t and εi,t, and where the factor loadings evolve according to a random walk (11).  

Equations (7) - (10) allow for stochastic volatility in the latent common and sector-specific 

components, where the stochastic volatility evolves according to the logarithmic random walk  

(12). Like the univariate model, the multivariate model allows for outliers in the common and 

sectoral transitory components through the independent random variables sc,t and si,t in (8) and 

(10), and where the outlier probabilities are pc and pi. The trend sectoral inflation is the sum of 

the contribution of the common latent factor to that sector and the sectoral trend, that is, the 

sectoral trend is αi,τ,tτc,t + τi,t. The aggregate trend inflation is the sum of the sectoral trend, 

weighted by the share weight wit of sector i in total inflation: 

 

Aggregate trend = τt = ( ), , , ,1

n
it i t c t i ti
w τα τ τ

=
+∑ ,    (13) 
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where n denotes the number of sectors. 

The definition (13) of the aggregate trend τt nests a range of possibilities, from the 

common trend providing all the trend movements in sectoral inflation (so that there are n-1 

cointegrating vectors among the n sectors) to all sectoral inflation being independent with no 

common trend. In this latter case, the common trend in aggregate inflation would just be the sum 

of the idiosyncratic trends, weighted by the sectoral share weights. 

Estimation. The model is estimated using Bayesian methods. The online appendix 

contains a detailed description of the priors and the numerical methods used to approximate the 

posteriors. We highlight a few details here.  

In the univariate model, priors are needed for the stochastic volatility parameters γε and 

γΔτ, the outlier probability p, and the initial values τ0, ln(σε,0), and ln(σΔτ,0). We use independent 

uniform priors for γε and γΔτ that are calibrated so that the standard deviation of annual changes in 

the values of ln(σε,t) and ln(σΔτ,t) are distributed U[0,0.2]. The prior for p is Beta(α,β), where α 

and β are calibrated to reflect information in a sample of length 10 years with an outlier 

occurring once every 4 years. The priors for τ0, ln(σε,0), and ln(σΔτ,0) are independent diffuse 

normal.   

The priors for the multivariate model follow the priors used in the univariate model. 

Thus, the priors for the various (γ, p) parameters and τi,0, ln(σi,ε,0), and ln(σi,Δτ,0) are the ones 

described in the last paragraph. The initial values of τc,0 and τi,0 are not separately identified, so 

we set τc,0 = 0. The factor structure of the multivariate model requires a normalization to 

separately identify the scale of the factor loadings (ατ, αε) and factors (τc, εc), and this leads us to 

set ln(σΔτ,c,0) = ln(σε,c,0) = 0. We use an informative prior about the initial values of the factor 

loadings: letting ατ be the vector of factor loadings on τc,t, the prior is ατ ~ N(0, κ 2
1 ιι’ +κ

2
2 In)  

where n is the number of sectors and ι is an n × 1 vector of 1’s. The parameter κ1 governs the 

prior uncertainty about the average value of factor loadings, and the parameter κ2 governs the 

variability of each factor loading from the average value.  We set κ1 = 10 (so the prior is 

relatively uninformative about the average value of the factor loadings) and κ2 = 0.4 (so there is 

shrinkage toward the average values). The same prior is used for αε.  The final set of parameters, 

(λi,τ, λi,ε), govern the time variation in the factor loadings. Following Del Negro and Otrok 
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(2008), we adopt an inverse Gamma prior for λ, with scale and shape parameters chosen so that 

the prior corresponds to TPrior prior observations with 2
Priors = 0.252/TPrior, where TPrior = T/10 and T 

is the sample size. 

Estimation of the posterior proceeds using Markov Chain Monte Carlo (MCMC) 

methods. The stochastic volatility is handled following Kim, Shephard, and Chib (1998), 

modified to use the Omori, Chib, Shephard, and Nakajima (2007) 10-component Gaussian 

mixture approximation for the log-chi squared error. The MCMC iterations in Stock and Watson 

(2007) have been corrected for an error pointed out by Del Negro and Primiceri (2014) that 

applies generally to models with stochastic volatility.  Details are presented in the online 

appendix. 

 

3. Data and Univariate Results 

 

The data. The full data set consists of observations on 17 components of inflation used to 

construct the PCE price index. The lowest-level components in NIPA Table 2.3.4 consist of 16 

components (4 durable goods sectors, 4 nondurable good sectors, and 8 service sectors). Core 

PCE excludes two of these 16 components (food for off-premises consumption and gasoline & 

energy goods), and additionally excludes gas & electric utilities. Because gas & electric utilities 

does not appear separately in Table 2.3.4, but rather is contained in housing & utilities, core PCE 

cannot be constructed directly from these 16 components. So that our 17-sector treatment nests 

core, we use addenda data from NIPA tables 2.3.4 and 2.3.5 to further disaggregate housing & 

utilities into gas & electric utilities and housing excluding gas & electric utilities, for a total of 17 

sectoral components. Expenditure share weights for these components can be computed using 

the nominal PCE values in NIPA table 2.3.5. The raw data in the sample are monthly 

observations from 1959M1-2015M6.  Most of our analysis uses quarterly data constructed by 

averaging the monthly inflation rates over the three months in the quarter.  Throughout, inflation 

is measured in percentage points at an annual rate. The 17 components and their expenditure 

share weights for selected periods are given in Table 1. 

In addition, we consider three aggregate indexes: the headline (all-components) PCE 

price index (PCE-all), the Bureau of Economic Analysis’s PCE price index excluding energy 

(PCExE), and the BEA core PCE price index excluding food and energy (PCExFE). 
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The data are all final estimates of these series. Some of the component series have 

undergone significant methodological changes over the years and have been subject to major 

historical revisions. For example, in 2013 the price index for financial services was revised, 

including changing the method for measuring implicitly priced services produced by commercial 

banks (Hood (2013)). Prior to the revision, the category “financial services furnished without 

payment” (e.g., checks processed without fees) used imputed prices based on market interest 

rates, so those prices fluctuated substantially during periods of interest rate volatility. The 2013 

revision changed the method for computing the reference interest rate for unpriced financial 

services, reducing the volatility of this component. Because this revision was implemented 

retroactively only to 1985, different methods are used to compute this component of the financial 

services price index pre-1985 and post-1985. 

As another example, in the 2009 revision, the category of food and tobacco (which until 

then had been excluded from core) was distributed across three categories: food & beverages 

purchased for off-premise consumption, other non-durable goods (which since 2009 includes 

tobacco), and food services & accommodations; only the first of these is now excluded from core 

PCE. Because the fully revised series reflect this change, it does not cause a break in the data 

used in this paper, however it does mean that previous research on core PCE examined a 

somewhat different concept than the current definition of core. Changing definitions and 

measurement methods combined with partial historical adjustment are commonplace, and we 

return to the implications of these methodological changes below. 

Univariate results for PCE-all, PCExE, and PCExFE. Figure 1 plots headline (PCE-all) 

and the two core inflation series (PCExE and PCExFE). Figure 2 plots the full-sample posterior 

means for τt , σΔτ,t, σε,t, and st from the univariate model for each of these inflation measures.  

The parameter values plotted in Figure 2 capture different features of the inflation series plotted 

in Figure 1.  Panel (a) of Figure 2 plots the posterior means for τt. The broadly similar trend 

estimates reflect the common low-frequency variability in the inflation series (see Figure 1), 

however there are important differences between the univariate trend estimates, most notably 

persistently higher trend inflation for PCE-all than for core inflation in the 2000s, and large but 

less persistent deviations of the headline and core trends during the late 1970s and mid-1980s. 

Over the entire sample period the mean absolute difference between the estimated trends in PCE-

all and PCExFE is 40 basis points, and is 20 basis points for the difference between PCExFE and 
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PCExFE trends.  In part, these differences reflect sampling errors associated with estimates, and 

we present error bands below. 

Panel (b) of Figure 2 shows estimates of σΔτ,t. These too are similar for the three inflation 

series and reflect the larger trend variation in the first half of the sample (when trend inflation 

increased during the 1970s and fell during the 1980s) than in the second half (when trend 

inflation was relatively “anchored”).  

Panel (c) of Figure 2 shows estimates of σε,t. These show important variation both over 

time and between inflation measure. Examination of PCE-all inflation in Figure 1 shows 

relatively little high frequency volatility during the 1990s followed by a marked increase in 

volatility in the early 2000s; this is reflected in the estimates for σε,t in Figure 2. A more subtle 

feature in Figure 1 is the difference between high frequency variability in the two core inflation 

measures: their high frequency volatility are similar in the second half the sample, but PCExFE 

exhibits much less high frequency than PCExE in the first half of the sample. This too is 

reflected in the estimates of σε,t for the two inflation series. 

Finally, panel (d) of Figure 2 shows estimates of the outlier scale factors st. These factors 

capture the outliers evident in all the inflation series plotted in Figure 1. (Note that st measures 

outliers in standard deviation units, so that absolute size of outliers is larger for headline inflation 

than the core measures of inflation.) 

 

4. Multivariate Results 

 

17-sector model.  The multivariate model estimates many variables: the common 

volatilities and trends (σΔτ, c, t, σε,c,t, τc,t), their sector-specific counterparts (σΔτ, i, t, σε,i,t, τi,t), the 

sector-specific factor loadings (ατ,i,t, αε,i,t), the common and sector-specific outlier factors (sc,t, 

si,t), and the aggregate inflation trend given in (13). The online appendix presents the model's 

estimates for all of these variables, and we highlight a few of them here. 

Figure 3 plots the MUCSVO model's full-sample estimates for the aggregate inflation 

trend, and for comparison also plots the PCE-all UCSVO estimate. Broadly speaking, the 

multivariate trend looks more like a time-averaged version of the two core measures (see Figure 

2) than the univariate trend in PCE-all. The divergence between the univariate PCE-all trend and 

the multivariate trend is largest in the 1970s, the mid 1980s, and the late 2000s.  (Error bands for 
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the estimates are discussed below.)  Figure 3 also plots estimates of the volatility for the common 

factors and common outliers. The time series of volatility for the common trend factor, σΔτ,c,t, 

looks much like the trend volatility estimates from the UCSVO models, and σε,c,t evolves much 

like the corresponding estimates in the UCSVO models for core inflation.   

Figure 4 shows estimates for the sector-specific variables for one sector, financial 

services and insurance. (The online appendix contains the analogous figures for the other 16 

sectors). As discussed in Section 3, the price index for the financial services and insurance sector 

is measured differently before 1985 than after, and this measurement break is evident in the 

sectoral inflation data plotted in Figure 4. The volatility of interest rates in the late 1970s and 

early 1980s lead to large volatility in this sector's measured inflation resulting in a large increase 

σε,i,t, the volatility of the sector-specific transitory term, εit. Despite the break in measurement, 

there is little evidence for a break in the factor loadings, although these are estimated 

imprecisely. There are several sector-specific outliers, both before and after the break in 

measurement. 

The similarities between the estimated trend in the MUCSVO model and the univariate 

UCSVO estimates using the core inflation measures raise the question of whether the 

multivariate trend is in effect a temporally smoothed version of core inflation and, more 

generally, what are the time-varying weights implicitly used in the multivariate trend. At any 

given point in time, the one-sided estimates from the multivariate trend is a nonlinear function of 

current and past values of the 17 sectoral inflation rates. Because of the time-varying parameters 

in the MUCSVO model, these weights evolve over time, and they involve lags because of the 

time series smoothing implied by the model. The function of current and past values is also 

nonlinear because of the outlier variable. For these reasons, an exact representation in terms of a 

time-varying linear weighted average is not feasible. Nevertheless, useful insights into the cross-

sectional smoothing can be obtained by looking at approximate time-varying weights. 

Specifically, at a given date, a linear approximation to the one-sided trend estimates can be 

computed using a Kalman filter based on (6) – (10), holding fixed the values of the time-varying 

factor loadings and volatilities (αc,t, αi,t, Δln( 2
, ,c tτσΔ ), Δln( 2

, ,c tεσ ). Δln( 2
, ,i tτσΔ ), and Δln( 2

, ,i tεσ )) at 

their full-sample posterior mean values at that date and ignoring outliers by setting sc,t = si,t = 1.  

(The online appendix describes these calculations in more detail.) 



	
  

	
   12	
  

Figure 5 plots the approximate linear weights on the 17 components implicit in the one-

sided multivariate estimate of the trend, specifically, the sum of the weights on the current and 

first three lagged values of the component inflation series. Comparing the approximate 

MUCSVO weight to the expenditure share shows whether, at a given date, the sector is getting 

more or less weight in the MUCSVO trend than it does in PCE-all.  

As can be seen in Figure 5, roughly half of the 17 components receive weight similar to 

their expenditure shares. The fact that so many of these weights track expenditure shares is by 

itself interesting, since the expenditure shares are not used in the MUCSVO model (expenditure 

shares are used in (13) to construct the overall trend based on the 17 filtered individual trends 

and the filtered common trend, but not in the calculation of the estimates of the individual and 

common trends). Components with weights that track expenditure shares include recreational 

goods & vehicles, other durable goods, other nondurable goods, housing excluding energy 

services, health care, transportation services, other services, and NPISHs. 

Other series have large swings in their weights. The weight on food & beverages for off-

premises consumption (“food at home”) increases substantially and, since the mid-1990s, 

essentially equals its expenditure share, and the weight on food services & accommodations rises 

from its share in the mid-1970s to nearly double its share in the 1980s and 1990s. Relative to 

their expenditure shares, the weights fell on financial services & insurance (since the late 1970s), 

on clothing and footwear (since the early 1980s), on furnishings & durable household equipment 

(since the mid-1980s), and on gas & electric utilities (since the mid-1990s). Except during the 

1960s, gasoline & energy goods receives essentially zero weight. 

Figure 6 shows these sectoral weights aggregated to core, food, and energy, where food is 

food for off-premises consumption, energy is gasoline & other energy goods and gas & electric 

utilities, and core consists of the remaining 14 sectors. As can be seen from these weights, the 

multivariate trend estimate evolved to increase the weight on food, and to decrease the already-

low weight on energy, around 1990. 

To better understand the reasons for these time-varying weights, we now take a closer 

look at four of the sectoral inflation rates. Figure 7 plots time series for these inflation rates along 

with posterior median and (point-wise) 67% posterior intervals for the standard deviation of their 

idiosyncratic noise components, σε,i,t. The first inflation series is for food services & 

accommodations.  Inflation in this sector tracks PCE-all inflation for the full sample, but has 
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higher idiosyncratic volatility in the 1960s and 1970s.  The reduction in the post-1970s 

idiosyncratic volatility makes this series a better indicator of trend inflation and thus the series 

receives more weight in the trend estimate beginning in the late 1970s. 

The next inflation series shown in Figure 7 is for food & beverages for off-premises 

consumption. This series is noisy early in the first half of the sample but less so later in the 

sample. The decrease in volatility of its idiosyncratic transitory innovation makes it a better 

indicator of trend inflation, so its weight in the estimate of trend inflation increases in the second 

half of the sample even though its expenditure share is falling.  

The third series is furnishing & durable household equipment, which smoothly tracks 

PCE inflation early in the sample but diverges and exhibits increased volatility since around 

1990. While this component receives considerable weight – more than twice its expenditure 

share – in the MUCSVO trend in the pre-1980 period, its weight drops to its expenditure share 

since 1990.   

The final series is gasoline & other energy goods, which since the early 1970s has 

exhibited volatility that is an order of magnitude large than the other sectoral inflation measures.  

Variations in this series are a poor indicator of trend inflation and the series receives essentially 

zero-weight in the estimated MUCSVO trend.  

Three-sector model. The results for the 17-sector model raise the question of whether 

similar results can be obtained using a simpler 3-sector model consisting of core (PCExFE), 

energy (the two energy components excluded from core, combined with their share weights), and 

food (off-premises). We therefore estimated this 3-component model using the multivariate 

model of Section 2.  Selected results for this model are presented below, and detailed results are 

available in the online appendix 

Accuracy of the trend estimates. One of the motivating questions of this work is whether 

using sectoral information can improve the precision of the estimator of the trend in headline 

inflation. Because trend inflation is never observed, the precision of the various estimators 

cannot be computed directly from the data. In this section we present model-based accuracy 

measures based on the width of posterior uncertainty intervals, which are complemented in the 

next section with a pseudo-out-of-sample forecast experiment.  

Panel (a) of Figure 8 plots point-wise 90% posterior intervals for the trend in PCE-all 

computed from the UCSVO and 17-component MUCSVO models. The width of these intervals 
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reflects two distinct sources of uncertainty: (i) signal extraction uncertainty conditional on values 

of the model's parameters, and (ii) uncertainty about the model parameters. Because the 

information set for the multivariate model is strictly larger than univariate model, signal 

extraction uncertainty is smaller in the MUCSVO model.  However, many more parameters are 

estimated in the MUCSVO model, so parameter uncertainty may be larger, and therefore there is 

no a priori ranking of the width of posterior intervals in the UCVSO and MUCSVO models. 

Examination of panel (a) shows that the MUCSVO intervals are visibly narrower than the 

UCSVO bands, suggesting a substantial reduction in uncertainty using the information in the 

multivariate model, even at its cost of additional complexity.  Panel (a) of Table 2 summarizes 

these results by showing the average width of 67% and 90% posterior intervals for the UCSVO 

and MUCSVO models over the first and second halves of the sample. The 67% and 90% full-

sample posterior intervals for the PCE-all trend (labeled τ PCE-­‐allt  in the table) are roughly 35% 

narrower than the corresponding intervals for the univariate model.  

Figure 9 shows the corresponding intervals, but for posteriors computed recursively using 

data from the beginning of the sample through time t.  We compute these one-sided posteriors 

beginning in t = 1990:Q1 and continuing through the end of the sample (2015Q2). Because these 

one-sided intervals use less information that the full-sample posteriors they are necessarily 

wider, but as the values in panel (b) indicate, the 17-component MUCSVO model again produces 

intervals that are roughly 40% narrower than UCSVO model. 

The MUCSVO model can also be used to estimate the trend in the core measures of 

inflation, PCExE and PCExFE, by using equation (13), but with share weights (wit) appropriate 

for these measures. Comparisons of the posterior intervals for these multivariate estimates and 

their univariate counterparts are shown in panels (b) and (c) of Figures 8 and 9, and the average 

widths of these intervals are shown in Table 2. The relative improvements of the accuracy of the 

multivariate models are much smaller for estimates of the trend in these core measures of 

inflation. For example, the one-sided multivariate intervals are 10-15 percent narrower than their 

univariate counterparts for core inflation, compared to 40 percent narrower for headline inflation. 

And the relative gains for the full-sample estimates are even less. 

The final panel in Figures 8 and 9 compare the 3-component and 17-component 

MUCSVO intervals for the trend in headline inflation. The average widths in Table 2 suggest 

that some, but not all of the accuracy gains for estimating τPCE-all are achieved by the 3-
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component model.  Interesting, for estimating the trends in core inflation, the 3-component 

MUCSVO model produces intervals that are wider than the univariate models indicating that the 

increased parameter uncertainty outweighs the signal extraction information.   

 

5. Forecasting performance 

 

The definition of trend inflation as the forecast of inflation over the long run suggests 

using forecasting performance to evaluate candidate estimates of trend inflation. Following much 

of the literature on inflation forecasting using core inflation, we focus on forecasts at the 1-3 year 

horizon. 

Specifically, we use the one-sided posterior mean estimates of τt, denoted by τt|t and 

described in the last section, from the various models to forecast the average value of inflation 

over the next 4, 8, and 12 quarters, that is to forecast π π−
+ + +=

= ∑PCE-­‐all 1 PCE-­‐all
1: 1

h
t t h t ii

h for h = 4, 8, and 12 

and where π PCE-­‐all
t  is the date t value of PCE-all inflation. Forecasts are constructed using τ PCE-­‐all/t t , 

constructed from the univariate UCSVO and 3- and 17-component MUCSVO models and from 

τ PCExE/t t  and !!τ t/t
PCExFE computed from univariate UCSVO models.  The variable being forecast is 

headline inflation, π + +
PCE-­‐all
1:t t h , in all of the experiments even when being forecast by the core trend 

estimates. We also consider six benchmark forecasts: random walk models using (separately) 

lagged PCE-all, lagged PCExE, and lagged PCExFE, and the Atkeson-Ohanian (2001) four-

quarter random walk model computed using (separately) PCE-all, PCExE, and PCExFE. 

Forecasts are constructed from t = 1990:Q1 through the end of the sample 

Table 3 summarizes the results. Panel (a) shows results for the entire 1990Q1 – end of 

sample period. For each forecast the table reports the sample mean square forecast error (MSFE) 

together with its estimated standard error, and the difference between the forecast's MSFE and 

the MSFE of the 17-component MUCSVO model, together with its standard error. The values of 

these MSFEs are greatly affected by the large outlier in π PCE-­‐all
2008 4Q evident in Figure 1. Panel (b) 

shows results from the same forecasting exercise, but with this single observation omitted from 

the sample values of π + +
PCE-­‐all
1:t t h . We concentrate our discussion on the panel (b) results. 
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Four results stand out from this forecasting experiment.  First, forecasts that use moving 

averages of past inflation are more accurate than forecasts that do not. All of the moving-average 

forecasts (from the simple 4-quarter moving averages to the more sophisticated moving averages 

in the UCSVO and MUCSVO models) produce markedly more accurate forecasts than the 

corresponding forecasts using only contemporaneous values of inflation. Second, forecast 

accuracy is improved by down-weighting some sectors, most notably energy. Forecasts that put 

little or no weight on energy, whether by using the core inflation measures or the MUCSVO 

models, are more accurate that forecasts based on headline inflation, regardless of the moving 

average filter used. Third, the UCSVO forecasts have smaller MSFE than the 4-quarter moving 

average forecasts, suggesting that there are gains from using forecasts that adapt to the changing 

persistence in the inflation process. And finally, there are only small (perhaps zero) marginal 

improvements in accuracy for the MUCSVO forecasts relative to the core-inflation UCSVO 

forecasts. 

 

6. Discussion and Conclusions 

 

Previous work has shown that the random-walk-plus-white-noise unobserved components 

model with stochastic volatility provides a simple but flexible univariate framework for 

describing the persistence and volatility of inflation, for estimating its trend, and for forecasting 

future inflation.  This paper has investigated a multivariate extension of that model that allows 

sectoral inflation potentially to improve upon the univariate estimates of trend inflation, much 

like traditional core inflation does for headline inflation.   

The analysis leads to two major conclusions.  First, there are substantial gains from using 

sectoral inflation over using headline inflation.  The multivariate estimates of the trend in 

aggregate (headline) inflation are more accurate than the univariate estimates regardless of 

whether accuracy is measured by model-based uncertainty or pseudo-out-of-sample forecasting 

accuracy.  But second, the analysis suggests that much of this improved accuracy can be 

achieved from univariate estimates constructed from traditional core measures of inflation.  

Model-based uncertainty measures suggest that univariate estimates of the trend in core inflation 

are nearly as accurate as multivariate estimates of these same trends.  Moreover, the pseudo-of-
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sample experiments suggest little difference in the accuracy of these estimates of core trend 

inflation for forecasting future headline inflation. 

The results also lead to two other conclusions. The first is that the reduced volatility of 

food prices, relative to before the mid-1980s, led the multivariate model to include food in the 

trend estimate post-1990, with a weight close to its expenditure share. This finding suggests 

paying more attention to PCExE than to PCExFE. Second, the UCSVO models (univariate or 

multivariate) have the advantage of producing measures of precision of trend estimates (posterior 

coverage regions). Currently, the width of these 67% regions is approximately 0.6 percentage 

point using the 17-variable or univariate core trend estimates. We see merit to reporting these 

estimates of the precision of trend inflation along with estimates of that trend. 

Finally, we highlight three areas where the analysis might be extended.  First, there are a 

myriad of ways the multivariate model might be changed by, for example, including additional 

factors, restricting the factor loadings, or allowing for different dynamics. We experimented with 

several of these before settling on the specification used here, but our experiments were far from 

exhaustive. Second, we investigated 3- and 17- component models, but much finer sectoral 

dissagregation is possible. Our initial look at more finely dissagregated data suggested 

substantial challenges associated with instability in measurement, but clever modeling might 

address those challenges. Finally, and most important, this analysis has used quarterly averages 

of monthly inflation rates. Real-time analysis would benefit from directly modeling the monthly 

data. Our experiments applying the UCSVO and MUCSVO models directly to the monthly data 

yielded forecasts that were less accurate than the forecasts from the quarterly data. (Results are 

reported in the online appendix.) This suggests that a successful monthly model will require 

alternative specifications for the transitory and trend innovations.   
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Table 1. The 17 Components of the PCE Price IndsUsed in this Study  
and their Expenditure Shares 

 
Sector	
   1960-­‐

2015	
  
1960-­‐
1979	
  

1980-­‐
1999	
  

2000-­‐
2015	
  

Durable	
  goods	
   	
   	
   	
   	
  
Motor	
  vehicles	
  and	
  parts 0.053	
   0.060	
   0.054	
   0.042	
  
Furnishings	
  and	
  durable	
  household	
  equipment 0.036	
   0.044	
   0.033	
   0.028	
  
Recreational	
  goods	
  and	
  vehicles 0.029	
   0.026	
   0.029	
   0.032	
  
Other	
  durable	
  goods 0.016	
   0.015	
   0.016	
   0.016	
  

Nondurable	
  goods	
   	
   	
   	
   	
  
Food	
  and	
  beverages	
  purchased	
  for	
  off-­‐
premises	
  consumption* 

0.117	
   0.160	
   0.104	
   0.077	
  

Clothing	
  and	
  footwear 0.054	
   0.071	
   0.051	
   0.034	
  
Gasoline	
  and	
  other	
  energy	
  goods* 0.037	
   0.044	
   0.035	
   0.032	
  
Other	
  nondurable	
  goods 0.078	
   0.080	
   0.074	
   0.081	
  

Services	
   	
   	
   	
   	
  
Housing	
  &	
  utilities	
   	
   	
   	
   	
  

Housing	
  excluding	
  gas	
  &	
  electric	
  utilities 0.153	
   0.146	
   0.155	
   0.161	
  
Gas	
  &	
  electric	
  utilities*	
   0.025	
   0.026	
   0.028	
   0.021	
  

Health	
  care 0.114	
   0.071	
   0.127	
   0.155	
  
Transportation	
  services 0.032	
   0.030	
   0.034	
   0.032	
  
Recreation	
  services 0.029	
   0.021	
   0.031	
   0.038	
  
Food	
  services	
  and	
  accommodations 0.064	
   0.064	
   0.066	
   0.061	
  
Financial	
  services	
  and	
  insurance 0.063	
   0.047	
   0.068	
   0.076	
  
Other	
  services 0.081	
   0.081	
   0.077	
   0.087	
  
Final	
  consumption	
  expenditures	
  of	
  nonprofit	
  
institutions	
  serving	
  households	
  (NPISHs) 

0.020	
   0.016	
   0.019	
   0.026	
  

 
Notes: Each column shows the average expenditure share over the sample period indicated. 
*Excluded from core PCE. 
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Table 2:  Average width of 90% posterior intervals for trend inflation. 
 
 

(a) Full-sample Posterior 
Inflation	
  
Trend	
  

Univariate	
   	
   Multivariate	
  
3	
  Components	
   	
   17	
  Components	
  

1960-­‐1989	
   1990-­‐2015	
   	
   1960-­‐1989	
   1990-­‐2015	
   	
   1960-­‐1989	
   1990-­‐2015	
  
	
   67%	
  Intervals	
  
τPCE-­‐All	
   1.17	
   0.75	
   	
   0.88	
   0.55	
   	
   0.75	
   0.48	
  
τPCExE	
   1.02	
   0.46	
   0.85	
   0.48	
   0.74	
   0.42	
  
τPCExFE	
   0.78	
   0.42	
   0.81	
   0.49	
   0.68	
   0.41	
  
	
   90%	
  Intervals	
  
τPCE-­‐All	
   2.03	
   1.32	
   	
   1.53	
   0.96	
   	
   1.27	
   0.83	
  
τPCExE	
   1.77	
   0.79	
   1.48	
   0.83	
   1.25	
   0.72	
  
τPCExFE	
   1.37	
   0.73	
   1.41	
   0.85	
   1.15	
   0.71	
  
 

(b) One-Sided Posterior, 1990-2015 
Inflation	
  
Trend	
  

Univariate	
   	
   Multivariate	
  
3	
  Components	
   	
   17	
  Components	
  

	
   67%	
  Error	
  Bands	
  
τPCE-­‐All	
   1.06	
   	
   0.75	
   	
   0.64	
  
τPCExE	
   0.66	
   0.67	
   0.57	
  
τPCExFE	
   0.62	
   0.68	
   0.57	
  
	
   90%	
  Error	
  Bands	
  
τPCE-­‐All	
   1.88	
   	
   1.31	
   	
   1.10	
  
τPCExE	
   1.15	
   1.18	
   0.99	
  
τPCExFE	
   1.09	
   1.20	
   0.99	
  
 
Notes: The table shows the average width of (equal-tailed, point-wise) posterior intervals for the 
inflation trends listed in the first column.  Panel (a) uses the full-sample posterior.  Panel (b) uses 
a sequence of one-sided posteriors using samples ending in period t, for t = 1990Q1 through 
2015Q2. 
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Table 3. Mean squared forecast errors (MSFEs) for various price-based inflation forecasts: 
model-based estimated trends and benchmark forecasting models 

 
(a) 1990Q1 through end-of-sample 

	
   4	
  quarter-­‐ahead	
  forecasts	
   	
   8	
  quarter-­‐ahead	
  forecasts	
   	
   12	
  quarter-­‐ahead	
  forecasts	
  
	
   MSFE	
   Difference	
   	
   MSFE	
   Difference	
   	
   MFSE	
   Difference	
  

Multivariate	
  UCSVO	
  Forecasts	
  
17comp	
  	
   0.97	
  (0.34)	
   0.00	
  (0.00)	
   	
   0.61	
  (0.15)	
   0.00	
  (0.00)	
   	
   0.51	
  (0.10)	
   0.00	
  (0.00)	
  	
  
3comp	
   0.96	
  (0.35)	
   -­‐0.01	
  (0.04)	
   	
   0.63	
  (0.16)	
   0.02	
  (0.04)	
   	
   0.53	
  (0.11)	
   0.02	
  (0.05)	
  	
  
Univariate	
  UCSVO	
  Forecasts	
  
PCE-­‐all	
   1.09	
  (0.42)	
   0.12	
  (0.12)	
   	
   0.81	
  (0.23)	
   0.20	
  (0.11)	
   	
   0.69	
  (0.16)	
   0.18	
  (0.11)	
  	
  
PCExE	
   0.87	
  (0.28)	
   -­‐0.10	
  (0.08)	
   	
   0.58	
  (0.12)	
   -­‐0.03	
  (0.07)	
   	
   0.49	
  (0.10)	
   -­‐0.02	
  (0.07)	
  	
  
PCExFE	
   0.86	
  (0.25)	
   -­‐0.12	
  (0.11)	
   	
   0.55	
  (0.10)	
   -­‐0.06	
  (0.10)	
   	
   0.48	
  (0.10)	
   -­‐0.03	
  (0.09)	
  	
  
Forecasts	
  using	
  Contemporaneous	
  Values	
  of	
  Inflation	
  	
  
PCE-­‐all	
   3.67	
  (1.67)	
   2.70	
  (1.41)	
   	
   3.32	
  (1.45)	
   2.71	
  (1.32)	
   	
   3.29	
  (1.47)	
   2.77	
  (1.41)	
  	
  
PCExE	
   1.23	
  (0.35)	
   0.25	
  (0.09)	
   	
   0.91	
  (0.20)	
   0.30	
  (0.10)	
   	
   0.87	
  (0.17)	
   0.36	
  (0.10)	
  	
  
PCExFE	
   1.18	
  (0.28)	
   0.20	
  (0.14)	
   	
   0.84	
  (0.15)	
   0.23	
  (0.13)	
   	
   0.82	
  (0.15)	
   0.31	
  (0.11)	
  	
  
Forecasts	
  using	
  4-­‐Quarter	
  Averages	
  of	
  Inflation	
  
PCE-­‐all	
   1.51	
  (0.61)	
   0.54	
  (0.31)	
   	
   1.23	
  (0.44)	
   0.62	
  (0.31)	
   	
   1.12	
  (0.36)	
   0.61	
  (0.30)	
  	
  
PCExE	
   0.94	
  (0.30)	
   -­‐0.04	
  (0.06)	
   	
   0.66	
  (0.14)	
   0.05	
  (0.05)	
   	
   0.56	
  (0.10)	
   0.05	
  (0.04)	
  	
  
PCExFE	
   0.91	
  (0.26)	
   -­‐0.07	
  (0.10)	
   	
   0.61	
  (0.11)	
   -­‐0.00	
  (0.08)	
   	
   0.53	
  (0.09)	
   0.02	
  (0.07)	
  	
  
 

(b) 1990Q1 through end-of-sample, excluding 2008Q4 
	
   4	
  quarter-­‐ahead	
  forecasts	
   	
   8	
  quarter-­‐ahead	
  forecasts	
   	
   12	
  quarter-­‐ahead	
  forecasts	
  
	
   MSFE	
   Difference	
   	
   MSFE	
   Difference	
   	
   MFSE	
   Difference	
  

Multivariate	
  UCSVO	
  Forecasts	
  
17comp	
  	
   0.62	
  (0.10)	
   0.00	
  (0.00)	
   	
   0.49	
  (0.07)	
   0.00	
  (0.00)	
   	
   0.42	
  (0.08)	
   0.00	
  (0.00)	
  	
  
3comp	
   0.59	
  (0.09)	
   -­‐0.03	
  (0.04)	
   	
   0.49	
  (0.08)	
   0.00	
  (0.05)	
   	
   0.43	
  (0.10)	
   0.01	
  (0.05)	
  	
  
Univariate	
  UCSVO	
  Forecasts	
  
PCE-­‐all	
   0.66	
  (0.10)	
   0.04	
  (0.08)	
   	
   0.63	
  (0.13)	
   0.14	
  (0.10)	
   	
   0.57	
  (0.14)	
   0.16	
  (0.10)	
  	
  
PCExE	
   0.59	
  (0.10)	
   -­‐0.03	
  (0.05)	
   	
   0.50	
  (0.08)	
   0.01	
  (0.05)	
   	
   0.45	
  (0.10)	
   0.03	
  (0.06)	
  	
  
PCExFE	
   0.61	
  (0.10)	
   -­‐0.01	
  (0.05)	
   	
   0.49	
  (0.08)	
   0.01	
  (0.06)	
   	
   0.45	
  (0.11)	
   0.03	
  (0.07)	
  	
  
Forecasts	
  using	
  Contemporaneous	
  Values	
  of	
  Inflation	
  	
  
PCE-­‐all	
   3.08	
  (1.28)	
   2.46	
  (1.28)	
   	
   3.04	
  (1.24)	
   2.55	
  (1.22)	
   	
   3.13	
  (1.34)	
   2.71	
  (1.34)	
  	
  
PCExE	
   0.92	
  (0.15)	
   0.30	
  (0.10)	
   	
   0.81	
  (0.14)	
   0.32	
  (0.10)	
   	
   0.80	
  (0.15)	
   0.39	
  (0.10)	
  	
  
PCExFE	
   0.95	
  (0.15)	
   0.33	
  (0.10)	
   	
   0.80	
  (0.13)	
   0.31	
  (0.11)	
   	
   0.79	
  (0.15)	
   0.37	
  (0.10)	
  	
  
Forecasts	
  using	
  4-­‐Quarter	
  Averages	
  of	
  Inflation	
  
PCE-­‐all	
   0.96	
  (0.20)	
   0.34	
  (0.18)	
   	
   0.98	
  (0.27)	
   0.50	
  (0.23)	
   	
   0.92	
  (0.25)	
   0.50	
  (0.24)	
  	
  
PCExE	
   0.63	
  (0.10)	
   0.01	
  (0.05)	
   	
   0.56	
  (0.09)	
   0.07	
  (0.04)	
   	
   0.51	
  (0.09)	
   0.09	
  (0.03)	
  	
  
PCExFE	
   0.65	
  (0.10)	
   0.03	
  (0.05)	
   	
   0.54	
  (0.08)	
   0.06	
  (0.05)	
   	
   0.49	
  (0.10)	
   0.07	
  (0.05)	
  	
  
 
Notes: The entries labeled "MSFE" are the mean square forecast errors. The entries labeled  
"Difference" are the difference between that row's MSFE for and the MSFE for the 17-
component multivariate UCSVO model.  HAC standard errors are shown in parentheses. 
Minimum MSFE forecasts for a given horizon are shown in bold. Units are squared percentage 
points at an annual rate.
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Figure 1: Headline and core inflation  
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Figure 2: Full-sample posterior means from the univariate UCSVO models 
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Figure 3: Selected results from the 17-component MUCSVO model 

 
 

Notes: Panel (a) shows the full-sample posterior mean of the aggregate inflation trend computed from the PCE-all  UCSVO and 
MUCSVO models  Panels (b)-(d) show full-sample posterior medians and (point-wise) 67% intervals for σΔτ,c,t, σε,c,t, and sc,t.  
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Figure 4: Selected results from the 17-component MUCSVO model (continued) 
 

 
Notes: Panel (a) inflation is the financial services and insurance sector and the full-sample posterior mean of the sectoral trend.  The 
other panels plot the full-sample posterior median and (point-wise) 67% intervals for the sector-specific parameters. 
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Figure 5: Approximate weights for 17-component MUCSVO estimated trend and expenditure share 
 

 
Notes: The solid line is the approximate weights on each of the 17 inflation components (contemporaneous + three lags) in the one-
sided MUCSVO trend estimate (solid line), along with the expenditure share (dashed). 
 
 



	
  

	
   29	
  

Figure 6: Approximate weights on core, food, and energy sectors for the 17-component MUCSVO estimated trend  
and expenditure share 

 
 
Notes: See notes to Figure 5. 
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Figure 7: Sectoral inflation and σε,i,t for four sectors. 

 
 
Notes: The first column plots sectoral inflation and the second column plots the median and 67% full-sample posterior intervals for 
σε,i,t for the sector. 
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Figure 8: 90% full-sample posterior intervals from univariate and multivariate models 
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Figure 9: 90% one-sided posterior intervals from univariate and multivariate models 
 

 


